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H I G H L I G H T S

• Current tools in crop forecasting are lim-
ited in accuracy and/or precision.

• Wedevelop a robust data assimilation sys-
tem to improve APSIM model forecasts.

• Estimating uncertainties and model pa-
rameters enhances assimilation perfor-
mance.

• Soil moisture data assimilation improves
modeling of nitrate leaching.

• Without water stress, yield estimates are
largely unaffected by assimilation.
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Aswe face today's large-scale agricultural issues, the need for robustmethods of agricultural forecasting has never been
clearer. Yet, the accuracy and precision of our forecasts remains limited by current tools andmethods. To overcome the
limitations of process-based models and observed data, we iteratively designed and tested a generalizable and robust
data-assimilation system that systematically constrains state variables in the APSIM model to improve forecast accu-
racy and precision. Our final novel system utilizes the Ensemble Kalman Filter to constrain model states and update
model parameters at observed time steps and incorporates an algorithm that improves system performance through
the joint estimation of system error matrices. We tested this system at the Energy Farm, a well-monitored research
site in central Illinois, where we assimilated observed in situ soil moisture at daily time steps for two years and evalu-
ated how assimilation impacted model forecasts of soil moisture, yield, leaf area index, tile flow, and nitrate leaching
by comparing estimates with in situ observations. The system improved the accuracy and precision of soil moisture es-
timates for the assimilation layers by an average of 42% and 48%, respectively, when compared to the free model.
Such improvements led to changes in the model's soil water and nitrogen processes and, on average, increased accu-
racy in forecasts of annual tile flow by 43% and annual nitrate loads by 10%. Forecasts of aboveground measures
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did not dramatically change with assimilation, a fact which highlights the limited potential of soil moisture as a con-
straint for a site with no water stress. Extending the scope of previous work, our results demonstrate the power of data
assimilation to constrain important model estimates beyond the assimilated state variable, such as nitrate leaching.
Replication of this study is necessary to further define the limitations and opportunities of the developed system.

1. Introduction

The ability to accurately and precisely forecast the behavior of agricul-
tural systems could provide impactful insights for an array of agricultural
issues, including yield gaps, drought, climate change, and nutrient losses
(Reading et al., 2019; Silva and Giller, 2021). However, the predictive ca-
pacity of most tools developed for these real-world applications remains
limited in accuracy, precision, or both (Dokoohaki et al., 2021). Consider
process-based crop models, which have grown to be a powerful and well-
recognized tool in agricultural forecasting (Jin et al., 2018; Silva and
Giller, 2021). Thesemodels combine state-of-the-art knowledge on agricul-
tural processes to more comprehensively monitor and simulate cropping
systems than field experiments alone due to greater system complexity
(Boote et al., 1996; Pasley et al., 2021). Nonetheless, although crop models
can simulate crop growth and development in an internally consistent man-
ner by conserving mass and energy, their weakness lies in the unaccounted
uncertainties associatedwith their parameters and inputs (Dokoohaki et al.,
2021). First, in their development, most process-based crop models are de-
veloped on top of deterministic schemes in which the uncertainties associ-
ated with model parameters and drivers are ignored. Then, later, when
models are used, they are frequently unconstrained and/or hand-tuned.
In the case that constraints are applied, the employed methodology is typi-
cally unable to utilize all available information (Dietze et al., 2013). Such
modeling activities often focus on constraining a model to a single site
with a single data product, an approach in direct contrast with the diverse
range of available data products and the dimensionality of the true system
(Dietze et al., 2013; Fer et al., 2021; Seidel et al., 2018).

Yet, crop models are not the only tool used to monitor agricultural sys-
tems. New technology has enabled the efficient and high-precision moni-
toring of agricultural field experiments, providing data on a variety of
state variables like soil moisture, tile drainage flow, and leaf area index.
Yet, while observational data from field experiments have been essential
to improving our understanding of many processes in soil and cropping sys-
tems, analyses of field experiment data alone are often limited in dimen-
sionality and, thus, fail to capture the complexity of high-level applied
research questions (“Systems Thinking”, 2020). In addition, combining
measurements and data products from different instruments and experi-
ments and across different temporal and spatial resolutions is rarely
straightforward and often impossible (Dietze et al., 2013).

To overcome the limitations of these two powerful resources
(i.e., process-based cropmodels and observational data), sequential data as-
similation (SDA) has emerged as a viable solution in the crop modeling
world (Jin et al., 2018). SDA fuses process-based crop models and observed
agricultural data together, allowing them to speak to and build on one an-
other despite differing temporal and spatial scales (Dietze et al., 2013).
With this method, a variety of observations can be incorporated into crop
models to reduce uncertainty around spatially-heterogenous and dynamic
properties in agricultural systems. This increases precision and accuracy
in simulations while decreasing dependence on extensive site-level model
calibration (Mishra et al., 2021). Themodel provides a temporally continu-
ous, high-dimensional scaffold in which observations can be smoothly inte-
grated (Dietze et al., 2013; Liu et al., 2021). Several SDA techniques have
been applied in crop simulation studies in the past (Huang et al., 2019).
However, the ensemble Kalman filter (EnKF; Evensen, 2003) is one of the
most popular SDA techniques for use with non-linear dynamic crop models
due to its ease of implementation, its computational efficiency, and its abil-
ity to intuitively propagate uncertainty within model forecasts (Dietze,
2017; Mishra et al., 2021). At each observed time step, the filter combines
information from available observed data and the model forecast

distribution through the computation of an analysis distribution, which
has lower uncertainty than either of the input distributions alone. One lim-
itation of the EnKF is that its performance is highly dependent on the accu-
rate estimation of the forecast and observation uncertainties in the system,
which is a difficult task in practice due to computational limitations, time,
and data availability (Huang et al., 2019). Several algorithms have been de-
veloped and tested to systematically and jointly estimate both uncertainty
matrices within the EnKF system to overcome this issue (Tandeo et al.,
2020). Other recent studies have advanced and generalized the EnKF by nu-
merically solving the analysis step (in contrast to the original analytical ap-
proach) such that process error and state variables are estimated as latent
variables in a fully Bayesian framework (Raiho et al., 2020). This approach
adds extra flexibility by relaxing assumptions of the EnKF. All these filter
improvement methods have been applied successfully with geophysical
and ecosystem models (e.g., Hoffman et al., 2013; Dokoohaki et al.,
2021b). However, they have yet to be employed with crop models.

Using SDA, a variety of data products have been successfully assimilated
into cropmodels with the intention of improvingmodel forecasts, including
leaf area index (e.g., Nearing et al., 2012; Ines et al., 2013; Ma et al., 2013;
Chen et al., 2018; Lu et al., 2021), biomass (e.g., Linker and Ioslovich,
2017) and evapotranspiration (e.g., Huang et al., 2015). Of these data prod-
ucts, soil moisture (in situ or remotely sensed) has emerged as a popular
and effective choice for assimilation in cropmodels due to the high sensitiv-
ity of agricultural system function to soil moisture levels, as well as the nat-
ural heterogeneity of soil moisture in space (de Wit and van Diepen, 2007;
Monsivais-Huertero et al., 2010; Chakrabarti et al., 2014; Mishra et al.,
2021). Initially, studies that assimilated soil moisture into crop models fo-
cused on how the process impacted estimates of the assimilation state var-
iable itself (i.e., soil moisture), as well as model estimates of crop yields
(e.g., de Wit and van Diepen, 2007; Chakrabarti et al., 2014; Liu et al.,
2019). Soil moisture assimilation was found to be especially beneficial for
estimates of yield in water-stressed or irrigated study areas (Chakrabarti
et al., 2014; Liu et al., 2021; Lu et al., 2021; Mishra et al., 2021).

