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Preface

Abstract Algebra: An Inquiry-Based Approach, Second Edition is a textbook that covers material
in ring theory and group theory. To keep the keep the size (and cost) of the text manageable, some
additional and reference material is offered in this document.

Supplemental Investigations

• Investigation 34: RSA Encryption. This investigation describes the RSA algorithm and
assumes familiarity with modular congruence and prime numbers from Investigation 1. This
investigation is referred to in Exercise 20 of Investigation 23 concerning Fermat’s Little
Theorem.

• Investigation 35: Check Digits. This investigation introduces the idea of check digits in
several contexts and assumes familiarity with modular congruence (Investigation 1) and the
dihedral groups (Investigation 21).

• Investigation 36: Games: NIM and the 15 Puzzle. This investigation applies group theory
to develop a winning strategy in the game of NIM and to determine which 15 Puzzles are
solvable. It assumes knowledge of groups (Investigation 17) and subgroups (Investigation
19), along with the symmetric groups (Investigation 22).

• Investigation 37: Groups of Order 8 and 12: Semidirect Products of Groups. In this
investigation, we classify all groups of order 8, introduce semidirect products of groups, and
then classify all groups of order 12. We assume familiarity with the earlier classification of
groups of various orders (Investigation 26) and with products of groups (Investigation 25).

Appendices

• Appendix A: Functions. This appendix appeared in the first edition and provides back-
ground information for students on properties of functions. This material is a helpful refer-
ence for the study of homomorphisms and isomorphisms in Investigations 7, 13, 26, sym-
metries in Investigation 17, as well as permutations in Investigation 22 in the text.

• Appendix B: Mathematical Induction and the Well-Ordering Principle. Mathemati-
cal induction and the Well-Ordering Principle are used throughout Abstract Algebra: An
Inquiry-Based Approach, Second Edition. This appendix can be used as a review of these
important items, and also provides proofs of the equivalencies of the Well-Ordering Princi-
ple and the different flavors of mathematical induction for those who are interested.

• Appendix C: Methods of Proof. This is a new appendix that provides review material on
different methods of proof other than induction, including direct proofs, proofs using logical
equivalencies, proof by contradiction, and proofs using cases.

• Appendix D: Proof that R[x] is a Ring. The formal proof that R[x] is a ring when R
is a ring is long and notationally complex. The details in the general case are omitted in
Investigation 8 in the text, but are included in this appendix for those who want to see a
complete proof.

ix



x Preface

• Appendix E: The Cubic Formula. This material was in the first edition as a supplement
to the investigation on irreducible polynomials. A complete derivation of the cubic formula
is presented here. This formula is useful for Exercise 11 in Investigation 11 and is also
referenced in Investigation 33 related to solvability by radicals in the text.

• Appendix F: The Fundamental Theorem of Algebra. The Fundamental Theorem of Al-
gebra is an important result regarding irreducible polynomials in Investigation 11. Since
proofs of this theorem are not algebraic in nature, they don’t usually appear in modern
algebra texts. In this appendix we present what we believe is an accessible proof for the
interested reader.

• Appendix G: Complex Roots of Unity. Complex roots of unity appear throughout Investi-
gations 32 and 33 related to field extensions and Galois theory. Many students may already
have a firm background in this topic. In this appendix we present a review of complex roots
of unity for those who may benefit from one.

Please address any questions or comments to the authors.

Copyright

This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0
International License. The graphic

shows that the work is licensed with the Creative Commons, that the work may be used for free by
any party so long as attribution is given to the author(s), that the work and its derivatives are used
in the spirit of “share and share alike,” and that no party may sell this work or any of its derivatives
for profit. Full details may be found by visiting https://creativecommons.org/about/
cclicenses/.



Investigation 34
RSA Encryption

Focus Questions

By the end of this investigation, you should be able to give precise and thorough
answers to the questions listed below. You may want to keep these questions in mind
to focus your thoughts as you complete the investigation.

• What is public key encryption, and what are some of its applications?

• How does RSA encryption work, and how is the security of RSA encryption re-
lated to prime factorization of integers?

• What mathematical results are necessary to establish the validity of RSA encryp-
tion, and how do these results follow from previously established properties of the
integers?

Congruence and Modular Arithmetic

In this investigation, we will use “mod” notation in two distinct but related ways. As we have done
before, we will write

a ≡ b (mod n)

when we want to specify a relationship between the integers a and b—namely, that n divides (a−b),
or equivalently, a and b have the same remainder when divided by n. This is the standard usage that
we are familiar with from Investigation 2, except that we have omitted the parentheses that typically
surround the “mod n” portion of the notation. This omission is common, and it will often make
our notation easier to read, especially when we are working with expressions that already contain
several sets of parentheses.

We will also sometimes write a = b (mod n) (note the use of = instead of ≡) for the purposes
of defining a to be the unique remainder guaranteed by the Division Algorithm when b is divided by
n. This means that

a ≡ b (mod n) and 0 ≤ a < n.

For example, if x = 56 (mod 17), then since 56 = 17 · 3 + 5, we see that
x = 56 (mod 17) = 5.

Preview Activity 34.1. Determine the value of x for each of the following:

(a) x = 29 (mod 17).

1



2 Investigation 34. RSA Encryption

(b) x = 138 (mod 17).

(c) x = 200 (mod 17).

We can also define a function using this mod operator. For a natural number n, we let Rn =
{0, 1, 2, . . . , n− 1} and define f : Z → Rn so that for each integer x,

f(x) = x (mod n).

This is sometimes referred to as the mod n function.

(d) For n = 17, compute f(29), f(138), and f(200), and f(546).

Introduction

Throughout history, secret codes have been used to send private messages from one person to an-
other since in many situations, there is a desire for security against unauthorized interpretation of
coded data. That is, there is a desire for secrecy. Cryptography is the science and art of concealing
the content of communications between parties where the communications channel between them
can be accessed by an unfriendly third party. Following are some standard terms used in modern
cryptography,

• Plaintext. This is the original message that is in readable form.

• Encryption. The process of transforming the plaintext message into a disguised message
that is then transmitted to another party.

• Encrypted message. This is the disguised message that is transmitted to another party.

• Decryption. The process of converting the encrypted message back to the original plaintext
message.

• Decrypted message. The message that is converted from the encrypted message by the de-
cryption process. The decrypted message should be identical with the original plaintext
message.

• Cryptosystem. This term refers to the system that contains both the encryption process and
the decryption process.

One of the first known cryptosystems is the so-called Caesar cipher, which was used by Julius
Caesar to send messages to his troops. To encrypt a message, Caesar simply shifted each letter in
the alphabet three places to the right. Using the English alphabet, this means that the letter A is
encrypted as D, the letter B is encrypted as E, and so on. When we get to the end of the alphabet,
we “wrap around” to the beginning of the alphabet. So X, Y, and Z are encrypted as A, B, and C,
respectively. To decrypt a message, we simply shift each letter in the encrypted message 3 letters to
the left.

Although it may not be necessary for this cryptosystem, we will illustrate the modern practice
of converting text into numerical information. We will encode each letter with the numbers shown
in the following table.



RSA Encryption 3

A B C D E F G H I J K L M
00 01 02 03 04 05 06 07 08 09 10 11 12

N O P Q R S T U V W X Y Z
13 14 15 16 17 18 19 20 21 22 23 24 25

So a plaintext message such as SAY would be encoded as 180024, where it is understood that each
block of two numbers corresponds to a letter. We can then use the mod 26 function f to encrypt this
message. So

f(x) = x+ 3 (mod 26),

where x is a two-digit representation of a letter.

Activity 34.2.

(a) Use the encryption function f to encrypt the message 180024.

(b) Suppose you receive an encrypted message 16070022060301 that you know was encrypted
using the Caesar cipher. Decrypt this message and obtain the plaintext message. Describe
the decryption function that you used to do this.

(c) If somebody knows how to encrypt a message using the Caesar cipher, do they then know
how to decrypt a message using the Caesar cipher? Explain how this is a weakness in the
cryptosystem.

The Caesar cipher used a shift of 3 letters to the right. This can be generalized to the concept of
a shift cipher, which will be explored in Exercise (1).

RSA Encryption

Preview Activity 34.3. In Investigation 1, we learned about divisibility, greatest common divisors,
and prime factorization in the integers. In this investigation, we will use these ideas together to
study an interesting and important application: public-key encryption. The system we will study
is one that is commonly used to transmit sensitive data over the internet. Its security rests on an
important observation that should become apparent as you attempt to complete the following tasks.

(a) For each of the parts below, find a number whose prime factors are exactly the numbers
listed:

(i) 4861 and 2621

(ii) 7907 and 619

(iii) 1753 and 1759

(b) Each of the numbers below has exactly two prime factors. Using any mathematically correct
method, find these two factors.

(i) 13494211

(ii) 3902233



4 Investigation 34. RSA Encryption

(iii) 1776977

(c) Which was easier: part (a) or part (b)? Explain why.

From the primitive Caesar cipher, which simply shifts each letter in the original message by a
fixed amount, to the fascinating Enigma machines used by the Germans during World War II, nu-
merous encryption schemes and devices have been invented in an attempt to keep sensitive data out
of the hands of unauthorized (and potentially malicious!) third parties. In this investigation, we will
study one of the most commonly used modern encryption schemes, named RSA encryption for Ron
Rivest, Adi Shamir, and Leonard Adleman, who publicly described the system in 1977. An equiva-
lent system was secretly developed in 1973 by Clifford Cocks at the Government Communications
Headquarters (GCHQ), an intelligence and security organization responsible for providing signals
intelligence and information assurance to the government and armed forces of the United Kingdom.
This work was declassified in 1997.

Since the late 1970s, RSA encryption has become one of the most important systems for what
is now known as public-key encryption. The basic idea behind a public-key scheme is that anyone
should be able to send a message, but only the intended recipient should be able to read it. Thus,
the key to encrypt a message is made public, but the key to decrypt the message is kept secret and
distributed only to those who are authorized to view the encrypted text. In order for such a system to
work, it has to be very difficult or even impossible for a potential attacker to determine the private
decryption key just by knowing the public encryption key. Compare this to the Caesar cipher (or
any shift cipher) where knowledge of the encryption key makes it easy to determine the decryption
key.

Public-key encryption is particularly useful for tasks such as sending data over the Internet. For
instance, a banking web site might want to allow any user to send information (such as a user name
and password) over a secure connection. However, for the transaction to be truly secure, only the
bank should be able to decode the information sent. RSA encryption achieves this design feature by
using the properties of prime factorizations suggested in Preview Activity 34.3. In particular, RSA
encryption exploits the fact that it is relatively easy to multiply two prime numbers together (even
if they are large primes), but nearly impossible to efficiently factor a large number into its prime
factors. As we will see shortly, the RSA scheme translates this theoretical fact into a very practical
and secure encryption method.

The Basics of RSA Encryption

The first step in any encryption scheme is to decide what alphabet will be used and how the ele-
ments of the alphabet will be assigned numerical representations. We will use the same method of
assignment used in the Caesar and shift ciphers. So we will use the standard A through Z alphabet,
with A represented by 0, B represented by 1, and so on. As we will see, however, there are many
security advantages to using a larger alphabet that consists not only of letters, but entire words. So,
for instance, we might use a two-digit numerical representation of each letter (00 to 25) and encode
our messages using blocks of letters. If we were to do so, the word “SECRET” would be encoded
as 180402170419. Keep in mind that at this point, we haven’t actually encrypted anything. We have
simply developed a way of translating letters or blocks of letters into the numerical representations
that will be used by our encrypting function. Note that we could have also included numerical codes
for spaces, numbers, punctuation, and the like.
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Once we have established our alphabet, it takes only a few simple steps to encrypt a message:

(1) First, we generate two different prime numbers, p and q, and calculate the quantity m = pq
(called the modulus). For the resulting system to be secure, p and q need to be extremely
large, perhaps having hundreds or even thousands of digits. Because of the size of the primes
required, the two prime numbers are generated by a computer. ∗ The value of m becomes
public—it can be shared with anyone—but p and q must be kept secret. In practice, modern
computers can easily generate prime numbers with several hundred digits. However, in that
case, the value of m must be factored to determine p and q and this can take several hundred
years to do so using current technology.

(2) Next, we obtain a positive integer e such that

gcd(e, (p− 1)(q − 1)) = 1.

This number e is called the encryption key, and the value of e is made public. The quantity
(p− 1)(q− 1) is often called the totient, denoted t. The totient must be kept secret, as it plays
an essential role in the decrypting process.

(3) Finally, to encrypt a message, we form blocks of letters of a specified size and input the
numerical representation of each block of letters into the encoding function f defined by

f(x) = xe (mod m).

Once we have encrypted a message, the decryption process is similar and can be described as fol-
lows:

(1) First, we find a positive integer d (the decryption key) such that

ed ≡ 1 (mod (p− 1)(q − 1)).

(2) To decrypt an encoded message, we input each block of data into the decoding function g
defined by

g(x) = xd (mod m).

It should be noted that not all of the steps described above are straightforward or easy to com-
plete. For instance, the decryption key is defined to be an integer that satisfies a particular congru-
ence relation. It is not immediately obvious that such an integer will always exist. We will have to
use what we have learned about the integers to prove not only that a suitable decryption key ex-
ists, but also that it can be found in a relatively straightforward manner, and that the corresponding
decoding function actually returns encrypted messages to their original, unencrypted state.

Two Examples

Before we go any further into investigating the details of RSA encryption and why it works, we will
examine two different examples. For the first example, most of the computations can be done using

∗As we will see later on, in order for RSA encryption to work, p and q each need to be larger than the number of elements
in the given alphabet. This is usually not a problem since the security of RSA encryption relies on choosing primes that are
huge, and certainly larger than the size of any reasonable alphabet.
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a calculator but it would be easier to use a computer algebra system. A computer algebra system was
used to do the computations in the second example. It is only necessary to do one of the examples.

Example 34.4. For the first example, we will use very small prime numbers so that some of the
calculations can be done using a calculator. Namely, the calculations for the encryption process
can be done with a calculator, but something like a computer algebra system is required to do the
computations for the decryption process.

So we will use p = 29 and q = 41. So the modulus m and totient t are

m = pq = 1189

t = (p− 1)(q − 1) = 1120

(This example is only for illustration and would not be used since the values of p and q could be
easily determined from m = 1189.)

Our encryption key e must be chosen so that gcd(e, t) = 1. We will use e = 3. So the modulus
m = 1189 and encryption key e = 3 are made public so that anyone can send a message to
this receiver. Suppose someone wants to sent the message “DOG”. The numerical code for this is
031406. We now divide this into blocks of digits. Because of the size of m, we will use only two-
digit blocks since a 4 digit block could be greater that m. (Note: Three digit blocks could also be
used.) To encrypt the message, we use the encryption function f where

f(x) = xe (mod m) = x3 (mod 1189).

For the message 031406, we have

f(03) = 033 (mod 1189) = 27

f(14) = 143 (mod 1189) = 366

f(06) = 063 (mod 1189) = 216

To decrypt this message, the receiver must now determine d so that ed ≡ 1 (mod (p−1)(q−1))
or 3d ≡ 1 (mod 1120). To do this, we use the Euclidean Algorithm to determine the coefficients
for 1 = 3r + 1120s according to Bezout’s Identity (Theorem 1.17 on page 13.) We will omit the
details, but it can be verified that

3(−373) + 1120 = 1

and so 3(−373) ≡ 1 (mod 1120). By adding 3 · 1120 to both sides of this congruence, we obtain

3(−373) + 3(1120) ≡ 1 + 3(1120) (mod 1120)

3(747) ≡ 1 (mod 1120)

and so d = 747. So the user must now decrypt each of these blocks using the decryption function g
where

g(x) = xd (mod m) = x747 (mod 1189).

For our three blocks, we use a computer algebra system to obtain

g(27) = 27747 (mod 1189) = 3

g(366) = 366747 (mod 1189) = 14

g(216) = 216747 (mod 1189) = 6

So the numerical decrypted message is 031406, which is the plaintext message DOG.
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Example 34.5. All computations in this example were done using a computer algebra system such
as Maple, Mathematica, or Sage. Suppose we want to use RSA encryption to encode the highly
sensitive, top-secret message, “JOHNNY LOVES SALLY”. We will begin by choosing p and q. In
practice, p and q are often hundreds of digits long, but we will choose two smaller primes,

p = 400043344212007458013 and q = 500030066366269001203.

With these choices of p and q, our modulus m and totient t are

m = pq = 200033699955714283345172521584008468989639

and
t = (p− 1)(q − 1) = 200033699955714283344272448173430192530424.

Recall that m will be made public, but p, q, and t will be kept secret. This is significant, since in
order to calculate t from m, we would have to first factor m, a task that a computer could fairly
easily complete for this example, but not for examples involving larger primes. In fact, one website
on RSA cryptography notes that “if p and q are each 1024 bits long, the sun will burn out before the
most powerful computers presently in existence can factor the modulus into p and q.” †

The next step in encoding our message is to choose an encryption key. We need to choose a
number e such that gcd(e, (p − 1)(q − 1)) = 1. Note that any prime number that does not divide
t = (p− 1)(q− 1) will suffice here; a common choice is e = 216 +1 = 65537, and this is what we
will use.

To perform the actual encryption, we will first break our message into three 6-character blocks.
We will use the standard 00 – 25 encoding for the letters A – Z, and we will also use the code 99 to
denote a space. Thus, the numerical representation of our message is:

091407131324 991114210418 991800111124

We then apply our encoding function to each of these 12-digit numbers:

f(091407131324) = (091407131324)e (mod m)

= 009505729493564929202343371764084584555016

f(991114210418) = (991114210418)e (mod m)

= 012196119237767316793050190360104919489384

f(991800111124) = (991800111124)e (mod m)

= 124080637343749317837866219863773135637684

Note that we have appended zeros to the beginning of each encoded block so that each has
exactly 42 digits. This would allow the entire message to be sent as a single string and then unam-
biguously decomposed into its three distinct parts prior to decryption.

To decrypt the message, we would first need to find the decryption key, d. It is at this step that
some of the theory we have been studying in previous investigations is particularly useful (and in
fact necessary). For now, however, we will skip over the “how” and simply assume that we have
been able to find an integer, say

d = 92189417786325193617809863506573165314081,

such that
ed ≡ 1 (mod (p− 1)(q − 1)).

†http://fringe.davesource.com/Fringe/Crypt/RSA/Algorithm.html
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A computer algebra system can then readily verify that

g(009505729493564929202343371764084584555016)

= (009505729493564929202343371764084584555016)d (mod m)

= 091407131324,

g(012196119237767316793050190360104919489384)

= (012196119237767316793050190360104919489384)d (mod m)

= 991114210418,

and

g(124080637343749317837866219863773135637684)

= (124080637343749317837866219863773135637684)d (mod m)

= 991800111124.

In other words, the decoding function g returns each block of the encrypted message to its
original, unencrypted state, as desired. It is interesting to note that, even in this example, the compu-
tations in the decryption process involve raising one 40-digit number to another 40-digit exponent.
Fortunately, there are efficient algorithms for performing such exponentiations, even when the num-
bers involved are much larger (as would be the case if larger, and hence more realistic, values of p
and q were chosen.)

Why RSA Decryption Works

Now that we’ve seen an example, we are ready to get to work and show that RSA encryption actually
works the way it is intended. In particular, we must show three important facts:

• First, we must show that no matter what primes are used for p and q, it will always be
possible to find an encryption key, e, that satisfies

gcd(e, (p− 1)(q − 1)) = 1.

• Next, we must show that it is always possible to find a decryption key, d, such that

ed ≡ 1 (mod (p− 1)(q − 1)).

• Finally, we must show that the decoding function g(x) = xd (mod m) is the inverse of the
encoding function f(x) = xe (mod m). In other words, we must show that for all x in our
alphabet,

(xe)d (mod m) = xed (mod m) = x.

The goal for the rest of this investigation is to establish these three facts, and the activities below
suggest a series of steps that will accomplish exactly that goal.
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Task 1: Finding the Encryption Key

Activity 34.6. Let p and q be any prime numbers.

(a) Explain why it is always possible to find a prime number e that does not divide (p−1)(q−1).

(b) Explain why the number e found in part (a) would always satisfy

gcd(e, (p− 1)(q − 1)) = 1.

Task 2: Finding the Decryption Key

Activity 34.7. Consider the fact that the encryption key e is chosen specifically so that

gcd(e, (p− 1)(q − 1)) = 1.

(a) Use Bezout’s Identity (Theorem 1.17 on page 13) to write down a linear combination corre-
sponding to gcd(e, (p− 1)(q − 1)).

(b) Use your answer to part (a) to explain why there must exist an integer d such that

ed ≡ 1 (mod (p− 1)(q − 1)).

(c) What process or algorithm would allow you to actually determine the value of d that is guar-
anteed to exist by part (b)? (Hint: We have studied this algorithm in a previous investigation.)

(d) Suppose that we were able to find an integer d′ such that

ed′ ≡ 1 (mod (p− 1)(q − 1)),

but d′ < 0. Explain how we could use d′ to find a positive integer d that also satisfies

ed ≡ 1 (mod (p− 1)(q − 1)).

(Hint: Add a convenient quantity to d′.)

Task 3: Proving an Inverse Relationship Between f and g

In order to prove that the decoding function g actually undoes the work of the encoding function f ,
we must show that for all x in our alphabet,

xed (mod m) = x.

Doing so will require the following three intermediate results:

Theorem 34.8 (Binomial Theorem). Let n be a positive integer, and let a and b be any real numbers.
Then

(a+ b)n =

n∑
k=0

(
n

k

)
an−kbk,

where (
n

k

)
=

n!

k!(n− k)!
.
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Theorem 34.9 (Freshman’s Dream). Let p be a prime number. Then for all integers a and b,

(a+ b)p ≡ (ap + bp) mod p.

Theorem 34.10 (Fermat’s Little Theorem). Let p be a prime number. Then for every positive integer
a,

ap ≡ a mod p.

Proofs of the Binomial Theorem and the Freshman’s Dream are outlined in Exercises 10 and 11
of Investigation 5. (See page 81.) The proof of Fermat’s Little Theorem follows from the Freshman’s
Dream. (If you have completed Investigation 23, an alternative proof using group theory is suggested
in Exercise (20) on page 330.)

Activity 34.11. Use induction on a, along with the Freshman’s Dream, to prove Fermat’s Little
Theorem.

Activity 34.12. Explain why the conclusion of Fermat’s Little Theorem (namely, that ap ≡ a
(mod p)) is equivalent to

ap−1 ≡ 1 (mod p)

as long as p ∤ a.

We can now use the Freshman’s Dream and Fermat’s Little Theorem to establish an inverse
relationship between the RSA encoding and decoding functions.

Activity 34.13. Let p, q, m, d, and e be as stated previously. Note that, by definition,

ed ≡ 1 (mod (p− 1)(q − 1)).

(a) Use the definition of congruence to explain why ed ≡ 1 (mod (p − 1)) and ed ≡ 1
(mod (q − 1)).

(b) Use part (a), Activity 34.12, and the fact that p and q were chosen to be very large (and, in
particular, much larger than the number of letters in the alphabet, A) in order to prove that

xed ≡ x (mod p) and xed ≡ x (mod q)

for all x ∈ A.

(c) Use part (b) to explain why for all x ∈ A, xed ≡ x (mod m).

(d) Explain how your answer to part (c) actually implies that xed (mod m) = x. (Hint: It again
matters that p and q, and thus m, are larger than the number of elements in A. Remember
that if two numbers are both less than m and yet congruent modulo m, then they must be
equal.)

(e) Deduce from your answer to part (d) that the decoding function used in RSA encryption
always returns an encrypted message to its original, unencrypted state.

Concluding Thoughts and Notes

Before we conclude our investigations of RSA encryption, a few additional observations are worth
mentioning.
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• Since p and q are chosen to be very large, it is important that e be large enough so that xe is
typically greater than the modulus, m = pq. If xe is not greater than m, then messages can
be easily decrypted by simply taking the eth root of the encrypted data, since the encryption
function in this case does not involve a reduction modulo m.

• RSA encryption schemes are deterministic, meaning that they have no random component
to them. Because of this, potential attackers could use the public encryption key to develop
a dictionary of likely words and their encryptions. This dictionary could then be used to
try to decipher encrypted messages by comparing the encrypted words to the entries in
the dictionary. Encrypting larger blocks of data (instead of individual letters) reduces this
security vulnerability.

• One aspect of public key encryption that we have not considered is that of signing or au-
thentication. Since RSA schemes enable anyone to encrypt a message, it is important to be
able to verify that encrypted messages are actually from who they claim to be from. Several
methods are available for this purpose, many of which involve introducing an additional
private key that identifies the sender. See Exercise (7).

• Most experts agree that with large enough primes, RSA encryption seems to be secure for
the near future. That is, even though the values of e and m are made public, the value of
the decryption key d cannot really be determined from e and m. However, advances in
computer science, and especially in the field of quantum computing, have the potential to
solve computational problems such as integer factorization much faster than present-day
computers. This would then render RSA encryption obsolete since the decryption key could
be determined from e and m.

• Interest in RSA was primarily confined to mathematicians, computer scientists, and cryp-
tography hobbyists until the invention of the World Wide Web. Beginning in the 1990s, there
has been an explosion of online commerce. Some form of encryption was needed in order
to send credit card numbers and other sensitive information over the Internet. Now, if you
log into any secure web server, there is a good chance your computer has the server’s public
key and used it to secure the information you have sent. However, this information is often
not encrypted directly using RSA. This is due to the fact that the RSA system is a so-called
asymmetric cryptosystem. This simply means that there are two keys, one for encryption
and one for decryption. A symmetric cryptosystem uses the same key for encryption and
decryption and is usually much faster and uses fewer resources than an asymmetric system.

Quite often, a file will be encrypted with a symmetric-key algorithm, and the symmetric key
will be encrypted with RSA encryption. Under this process, only an entity that has access to
the RSA private key will be able to decrypt the symmetric key. Without being able to access
the symmetric key, the original file cannot be decrypted. This method can be used to keep
messages and files secure, without taking too long or consuming too many computational
resources.

One widely used symmetric system is the Advanced Encryption Standard or AES. This was
developed in the late 1990s by the National Institute of Standards and Technology (NIST)
as the new government cipher standard. It is expected that at some time, AES will need to
be replaced. The original expectation was that the standard should last 30 years, and NIST
is supposed to review it every five years. So far, no problems have arisen with AES, but
cryptographers are working on what might succeed AES to be ready just in case problems
arise.
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Exercises

(1) Caesar’s’s cipher is an example of a shift cipher, in that it encrypts messages by simply
shifting each letter in the message by a fixed amount. (For example A → E, B → F, etc.) The
encoding functions associated with shift ciphers always have the form

f(x) = x+ a (mod n),

where n is the number of letters in the alphabet (typically 26).

(a) Assuming that the message below was encrypted using a shift cipher, decrypt the mes-
sage. Make sure you explain how you determined which shift cipher was used.

XLMW QIWWEKI AEW IRGVCTXIH YWMRK E WLMJX GMTLIV.

(b) Was the following message encrypted using a shift cipher? Why or why not?

AJMZ YBZZGLB EGZ QCA BQPSOUABD

KZMQL G ZJMHA PMUJBS.

(2) In contrast to a shift cipher (see Exercise (1)), a stretch cipher uses multiplication instead of
addition to encode messages. That is, instead of using an encoding function of the form

f(x) = x+ a (mod 26),

it uses one of the form
f(x) = ax (mod 26),

where a is some integer.

(a) Use a stretch cipher of your choosing to encode this message: ABSTRACT ALGE-
BRA MAKES ME SMILE.

(b) Does the stretch cipher you used in part (a) have a corresponding decoding function?
In other words, is there a rule that can be used to decode any message encoded by the
cipher?no

(c) Is it always possible to decode a message that has been encoded using a stretch cipher?
If so, explain how. Otherwise, determine the values of a (assuming a 26 letter alphabet)
for which the corresponding stretch cipher is decode-able.

(3) The frequency with which each letter in the alphabet occurs in ordinary English is given in
Table 34.1. ‡ Explain in a precise way how this table could be used to break shift and stretch
ciphers.

(4) In Exercise (3) , we saw how analyzing the frequency of letters in a message encrypted with
a shift or stretch cipher could help someone break such a cipher. So people began devising
encryption methods in which a given letter that appears more than once in a message would
be encrypted differently depending on its location in the message. For example, there are
four A’s in the plaintext message is ALABAMA, and we know that the Caesar cipher would
encrypt each of these A’s with the letter D.

‡This table originally appeared in Applications of Abstract Algebra with Maple and MATLAB (2nd ed.) by Klima, Stitzinger,
and Sigmon, CRC Press, 2006.
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Letter Frequency (%) Letter Frequency (%)

A 8.167 N 6.749

B 1.492 O 7.507

C 2.782 P 1.929

D 4.253 Q 0.095

E 12.702 R 5.987

F 2.228 S 6.327

G 2.015 T 9.056

H 6.094 U 2.758

I 6.966 V 0.978

J 0.153 W 2.360

K 0.772 X 0.150

L 4.025 Y 1.974

M 2.406 Z 0.074

Table 34.1
Frequency of each letter in the English language

The Vigenére cipher is a method of encryption that uses a series of interwoven shift ciphers
based on a keyword. For example, if the keyword is GOLF, then we determine the keyword
number sequence, which is 6 – 14 – 11 – 5. This means that the first letter in the plaintext
message will be shifted by 6, then second letter will be shifted by 14, the third letter will be
shifted by 11, and the fourth letter will be shifted by 5. When we have used all of the letters in
the keyword, we start over at the beginning of the keyword. So the fifth letter in the plaintext
message will be shifted by 6, the sixth letter will be shifted by 14, the seventh letter will be
shifted by 11, and the eighth letter will be shifted by 5.

We still follow the basic rule that if a plaintext letter corresponds to the number c, and we
shift s places, then the encrypted letter will correspond to the number

f(c) = (c+ s) (mod 26).

The numerical code for the plaintext message ALABAMA is 00110001001200.

(a) Use the keyword GOLF with a Vigenére cipher to encrypt the message ALABAMA,
first as a numerical sequence and then using letters.

(b) The plaintext message had 4 A’s. Were these four A’s encrypted with same letter in the
encrypted message?

(c) Explain how the receiver would decrypt this message.

(5) Hill ciphers use matrices to encode and decode messages. For instance, using the 2×2 matrix

A =

[
2 5
1 4

]
,

the message “ATTACK” would be encrypted by multiplying A by the vector representation
of each pair of consecutive letters. Doing so, we obtain
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A

[
0
19

]
=

[
95
76

]
, A

[
19
0

]
=

[
38
19

]
, and A

[
2
10

]
=

[
54
42

]
.

(a) Reduce these vectors modulo 26 in order to finish encrypting the message.

(b) Are the two A’s in the original message encrypted to the same letter? What about the
two T’s?

(c) Are Hill ciphers more or less susceptible to frequency analysis (that is, the analysis
suggested in Exercise (3)) than shift and stretch ciphers? Clearly explain your answer.

(d) What conditions must be placed on the encrypting matrix in order to guarantee that
the resulting Hill cipher will be decode-able? Give a convincing argument to justify
your answer.

(e) Use a Hill cipher with a matrix different than A to encrypt the message, “CRYPTOG-
RAPHY IS FUN”. Then find the corresponding decrypting matrix, and verify that it
does in fact return the encrypted message to its original form.

(6) Are any of the systems mentioned in Exercises 1 – 5 public-key schemes? That is, is it ever
possible to encode messages using one of these schemes without also knowing how to decode
messages?

(7) Suppose that person B wants to send a message to person A in such a way that A knows it
is from B. To do this, person B needs a digital signature. So for this, we will assume that A
has made public their encryption key consisting of nA and eA. Person B also has a public
encryption key consisting of nB and eB . Of course, both of them have their own decryption
keys: dA for person A and dB for person B.

Explain how B can use their decryption key dB to ”sign“ the message to A so that A knows
that the message is actually from person B.

Connections

Pure mathematics can be described as the study of mathematical concepts independently of any ap-
plication outside of mathematics. Mathematicians have had differing opinions as to what constitutes
pure versus applied mathematics. One of the more famous (at least among mathematicians) exam-
ples of this debate can be found in the essay from 1940 called “A Mathematician’s Apology”’ by the
well-known British mathematician G.H. Hardy. Hardy preferred pure mathematics, which he often
compared to painting and poetry, but he argued that the distinction was that applied mathematics
sought to express physical truth in a mathematical framework, whereas pure mathematics expressed
truths that were independent of the physical world.

In this investigation, we considered one of the applications of number theory and abstract al-
gebra that is very important in our digital world. We saw how congruence and modular arithmetic
from Investigation 2, along with Bezout’s Identity from Investigation 1 and Fermat’s Little Theo-
rem (see Exercises (20) and (24) in Investigation 23) can be used to encrypt data in such a way
that unauthorized people cannot decrypt the data. This allows for secure electronic transmission of
information.



Investigation 35
Check Digits

Focus Questions

By the end of this investigation, you should be able to give precise and thorough
answers to the questions listed below. You may want to keep these questions in mind
to focus your thoughts as you complete the investigation.

• What are check digits, and how are they used?

• What are some common check digit schemes for credit card and ISBN numbers?

• What is Verhoeff’s check digit scheme, and how is it related to the dihedral group
of order 10?

Preview Activity 35.1. This investigation will involve both congruence of integers and the dihedral
group D5. In this activity, we will review a few of the basics.

(a) Determine the value of x that satisfies the congruence equation

2(1) + 3(2) + 4(2) + 5(6) + 6x ≡ 0 (mod 7).

(b) Consider the permutation π =

(
0 1 2 3 4 5 6 7 8 9
1 5 7 6 2 8 3 0 9 4

)
in S10. (Note that we

are permuting the digits 0 through 9 instead of 1 through 10.)

(i) Explain why π is an even permutation.

(ii) What is the order of π?

(iii) Find π4(5), where π4 denotes the composition of 4 copies of π (that is, π ◦π ◦π ◦π).

(iv) If x is any integer between 0 and 9, what is π8(x)? Explain.

Introduction

In this investigation, we will discuss check digits and explore various check digit schemes, including
one that uses the dihedral group D5. Check digits are important because nowadays most informa-
tion is transmitted electronically. When we use an ATM or pay with a credit card, there is always

15
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the possibility that an error in transmission can occur. For instance, noise can be introduced in a
message, information can be lost, and data can be altered during transmission. Another important
source of error is human error. Data can be confused when humans enter numbers into machines or
communicate to others. Some mistakes are more prevalent than others. For example, according to
Richard Hamming,∗ the two most common human errors when dealing with information are inter-
changing digits (e.g., typing 12 instead of 21) and changing one of a string of three digits when two
adjacent digits are the same (e.g., using 112 instead of 122). Clearly, problems can arise when data
is not encoded or transmitted properly. Fortunately, there are ways to compensate for these errors.
The first step is to determine when they occur, and that is where check digits come into play.

Check Digits

A check digit is a digit appended to a string, usually at the end, to make the sum of the digits
in that string congruent to a specific number modulo a given integer. For example, the 10 digit
identification number 2361068754 might have an extra digit d appended to the end so that the digit
sum is congruent to 0 modulo 9. In this case, the check digit would be 3 and the ID number would
be 23610687543. As their name suggests, check digits perform a check to ensure that the number
received is a valid number. However, just because the number appears to be valid, that does not
necessarily make it legitimate. For instance, a credit card company may choose to only use a small
subset of the set of valid credit card numbers. We should also note that even when check digits are
used to detect errors, they do not necessarily provide a way to correct the errors they find. (There
are other methods for doing that.)

Check digits are used in UPC codes, credit card numbers, ISBN numbers, and most other identi-
fication systems. We will now consider a few of the more common and/or mathematically interesting
check digit schemes.

Credit Card Check Digits

Different credit cards have account numbers, or ID codes, of different lengths and with different
prefixes. Each code consists of a string of numbers, with each digit between 0 and 9. The prefix of a
card is the one or two digit block at the beginning (the leftmost digits) of the ID code. In particular:

• MasterCard codes have 16 digits and use prefixes of 51, 52, 53, 54, and 55.

• VISA codes have either 13 or 16 digits and use a prefix of 4.

• American Express codes have 15 digits and use prefixes 34 or 37.

• Discover codes have 16 digits and use a prefix of 6011.

The prefix is the Major Industry Identifier (MII) and indicates the type of industry that issues the
card. For example, VISA and MasterCard are issued by the banking and financial sector (with prefix

∗Coding and Information Theory (2nd ed.), Prentice-Hall, 1986, p. 27.
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numbers 4 or 5) while American Express is in the travel and entertainment category (prefix number
3). All credit cards compute a check digit modulo 10.† To find the check digit, we can use a process
known as the Luhn algorithm:‡

(1) Beginning with the second digit from the right (in other words, don’t include the check digit)
and moving from right to left, double every other digit. Add the individual digits of these
numbers (e.g., if the doubled number is 16, add 1 and 6).

(2) Sum the digits (but not the check digit) not considered in step (1).

(3) Add the results of steps (1) and (2). Call this result s.

(4) The check digit d is the solution to s+ d ≡ 0 (mod 10).

Activity 35.2.

(a) Find the correct check digit d for the sample VISA card with number 4417 1234 5678 911d.

(b) Create your own valid American Express card number.

ISBN Check Digits

The acronym ISBN is an abbreviation for the International Standard Book Number, which is used
to identify books. An ISBN-10 has the form

X1X2X3X4X5X6X7X8X9X10,

where each Xi is a digit between 0 and 9. In an ISBN, the first digit, X1, represents the language of
the book (0 is English), the next block (2 or 3 digits) identifies the publisher, the third block (5 or 6
digits) is a publisher’s number for the book, and the last digit is a check digit.

The check digit in an ISBN is determined by first attaching a weight to each digit, with the
leftmost digit (X1) having a weight of 1, the next digit (X2) having a weight of 2, and so on. (In
general, the weight of the digit Xk is k.) Next, we multiply each digit (except the check digit) by its
weight and compute the weighted sum. The check digit is congruent to the weighted sum modulo
11, with X representing a check digit of 10.

A quick way to implement this scheme is through the use of weight vectors and dot products.
Recall that the dot product of vectors [v1, v2, . . . , vn] and [w1, w2, . . . , wn] is the scalar

[w1, w2, . . . , wn] · [v1, v2, . . . , vn] =
n∑

i=1

wivi.

By taking the dot product of the first 9 digits of an ISBN with the weight vector
[1, 2, 3, 4, 5, 6, 7, 8, 9], we can easily determine what the check digit should be.

Activity 35.3. The ISBN-10 for a very interesting book is 0-471-33193-?. Find the check digit.

†Some books and web sites state that MasterCard and VISA use the prefix digits when determining the check digit, while
American Express and Discover do not. To the best of our knowledge, all companies use the prefix digits in their calculations,
and so we will do the same.
‡The Luhn Algorithm was created by Hans Peter Luhn, who worked for IBM. It is patented in U.S. Patent No. 2.950.048.
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This ISBN-10 check digit scheme will find all single digit errors, but will also catch errors
obtained by interchanging digits (for example, typing 12 instead of 21). However, the ISBN-10
scheme is restricted to ID numbers with 10 digits, and we have to introduce the extra symbol X to
represent the digit 10 as a possible check digit. In the next section, we will examine a check digit
scheme that works for ID numbers with any number of digits.

Verhoeff’s Dihedral Group D5 Check

In the late 1960s, Dutch mathematician Jacobus Verhoeff proposed a check digit scheme based on
the dihedral group D5. § This scheme is an improvement on others in that it works for any length
number, and it detects all single digit errors and all transposition errors involving two adjacent digits.
However, the Verhoeff scheme is a little more complicated to implement.

We begin with the operation table for D5 given in Table 35.1. (Note that the elements in this
table are listed in a different order than usual; this is done to match Verhoeff’s labeling.)

I R R2 R3 R4 rR4 rR3 rR2 rR r

I I R R2 R3 R4 rR4 rR3 rR2 rR r

R R R2 R3 R4 I rR3 rR2 rR r rR4

R2 R2 R3 R4 I R rR2 rR r rR4 rR3

R3 R3 R4 I R R2 rR r rR4 rR3 rR2

R4 R4 I R R2 R3 r rR4 rR3 rR2 rR

rR4 rR4 r rR rR2 rR3 I R4 R3 R2 R

rR3 rR3 rR4 r rR rR2 R I R4 R3 R2

rR2 rR2 rR3 rR4 r rR R2 R I R4 R3

rR rR rR2 rR3 rR4 r R3 R2 R I R4

r r rR rR2 rR3 rR4 R4 R3 R2 R I

Table 35.1
Operation table for D5.

We then replace the elements in the D5 table with the digits 0 to 9 (keeping the elements in the
same order as in Table 35.1) to obtain Table 35.2:

Verhoeff’s check digit scheme requires an ID number of the form an−1an−2 · · · a1a0 (note that
the digits are indexed from right to left, starting with an index of 0) to satisfy the equation

π0(a0) · π1(a1) · π2(a2) · · ·πn−1(an−1) = 0,

where

π =

(
0 1 2 3 4 5 6 7 8 9
1 5 7 6 2 8 3 0 9 4

)
§J. Verhoeff, “Error detecting decimal codes,” Mathematical Centre Tract 29, The Mathematical Centre, Amsterdam, 1969.
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· 0 1 2 3 4 5 6 7 8 9

0 0 1 2 3 4 5 6 7 8 9

1 1 2 3 4 0 6 7 8 9 5

2 2 3 4 0 1 7 8 9 5 6

3 3 4 0 1 2 8 9 5 6 7

4 4 0 1 2 3 9 5 6 7 8

5 5 9 8 7 6 0 4 3 2 1

6 6 5 9 8 7 1 0 4 3 2

7 7 6 5 9 8 2 1 0 4 3

8 8 7 6 5 9 3 2 1 0 4

9 9 8 7 6 5 4 3 2 1 0

Table 35.2
Operation table for the Verhoeff check digit scheme.

is a permutation, πi = π ◦ π ◦ · · · ◦ π is the composition of i copies of π, and the · operation is
that which arises from D5 as indicated in Table 35.2. Note that the permutation applied to each
digit depends on the position of the digit in the ID number. For example, if 4 is the digit in the third
position from the right, then we apply π2 to 4 to obtain 7. The result of applying the powers of π
to any position can be described in the permutation table shown in Table 35.3, where the ith row
shows the result of applying the permutation πi to each possible digit. Note that the powers of π are
periodic, so the rows repeat after row 8. In other words, πi+8(k) = πi(k) for all k.

π0

π1

π2

π3

π4

π5

π6

π7

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

1 5 7 6 2 8 3 0 9 4

5 8 0 3 7 9 6 1 4 2

8 9 1 6 0 4 3 5 2 7

9 4 5 3 1 2 6 8 7 0

4 2 8 6 5 7 3 9 0 1

2 7 9 3 8 0 6 4 1 5

7 0 4 6 9 1 3 2 5 8

Table 35.3
Permutation table for the Verhoeff check digit scheme.

Now that we understand some of the mechanics involved, the Verhoeff scheme can be imple-
mented as follows:

(1) Start with the n digit number

an−1an−2an−3 · · · a1a0,

with the digits labeled from right to left, starting with a0.
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(2) Let c denote the checksum, and set c = 0 initially.

(3) Step through the n-digit number digit by digit, each time replacing c with c · πi(ai) (where
the operation · is indicated in Table 35.2).

The original number has a valid check digit if and only if, at the end of the process, the checksum
c is equal to 0.

As an example, Table 35.4 shows how the steps described above can be followed to validate the
checksum for the ID number 4134705. Since the final value of c is 0, we have a valid ID number.

i ai πi(ai) Old c New c: Old c · πi(ai)

0 5 5 0 5

1 0 1 5 9

2 7 1 9 8

3 4 0 8 8

4 3 3 8 5

5 1 2 5 8

6 4 8 8 0

Table 35.4
A Verhoeff check digit example.

The Verhoeff algorithm detects all single digit errors and all transposition errors made by inter-
changing two adjacent digits. Also, the Verhoeff algorithm detects over 95% of twin errors (where
aa is changed to bb), over 94% of jump transpositions (abc replaced with cba) and jump twin errors
(aca replaced with bcb), and most phonetic errors (a0 replaced with 1a—for example, 40 replaced
with 14; notice how these two numbers sound similar when read aloud). Gallian¶ describes an in-
teresting application in which the German government used a slight modification of the Verhoeff
scheme to append check digits to serial numbers on their banknotes.

Activity 35.4. How do we find the check digit for an ID number using the Verhoeff scheme? Con-
sider the ID number 1023857d, where d is the check digit.

(a) Determine the value of the checksum c for the related ID number 10238570.

(b) Let d = c−1. Show that 1023857d is a valid ID number. (As it turns out, this technique will
always yield a correct check digit. Exercise (5) asks you to prove this result.)

Concluding Activities

Activity 35.5. Since 2007, books have been identified with 13 digit ISBNs (the ISBN-13). The
first 12 digits of the ISBN-13 contain the identifying code and the 13th digit is the check digit. The

¶Contemporary Abstract Algebra (5th ed.), Houghton Mifflin Company, 2002.
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check digit scheme is similar to the one used in ISBN-10 IDs. Research the ISBN-13 check digit
scheme and explain how it works. Be sure to cite all of your sources in your explanation. Then find
the check digit d for the ISBN-13 978-082183798d.

Exercises

(1) Determine if each of the following is a valid ID number. Assume that the last digit of each
number is the check digit. If the check digit is not correct, fix it.

(a) 10513485, using the Luhn algorithm

(b) The ISBN-10 ID number 0-131-87718-4

(c) 2401346782, using the Verhoeff scheme.

(2) Airline ticket ID numbers. Airlines tickets have a 15-digit identification number. The first
digit (reading left to right) is the coupon number and identifies the leg of the trip. (Coupon
number 1 indicates the first flight in the trip, 2 the second, and so on, while coupon number
0 is the customer’s receipt.) The next three digits identify the airline, and the next 10 digits
comprise the document number, while the last digit is the check digit. Airlines use a simple
mod 7 system to determine the check digit. If the airline ticket has digits

d1d2d3d4d5d6d7d8d9d10d11d12d13d14d15,

then the check digit d15 satisfies

d15 ≡ d1d2d3d4d5d6d7d8d9d10d11d12d13d14 (mod 7).

(a) Verify that 1-101-2134601379-2 is a valid airline ticket. Use a computer algebra sys-
tem if necessary.

(b) Calculating the remainder when dividing a 14-digit number by 7 is easy for a computer
algebra system but a bit time-consuming for humans. Here we will investigate one
method that can be done by hand: the method of casting out sevens. This method
works by determining the remainders when dividing powers of 10 by 7.

(i) Determine a general formula for calculating 10n (mod 7) for nonnegative in-
tegers n.

(ii) Expand 11012134601379 in powers of 10, and then use your answer to part (a)
to calculate the remainder when 11012134601379 is divided by 7.

(c) Another algorithm that can be used to determine if a large number is divisible by 7 is
the following:

• Remove the last (rightmost) digit from the number.
• Subtract twice the value of the removed digit from the remaining number.
• Repeat until you can tell if the number obtained is divisible by 7.

(i) Apply this algorithm to show that 11012134601377 is divisible by 7. Then explain
why the algorithm works.
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(ii) Can a method similar to this one, where we remove the last digit and subtract
some single-digit multiple of that digit from the new number, be used to test for
divisibility by any other single digit integer? If so, find and explain all of the cases
in which such a method can be used.

(3) In this exercise, we will examine the types of errors that are detected (or not detected) by the
Luhn algorithm.

(a) Does the Luhn algorithm find all single digit errors? That is, if

an−1 · · · ai+1aiai−1 · · · a0d

and
an−1 · · · ai+1biai−1 · · · a0d′

are valid IDs with ai ̸= bi and check digits d and d′, must d and d′ be different? If the
answer is yes, prove it. If no, provide a counterexample.

(b) Will the Luhn algorithm detect all errors obtained by interchanging digits (e.g., typing
12 instead of 21)? If the answer is yes, prove it. If no, provide a counterexample.

(4) In this exercise, we will examine the types of errors that are detected (or not detected) by the
ISBN-10 scheme.

(a) Show that the ISBN-10 scheme detects all single digit errors. (See part (a) of Exercise
(3).)

(b) Show that the ISBN-10 scheme detects all errors obtained by interchanging digits (for
example, typing 12 instead of 21).

(c) Another common family of errors are twin errors. One example of a twin error is
changing aa to bb. Does the ISBN-10 scheme detect all twin errors? If the answer is
yes, prove it. If no, provide a counterexample.

(d) Two other types of common errors are jump transposition errors (for example, abc
replaced with cba) and jump twin errors (for example, aca replaced with bcb). Does
the ISBN-10 scheme detect these errors? If the answer is yes, prove it. If no, provide
a counterexample.

⋆ (5) Activity 35.4 provided a method for finding a correct check digit using the Verhoeff scheme.
Prove that this method works in general. That is, show that if the original ID number ends in
0 and has checksum c, then c−1 (from Table 35.2) is the correct value to use as the check digit
in place of the final 0.

(6) In this exercise, we will examine the types of errors that are detected (or not detected) by the
Verhoeff scheme.

(a) Show that the Verhoeff scheme detects all single digit errors. (See part (a) of Exercise
(3).)

(b) Complete the following steps to show that the Verhoeff scheme detects all errors ob-
tained by interchanging digits (for example, typing 12 instead of 21).

(i) Show by direct calculation that if a ̸= b in D5, then a · π(b) ̸= π(a) · b.
(ii) Extend the result of the previous part to show that if a ̸= b in D5, then

πi−1(a)πi(b) ̸= πi(a)πi−1(b) for all i ∈ Z+.

(iii) Now show that the Verhoeff scheme detects all errors obtained by interchang-
ing digits.
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Connections

Abstract algebra has many practical applications, and this investigation considered one of these
applications. In particular, we saw how congruence of integers (from Investigation 2) and a dihedral
group (from Investigation 21) can be used to create check digit schemes. These check digit schemes
help make transfers of information more reliable and are therefore important components of our
electronic world.





Investigation 36
Games: NIM and the 15 Puzzle

Focus Questions

By the end of this investigation, you should be able to give precise and thorough
answers to the questions listed below. You may want to keep these questions in mind
to focus your thoughts as you complete the investigation.

• How is the game of NIM related to group theory? What is a good strategy for
playing NIM?

• What is the 15 Puzzle, and how can the symmetric groups tell us if a 15 Puzzle is
solvable?

Games can be fun to play—and, as it turns out, to study. In fact, many games involve mathe-
matical ideas or can be analyzed using mathematics. In this investigation, we will learn how group
theory can be used to determine winning strategies in the game of NIM and to determine if a 15
Puzzle is solvable.

Preview Activity 36.1. Go to any online version of NIM and play the game a few times. Search for
a winning strategy.

The Game of NIM

To play the game of NIM, one begins with a number of sets, or stacks, of objects. We can think
of these stacks as piles of stones, as shown in Table 36.1. (Note that we have displayed the piles
horizontally to save space.) In this example, the first pile has 6 stones, the second has 2, and the
third has 3.

· · · · · ·
· ·
· · ·

Table 36.1
A NIM game.

25
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The game is played by two players alternating turns. At each turn, a player can take as many
stones from a single pile as he or she wants, but the player must remove at least one stone. The
object is to be the last player to remove stones.

The number of stones in each pile in a NIM game is an element in the set W of whole numbers.
So we can think of a particular state of a NIM game with three piles as an element in the Cartesian
product W×W×W. Recall that W is not a group under standard addition of integers. Therefore,
to relate this game to group theory, we will need to define a relevant operation under which W is a
group. As we will see, using binary representations of whole numbers will help us to define such an
operation.

To study binary representations, it will be helpful to first review how the decimal representation
of a whole number works. Recall that we typically think of the digits of a whole number as repre-
senting place value. For example, in the integer 1234, the digit 4 is located in the ones place, the
digit 3 is in the 10’s place, 2 is in the 100’s place, and 1 is in the 1000’s place. In other words, the
integer 1234 can also be represented by the sum

(1× 103) + (2× 102) + (3× 101) + (4× 100).

This is the decimal representation of the number 1234. In the decimal system, we add two whole
numbers digit-by-digit, from right to left, reducing modulo 10 and carrying a 1 to the next digit
whenever the sum of two digits is 10 or greater.

There is nothing particularly special about the base 10 used in the decimal representation of a
number, other than the fact that it is convenient. After all, most people have 10 fingers and 10 toes,
so a base 10 system is natural. However, we could just as easily replace the base 10 with any other
base. In the binary system, we replace the base 10 with the base 2. There is an adjustment we must
make, though. With the decimal system, each individual digit can be anywhere between 0 and 9
(because these integers are less than 10). With the binary system, we will only use the digits 0 and
1. For example, the binary number 10110 represents the decimal number (1×24)+(0×23)+(1×
22) + (1× 21) + (0× 20) = 22. In fact, any whole number can be represented in binary format.

To represent a given whole number in the binary system, we first look for the highest power of
2 that is less than the number. Then we subtract this highest power of 2 and repeat the process with
the difference. To illustrate, let’s convert 219 to binary. First note that 27 = 128 and 28 = 256. So
27 is the highest power of 2 less than 219. Now 219 − 1 × 27 = 91, and so 219 = (1 × 27) + 91.
Repeating the process with the integer 91, we note that the highest power of 2 in 91 is 26. Since
91−26 = 27, we see that 219 = (1×27)+(1×26)+27. We then continue reducing the differences
until we no longer have any powers of 2 remaining. This leaves us with

219 = (1× 27) + (1× 26) + (0× 25) + (1× 24)

+ (1× 23) + (0× 22) + (1× 21) + (1× 20).

Therefore, the binary representation of 219 is 11011011. The standard sum of two whole numbers
a = anan−1an−2 · · · a1a0 and b = bnbn−1bn−2 · · · b1b0 in binary is similar to the decimal sum: we
add digit-by-digit, from right to left, reducing modulo 2 and carrying a 1 to the next digit whenever
the sum of two digits is 2 or greater.

Remember that W is not a group under standard addition of integers. If, however, we convert
each whole number into its binary representation, then we can define a special operation under which
W is a group. Let x = xnxn−1 . . . x1x0 and y = ynyn−1 . . . y1y0 be whole numbers in binary
form. We can assume both integers have the same number of digits in their binary representations
by simply appending zeros to the left end of one number if necessary. We define the “NIM sum” of
x and y to be the binary number x ⊕ y = snsn−1 . . . s1s0, where si = (xi + yi) (mod 2). Note
that the NIM sum of two binary numbers is the same as the normal binary sum, except that we don’t
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allow carrying. For example, the NIM sum 101101⊕ 00111 is 101010. Of course, we can also add
more than two numbers this way. For example, 10111⊕ 1110⊕ 111 = 11110.

Activity 36.2. Let B be the set of binary representations of the whole numbers.

(a) Is the NIM sum operation ⊕ well-defined in B? Explain.

(b) Is B closed under the NIM sum ⊕? Explain.

(c) Is there an identity element in B with respect to the NIM sum ⊕? If yes, what is the identity?
If no, why not?

(d) Does B contain an inverse for each of its elements with respect to the NIM sum ⊕? If yes,
what is the inverse of a given element? If no, why not?

(e) Is the NIM sum associative in B? Prove your answer.

(f) What conclusion can we draw about B?

Now that we have an operation under which the whole numbers in binary form are a group, we
can also make a group out of Bn = B ⊕ B ⊕ · · · ⊕ B︸ ︷︷ ︸

n factors

. The group Bn forms the playing field for all

NIM games with n piles of stones—that is, each element in Bn corresponds to a particular stage
in a NIM game. As such, we will call any element in Bn a configuration. If the ith pile of stones
contains Ni stones, then the NIM game has the configuration (N1, N2, . . . , Nn).

A legal move in a NIM game consists of removing some number of stones (at least one) from a
single pile. Note that we can view a move as a configuration as well; in particular, the move that takes
m stones from pile i can be thought of as the configuration M = (0, 0, . . . , 0,m, 0, . . . , 0), with m
in the ith component. Since every element in Bn is its own inverse, the result of performing move
M on configuration X is the configuration X ⊕M . For example, let X = (011, 100, 001) be the
configuration in B3 with 3 stones in the first pile, 4 in the second, and 1 in the third, as shown on the
left in Table 36.2. Let M = (010, 000, 000) be the move that takes 2 stones from the first pile. The
result of applying the moveM to the configurationX is the configurationX⊕M = (001, 100, 001),
as shown on the right in Table 36.2.

· · · ·
· · · · · · · ·
· ·

Table 36.2
A NIM move.

In any NIM game, the last move will result in the configuration (0, 0, . . . , 0). This configuration
has the special property that the NIM sum of all of the components is 0. In general, a configuration
that satisfies this property is called an even configuration—that is, (N1, N2, . . . , Nn) is an even
configuration if

n⊕
i=1

Ni = 0.

Any other configuration is called an odd configuration. Note that every move is an odd configuration.
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Activity 36.3. Let n be a positive integer, and let En be the subset of Bn consisting of the even
configurations. Is En a subgroup of Bn? Prove your answer.

We will now explore some strategy behind the game of NIM.

Activity 36.4.

(a) If X ∈ En is not the identity, how many nonzero components must X have?

(b) If X ∈ En is not the identity, how many nonzero components must its inverse have? Explain
what this observation tells us about the possibility of winning a NIM game from a nonzero
even configuration.

The result of Activity 36.4 reveals a strategy for playing NIM defensively. In particular, if we can
always present our opponent with an even configuration, then he or she cannot win. The question
now is how that can be done.

Activity 36.5. Let n be a positive integer, and let X ∈ En. Determine and describe all moves M so
that (X ⊕M) ∈ En. Relate your answer to playing the game of NIM.

Activity 36.5 tells us that if we present our opponent with an even configuration, we will always
be confronted with an odd configuration on our next turn. So the final question is whether we can
convert an odd configuration into an even one. This is a bit more complicated, and so we will
describe the process using a NIM game with three piles.

Let X = (N1, N2, N3) be an odd configuration in B3. We want to find a move M =
(M1,M2,M3) with exactly one of M1, M2, M3 nonzero so that X ⊕M is even. (It is not true that
the NIM sum of two odd configurations is even, and you should find a simple example to convince
yourself of this.) Let N1 = amam−1 . . . a1a0, N2 = bmbm−1 . . . b1b0, and N3 = cmcm−1 . . . c1c0
(all in binary). Since N1 ⊕N2 ⊕N3 ̸= 0, there is some index i so that ai + bi + ci ≡ 1 (mod 2).
Let k be the largest index for which this happens. At least one of ak, bk, ck must be 1. Without loss
of generality, assume ak = 1. This means that bk + ck ≡ 0 (mod 2). For 0 ≤ i < k, let

a′i =

{
0, if (bi + ci) ≡ 0 (mod 2)

1, otherwise.

So a′i + bi + ci ≡ 0 (mod 2) for i < k. Let M be the move that takes stones from pile 1 so
that N ′

1 = amam−1 . . . ak+10a
′
k−1a

′
k−2 . . . a

′
1a

′
0 remain. The result of applying move M to X

is the configuration X ′ = (X ⊕M) = (N ′
1, N2, N3). Recall that (bk + ck) ≡ 0 (mod 2), and

(ai + bi + ci) ≡ 0 (mod 2) if i > k (by the definition of k). Since a′i + bi + ci ≡ 0 (mod 2) for
i < k, we can therefore conclude that N ′

1 ⊕N2 ⊕N3 = 0, and X ′ ∈ En.

In terms of the NIM game, this result tells us that if we are confronted with an odd configuration,
we can always change it to an even configuration.

Activity 36.6. Apply the algorithm provided above to find a move that converts the NIM configu-
ration in Table 36.3 to an even configuration.

Based on our work up to this point, we have proved the following theorem (with n = 3 for part
(iii), but you are asked to extend this to Bn for any n in Exercise (2)).

Theorem 36.7. Let n be a positive integer.

(i) If X ∈ En is nonzero, then there is no move M so that X ⊕M = 0.
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· · · · · · · ·
· · · ·
· · · · · ·

Table 36.3
A NIM configuration.

(ii) If X ∈ En is nonzero, then (X ⊕M) ̸∈ En for any move M .

(iii) If X ∈ (Bn \ En), then there exists a move M so that (X ⊕M) ∈ En.

Interpreted in more natural language, Theorem 36.7 presents us with the following strategy for
playing the NIM game:

(i) Since it is not possible to win from a nonzero even configuration, always present our oppo-
nent with an even configuration if possible.

(ii) If we can present our opponent with an even configuration, any move our opponent makes
will present us with an odd configuration.

(iii) If we have an odd configuration at our turn, we can always turn it into an even configuration.

So our strategy is to always present our opponent with an even configuration. If the configuration
is the 0 configuration, we have won. If not, then (ii) shows that our opponent cannot win because
he or she will be forced to present us with an odd configuration. By part (iii), we can turn that odd
configuration into an even configuration so that our opponent cannot win on the next turn. Since at
least one stone is removed at each turn, our opponent will eventually have to present us with an odd
configuration from which we can win.

One final note: if we are ever presented with even configuration, we cannot win the game unless
our opponent makes a mistake. For this reason, it is always advantageous to be able to decide
whether to move first or second after seeing the initial configuration.

We will illustrate the strategy described above with the game from Table 36.3.

· ·
· · · ·
· · · · · ·

· ·
· · · ·
· · · ·

· · · ·
· · · ·

Table 36.4
Our first move (left), our opponent’s move (middle), and the coup de gras (right).

As we argued before, if we move first, we should remove stones from pile 1 to leave exactly
2 stones as shown on the left of Table 36.4. Now, whatever move our opponent makes, we will
be left with an odd configuration. Suppose our opponent’s move leaves us with the configuration
shown in the middle of Table 36.4. This configuration gives us N1 = 2 = 10, N2 = 4 = 100, and
N3 = 4 = 100. Now 10 ⊕ 100 ⊕ 100 = 010, so we must change the 1 in the 2’s place. We can
do this by removing all of the stones from pile 1, leaving us with the NIM sum 100 ⊕ 100 = 000,
which corresponds to the configuration on the right of Table 36.4. Whatever moves our opponent
makes, we can now win the game by keeping both piles of the same size. This will always result in
a 0 NIM sum. Thus, the game is ours.
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The 15 Puzzle

Preview Activity 36.8. Go to any on-line version of the 15 Puzzle and play the game a few times.
Find one that allows you to create your own 15 Puzzle. Are all 15 Puzzles solvable? If not, search
for a pattern that determines which puzzles are solvable.

The classic 15 Puzzle was made famous in the 19th century by puzzleist Sam Loyd.∗ The game
consists of a starting position, which is a 4× 4 array of the integers between 1 and 15 along with a
symbol # (which we interpret as a blank space), as shown in Table 36.5. We will call each entry of
the array a cell.

2 9 7 3

10 15 12 8

1 4 # 14

6 13 5 11

Table 36.5
15 Puzzle: Configuration 1.

The game is played with one type of legal move: interchanging the blank cell with a cell either
to the left or right or the cell above or below. (The children’s game is usually made of sliding tiles
that are numbered 1 to 15. The interchange mentioned here is done by sliding a tile to the empty
cell.) In this example, we can interchange the blank with the 12, 4, 14 or 5. Interchanging the blank
and the 5 leaves us with the configuration in Table 36.6. We can then interchange the blank with the
5, 13, or 11.

2 9 7 3

10 15 12 8

1 4 5 14

6 13 # 11

Table 36.6
15 Puzzle: Configuration 2.

The object of the game is to interchange the blank with other cells and transform the starting

∗In 2006, Jerry Slocum and Dic Sonneveld published their book, The 15 Puzzle (Slocum Puzzle Foundation), in which they
write, “Sam Loyd did not invent the 15 puzzle and had nothing to do with promoting or popularizing it. The puzzle craze
that was created by the 15 Puzzle began in January 1880 in the US and in April in Europe. The craze ended by July 1880 and
Sam Loyd’s first article about the puzzle was not published until sixteen years later, January 1896. Loyd first claimed in 1891
that he invented the puzzle, and he continued until his death a 20 year campaign to falsely take credit for the puzzle. The
actual inventor was Noyes Chapman, the Postmaster of Canastota, New York, and he applied for a patent in March 1880.”



The 15 Puzzle 31

position to the standard position in Table 36.7. It is important to note that each interchange is re-
versible. So an equivalent game is to begin with the standard position and move to obtain a specified
position. It is this latter version of the game that we will analyze.

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 #

Table 36.7
15 Puzzle: Standard configuration.

Permutations and the 15 Puzzle

To analyze this game, we will construct a correspondence between possible configurations of the
4×4 array and elements in the symmetric group S16. To do this, we will let the number 16 represent
the blank cell. Recall that any permutation can be written as a product of transpositions. We will
apply a transposition (a b) to a configuration A by interchanging the labels of the cells in positions
a and b in A. (Note that this may be different than interchanging the cells labeled a and b.) For
example, the transposition (12 16) applied to the standard configuration I will correspond to Table
36.8 in which the cells in positions 12 and 16 have been interchanged.

1 2 3 4

5 6 7 8

9 10 11 #

13 14 15 12

Table 36.8
The transposition (12 16) applied to I .

To apply a permutation σ ∈ S16 to a configuration A, we can first write σ as a product
τmτm−1 · · · τ2τ1 of transpositions and then apply the transpositions, in order, to A. The resulting
configuration is denoted by σ(A). It is important to note that only certain permutations in S16 can be
applied to a given configuration. In particular, the transpositions involved must always interchange
two adjacent cells. So, for example, while we could apply the transposition (12 16) to the standard
configuration I (as we did in Table 36.8), we could not apply the transposition (12 13) to I , since
cells 12 and 13 are not adjacent. For convenience, we will refer to permutations in S16 that can be
applied to I as valid permutations.

Activity 36.9. Find a permutation that converts the standard configuration to the configuration
shown in Table 36.9.

We can construct a one-to-one correspondence between possible configurations and valid ele-
ments in S16 by assigning to each valid σ ∈ S16 the configuration σ(I). Because of this correspon-
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1 # 2 4

5 6 3 8

9 10 7 12

13 14 11 15

Table 36.9
A target configuration.

dence, we will from this point on refer to valid elements of S16 as configurations, and vice versa.
Note that the standard configuration is represented by the identity permutation.

Solving the 15 Puzzle

To determine if a 15 Puzzle is solvable, we are interested in answering the following equivalent
questions:

• From which initial configuration can we obtain the standard configuration?

• Which configurations can be obtained starting from the standard configuration?

We will answer the second of these questions and, consequently, obtain the answer to the first
question at the same time. To make our work a little easier, first observe that any configuration can
be reduced to one in which the blank square is at location 16.

Activity 36.10. As an example, let A be the configuration shown in Table 36.5. Find a permutation
σ for which σ(A) produces the configuration shown in Table 36.10.

2 9 7 3

10 15 12 8

1 4 14 11

6 13 5 #

Table 36.10
Moving the blank to cell 16.

With this in mind, we need only to determine the configurations that have the blank in position 16
and can be obtained from the standard position I . The next theorem, which we will prove throughout
the remainder of this investigation, tells us exactly which configurations meet these conditions.

Theorem 36.11. Let H be the subset of S16 corresponding to all configurations that have the blank
in position 16 and can be obtained from the standard position I . Then H = A15.

Note that even though S15 is not a subset of S16, we can consider S15 to be contained in S16 as
the set of all permutations that fix 16.

Activity 36.12.

(a) Explain how Theorem 36.11 tells us exactly which 15 Puzzles are solvable.
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(b) Let σ0 represent the configuration shown in Table 36.5. Can we find a sequence of allowable
moves to transform σ0 to I? Why or why not?

It is probably not surprising that H , the set of all permutations with the blank in position 16 that
can be obtained from I , is a subgroup of S16. This is left for you to prove in Exercise (4). It is also
the case that every element in H is an even permutation. (See Exercise (5).) Thus, H ⊆ A15. To
complete the proof of Theorem 36.11, we need to show that A15 ⊆ H . Two facts will be useful in
our argument:

• Lemma 24.16 (see page 342) shows that for n ≥ 3, any permutation in An can be written
as a product of 3-cycles.

• Exercise (16) of Investigation 22 (see page 318) shows that for any α ∈ S16, any x, y, z ∈
{1, 2, 3, . . . , 16}, and any n ∈ Z+, we have

αn(x y z)α−n = (αn(x) αn(y) αn(z)). (36.1)

Now we can show that H contains every 3-cycle of the form (a b c) for a, b, c ∈ S =
{1, 2, 3, . . . , 15}. SinceA15 is generated by three cycles, we will be able to conclude thatH = A15,
as desired.

Lemma 36.13. The group H contains every 3-cycle of the form (a b c) for a, b, c ∈
{1, 2, 3, . . . , 15}.

Proof. Let (a b c) be a 3-cycle with a, b, c ∈ S = {1, 2, 3, . . . , 15}. If α ∈ S16 is in H and
(a b c) ∈ H , then equation (36.1) shows that

αn(a b c)α−n = (αn(a) αn(b) αn(c)) ∈ H (36.2)

for any n ∈ Z+.

To complete the proof of Lemma 36.13, we will apply this idea to some specific elements in H ,
as indicated in the next activity, to show the following:

(1) Every 3-cycle of the form (11 7 b) is in H , where b ∈ S and b ̸= 7, 11, 16.

(2) Every 3-cycle of the form (a b 11) is in H , where a, b ∈ S, a ̸= 11, 16, and b ̸= 7, 11, 16.

(3) Every 3-cycle is in H .

Once we have established these facts, we will have proved the lemma. ■

Activity 36.14.

(a) Let b ∈ S with b ̸= 7, 11, 16. Here we will show that every 3-cycle of the form (11 7 b) is in
H .

(i) Explain why

α1 = (11 15 12) = (16 12)(12 11)(11 15)(15 16)

(as shown in Table 36.11) is in H .
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1 2 3 4

5 6 7 8

9 10 12 15

13 14 11 #

Table 36.11
α1.

1 2 3 4

5 7 8 12

9 6 11 15

13 10 14 #

Table 36.12
α2.

(ii) Explain why

α2 = (16 12)(12 8)(8 7)(7 6)(6 10)(10 14)(14 15)(15 16)

= (6 10 14 15 12 8 7)

(as shown in Table 36.12) is an element of H . Then use equation (36.2) to show that
(11 7 6) is an element of H .

(iii) Next, note that the element α3 defined by

α3 = (16 12)(12 8)(8 4)(4 3)(3 2)(2 1)(1 5)(5 6)

(6 10)(10 9)(9 13)(13 14)(14 15)(15 16)

= (1 5 6 10 4 13 14 15 12 8 4 3 2)

(as shown in Table 36.13) is another element of H .

2 3 4 8

1 5 7 12

10 6 11 15

9 13 14 #

Table 36.13
α3.

Use equation (36.2) and the fact that α3 fixes 7, 11, and 16 to complete the argument
that every 3-cycle of the form (11 7 b), where b ∈ S and b ̸= 7, 11, 16, is in H .

(b) Let a, b ∈ S with a ̸= 11, 16 and b ̸= 7, 11, 16. Show that every 3-cycle of the form (a b 11)
is in H . (Hint: Why is (11 b 7) ∈ H?)
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(c) Finally, show that every 3-cycle is in H . How does this show that H = A15?

The work we did in Activity 36.14 completes our proof of Lemma 36.13. To summarize, we can
determine if a particular 15 Puzzle is solvable by first transforming it to a puzzle A with the blank
in position 16. Then if there is an even permutation σ so that σ(I) = A, we can conclude that our
original 15 Puzzle is solvable.

Activity 36.15. Find a 15 Puzzle that is not solvable and that is also not easily seen to be unsolvable.
Explain how you know your puzzle is not solvable.

One final note: Our analysis of the 15 Puzzle completely classifies which games can be won but
does not tell us how to win. There are strategies for winning, but trial and error is often the best bet.

Concluding Activities

Activity 36.16. Go to any online site that has a NIM game and play it using the strategies we have
described in this activity. Make sure you win!

Exercises

(1) Let m be a positive integer, and let Bm be the set of whole numbers, in binary, that are less
than 2m.

(a) Show that Bm is a subgroup of B.

(b) As a finite Abelian group, the group Bm is isomorphic to a direct sum of cyclic groups.
To what familiar direct sum is Bm isomorphic?

⋆ (2) Let n be a positive integer. Show that if X ̸∈ En, then there is a move M so that (X +M) ∈
En.

(3) There is a story that when Sam Loyd first distributed his game, the configuration of the puzzle
was the standard configuration but with the 14 and 15 pieces in reversed position. Loyd offered
a prize of 1000 dollars for a correct solution to that puzzle. Did he ever pay the 1000 dollar
prize? Explain.

⋆ (4) Let H be the subset of S16 consisting of all permutations with the blank in position 16 that
can be obtained from the standard configuration I . Prove that H is a subgroup of S16.

⋆ (5) Prove that if σ is in H , the set of all permutations with the blank in position 16 that can be
obtained from I , then σ is an even permutation.
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Connections

Abstract algebra has many applications—some serious, and some more fun. In this investigation, we
saw how group theory could be used to analyze two games: NIM and the 15 Puzzle. The structure
of the game of NIM is related to the group Bn and its subgroup En of the even configurations, while
the symmetric groups are important in determining which 15 Puzzles can be solved.



Investigation 37
Groups of Order 8 and 12: Semidirect
Products of Groups

Focus Questions

By the end of this investigation, you should be able to give precise and thorough
answers to the questions listed below. You may want to keep these questions in mind
to focus your thoughts as you complete the investigation.

• What is a semidirect product of groups? In what ways are semidirect products of
groups useful?

• Up to isomorphism, how many groups are there of order 8?

• Up to isomorphism, how many groups are there of order 12?

Preview Activity 37.1. Summarize our previous work in classifying groups, and list all of the
isomorphism classes of groups of orders from 1 to 7, 9 to 11, and 13 to 15. Provide whatever
information you can about groups of orders 8 and 12.

Introduction

As Preview Activity 37.1 demonstrates, we have classified all groups of order 1 through 15, with
the exception of groups of order 8 and 12. We have also determined all groups of prime order (see
Activity 23.17 on page 326 and Theorem 26.18 on page 383), all groups of order 2p, where p is
prime (see Corollary 24.13 on page 341 and Theorem 26.16 on page 381), all groups of order pq
where p and q are distinct primes and p does not divide q − 1 (see Activity 29.32 on page 431), and
all groups of order p2, where p is prime (see Activity 29.15 on page 425). In this investigation, we
will fill in the gaps and classify all groups of order 8 and 12, which will complete our classification
of groups of order less than 16. (Since there are 14 groups of order 16, this seems like a reasonable
place to stop.) In the process of classifying the groups of order 8 and 12, we will introduce and use
the idea of the semidirect product of two groups. We will also see that when classifying groups of
a given order, it is not the order itself that determines the difficulty of the classification, but rather
how large the powers of the prime divisors of the order are.

37



38 Investigation 37. Groups of Order 8 and 12: Semidirect Products of Groups

Groups of Order 8

In this section, we will determine the distinct isomorphism classes of groups of order 8. Since the
Fundamental Theorem of Finite Abelian Groups tells us about the Abelian groups of order 8, we
will concentrate on non-Abelian groups. Recall that we already know two non-Abelian groups of
order 8—namely,D4 and the quaternions Q. We will now determine if there are, up to isomorphism,
any other non-Abelian groups of order 8, and we will classify all such groups.

Activity 37.2. Let G be a non-Abelian group of order 8 with identity e.

(a) Use Exercise (2) of Investigation 18 (see page 274) to explain why G must contain an ele-
ment b of order 4.

(b) Let N = ⟨b⟩. Explain why N is normal in G.

(c) Let a ∈ G with a /∈ N . Then G = N ∪ aN = {e, b, b2, b3, a, ab, ab2, ab3}. The operation
table for G will be determined once we know how to represent the elements ba and a2 in the
form aibj , with 0 ≤ i ≤ 1 and 0 ≤ j ≤ 3. Given that N ◁ G, we know that aba−1 ∈ N , so
aba−1 = bt for some t with 0 ≤ t ≤ 3

(i) Explain why t cannot be 0 or 1.

(ii) Now explain why t cannot be equal to 2. (Hint: What is |aba−1|?)

(iii) Assume aba−1 = b3 = b−1. Since a ∈ G and a ̸= e, we must have |a| = 2 or
|a| = 4. What can we say about G if |a| = 2?

(iv) What can we say about G if aba−1 = b−1 and |a| = 4?

(d) How many groups are there of order 8?

Activity 37.2 tells us about the groups of order 8, so we will now turn our attention to groups of
order 12. It is possible (and not that difficult) to classify the groups of order 12 directly, but in the
next section we will introduce a new tool, the semidirect product, that is very helpful in the general
context of classifying groups of a given order. We will then use semidirect products to classify
groups of order 12 and of order p3, where p is an odd prime.

Semi-direct Products of Groups

Preview Activity 37.3. Let G be the set of ordered pairs

{([a]3, [b]2) : [a]3 ∈ Z3, [b]2 ∈ Z2}.

Define an operation · on G by

([a]3, [b]2) · ([c]3, [d]2) = ([a+ (−1)bc]3, [b+ d]2)
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(a) Explain why this operation is well-defined on G.

(b) Construct the operation table for the set G with the operation defined above.

(c) Is G a group under this operation? If no, why not? If yes, to what familiar group is G iso-
morphic? Explain.

While we can decompose some groups into an internal direct product of normal subgroups, we
cannot do this for every group. For example, if we try to write the group D3 as an internal direct
product of two proper subgroups, we run into a problem. Recall that the groupH = ⟨R⟩ is a normal
subgroup ofD3 of order 3, so we would need a normal subgroupK of order 2 to be able to writeD3

as the product H ×K. However, D3 has no normal subgroup of order 2. So we cannot decompose
D3 into an internal direct product of nontrivial normal subgroups. It turns out, however, that we
can decompose D3 into what is called a semidirect product of subgroups. Activity 37.3 gives an
example of such a decomposition. (Don’t worry if the construction there does not seem obvious or
natural to you at the moment.)

Up to this point, we have seen several different products of groups:

• The direct product H ⊕K of two groups is again a group, external to both H and K.

• If H and K are subgroups of a group G with H ◁ G, then the product

HK = {hk : h ∈ H,K ∈ K}

is a subgroup of G. (See Activity 24.22 on page 346.) Moreover, if H ∩K = {e}, where e
is the identity in G, then |HK| = |H||K|. To see this, suppose h1k1 = h2k2 in HK. Then
h−1
2 h1 = k2k

−1
1 ∈ (H ∩ K), so h−1

2 h1 = k2k
−1
1 = e. Thus, h1 = h2, and k1 = k2. It

follows that if H ∩K = {e} and |H||K| = |G|, then G = HK.

• If H and K are normal subgroups of a group G with H ∩K = {e}, then HK = H ×K is
the internal direct product of H and K.

In this section, we will construct another type of product called a semidirect product. To under-
stand how semidirect products work, recall that the construction of the internal productHK requires
thatH andK be subgroups of some groupG that is already known. The question we want to answer
now is if we can generalize this construction. In other words, given any two arbitrary groups H and
K, can we find a group G so that G contains copies of both H and K—that is, subgroups H ′ and
K ′ that are isomorphic to H and K, respectively—with H ′ ◁ G and H ′ ∩K ′ = {e}, where e is the
identity in G? If so, then G = H ′K ′, and we will denote this special decomposition as H⋊K. (We
will say more about this notation later.)

To explore this construction more, letH andK be groups with identities eH and eK , respectively.
We want to find a group G that contains isomorphic copies of H and K satisfying the conditions
described above. A natural place to start is to let G = {(h, k) : h ∈ H, k ∈ K}. Certainly, G will
contain a copy H ′ = {(h, eK) : h ∈ H} of H and a copy K ′ = {(eH , k) : k ∈ K} of K. The key
to constructing the group G is to define an appropriate operation. We want to make G = H ′K ′ with
H ′ ◁ G. This will mean that if k ∈ K ′ and h ∈ H ′, then khk−1 ∈ H ′. If a = h1k1 and b = h2k2
are elements of H ′K ′, then it will follow that

ab = (h1k1)(h2k2) = h1
(
k1h2k

−1
1

)
(k1k2) (37.1)

is also an element of H ′K ′. So the operation we define in G will need to mimic the product in
(37.1).
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What makes the product in (37.1) work is that k1h2k−1
1 is in H . In fact, conjugation by the

element k1 is an automorphism of H (an inner automorphism to be specific). We also saw this
idea in Activity 37.3, where left multiplication by (−1)b for b = 0 or b = 1 is an automorphism
on Z3. In other words, we had a mapping φ with domain Z2 that assigned to each [b] ∈ Z2 an
automorphism on Z3. More specifically, we had φ([0]2) as the identity automorphism and φ([1]2)
as the automorphism that sends [a]3 to [2a]3 for all [a]3 ∈ Z3. Expressed another way, φ : Z2 →
Aut(Z3) is the mapping for which φ([0]2)([a]3) = [a]3 (for all [a]3 ∈ Z3) and φ([1]2)([a]3) = [2a3]
(for all [a]3 ∈ Z3). (It turns out that φ is a homomorphism as well, and you should verify that for
yourself.)

Before we proceed, a word of caution is in order: the above notation can be very confusing since
we are dealing with functions whose images are functions as well. As you work through this section,
it is vitally important to distinguish between the elements of a given group and the functions that
act on these elements. In the next activity, we will explore these ideas in a more general context.

Activity 37.4. LetH andK be groups with identities eH and eK , respectively, let φ : K → Aut(H)
be a homomorphism, and letG = H×K be the Cartesian product ofH andK. Then we can define
a product on G as follows:

(h1, k1)(h2, k2) = (h1φ(k1)(h2), k1k2). (37.2)

Note that this product has the same form as the products in (37.1) and Activity 37.3. In Activity
37.3, our example turned out to be a group, so it seems reasonable to ask if G will always be a
group with the product defined by (37.2).

(a) Is G closed under the operation from (37.2)?

(b) Does G contain an identity element? If so, what is it? Explain.

(c) Is the operation defined by (37.2) associative? Prove your answer.

(d) Does G contain an inverse for each of its elements? If so, what is the form of an inverse of
an element in G?

Activity 37.4 tells us that G, as defined above, is a group under the operation from (37.2). We
can actually say more about the group G, as stated in the following theorem.

Theorem 37.5. Let H and K be groups with identities eH and eK , respectively, and let φ : K →
Aut(H) be a homomorphism. Then G = {(h, k) : h ∈ H, k ∈ K} with the operation

(h1, k1)(h2, k2) = (h1φ(k1)(h2), k1k2)

is a group. Moreover,

(i) H ′ = {(h, eK) : h ∈ H} is a normal subgroup of G isomorphic to H;

(ii) K ′ = {(eH , k) : k ∈ K} is a subgroup of G isomorphic to K; and

(iii) H ′ ∩K ′ = {(eH , eK)}.

Proof. Since Activity 37.4 shows that G is a group, we will focus here on parts (i) – (iii). In partic-
ular, we will prove part (i) and leave the remaining parts for the reader in Exercise (4).

We will show that H ′ = {(h, eK) : h ∈ H} is a normal subgroup of G isomorphic to H . The
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element (eH , eK) is in H ′, so H ′ contains the identity element in G. Let (h1, eK) and (h2, eK) be in
H ′. Then

(h1, eK)(h2, eK) = (h1, φ(eK)(h2), eK) = (h1h2, eK) ∈ H ′,

and so H ′ is closed under the operation in G.

Also,
(h1, eK)

−1 =
(
φ
(
e−1
K

) (
h−1
1

)
, e−1

K

)
=
(
h−1
1 , eK

)
∈ H ′,

and so H ′ is a subgroup of G by the Subgroup Test. (See page 279.)

To show that H ′ is a normal subgroup of G, let (h, eK) ∈ H ′ and let g = (a, b) ∈ G. Then

(a, b)−1(h, eK)(a, b) =
(
φ
(
b−1
) (
a−1

)
, b−1

)
(hφ(eK)(a), b)

=
(
φ
(
b−1
) (
a−1

)
φ
(
b−1
)
(ha), b−1b

)
=
(
φ
(
b−1
) (
a−1

)
φ
(
b−1
)
(ha), eK

)
and (a, b)−1(h, eK)(a, b) ∈ H ′. Therefore, g−1H ′g = H ′ and H ′ ◁ G.

That H ′ is isomorphic to H can be shown by considering the mapping α : H → H ′ defined by
α(h) = (h, eK). Let h1, h2 ∈ H . Then

α(h1h2) = (h1h2, eK) = (h1, eK)(h2, eK) = α(h1)α(h2),

and α is a homomorphism. If α(h1) = α(h2), then (h1, eK) = (h2, eK) and h1 = h2. Thus, α is
a monomorphism. If (x, eK) ∈ H ′, then α(x) = (x, eK), and so α is an epimorphism. We have
therefore shown that α is an isomorphism and H ∼= H ′.

■

The group G described in Theorem 37.5 is called the semidirect product of H and K and is
denoted H ⋊φ K to indicate its dependence on the particular homomorphism φ : K → Aut(H).
When the homomorphism φ is clear from the context, we will simply write H ⋊K.

Definition 37.6. Let H and K be groups, and let φ : K → Aut(H) be a homomorphism. The
semidirect product of H and K with respect to φ is the group

H ⋊φ K = {(h, k) : h ∈ H, k ∈ K}

with the operation
(h1, k1)(h2, k2) = (h1φ(k1)(h2), k1k2).

Why are semidirect products important? First, the direct product H ⊕ K is an example of a
semidirect product (see Exercise (3)), so we can think of the semidirect product as an extension of
the direct product. (This is also the main motivation for the notation ⋊ for the semidirect product,
as it is more general than the internal direct product.) Second, if φ is a nontrivial homomorphism,
then the semidirect product H ⋊φK is a non-Abelian group (see Exercise (6)), so semidirect prod-
ucts provide a method for constructing non-Abelian groups. Semidirect products are also useful in
classifying groups. For example, if H and K are subgroups of a group G so that H is normal in G,
H ∩K is trivial, and |HK| = |G|, then G will be isomorphic to a semidirect product H ⋊φ K for
some φ. The next activity makes this last point clear.

Activity 37.7. Let G be a group with identity e and subgroups H and K such that

(i) H ◁ G and
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(ii) H ∩K = {e}.

Let φ : K → Aut(H) be the mapping that sends each element k ∈ K to the inner automorphism
defined by conjugation by k. That is, let φ(k) = πk, where πk(h) = khk−1. There is a natural
function Φ : HK → (H ⋊φ K). Define this function Φ and show that it is an isomorphism. Then
explain how we have proved the following theorem:

Theorem 37.8. Let G be a group with identity e and subgroups H and K with

(i) H ◁ G and

(ii) H ∩K = {e}.

Then HK ∼= (H ⋊φ K) for some homomorphism φ : K → Aut(H).

In the next section, we will use Theorem 37.8 to classify all groups of order 12 and all groups
of order p3, where p is a prime.

Groups of Order 12 and p3

We will begin this section with groups of order 12. The Fundamental Theorem of Finite Abelian
Groups tells us that the groups Z12 and Z6 ⊕ Z2 are the distinct Abelian groups of order 12. We
already know at least three non-Abelian groups of order 12—namely, D6, A4, and T , where T is
described in Exercise (18) of Investigation 22 (see page 318) as having presentations ⟨s, t | s6 =
1, s3 = t2, sts = t⟩ and ⟨x, y | x4 = y3 = 1, yxy = x⟩. We will now show that these three groups
are, up to isomorphism, the only non-Abelian groups of order 12.

Let G be a non-Abelian group of order 12 with identity e. Since 12 = 22 × 3, G has a Sylow
3-subgroup H of order 3 and a Sylow 2-subgroup K of order 4. Since H is cyclic, H = ⟨h⟩ for
some h ∈ G.

Define φ : G → P (G/H) by φ(a) = πa where πa(gH) = (ag)H . Recall that G/H denotes
the collection of left cosets of H in G (even if H is not normal in G) and P (G/H) denotes the
group of permutations of G/H . In Exercise (7) of Investigation 30 (see page 442), we showed that
φ is a homomorphism. Now [G : H] = 4, and so P (G/H) ∼= S4. If φ is a monomorphism, then
G is isomorphic to a subgroup of order 12 in S4. The only such subgroup is A4, and so G ∼= A4 in
this case.

Now assume that |Ker(φ)| > 1. We will next show that Ker(φ) ⊆ H . Let a ∈ Ker(φ). Then
φ(a) = πa is the identity permutation in P (G/H), so H = πa(H) = aH and a ∈ H . Thus,
Ker(φ) ⊆ H . Because |H| = 3 and |Ker(φ)| > 1, it follows that Ker(φ) = H , and so H ◁ G.

We know that H ∩K = {e} and that |G| = |H||K|, so G = HK. Theorem 37.8 shows us that
G ∼= (H ⋊φ K) for some φ. Next we will determine the different groups of this form.

Since |H| = 3, we know that H ∼= Z3. Recall from Exercise (34) of Investigation 26 (see
page 390) that Aut(Z3) ∼= U3, so |Aut(H)| = 2. The two automorphisms of H are the identity
automorphism π0 and the automorphism π1 defined by π1(h) = h−1 = h2. Since |K| = 4, there
are two possibilities for K: K ∼= Z4 and K ∼= (Z2 ⊕ Z2).

Case 1: K ∼= Z4. In this case, we can identify K with Z4, and so any homomorphism φ from K to
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Aut(H) is determined by its action on [1]. Thus, there are two possibilities: φ([1]) = π0 and
φ([1]) = π1. In the first case, G will be Abelian and isomorphic to Z3 ⊕ Z4. In the second
case, the product in HK will have the form

(h1k1)(h2k2) = (h1h
−1
2 )(k1k2).

In particular, we will have
(hikj)(hukv) = hi−jku+v

for all i, j, u, and v. More specifically, hkh = k. So G has the presentation

⟨h, k | h3 = k4 = 1, hkh = k⟩,

and G ∼= T .

Case 2: K ∼= (Z2 ⊕ Z2). In this case, we will identifyK with Z2⊕Z2, and so any homomorphism
from K to Aut(H) will be determined by its actions on the generators ([1], [0]) and ([0], [1]).

• Let φ0 : K → Aut(H) be defined by

φ0(([1], [0])) = π0 and φ0(([0], [1])) = π0.

Then G is Abelian and isomorphic to Z3 ⊕ (Z2 ⊕ Z2).

• Let φ1 : K → Aut(H) be defined by

φ1(([1], [0])) = π0 and φ1(([0], [1])) = π1.

Then
φ1(([a], [b])) = φ1(a([1], [0]) + b([0], [1])) = πa

0π
b
1 = πb

1.

Note that πb
1(t) = t2

b

. In this case, the product on HK is

(hi([a], [b]))(hu([c], [d])) = (hiπb
1(h

u))([a+ c], [b+ d])

= hi+u2b([a+ c], [b+ d]).

Let x = ([1], [0]) in K. Then (hx)2 = (hx)(hx) = h2, (hx)3 = x, (hx)4 = h,
(hx)5 = h2x, and (hx)6 = e. So |hx| = 6, and N = ⟨hx⟩ is a subgroup of G of
order 6. Since [G : N ] = 2, it follows that N ◁G. (See Exercise (19) on page 349.) Let
y = ([0], [1]) ∈ K. Then y2 = e, and so G = N⟨y⟩. Note that

y(hx)y−1 = y(hx)y = h2([1], [1])y = h2x = (hx)−1.

So G has presentation ⟨hx, y | (hx)6 = y2 = 1, y(hx)y−1 = (hx)−1⟩. But this is
exactly the presentation for D6, and so G ∼= D6 in this case.

• Let φ2 : K → Aut(H) be defined by

φ2(([1], [0])) = π1 and φ2(([0], [1])) = π0.

In this case, we also have G ∼= D6, which is left as an exercise for you to verify. (See
Exercise (5).)

• Let φ3 : K → Aut(H) be defined by

φ3(([1], [0])) = π1 and φ3(([0], [1])) = π1.

In this case, we again have G ∼= D6, which is left as an exercise for you to verify. (See
Exercise (5).)
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We can therefore conclude that the only non-Abelian groups of order 12 are D6, A4, and T .

Our classification of groups of order 12 demonstrates that two groups H⋊αK andH⋊βK can
be isomorphic even if α ̸= β. In general, it can be difficult to determine if two semidirect products
with the same underlying groups are isomorphic or not. One tool is given in the next lemma (which
we will use in our classification of groups of order p3), and others are presented in Activity 37.10.

Lemma 37.9. Let K be a finite cyclic group, and let H be any group. Let φ1 : K → Aut(H)
and φ2 : K → Aut(H) be homomorphisms so that φ1(K) and φ2(K) are conjugate subgroups of
Aut(H). Then (H ⋊φ1

K) ∼= (H ⋊φ2
K).

Proof. SinceK is cyclic, there is an element k so thatK = ⟨k⟩. The fact that φ1(K) and φ2(K) are
conjugate subgroups of Aut(H) means that there exists δ ∈ Aut(H) so that δ−1φ2(K)δ = φ1(K).
So

φ1(k) = δ−1φ2(k
t)δ

for some integer t. Then
φ1(k)

i =
(
δ−1φ2(k

t)δ
)i
,

and so

φ1(k
i) = δ−1φ2(k

t)iδ

= δ−1φ2(k
i)tδ

for any integer i. Thus,
φ1(x) = δφ2(x

t)δ−1 (37.3)

for all x ∈ K.

Since K = ⟨k⟩, it follows that Im(φ1) = ⟨φ1(k)⟩ and Im(φ2) = ⟨φ2(k)⟩. Since φ1(k)
and φ2(k) are conjugate, it also follows that |Im(φ1)| = |Im(φ2)|. Thus, |φ1(k)| = |φ2(k)|.
Equation (37.3) shows that φ1(k) = δ−1φ2(k)

tδ, and so |φ2(k)| = |φ1(k)| = |φ2(k)
t|. Thus,

gcd(|φ1(K)|, t) = 1. Since |φ1(K)| divides |K|, Exercise (12) shows that there is an integer t′

with t′ ≡ t (mod |φ1(K)|) and gcd(t′, |K|) = 1. Since φ2(x
t) = φ2(x)

t = φ2(x)
t′ = φ2(x

t′)
for all x ∈ K, we can replace t with t′ in (37.3). This allows us to assume without loss of generality
that gcd(t, |K|) = 1, and so there exist integers x and y with x|K|+ yt = 1.

Define Ψ : (H ⋊φ1 K) → (H ⋊φ2 K) by Ψ((a, b)) = (δ(a), bt). To show that Ψ is a homo-
morphism, let (a1, b1) and (a2, b2) be in H ×K. Let ·1 denote the operation in H ⋊φ1 K, and let
·2 denote the operation in H ⋊φ2

K. Then

Ψ((a1, b1) ·1 (a2, b2)) = Ψ((a1φ1(b1)(a2), b1b2))

= (δ(a1φ1(b1)(a2)), (b1b2)
t)

= (δ(a1(δ
−1φ2(b

t
1)δ)(a2)), b

t
1b

t
2)

= (δ(a1)δ((δ
−1φ2(b

t
1)δ)(a2)), b

t
1b

t
2)

= (δ(a1)φ2(b
t
1)(δ(a2)), b

t
1b

t
2)

= (δ(a1), b
t
1) ·2 (δ(a2), bt2)

= Ψ((a1, b1)) ·2 Ψ((a2, b2)),

and Ψ is a homomorphism.

To show that Ψ is a monomorphism, suppose (a, kr) ∈ Ker(Ψ). Let eH be the identity in H ,
and let eK be the identity in K. Then

(eH , eK) = Ψ((a, kr)) = (δ(a), krt),
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and so δ(a) = eH and krt = eK . Since δ ∈ Aut(H), we can conclude that a = eH . That krt = eK
means |K| divides rt. But gcd(t, |K|) = 1 implies that |K| divides r. Thus, kr = eK , and so (a, kr)
is the identity in H ⋊φ1 K. Therefore, Ker(Ψ) is trivial and Ψ is a monomorphism.

Finally, we will demonstrate that Ψ is an epimorphism. Let (w, z) ∈ (H ⋊φ2
K). Since δ−1 is

a surjection, there exists a ∈ H such that δ−1(a) = w. Recall that x|K|+ yt = 1, so

z = zx|K|+yt =
(
z|K|

)x
(zy)

t
= (zy)

t
.

Then
Ψ
(
(δ−1(a), zy)

)
= (w, z),

and we have shown that Ψ is an epimorphism. Therefore, Ψ is an isomorphism, and (H ⋊φ1
K) ∼=

(H ⋊φ2
K).

■

We will end this investigation by classifying all groups of order p3, where p is a prime. Doing so
will illustrate the fact that it is not necessarily the size of a group that makes classification difficult,
but rather how large the powers of the prime divisors of the order are. In working out the classifica-
tion, we will leave a number of details for you to complete in the exercises. Since we have already
classified the groups of order 8, we will restrict ourselves to odd primes.

Let G be a group of order p3, where p is an odd prime. We know the Abelian groups of order
p3 by the Fundamental Theorem of Finite Abelian Groups: Zp3 , Zp2 ⊕ Zp, and Zp ⊕ Zp ⊕ Zp.
Therefore, we will now focus on the non-Abelian groups of order p3.

Let G be a non-Abelian group of order p3. Since G is a p-group, we know that Z = Z(G)
is nontrivial. Since G is non-Abelian, there are two possibilities for |Z|: |Z| = p or |Z| = p2. If
|Z| = p2, then |G/Z| = p and so G/Z is cyclic. It follows then that G is Abelian (see Theorem
24.10 on page 338), a contradiction. We can therefore conclude that |Z| = p. Thus, |G/Z| = p2,
and soG/Z ∼= Zp2 orG/Z ∼= (Zp⊕Zp). SinceG/Z is not cyclic, it must be thatG/Z ∼= (Zp⊕Zp).

Recall from Exercise (9) of Investigation 21 (see page 306) that the commutator of elements
x, y ∈ G is the element [x, y] = x−1y−1xy. Since G is non-Abelian, the subgroup G′ generated by
the commutators of pairs of elements is nontrivial. Let x, y ∈ G. Then xZ, yZ ∈ G/Z ∼= (Zp⊕Zp)
(an Abelian group), and so

Z = (xZ)−1(yZ)−1(xZ)(yZ) = (x−1y−1xy)Z.

This, however, implies that x−1y−1xy ∈ Z. Thus, G′ ⊆ Z, and so G′ = Z.

Define ψ : G → G by ψ(g) = gp. That ψ is a homomorphism can be demonstrated as follows.
Let a, b ∈ G. Since G′ = Z, the commutators commute with every element in G. Exercise (8) and
the fact that every nonidentity element in Z has order p show that

ψ(a)ψ(b) = apbp

= (ab)p[a, b]p(p−1)/2

= (ab)p
(
[a, b](p−1)/2

)p
= (ab)p

= ψ(ab),

and ψ is a homomorphism. Moreover, we can again use the fact that every nonidentity element in
G/Z has order p to see that

Z = (aZ)p = apZ,
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and so ap ∈ Z for every a ∈ G. Thus, Im(ψ) ⊆ Z.

Now consider Ker(ψ). If every nonidentity element in G has order p, then Ker(ψ) = G. Other-
wise, G contains an element of order p2. We will consider each of these cases. Let e be the identity
in G.

Case 1: There is an element h of order p2 in G. Let H = ⟨h⟩. It follows that H ∩ Z = ⟨hp⟩.
By Exercise (7), we have that H is normal in G. If we can find a subgroup K of G so that
G = HK, then we will have G ∼= (H ⋊φ K for some φ.

Since hp ̸= e, we have Ker(ψ) ̸= G. So |Im(ψ)| > 1, and it follows that Im(ψ) = Z. Thus,
|Ker(ψ)| = p2. Since h ̸∈ Ker(ψ), we have that Ker(ψ) ̸= H . Let k be any element of
Ker(ψ) such that k /∈ H , and let K = ⟨k⟩. Note that e = ψ(k) = kp, so |k| = p. Since every
nonidentity element in K generates K, it follows that H ∩K = {e}, and so G = HK. Thus,
G ∼= (Zp2 ⋊φ Zp) for some nontrivial φ : Zp → Aut(Zp2). Now

Aut(Zp2) ∼= Up2 ∼= Zp2−p

by Theorem 31.9 (see page 452), so Aut(Zp2) contains a unique subgroup of order p. (In fact,
Aut(Zp2) = ⟨γ⟩, where γ([x]) = (1 + p)[x].) Lemma 37.9 then shows that the mappings
φ : Zp → Aut(Zp2) will all produce isomorphic groups, and so there is just one non-Abelian
group G of order p3 if G contains an element of order p2.

Case 2: Every nonidentity element in G has order p. Every p-group contains normal subgroups
of any order dividing the order of the group (see Exercise (25) on page 433 of Investigation
29), so let H be a normal subgroup of G of order p2. Since no element in G has order p2, it
must be the case thatH ∼= (Zp⊕Zp). Let a and b be generators forH so that |a| = |b| = p and
H = ⟨a⟩⟨b⟩. Let k ∈ Gwith k /∈ H , and letK = ⟨k⟩. Again,H∩K = {e} and soG = HK.
Thus, G ∼= (H ⋊φ K) for some nontrivial φ : K → Aut(H). (Note that |k| = p.) Now
Aut(H) ∼= Aut(Zp⊕Zp) ∼= GL2(Zp), and |Aut(H)| = p4−p3−p2+p = p(p3−p2−p+1).
(See Exercise (10).) The Sylow p-subgroups of Aut(H) all have order p, so any two subgroups
of Aut(H) of order p are conjugate.

Define γ ∈ Aut(H) = ⟨a⟩⟨b⟩ by γ(a) = ab and γ(b) = b. Since every non-identity element in
H has order p, it follows that |γ| = p, and so any Sylow p-subgroup of Aut(H) is conjugate

to γ(K). (We can also represent γ as an element in GL2(Zp) as
[

1 1
0 1

]
.) Lemma 37.9

again shows that there is exactly one non-Abelian group of order p3 of this type. This group
is the Heisenberg group we introduced in Exercise (9) of Investigation 26. (See page 387.)

So the groups of order p3, for p an odd prime, are:

• Zp3 ;

• Zp2 ⊕ Zp;

• Zp ⊕ Zp ⊕ Zp;

• Zp2 ⋊φ Zp, where φ([1]) = γ with γ([x]) = (1 + p)[x]; and

• (Zp ⊕ Zp) ⋊φ Zp, where φ([1]) = γ with γ represented by the matrix transformation[
1 1
0 1

]
.
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Concluding Activities

Activity 37.10. Let H and K be finite groups, and let φ1 and φ2 be homomorphisms from K to
Aut(H). It can be a difficult task to determine if H ⋊φ1 K is isomorphic to H ⋊φ2 K.

(a) If φ1 and φ2 act in a similar way on elements of K, then we might expect the corresponding
semidirect products to be isomorphic. Show that if φ1 = φ2θ for some θ ∈ Aut(K), then
(H ⋊φ1

K) ∼= (H ⋊φ2
K).

(b) If φ1 and φ2 are significantly different in some way, we should expect that H ⋊φ1 K is not
isomorphic to H ⋊φ2 K. In this part we will show that if gcd(|H|, |K|) = 1 and Ker(φ1) ̸∼=
Ker(φ2), then H ⋊φ1

K is not isomorphic to H ⋊φ2
K. Let eH be the identity in H , and let

eK be the identity in K. Then let H ′ = {(h, eK) : h ∈ H} and K ′ = {(eH , k) : k ∈ K}
be subgroups of H ⋊φ1

K that are copies of H and K. For h ∈ H , let h′ = (h, eK) and for
k ∈ K, let k′ = (eH , k).

(i) Show that Ker(φ1) = {x ∈ K : x′h′(x′)−1 = h′ for all h′ ∈ H ′}. In other words,
Ker(φ1) ∼= CK′(H ′).

(ii) Assume that gcd(|H|, |K|) = 1 throughout the remainder of this exercise. Show that
H ′ is the only subgroup of order |H| in G1 = H ⋊φ1

K.

(iii) Prove that if H ⋊φ1
K is isomorphic to H ⋊φ2

K, then Ker(φ1) ∼= Ker(φ2). This
will show that if Ker(φ1) ̸∼= Ker(φ2), then (H ⋊φ1 K) ̸∼= (H ⋊φ2 K).

Exercises

(1) Let H = Zn and K = Z2. Let φ : K → Aut(H) be defined by φ([1]2) = π, where
π([x]) = −[x] for all x ∈ H . Show that (H ⋊φ K) ∼= Dn.

(2) Can the group Q = {±1,±i,±j,±k} of quaternions be written as a semidirect product of
proper subgroups? Explain.

⋆ (3) Direct sums and semidirect products. The direct sum of two groups is a special case of the
semidirect product, as this exercise illustrates. Let H and K be groups with identities eH and
eK , respectively, and let φ : K → Aut(H) be a homomorphism. Show that the following are
equivalent.

(a) The map Φ : (H ⋊φ K) → (H ⊕K) defined by Φ((h, k)) = hk is an isomorphism.

(b) The homomorphism φ is the trivial homomorphism.

(c) The subgroup K ′ = {(eH , k) : k ∈ K} is normal in H ⋊φ K.

⋆ (4) Prove the remaining items from Theorem 37.5. That is, prove that

(ii) K ′ = {(eH , k) : k ∈ K} is a subgroup of G isomorphic to K and

(iii) H ′ ∩K ′ = {(eH , eK)}.
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⋆ (5) Complete the classification of groups of order 12 by showing that (Z3 ⋊φ2
(Z2 ⊕Z2)) ∼= D3

and that (Z3 ⋊φ3 (Z2 ⊕ Z2)) ∼= D3, where φ2 and φ3 are as described in that section.

⋆ (6) When isH⋊φK an Abelian group? Prove your answer. (Hint: Exercise (3) might be helpful.)

⋆ (7) Let G be a finite group of order n, and let p be the smallest prime divisor of n. Prove that
any subgroup of index p in G is normal in G. (Hint: Consider the homomorphism π : G →
P (G/N) defined by π(a)(gN) = (ag)N , where N is a subgroup of G of index p.)

⋆ (8) Let G be any group, and let x, y ∈ G so that x and y commute with [x, y] = x−1y−1xy.
Prove that

xnyn = (xy)n[x, y]n(n−1)/2

for every nonnegative integer n.

(9) Groups of order pq. We have previously shown that any group of order pq is cyclic if p and
q are distinct primes and p does not divide q − 1. We will now classify the rest of the groups
of order pq. Let p and q be primes with p < q so that p divides q − 1, and let G be a group of
order pq. Determine all of the groups to which G could be isomorphic.

⋆ (10) Let p be a prime. Explain why Aut(Zp ⊕ Zp) ∼= GL2(Zp). Then show that the order of
GL2(Zp) is p4 − p3 − p2 + p. (Hint: Use the result from linear algebra that a 2× 2 matrix is
invertible if and only if no row is a multiple of the other.)

(11) Our definition of a semidirect product requires two groups. In this exercise, we will introduce
a useful construction of a semidirect product that uses only one group. Let H be any group,
and let K = Aut(H). Define φ : K → Aut(H) by φ(π) = π. The resulting semidirect
product H ⋊φK is called the holomorph of H and is denoted Hol(H). Holomorphs provide
a context in which to study elements of a group and their automorphisms together.

(a) Let n ≥ 2 be an integer. Find |Hol(Zn)| in terms of the prime factors of n. (Hint: See
Exercise (13) on page 461 of Investigation 31.)

(b) Create the operation table for Hol(Z3). To which familiar group is Hol(Z3) isomor-
phic?

(c) Let H = Z2 ⊕ Z2, K = Aut(H), and G = Hol(H). Show that G ∼= S4 using the
following steps.

(i) Determine the order of Hol(Z2 ⊕ Z2)

(ii) For ease of notation, we will identify K with the subgroup of G that is isomor-
phic to K. Note that [G : K] = 4, so the permutation group P (G/K) of the
left cosets of K in G is isomorphic to S4. Now define θ : G → P (G/K) by
θ(g)(aK) = (ga)K. We have shown that θ is a homomorphism, so if we can
show that θ is a bijection, then we will have that G ∼= S4. Prove that θ is a
monomorphism. How can we conclude that G ∼= S4?

⋆ (12) Let t, m, and n be integers such that m divides n and gcd(t,m) = 1. Prove that there exists
an integer t′ such that t′ ≡ t (mod m) and gcd(t′, n) = 1.

(13) (a) There are two distinct semidirect products of the form Z4⋊Z2. What are they? Construct
the operation table for the non-Abelian one. To which familiar group is this non-Abelian
semidirect product isomorphic?

(b) Let n ≥ 3 be an integer. Show that Dn
∼= (Zn ⋊φ Z2) for some appropriate choice of φ.

(14) Groups of order pq2.
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(a) Construct a non-Abelian group of order 75.

(b) Determine all non-Abelian groups of order 75.

(c) Determine all groups of order pq2, where p and q are primes with p < q such that p
does not divide q − 1.

(15) Classify all groups of order 20.

(16) Groups of order 2p2. Let p be an odd prime. In this exercise, we work on the general problem
of classifying all groups of order 2p2.

(a) Use the steps suggested below to determine the conjugacy classes of the elements of
order 2 in GL2(Fp).

(i) Show that every element of order 2 or less in GL2(Fp) is conjugate to a diago-
nal matrix with 1’s and/or −1’s along the diagonal.

(ii) IfA is an element of order 2 in GL2(Fp), show thatA is conjugate to either −I

or the matrix
[

1 0
0 −1

]
.

(b) Classify all groups of order 2p2. Note that there are three non-Abelian groups, and
you may not be able to easily distinguish them. You might try to show that they have
different centers. Part (a) of this exercise and Activity 37.10 should be useful.

Connections

This investigation continued our classification of groups of various orders that we began in Inves-
tigation 26. The tools we used in this investigation were mostly familiar, with the exception of the
new construction of the semidirect product, an extension of the direct product first discussed in
Investigation 25.
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Appendix A
Functions

Focus Questions

By the end of this investigation, you should be able to give precise and thorough
answers to the questions listed below. You may want to keep these questions in mind
to focus your thoughts as you complete the investigation.

• What is a function?

• What does it mean to say that a function is an injection? How can we prove that a
function is (or is not) an injection?

• What does it mean to say that a function is a surjection? How can we prove that a
function is (or is not) a surjection?

• What is a bijection?

• What is the composition of two functions, and what is a composite function? What
are some important theorems about composite functions?

• What is the inverse of a function? Under what conditions is the inverse of a func-
tion f : A→ B a function from B to A?

• What are some important theorems about functions and their inverses?

Functions are frequently used in mathematics to define and describe certain relationships be-
tween sets and other mathematical objects. In this appendix, we will first study special types of
functions known as injections and surjections. Before defining these types of functions, we will
review the definition of a function and explore certain functions with finite domains.

Definition A.1. A function f from a set A to a set B is a collection of ordered pairs

{(a, b) : a ∈ A and b ∈ B}

such that for each element a in A, there is one and only one element in B such that (a, b) is in f .

There is a special notation, called functional notation, that is commonly used to describe func-
tions and the way they act on sets. In particular, if (a, b) is in the function f , we write f(a) = b
(read as “f of a equals b”). It is important to note the dual use of the symbol f here; we use f to
represent a collection of ordered pairs and also to describe an action (pairing a with b in f(a) = b).
In general practice, we use functional notation and think of a function as assigning to an element a
a unique element b. In this context, we think of the elements in A as the input of the assignment and
the elements in B as the output. In this way, we can consider f as a mapping from A to B and write

53
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f : A → B to indicate this mapping action. How we read this notation depends on the context in
which it appears. For instance, the statement

Consider the function f : A→ B

would be read as, “Consider the function f from A to B.” On the other hand, if we write

Let f : A→ B,

then this statement would be read as “Let f be a function from A to B” or “Let f map from A to
B.”

There is some familiar terminology and notation associated with functions. Let f be a function
from a set A to a set B.

• The set A is called the domain of f , and we write dom(f) = A.

• The set B is called the codomain of f , and we write codom(f) = B.

• The subset {f(a) : a ∈ A} of B is called the range of f , which we denote by range(f).
Note that the range of f could equivalently be defined as follows:

range(f) = {y ∈ B | y = f (x) for some x ∈ A}.

• If a ∈ A, then f(a) is the image of a under f .

• If b ∈ B and b = f(a) for some a ∈ A, then a is called a pre-image of b.

Notice that, according to these definitions, range(f) ⊆ codom(f), but it is not necessarily the
case that range(f) = codom(f). Whether we have this set equality or not depends on the function
f , as we will see in the next section.

Special Types of Functions: Injections and Surjections

Preview Activity A.2. Let A = {1, 2, 3}, B = {a, b, c, d}, and C = {s, t}. Define

f : A→ B by g : A→ B by h : A→ C by
f(1) = a g(1) = a h(1) = s
f(2) = b g(2) = b h(2) = t
f(3) = c g(3) = a h(3) = s

(a) Consider the following property, defined for an arbitrary function F :

For all x, y ∈ dom(F ), if x ̸= y, then F (x) ̸= F (y).

Which of the functions defined above satisfy this property?

(b) Which of the functions defined above satisfy the following property (defined in terms of an
arbitrary function F )?

For all x, y ∈ dom(F ), if F (x) = F (y), then x = y.
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(c) Determine the range of each of the functions f , g, and h.

(d) Which of these functions have their range equal to their codomain?

(e) Which of the these functions satisfy the following property (again, defined in terms of an
arbitrary function F )?

For all y in the codomain of F , there exists an x ∈ dom(F ) such that F (x) = y.

(f) Let F be a function from a set S to a set T .

(i) Is it possible to have two elements x1 and x2 in S with x1 ̸= x2 and F (x1) = F (x2)?
If no, explain why not. If yes, give an example and explain why this does not violate
the definition of a function.

(ii) Are the range and codomain of a function the same or different? If they are the same,
explain why. If different, give an example to illustrate the difference and explain any
relationships that must exist between the two sets.

Preview Activity A.3. LetA andB be nonempty sets, and let f : A→ B. In Preview Activity A.2,
we determined whether or not certain functions satisfied some specified properties. These properties
were written in the form of statements, and we will now examine these statements in more detail.

(a) Consider the following statement:

For all x, y ∈ A, if x ̸= y, then f(x) ̸= f(y).

(i) Write the contrapositive of this conditional statement.

(ii) Write the negation of this conditional statement.

(b) Now consider the following statement:

For all y ∈ B, there exists an x ∈ A such that f(x) = y.

Write the negation of this statement.

(c) Let g : R → R be defined by g(x) = 5x + 3, for all x ∈ R. Complete the proofs of the
following propositions about the function g.

Proposition 1. For all a, b ∈ R, if g(a) = g(b), then a = b.

Proof. Let a, b ∈ R, and assume that g(a) = g(b). We will prove that a = b. Since g(a) =
g(b), we know that

5a+ 3 = 5b+ 3.

(Now prove that in this situation, a = b.)

Proposition 2. For all b ∈ R, there exists an a ∈ R such that g(a) = b.

Proof. Let b ∈ R. We will prove that there exists an a ∈ R such that g(a) = b by constructing
such an a in R. In order for this to happen, we need g(a) = 5a+ 3 = b.

(Now solve the equation for a, and then show that for this real number a, g(a) = b.)

Injections

We have now seen examples of functions for which there exist different inputs that produce the
same output. Using more formal notation, this means that there are functions f : A→ B for which
there exist x1, x2 ∈ A with x1 ̸= x2 and f(x1) = f(x2). The work in the preview activities was
intended to motivate the following definition.
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Definition A.4. Let f : A → B be a function from the set A to the set B. The function f is called
an injection provided that

for all x1, x2 ∈ A, if x1 ̸= x2, then f(x1) ̸= f(x2).

When f is an injection, we also say that f is a one-to-one function, or that f is an injective
function.

Notice that the condition that specifies that a function f is an injection is given in the form of
a conditional statement. As we will see, in proofs it is usually easier to use the contrapositive of
this conditional statement. Although we did not define the term then, we have already written the
contrapositive for the conditional statement in the definition of an injection in part (a) of Preview
Activity A.3. In that preview activity, we also wrote the negation of the definition of an injection.
The box below summarizes this work by giving the conditions that are equivalent to f being an
injection or not being an injection.

Let f : A → B.

“The function f is an injection” means that

• for all x1, x2 ∈ A, if x1 ̸= x2, then f(x1) ̸= f(x2); or

• for all x1, x2 ∈ A, if f(x1) = f(x2), then x1 = x2.

“The function f is not an injection” means that

• there exist x1, x2 ∈ A such that x1 ̸= x2 and f(x1) = f(x2).

Activity A.5. Now that we have defined what it means for a function to be an injection, we can see
that in part (c) of Preview Activity A.3, we proved that the function g : R → R, where g(x) = 5x+3
for all x ∈ R, is an injection. Use the definition (or its negation) to determine whether or not the
following functions are injections.

(a) k : A→ B, where A = {a, b, c}, B = {1, 2, 3, 4}, and k(a) = 4, k(b) = 1, and k(c) = 3

(b) f : A→ C, where A = {a, b, c}, C = {1, 2, 3}, and f(a) = 2,f(b) = 3, and f(c) = 2

(c) F : Z → Z defined by F (m) = 3m+ 2 for all m ∈ Z

(d) h : R → R defined by h(x) = x2 − 3x for all x ∈ R

(e) s : Z5 → Z5 defined by s(x) = x3 for all x ∈ Z5

Surjections

In previous mathematics courses and in Preview Activity A.2, we have seen that there exist functions
f : A → B for which the codomain and range of f are equal—that is, range(f) = B. This
means that every element of B is an output of the function f for some input from the set A. Using
quantifiers, this means that for every y ∈ B, there exists an x ∈ A such that f(x) = y . One of the
objectives of the preview activities was to motivate the following definition:
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Definition A.6. Let f : A → B be a function from the set A to the set B. The function f is called
a surjection provided that the range of f equals the codomain of f . This means that

for every y ∈ B, there exists an x ∈ A such that f(x) = y.

When f is a surjection, we also say that f is an onto function, that f maps A onto B, or that f is a
surjective function.

Note that the main condition defining what it means for a function f to be a surjection is given
in the form of a universally quantified statement. Although we did not define the term then, we
have already written the negation of this statement defining a surjection in part (b) of Preview
Activity A.3. The box below summarizes the conditions for f being a surjection or not being a
surjection.

Let f : A → B.

“The function f is a surjection” means that

• range(f) = codom(f) = B; or

• for every y ∈ B, there exists an x ∈ A such that f(x) = y.

“The function f is not a surjection” means that

• range(f) ̸= codom(f); or

• there exists a y ∈ B such that for all x ∈ A, f(x) ̸= y.

Activity A.7. Now that we have defined what it means for a function to be a surjection, we can see
that in part (c) of Preview Activity A.3, we proved that the function g : R → R, where g(x) = 5x+3
for all x ∈ R, is a surjection. Determine whether or not the following functions are surjections. Are
any of these functions injections?

(a) k : A→ B, where A = {a, b, c}, B = {1, 2, 3, 4}, and k(a) = 4, k(b) = 1, and k(c) = 3.

(b) f : R → R defined by f(x) = 3x+ 2 for all x ∈ R.

(c) F : Z → Z defined by F (m) = 3m+ 2 for all m ∈ Z.

(d) s : Z5 → Z5 defined by s(x) = x3 for all x ∈ Z5.

Another important class of functions are those that are both injective and surjective. Any such
function is called a bijection.

Definition A.8. A bijection is a function that is both an injection and a surjection. If the function f
is a bijection, we also say that f is one-to-one and onto and that f is a bijective function.

Activity A.9. Which of the functions in Activity A.7 are bijections?

The Importance of the Domain and Codomain

The functions in the next activity will illustrate why the domain and the codomain are just as impor-
tant as the rule defining the outputs when we are trying to determine if a given function is injective
and/or surjective.
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Activity A.10. Let f : R → R be defined by f(x) = x2 + 1. Notice that

f(2) = 5 and f(−2) = 5.

This observation is enough to prove that the function f is not an injection since we can see that there
exist two different inputs that produce the same output.

Since f(x) = x2 + 1, we know that f(x) ≥ 1 for all x ∈ R. This implies that the function f is
not a surjection. For example, −2 is in the codomain of f and f(x) ̸= −2 for all x in the domain of
f.

(a) Now let T = {y ∈ R | y ≥ 1}, and define F : R → T by F (x) = x2 + 1. Notice that the
function F uses the same formula as the function f and has the same domain as f , but has a
different codomain than f .

(i) Explain why F is not an injection.

(ii) Is F a surjection? Justify your conclusion.

(b) Let Z∗ = {x ∈ Z | x ≥ 0} = N ∪ {0}. Define g : Z∗ → N by g(x) = x2 + 1. (Notice that
this is the same formula used in part (a).)

(i) Calculate g(0), g(1), g(2), g(3), g(4), and g(5). Based on this information, does the
function g appear to be an injection? Does the function g appear to be a surjection?

(ii) Is the function g an injection? Justify your conclusion with a proof or a counterexam-
ple.

(iii) Is the function g a surjection? Justify your conclusion with a proof of a counterexam-
ple.

In Activity A.10, the same mathematical formula was used to determine the outputs for the
functions. However:

• One of the functions was neither an injection nor a surjection.

• Another one of the functions was not an injection but was a surjection.

• The third function was an injection but was not a surjection.

This illustrates the important fact that whether a function is injective or surjective not only depends
on the formula that defines the output of the function but also on the domain and codomain of the
function.

Composition of Functions

The basic idea of function composition is that, when possible, the output of a function f is used as
the input of a function g. The resulting function can be referred to as “f followed by g” and is called
the composition of f with g. For example, if

f(x) = 3x2 + 2 and g(x) = sin(x),
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then we can compute g(f(x)) as follows:

g(f(x)) = g
(
3x2 + 2

)
= sin

(
3x2 + 2

)
.

In this case, f(x), the output of the function f , was used as the input for the function g. This idea
motivates the formal definition of the composition of two functions.

Definition A.11. Let A, B, and C be nonempty sets, and let f : A → B and g : B → C be
functions. The composition of f and g is the function g ◦ f : A→ C defined by

(g ◦ f)(x) = g (f(x))

for all x ∈ A. We often refer to the function g ◦ f as a composite function.

Activity A.12. Let A = {1, 2, 3}, B = {a, b, c, d}, and C = {s, t}. Define f : A→ B by

f(1) = a, f(2) = b, f(3) = c,

g : A→ B by
g(1) = c, g(2) = d, g(3) = c,

and h : B → C by
h(a) = s, h(b) = s, h(c) = t, h(d) = s.

(a) Find the images of the elements in A under the function h ◦ f .

(b) Find the images of the elements in A under the function h ◦ g.

(c) Is h ◦ f an injection? Is h ◦ f a surjection? Explain.

(d) Is h ◦ g an injection? Is h ◦ g a surjection? Explain.

In Activity A.12, we asked questions about whether certain composite functions were injections
and/or surjections. In mathematics, it is typical to explore whether certain properties of an object
transfer to related objects. In particular, we might want to know whether or not the composite of two
injective functions is also an injection. (Of course, we could ask a similar question for surjections.)
These types of questions are explored in the next activity.

Activity A.13. Let the sets A, B, C, and D be as follows:

A = {a, b, c}, B = {p, q, r}, C = {u, v, w, x}, and D = {u, v}.

(a) Construct a function f : A → B that is an injection and a function g : B → C that is an
injection. In this case, is the composite function g ◦ f : A→ C an injection? Explain.

(b) Construct a function f : A → B that is a surjection and a function g : B → D that is a
surjection. In this case, is the composite function g ◦ f : A→ D a surjection? Explain.

(c) Construct a function f : A → B that is a bijection and a function g : B → A that is a
bijection. In this case, is the composite function g ◦ f : A→ A a bijection? Explain.
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In Activity A.13, we explored some properties of composite functions related to injections,
surjections, and bijections. The following theorem summarizes the results that these explorations
were intended to illustrate.

Theorem A.14. Let A, B, and C be nonempty sets, and assume that f : A→ B and g : B → C.

(i) If f and g are both injections, then (g ◦ f) : A→ C is an injection.

(ii) If f and g are both surjections, then (g ◦ f) : A→ C is a surjection.

(iii) If f and g are both bijections, then (g ◦ f) : A→ C is a bijection.

The proof of part (i) is Exercise 4, and part (iii) is a direct consequence of the first two parts.
Therefore, we will focus here on constructing a proof of part (ii). Our goal is to prove that g ◦ f is a
surjection. Since g ◦ f : A→ C, this is equivalent to proving that

for all c ∈ C, there exists an a ∈ A such that (g ◦ f)(a) = c.

Thus, we need to find an a ∈ A such that (g ◦ f)(a) = c.

Now we can look at the hypotheses. In particular, we are assuming that both f : A → B and
g : B → C are surjections. Since we have chosen c ∈ C, and g : B → C is a surjection, we know
that there exists a b ∈ B such that g(b) = c. Now, b ∈ B and f : A→ B is a surjection. Therefore,
there exists an a ∈ A such that f(a) = b. If we now compute (g ◦ f)(a), we will see that

(g ◦ f)(a) = g (f(a)) = g(b) = c.

We can now write the complete proof as follows:

Proof of Theorem A.14, part (ii). Let A, B, and C be nonempty sets, and assume that f : A → B
and g : B → C are both surjections. We will prove that g ◦ f : A→ C is a surjection.

Let c be an arbitrary element of C. We will prove there exists an a ∈ A such that (g ◦f)(a) = c.
Since g : B → C is a surjection, it follows that there exists a b ∈ B such that g(b) = c. Now b ∈ B
and f : A→ B is a surjection. Hence, there exists an a ∈ A such that f(a) = b. We now see that

(g ◦ f)(a) = g (f(a))

= g(b)

= c.

We have therefore shown that for every c ∈ C, there exists an a ∈ A such that (g ◦ f)(a) = c. This
proves that g ◦ f is a surjection. ■

Inverse Functions

Now that we have studied composite functions, we will move on to consider another important idea:
the inverse of a function. In order to study inverse functions, we will need to use the concept of the
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Cartesian product of two setsA andB, denoted byA×B, which is the set of all ordered pairs (x, y)
where x ∈ A and y ∈ B. That is,

A×B = {(x, y) : x ∈ A and y ∈ B} .

In previous mathematics courses, you probably learned that the exponential function (with base e)
and the natural logarithm functions are inverses of each other. You may have seen this relationship
expressed as follows:

For each x ∈ R with x > 0 and for each y ∈ R,
y = ln(x) if and only if x = ey .

Notice that x is the input and y is the output for the natural logarithm function if and only if y is
the input and x is the output for the exponential function. In essence, the inverse function (in this
case, the exponential function) reverses the action of the original function (in this case, the natural
logarithm function). In terms of ordered pairs (input-output pairs), this means that if (x, y) is an
ordered pair for a function, then (y, x) is an ordered pair for its inverse. The idea of reversing the
roles of the first and second coordinates is the basis for our definition of the inverse of a function.

Definition A.15. Let f : A → B be a function. The inverse of f, denoted by f−1, is the set of
ordered pairs {(b, a) ∈ B ×A | f(a) = b}. That is,

f−1 = {(b, a) ∈ B ×A : f(a) = b}.

If we use the ordered pair representation for f, we could also write

f−1 = {(b, a) ∈ B ×A : (a, b) ∈ f}.

Notice that this definition does not state that f−1 is a function. Rather, f−1 is simply a subset
of B × A. In Activity A.16, we will explore the conditions under which the inverse of a function
f : A→ B is itself a function from B to A.

Activity A.16. Let A = {a, b, c}, B = {a, b, c, d}, and C = {p, q, r}. Define

f : A→ C by g : A→ C by h : B → C by
f(a) = r g(a) = p h(a) = p
f(b) = p g(b) = q h(b) = q
f(c) = q g(c) = p h(c) = r

h(d) = q

(a) Determine the inverse of each function as a set of ordered pairs.

(b) (i) Is f−1 a function from C to A? Explain.

(ii) Is g−1 a function from C to A? Explain.

(iii) Is h−1 a function from C to B? Explain.

(c) Make a conjecture about what conditions on a function F : S → T will ensure that its
inverse is a function from T to S.

We will now consider a general argument suggested by the explorations in Activity A.16. By
definition, if f : A → B is a function, then f−1 is a subset of B × A. However, f−1 may or may
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The inverse is not a function.

not be a function from B to A. For example, suppose that s, t ∈ A with s ̸= t and f(s) = f(t) (as
illustrated in Figure A.1).

In this case, if we try to reverse the arrows, we will not get a function from B to A. This is
because (y, s) ∈ f−1 and (y, t) ∈ f−1 with s ̸= t. Consequently, f−1 is not a function. This
observation suggests that if f is not an injection, then f−1 is not a function.

Also, if f is not a surjection, then there exists a z ∈ B such that f(a) ̸= z for all a ∈ A, as in the
diagram in Figure A.1. In other words, there is no ordered pair in f with z as the second coordinate.
This means that there would be no ordered pair in f−1 with z as a first coordinate. Consequently,
f−1 cannot be a function from B to A.

Theorem A.17 formalizes these observations. In the proof of the theorem, we will use both the
input-output representation and the ordered pair representation of a function. The idea is that if
G : S → T is a function, then for s ∈ S and t ∈ T,

G(s) = t if and only if (s, t) ∈ G.

When we use the ordered pair representation of a function, we will also use the ordered pair repre-
sentation of its inverse. In this case, we know that

(s, t) ∈ G if and only if (t, s) ∈ G−1.

Theorem A.17. Let A and B be nonempty sets, and let f : A → B. The inverse of f is a function
from B to A if and only if f is a bijection.

Proof. Let A and B be nonempty sets, and let f : A→ B. We will first assume that f is a bijection
and prove that f−1 is a function from B to A. To do this, we will show that f−1 satisfies the
conditions of Definition A.1.

Let b ∈ B. Since the function f is a surjection, there exists an a ∈ A such that f(a) = b. This
implies that (a, b) ∈ f and hence that (b, a) ∈ f−1. Thus, each element of B is the first coordinate
of an ordered pair in f−1. We must now prove that each element of B is the first coordinate of
exactly one ordered pair in f−1. So let b ∈ B, a1, a2 ∈ A and assume that

(b, a1) ∈ f−1 and (b, a2) ∈ f−1.

This means that (a1, b) ∈ f and (a2, b) ∈ f . We can then conclude that

f(a1) = b and f(a2) = b.

But this means that f(a1) = f(a2). Since f is a bijection, f is by definition an injection, and we
can conclude that a1 = a2. This proves that b is the first element of only one ordered pair in f−1.
Consequently, we have proved that f−1 satisfies the conditions of Definition A.1 and hence f−1 is
a function from B to A.
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We will now assume that f−1 is a function from B to A and prove that f is a bijection. First, to
prove that f is an injection, we will assume that a1, a2 ∈ A and that f(a1) = f(a2). We wish to
show that a1 = a2. If we let b = f(a1) = f(a2), we can conclude that

(a1, b) ∈ f and (a2, b) ∈ f.

But this means that
(b, a1) ∈ f−1 and (b, a2) ∈ f−1.

Since we have assumed that f−1 is a function, we can conclude that a1 = a2. Hence, f is an
injection.

Now to prove that f is a surjection, we will choose an arbitrary b ∈ B and show that there exists
an a ∈ A such that f(a) = b. Since f−1 is a function, bmust be the first coordinate of some ordered
pair in f−1. Consequently, there exists an a ∈ A such that

(b, a) ∈ f−1.

Now this implies that (a, b) ∈ f , and so f(a) = b. This proves that f is a surjection. Since we have
also proved that f is an injection, we can conclude that f is a bijection, as desired. ■

Theorems about Inverse Functions

In the situation where f : A → B is a bijection and f−1 is a function from B to A, we can write
f−1 : B → A. In this case, we frequently say that f is an invertible function, and we usually do
not use the ordered pair representation for either f or f−1. Instead of writing (a, b) ∈ f , we write
f(a) = b, and instead of writing (b, a) ∈ f−1, we write f−1(b) = a. Using the fact that (a, b) ∈ f
if and only if (b, a) ∈ f−1, we can now write f(a) = b if and only if f−1(b) = a. Theorem A.18
formalizes this observation.

Theorem A.18. LetA andB be nonempty sets, and let f : A→ B be a bijection. Then f−1 : B →
A is a function, and for every a ∈ A and b ∈ B,

f(a) = b if and only if f−1(b) = a.

The next two results are two important theorems about inverse functions. The first can be con-
sidered to be a corollary of Theorem A.18.

Corollary A.19. Let A and B be nonempty sets, and let f : A→ B be a bijection. Then

(i) For every x in A,
(
f−1 ◦ f

)
(x) = x.

(ii) For every y in B,
(
f ◦ f−1

)
(y) = y.

Activity A.20. Prove Corollary A.19. For the first part, let x ∈ A, write f(x) = y, and then use the
result in Theorem A.18.

We will now consider the case where f : A → B and g : B → C are both bijections. In this
case, f−1 : B → A and g−1 : C → B. Figure A.2 illustrates this situation.

By Theorem A.14, g ◦ f : A → C is also a bijection. Hence, by Theorem A.17, (g ◦ f)−1

is a function and, in fact, (g ◦ f)−1 : C → A. Notice that we can also form the composition of
g−1 followed by f−1 to get f−1 ◦ g−1 : C → A. Figure A.2 helps illustrate the result of the next
theorem.
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Figure A.2
Composition of two bijections.

Theorem A.21. Let f : A → B and g : B → C be bijections. Then g ◦ f is a bijection and
(g ◦ f)−1 = f−1 ◦ g−1.

Proof. Let f : A → B and g : B → C be bijections. Then f−1 : B → A and g−1 : C → B.
Hence, f−1 ◦ g−1 : C → A. Also, by Theorem A.14, g ◦ f : A → C is a bijection, and hence
(g ◦ f)−1 : C → A. We will now prove that for each z ∈ C, (g ◦ f)−1(z) = (f−1 ◦ g−1)(z).

Let z ∈ C. Since the function g is a surjection, there exists a y ∈ B such that

g(y) = z. (A.1)

Also, since f is a surjection, there exists an x ∈ A such that

f(x) = y. (A.2)

Now equations (A.1) and (A.2) can be written in terms of the respective inverse functions as

g−1(z) = y and (A.3)

f−1(y) = x. (A.4)

Using equations (A.3) and (A.4), we see that(
f−1 ◦ g−1

)
(z) = f−1

(
g−1(z)

)
= f−1(y)

= x. (A.5)

Using equations (A.1) and (A.2) again, we see that (g ◦ f)(x) = z. However, in terms of the inverse
function, this means that

(g ◦ f)−1(z) = x. (A.6)

Comparing equations (A.5) and (A.6), we have shown that for all z ∈ C,
(g ◦ f)−1(z) = (f−1 ◦ g−1)(z). This proves that (g ◦ f)−1 = f−1 ◦ g−1. ■
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Concluding Activities

Activity A.22. Prove the following:

If f : A→ B is a bijection, then f−1 : B → A is also a bijection.

Exercises

(1) For each of the following functions, determine if the function is an injection, a surjection, a
bijection, or none of these. Justify all of your conclusions.

(a) F : R → R defined by F (x) = 5x+ 3, for all x ∈ R.

(b) G : Z → Z defined by G(x) = 5x+ 3, for all x ∈ Z.

(c) f : (R− {4}) → R defined by f(x) =
3x

x− 4
, for all x ∈ (R− {4}).

(d) g : (R− {4}) → (R− {3}) defined by g(x) =
3x

x− 4
, for all x ∈ (R− {4}).

(2) Define f : N → Z as follows: For each n ∈ N,

f(n) =
1 + (−1)n(2n− 1)

4
.

Is the function f an injection? Is the function f a surjection? Justify your conclusions.

Suggestions: Start by calculating several outputs for the function before you attempt to write
a proof. In exploring whether or not the function is an injection, it might be a good idea to
use cases based on whether the inputs are even or odd. In exploring whether f is a surjection,
consider using cases based on whether the output is positive or less than or equal to zero.

(3) An operation ∗ on a set S is a function from S × S to S that assigns to the pair (x, y) ∈
S × S the element x ∗ y in S. For example, addition of integers can be defined as a function
f : Z× Z → Z that maps the pair (a, b) ∈ Z× Z to the integer f(a, b) = a+ b.

(a) Is the function f an injection? Justify your conclusion.

(b) Is the function f a surjection? Justify your conclusion.

(4) Prove Part (i) of Theorem A.14:

Let A, B, and C be nonempty sets, and let f : A → B and g : B → C. If f and g are both
injections, then g ◦ f : A→ C is an injection.

(5) Suppose f : A→ B and g : B → C are functions.

(a) Is it true that if g ◦ f is an injection, then both f and g are injections? If the answer is
no, are there any conditions that f or g must satisfy to make g ◦ f an injection? Prove
your answers.
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(b) Is it true that if g ◦ f is a surjection, then both f and g are surjections? If the answer is
no, are there any conditions that f or g must satisfy to make g ◦ f a surjection? Prove
your answers.

(6) Is composition of functions a commutative operation? Prove your answer.

(7) Is composition of functions an associative operation? Prove your answer.

(8) (a) Define f : Z5 → Z5 by f ([x]) =
[
x2 + 4

]
for all [x] ∈ Z5. Write the inverse of f as a

set of ordered pairs, and explain why f−1 is not a function.

(b) Define g : Z5 → Z5 by f ([x]) =
[
x3 + 4

]
for all [x] ∈ Z5. Write the inverse of g as a

set of ordered pairs, and explain why g−1 is a function.

(c) Is it possible to write a formula for g−1 ([y]), where [y] ∈ Z5? The answer to this question
depends on whether or not it is possible to define a cube root of elements of Z5. Recall
that for a real number x, we define the cube root of x to be the real number y such that
y3 = x. That is,

y = 3
√
x if and only if y3 = x.

Using this idea, is it possible to define the cube root of each element of Z5? If so, what
is 3
√

[0], 3
√
[1], 3

√
[2], 3

√
[3], and 3

√
[4].

(d) Now answer the question posed at the beginning of part (c). If possible, determine a
formula for g−1 ([y]) where g−1 : Z5 → Z5.



Appendix B
Mathematical Induction and the
Well-Ordering Principle

Focus Questions

By the end of this investigation, you should be able to give precise and thorough
answers to the questions listed below. You may want to keep these questions in mind
to focus your thoughts as you complete the investigation.

• What does the Principle of Mathematical Induction say? What do we need to verify
in order to prove a statement using the Principle of Mathematical Induction?

• How do the extended and strong forms of induction differ from the Principle of
Mathematical Induction? How are all of these different versions of induction sim-
ilar?

• What does the Well-Ordering Principle say? What do we need to verify in order
to prove a statement using the Well-Ordering Principle?

• How are the Principle of Mathematical Induction, the Extended Principle of Math-
ematical Induction, the Strong Form of Mathematical Induction, and the Well-
Ordering Principle all related?

Preview Activity B.1. Suppose you are on a game show called Let’s Make a Great Deal. You have
reached the final round and will be asked one question. If you answer the question correctly, you
will win a key to open door number 1. Behind door number 1 is a prize and a key to open door
number 2. Behind door number 2 is a prize and a key to open door number 3. Behind door number
3 is a prize and a key to open door number 4, and so on.

(a) How many prizes will you win if you fail to answer the question correctly?

(b) Which prizes will you win if you answer the question correctly?

Introduction

Mathematical induction is an important tool in mathematics. Induction helps us prove that certain
types of statements are true for all positive integers. This is quite a feat, since there are infinitely
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many positive integers! Mathematical induction comes in more than one flavor. There is the basic
principle, the extended principle, and the strong (or second, or complete) principle. An equivalent
version of the Principle of Mathematical Induction is the Well-Ordering Principle. We will study
each of these principles in this investigation.

The Principle of Mathematical Induction

Activity B.1 demonstrated the basic idea behind induction. Just as no prize comes for free (in our
game, we needed to answer the question in order to win anything), to verify a statement using
induction, we will need to prove something. In other words, we will need to unlock the door that
has our first statement behind it. But unlocking the first door is not enough to unlock every other
door, unless we are able to establish—as was specified in the rules of our game show—that each
door, when opened, contains the key to the next door. If this condition also holds, then once we open
the first door—that is, once we prove the first statement—we will be able to open every other door,
thus proving our statement for every positive integer.

To illustrate this process in a more concrete way, consider the example in the following activity.

Activity B.2. Let n be a positive integer. Complete Table B.2. What do you notice?

n 1 + 2 + 3 + · · ·+ n n(n+1)
2

1

2

3

4

5

The calculations in Activity B.2 show that

1 + 2 + 3 + · · ·+ n =
n(n+ 1)

2
(B.1)

for all integers n between 1 and 5. A few more calculations might convince you that equation (B.1)
is actually true for many more integers, and perhaps for all positive integers. Although we cannot
physically evaluate both sides of equation (B.1) to determine if it is true for every positive integer,
we can use mathematical induction to accomplish the same goal.

To return to our game show analogy, think of verifying equation (B.1) as the goal of the game.
Each door corresponds to one instance of equation (B.1). The first door corresponds to equation
(B.1) with n = 1, the second door to equation (B.1) with n = 2, and so on. In general, for each
positive integer m, the mth door corresponds to equation (B.1) with n = m.

In this context, the question we need to answer to open door number one is whether equation
(B.1) is true when n = 1.

Activity B.3. Is equation (B.1) is true when n = 1? Why?
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Opening the first door is important, but it does not complete the problem of proving equation
(B.1) for all positive integers. In the game, behind each door was a key to opening the next door.
Of course, these keys were a critical part of the game. If one of the doors did not have a key to the
next, then we wouldn’t necessarily win all of the prizes just by opening the first door. In the same
way, to complete our verification of equation (B.1), we will need to show that the first door (n = 1)
contains the key to the second door (n = 2), the second door (n = 2) contains the key to the third
door (n = 3), and so on.

Our calculations in Activity B.2 show that equation (B.1) is true for n from 1 to 5, but they don’t
demonstrate that each holds the key to the next. In other words, if equation (B.1) is true for n = 1,
must it also be true when n = 2? And if equation (B.1) is true when n = 2, must it also be true
when n = 3? And so on. In a nutshell, what we need to demonstrate is that if equation (B.1) is true
for some arbitrary positive integer n, then it must also be true for the integer n+ 1. This shows that
each instance when equation (B.1) is true for a given positive integer n provides the key to proving
that the equation is also true for the integer n+ 1.

As an example, let’s show that if equation (B.1) is true for n = 1, then it must also be true for
n = 2. To do so, we will assume equation (B.1) is true when n = 1. That is, we will assume that

1 =
(1)(2)

2
. (B.2)

Assuming equation (B.2) is true, we need to prove that equation (B.1) is true when n = 2, or that

1 + 2 =
(2)(3)

2
.

Since we are assuming equation (B.1) to be true when n = 1, we can begin with the true statement
(B.2). Adding 2 to both sides of equation (B.2) yields

1 + 2 =
(1)(2)

2
+ 2

=
(1)(2) + 2(2)

2

=
(2)(1 + 2)

2

=
(2)(3)

2
,

which shows that equation (B.1) is true when n = 2 (assuming that the same equation is true when
n = 1).

Activity B.4. To complete our proof of equation (B.1) for all positive integers n, we need to verify
that whenever equation (B.1) for some arbitrary positive integer n, then it is also true for the integer
n+ 1.

(a) Continue, as above, to show that if equation (B.1) is true for n = 2, then it is also true for
n = 3.

(b) Of course, we cannot continue showing each specific implication in turn, as that would take
an infinite amount of time. To be more efficient, we really want to show that if n is any
positive integer and equation (B.1) is true for n, then equation (B.1) is also true for n+1. To
do this, we let n be an arbitrary positive integer and assume that equation (B.1) is true for n.
That is, we assume that

1 + 2 + 3 + · · ·+ n =
(n)(n+ 1)

2
.



70 Appendix B. Mathematical Induction and the Well-Ordering Principle

Use this assumption to show that equation (B.1) is true for n+ 1.

To summarize, we needed to prove two things to show that equation (B.1) is true for all positive
integers n:

(1) Equation (B.1) is true when n = 1; and

(2) whenever equation (B.1) is true for a positive integer n, then it is also true for the integer
n+ 1.

Step 1 is equivalent to answering the question in our game show and opening the first door.
The prize is that equation (B.1) is true when n = 1. Step 2 verifies that each door holds the key to
opening the next—that is, if equation (B.1) is true for the integer n, then it is also true for n + 1.
Completing both steps shows that equation (B.1) is true for every positive integer n.

Let’s now formalize the ideas from the previous example. In doing so, we will develop the
Principle of Mathematical Induction, which can be used when we have a family of statements, one
for each positive integer, that we want to prove. For example, for each positive integer n, let P (n)
be the statement that

1 + 2 + 22 + 23 + · · ·+ 2n−1 = 2n − 1 (B.3)

To prove that P (n) is true for all n ∈ N, we have seen that we need to prove that:

(1) P (1) is true (we call this the base case); and

(2) for every positive integer n, if P (n) is true, then P (n + 1) is also true. (This second step is
called the inductive step.)

When we prove the inductive step, we assume P (n) is true for some arbitrary positive integer
n. This assumption is called the induction hypothesis or inductive hypothesis. We then show, using
this assumption, that P (n+ 1) is also true.

Rephrasing this process in a slightly different form leads us to the formal statement of the Princi-
ple of Mathematical Induction. Let S be the set of positive integers for which P (n) is true. Proving
P (1) is true is the same as showing that 1 is in S. Likewise, showing that P (n) implies P (n + 1)
is equivalent to showing that n + 1 ∈ S whenever n ∈ S. Combining these two observations, we
arrive at the following axiom:

Axiom B.5 (Principle of Mathematical Induction). Let S be a subset of the set of natural numbers
N. If

(i) S contains 1 and

(ii) S contains the positive integer n+ 1 whenever S contains n,

then S = N.

In essence, the Principle of Mathematical Induction tells us that if we have a set S ⊆ N contain-
ing 1, and if S contains the integer n + 1 whenever S contains n, then S must contain 1 + 1 = 2.
But then S must also contain 2 + 1 = 3, and 3 + 1 = 4, and so on. Therefore, S will contain all
natural numbers. By using the Principle of Mathematical Induction, we can prove infinitely many
statements in only two steps.

To illustrate, let’s formally apply the Principle of Mathematical Induction to establish equation
(B.3). Let

S = {n ∈ N : 1 + 2 + 22 + 23 + · · ·+ 2n−1 = 2n − 1}.
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To use the Principle of Mathematical Induction, we need to show that 1 ∈ S and that n + 1 ∈ S
whenever n ∈ S. First we will show that 1 ∈ S (the base case). Notice that when n = 1, we have

1 + 2 + 22 + 23 + · · ·+ 2n−1 = 20 = 1

and
2n − 1 = 21 − 1 = 2− 1 = 1.

So equation (B.3) is true when n = 1, which means that 1 ∈ S. For the inductive step, we need to
show that n+ 1 ∈ S whenever n ∈ S. To do so, we will assume that n ∈ S for some integer n ≥ 1
(the inductive hypothesis). In this case, we will assume that

1 + 2 + 22 + 23 + · · ·+ 2n−1 = 2n − 1. (B.4)

We then need to prove that n+ 1 ∈ S. So we need to show that

1 + 2 + 22 + 23 + · · ·+ 2n−1 + 2(n+1)−1 = 2n+1 − 1,

or, equivalently,
1 + 2 + 22 + 23 + · · ·+ 2n−1 + 2n = 2n+1 − 1. (B.5)

To prove (B.5), we can substitute from (B.4) in the left hand side of (B.5) to obtain

1 + 2 + 22 + 23 + · · ·+ 2n−1 + 2n =
(
1 + 2 + 22 + 23 + · · ·+ 2n−1

)
+ 2n

= (2n − 1) + 2n

= 2(2n)− 1

= 2n+1 − 1,

which shows that n+ 1 ∈ S. Therefore, S = N by the Principle of Mathematical Induction, which
means that (B.3) is true for all n ∈ N.

Activity B.6. Let r be a real number with r > 1. Consider the statements

1 + r + r2 + r3 + · · · rn−1 =
rn − 1

r − 1
(B.6)

for all n ≥ 1. (Note that you have probably seen equation (B.6) in a previous class. Do you re-
member where it comes from?) We will use induction to prove that (B.6) is true for all n ∈ N.

(a) Identify an appropriate set S on which to apply our induction argument.

(b) What is the base case? Give a precise statement, and then verify your statement.

(c) What is the induction hypothesis? What is the inductive step?

(d) Complete the inductive step to verify that equation (B.6) is true for all n ∈ N.

The Extended Principle of Mathematical Induction

Preview Activity B.7. Let’s now return to our Let’s Make a Great Deal game. Suppose you fail
to correctly answer the question that allows you to open the first door. But suppose also that, after



72 Appendix B. Mathematical Induction and the Well-Ordering Principle

doing so, the host gives you the opportunity to answer a second question. If you correctly answer
question number 2, then you win a key to open door number 2. As before, behind door number 2 is
a prize and a key to open door number 3. Behind door number 3 is a prize and a key to open door
number 4, and so on.

(a) Which prizes would you win if you answered the second question correctly?

(b) Suppose you fail to answer the second question correctly. The host then gives you an option
of answering a third question. If you correctly answer question number 3, then you win a
key to open door number 3. Which prizes would you win if you answered the third question
correctly?

(c) Suppose you fail to answer the third question correctly. The host then gives you an option of
answering a fourth question. If you correctly answer question number 4, then you win a key
to open door number 4. Which prizes would you win if you answered the fourth question
correctly?

(d) You probably see the pattern by now. Suppose you fail to answer the first m − 1 questions
correctly for some integer m ≥ 2. The host then gives you an option of answering an mth

question. If you correctly answer question number m, then you win a key to open door
number m. Which prizes would you win if you answered the mth question correctly?

(e) Compare this version of the game to the version described in Activity B.1. How are the two
versions alike, and how are they different?

The Principle of Mathematical Induction that we stated in the previous section is a method for
proving an entire family of statements, one for each positive integer n. There are, however, instances
when we need to modify our induction arguments slightly. For example, consider the statement

2n < n!.

If we try to prove this statement for all n ∈ N, we immediately encounter a problem in that the
statement is not true for n = 1. In fact, the statement is also false for n = 2 and n = 3. However,
the statement does appear to be true for n ≥ 4. If we want to use the Principle of Mathematical
Induction to prove that this statement is true for n ≥ 4, we will need to somehow translate it to an
equivalent statement that is true for all positive integers. One way to do this is by re-indexing the
statement to say

2n+3 < (n+ 3)!

for all positive integers n. Although this would solve the problem, the resulting statement is more
complicated, and if we started with a more involved result, re-indexing could potentially make the
situation appear more difficult than it really is. This is where the result of Activity B.7 is useful;
in fact, proving that 2n < n! for all n ≥ 4 is analogous to answering the 4th question correctly.
The point of Activity B.7 is that it really shouldn’t make any difference what our starting point is,
as long as we have one. If we can open door number n0 for some integer n0, then we will be able
to open all doors with numbers higher than n0 as well—even though we may not be able to open
the doors numbered lower than n0. This is the idea behind the Extended Principle of Mathematical
Induction.

Axiom B.8 (Extended Principle of Mathematical Induction). Let S be a subset of the set of the
integers Z. If there is an integer n0 such that

(i) S contains n0 and
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(ii) for all n ≥ n0, S contains the positive integer n+ 1 whenever S contains n,

then S contains every integer greater than or equal to n0.

When applying the Extended Principle of Mathematical Induction, our base case is when n = n0
instead of n = 1, but the inductive step is still the same. Note that our goal in this situation is to
show that S contains every integer greater than or equal to n0, which establishes that our statement
is true for all n ≥ n0. Doing so doesn’t rule out the possibility that S could contain other integers
as well, but we are only interested in the integers greater than or equal to n0.

Activity B.9. To illustrate the Extended Principle of Mathematical Induction, we will continue with
our example of proving that 2n < n! for all n ≥ 4.

(a) State and verify the base case for this inductive proof.

(b) What is the inductive hypothesis in this proof? Give a precise statement, and then complete
the inductive step.

(c) What conclusion can you draw from your work in parts (a) and (b)?

Notice that the only difference between the Principle of Mathematical Induction and the Ex-
tended Principle of Mathematical Induction is the base case. In fact, letting n0 = 1 in the Extended
Principle yields the original Principle of Mathematical Induction. A bit later, we will see that these
two forms of induction are actually equivalent.

Before we move one, one additional comment about the format of induction proofs is in order.
Generally, when we construct an induction argument, we do not set up the set S as we have done
in our previous examples. Instead, if we are trying to prove a family {P (n)} of statements, one for
each integer greater than or equal to some integer n0, we simply prove that P (n0) is true, and then
prove that if P (n) is true for some integer n ≥ n0, then P (n+1) is also true. In the induction proofs
throughout the rest of this appendix (and throughout the remainder of the text), we will follow this
simplified format.

The Strong Form of Mathematical Induction

Preview Activity B.10. Let’s return once more to our Let’s Make a Great Deal game. We will keep
the rules the same and suppose in addition that behind each door is not only a prize and a key to
open the next door, but also keys to open all of the preceding doors. Compare and contrast this game
to the previous versions of the game we have studied. How is it similar, and how is it different? Do
the outcomes of the game change?

The version of the Let’s Make a Great Deal game from Activity B.10 may seem a bit silly;
after all, why do we need all of those extra keys? But let’s examine how this version of the game
translates to an induction proof. We still need to answer some question (prove some base case n0)
to begin. In our previous inductive steps, we then showed that n ∈ S implies n + 1 ∈ S—that is,
each door contains the key to the next door. In our new version of the game, the idea of having all
of the keys to the preceding doors is analogous to assuming not only that n ∈ S, but also that n0,
n0 + 1, n0 + 2, . . ., n are all in S. In other words, we can assume the validity of all of the previous
statements, not just the nth statement. To see why this might be useful, consider the statement that



74 Appendix B. Mathematical Induction and the Well-Ordering Principle

every nonnegative integer n has a binary representation—that is, there exists r ≥ 0 and integers ar,
ar−1, . . ., a1, a0, all either 0 or 1, such that

n = ar2
r + ar−12

r−1 + · · ·+ a22
2 + a12 + a0.

For our base case (n = 0) we have that 0 = 0, and so we are done (letting r = 0 and a0 = 0). For
the inductive step, it is a bit complicated to add 1 to n (in binary) to show that n + 1 has a binary
representation. (We would have to worry about all the possible carries.) However, if n + 1 is even,
then k = (n+ 1)/2 is smaller than n+ 1. If k has a binary representation

k = bs2
s + bs−12

s−1 + · · ·+ b22
2 + b12 + b0,

then
n+ 1 = 2k = bs2

s+1 + bs−12
s + · · ·+ b22

3 + b12
2 + b02,

and so n + 1 has a binary representation. If n + 1 is odd, then k = n/2 is smaller than n + 1. If k
has a binary representation

k = bs2
s + bs−12

s−1 + · · ·+ b22
2 + b12 + b0,

then
n+ 1 = 2k + 1 = bs2

s+1 + bs−12
s + · · ·+ b22

3 + b12
2 + b02 + 1,

and so n+1 has a binary representation in this case as well. By assuming that all of the nonnegative
integers less than or equal to n have binary representations, we can fairly easily prove that n + 1
also has a binary representation.

Being able to assume the statement we want to prove for all integers less than or equal to n is
at times necessary for us to carry out an induction proof. The axiom that allows us to use such a
method is called the Strong Form of Mathematical Induction.

Axiom B.11 (Strong Form of Mathematical Induction). Let S be a subset of Z containing some
integer n0. Suppose that for all n ≥ n0, S contains n+1 whenever S contains each integer m with
n0 ≤ m ≤ n. Then S contains all integers greater than or equal to n0.

To reiterate, the Strong Form of Mathematical Induction allows us to assume much more in our
inductive hypothesis than the previous two versions do. Strong induction is useful in a variety of
settings, including proving results involving certain recursively defined sequences like the Fibonacci
sequence.

Recall that the Fibonacci sequence is defined by the recurrence relation

fn = fn−1 + fn−2 (B.7)

for all n ≥ 3, with f1 = f2 = 1. The recurrence relation (B.7) is very time consuming to use to
compute fn for large values of n. However, it turns out that there is a fascinating formula that gives
the nth term of the Fibonacci sequence directly, without using the relation from (B.7).

Let φ = 1+
√
5

2 and φ = 1−
√
5

2 . We will show that

fn =
φn − φn

√
5

. (B.8)

Formula (B.8) is called Binet’s Formula. ∗ The number φ = 1+
√
5

2 is intimately related to the Fi-
bonacci sequence. This number also occurs often in other areas of mathematics. It was an important

∗If you wonder where a formula like this comes from, the quantities φ and φ are eigenvalues for a certain matrix that we
can use to generate the Fibonacci sequence. This formula follows in a straightforward manner.
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number to the ancient Greek mathematicians who felt that the most aesthetically pleasing rectangles
had sides in the ratio of φ : 1. The Greeks called φ the golden mean or golden ratio. Formula (B.8)
provides a fascinating relationship between the Fibonacci numbers and the golden ratio. It is also
surprising (and not at all obvious) that the expression on the right hand side of (B.8) is an integer
for each positive integer n.

To prove formula (B.8), we will use mathematical induction. Note that since f1 and f2 are
defined independent of the recursion relation, it will be necessary to verify our statement in both the
n = 1 and n = 2 cases. First we will make a few observations. Note that the golden ratio φ and its
conjugate φ are the solutions (check this!) to the quadratic equation

x2 = x+ 1.

In addition,
φ+ φ = 1 and φ− φ =

√
5.

Therefore,
φn+1 = φ2φn−1 = (φ+ 1)φn−1 = φn + φn−1.

Similarly,
φn+1 = φ2φn−1 = (φ+ 1)φn−1 = φn + φn−1.

We will use these last two identities in our proof of Binet’s Formula. We will proceed by math-
ematical induction on n. When n = 1, we have

1√
5
(φ+ φ) =

1√
5

(
1 +

√
5

2
− 1−

√
5

2

)
=

√
5√
5
= 1 = f1.

So equation (B.8) is true when n = 1. When n = 2, we have

1√
5

(
φ2 + φ2

)
=

1√
5

(1 +
√
5

2

)2

−

(
1−

√
5

2

)2


=
1√
5

(
1

4
(1 + 2

√
5 + 5)− 1

4
(1− 2

√
5 + 5)

)
=

√
5√
5

= 1

= f1.

So equation (B.8) is true when n = 2.

Since each term in the Fibonacci sequence depends on the preceding two terms, we will need to
use the Strong Form of Mathematical Induction in our proof. Therefore, assume equation (B.8) is
true for all positive integers m less than a given n ≥ 2. We must show that

fn+1 =
φn+1 − φn+1

√
5

.
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This follows by observing that

φn+1 − φn+1

√
5

=
1√
5

[(
φn + φn−1

)
−
(
φn + φn−1

)]
=

1√
5

[
(φn − φn) +

(
φn−1 − φn−1

)]
= fn + fn−1

= fn+1.

Thus, by induction, Binet’s Formula is true for all n ∈ N.

Note that, with Binet’s Formula, we can easily compute fn for very large values of n. For
example, f500 is equal to

1394232245616978801397243828704072839500702565876973

07264108962948325571622863290691557658876222521294125.

The Well-Ordering Principle

Preview Activity B.12.

(a) Which of the following sets contains a smallest element? Explain.

(i) A = {1, 2, 3, 4}

(ii) B = {n ∈ N | n > 4}

(iii) C = {x ∈ Z | x > 4}

(iv) D = {x ∈ Z | x < 4}

(b) Do you believe the following statement is true or false?

Every nonempty subset of N has a least element.

No proof is required if you believe the statement is true, but if you believe it is false, you
should be able to give a counterexample.

(c) Do you believe the following statement is true or false?

Every nonempty subset of Z has a least element.

No proof is required if you believe the statement is true, but if you believe it is false, you
should be able to give a counterexample.

(d) Let’s return to our Let’s Make a Great Deal game. Suppose a friend of yours has won the
game. Is it possible to determine which question your friend answered correctly to win?
Explain.

We will begin our discussion of the Well-Ordering Principle with the following familiar proof
that

√
2 is not a rational number:
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Assume to the contrary that
√
2 = m

n for some positive integers m and n ̸= 0 so that
m
n is in reduced form (that is, the greatest common divisor of m and n is 1). Then
n
√
2 = m, and so 2n2 = m2. Thus, the prime 2 divides m2 and so 2 also divides m.

This means that m = 2k for some integer k. Then 4k2 = m2 = 2n2, and so 2k2 = n2.
From this we see that 2 divides n, contradicting the fact that m and n have no common
factors greater than 1. We can therefore conclude that

√
2 is not a rational number.

All of the results that we used in this proof—including those that you may not have seen
before—are verified in our investigations, with one exception. This exception illustrates how easy it
is to take certain mathematical results for granted. The exception in the proof is that we can always
find a rational number in reduced form that is equal to m

n . How do we know we can do this? Recall
that the rational numbers a

b and c
d are equal if ad = bc. To show that we can find a rational number

in reduced form that is equal to m
n , we might consider all rational numbers a

b that are equal to m
n

and prove that there is one so that the greatest common divisor (or gcd) of a and b is 1. In other
words, let

S =
{
gcd(a, b) :

a

b
=
m

n

}
be the set of all greatest common divisors of the numerators and denominators of fractions that are
equal to m

n . Certainly S is not empty, since gcd(m,n) is in S. Also, since gcd(x, y) ≥ 1 for any
integers x and y, not both 0, it follows that the integers in S are all greater than or equal to 1. We
need to actually show that 1 is in S. If 1 is in S, then 1 will have to be the smallest element in S.

This is where our conclusion from Activity B.12 is helpful. If we assume that every nonempty
subset of N contains a smallest integer, then S must contain a smallest integer d. Now all we have
to do is show that d = 1. This is because if d = 1, then there must be a fraction a

b equal to m
n with

gcd(a, b) = 1. Since d ∈ S, there exists a rational number a
b that is equal to m

n with gcd(a, b) = d.
Now d divides both a and b, so let da′ = a and db′ = b for some positive integers a′ and b′. Since
d = gcd(a, b), it follows that gcd(a′, b′) = 1. But

m

n
=
a

b
=
a′d

b′d
=
a′

b′
,

and so gcd(a′, b′) is in S. However, this can happen only if d = 1, and so 1 is the smallest element
in S, and there is a fraction in reduced form that is equal to m

n .

The key to our proof that every rational number is equal to a rational number in reduced form
was the assumption that the set S contained a smallest element. Based on Activity B.12, this seems
like a reasonable assumption to make. The principle that allows us to make it is called the Well-
Ordering Principle.

To thoroughly understand the Well-Ordering Principle, we first need to discuss well-ordered
sets. But to talk about well-ordered sets, we need to understand ordered sets in general. This leads
us to the idea of binary relations.

A binary relation on a set (or relation for short) is simply a way to compare elements in the
set. For example, consider the set consisting of the citizens of the state of Michigan. We might say
that one person is related to another if the two have at least one parent in common. Note that some
people in this set are related and others are not. This observation illustrates the fact that a relation
on a set does not need to compare every pair of elements in the set.

As a smaller example, let S = {1, 2, 3, 4}, and say that a and b are related in S if a divides b.
In this case we have that 1 is related to 2, 3, and 4, while 2 is related only to 4. To clearly identify
related pairs of elements in S, we might list all of the related elements as ordered pairs. For this
relation, the resulting pairs are (1, 2), (1, 3), (1, 4), and (2, 4). The general definition of a relation
on a set follows this example.
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Definition B.13. A relation on a set S is a subsetR of the Cartesian product S×S. In other words,
a relation on S is a set of ordered pairs, where both coordinates of each pair are elements of S.

For example, the subset R = {(a, a) : a ∈ Z} of Z × Z is the relation we call equals. If R
is a relation on a set S, we usually suppress the set notation and write a ∼ b, read “a is related to
b,” if (a, b) ∈ R. In this case, we often refer to ∼ as the relation instead of the set R. Sometimes
we use familiar symbols for special relations. For example, we write a = b if (a, b) is in the set
R = {(a, a) : a ∈ Z}.

There are several properties that relations may satisfy. For example:

• A relation ∼ on a set S is reflexive if a ∼ a for all a ∈ S.

• A relation ∼ on a set S is symmetric if whenever a ∼ b (for any a, b ∈ S), we also have
b ∼ a.

• A relation ∼ on a set S is transitive if whenever a ∼ b and b ∼ c (for any a, b, c ∈ S), we
also have a ∼ c.

• A relation ∼ on a set S is antisymmetric if whenever a ∼ b and b ∼ a (for any a, b ∈ S),
then a = b.

Activity B.14. Determine whether each of the given relations on Z is reflexive, symmetric, transi-
tive, and/or antisymmetric. Give reasons to support your answers.

(a) R = {(a, b) : a > b}

(b) R = {(a, b) : a2 = b2}

(c) R = {(a, b) : ab ≥ 0}

(d) R = {(a, b) : a and b leave the same remainder when divided by 3}

Some relations, like the relation ≤ on R, give us a way of organizing the elements in the sets on
which they are defined in a specified way (e.g., on the number line). The next definition formalizes
this idea.

Definition B.15. A set S is a partially ordered set (or poset) if there is a relation, which we will
denote by ≤, on S such that for all x, y, z ∈ S:

(i) x ≤ x (≤ is a reflexive relation);

(ii) if x ≤ y and y ≤ x, then x = y (≤ is an antisymmetric relation); and

(iii) if x ≤ y and y ≤ z, then x ≤ z (≤ is a transitive relation).

A partially ordered set S is totally ordered if it also satisfies

(iv) either x ≤ y, y ≤ x, or x = y (≤ satisfies the trichotomy property).

What makes a partially ordered set totally ordered is that any two elements are related somehow,
which is not necessary in a partially ordered set. An example of a partially ordered set that is not
totally ordered is the set of positive integers, where a is related to b if a divides b. Examples of
totally ordered sets are Z,Q, and R, using the standard “less than or equal to” relation (≤).

The Well-Ordering Principle tells us that any subset of Z that is bounded below contains a
smallest element. To make this all precise, we need to explain what we mean by a smallest element
in a set and also what bounded below means. These definitions should not be surprising.
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Definition B.16. Let S be a totally ordered set, and let A be a subset of S.

• An element m ∈ S is a lower bound for A if m ≤ a for all a ∈ A. The set A is bounded
below if A has a lower bound in S.

• An element a ∈ A is a least or smallest element in A if a ≤ a′ for all a′ ∈ A.

It is important to note the difference between a lower bound and a smallest element. The integer
−2 is a lower bound for N, but is not a smallest element in N since it is not an element of N.
Every smallest element in a set is also a lower bound for the set. However, not every set is bounded
below or contains a least element. For example, the set of even integers is not bounded below. In
addition, a set can be bounded below but not contain a least element. For example, the open interval
(0, 1) = {x ∈ R : 0 < x < 1} is bounded below by 0 but does does not have a smallest element
(since there is no smallest positive real number).

We have one more step before stating the Well-Ordering Principle.

Definition B.17. A totally ordered set S is well-ordered if every nonempty subset A of S contains
a least element.

We can now formally state the Well-Ordering Principle.

Axiom B.18 (The Well-Ordering Principle). Every nonempty subset of Z that is bounded below is
well-ordered.

The Well-Ordering Principle is often stated within the specific context of the natural numbers,
where it implies that every nonempty subset of N contains a smallest element. Our version is some-
what more general and is equivalent to the following:

Axiom B.19 (The Well-Ordering Principle). Every nonempty subset of Z that is bounded below
contains a smallest element.

Note that, in general, a set can have a smallest element without being well-ordered. Consider, for
example, the set R∗ of all nonnegative real numbers. Note that R∗ has a smallest element—namely,
0—but is not well-ordered, since it contains a nonempty subset (the positive reals, for example) that
does not have a smallest element. The equivalence of the two forms of the Well-Ordering Principle,
as we have stated them, stems from the fact that both are universally quantified—that is, both refer to
every nonempty subset of Z that is bounded below. The first is really saying that if S is a nonempty
subset of Z that is bounded below, then every nonempty subset of S contains a smallest element.
But a nonempty subset of S is still a nonempty subset of Z that is bounded below. For this reason,
the second version of the Well-Ordering Principle is equivalent to the first.

As an example of the use of the Well-Ordering Principle, we will prove the following theorem,
which we also proved in Investigation 1 as part of the Fundamental Theorem of Arithmetic. (See
page 10.)

Theorem. Every integer greater than 1 is either prime or can be factored into a product of primes.

Proof. To use the Well-Ordering Principle, we need to define a nonempty subset of Z that is bounded
below. To do so, we will proceed by contradiction and assume that there is an integer greater than 1
that is not prime and cannot be written as a product of primes. Let

S = {n ∈ N : n is not prime and cannot be written as a product of primes}.

Then S is nonempty by hypothesis and is bounded below (by 1). The Well-Ordering Principle tells
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us that S contains a smallest element m. By definition, m is not prime, so there exist integers a and
b with 1 < a, b < m such that m = ab. Since m is the smallest element in S, it follows that a and
b are not in S. Thus, a and b are either prime or can be written as a product of primes. Therefore,
there exist positive integers r and s and primes p1, p2, . . ., pr and q1, q2, . . ., qs such that

a = p1p2 · · · pr and b = q1q2 · · · qs.

But then
m = ab = p1p2 · · · prq1q2 · · · qs

is a product of primes, which is a contradiction, since we assumed that m could not be written as a
product of primes. We can therefore conclude that every integer greater than 1 is either prime or can
be factored into a product of primes. ■

You may want to compare the above proof to the proof of the Fundamental Theorem of Arith-
metic from Investigation 1, which used induction instead of the Well-Ordering Principle. It is no
coincidence that both methods can be used to establish similar results. In fact, as we will see in the
next section, the Well-Ordering Principle and all three different forms of the Principle of Mathemat-
ical Induction are logically equivalent.

It is also important to note that we have labeled both the principles of mathematical induction
and the Well-Ordering Principle as axioms and not theorems. That is because we cannot prove any
one of these principles (although, as noted above, we can prove that they are equivalent to each
other), but they seem evident enough that we will assume them to be true.

The Equivalence of the Well-Ordering Principle and the Principles
of Mathematical Induction

In this section, we will prove that the principles of mathematical induction and the Well-Ordering
Principle are equivalent. That is, any one of these principles implies any of the others. It is important
to note that Theorem B.20 does not prove any of these principles, but says that if we assume one of
them to be valid, then all of the others are valid as well.

Theorem B.20. The following are equivalent:

(i) The Principle of Mathematical Induction

(ii) The Extended Principle of Mathematical Induction

(iii) The Strong Form of Mathematical Induction

(iv) The Well-Ordering Principle.

A word on the proof of Theorem B.20: To prove this string of equivalences, we will show that
(i) implies (ii), (ii) implies (iii), (iii) implies (iv), and then (iv) implies (i). This will demonstrate that
any one of the four statements implies any of the others, as can be seen by following an appropriate
string of implications. (For example, to see that (iii) implies (ii), we can simply note that (iii) implies
(iv), (iv) implies (i), and (i) implies (ii).) Also, the proofs of each equivalence are subtle in that both
the hypotheses and conclusions are complicated statements. Because of this, we will have to be
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very careful about our assumptions in each case. We will begin by showing that the Principle of
Mathematical Induction implies the Extended Principle of Mathematical Induction. The steps to
complete this proof are outlined in the next activity.

Activity B.21. To prove that the Principle of Mathematical Induction implies the Extended Principle
of Mathematical Induction, we will assume that the Principle of Mathematical Induction is true. This
means that any subset S of N that contains 1 and has the property that n+ 1 ∈ S whenever n ∈ S
must be equal to N.

We need to prove that the Extended Principle of Mathematical Induction is true. So we will
assume that n0 is an integer and T is a subset of Z such that n0 ∈ T and n + 1 ∈ T whenever
n ≥ n0 and n ∈ T . We need to prove that {n ∈ Z | n ≥ n0} ⊆ T .

In order to use the Principle of Mathematical Induction, we need to construct some subset of
N that is related to T but contains 1 as its smallest element. To do so, we can shift or re-index the
elements of T so that n0 corresponds to 1. In particular, we will define S to be the set

S = {k − n0 + 1 ∈ N | k ∈ T} .

(a) Use the assumption that n0 ∈ T to prove that 1 ∈ S.

(b) We now need to prove that if n ≥ 1 is in S, then n + 1 ∈ S. Let n ≥ 1 be in S. There is
a corresponding element k in T . Write down a formula for k in terms of n and n0. Explain
your reasoning.

(c) Based on our assumptions about T , what integer besides k must also be in T ?

(d) Now use the result of part (c) to conclude that n+ 1 ∈ S.

This proves that S contains 1 and that n + 1 ∈ S whenever n ∈ S. Therefore, by the Principle
of Mathematical Induction, S = N. We will now use this fact to prove that {n ∈ Z | n ≥ n0} ⊆ T .

By assumption, n0 ∈ T . So we need to prove that if x ∈ Z with x > n0, then x ∈ T . To this
end, assume that x ∈ Z and x > n0.

(e) Prove that x− n0 ∈ N and therefore x− n0 ∈ S.

(f) Show that part (e) implies that x− 1 ∈ T . Then explain how we can conclude that x ∈ T .

(g) Explain why we have now completed the proof that the Extended Principle of Mathematical
Induction is implied by the Principle of Mathematical Induction.

We will now consider the other implications in Theorem B.20.

Proof of Theorem B.20. (ii) → (iii): We will assume that the Extended Principle of Mathematical
Induction is true. We will then prove that the Strong Form of Mathematical Induction must also be
true.

To prove the Strong Form, we let n0 be an integer and assume T is a subset of Z such that

(1) n0 ∈ T , and

(2) for every n ∈ Z with n ≥ n0, if {n0, n0 + 1, . . . , n} ⊆ T , then (n+ 1) ∈ T .
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We then need to prove that T contains all integers greater than or equal to n0—or, equivalently, that

{x ∈ Z | x ≥ n0} ⊆ T.

We will use the Extended Principle of Mathematical Induction to prove the following statement:

For each natural number k with k ≥ n0, {n0, n0 + 1, . . . , k} ⊆ T .

Since we have assumed that n0 ∈ T , we know that {n0} ⊆ T . Hence the base case (k = n0) is
true.

For the inductive step, let k ∈ N with k ≥ n0, and assume that

{n0, n0 + 1, . . . , k} ⊆ T.

By what we assumed about the set T , we can conclude that k + 1 ∈ T , and therefore

{n0, n0 + 1, . . . , k, k + 1} ⊆ T.

This proves that if {n0, n0 + 1, . . . , k} ⊆ T , then {n0, n0 + 1, . . . , k, k + 1} ⊆ T is true;
hence, the inductive step has been established. By the Extended Principle of Mathematical Induc-
tion, we can conclude that for each natural number k with k ≥ n0, {n0, n0 + 1, . . . , k} ⊆ T . This
proves that T contains all integers greater than or equal to n0, which is what we needed to prove to
show that the Strong Form of Mathematical Induction is true.

We have therefore shown that if the Extended Principle of Mathematical Induction is true, then
the Strong Form of Mathematical Induction is also true.

(iii) → (iv): We will now show that the Strong Form of Mathematical Induction implies the Well-
Ordering Principle. We will assume the Strong Form of Mathematical Induction. That is, whenever
we have a subset U of Z such that

• n0 ∈ U for some integer n0; and

• whenever k ∈ U for all n0 ≤ k ≤ n, then n+ 1 ∈ U ,

then U contains the set of all integers greater than or equal to n0. To prove the Well-Ordering
Principle, we must show that any nonempty subset of Z that is bounded below contains a smallest
element. We will proceed by contradiction and assume there is a nonempty subset T of Z that is
bounded below and does not contain a least element. Let m be a lower bound for T . If m ∈ T , then
T contains a smallest element, namely m. So m cannot be an element of T . Let S be the set of all
strict lower bounds for T—that is,

S = {n ∈ Z : n < t for all t ∈ T}.

Since m is a lower bound for T and m ̸∈ T it follows that m < t for all t ∈ T . So m ∈ S. Suppose
n ≥ m so that m, m+1, m+2, . . ., n are all in S. We will show n+1 ∈ S. Since n ∈ S we must
have n < t for all t ∈ T . This, however, implies that

n+ 1 ≤ t (B.9)

for all t ∈ T . If n + 1 = t for some t ∈ T , then n + 1 must be the smallest element in T , which
cannot happen. Therefore,

n+ 1 ̸= t (B.10)



Concluding Activities 83

for all t ∈ T . Combining (B.9) and (B.10) shows n + 1 < t for all t ∈ T , and so n + 1 ∈ S.
By the Strong Form of Mathematical Induction, we can then conclude that S contains all integers
greater than or equal to m. It follows that every integer is a strict lower bound for T , and so T = ∅,
a contradiction. Therefore, no such set T exists, which means that every nonempty subset of Z that
is bounded below contains a smallest element. We have therefore shown that the Strong Form of
Mathematical Induction implies the Well-Ordering Principle.

(iv) → (i): This is left to the reader in Activity B.22.

■

Concluding Activities

Activity B.22. Complete the proof of Theorem B.20 by proving that the Well-Ordering Principle
implies the Principle of Mathematical Induction. (Hint: If S is a subset of N that contains 1 and also
contains n+ 1 whenever S contains n, consider the set T of all natural numbers that are not in S.)

Exercises

(1) In calculus, we often use the fact that d
dxx

n = nxn−1 for every positive integer n, but we
usually don’t provide a rigorous proof of this result. Use induction to verify this derivative
formula. Assume the product rule if you need it.

(2) Prove that

12 + 22 + 32 + · · ·+ n2 =
n(n+ 1)(2n+ 1)

6

for every positive integer n.

(3) In the mid 20th century, the mathematician George Pólya suggested the apparent paradox that
all girls have eyes of the same color. † His induction argument to verify this statement is as
follows:

For n = 1 the statement is obviously (or “vacuously”) true. It remains to pass
from n to n + 1. For the sake of concreteness, I shall pass from 3 to 4 and leave
the general case for you.
Let me introduce you to any four girls, Ann, Berthe, Carol, and Dorothy, or A, B,
C, and D, for short. Allegedly (n = 3) the eyes of A, B, and C are of the same
color. Consequently, the eyes of all four girls A, B, C, and D, must be of the same
color; for the sake of full clarity, you may look at the diagram:︷ ︸︸ ︷

A+B + C +D︸ ︷︷ ︸ .
†This appears in Pólya’s 1954 work Induction and Analogy in Mathematics, volume 1 of Mathematics and Plausible

Reasoning, Princeton University Press.
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This proves the point for n+ 1 = 4, and the passage from 4 to 5, for example, is,
obviously, not more difficult.

A quick glance into the eyes of several girls will show that not all girls have the same eye
color, so there must be a flaw in the argument. Find and explain the flaw.

(4) Consider the conjecture

1 + 2 + 3 + 4 + · · ·+ n =
1

2

(
n+

1

2

)2

. (B.11)

(a) Assume (B.11) is true for some positive integer n. That is, assume

1 + 2 + 3 + 4 + · · ·+ n =
1

2

(
n+

1

2

)2

.

Show that (B.11) is true for the integer n+ 1.

(b) For which integers n is (B.11) a true statement? Explain. What does this exercise tell
us about the importance of establishing a base case in an induction proof?

(5) (a) Experiment and conjecture a simple closed form for the sum

sn =
1

1× 3
+

1

3× 5
+

1

5× 7
+ · · ·+ 1

(2n− 1)(2n+ 1)

that is valid for every positive integer n.

(b) Use induction to prove your formula from part (a). Be explicit about which version of
induction you are using.

(6) Experiment and conjecture a simple closed form for(
1− 1

4

)(
1− 1

9

)(
1− 1

16

)
· · ·
(
1− 1

n2

)
that is valid for every positive integer n ≥ 2. Prove your conjecture.

(7) (a) Let a1 = 5, a2 = 7 and an = 3an−1 − 2an−2 for n ≥ 3. Experiment and conjecture a
simple closed form for an that is valid for every positive integer n. (Hint: Compare an to
2n.)

(b) Use induction to prove your formula from part (a). Be explicit about which version of
induction you are using.

(8) Recall that the Fibonacci numbers fn are defined by f1 = 1, f2 = 1, and fn = fn−1 + fn−2

for all n ≥ 3. Show that every fifth Fibonacci number is divisible by 5. (In fact, something
stronger is true: for any prime p, every pth Fibonacci number is divisible by p.)

(9) Prove that for every positive integer n,

1(1!) + 2(2!) + 3(3!) + · · ·+ n(n!) = (n+ 1)!− 1. (B.12)

(10) Prove that for every n ∈ N, the number of subsets of a set with n elements in 2n.

(11) Is the following statement true or false?
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For all n ∈ N, (1 + 2 + 3 + · · ·+ n)2 = 13 + 23 + 33 + · · ·n3

If the statement is true, prove it. If it is false, find a counterexample.

(12) For which positive integers is n! less than nn? