
University of Nebraska - Lincoln University of Nebraska - Lincoln 

DigitalCommons@University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln 

Publications from USDA-ARS / UNL Faculty U.S. Department of Agriculture: Agricultural 
Research Service, Lincoln, Nebraska 

9-15-2022 

Difference in seasonal peak timing of soybean far-red SIF and Difference in seasonal peak timing of soybean far-red SIF and 

GPP explained by canopy structure and chlorophyll content GPP explained by canopy structure and chlorophyll content 

Genghong Wu 
University of Illinois Urbana-Champaign 

Chongya Jiang 
University of Illinois Urbana-Champaign 

Hyungsuk Kimm 
University of Illinois Urbana-Champaign 

Sheng Wang 
University of Illinois Urbana-Champaign 

Carl Bernacchi 
USDA ARS 

See next page for additional authors 

Follow this and additional works at: https://digitalcommons.unl.edu/usdaarsfacpub 

 Part of the Agriculture Commons 

Wu, Genghong; Jiang, Chongya; Kimm, Hyungsuk; Wang, Sheng; Bernacchi, Carl; Moore, Caitlin E.; Suyker, 
Andy; Yang, Xi; Magney, Troy; Frankenberg, Christian; Ryu, Youngryel; Dechant, Benjamin; and Guan, Kaiyu, 
"Difference in seasonal peak timing of soybean far-red SIF and GPP explained by canopy structure and 
chlorophyll content" (2022). Publications from USDA-ARS / UNL Faculty. 2581. 
https://digitalcommons.unl.edu/usdaarsfacpub/2581 

This Article is brought to you for free and open access by the U.S. Department of Agriculture: Agricultural Research 
Service, Lincoln, Nebraska at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion 
in Publications from USDA-ARS / UNL Faculty by an authorized administrator of DigitalCommons@University of 
Nebraska - Lincoln. 

https://digitalcommons.unl.edu/
https://digitalcommons.unl.edu/usdaarsfacpub
https://digitalcommons.unl.edu/usdaars
https://digitalcommons.unl.edu/usdaars
https://digitalcommons.unl.edu/usdaarsfacpub?utm_source=digitalcommons.unl.edu%2Fusdaarsfacpub%2F2581&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1076?utm_source=digitalcommons.unl.edu%2Fusdaarsfacpub%2F2581&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/usdaarsfacpub/2581?utm_source=digitalcommons.unl.edu%2Fusdaarsfacpub%2F2581&utm_medium=PDF&utm_campaign=PDFCoverPages


Authors Authors 
Genghong Wu, Chongya Jiang, Hyungsuk Kimm, Sheng Wang, Carl Bernacchi, Caitlin E. Moore, Andy 
Suyker, Xi Yang, Troy Magney, Christian Frankenberg, Youngryel Ryu, Benjamin Dechant, and Kaiyu Guan 

This article is available at DigitalCommons@University of Nebraska - Lincoln: https://digitalcommons.unl.edu/
usdaarsfacpub/2581 

https://digitalcommons.unl.edu/usdaarsfacpub/2581
https://digitalcommons.unl.edu/usdaarsfacpub/2581


Remote Sensing of Environment 279 (2022) 113104

Available online 6 June 2022
0034-4257/© 2022 Published by Elsevier Inc.

Difference in seasonal peak timing of soybean far-red SIF and GPP 
explained by canopy structure and chlorophyll content 

Genghong Wu a,b, Chongya Jiang a,b,*, Hyungsuk Kimm a,b, Sheng Wang a,b, Carl Bernacchi c,d, 
Caitlin E. Moore c,e,f, Andy Suyker g, Xi Yang h, Troy Magney i, Christian Frankenberg j,k, 
Youngryel Ryu l,m, Benjamin Dechant l, Kaiyu Guan a,b,n,* 

a Agroecosystem Sustainability Center, Institute for Sustainability, Energy, and Environment, University of Illinois at Urbana-Champaign, Urbana, IL, USA 
b Department of Natural Resources and Environmental Sciences, College of Agricultural, Consumer and Environmental Sciences, University of Illinois at Urbana- 
Champaign, Urbana, IL, USA 
c Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA 
d USDA-ARS, Global Change and Photosynthesis Research Unit, Urbana, IL, USA 
e Institute for Sustainability, Energy and Environment, University of Illinois at Urbana-Champaign, Urbana, IL, USA 
f School of Agriculture and Environment, University of Western Australia, Crawley, Western Australia, Australia 
g School of Natural Resources, University of Nebraska-Lincoln, Lincoln, NE, USA 
h Department of Environmental Sciences, University of Virginia, Charlottesville, Virginia, USA 
i Department of Plant Sciences, University of California, Davis, California, USA 
j Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, USA 
k Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA 
l Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea 
m Department of Landscape Architecture and Rural Systems Engineering, College of Agriculture and Life Sciences, Seoul National University, South Korea 
n National Center of Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, IL, USA   

A R T I C L E  I N F O   

Edited by Jing M. Chen  

Keywords: 
Solar-induced chlorophyll fluorescence (SIF) 
Gross primary production (GPP) 
SIF-GPP peak timing mismatch 
Absorbed photosynthetic active radiation 
(APAR) 
Canopy chlorophyll content (ChlCanopy) 
Soybean 

A B S T R A C T   

Recent advances in remotely sensed solar-induced chlorophyll fluorescence (SIF) have provided an exciting and 
promising opportunity for estimating gross primary production (GPP). Previous studies mainly focused on the 
linear correlation between SIF and GPP and the slope of the SIF-GPP relationship, both of which lack rigorous 
consideration of the seasonal trajectories of SIF and GPP. Here, we investigated the timing of seasonal peaks of 
far-red SIF and GPP in soybean fields by integrating tower data, satellite data, and process-based Soil Canopy 
Observation of Photosynthesis and Energy (SCOPE, v2.0) model simulations. We found inconsistency between 
the seasonal peak timing of far-red SIF and GPP in three of four soybean fields based on tower far-red SIF and 
eddy-covariance measurements. In particular, far-red SIF reached its seasonal maximum 14–17 days earlier than 
GPP. This far-red SIF-GPP difference in peak timing degraded the correlation between sunny-day far-red SIF and 
GPP at daily scale (Pearson r = 0.83–0.87 at the site with 14–17 days difference and Pearson r = 0.96 at the site 
with no difference), and it can be explained by a divergence in the seasonality between absorbed photosynthetic 
active radiation (APAR) and canopy chlorophyll content (ChlCanopy). We found that the seasonality of far-red SIF - 
a byproduct of the light reactions of photosynthesis - was primarily controlled by APAR, whereas GPP seasonality 
was dominated by ChlCanopy. Further, SCOPE model simulations showed that the seasonal patterns of leaf area 
index (LAI), leaf chlorophyll content (ChlLeaf) and leaf angle distribution (LAD) could affect the different peak 
timing of SIF and GPP and consequently the seasonal relationship between far-red SIF and GPP. A further in
crease in LAI after the fraction of light absorption (FPAR) saturates and a later peak of ChlLeaf compared to LAI 
results in a later peak of GPP compared to far-red SIF. More horizontal leaf angles can further exacerbate this 
difference. Our results advance mechanistic understanding of the SIF-GPP relationships and combining chloro
phyll content information with SIF could potentially improve remote-sensing-based GPP estimation.  

* Corresponding author at: Agroecosystem Sustainability Center, Institute for Sustainability, Energy, and Environment, University of Illinois at Urbana-Champaign, 
Urbana, IL, USA 

E-mail addresses: chongya@illinois.edu, kaiyug@illinois.edu (K. Guan).  

Contents lists available at ScienceDirect 

Remote Sensing of Environment 

journal homepage: www.elsevier.com/locate/rse 

https://doi.org/10.1016/j.rse.2022.113104 
Received 13 January 2022; Received in revised form 25 April 2022; Accepted 23 May 2022   

mailto:chongya@illinois.edu
mailto:kaiyug@illinois.edu
www.sciencedirect.com/science/journal/00344257
https://www.elsevier.com/locate/rse
https://doi.org/10.1016/j.rse.2022.113104
https://doi.org/10.1016/j.rse.2022.113104
https://doi.org/10.1016/j.rse.2022.113104
http://crossmark.crossref.org/dialog/?doi=10.1016/j.rse.2022.113104&domain=pdf


Remote Sensing of Environment 279 (2022) 113104

2

1. Introduction 

Recent developments of solar-induced chlorophyll fluorescence (SIF) 
measurements from new and emerging remote sensing platforms may 
provide a promising way for estimating gross primary production (GPP) 
(Damm et al., 2010; Frankenberg et al., 2011; Guan et al., 2016; Guanter 
et al., 2014). SIF is an optical signal directly emitted by plants during the 
light reactions of photosynthesis in the spectral range of 650–800 nm 
and has the potential to directly assess ecosystem photosynthesis 
(Mohammed et al., 2019; Porcar-Castell et al., 2014; Ryu et al., 2019). 
Linear relationships between satellite-derived SIF and GPP have been 
reported in various ecosystems (Li et al., 2018; Sun et al., 2017), and 
some efforts have been made to solely use satellite SIF for GPP estima
tion at the regional (Guanter et al., 2014) and global scales (Li and Xiao, 
2019; Zhang et al., 2020b). However, most satellite SIF products have 
coarse spatial and temporal resolutions (Frankenberg et al., 2011; Joiner 
et al., 2013; Wen et al., 2020), which causes the linearity between SIF 
and GPP likely to be linked to the spatial and temporal averaging (Li 
et al., 2020) and/or the integration of canopy structural and physio
logical processes (Magney et al., 2020). Several recent mechanistic 
studies from tower spectral measurements have found nonlinear re
lationships between SIF and GPP at finer spatiotemporal scales (He 
et al., 2020; Kim et al., 2021; Paul-Limoges et al., 2018; Tagliabue et al., 
2019) and a decoupling of SIF and photosynthesis under stressed con
ditions (Helm et al., 2020; Marrs et al., 2020), which demonstrates the 
complexity of SIF-GPP relationships. 

The mechanistic differences between SIF and GPP at both leaf and 
canopy scales may explain the complexity of SIF-GPP relationships. 
First, SIF is emitted during the light reactions of photosynthesis, and is 
regulated by photochemistry and heat dissipation during light absorp
tion by chlorophyll molecules (Gu et al., 2019; Guan et al., 2016; Porcar- 
Castell et al., 2014). Photosynthesis, however, is affected by both light 
and carbon reactions since NADPH and ATP produced from the light 
reactions drive the carbon reactions for CO2 assimilation in the stroma of 
chloroplasts which ultimately determines photosynthesis. Second, 
scaling both SIF and photosynthesis from the leaf to the canopy in
troduces additional factors. Observed top-of-canopy SIF is not simply the 
cumulative SIF of all leaves but is instead affected by light absorption, 
reabsorption and scattering within the canopy. This effect can be 
quantified by the escape probability (fesc) which determines the fraction 
of SIF photons from all leaves escaping from the canopy (He et al., 2017; 
Yang and van der Tol, 2018; Zeng et al., 2019). Ecosystem GPP derived 
from eddy covariance measured net carbon flux (NEE), however, is the 
cumulated leaf-level photosynthesis from all leaves of the canopy. 

The aforementioned differences between SIF and GPP are well 
characterized by the formulations of SIF and GPP in the light use effi
ciency (LUE) framework. For the observed top-of-canopy SIF, we have 

SIF = APAR×ΦF × fesc (1)  

where APAR is the absorbed photosynthetic active radiation (PAR) by 
the canopy, ΦFis the physiological total SIF emission yield of the canopy 
from the light reactions of photosynthesis, and fesc is the escape proba
bility. For observation-derived ecosystem GPP, we have 

GPP = APAR×LUE (2)  

where LUE is the photosynthetic light use efficiency of the canopy. LUE 
is affected by not only the photochemistry during the light reactions of 
photosynthesis, but also the physiological and diffusion processes during 
the carbon reactions of photosynthesis (Gu et al., 2019; Stocker et al., 
2020). In addition, canopy structure also plays an important role in LUE, 
partly because it affects the light distribution within the canopy (Med
lyn, 1998) and LUE can be higher under diffuse light conditions (Gu 
et al., 2002; Urban et al., 2007). When comparing the two equations for 
SIF and GPP, the differences between the light and carbon reactions are 
revealed by the SIF-APAR, GPP-APAR and ΦF-LUE relationships, while 

fesc represents an extra term for SIF to account for the canopy reab
sorption and scattering effects, though the performance of fesc might be 
influenced by sun-sensor geometry effects (Hao et al., 2022). Strong SIF- 
APAR relationships have been reported in many agro-ecosystems at both 
diurnal and seasonal scales, which are often stronger than GPP-APAR 
relationships (Miao et al., 2018; Yang et al., 2018a; Yang et al., 2021). 
This demonstrates that the observed SIF signal is dominated by APAR 
(with a smaller impact of ΦF in these ecosystems) while both APAR and 
LUE are important for GPP. Meanwhile, weak correlations between 
apparent SIF yield (ΦF × fesc) and LUE as well as ΦF and LUE have been 
shown in many agro-ecosystems (Dechant et al., 2020; Wu et al., 2019; 
Yang et al., 2018a). These result in the weaker SIF-GPP relationships 
compared to SIF-APAR in several agro-ecosystems (Dechant et al., 
2020). After considering the fesc correction, SIF from all leaves (SIFtotal) 
shows even weaker correlations with GPP but stronger correlations with 
APAR compared to observed SIF, and almost no correlations between 
derived ΦF and LUE were found, while fesc showed considerable corre
lation to LUE (Dechant et al., 2020; Liu et al., 2020). All of these findings 
suggest that for crops: 1) both observed SIF and SIFtotal are dominated by 
APAR, whereas GPP represents both light and carbon reactions; and 2) 
canopy structure plays a different role in observed SIF and GPP at the 
canopy scale. Indeed, recent leaf and canopy studies have revealed that 
GPP and SIF can be decoupled at fine spatiotemporal scales due to the 
effect of photorespiration (He et al., 2020; Magney et al., 2020) and 
stomatal regulation (Helm et al., 2020; Marrs et al., 2020) on LUE. 

Close relationships between total canopy chlorophyll content 
(ChlCanopy) and GPP have been found in croplands (Gitelson et al., 2006; 
Peng et al., 2011; Peng and Gitelson, 2012; Wu et al., 2009). ChlCanopy, 
determined as the product of leaf chlorophyll content (ChlLeaf) and total 
leaf area index (LAI), can be estimated by radiative transfer models 
(Darvishzadeh et al., 2008; Delloye et al., 2018; Weiss and Baret, 2016) 
or vegetation indices (Dash and Curran, 2004; Gitelson et al., 2005; 
Inoue et al., 2016) from canopy reflectance, which allows GPP to be 
estimated using chlorophyll-related indices and PAR (Gitelson et al., 
2012; Wu et al., 2009). The strong correlations between ChlCanopy and 
GPP can be explained in two ways. First, the fraction of absorbed PAR by 
the canopy (FPAR) is linearly correlated with low-to-moderate ChlCanopy 
since LAI determines how many leaves available for light absorption and 
chlorophylls are the major pigments to absorb light (Thenkabail et al., 
2011). Second, although FPAR saturates at high ChlCanopy conditions, e. 
g., 2 g m− 2 for maize (Peng et al., 2011), LUE increases with the increase 
of ChlCanopy, largely because ChlLeaf is strongly correlated with the 
maximum carboxylation rate (Vcmax) due to the sharing of the photo
synthetic nitrogen pool (Croft et al., 2017; Houborg et al., 2015b; Lu 
et al., 2020; Wang et al., 2020c) which is important for LUE when GPP is 
not limited by light (Stocker et al., 2020; Wang et al., 2017). The cor
relation between ChlCanopy and LUE ensures that GPP still remains sen
sitive to moderate-to-high ChlCanopy (Peng et al., 2011; Thenkabail et al., 
2011). On the other hand, for far-red SIF which is commonly used in 
remote sensing studies, similar to GPP, LAI nonlinearly determines FPAR 
which affects SIF, but far-red ΦF and fesc are insensitive to ChlLeaf at 
normal-to-high ChlLeaf conditions (Dinç et al., 2012; Tubuxin et al., 
2015; Yang and van der Tol, 2018). Therefore, ChlCanopy strongly relates 
to FPAR and LUE, both of which are important for GPP, but weakly 
relates to far-red ΦF and fesc, suggesting that ChlCanopy could potentially 
capture seasonal variations of GPP better than far-red SIF. 

In this study, we aim to investigate the seasonal maximum of far-red 
SIF and GPP in soybean fields by integrating tower measurements, sat
ellite data, and model simulations. Previous studies have mainly inves
tigated SIF-GPP relationships through calculating their regression slope 
and coefficient of determination (R2). Although some studies have found 
that far-red SIF is able to capture the GPP-based phenophase transitions 
at the start and end of the growing season (Lu et al., 2018; Wang et al., 
2020b), the seasonal peaks of far-red SIF and GPP remain less investi
gated, which hampers our understanding of the SIF-GPP relationships. 
Soybean is a typical C3 crop for which LUE contribution to GPP variation 
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is important (Gitelson et al., 2015, 2018; Wu et al., 2020). It is also one 
of the major harvested crops around the world and plays critical roles in 
global food security, agricultural economy and biofuel production 
(Ainsworth et al., 2012; Long et al., 2006; Van Gerpen and Knothe, 
2008). Specifically, we propose the following questions: Do soybean far- 
red SIF and GPP reach a seasonal peak at a similar time? If not, what 
causes the difference in seasonal trajectories of far-red SIF and GPP? We 
hypothesize that the seasonal peak timing of far-red SIF and fesc-cor
rected SIFtotal are determined by the timing of APAR, while the seasonal 
maximum of GPP is determined by the timing of ChlCanopy. Thus, 
whether soybean far-red SIF and GPP reach their respective peaks at a 
similar time will depend on the seasonal peak timing of APAR and 
ChlCanopy. 

2. Materials and methods 

We thoroughly tested our hypotheses using tower data at four sites in 
the U.S. Corn Belt and satellite data at two US counties, with each county 
land area representing ~2000 km2. The location of the field sites and 
counties are shown in Fig. S1. Process-based model simulations are 
conducted at the site level to further understand the underlying mech
anism of the seasonal peak timing difference between far-red SIF and 
GPP. As fluctuations in cloud cover could affect the seasonal peak 
detection for far-red SIF and GPP, we focused on clear-sky conditions in 
this study. An overview of the tower data, satellite data and process- 
based model simulations is shown in Fig. 1 and detailed descriptions 
about each dataset acquisition are given in the following subsections. 

2.1. Tower data 

2.1.1. Study sites 
Tower data from four soybean sites were used for the site-level 

analysis (Table 1). These sites were all located in the U.S. Corn Belt, 
with one site (BR3, rainfed, corn-soybean rotation, 41.9745◦N, 
93.6937◦W) at the National Laboratory for Agriculture and the Envi
ronment in Iowa (Dold et al., 2019), two sites (NE2, irrigated, corn- 
soybean rotation, 41.1649◦N, 96.4701◦W, and NE3, rainfed, corn- 

soybean rotation, 41.1797◦N, 96.4397◦W) at the Eastern Nebraska 
Research and Extension Center of University of Nebraska-Lincoln in 
Nebraska, and the other site (UIUC, rainfed, corn-corn-soybean rotation, 
40.0628◦N, 88.1959◦W) at the Energy Farm of University of Illinois at 
Urbana-Champaign. At all four sites, soybean was planted in May and 
harvested in October. Tower data was collected in 2017 at the BR3 site, 
in 2018 at the NE2 and NE3 sites, and in 2019 at the UIUC site. 

2.1.2. Spectral measurements 
Fluospec2 systems (Miao et al., 2018; Yang et al., 2018b) were 

installed atop of a 5-m tower at the NE2 site, the NE3 site and the UIUC 
site for spectral data collection. Each Fluospec2 has two subsystems: a 

Fig. 1. Overview of the tower data, satellite data and process-based model simulations to investigate the seasonal peak timing of far-red SIF, GPP, APAR and 
ChlCanopy. Data in the green box are tower and satellite observations and data in the blue box are outputs. Additional symbols are as follows: NEE: net ecosystem 
exchange; PAR: photosynthetic active radiation; FPAR: fraction of absorbed PAR of the canopy; TROPOMI: TROPOspheric Monitoring Instrument; MODIS: Moderate 
Resolution Imaging Spectroradiometer. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 1 
Overview of the four field datasets with a focus on far-red SIF observations. DOY: 
day of year. FOV: field of view. DOAS: Differential Optical Absorption Spec
troscopy. iFLD: improved Fraunhofer Line Depth.  

Site Spectral 
system 

View angle SIF 
retrieval 
method 

Data 
availability 

Latitude/ 
Longitude 

BR3 PhotoSpec Nadir to the 
horizon in 0.7◦

steps at two 
azimuth angles 
(− 45◦ and 60◦) 

DOAS Jun 14 – Sep 
8, 2017 
(DOY 

165–251, 
2017) 

41.9745/ 
− 93.6937 

NE2 Fluospec2 Nadir with 25◦

FOV 
iFLD Jun 19 – Oct 

14, 2018 
(DOY 

170–287, 
2018) 

41.1649/ 
-96.4700 

NE3 Fluospec2 Nadir with 25◦

FOV 
iFLD Jul 8 – Oct 

14, 2018 
(DOY 

189–287, 
2018) 

41.1797/ 
-96.4397 

UIUC Fluospec2 Nadir with 25◦

FOV 
iFLD Jun 9 – Oct 

10, 2019 
(DOY 

160–283, 
2019) 

40.0628/ 
-88.1950  

G. Wu et al.                                                                                                                                                                                                                                      



Remote Sensing of Environment 279 (2022) 113104

4

SIF subsystem equipped with a QE Pro spectrometer (Ocean Optics, 
Dunedin, FL, USA) covering the far-red SIF retrieval range (730–780 
nm) at a high spectral resolution (0.15 nm), and a spectral observation 
subsystem equipped with a HR2000+ spectrometer (Ocean Optics, 
Dunedin, FL, USA) covering the visible-near infrared range (400–1100 
nm) at a moderate spectral resolution (1.1 nm). Each subsystem uses two 
fibers to collect dowelling solar irradiance and upwelling canopy radi
ance separately, both in nadir direction with a 25◦ field of view and at a 
5-min time interval. Far-red SIF at 760 nm was retrieved from the SIF 
subsystem using the improved Fraunhofer Line Depth (iFLD) method 
(Alonso et al., 2008; Cendrero-mateo et al., 2019). To clarify, only far- 
red SIF was used in this study. More details about the Fluspec2 mea
surement sequence and SIF retrieval can be found in Wu et al. (2020). 

A PhotoSpec system (Grossmann et al., 2018; Magney et al., 2019; He 
et al., 2020) was installed atop of a 7-m tower at the BR3 site for spectral 
data collection. PhotoSpec consists of three commercial spectrometers. 
Two QE Pro spectrometers (Ocean Optics, Dunedin, FL, USA) cover the 
red (650–712 nm) and far-red (729–784 nm) SIF retrieval ranges at high 
spectral resolution (0.3 nm). The third Flame spectrometer (Ocean Op
tics, Dunedin, FL, USA) covers the visible-near infrared range (177–874 
nm) at moderate spectral resolution (1.2 nm) (Grossmann et al., 2018). 
These spectrometers are mounted on a scanning telescope unit, enabling 
multi-angular observations from nadir to 45◦ view zenith angle at two 
azimuth angles (− 45◦ and 60◦). More details about the PhotoSpec in
strument and measurement sequence can be found in Grossmann et al. 
(2018) and Magney et al. (2019). Far-red SIF retrieval followed the 
established Differential Optical Absorption Spectroscopy (DOAS) 
method (Platt, 2017), which detects optical density changes within solar 
Fraunhofer lines. More details about far-red SIF retrieval can be found in 
Grossmann et al. (2018). The averaged far-red SIF retrieved from a 
745–758 nm window over all viewing angles, which can be considered 
as a hemispherical far-red SIF, was used in this study. The spectral 
measurements for far-red SIF at four sites are summarized in Table 1. 
PhotoSpec and Fluspec2 have different instrumentation setups and 
different methods were used for far-red SIF retrieval which might cause 
some uncertainty when comparing them directly. However, this study 
mainly focuses on the seasonal pattern of far-red SIF under clear days 
rather than the absolute magnitude. Different retrieval methods have 
less impact on far-red SIF under clear days (Chang et al., 2020). Addi
tionally, the three Fluospec2 sites, NE2, NE3, and UIUC, are the major 
focus of this study, whereas the PhotoSpec site BR3 is used to support 
other three sites. We intended to investigate the seasonal patterns of far- 
red SIF and GPP across sites using different measurement systems and 
retrieval methods to examine whether the results were consistent. 

2.1.3. GPP estimation from Eddy covariance (EC) data 
GPP data were acquired from eddy covariance (EC) towers that were 

located in the same field as the spectral systems at each site. Each EC 
system included a sonic anemometer and a CO2/H2O infrared gas 
analyzer. Auxiliary measurements of meteorological variables close to 
the EC system such as air temperature, relative humidity and radiation 
were also measured at each site. Detailed information on the EC 
instrumentation can be found in (Dold et al., 2017, 2019) for the BR3 
site, in (Suyker and Verma, 2012) for the NE2 and NE3 sites, and in 
(Moore et al., 2020) for the UIUC site. 

Raw 10 Hz CO2 and wind turbulence data were processed to derive 
half-hourly Net Ecosystem Exchange (NEE) using the EddyPro software 
(version 6.2.0, LI-COR, Lincoln, NE, USA), which applied a rotation tilt 
correction (double rotation), time-lag compensation (covariance maxi
mization), density fluctuation compensation (Webb et al., 1980), flux 
de-trending (block average), spectral correction (Moncrieff et al., 1997, 
2005) and spikes detection and removal (Vickers and Mahrt, 1997). NEE 
data from unfavorable conditions, such as rain days and low turbulent 
mixing conditions, were filtered and outliers were also excluded. The 
remaining NEE dataset was gap-filled together with tower ancillary 
meteorological data of shortwave radiation, air or soil temperature, and 

vapor pressure deficit followed the procedure proposed by Papale et al. 
(2006) and Reichstein et al. (2005). Gap-filled NEE was then partitioned 
into GPP and ecosystem respiration (ER) using the standard night-time 
partitioning method (Reichstein et al., 2005), for which nighttime 
NEE was assumed to represent ER and was used to develop a respiration- 
temperature model for the daytime ER estimation. Details on GPP data 
processing can be found in (Magney et al., 2019) for the BR3 site, and an 
open-source eddy covariance processing pipeline ONEFlux was used to 
estimate GPP at NE2, NE3 and UIUC sites (Pastorello et al., 2020). 

2.1.4. Correcting nadir-view far-red SIF observations to EC footprint 
GPP footprint changes with wind direction and covers a larger area 

compared to nadir-view far-red SIF observations (Liu et al., 2017), 
which might cause uncertainty in the seasonality comparison between 
far-red SIF and GPP. To address this issue, we used the product of near- 
infrared reflectance of vegetation (NIRv) and PAR (NIRvP) as a proxy for 
far-red SIF to upscale SIF observations from small nadir footprints to 
large GPP footprints. Cross-scale studies have shown that NIRvP can 
explain around 80% variation of far-red SIF (Dechant et al., 2022; Kimm 
et al., 2021). To further reduce the soil background impact on NIRv, soil- 
adjusted NIRv (SANIRv) was further calculated following the method in 
Jiang et al. (2020) and used for far-red SIF footprint correction. By 
detecting and removing soil NIRv from time series NIRv observations on 
a pixel basis, SANIRv reduces NIRv value when vegetation is sparse and 
reaches 0 at the absence of vegetation, while it does not change NIRv 
value when vegetation is dense. Daily SANIRv was used as all half- 
hourly SANIRv within that day. Details of EC footprint and SANIRv 
calculation can be found in supplementary materials. GPP footprint- 
based far-red SIF at each half-hour (SIFGPP footprint) was calculated from 
nadir-view far-red SIF observations (SIFobs, halfhourSIFobs) based on the 
following equations: 

SIFGPP footprint = SIFobs ×Ratio  

Ratio =
SANIRvGPP footprint × PARGPP footprint

SANIRvSIF pixel × PARSIF pixel
≈

SANIRvGPP footprint

SANIRvSIF pixel  

SANIRvGPP footprint =
∑N

i=1
wi × SANIRvi (3)  

where SANIRvGPP footprint, SANIRvSIF pixel, PARGPP footprint and PARSIF pixel 
are GPP-footprint-weighted SANIRv, SIF-tower-pixel SANIRv, GPP- 
footprint-weighted PAR, and SIF-tower-pixel PAR, respectively. 
PARGPP footprint and PARSIF pixel were assumed identical. N is the total 
number of pixels within the GPP footprint. wi is the GPP contribution of 
the ith pixel to the footprint GPP calculated by footprint models. 
SANIRvi is the SANIRv value of the ith pixel. SIF footprint correction was 
not conducted at BR3 site due to the lack of SAFE model inputs and the 
larger observation zenith angle coverage (scans from nadir to the hori
zon in 0.7◦ steps at two azimuth angles) of PhotoSpec observations. 
Overall, corrected GPP footprint based far-red SIF followed similar 
seasonal patterns as the observed nadir-view GPP at NE2, NE3 and UIUC 
sites (Fig. S2). Direct far-red SIF observations at BR3 and corrected GPP 
footprint-based far-red SIF at NE2, NE3 and UIUC were used for later 
analysis, with the same variable “far-red SIF” for the sake of simplicity. 

2.1.5. APAR, LAI, ChlCanopy, and SIFtotal estimation 
At the NE2, NE3 and UIUC sites, incoming PAR (PARin) was 

measured by point quantum sensors (LI-COR Inc., USA) pointing upward 
placed at 5 m above the ground; reflected PAR from the canopy and soil 
(PARout) was measured by point quantum sensors (LI-COR Inc., USA) 
pointing downward at 5 m from the ground; transmitted PAR through 
the canopy (PARtrans) was measured by line quantum sensors (LI-COR 
Inc., USA) viewing upward placed at ~2 cm above the ground. From 
these measurements, FPAR and APAR were derived at half-hourly 
intervals. 
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APAR = PARin − PARout − PARtrans  

FPAR =
APAR
PARin

(4) 

At the BR3 site, due to the absence of direct FPAR measurements, 
APAR was estimated by multiplying NDVI, which has commonly been 
used as a measure of FPAR, and PAR following the method of Magney 
et al. (2019). Total LAI was measured at the NE2 and NE3 sites using the 
destructive method (Kira et al., 2017) and was measured by a LI-2200C 
plant canopy analyzer (LI-COR, Lincoln, NE, USA) at the UIUC site. 

Canopy chlorophyll content ChlCanopy was estimated by the Red-edge 
chlorophyll index (CIrededge) from the canopy hyperspectral reflectance 
following the equation from Gitelson et al. (2005): 

ChlCanopy = 0.4124×CIrededge − 0.1117 (5) 

Although CIrededge mainly accounts for the top canopy chlorophyll 
content, Gitelson et al. (2006) have demonstrated that total chlorophyll 
of a soybean canopy can be accurately estimated by the upper canopy 
chlorophyll content. This CIrededge-based ChlCanopy estimation has been 
widely used in crop GPP estimation (Gitelson et al., 2012; Wu et al., 
2009). 

SIFtotal from all leaves was estimated through dividing the far-red SIF 
by the escape ratio fesc which can be estimated from near-infrared 
reflectance from vegetation (NIRv) and FPAR following the approach 
proposed by (Zeng et al., 2019): 

fesc =
NIRv

FPAR  

SIFtotal = SIF/fesc (6) 

This method has been validated with comprehensive radiative 
transfer simulations and satellite observations (Zeng et al., 2019). To 
account for the footprint mismatch between far-red SIF and GPP at the 
NE2, NE3 and UIUC sites, NIRv was corrected to GPP footprint weighted 
NIRv using the ratio calculated from section 2.1.4. The equations of the 
vegetation indices (VIs) that were used in this subsection are listed in 
Table 2. 

2.2. Satellite data 

In addition to tower data at the study sites, we further investigated 
the seasonal trajectories of soybean far-red SIF, GPP, APAR and ChlCa

nopy derived from multi-satellite data at two counties: Saunders County 
in Nebraska where the NE2 and NE3 sites are located in 2018 and 
Champaign County in Illinois where the UIUC site is located in 2019 
(Fig. S1). 

2.2.1. Soybean APAR and far-red SIF estimation 
We derived an 8-day clear-sky soybean APAR dataset by multiplying 

clear-sky PAR by soybean FPAR. Daily clear-sky PAR was derived by 
upscaling ground observations from the SURFRAD network to the 

regional scale using multiple machine learning approaches (Jiang et al., 
2020). 8-day soybean FPAR was derived by unmixing landscape FPAR in 
the MCD15A2H LAI/FPAR product(Text S2). This APAR dataset was 
aggregated to 4 km-resolution grids. We further derived an 8-day 4 km- 
resolution clear-sky soybean far-red SIF dataset by unmixing landscape 
far-red SIF retrievals from TROPOspheric Monitoring Instrument 
(TROPOMI) onboard the Sentinel-5 Precursor satellite (Text S2). The 
TROPOMI far-red SIF was retrieved from spectral measurements in the 
range of 743–758 nm, with a footprint size of about 7 km × 3.5 km and 
at a daily interval (Köhler et al., 2018). TROPOMI footprints with cloud 
coverage ≥0.3 were excluded from the analysis (Wang et al., 2020a). 
The land cover unmixing algorithm assumed SIF yield of a specific land 
cover (corn, soybean, forest or grass) was invariant at local scale, and 
solved the land cover specific SIF yield using land cover specific APAR, 
fraction of individual land cover types, and TROPOMI far-red SIF within 
a certain area (e.g., a county). The soybean far-red SIF was therefore 
calculated as the product of soybean APAR and soybean SIF yield (Text 
S2). Finally, we calculated the county-level soybean APAR and far-red 
SIF by averaging soybean APAR and far-red SIF across all 4 km pixels 
within the county. Detailed information about the soybean FPAR and 
far-red SIF derivation algorithms can be found in the supplementary 
materials (Text S2). SIFtotal was not estimated for satellite far-red SIF 
considering the uncertainty of MODIS FPAR for fesc calculation using Eq. 
(6) (Zeng et al., 2019). 

2.2.2. Soybean GPP and ChlCanopy estimations 
We derived a daily clear-sky GPP dataset by upscaling ground ob

servations from the study sites to the regional scale using a machine 
learning approach. Specifically, we calculated incident PAR use effi
ciency (iPUE = GPP/PAR (Jiang et al., 2020) using EC-derived daily 
mean soybean GPP and PAR at the NE2, NE3 and UIUC sites as ground 
truth, and we used daily surface reflectance at 10 Sentinel-2 bands (Band 
2, 3, 4, 5, 6, 7, 8, 8a, 11 and 12) as inputs, to train a least absolute 
shrinkage and selection operator (LASSO) model. The derivation of daily 
surface reflectance dataset can be found in supplementary materials. We 
applied the trained model to all Sentinel-2 data to upscale EC-derived 
iPUE to the county scale, and multiplied by clear-sky PAR (Section 
2.2.1) to obtain daily clear-sky soybean GPP at 10 m resolution. 

ChlCanopy was calculated from daily 10 m-resolution Sentinel-2 sur
face reflectance data using Eq. (5), where CIrededge (Table 2) was 
calculated using Sentinel-2 red and a red edge band, corresponding to 
that derived from the Fluospec2 system. Both daily GPP and ChlCanopy 
were averaged to 8-day to match APAR and far-red SIF (Section 2.2.1) 
data. 

2.3. Process-based modeling 

To verify our hypothesis that the seasonal peak timing difference of 
far-red SIF and GPP is a result of the peak timing difference of APAR- 
ChlCanopy, we further employed a process-based modeling approach to 
investigate the seasonal trajectories of soybean far-red SIF, GPP, APAR 
and ChlCanopy. We first conducted site-level simulations to evaluate the 
model performance in reconstructing seasonal trajectories at the study 
sites, and subsequently conducted several scenario simulations to reveal 
the underlying mechanism. 

2.3.1. Far-red SIF, GPP, APAR and ChlCanopy estimations 
We used the Soil Canopy Observation of Photosynthesis and Energy 

(SCOPE) model to investigate the seasonal trajectories of soybean far- 
red SIF, GPP, APAR and ChlCanopy. SCOPE v2.0 is a 1-D model capable 
of simulating radiative transfer, energy balance, and photosynthesis, as 
well as the SIF of individual leaves within the canopy and total emitted 
SIF across the full spectrum of chlorophyll fluorescence (Van Der Tol 
et al., 2009; Yang et al., 2020). It has been widely used to explore the 
relationship between GPP and SIF from a mechanistic perspective 
(Celesti et al., 2018; Van Der Tol et al., 2014; Verrelst et al., 2015). We 

Table 2 
Tower vegetation indices (VIs) used in this study. Rred and Rred edge refer to 
reflectance derived from spectral data collected by the broadband reflectance 
subsystem of the PhotoSpec and Fluospec2 system in bands of 650–660 nm and 
703.75–713.75 nm, respectively. RNIR is the near-infrared reflectance and it 
refers to the average of 770–780 nm in NDVI calculation and average of 
750–757.5 nm in CIrededge calculation.  

Vegetation index Formula Reference 

Normalized difference vegetation 
index (NDVI) 

(RNIR − Rred)/(RNIR +

Rred) 
Rouse et al. 
(1973) 

Red edge chlorophyll index (CIrededge) RNIR/Rred edge − 1 Gitelson et al. 
(2005) 

Near-infrared reflectance of 
vegetation (NIRv) 

NDVI * RNIR Badgley et al. 
(2017)  
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first retrieved unmeasured vegetation variables using a model inversion 
approach constrained by observed tower data, and then estimated SIF, 
GPP, APAR and ChlCanopy using SCOPE driven by observed and retrieved 
tower data (Fig. A1 and Table A1). SCOPE modelling was not conducted 
at the BR3 site due to the absence of direct LAI and FPAR measurements. 

Six of the SCOPE forcings (leaf chlorophyll content ChlLeaf, leaf 
carotenoid content Cca, leaf dry matter content Cdm, leaf thickness 
parameter N, and leaf inclination distribution function parameters 
LIDFa and LIDFb) were retrieved from tower observed hyperspectral 
reflectance and FPAR. We coupled a canopy radiative transfer model 
PROSAIL with a look-up table (LUT) method to conduct the retrieval. 
Specifically, we established 5180 databases, with LAI ranging from 0.1 
to 7.0 at 0.1 interval and solar zenith angle ranging from 17 to 80 at 1 
degree interval, by running PROSAIL with sampled parameter values 
listed in Table A2. We employed a two-step strategy to estimate ChlLeaf, 
Cca, Cdm and N at daily interval and leaf angle distribution (LAD) type 
(Planophile, Erectophile, Plagiophile, Extremophile, Spherical, or Uni
form) at 30 min interval considering that soybean LAD has a diurnal 
variation. For each 30 min timestamp, we first used the known LAI 
which was temporally interpolated from field measurements and the 
calculated solar zenith angle to select the relevant database. Then we 
compared observed hyperspectral reflectance R and FPAR with records 
in the simulated database and calculated the simulation error by: 

ε =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
l

∑l

λ=1
[Robservation(λ) − Rsimulation(λ) ]2

√

+ |FPARobservation − FPARsimulation|

(7)  

where λ = 1,2, …,l indicates band number and l = 321 corresponding to 
460–780 nm with 1 nm interval. We chose the top 1% small ε simula
tions in the database and considered the average of corresponding 
parameter values as the solution for the five parameters (Weiss et al., 
2000). Subsequently, we applied a Savitzky–Golay filter to the time 
series of midday retrieval for ChlLeaf, Cca, Cdm and N to derive daily re
trievals. Then we refined the LAD type retrieval by minimizing ε (Eq. 
(9)) for each 30 min timestamp. Since the six LAD types are predefined 
in the same manner in PROSAIL and SCOPE, corresponding LIDFa and 
LIDFb parameters were obtained from the PROSAIL retrieval and used 
for SCOPE. 

We used the PROSAIL-retrieved ChlLeaf to estimate Vcmax considering 
that ChlLeaf is strongly correlated with Rubisco content which has close 
correspondence with Vcmax, and the strong correlation between ChlLeaf 
and Vcmax at seasonal scale has been demonstrated in winter wheat and a 
temperate forest (Lu et al., 2020). Herein we used the empirical linear 
relationship between Vcmax and ChlLeaf from Houborg et al. (2015a): 

Vcmax = 1.75×Cab − 10.1 (8) 

Once all parameters were optimized for each site, they were com
bined with field-measured LAI and meteorological data (shortwave ra
diation Rin, longwave radiation Rli, air temperature Ta, ambient water 
vapor ea, air pressure Pa, wind speed u, and ambient CO2 concentration 
Ca) as SCOPE forcing, and SIF at 760 nm, GPP and APAR were predicted 
by running SCOPE at half-hourly interval. SCOPE SIFtotal was not esti
mated using Eq. (4) but directly output by SCOPE model. To be 
consistent with tower measurements, APAR from SCOPE was the total 
APAR rather than APAR from chlorophylls. SCOPE-estimated ChlCanopy 
was calculated as the product of field-measured LAI and PROSAIL- 
retrieved ChlLeaf, since ChlLeaf in PROSAIL is the average of the canopy. 

2.3.2. Model simulation scenarios 
In addition to the simulations of far-red SIF, GPP, APAR and ChlCa

nopy using the observed and retrieved tower data, we also conducted 
scenario simulations to identify the key factors that determine the SIF- 
GPP with regards to peak dates. Considering APAR or FPAR is mainly 
affected by canopy structure variables such as LAI and LAD (Huemm
rich, 2013; Myneni and Williams, 1994), whereas ChlCanopy is 

determined by LAI and ChlLeaf (Gitelson et al., 2005), we set up different 
scenarios by varying LAI, LAD and ChlLeaf while keeping other SCOPE 
model parameters constant. Specifically, we assumed the seasonal tra
jectories of LAI and ChlLeaf follow the Gaussian distribution: 

x = ae
−

(

DOY − b
c

)2

(9)  

where x could be either LAI or ChlLeaf, a is the maximum value of x over 
the season, b is the DOY when x reaches its peak over the season, and c is 
a shape parameter controlling the seasonality of x. A larger c indicates a 
broader seasonal trajectory whereas a smaller c indicates a narrower 
seasonal trajectory (Fig. S3). We set a = 4.5 m2 m− 2 for LAI and 75 μg 
cm− 2 for ChlLeaf, b = DOY 200, 220, or 240, and c = 30 and 60, 
respectively. We considered three distinct LAD types: Planophile 
(dominated by relatively horizontal leaves), Spherical and Erectophile 
(dominated by relatively vertical leaves). Consequently, a total of 6 LAI 
seasonal trajectories × 6 ChlLeaf seasonal trajectories ×3 LAD types =
108 scenarios were involved in the simulation. We fixed all other 
vegetation variables, and used mean clear-day diurnal cycles of NE2, 
NE3 and UIUC for all environmental variables except for shortwave 
radiation Rin (Table A1). For Rin, we calculated it as Rin = RTOA × TR 
where RTOA is the shortwave radiation at top of atmosphere which is a 
function of location and time and TR is the mean clear-day diurnal cycle 
of atmospheric transmittance of the three study sites. 

2.4. Data analysis 

Time series of sunny-day mean values of far-red SIF, GPP, APAR, 
ChlCanopy and SIFtotal were used to detect their seasonal peaks at the four 
field sites. Considering the uncertainties under low light conditions in 
early morning and late afternoon, only data from 8:00 am to 6:00 pm 
(local standard time) were used to calculate the daily mean values for all 
variables. Only sunny-day data were used for the seasonal peak detec
tion to avoid large fluctuations under cloudy conditions (Zhang et al., 
2020a). Sunny days and cloudy days were distinguished by the ratio of 
actual PAR to theoretical PAR which was calculated from dates and solar 
zenith angles (Weiss and Norman, 1985). We first calculated the ratio at 
half hourly scale, and half-hourly period was defined as sunny when the 
ratio was above the threshold (0.6 for BR3, 0.65 for UIUC sites, 0.7 for 
NE2 and NE3 sites). Sunny day was then defined when more than 75% of 
the half-hourly period between 8:00 am to 6:00 pm was sunny. Different 
ratio thresholds were used to ensure enough sunny-day data remained 
for the peak detection with the consideration of different sky conditions 
across sites. A total of 36, 48, 41 and 45 sunny days were used for later 
analysis at the BR3, NE2, NE3 and UIUC sites, respectively. This sunny- 
day criterion was also applied to the SCOPE estimations, and the SCOPE- 
estimated sunny-day mean far-red SIF, GPP, APAR and ChlCanopy from 
8:00 am to 6:00 pm (local standard time) were calculated at each field 
site. For satellite data, only clear-sky PAR, APAR, far-red SIF and GPP 
were derived used for analysis. 

For tower data, satellite data and SCOPE estimations, four methods 
were used to fit the seasonal trajectories of far-red SIF, GPP APAR and 
ChlCanopy for the identification of their peak dates. The four methods 
were double logistic regression (DLR, Beck et al., 2006), Gaussian Pro
cess Regression (GPR, Belda et al., 2020), Kernel Ridge Regression (KRR, 
Belda et al., 2020) and Whittaker smoother (Eilers, 2003). KRR showed 
poor performance in smoothing APAR and SIFtotal at the UIUC site, 
therefore KRR was not used in those cases. Because these methods 
showed similar performances in trajectory fitting at the four tower sites 
(Fig. S4), the mean fitted seasonal trajectories derived from the four 
methods were used to reduce the uncertainty caused by different 
smoothing methods. The peak dates were identified as the dates with 
maximum values in the fitted seasonal trajectories. For the UIUC site, a 
heatwave happened around DOY 200 (Fig. S5), and to avoid the heat
wave influence data from DOY 195 to 205 was removed for the peak 
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detection. To test our hypothesis, the Pearson r was used to investigate 
the relationship between the DOY of far-red SIF peak and DOY of APAR 
peak, between the DOY of GPP peak and DOY of ChlCanopy peak, between 
far-red SIF and GPP, between far-red SIF and APAR and between GPP 
and ChlCanopy. Statistical significance of the correlation was evaluated 
with a two-sided t-test at a confidence level of 95%. Statistical analysis 
was done using the programming language Matlab. 

3. Results 

3.1. Seasonal variations of far-red SIF, GPP, APAR and ChlCanopy from 
tower data 

A difference in seasonal peak timing between far-red SIF and GPP 
was observed at the BR3, NE2 and NE3 sites (Fig. 2a-d). At these sites, 
far-red SIF reached peaks (DOY 212, 204 and 203 at BR3, NE2 and NE3, 
respectively) earlier than GPP (DOY 219–226). The seasonal peak timing 
difference between GPP and far-red SIF was the largest at the NE3 site 
(17 days), followed by NE2 (15 days) and BR3 (14 days). However, far- 
red SIF and GPP reached their peaks at the similar dates at UIUC (far-red 
SIF DOY: 220; GPP DOY: 221), different from the other three sites. 
Similar to the far-red SIF-GPP peak timing difference, a seasonal peak 
timing difference between APAR and ChlCanopy was also observed at the 
BR3, NE2 and NE3 sites (Fig. 2e-h). At these sites, APAR generally 
reached peaks earlier than ChlCanopy (DOY 207–214 vs. DOY 221–233). 
At the UIUC site, however, APAR and ChlCanopy reached their peaks at 
similar times (APAR: DOY 222, ChlCanopy: DOY 227). Overall, the peak 
dates were similar between far-red SIF and APAR, and between GPP and 
ChlCanopy. The escape probability correction of SIFtotal did not change the 
overall pattern, and they still showed earlier peaks compared to GPP at 
the BR3, NE2 and NE3 sites (Fig. 2i-l) due to the relatively stablefesc at 
the peak growing season(Fig. S6). 

3.2. Relationships between far-red SIF, GPP, APAR and ChlCanopy from 
tower data 

The difference in peak timing of far-red SIF and GPP affected the 
seasonal relationship between far-red SIF and GPP at a daily scale, 
especially on sunny days (Fig. 3). far-red SIF was less correlated with 
GPP at the three sites with differences in peak timing of far-red SIF and 
GPP were observed (r = 0.83–0.87 on sunny days, Fig. 3b), while the 
strongest relationship between far-red SIF and GPP was found at the 
UIUC site where far-red SIF and GPP reached peak maxima at the similar 
times (r = 0.96 on sunny days, Fig. 3d). The correlation between far-red 
SIF and GPP on all days was similar across four sites (r = 0.85–0.89). On 
both sunny days and all days, far-red SIF generally showed a stronger 
relationship with APAR compared to ChlCanopy, and GPP generally 
showed a stronger relationship with ChlCanopy than APAR at the four 
sites (Fig. 4; Fig. B1). After fesc correction, SIFtotal showed a stronger 
correlation with APAR but even weaker correlation with GPP (Fig. S7). 

3.3. Seasonal variations of far-red SIF, GPP, APAR, ChlCanopy from 
satellite data 

Seasonal peak timing difference between far-red SIF and GPP (14 
days) was observed in Saunders County in 2018 where the NE2 and NE3 
sites were located using TROPOMI-derived soybean far-red SIF and 
Sentinel-2 derived soybean GPP data, but smaller difference (5 days) 
was observed in Champaign county in 2019 where the UIUC site was 
located (Fig. 5), consistent with that observed at the NE2 and NE3 sites 
using tower data (Fig. 2). Specifically, satellite-derived far-red SIF 
reached its peak at DOY 200), earlier than satellite-derived GPP which 
peaked at DOY 214 in Saunders County in 2018, while in Champaign 
county in 2019, far-red SIF reached the peak at DOY 224 and GPP 
reached peak at 229. Similarly, MODIS-derived APAR reached its peak 
(DOY 203) earlier than Sentinel-2 derived ChlCanopy (DOY 221) in 
Saunders County in 2018, while satellite-derived APAR and ChlCanopy 

Fig. 2. Seasonal variations of daytime mean far-red SIF (red circles), GPP (blue circles), APAR (grey circles), ChlCanopy (green circles) and SIFtotal (brown circles) at 
the four soybean field sites: (a, e, i) BR3, (b, f, j) NE2, (c, g, k) NE3, and (d, h, l) UIUC. Filled circles are sunny days and open circles are cloudy days. The red, blue, 
grey, green, and brown dashed lines are the mean fitted lines for daytime mean far-red SIF, GPP, APAR, ChlCanopy and SIFtotal over sunny days, respectively. Time is 
shown as day of year (DOY). DOY of far-red SIF peak, GPP peak, APAR peak, ChlCanopy peak and SIFtotal peak are represented by the red, blue, grey, green and brown 
solid lines, respectively. The peak DOYs as well as the DOY difference between GPP and far-red SIF, and between ChlCanopy and APAR are shown as texts. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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showed relatively close peak times in Champaign County in 2019 
(APAR: DOY 223, ChlCanopy: DOY 232). In general, satellite data sup
ported findings from tower data. Due to the larger difference in peak 
timing of far-red SIF and GPP in Saunders County, the relationship be
tween far-red SIF and GPP in Saunders County (r = 0.90) was weaker 
than that in Champaign County (r = 0.99) (Fig. S8). 

3.4. Seasonal variation of far-red SIF, GPP, APAR, and ChlCanopy from 
SCOPE estimations 

Seasonal peak timing difference between far-red SIF and GPP were 
observed from SCOPE estimations at the NE2 and NE3 sites (Fig. 6a and 

b), consistent with that from tower data (Fig. 2b-c). APAR and ChlCanopy 
also showed similar peak timing difference as far-red SIF and GPP 
(Fig. 6d and e), consistent with that from tower data as well (Fig. 2f-g). 
Furthermore, the peak dates of far-red SIF (DOY 206 for NE2 NE3) were 
close to those of APAR (DOY 204 for NE2 and NE3), whereas the peak 
dates of GPP (DOY 220 for NE2 and NE3) were close to those of ChlCanopy 
(DOY 222 for NE2 and DOY 219 for NE3). In addition, SCOPE SIFtotal 
from all leaves showed similar peaks as far-red SIF (Fig. 6g and h). 
Similar to tower data, the peak timing dates of far-red SIF and GPP 
(Fig. 6c), and that of APAR and ChlCanopy (Fig. 6f) at the UIUC site were 
relatively similar. Overall, SCOPE estimations supported findings from 
tower data, largely due to the agreements between SCOPE-estimated far- 

Fig. 3. Relationship between daytime mean far-red SIF and GPP at the four soybean sites: (a) BR3, (b) NE2, (c) NE3, and (d) UIUC. Filled circles are sunny days and 
open circles are cloudy days. Colormap represents day of year (DOY). The Pearson correlation coefficient (r) between far-red SIF and GPP on sunny days and all days 
are shown as texts. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 4. Pearson correlation coefficient (r) between far-red SIF and APAR (a, b) (grey bar), between far-red SIF and ChlCanopy (a, b) (green bar), between GPP and 
APAR (b, d) (grey dashed bar) and between GPP and ChlCanopy (b, d) (green dashed bar) on sunny days (top rows) and all days (bottom rows) at the four soybean sites: 
BR3, NE2, NE3 and UIUC. All data used are daytime mean values. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 
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red SIF, GPP, APAR, and ChlCanopy and tower data (Fig. C1). 

3.5. Relationships between the peak timing of far-red SIF, GPP, APAR 
and ChlCanopy from observations and SCOPE estimations 

When combining tower data, satellite data and SCOPE estimations, 
the peak date of far-red SIF and the peak date of APAR were significantly 
positively correlated (Fig. 7a, r = 0.97, p-value<0.01), and the peak date 
of GPP was strongly correlated with that of ChlCanopy (Fig. 7b, r = 0.87, 
p-value<0.01). Across all the sites and counties from both observations 

and model estimations, the peak DOY difference between far-red SIF and 
APAR was small with maximum 4 days, and the peak DOY difference 
between GPP and ChlCanopy was also smaller (maximum 7 days 
compared to that between GPP and APAR (maximum 16 days) (Fig. 7c). 
These results further demonstrated that overall, far-red SIF peaked at a 
similar time as APAR and GPP peaked similarly to ChlCanopy. far-red SIF 
and GPP would peak at the similar time if APAR and ChlCanopy peaked at 
the similar time, such as the UIUC site and the Champaign County. 

Fig. 5. Satellite-based seasonal variations of daily TROPOMI far-red SIF (red circles), Sentinel-2 derived GPP (blue circles), MODIS APAR (grey circles) and Sentinel- 
2 estimated ChlCanopy (green circles) at two counties: (a) (c) 2018 Saunders County where the NE2 and NE3 sites are located, (b) (d) 2019 Champaign County where 
the UIUC site is located. The filled circles and error bars indicate county means and standard deviations, respectively. The red, blue, grey and green dashed lines are 
the mean fitted lines for satellite-based daily mean far-red SIF, GPP, APAR and ChlCanopy, respectively. Time is shown as day of year (DOY). DOY of satellite-based 
daily far-red SIF, GPP, APAR and ChlCanopy peak are represented by the red, blue, grey and green solid lines, respectively, and their peak DOYs as well as the DOY 
difference between GPP and far-red SIF peak, and the difference between ChlCanopy and APAR peak are shown as texts. (For interpretation of the references to colour 
in this figure legend, the reader is referred to the web version of this article.) 

Fig. 6. SCOPE estimated seasonal variation of sunny-day mean far-red SIF (red circles), GPP (blue circles), APAR (grey circles), ChlCanopy (green circles), SIFtotal from 
all leaves (brown circles) emitted by all leaves at three sites: (a)(d)(g)NE2 site (b)(e)(h) NE3 site, (c)(f)(i) UIUC site. The red, blue, grey, green, and brown dashed 
lines are the mean fitted lines for simulated daily mean far-red SIF, GPP, APAR, ChlCanopy and SIFtotal, respectively. Time is shown as day of year (DOY). DOY of 
simulated daily far-red SIF, GPP, APAR, ChlCanopy and SIFtotal peak are represented by the red, blue, grey, green and brown solid lines, respectively, and their peak 
DOYs as well as the DOY difference between GPP and far-red SIF peak, the difference between ChlCanopy and APAR peak and the difference between GPP and SIFtotal 
peak are shown as texts. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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3.6. The effect of LAI, ChlLeaf and LAD on the seasonal variations of far- 
red SIF and GPP 

Since APAR was strongly affected by LAI, LAD and ChlLeaf, and 
ChlCanopy was the product of LAI and ChlLeaf, LAI, ChlLeaf and LAD were 
analyzed at three sites: NE2, NE3 and UIUC. BR3 was not analyzed due 
to the lack of LAI data. We found three differences between the two NE 
sites where different seasonal peak timing of far-red SIF and GPP were 
observed and the UIUC site where no far-red SIF ~ GPP mismatch was 
observed. First, an earlier peak of LAI and later peak of ChlLeaf was found 
at the two NE sites (Fig. 8a-b) while LAI and ChlLeaf reached peak at the 
similar time at the UIUC site (Fig. 8c). Second, APAR reached the peak 
when LAI reached around 4 m2 m− 2, and this date at the two NE sites 
was much earlier and further to the peak of ChlLeaf compared to that at 
the UIUC site. Third, average leaf angle (ALA) at two NE sites were 
overall lower than that at the UIUC site (Fig. 8d). 

SCOPE model simulations implied the findings from tower data that 
the peak DOY difference between ChlLeaf and LAI, the seasonal shape of 
LAI, and the magnitude of ALA were potential factors for the far-red SIF 
~ GPP mismatch (Fig. 9). First, peak DOY difference of ChlLeaf and LAI is 
positively correlated with that of GPP and far-red SIF (Fig. 9a), and the 
absolute peak DOY difference of ChlLeaf and LAI is negatively correlated 

with the correlation between GPP and far-red SIF (Fig. 9b). Second, a 
broad LAI shape (i.e., the date when LAI reached 4 m2 m− 2 was far away 
from the peak date) could exacerbate the peak timing difference of far- 
red SIF and GPP when the peak timing difference of ChlLeaf and LAI were 
large (e.g., ≥ 40 days). Third, horizontal leaves (e.g., Planophile LAD) 
further caused larger far-red SIF ~ GPP difference than random leaves 
(e.g., Spherical LAD) and vertical leaves (e.g., Erectophile LAD). 

Therefore, the later peak of ChlLeaf compared to LAI, overall more 
horizontal leaves and the broader LAI seasonal shape contributed to the 
different seasonal peak timing of far-red SIF and GPP at the two NE sites. 

4. Discussion 

4.1. Mechanism of the seasonal peak timing difference between far-red 
SIF and GPP in soybean 

In this study, we investigated the seasonal peaks of far-red SIF and 
GPP in soybean from tower data, county-level satellite data and site- 
level model estimations. We found that at three of four soybean fields, 
far-red SIF reaches its seasonal maximum prior to peak GPP, with peak 
date difference ranging from 14 to 17 days. Consistent with our hy
potheses, we found that the seasonal peak timing of far-red SIF is similar 

Fig. 7. Relationships between DOY of far-red SIF, GPP, APAR and ChlCanopy peaks from tower data, satellite data and SCOPE estimations. (a) The scatterplot between 
DOY of APAR peak and DOY of far-red SIF peak; (b) The scatterplot between DOY of ChlCanopy peak and DOY of GPP peak; (c) Boxplot of the peak DOY difference 
between far-red SIF and APAR, between far-red SIF and ChlCanopy, between GPP and APAR, and between GPP and ChlCanopy. Red line in (a) and (b) is the 1:1 line. 
Pearson r and p-value are shown. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 8. Variations of leaf area index (LAI; black circles), leaf chlorophyll content (ChlLeaf; blue circles) at three soybean sites: (a) NE2, (b) NE3 and (c) UIUC, and (d) 
The seasonal variation of retrieved daily average leaf angle (ALA) at the NE2, NE3 and UIUC site. Black and blue solid lines indicate the DOYs of LAI peak and ChlLeaf 
peak, respectively. The peak DOYs of LAI and ChlLeaf and the difference between ChlLeaf and LAI peak are shown as texts. The red dashed lines indicate the DOY of 
APAR peak and the corresponding LAI value. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 
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to the seasonal peak timing of APAR, and the seasonal peak timing of 
GPP is similar to the seasonal peak timing of ChlCanopy. As SIFtotal still 
shows a mismatch in the seasonal peak timing compared to GPP, we can 
exclude the effect of canopy scattering as captured by the escape fraction 

(fesc) and explain the peak timing difference between far-red SIF and 
GPP. 

The seasonal peak timing of far-red SIF, a product of the light re
actions of photosynthesis, is primarily driven by APAR, whereas the 

Fig. 9. The effect of LAI, ChlLeaf and LAD on the relationship between far-red SIF and GPP from SCOPE simulations. (a) the peak DOY difference of simulated far-red 
SIF and GPP and (b) the Pearson correlation coefficient (r) between simulated daily far-red SIF and GPP under different peak DOY differences of ChlLeaf and LAI (− 40 
days, − 20 days, 0 day, 20 days and 40 days), different LAI seasonal shapes (narrow, broad) and different LAD types (Planophile (Plano), Spherical (Spher) and 
Erecophile (Erect)). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 10. Relationship between ChlCanopy and LUE from tower observations at the four soybean sites. Seasonal variations of daily LUE (blue circles) and ChlCanopy 
(green circles) at the (a) BR3, (b) NE2, (c) NE3 and (d) UIUC site. Filled circles are sunny days and open circles are cloudy days. The relationship between sunny-day 
LUE and sunny-day ChlCanopy at the (e) BR3, (f) NE2, (g) NE3 and (h) UIUC. The relationship between the product of sunny-day LUE and FPAR (LUE*FPAR) and 
sunny-day ChlCanopy at the (i) BR3, (j) NE2, (k) NE3 and (l) UIUC. Colormap represents day of year (DOY). The Pearson correlation coefficients (r) between sunny-day 
LUE and ChlCanopy and between sunny-day LUE*FPAR and ChlCanopy are shown as texts. For (e) BR3 and (h) UIUC sites, early growing season data (circled by the red 
ellipse) are excluded for the r calculation. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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seasonal peak timing of GPP is more dominated by ChlCanopy. The 
dominant role of APAR on the far-red SIF signal in crops has been re
ported in many studies (Dechant et al., 2020; Miao et al., 2018, 2020; 
Yang et al., 2018a). Thus, the similar seasonal peak dates of soybean far- 
red SIF and APAR observed in this study are expected. GPP, however, is 
not only affected by APAR but also LUE. LUE cannot be directly 
measured and many proxies have been used to parameterize LUE such as 
photochemical reflectance index (Gamon et al., 1997). Among these 
proxies, ChlCanopy has been shown to be important in LUE and GPP 
estimation, and many studies have found significant positive correla
tions between LUE and ChlCanopy as well as between GPP and ChlCanopy at 
seasonal scale across various ecosystems (Croft et al., 2015; Wu et al., 
2009, 2012). The strong relationship between GPP and ChlCanopy is also 
confirmed in our soybean sites (Fig. 4; Fig. B1). 

The strong GPP- ChlCanopy correlations can possibly be explained for 
three reasons. First, LAI has a large impact on LUE because it determines 
the partitioning of light-saturated (sunlit) and light-limited (shaded) 
canopies (Medlyn, 1998). Second, ChlLeaf is strongly correlated with 
Rubisco content and has been used to estimate Vcmax at the seasonal 
scale across various ecosystems (Croft et al., 2017; Houborg et al., 
2015b; Lu et al., 2020; Qian et al., 2021), and this strong correlation is 
also confirmed from tower data at a soybean site (Fig. S9). This tight link 
between ChlLeaf and Vcmax also explains the important role of ChlCanopy 
in LUE. When the early growing season during which LUE is high due to 
low FPAR is excluded, sunny-day LUE and ChlCanopy is strongly corre
lated at our four soybean sites (r = 0.69–0.96) (Fig. 10e-h). The positive 
relationship between LUE and ChlCanopy leads to a further increase of 
LUE when APAR starts to decrease (Fig. 10a-d), which results in the later 
peak of GPP compared to APAR. In addition to LUE, ChlCanopy also ac
counts for the fraction of light capture (FPAR) information since both 
LAI and ChlLeaf are important for light absorption (Gitelson et al., 2014). 
This is particularly important for the early growing season when FPAR is 
low. After taking FPAR into account, the correlation between ChlCanopy 
and the product of LUE and FPAR (LUE*FPAR) is strong across the whole 
growing season (r = 0.92–0.96) (Fig. 10i-l). This strong correlation be
tween ChlCanopy and LUE, as well as between ChlCanopy and LUE*FPAR, is 
also supported by the SCOPE model estimates (Fig. S10). While ChlCanopy 
does not contain radiation (PAR) information which is another impor
tant factor for GPP, this study focuses on the seasonal scale at which the 
role of PAR is less important (Wu et al., 2020). Incorporating PAR in
formation into ChlCanopy, i.e., the product of ChlCanopy and PAR (ChlCa

nopy*PAR), does not change the seasonal pattern as well as the peak date 
of ChlCanopy itself. The correlation between ChlCanopy*PAR and GPP is 
similar as that between ChlCanopy and GPP at daily scale (Fig. D1). The 
above explanations indicate that the similar seasonal peak timing of GPP 
and ChlCanopy is reasonable. This phenomenon has also been reported in 
a temperate forest (Croft et al., 2015). Earlier peaks of soybean APAR 
compared to GPP have also been shown in some soybean fields (Gitelson 
et al., 2015), which further demonstrates the important role of ChlCanopy 
in soybean GPP estimation at seasonal scale. We note that the seasonal 
trajectory of ChlCanopy has a sharper peak compared to the APAR sea
sonality, which might increase some uncertainties for APAR peak 
detection compared to ChlCanopy. However, from their seasonal trajec
tories, we can visually observe that far-red SIF and APAR reach seasonal 
maximum at a similar time and that GPP and ChlCanopy reach seasonal 
maximum at a similar time (Fig. 2). Therefore, the seasonal peak timing 
difference between far-red SIF and GPP is strongly dependent on the 
seasonal peak timing of APAR and ChlCanopy. 

Two growth characteristics of soybean can justify the seasonal 
mismatch between APAR and ChlCanopy, and consequently between far- 
red SIF and GPP. First, soybean is characterized by horizontal leaves 
which generally have higher light interception compared to vertical 
leaves (Nobel et al., 1993). Second, soybean tends to have a broad LAI 
seasonal shape, i.e., its LAI reaches a high value (e.g., 3–4 m2 m− 2) 
quickly but then takes long time to reach its peak value (usually >5 m2 

m− 2). When soybean LAI reaches 3–4, FPAR becomes saturated 

(Thenkabail et al., 2011). Because PAR decreases during the peak 
growing season (July–September), APAR reaches its peak once FPAR is 
saturated. However, LAI still increased gradually for 5–15 days to reach 
its maximum at the two NE2 sites. This further increase of LAI after 
FPAR saturation and the further increase of ChlLeaf after LAI reaching its 
maximum (Houborg et al., 2015a) resulted in a later peak of ChlCanopy 
compared to APAR at the two NE2 sites (Fig. 8). At the UIUC site, 
however, because of the late planting due to flooding in spring and early 
summer of 2019 (Yin et al., 2020), a lower magnitude of LAI, a later peak 
of APAR, and a similar peak timings of LAI and ChlLeaf was observed 
(Fig. 8), which yielded a similar peak timing for APAR and ChlCanopy, 
and consequently for far-red SIF and GPP. Different seasonal peak timing 
between far-red SIF and GPP has a higher likelihood to be observed in 
dense canopies with high maximum LAI, broad LAI seasonal shape, more 
horizontal leaves and different peak timing of LAI and ChlLeaf. Although 
our study focuses on soybean, the framework about the relationship 
between far-red SIF, GPP, APAR and ChlCanopy can be potentially applied 
to other ecosystems to investigate whether the peak mismatch between 
far-red SIF and GPP is common or rather unique to soybean. For corn 
grown at our NE3 and UIUC sites from different years, we did not find a 
notable difference in peak timing of far-red SIF and GPP since APAR and 
ChlCanopy reach their peak at a similar time at these two sites (Fig. S11). 
Examining the potential existence of peak mismatches between far-red 
SIF and GPP, as well as their relationships to APAR and ChlCanopy, in 
other crops and natural ecosystems is of considerable interest but goes 
beyond the scope of this study. It is worth mentioning that the sites in 
this study are not severely stressed, indicated by the normal soil water 
content at the NE2, NE3 and UIUC site (Fig. S12). Previous studies have 
shown that stress can considerably affect the linearity of the far-red SIF- 
GPP relationship (Martini et al., 2021; Wieneke et al., 2018; Wohlfahrt 
et al., 2018), which suggests that seasonal patterns of far-red SIF and 
GPP could be considerably affected by stress. Future studies could apply 
the analyses we conducted to larger far-red SIF data collections such as 
ChinaSpec (Zhang et al., 2021) which could provide insights across 
ecosystems and climatic conditions. 

4.2. Sources of uncertainties in this study 

We acknowledge that there are multiple sources of uncertainties in 
this study, mainly coming from far-red SIF retrieval methods, the foot
print correction of observed nadir-view far-red SIF, sunny-day threshold 
definition, the different ways of calculation of FPAR and ChlCanopy, and 
the unmixing of TROPOMI far-red SIF into far-red SIF of different land 
cover types. We will provide a detailed discussion here, and also provide 
justification that these uncertainties do not affect the general conclusion 
that we drew. 

We are aware that the retrieved far-red SIF from different sites has 
some uncertainties. First, there are differences between far-red SIF ob
servations from multi-angle view (PhotoSpec at BR3 site) and nadir view 
settings (Fluospec2 at other three sites). Second, far-red SIF retrieval can 
introduce some uncertainties, largely due to its small signal compared to 
the reflected sunlight background (Damm et al., 2011; Meroni et al., 
2009). Third, different retrieval methods are used at the BR3 site and 
other three sites, but a recent study has shown that different retrieval 
methods have little impact on sunny-day far-red SIF (Chang et al., 2020). 
We also note that far-red SIF magnitude differs in different sites, but this 
does not affect the seasonality. The different magnitude between BR3 
and other three sites is likely due to different instrumentation setup and 
different far-red SIF retrieval algorithms (Chang et al., 2020; Marrs 
et al., 2021). The higher far-red SIF at the NE2 site than that at the NE3 
site but similar GPP magnitude at these two sites is resulted from high 
fesc shown at the NE2 site (Fig. S6), due to higher LAI (Yang and van der 
Tol, 2018), which leads to a higher proportion of SIFtotal to be observed 
by the sensor. After accounting for the fesc effect, SIFtotal at the two sites 
are quite similar (Fig. 2). However, with these differences existing, we 
still observe a consistent pattern across sites, i.e., far-red SIF better 

G. Wu et al.                                                                                                                                                                                                                                      



Remote Sensing of Environment 279 (2022) 113104

13

follows APAR and GPP better follows ChlCanopy regarding the seasonal 
peak timing. Additionally, the SCOPE model results which are unrelated 
to far-red SIF retrieval uncertainty are consistent with tower results, 
which suggests that the uncertainties caused by far-red SIF retrievals do 
not affect our main findings. 

Two assumptions were used in the footprint correction of observed 
far-red SIF. First, we did not consider the PAR variation within the GPP 
footprint and far-red SIF observation area. This assumption is valid 
under clear-sky conditions which are the major focus of this study (Jiang 
et al., 2020). Second, we did not consider the variation of the relation
ship between far-red SIF and NIRvP. A recent study has showed that 
when combing spatial and temporal scales, NIRvP can still explain 
around 80% of far-red SIF (Dechant et al., 2022; Kimm et al., 2021), 
indicating that using NIRvP to correct observed far-red SIF can capture 
the majority far-red SIF difference between the GPP footprint and far-red 
SIF observation area. Additionally, footprint correction did not strongly 
modify the seasonal patterns of far-red SIF, and both corrected and 
directly observed far-red SIF still shows an earlier peak than GPP at the 
two NE sites. We note that different sunny-day definitions affect the 
absolute seasonal peak DOY difference between far-red SIF and GPP 
(ranging from 12 to 19 days at the NE2 site, Fig. S13), but the earlier 
peak of far-red SIF compared to GPP is consistent across different sunny 
day thresholds. 

It is worth noting that we used different FPAR at different sites. At 
the BR3 site, NDVI is used as a proxy of FPAR due to the absence of direct 
measurements. At other three sites, direct measured FPAR that captures 
the light absorbed by all leaves (FPARtotal) are used. Previous studies 
suggest that FPAR from all green leaves (FPARgreen) better captures the 
light absorption by chlorophylls (Gitelson and Gamon, 2015), but this 
dataset is only available at the two NE sites, preventing a consistent 
application at other sites. Using different FPAR calculations is expected 
to have an impact mainly during the senescence phase at the end of the 
growing season, however, in this study, we mainly focus on the seasonal 
peak of APAR rather than the end of growing season. Although NDVI at 
the NE2 site shows an earlier saturation date compared to FPARtotal due 
to the irrigation effect, similar saturation time between NDVI and other 
FPARtotal is shown at the NE3 site, which is also a rainfed site as the BR3 
site. Thus, we would expect that at the BR3 site, using NDVI as the FPAR 
proxy can still capture the seasonal peak of APAR. Additionally, 
FPARtotal and FPARgreen at the two NE sites show the same starting 
saturation date, indicating that using FPARtotal well captures the sea
sonal peak of APAR (Fig. S14). These results demonstrate that the 
different FPAR data used at the four sites do not affect the seasonal peaks 
of APAR, and therefore do not affect our findings on seasonal 
mismatches. 

We also note that direct measurements of ChlCanopy are absent in this 
study. Instead, we used the CIrededge calculated from canopy reflectance 
for the ChlCanopy estimation. CIrededge mainly relates to the top canopy 
chlorophyll content rather than the total canopy chlorophyll content. 
However, Gitelson et al. (2006) has compared the total canopy chloro
phyll content in the entire plant with the upper canopy chlorophyll 
content which is the product of LAI and ChlLeaf from the upper canopy. 
Their results have shown that total chlorophyll content in the canopy 
can be accurately estimated using the upper canopy chlorophyll content 
which can be further well estimated by CIrededge (Gitelson et al., 2005). 
For the SCOPE model simulations, ChlLeaf is retrieved from the PROSAIL 
model. Although PROSAIL has a horizontally-homogeneous canopy 
assumption without considering row effect or clumping effect, this 
approach has been widely used in many studies (Berger et al., 2018; 
Houborg et al., 2015a; Zhang et al., 2005). We acknowledge that the 
retrieved ChlLeaf showed larger seasonal variations than measured 
ChlLeaf (Houborg et al., 2015a), but in this study we focused more on the 
peak timing of ChlLeaf and the pattern of later peak of ChlLeaf than LAI at 
the two NE sites is consistent with the measurements (Houborg et al., 
2015a). To further evaluate the CIrededge-based ChlCanopy estimate, CIr
edege is calculated using SCOPE reflectance output. CIrededge-based 

ChlCanopy and the ChlCanopy calculated as the product of LAI and ChlLeaf 
(LAI*ChlLeaf), are compared. Overall, there was a similar seasonal 
pattern and strong relationship between these two ChlCanopy estimates 
with Pearson r ranging from 0.98 to 0.99 are observed at the NE2, NE3 
and UIUC site (Fig. S15). Although LAI*ChlLeaf-based ChlCanopy is higher 
than CIrededge-based ChlCanopy and shows some nonlinearity which needs 
further investigation in the future study, this difference does not affect 
the seasonality which is the major focus of our study. Retrieved ChlLeaf is 
also used for SCOPE input Vcmax estimation considering that ChlLeaf and 
Vcmax are strongly correlated in both space and time (Croft et al., 2017; 
Houborg et al., 2015b; Lu et al., 2020). Our dataset from another soy
bean site further confirms their strong correlation at seasonal scale 
(Fig. S9). Furthermore, we conducted CO2 response curve measurements 
at the NE2 site twice in 2018, and the result shows a higher Vcmax at 25◦

in August compared to July (Fig. S16), which is consistent with the 
retrieved ChlLeaf pattern. Despite these uncertainties, the above evidence 
supports the credibility of our main findings. 

Finally, the unmixing algorithm to derive soybean far-red SIF from 
TROPOMI landscape far-red SIF could have uncertainty. The uncertainly 
mainly lies in the assumption that far-red SIF yield of a specific land 
cover type (corn, soybean, forest or grass) is invariant within a certain 
area (e.g., a county). This is overall reasonable because local farmers 
generally have similar management practices (e.g., planting, fertilizing 
and weeding) in the study area. Moreover, within-county variability 
mainly causes uncertainty of far-red SIF unmixing with regard to spatial 
patterns, but less influences county-scale seasonal trajectories of corn 
and soybean far-red SIF which is the focus of this study. 

4.3. Implications for GPP estimation 

The ultimate motivation to study the relationships between SIF and 
GPP is to improve the remote estimation of GPP (Ryu et al., 2019). In 
this study, we found seasonal peak timing difference between SIF and 
GPP in some soybean fields. Clear seasonal hysteresis between SIF and 
GPP were observed at the sites where SIF reached seasonal maximum 
earlier than GPP, which degraded the SIF-GPP relationships and chal
lenged the approach that solely uses SIF for the GPP estimation (Li and 
Xiao, 2019; Zhang et al., 2020b). SIF mainly emanates from light re
actions of photosynthesis which have been reported in many previous 
studies (Dechant et al., 2020; He et al., 2020; Yang et al., 2021). SIF itself 
has limited capability to capture the seasonal variation of GPP at fine 
time scales when there is a seasonal peak timing difference between SIF 
and GPP, e.g., daily scale for soybean in this study. Escape ratio cor
rected SIFtotal still shows a peak timing difference compared to GPP, 
demonstrating that currently corrected SIFtotal still has limitations in 
improving the GPP estimation at seasonal scale. Escape ratio correction 
seems to result in more consistent SIF-GPP relationship across various 
ecosystems (Zhang et al., 2020b), but it cannot improve the temporal 
variation with regard to crop GPP estimations (Dechant et al., 2020; 
Zhang et al., 2019). There are two possible reasons: 1) Current escape 
ratio calculations still have large uncertainties which increases the un
certainty of SIFtotal-GPP relationships; 2) Both SIFtotal and observed SIF 
are product of light reactions of photosynthesis whereas GPP is 
composed of both light and carbon reactions (Magney et al., 2020). 

The consistent seasonal peak timing between ChlCanopy and GPP and 
the strong relationship between GPP and ChlCanopy (Pearson r > 0.9 
across all sites) demonstrates that ChlCanopy is important for GPP esti
mation at seasonal scale. The improvement of GPP estimation using 
ChlCanopy compared to using SIF is mainly due to the strong link between 
ChlLeaf and Vcmax. Vcmax is substantially important for GPP and it is a key 
physiological control parameter for photosynthesis estimations using 
terrestrial biosphere models (Farquhar et al., 1980). SIF is generally less 
sensitive to the Vcmax variation compared to GPP (Frankenberg and 
Berry, 2018; Zhang et al., 2016). Although several studies have used SIF 
to constrain the Vcmax estimation using process-based models, the per
formance varies case by case (Koffi et al., 2015; Pacheco-Labrador et al., 
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2019; Verma et al., 2017; Zhang et al., 2014). Tower measurements 
indeed find that Vcmax and SIF are correlated in a rice paddy, but this 
correlation is relatively weak and varies with growth stages (Li et al., 
2020). ChlLeaf has been shown to be a strong proxy of Vcmax in both space 
and time (Croft et al., 2017; Lu et al., 2020; Qian et al., 2021). It is worth 
mentioning that compared to SIF, ChlCanopy does not carry the radiation 
information which is important for sub-daily GPP (Wu et al., 2020). 
Previous studies have proposed that the model based on the product of 
incoming PAR and ChlCanopy works well in the GPP estimations for corn 
and soybean GPP at sub-daily scale in the U.S. Corn Belt (Gitelson et al., 
2012; Peng and Gitelson, 2012). Considering that SIF still has its unique 
physiological information compared to other vegetation indices (Porcar- 
Castell et al., 2014), especially under stress conditions (Qiu et al., 2020; 
Song et al., 2018), combining SIF and ChlCanopy could potentially 
improve the GPP estimation. 

In terms of large-scale GPP estimation using satellite observations, 
the temporal resolution of currently available grided satellite SIF 
product is coarse, e.g., > 1 week (Mohammed et al., 2019). In this case, 
the seasonal peak timing difference between SIF and GPP may not be 
captured. In this study, we used downscaled 8-day satellite SIF and were 
able to detect this difference in soybean, which demonstrates the 
importance of fine spatiotemporal satellite SIF products (Duveiller et al., 
2019). Future SIF products from geostationary missions such as GeoCarb 
(Moore et al., 2018) and TEMPO (Zoogman et al., 2017) could provide 
daily and sub-daily observations, at which the impact of seasonal peak 
timing difference between SIF and GPP would be more important when 
solely using SIF for GPP estimation. In this case, incorporating chloro
phyll information might be necessary for some crops and ecosystems. 
Many studies have successfully retrieved ChlCanopy and ChlLeaf using 
Sentinel-2 and Sentinel-3 observations (Clevers et al., 2017; Upreti et al., 
2019; Weiss and Baret, 2016), which provides a potential to combine SIF 
and ChlCanopy or ChlLeaf for large-scale sub-daily to daily GPP 
estimations. 

5. Conclusions 

We investigated the seasonal trajectories of far-red SIF and GPP in 
soybean using site-level tower data, county-level satellite data and site- 
level model simulations. We found different seasonal peak timing of far- 
red SIF and GPP in three of four soybean fields, i.e., far-red SIF reached 
seasonal maximum 14–17 days earlier than GPP. This was mainly due to 
the fact that the seasonal peak timing of far-red SIF was more dominated 
by the seasonal peak timing of APAR, whereas the seasonal peak timing 
of GPP was similar as the seasonal peak timing of ChlCanopy. The seasonal 
peak timing difference of far-red SIF and GPP was therefore determined 
by the timing of APAR and ChlCanopy, which was further controlled by 
the seasonal pattern of LAI, LAD and ChlLeaf. The broad LAI seasonal 
shape, high maximum LAI and more horizontal leaves in soybean fields 
caused an earlier FPAR saturation, and thus earlier peak timing of APAR 

and far-red SIF. The further increase of LAI after FPAR saturation and 
increase of ChlLeaf after LAI peak resulted in a later seasonal peak of 
ChlCanopy and GPP. This peak timing difference between far-red SIF and 
GPP challenges the approach to solely use far-red SIF for the GPP esti
mation, and combining far-red SIF and ChlCanopy could potentially 
improve the GPP estimation. Our findings focus on the seasonal trajec
tory of far-red SIF and GPP and highlight the importance of chlorophyll 
content in GPP estimation. 
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Fig. A1. Schematic diagram of the process-based modeling for the estimations of SIF, GPP, APAR and ChlCanopy. hc: canopy height. LAI: leaf area index. SZA: solar 
zenith angle. FPAR: fraction of absorbed photosynthetically active radiation. ChlLeaf: leaf chlorophyll content. Cca: leaf carotenoid content. Cdm: leaf dry matter 
content. N: leaf thickness parameter. LAD: leaf angle distribution. Vcmax: Rubisco maximum carboxylation rate. Rin: shortwave radiation. Rli: longwave radiation. Ta: 
air temperature. ea: ambient water vapor. Pa: air pressure. u: wind speed. Ca: ambient CO2 concentration. PAR: photosynthetically active radiation. A summary of 
SCOPE model parameters is listed in Table A1.  

Table A1 
Summary of SCOPE model parameters that are relevant to SIF and GPP simulations.  

Parameter Value 

Real-world simulation Scenario simulation 

Rin Observation RTOA × mean diurnal cycle of clear-day Rin/RTOA, 
where RTOA is a function of location and time. 

Rli Observation Mean diurnal cycle of clear-day Rli 
Ta Observation Mean diurnal cycle of clear-day Ta 
ea Observation Mean diurnal cycle of clear-day ea 
Pa Observation Mean diurnal cycle of clear-day Pa 
u Observation Mean diurnal cycle of clear-day u 
Ca Observation Mean diurnal cycle of clear-day Ca 
PAR Observation Mean diurnal cycle of clear-day PAR 
Rsoil Observation Mean Rsoil of the three sites 
LAI (m2 m− 2) Observation a1 × exp.{− [(DOY-b1)/c1]2}*, 

where a1 = 4.5, b1 = {200, 220, 240}, c1 = {30, 60} 
hc (m) Observation 0.8 
ChlLeaf (μg cm− 2) Retrieved from Rcanopy and FPAR a2 × exp.{− [(DOY-b2)/c2]2}**, 

where a2 = 75, b2 = {200, 220, 240}, c2 = {30, 60} 
Cca (μg cm− 2) Retrieved from Rcanopy and FPAR 10 
Cdm (g cm− 2) Retrieved from Rcanopy and FPAR 0.005 
N Retrieved from Rcanopy and FPAR 1.75 
LAD Retrieved from Rcanopy and FPAR Planophile; Erectophile 
Cw (cm) 0.01 0.01 
Cs 0 0 
Vcmax (μmol m− 2 s− 1) ChlLeaf × 1.75–10.1 ChlLeaf × 1.75–10.1 
m 13.5 13.5 
b0 0 0 
kV 0 0 
Rdparam 0.0089 0.0089 
Tparam [0.2, 0.3, 281, 308, 328] [0.2, 0.3, 281, 308, 328] 
SMC 0.25 0.25  
* a1: maximum LAI over the season; b1: DOY when LAI reaches its peak; c1: shape parameter of LAI seasonality. Larger c1 indicates a 

broader LAI seasonal trajectory whereas smaller c1 indicates a steeper LAI seasonal trajectory. 
** a2: maximum ChlLeaf over the season; b2: DOY when ChlLeaf reaches its peak; c2: shape parameter of ChlLeaf seasonality. Larger c2 

indicates a broader ChlLeaf seasonal trajectory whereas smaller c2 indicates a steeper ChlLeaf seasonal trajectory.  

G. Wu et al.                                                                                                                                                                                                                                      



Remote Sensing of Environment 279 (2022) 113104

16

Table A2 
Parameter values needed to establish the canopy reflectance database by PROSAIL. A total of 5180 databases 
was built, with LAI ranging from 0.1 to 7.0 at 0.1 interval and solar zenith angle ranging from 17 to 80 at 1 
degree interval.  

Parameters Values 

LAD (a.u.) Planophile, Erectophile, Plagiophile, Extremophile, Spherical, Uniform 
ChlLeaf (μg cm− 2) 20, 30, 40, 50, 60, 70, 80, 90, 100 
Car (μg cm− 2) 2.5, 5, 10, 15 
Cm (g cm− 2) 0.001, 0.005, 0.01, 0.015 
N (a.u.) 1, 1.5, 2, 2.5 
Cbrown (a.u.) 0 
Cw (cm) 0.01 
Hotspot parameter (a.u.) 0.1 
View zenith angle (◦) 0 
Azimuth angle (◦) 0  

Appendix B. Relationship of SIF, GPP, APAR and ChlCanopy from tower observations

Fig. B1. Scatterplot between daytime mean APAR and SIF (a-d), between ChlCanopy and SIF (e-h), between APAR and GPP (i-l), and ChlCanopy and GPP (m-p) at the 
four soybean fields: (a, e, i, m) BR3, (b, f, j, n) NE2, (c, g, k, o) NE3 and (d, h, l, p) UIUC. Filled circles are sunny days and open circles are cloudy days. Colormap 
represents day of year (DOY). All data used are daytime mean values. 

Appendix C. Direct comparison between SCOPE estimates and tower observations 
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Fig. C1. Relationship between SCOPE estimated SIF, GPP, APAR, ChlCanopy and tower SIF, GPP, APAR and ChlCanopy. Black dashed line is 1:1 line and the red solid 
line is linear regression line. R2 of the linear regression between SCOPE estimates and tower data are shown as texts. 

Appendix D. The comparison between ChlCanopy and the product of ChlCanopy and PAR

Fig. D1. The comparison between ChlCanopy and the product of ChlCanopy and PAR (ChlCanopy*PAR), and their relationships with GPP. Seasonal variations of sunny- 
day ChlCanopy (green circles) and ChlCanopy*PAR (black circles) at the (a) BR3, (b) NE2, (c) NE3 and (d) UIUC site, the relationship between ChlCanopy and GPP at the 
(e) BR3, (f) NE2, (g) NE3 and (h) UIUC, and the relationship between the product of ChlCanopy and PAR (ChlCanopy*PAR) and GPP at the (i) BR3, (j) NE2, (k) NE3 and 
(l) UIUC. Filled circles are sunny days and open circles are cloudy days. The Pearson correlation coefficients (r) between ChlCanopy and GPP and between ChlCano

py*PAR and GPP on sunny days, cloudy days and all days are shown as texts. 

Appendix E. Supplementary data 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.rse.2022.113104. 
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Dechant, B., Ryu, Y., Badgley, G., Köhler, P., Rascher, U., Migliavacca, M., Zhang, Y., 
Tagliabue, G., Guan, K., Rossini, M., Goulas, Y., Zeng, Y., Frankenberg, C., Berry, J. 
A., 2022. NIRVP: a robust structural proxy for sun-induced chlorophyll fluorescence 
and photosynthesis across scales. Remote Sens. Environ. 268 https://doi.org/ 
10.1016/j.rse.2021.112763. 

Delloye, C., Weiss, M., Defourny, P., 2018. Retrieval of the canopy chlorophyll content 
from Sentinel-2 spectral bands to estimate nitrogen uptake in intensive winter wheat 
cropping systems. Remote Sens. Environ. 216, 245–261. https://doi.org/10.1016/j. 
rse.2018.06.037. 
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