Beyond crop yields, the impact of soil moisture assimilation on root-
zone soil moisture estimates has also been evaluated within crop models
(Monsivais-Huertero et al., 2010; Mishra et al., 2021), as well as within hy-
drological (Bolten et al., 2010) and land surfacemodels (Lü et al., 2011;Wu
et al., 2016; Liu et al., 2017). Lü et al. (2011) and Liu et al. (2017) deter-
mined that model estimates of root-zone soil moisture were more accurate
when soil moisture states were assimilated, but optimal estimates of root-
zone soil moisture were achieved when the assimilation system estimated
soil hydraulic parameters in addition to the soil moisture states. Assuming
uncertain dynamic model parameters to be constant in time and/or space
can impose large biases in model state estimates (Hu et al., 2017). For ex-
ample, soil bulk density or hydraulic conductivity are kept constant in
crop models, but, in a field condition, these parameters are often dynamic
due to freeze-thaw cycles or disturbances related to field operations
(Quine and Zhang, 2002). To allow for variation in parameters in the
EnKF, parameters can be included in the model forecast distribution and
updated in the analysis time step according to their covariance with the as-
similated states via the state augmentation technique (Evensen, 2009; Liu
et al., 2017). Though this method has not yet been applied in soil moisture
assimilation studies with crop models, its performance in hydrological
models shows promise (Lü et al., 2011; Liu et al., 2017; Liu et al., 2021).

Past studies have been successful in using soil moisture assimilation as a
method of constraining yield, canopy cover, and root-zone soil moisture.
However, there are other important state variables related to agricultural is-
sues that must also be considered in assimilation studies. One such variable
is nitrate leaching. Over the past few decades, nitrate (NO3) leaching from
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agricultural soils has become an issue of increasing concern for the United
States Midwest (Christianson et al., 2018). A shift in the region's typical ag-
ricultural practices tomonoculture production systems, artificial subsurface
tile drainage, excessive N fertilization, as well as an overall intensification
of regional crop production, has been linked to increased NO3 concentra-
tions in local and downstreamwater sources, which is both an environmen-
tal and human health concern (Dinnes et al., 2002; Bijay-Singh and
Craswell, 2021). However, current strategies to quantify agricultural NO3

losses in the U.S. Midwest remain limited by the high costs associated
with data collection and the resulting lack of direct NO3 leaching observa-
tions (Liang et al., 2014; Gurevich et al., 2021). Limited observed data re-
stricts not only our understanding of temporal and spatial trends but also
our ability to accurately calibrate process-based models for broader areas
(Liang et al., 2017; Reading et al., 2019). As a result, models are also insuf-
ficient for estimating NO3 leaching at the regional scale.

In this study, we explore the potential of soil moisture SDA as a method
to systematically and consistently improve the accuracy and precision of es-
timates of NO3 leaching in a process-based cropmodel without the need for
direct monitoring of NO3 losses. The Agricultural Production Systems Sim-
ulator (APSIM) is a popular, well-validated, and comprehensive cropmodel
that has been widely trusted to simulate agricultural systems in the U.S.
Midwest (Keating et al., 2003; Archontoulis et al., 2014; Dokoohaki et al.,
2018; Archontoulis et al., 2020) and has been used in past studies to esti-
mate site-level (Puntel et al., 2016; Ojeda et al., 2018) and regional NO3

leaching (Reading et al., 2019). Within APSIM, estimates of NO3

leaching losses directly depend on estimates of tile drainage flow and
soil NO3 concentration in the lowest layer of the soil profile. APSIM's
soil nitrogen (N) and soil water cycle are closely linked, such that rate
factors controlling soil N transformations (i.e., denitrification, mineral-
ization, etc.) are estimated as a function of soil moisture. Hence, both
tile drainage flow and soil NO3 concentration depend on previous
model estimates of soil moisture. Based on this fact, we hypothesize
that the successful assimilation of soil moisture observations into the
APSIM model will constrain and improve estimates of NO3 leaching
(as well as crop yield, canopy cover, and tile drainage flow) later in
the model process without the need for observing the states directly.
To our knowledge, this work is the first to assimilate data into the
APSIM model, the first to apply state-parameter assimilation and uncer-
tainty estimation techniques to a crop model, and the first to explore the

impact of soil moisture assimilation on crop model forecasts of several
downstream processes including nitrate leaching.

This study has two main objectives:

1. To determine the optimal data assimilation scheme for constraining es-
timates of soil moisture in the APSIM model using in situ soil moisture
observations. We hypothesize that the optimal system will increase ac-
curacy and precision inmodel forecasts of the assimilated state variables
(i.e., soil moisture) and will be scalable, flexible, and robust.

2. To evaluate the impact of soil moisture assimilation on the accuracy and
precision of downstreammodel estimates including crop yield, leaf area
index, tile drainage flow, and NO3 leaching. We hypothesize that
constraining uncertainty in soil moisture estimation, an upstream pro-
cess, will result in lower uncertainty in downstream processes in APSIM.

2. Methods

In the following sections, we provide details on the features and data
products employed in this study. In Sections 2.1 and 2.2, we introduce
our study site and the data used to (1) set up the APSIM model for the
study site (2.1, 2.2.1), (2) constrain APSIM estimates (2.2.2), and (3) evalu-
ate system impacts (2.2.3, 2.2.4). Section 2.3 provides information on dif-
ferent features that are included and tested in our data-assimilation
system and the platform on which the system rests (2.3.5). Section 2.4 out-
lines the configuration of the system and how the system is tested in this
study, and Section 2.5 presents the metrics by which we evaluate the
system.

2.1. Study site

To test our data assimilation system, we focused on the University of
Illinois's Energy Farm in Urbana, IL, USA. Although this research farm has
numerous experimental plots that are 4 ha. in size, all data used in this
study are from the plot located at 40.06°N, −88.20°W from 2018 to 2019
(Fig. 1). This plot was selected due to the wealth of data available on soil
conditions, yield, drainage, and management. It follows agricultural prac-
tices typical for maize production in the U.S. Midwest (Moore et al., 2021).

Since accurately specified management information is crucial to ensure
accurate model predictions (Archontoulis et al., 2020), all known

Fig. 1. Aerial image of the Energy Farm research plots outside of Urbana, IL. The “Maize Control” plot is outlined by the red square on the zoomed right panel.
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management details were included as constants across our simulations. We
collected management information through personal correspondence with
Energy Farm personnel (Mies, personal communication, 2020). For the
2018 growing season, fertilizer was applied to the plot on the day of plant-
ing (8 May 2018) in the form of 32% liquid UAN (urea ammonium nitrate)
at a rate of 202 kg/ha. Maize was planted at a rate of 8.4 plants/m2. For the
2019 growing season, soybean was planted on 17 May at a rate of 34.6
plants/m2, and no fertilizer was applied. Both crops were sown at a depth
of 1.5 in/3.8 cm and in 76.8 cm/30 in. rows. Any residue on the plot at
the beginning of each growing season was considered to be from the previ-
ous year's crop,whichwasmaize in both cases. We did not include informa-
tion on tillage, herbicide, nor pesticide practices in our simulations.

2.2. Observed data

2.2.1. Model drivers
There are two important model drivers used in our analysis—climate

and soil drivers—which function to best recreate growing conditions at
the Energy Farm for the years and location under study. To account for
the uncertainty in these model drivers, we included 11 climate ensembles
and 25 soil ensembles, which were randomly assigned to model ensembles
within each simulation series. 10 of the 11 climate ensembles are products
of the ERA5 dataset produced by the European Centre for Medium-Range
Weather Forecasts (ECMWF). ERA5 is a global gridded reanalysis data
product that characterizes climate variables at hourly timesteps with asso-
ciated uncertainties (Hersbach et al., 2020). Our derived ensembles include
data on solar radiation, maximum air temperature, minimum air tempera-
ture, precipitation, and wind speed aggregated to daily resolution. The
final climate ensemble was aggregated from observed weather data col-
lected on site (“Water”, 2021). Soil drivers for this analysis were derived
from the SoilGrids global gridded soil database (Hengl et al., 2014) and
characterize 30 soil properties, including those which define water holding
capacity, soil pH, conductivity, albedo, and initial 2018 soil nutrient pools.
25 soil ensembles were generated based on the given mean and uncer-
tainties in the SoilGrids dataset, and the depth of each soil profile was re-
duced to approximately the depth of the drainage tiles at the study site
(i.e., roughly 1.4 m.).

2.2.2. Soil moisture
Soil moisture observations were collected at the Energy Farm plot for

2018–2019 at 30-min intervals. Measurements were taken at 5 different
soil depths (i.e., 10, 20, 50, 75, and 100 cm.) using Hydra Probe II soil sen-
sors and are measured as the volumetric water fraction at each depth
(Moore et al., 2021). For the purposes of data assimilation, we focus on
the measurements of soil moisture available at the 10 and 20 cm depths,
which will be referred to as SM3 and SM4, respectively, hereinafter. Obser-
vations for the 75 and 100 cm depths were used for evaluation of lower-
layer soil moisture estimates. Since assimilation occurs at the end of each
model day, we computed the end-of-day soil moisture as the average
value between the hours of 22:00 of the current day and 02:00 of the
next day for each depth. These estimates constituted the state variables in
our observed mean vector (Yt) for every day where data was available. To
account for instrument failures, days with fewer than 5 measurements for
this 4-h periodwere excluded.We also removeddata points from thewinter
months (i.e., January, February, and December) to avoid possible sensor in-
accuracies related to freezing soils. Due to a low observation sample size, a
10% observation error is assumed around the mean for both depths.

2.2.3. Crop yield and LAI
Data on harvested yield for both growing seasons were measured at the

time of harvest at the Energy Farm.Maizewas harvested on 9October 2018
with a yield of 13 Mg/ha, and soybean was harvested on 9 October 2019
with a yield of 4.15 Mg/ha. Maize and soybean harvests were recorded as
dry grain-only biomass. Measurements of leaf area index (LAI) for the
plot were collected using a LAI-2200 optical instrument at 3 different loca-
tions, approximately weekly. After removing observations without

replication (i.e., n = 1), there are 10 and 14 LAI observations available
for the 2018 and 2019 growing seasons, respectively (Bernacchi, 2020).

2.2.4. Tile flow and nitrate loads
For both growing seasons, the Energy Farm collected information on tile

flow for the study plot at 15-min intervals using an area velocity sensor
(pressure transducer, Hach Company, Loveland CO) to measure water
height and flow speed above the weir within the drainage system. Flow
was summed to give daily observed tile flow, as well as cumulative tile
flow for each growing season. Tile flow data were unavailable for the
study plot from 18 August 2019 until January 2020 due to sensor malfunc-
tion. However, based on data collected from nearby plots, the Energy Farm
team believes the missing flow from this time period to be small relative to
the year's total, so we assume there was no drainage at this time.

Measurements of NO3 concentration in drainage waters were collected
using an autosampler (American Sigma 900MAX portable sampler) that
systematically collected samples at flow proportional intervals (i.e., every
X number of liters). This value of X was adjusted based on historical mea-
surements of drainage for the plot such that approximately 30 grab samples
were collected each season. In practice, 29 and 42 NO3 concentration sam-
pleswere taken for the 2018 and 2019 growing seasons, respectively. These
samples were filtered through a 0.45 μm membrane and analyzed by pro-
ject collaborators at the University of Southampton. To calculate NO3

loads for each 15-min interval, NO3 concentrations were linearly interpo-
lated between samples, multiplied by the instantaneous flow rate at each
15-min time point, averaged between the two values at the ends of each in-
terval, and then multiplied by t. Loads were then summed to daily resolu-
tion for use within our analysis.

2.3. Data-assimilation system

2.3.1. Crop model
The Agricultural Production Systems Simulator (APSIM Classic Version

7.10) is a robust modular modeling framework which allows flexibility in
management, cultivar parameterization, and model climate drivers
(Holzworth et al., 2014). The model has been widely trusted as an aid for
management decision making, production system design, supply chain
analysis, and U.S. agricultural policy making, among other tasks (Keating
et al., 2003). It has been calibrated and applied in numerous studies to sim-
ulate agricultural settings within the U.S. Corn Belt (e.g., Archontoulis
et al., 2020; Pasley et al., 2021). For our APSIM simulations, we include
the following available modules: Fertiliser, SoilWat, SurfaceOM, SoilN, Soy-
bean, and Maize. Apart from those model parameters related to manage-
ment (Table A.1), we made minimal changes to the model's
parameterization. For the source code, we recompiled a new version of
the model to allow for online communication with R statistical software
(R Core Team, 2021) through RDotNet and the .NET framework. For
more information on the APSIM modules and source code, see https://
www.apsim.info/.

For the purposes of our analysis, the two APSIM modules controlling
soil water and soil N are of particular importance. The APSIM SoilWatmod-
ule operates as a cascading water balance model to estimate the movement
of water and solutes between and across soil layers, on the soil surface
(i.e., runoff and evaporation), and out of the system (i.e., drainage). It,
therefore, estimates the soil moisture content of each soil layer as a balance
of water input and output to the soil profile. Soil water can move between
layers via three different types of flow: saturated flow, unsaturated flow,
and above saturation flow. The water flow simulated by the module for
each layer and each day depends on that layer's soil moisture content and
how it relates to the soil moisture at saturation and the drained upper
limit within that layer. Each flow type then has specified model equations
and parameters which are used to calculate howmuch water (and relevant
solutes, such as NO3 or urea) moves between each layer. Estimates of daily
drainage of soil water and dissolved NO3 are calculated as the amount of
water and solute that flow from the lowest layer in the soil profile each
day. Complete mixing of the solute within the layer is assumed.
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The SoilN module in APSIM controls N availability to plants, NO3 con-
centrations in leachate, and N losses via denitrification. More specifically,
the module tracks movement of nutrients through the N cycle through
five processes: mineralization, immobilization, nitrification, denitrifica-
tion, and urea hydrolysis. These five processes move nutrients between
four pools of soil organic matter—fresh organic matter, a fast- and
intermediate-decomposing pool, and an inert pool—and move N in and
out of these pools into plant-available forms or, as in the case of denitrifica-
tion, into systemN losses. The rate at which these processes occur in a given
day depends on rate factors related to daily soil moisture estimates, which
are calculated within the SoilWat module. Fig. 2 demonstrates specifically
how soil moisture affects the rate factors associated with each of these pro-
cesses. Immobilization of mineral N occurs in tandem with mineralization,
such that there is a balance between the N released during decomposition
and microbial synthesis and humification.

2.3.2. Sequential data assimilation with the ensemble Kalman filter
Within our analysis, observed soil moisture data were assimilated into

the APSIM model using an ensemble Kalman filter (EnKF). The EnKF is an
extension of the Kalmanfilter that has been successfully employed to assim-
ilate soilmoisture data into cropmodels (e.g., deWit and van Diepen, 2007;
Chakrabarti et al., 2014; Liu et al., 2019; Lu et al., 2021; Mishra et al.,
2021). It estimates the optimal state of the system at time t by combining
the two pieces of available information—model forecasts and observed
data—into an analysis distribution using Bayes' theorem.

P Xt jYtð Þ~P Yt jXtð Þ P Xtð Þ (1)

This system relies on two fundamental assumptions. First, it assumes obser-
vations (y) are related to the true state of the system (X) such that

yt¼HXt þ ε (2)

ε~N 0,Rtð Þ

where H is the observation operator, connecting the model variable space

to observation space. Second, the system assumes the distribution of fore-
casted states is Normal with mean vector Xf and covariance matrix Pf.

Founded on these assumptions, the system computes the analysis distri-
bution (i.e., the posterior) at each time step using the Kalman Gain (K),
which consequently gives the weighted mean of the forecast and observa-
tion distributions based on their respective precisions. The resulting poste-
rior distribution is Normal with mean vector Xa and Pa.

Kt ¼ P f ,tHT Rt þ HP f ,tHT� �−1
(3)

Xa,t ¼ X f ,t þ Kt Yt −HX f ,t
� �

(4)

Pa,t ¼ I −KtHð ÞP f ,t (5)

Upon calculating the analysis distribution, the model forecast ensem-
bles are updated from the analysis distribution based on their respective
likelihood within the forecast distribution. The analysis distribution is
thus used as the initial conditions for the model forecast into the next
time step, thereby potentially constraining any model process in the next
time step which depends on those adjusted initial conditions. Where data
is available, the analysis step is repeated.

2.3.3. Filter tuning
Filter divergence is an issue commonly seen in data assimilation systems

that rely on the ensemble Kalman filter. It occurs when observations are re-
peatedly rejected by the filter due to poorly estimated observation (R) and/
or forecast uncertainty (Pf), which can result from low observation sample
size, low ensemble size, and/or an overly confident model (Huang et al.,
2019). In this case, the filter places too much weight on the forecast distri-
bution, and, thus, neglects the observations when estimating the posterior
distribution. Consequently, the correct specification of both error covari-
ance matrices is imperative for proper filter performance (Park and Xu,
2009). Since the observation sample size for soil moisture at Energy Farm
was limited at each time step (i.e., n= 2), we had insufficient information
to accurately quantify R for our analysis at the outset of our study. Due to
high computational cost, our ensemble size (n = 50) was also relatively

Fig. 2. Sample functions for determining soil moisture rate factors for soil N processes in APSIM based on soil moisture content. This example was generated based on the
lower limit (SMC = 0.19), drained upper limit (SMC = 0.36), and saturated limit (SMC = 0.45) of Layer 3 at the study site. These limits are shown in the figure as blue,
dashed vertical lines.
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small, which limited our representation of Pf. To overcome these issues, we
adapted a method presented by Miyoshi et al. (2013) that systematically
and jointly estimates R and Pf at each analysis time step to better quantify
uncertainties within the filter and avoid filter divergence.

TheMiyoshi algorithm is based on innovation statistics derived as diag-
nostic checks for assimilation performance. At each analysis time step, it
adaptively estimates a forecast inflation factor Δ and a diagonal R using
known relationships between system innovations, Pf, and R. One important
caveat of the algorithm rests in the circular nature of its assumptions, such
that the estimation of forecast inflation depends on an accurate specifica-
tion of R and vice versa. Therefore, in this study, the algorithm does not
function to exactly estimate both values for a given analysis time step.
Rather, the algorithm uses the estimates of all previous time steps to inform
each successive analysis, allowing for the system to naturally adapt to new
information and converge to optimal value ranges over the course of the
simulation. We made three notable changes to the algorithm presented in
Miyoshi et al. (2013) to better suit the needs of our analysis. First, we ap-
plied a constraint on estimates of Pf such that variance values never drop
below 1. This ensures that we are only inflating and never shrinking fore-
cast uncertainty. Second, we estimate a inflation matrix rather than an in-
flation scalar to account for possible scale differences across state
variables. Only the diagonal terms of the computed inflation matrix are
considered so that only forecast variance (not covariance) is inflated. Lastly,
we assumed that observation errors between state variables at each time
step were independent of one another, and, therefore, we only estimate
the diagonal elements of R for our analysis.

In the case of our analysis, we appended the Miyoshi algorithm to our
assimilation workflow as an offline estimator at time t for Δt+1 and Rt+1.
Prior to the start of assimilation, we initialize our estimates of Δ and R,

Δ1 ¼ I

R1 ¼ Σ

where I is the identity matrix (only the diagonal values are relevant) and Σ
is a diagonalmatrixwhere the standard deviation of each observed variable
is assumed to be 10% of the measured mean value at analysis time step t=
1. At each analysis time step t, Δt and Rt are used to compute the analysis
distribution as follows:

Kt ¼ ΔtP f ,tHT Rt þ HΔtP f ,tHT� �−1
(6)

Xa,t ¼ X f ,t þ Kt Yt −HX f ,t
� �

(7)

Pa,t ¼ I −KtHð ÞΔtP f ,t (8)

Upon the completion of the analysis distribution at analysis timestep t,
we then estimate a diagonal R using a relationship demonstrated by
Desroziers et al. (2005),

Ε do−adTo−f
� �

¼ Rest (9)

where do-a and do-f represent the observation-analysis and observation-
forecast innovations for the current time step, respectively, E denotes the
expectation operator. Only the diagonal values are maintained in the esti-
mate of R as previously discussed.

Next, the algorithm employs the estimated R to estimate Δ using an
equation first proposed by Wang and Bishop (2003),

Δest ¼
dTo−f do−f − Rest

HΔPfHT (10)

where do-f represents the observation-forecast innovations for the current
time step, and Pf is the forecast covariancematrix and Δ is the inflation fac-
tor from the current time step. To preserve the forecast variance propagated
by themodel, we impose a lower bound of 1 on the estimated values ofΔest.

Finally, the algorithm proposes values of Δt+1 and Rt+1 (i.e., values to be
used in the next analysis time step) using a temporal smoother that com-
bines the current values with the new estimates in a weighted average,

Rtþ1 ¼ ρð ÞRest þ 1 − ρð ÞRt (11)

Δtþ1 ¼ ρð ÞΔest þ 1 − ρð ÞΔt (12)

where ρ is a user-defined weight given to the new estimate. We use ρ =
0.05 in our analysis to smooth noisy estimates. This ensures that a single es-
timate of observation error at time t will not heavily influence the error es-
timates informed by all previous time steps.

2.3.4. Sequential state-parameter data assimilation
In addition to the state variables, EnKF also allows for constraining

model parameters such that they can be included in the state vector Xf

and, thus, updated at each analysis step based on their covariance with
the updated state variables (estimated in Pf; Evensen, 2009). This is a pow-
erful function of the EnKF, as it adjusts both the initial conditions of the next
model forecast and the underlyingmodel processes generating the forecast,
while state data assimilation only updates the former. Furthermore, PDA is
useful because (1) it can adjust parameters that, by nature, are dynamic
throughout the growing season, but are treated as constants in the model
(e.g., bulk density, hydraulic conductivity parameters) and (2) it's online
optimization of parameters has lower computational costs compared to
classic Bayesian parameter optimization methods (e.g., Markov Chain
Monte Carlo), which then also employ optimized parameters in a fixed
manner (e.g., Dokoohaki et al., 2018). However, the extent to which
model processes can be improved by EnKF is dependent on the parameter
and the magnitude of its impact on the assimilated model states (Liu
et al., 2017). To determine the parameters updated within our analysis,
we considered innovations from a preliminary SDA simulation and deter-
minedwhich soil water flow typewas associatedmost with large prediction
error to maximize the potential for error reduction (see Supplementary
Materials).

2.3.5. Data fusion framework
Our modeling framework consists of several diverse and important

pieces that, together, enable us to perform comprehensive, flexible, and ro-
bust analyses using the high-performance computers on the campus cluster
at the University of Illinois at Urbana-Champaign. At the base of ourmodel-
ing workflow on the cluster, we use Docker containers to generate and ex-
ecute each of our crop model ensemble simulations using the “parallel
System for Integrating Impact Models and Sectors” (pSIMS). pSIMS is an
open-source framework developed to enable large-scale ensemble simula-
tions by integrating and translating data inputs at varying spatial scales
for use with different site-based models and reformatting model output
into useful and approachable datatypes (Elliott et al., 2014). The platform
generates model ensembles for a given pixel location, formats site-specific
drivers into model-appropriate inputs, and incorporates uncertainty
through ensembles of model drivers and parameters as part of the system's
“Campaign” feature. Though we established the capacity to perform re-
gional model-data fusion exercises across broad tiled spaces by leveraging
pSIMS, we utilize pSIMS functionalities for this analysis at a single pixel
that best represents our study area. Additionally, for the purpose of this
study, we developed new features within the pSIMS platform to perform
ensemble-based simulations and include uncertainty in soil, climate,
model parameters, and initial conditions for a single site. Given a fixed
number of ensemble members and a series of priors on cultivar parameters,
our uncertainty propagation workflow within the pSIMS platform uses a
Monte Carlo sampling approach to generate random samples of soil,
weather, and cultivar parameters for each ensemble member. Dokoohaki
et al. (2021) describes these changes in more detail.
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2.4. System set-up

The features presented in Section 2.3 comprise the fundamental pieces
of our full data-assimilation system. On top of the “Dockerized” pSIMS plat-
form, we perform crop model forecasts using APSIM, which operates in se-
ries with the ensemble Kalman filter and a filter tuning algorithm, which
have been built into the model using the APSIM's C#manager functionality
and are called at the end of each day's forecast. The full overall workflow is
demonstrated in Fig. A.2 in the Supplementary Materials.

To evaluate our framework, we compared four series of simulations for
our study site, incrementally building our data assimilation system. We
refer to each of these series as a different scheme hereinafter. Table 1 out-
lines the different schemes and the features they include, as well as their
naming protocol within this study. All schemeswere completedwith 50 en-
sembles, and each was performed separately for the 2018 and 2019 grow-
ing seasons. As demonstrated by Lu et al. (2021), this is an adequate
ensemble size for achieving stability in crop model assimilation studies.

Within themodel ensembles, initial soil N pools andwater balancewere
randomized on 1 January 2018, and distributions of soil water and nutri-
ents on 31 December 2018 were used to initialize the beginning of the
2019 model ensemble for each scheme. Like the simulation study per-
formed by Archontoulis et al. (2020), model ensembles were begun on 1
January 2018 to initialize the soil water and nutrient pools in the profile
and allow the model to reach an equilibrium prior to planting 4 months
later. For those plotmanagement details that were unavailable, we random-
ized associatedmodel parameters across themodel ensemble to account for
uncertainty, drawing parameter values randomly from informed prior dis-
tributions to incorporate the full range of management possibilities within
each scheme (see Table A.2 for prior distributions). Model parameters that
were randomized included initial 2018 soil water, cultivar parameters, and
initial residue amount for both years. Prior distributions for maize cultivar
parameters were adopted from those presented by Archontoulis et al.
(2020) who used experimental data from 56 site-years to calibrate APSIM
maize parameters for Iowa, an important agricultural state in the U.S. Mid-
west. For summarized information on parameter priors and fixed manage-
ment parameters, see the Supplementary Materials.

2.5. Evaluation of model performance

2.5.1. Post-hoc ensemble weight estimation
To more accurately interpret and evaluate results from each tested

scheme, we applied an ensemble weighting strategy. Our use of ensemble
weights rests on the assumption that ensembles whichmost accurately esti-
mated the assimilation state variables were also more likely to have accu-
rately estimated other components of the system. Therefore, to
systematically emphasize our best available forecasts, we incorporate en-
sembles weights in our analysis of model output in the following way.

After the simulationswere completed, we assigned aweight for each en-
semble at each analysis time step by estimating the posterior probability of
the ensemble's forecast as given below:

P X j μa,Pað Þ (13)

where X is the forecast matrix of the assimilated state variables. This equa-
tion estimates a relative weight representing the likelihood of producing

the model simulations given the posterior (analysis) state of the system,
which follows a Normal distribution. We normalized the weights for each
time step across all ensembles so that their sum was equal to 1, and then,
we calculated the average weight of each ensemble for each year. The
freemodel ensembles were given equal weights as no posterior distribution
was computed.

2.5.2. Evaluation statistics
To compare differences in forecast precision of assimilated state vari-

ables across schemes, we use the spectral norm (||.||2), which represents
the maximum singular value of a matrix. The spectral norm allows us to
compare the magnitudes of Pf for each of the different schemes to identify
how forecast precisionwithin each simulation changeswith time. The spec-
tral norm of Pf is calculated as

‖Pf ‖2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Maximum Eigenvalue of PH

f Pf

q
(14)

where Pf H represents the conjugate transpose of Pf. We represent the preci-
sion of each simulation scheme in estimating all other relevant model var-
iables using a weighted variance. This value was calculated for annual
output values as

Variance ¼
∑
N

i¼1
wi ∗ xi − xWð Þ2

� �
N−1ð Þ
N

(15)

where N is the number of ensembles, wi is the average weight of the ith en-
semble, x̅W is the weighted mean across ensembles, and xi is the forecasted
value of the ith ensemble. For daily output values, variance was calculated
as

Variance ¼ 1
M

∑
M

m¼1

∑
N

i¼1
wi ∗ xi,m − xW ,mð Þ2

� �
N−1ð Þ
N

(16)

where M is the number of simulation days, xi,m is the forecasted value of
ensemble i on day m, and x̅W,m is the weighted mean on day m across all
ensembles.

Following the same notation, the accuracy of different simulation
schemes was compared for annual output values with the followingmetrics

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
N

i¼1
wi ∗ yannual − xið Þ2

� �s
(17)

where yannual is the annual observed value. The following accuracy metrics
were used for daily output values,

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
T
∑
T

t¼1
∑
N

i¼1
wi ∗ yt − xi,tð Þ2

s
(18)

where T is the number of simulation days with observed data, yt is the tth

observed daily value, and xi,t is the forecasted value of ensemble i on day
t with observed data.

3. Results

We begin this section by first comparing the four different data assimi-
lation schemes in our analysis and identifying the most robust scheme for
soil moisture estimation in both accuracy and precision. Then, we evaluate
and compare the performance of the optimal schemewith the freemodel in
estimating daily soil moisture, soil N, LAI, annual yield, tile flow, and an-
nual NO3 loads.

Table 1
Overview of simulation components and naming conventions.

Simulation
Name

Workflow Components Variables included in Xf

Free APSIM N/A
SDA APSIM + EnKF Soil moisture (10 and 20 cm)

Miyoshi
APSIM + EnKF + adapted
Miyoshi algorithm

Soil moisture (10 and 20 cm)

PDA
APSIM + EnKF + adapted
Miyoshi algorithm

Soil moisture (10 and 20 cm), SWCON
(10 and 20 cm)

M.S. Kivi et al. Science of the Total Environment 820 (2022) 153192

7



3.1. Evaluation of different data assimilation schemes

The APSIMmodel performed sufficiently well without data assimilation
and without intensive site-specific model calibration. As seen in the free
model, the model was able to generally capture trends in LAI for both
crop types (Fig. A.4) and trends in soil moisture throughout the soil profile
(Fig. 3). Such performance points to the validity of both the underlying
model processes and the model drivers. However, throughout the simula-
tion period and, especially, during critical growth periods in the growing
season (i.e., planting, vegetative phase), the free model overpredicts avail-
able soil moisture, which impacts downstream model estimates of crop
water uptake, crop development, and tile flow, among others.

Compared to the free model, the assimilation of observed data via the
EnKF helped to improve accuracy and precision of forecasts of soil moisture
for the two soil layers (Table 2). Fig. 4a shows a smoothed time series of the
spectral norms of Pf for each simulation. The forecast uncertainty for all
simulation series is high at the initiation of 2018 following a wide prior
on initial soil water balance but then drops by the spring of 2018. However,
the SDA forecast uncertainty (as well as that of the other two assimilation
schemes) remains low for the duration of the simulation period. The free
model, on the other hand, experiences large jumps in uncertainty during

both growing seasons, which we suspect to reflect uncertainties in crop pa-
rameters and/or model drivers. Since high precision and accuracy are most
crucial within the growing season for the purpose of agricultural modeling,
SDA clearly outperforms the free model by constraining soil water dynam-
ics across the full parameter-input space.

Yet, despite major improvements in forecast accuracy and precision,
SDA shows filter divergence. An overestimated R and an underestimated
Pf provide inaccurate weighting of the observed data and the model. As a
result, the filter mostly ignores the observed data and overemphasizes the
forecast distribution in the computation of the analysis distribution. By in-
cluding the Miyoshi algorithm as an offline estimator of forecast and ob-
served variances, we see this type of filter behavior mostly disappear in
Miyoshi (See Fig. A.4 for a visualization of this phenomenon). Assuming di-
vergence to be where the observed mean does not fall within the 95% con-
fidence interval of the analysis distribution for at least one state variable,
SDA diverged at 63.8% of analysis time steps, while Miyoshi diverged at
37.4%. This is a consequence of improved estimates of the two error matri-
ces (i.e., R and Pf) when using the Miyoshi algorithm.

The final data assimilation scheme within our framework is parameter
data assimilation. In our preliminary analyses of SDA innovations, we
found that the module's prediction error for both soil layers was often the
greatest on dayswith high precipitation andwhere end-of-day soilmoisture
was higher than or near the layer's drained upper limit. Since these condi-
tions point to the use of the saturated flowmodel processes, we chose to up-
date the SWCON model parameter for both soil layers (10 and 20 cm)
within the EnKF. For each layer (T), the SWCON parameter controls the
proportion of soil water (SW) above the drained upper limit (DUL) that
flows into the next deepest layer for each day by the following equation:

Saturated Flow from Layer T ¼ SWCONT x SWT −DULTð Þ (19)

In PDA, we adjust the SWCON model parameter for both layers at each
analysis time step according to the covariance between the parameter and
the observed state variables. Though we see shifts in estimates of the two

Fig. 3. Time series of simulated and observed soil moisture estimates for the 2 soil layers where assimilation is performed within the soil profile. SM3 refers to 9.1–16.6 cm
(observed at 10 cm), and SM4 refers to 16.6–28.9 cm (observed at 20 cm). Weighted 95% confidence intervals are shown surrounding the mean line for the simulated
estimates, and vertical bars around the mean observed value demonstrate the 95% confidence interval for those data as estimated by the Miyoshi algorithm in PDA.

Table 2
Comparison of soil moisture forecast accuracy and precision metrics.

Layer Depth Rangea

cm
RMSE

proportion
Average Variance

1 × 10−4

Free SDA Miyoshi PDA Free SDA Miyoshi PDA

SM3 9.1–16.6 0.061 0.038 0.034 0.036 6.1 3.5 3.7 3.6
SM4 16.6–28.9 0.064 0.042 0.037 0.035 7.2 3.3 3.9 3.3
SM6 49.3–82.9 0.084 0.073 0.072 0.074 5.8 4.4 5.1 5.0
SM7 82.9–138.3 0.142 0.076 0.074 0.076 6.0 4.1 4.5 3.2

a Layers SM1 (0–4.5 cm), SM2 (4.5–9.1 cm), and SM5 (28.9–49.3 cm) are excluded
here as observed data was not available for these layers during our study period.
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SWCON parameters with PDA (Fig. 4b), these parameter adjustments did
not lead to overall improved model performance in soil moisture estima-
tion. PDA and Miyoshi performed similarly in terms of model accuracy
and precision in estimates of soil moisture for the two assimilation layers.
Yet, even though performance was not improved further in PDA, the final
scheme allows for more flexibility in the model, which serves as an added
benefit compared to Miyoshi. For this reason, we continue in our summary
of our results by focusing on a comparison between the free model and our
best-performing and most comprehensive data assimilation scheme: PDA.

3.2. Soil moisture

Estimates of soil moisture from the different simulation schemes are
shown in Fig. 3, and Table 2 compares the accuracy and precision of daily
soil moisture forecasts. Though the free model was able to capture the gen-
eral trends of soil moisture in the soil profile, data assimilation helped to
greatly improve soil moisture forecasts for the two layers with data assimi-
lation. PDA was 40.2% and 44.3% more accurate, and 41.0% and 54.2%
more precise for the two assimilation layers. However, assimilation also im-
proved estimation of deeper soil layers; SM6 and SM7 estimate accuracy
improved by 12.2% and 46.2%, and precision improved by 13.8% and
46.7%, respectively. Since the lower layers were not directly adjusted in
the assimilation workflow, their improvement under assimilation is indica-
tive of the “top-down” benefit that near-surface soil moisture assimilation
can have for a model with a cascading water balance.

3.3. Soil nitrogen

With improved estimates of soil moisture, estimates of soil N dynamics
throughout the soil profile were also impacted by data assimilation. On one
hand, differences in estimates of total soil profile ammonium (NH4) were
minor for the duration of the simulation period with an average difference
of 0.22 kg NH4-N/ha and a maximum difference of 2.33 kg NH4-N/ha.
However, we do see great differences in estimates of total soil profile
NO3. Overall, the free model estimated lower NO3 levels in the soil profile
than PDAwith an average difference of 3.92 kg NO3-N/ha and a maximum
difference of 9.35 kg NO3-N/ha over the course of the study period. Large
differences in total soil NO3 are noticeable beginning in the middle of the
2018 growing season (Fig. 5a-b). We suspect these differences are the con-
sequence of differences in soil moisture estimates. At that time, the free
model often estimated soil moisture values above the drained upper limit
for the assimilation layers, while PDA estimated soil moisture values
below it. As shown in Fig. 2, this difference has the potential to alter the
process rates within APSIM's soil N cycle, serving to increase the rate at
which NO3 was added to these layers (i.e., mineralization, urea hydrolysis,
and/or nitrification) or decrease the rate at which NO3 is lost
(i.e., denitrification). The lower soil moisture estimates in the two assimila-
tion layers also may have reduced the amount of soil water moving verti-
cally through the soil profile and, thereby, limited the amount of NO3

that leached into the lowest soil layer and lost from the system via leaching
(Fig. 5c).

Fig. 4. (a) Time series of the spectral norm of the forecast covariance matrix (i.e., ||Pf||2) for SM3 and SM4 for all simulations for both years with local regression (LOESS)
smoothing applied (α = 0.25). Assimilation periods for both simulation years are indicated with the two sets of dashed lines. (b) Time series of SWCON parameter values
under PDA optimization, where SWCON3 and SWCON4 correspond to the third and fourth soil layer, respectively. Dashed horizontal black lines denote the default
model value for these two parameters.
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3.4. Leaf area index and annual yield

Aboveground measures of crop production, including LAI and annual
yield, were less affected by assimilation, and changes in forecasting preci-
sion and accuracy were mixed. Table A.3 provides a more explicit compar-
ison of accuracy and precision between simulation schemes and years for
these variables. For maize in 2018, PDA was 10.2% and 0.1% less accurate
than the free model when estimating yield and LAI. For soybean in 2019,
PDA was 0.6% less accurate than the free model in estimating yield, but
14.1% more accurate when estimating LAI. Overall, though, the difference
in accuracy was relatively minute between schemes when estimating
aboveground variables. For precision, on the other hand, we see improve-
ment with PDA in estimates of LAI for both crops and yield for maize. On
average, variance was reduced by 12.9%, 9.8%, and 57.5% for estimates
of maize LAI, soybean LAI, and maize yield, respectively. The average var-
iance for soybean yield estimates increased by 36.7% with PDA.

3.5. Tile drainage and NO3 loads

Following the improved soil moisture predictions with assimilation,
similar improvements can be seen in estimates of daily and cumulative
tile drainage. Although both the free model and PDA consistently
overestimated daily tile drainage, PDA was more accurate and precise.
PDA reduced RMSE by 23.0% and variance by 42.7% for daily tile flow es-
timates across both years. This improvement in PDA at the daily time scale
led to similar improvements for cumulative annual estimates. On average,
PDA reduced the RMSE by 43.1% and variance by 34.3% in annual esti-
mates of tile drainage (Fig. 6a-b). As the free model often overestimated

soil moisture in the two assimilation layers, we suspect that constraining
soil moisture in PDA decreased the amount of soil water in the assimilation
layers and, thus, decreased the amount of soil water drained from the sys-
tem. Constraint of annual tile drainage with PDA was especially strong in
2018, where we saw great improvement in both accuracy and precision.
This constraint was weaker in 2019, where we see exceptional improve-
ment in accuracy but only slight improvement in precision.

For estimates of annual NO3 loads, PDA was more accurate and precise
than the free model for 2018. It predicted lower NO3 loads and reduced
RMSE by 19.3% and variance by 42.0%. However, PDA did not achieve
the same constraint for annual NO3 loads in 2019, where PDA's higher esti-
mates reduced RMSE by just 1.82% and increased variance by about 120%
compared to the freemodel (Fig. 6b). Such a large increase in uncertainty in
2019 likely stems from the large uncertainty associatedwith PDA estimates
of NO3 in the lowest soil layer (Fig. 5c). On the other hand, considering
daily estimates of NO3 load over the course of the simulation period, we
see only a small 5.8% increase in accuracy and an 18.2% decrease in preci-
sion with PDA.

4. Discussion

Most cropmodeling studies using data assimilation approaches focus on
how SDA improves estimates of crop yield or biomass (e.g., de Wit and van
Diepen, 2007; Fang et al., 2008; Ines et al., 2013; Mishra et al., 2021). How-
ever, in our analysis, crop yield estimates did not tell the full story. There
are 4 key points to highlight within our results:

1. PDA effectively constrained soil moisture estimates for the two assimila-
tion layers. One of the downstream impacts of this constraint was better

Fig. 5. (a-c) Time series of simulated soil NO3-N in (a) the total soil profile (b) the assimilation layers (i.e., Layers 3 and 4), and (c) the lowest soil layer (i.e., Layer 7). 95%
confidence intervals are indicated by the shaded ribbon surrounding the mean lines for each scheme.
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soil moisture estimates for the two deeper layers (75 and 100 cm),
where we see improvements in both forecast accuracy and precision
with PDA (Table 2). In a similar study, Liu et al. (2017) attempted to
use soilmoisture assimilation to constrain root-zone soil moisturewithin
the SWAT model by appending lower layers to the state vector at each
analysis time step. However, due to the weak vertical coupling of
SWAT, the improvement in soil moisture prediction in their analysis de-
creased with soil depth. The APSIM SoilWatmodule, on the other hand,
operates as a cascading water balance model (Section 2.3.1), which ex-
hibits strong downward vertical coupling between soil layers and,
thus, increases the potential for constraint of those soil layers falling
below the assimilation layers. Such potential is demonstrated by the
strong constraint of soil moisture in Layer 7 in our results.

2. Our data assimilation workflow did not dramatically impact maize yield
or LAI forecasts compared to the free model. However, considering the
high levels of precipitation during the 2018 growing season (Moore
et al., 2021) and the nature of the research site, which was managed
to not be N-limited, there was little potential for data assimilation to im-
pact aboveground estimates for maize at this study site. Assimilation
typically lowered model soil moisture estimates, reducing the amount
of soil water available to the crop, but the adjusted soil moisture value
was often still greater than the maize crop's water demand. As a result,
water uptake by maize was largely unaffected by the assimilation step
(Fig. A.5). This result mirrors that of Lu et al. (2021) who found soil
moisture assimilation to more effectively improve aboveground mea-
sures of maize in the presence of water stress.

3. Conversely, assimilation did play an impactful role in soybean LAI and
yield estimates. In 2019, we see higher estimates of root-zone soil NO3

with PDA compared to the free model, which we hypothesize to be the
result of lower estimates of soil moisture in the two assimilation layers
leading to changes in N cycle process rates. We suspect that the in-
creased availability of soil NO3more aptly fulfilled the crop's N demand,
which then increased N uptake, water demand, water uptake, and, con-
sequently, crop growth. This can be shown in PDA's higher estimates of
LAI in 2019. The soil N changes in PDA led tomore accurate and precise
estimates of soybean LAI in 2019 as compared with the free model. This
improvement did not translate into improved estimates of soybean
yield, however. Observed data on other portions of the water cycle,
like plant water uptake, runoff, and evapotranspiration, could help to
better understand these limitations of our assimilation system and iden-
tifymissing or incorrectly definedmodel processes to improve them. For
example, if estimates of LAI andwater uptake but not yield are improved
with data assimilation, parameters or processes that connect LAI to grain
development may need to be closely investigated and possibly adjusted.

4. Compared to the freemodel, PDAwas more accurate in its estimation of
cumulative tile drainage than the free model, predicting lower cumula-
tive tile drainage for both growing seasons. Since leaching is a function
of both available soil NO3 and tile drainage in APSIM, we would expect
to see lower estimates of NO3 loadwith reduced drainage if soilmoisture
was the only variable affected by assimilation. This partially explains the
PDA results in 2018, where lower estimates of tile drainage alignedwith
lower and more accurate estimates of annual NO3 load. However, in

Fig. 6. (a) Time series of simulated and observed cumulative annual tile drainage (mm) for 2018 and 2019 from the study plot. 95% confidence intervals are indicated by the
shaded ribbon surrounding the mean lines for each simulation. Black lines demonstrate the observed trends. Due to missing data from the end of 2019 as discussed in
Section 2.2.4, we extrapolate the observed trend with a dashed line for 2019 following information from plot managers. (b) Boxplot summarizing the estimated
distribution of total annual NO3 load for each scheme in 2018 and 2019. Dashed horizontal lines mark the observed values for each growing season, with a load of 8.81
Kg NO3-N/ha observed in 2018 and 8.65 Kg NO3-N/ha observed in 2019.
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2019, PDA estimated higher annual NO3 load than the free model de-
spite lower overall drainage from the system. Such a result highlights
the downstream impact of assimilation on the soil N processes in the
model and its interaction with the growing crop. Soil moisture could
not have been the only variable affected by assimilation. Though a
more comprehensive study of the SoilNmodule is necessary to draw con-
clusions on how assimilation specifically led to these improvements,
these results demonstrate the potential for improving estimates related
to NO3 leaching via soil moisture data assimilation.

Upon highlighting the findings of our analysis, it is also imperative to
highlight areas for improvement. Overall, the assimilation of soil moisture
observations into the APSIM model was effective in improving model fore-
casts of soil moisture and downstream processes such as NO3 leaching,
which was a primary goal of the study. However, data assimilation algo-
rithms—especially the EnKF—do not currently check for a water mass bal-
ance in the overall cropping system. This means that, at each analysis time
step, assimilation is either erasing water or creating water within the
modeled system rather than redistributing to other parts of the model
(e.g., evaporation, crop water uptake, other soil layers, etc.). For our
study, assimilation typically lessened soil moisture in the two assimilation
layers and, thus, removed water from the forecasted soil profile when per-
forming adjustment. With less water flowing through the soil profile, PDA
estimated lower and more accurate tile drainage when compared with the
observed data. Yet, by removing water with assimilation, PDA also disre-
gards the system's water mass balance. The overestimation of soil moisture
and tile drainage in the free model is indicative of inaccurate or missing
processes within the APSIM model itself. Though PDA was able to improve
tile drainage simulation, it does not account for these missing processes nor
explain the ecological significance of the overestimation. Adding a water
balance constraint (such as that presented in Wu et al., 2016) to this data-
assimilation system, in conjunction with observed data on other water
cycle components (e.g., evaporation, crop water uptake, runoff) would be
useful to better understand where and why the model is making errors.

Further improvement to the assimilation workflow will also require re-
consideration of the adjusted model parameter within the PDA workflow.
As shown in our results, adjusting the SWCON model parameter for the
two assimilation layers, thoughmarginally helpful, did not dramatically im-
prove soil moisture estimates as compared with Miyoshi. One possible ex-
planation for the limited improvement with PDA could be the frequency
with which SWCON is used for estimating water movement between soil
layers. The SWCON parameter is associated with the saturated water flow
process in the SoilWat module, which is only applied to those days and
soil layers where soil moisture is above the drained upper limit but below
saturation. In other words, soil moisture estimates (and, thus, innovations)
in the two assimilation layers are dependent on the parameter value only
when saturated flow happens in those layers. However, the modeling
workflow assumes the estimates are correlated with the SWCONmodel pa-
rameters for the two layers and adjusts them accordingly at all analysis time
steps. For more consistent and improved PDA performance, model parame-
ters that are associated with soil moisture at all analysis time steps should
be considered.

Another important consideration for future assimilation studies with
the APSIM model concerns evaluating the model's soil N processes, an im-
perative component of cropping systems that remains poorly understood.
At times within this study, assimilation of soil moisture had a dramatic im-
pact on the soil N process rates and, thus, estimation of soil N pools. Since
the model forecasts of soil moisture were improved in PDA, it would logi-
cally follow that the estimates of the soil moisture rate factors would also
be improved, thereby improving soil N estimates. If data were available
to evaluate how APSIM's SoilN changes with assimilation, one could feasi-
bly distinguish weak points in the model process by identifying estimates
that were not improved. Such a process could help to systematically im-
prove the underlying processes in APSIM given adequate observed data
for N cycle components. One process to investigate in the APSIM model
that we highlighted in this study is crop uptake of mineral N forms.

Currently, APSIM's SoilN module assumes that crops can only take up
NO3 and not NH4, even though NH4 fertilizer was also applied in the simu-
lations and NH4 uptake has lower energy requirements than NO3 uptake in
crops (Hachiya and Sakakibara, 2016). With adequate observed data, one
could use soil moisture assimilation to understand the implications of this
assumption more accurately.

The model-data fusion system introduced in this study provides a
unique opportunity for the most complete account of uncertainty inmodel-
ing agricultural systems while allowing the dynamic constraint of uncer-
tainties in both model parameters and state variables. Though the use of
model-data fusion techniques in crop modeling is not new, the infrastruc-
ture developed, tested, and presented in this study is unique in that it
(1) can be easily accommodated to assimilate other state variables or
other types of observations (e.g., data collected from field experiments,
flux towers, remote sensing, etc.), (2) jointly estimates the two error ma-
trices in parallel with the simulation to dynamically improve filter per-
formance, (3) can be expanded in space (allowing for performing
regional data assimilation studies), (4) works well with all types of
crops within the APSIM model, and (5) can leverage multi-data stream
observations allowing for constraining different modules simulta-
neously. The authors are unaware of any other such system that shares
all these advantages.

In expanding this analysis to the regional scale, the demonstrated results
show that there is great potential for improved regional modeling of field-
level NO3 losses and tile drainage flow by using the presented system.
Past regional studies were able to estimate NO3 leaching with crop models
by informing model inputs with coarse spatial data on soil type, land use,
climate, water quality, and/or management information from the litera-
ture, public databases, and surveys (e.g., de Paz and Ramos, 2004; David
et al., 2013; Roelsma and Hendriks, 2014; Reading et al., 2019; Li et al.,
2020; Spijker et al., 2021). However, such applications fail to account for
the fine-scale spatial variation in soil moisture and soil properties, which
has been shown to be important for high accuracy and precision in esti-
mates of NO3 losses and tile drainage flow (Ojeda et al., 2018; Reading
et al., 2019; Gurevich et al., 2021; Spijker et al., 2021). Given the appropri-
ate observed data on soilmoisture, the presentedworkflowhas the capacity
to improve on past regional studies by dynamically constraining soil mois-
ture and soil hydraulic parameters at the field scale. By constraining the
spatial and temporal variability of thesemodel parameters and states across
different fields, we can increase the accuracy and precision of NO3 leaching
estimates each field across a given region. This approach could potentially
be applied to other regions given adequate data.

As a future direction, we will first focus on increasing the sample size of
this study to enable a more thorough evaluation of the performance of our
final assimilation system.Wewill investigate a variety of model parameters
suitable to be adjusted within the PDA workflow to increase the potential
for improvement in soil moisture estimates. To be able to expand this
type of study to the regional scale, we will require soil moisture data that
characterizes a broad range of cropping systems at high spatial and tempo-
ral resolutions. Soil moisture data products based on remote sensing (RS)
imagery could be an invaluable tool for such a task. However, as this
study was conducted with soil sensor data, the efficacy of the final as-
similation system will need to be evaluated with RS data to ensure its
performance does not suffer significantly with lower resolution soil
moisture observations. Additionally, RS data typically characterizes sur-
face soil moisture (0–5 cm), which has been shown to be less effective
for constraining soil moisture in deeper layers of the soil profile (de
Lannoy et al., 2007). Therefore, testing the utility of this workflow
with RS-based soil moisture data products will be imperative prior to
broader applications of the system. Finally, there is still room for im-
provement in model estimates of NO3 leaching, such that estimates of
tile drainage are still largely overpredicted and estimates of annual
NO3 load still lack high precision. To bridge these gaps, we will consider
the addition of new data constraints within our data assimilation sys-
tem, as well as the continued investigation and evaluation of the
APSIM model processes.
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5. Conclusion

In this study, we present a scalable and flexible data-assimilation system
that improves forecasts through the systematic and robust combination of
observed data and a crop model via the Ensemble Kalman Filter. In a case
study, we demonstrate that the final system can effectively constrain soil
moisture, maintain high filter performance by jointly estimating system un-
certainties, and dynamically estimate soil properties in time by including
parameters in the assimilationworkflow.With such functionalities, our sys-
tem stands apart from previous assimilation efforts in crop modeling.

Another novelty of this study is the focus and range of its system evalu-
ation. Unlike other crop model assimilation studies which only consider
changes in yield and soil moisture estimates, we assess system performance
in estimating 5 different model states: yield, LAI, soil moisture, tile drain-
age, and annual NO3 load. The system did not demonstrate strong con-
straint of aboveground measures, such as LAI or yield. However,
assimilation did lead to changes in both the soil water and soil N cycle in
APSIM, resulting in improved estimates of tile drainage flow and annual
NO3 load. These results point to soil moisture data assimilation as an im-
proved method for estimating NO3 leaching at the site level which can be
expanded to broader regions. To verify these results, replication of this
study for a range of site locations and observed data is necessary.

As we look to understand and resolve the large-scale agricultural issues
of our time, the need for more accurate and precise agricultural forecasting
methods only becomes more clear. The presented system provides a com-
prehensive solution for filling that gap. We have brought well-established
forecasting methods from other disciplines to the realm of crop forecasting,
advancing the predictive capacity in the field. In practice, our data-model
fusion framework system can be applied to improve crop model
performance through module-specific constraint and subsequent re-
parameterization. In addition, for any site with available soil moisture ob-
servations, this system can quantify annual nitrate leaching losses for a pro-
duction system with greater accuracy and precision than process-based
models alone and with fewer resources and time than measuring the losses
directly. Thus, our framework could serve as a practical and effective
method for assessing the environmental impacts and informing futureman-
agement design of agricultural production systems in the U.S. Midwest and
beyond.
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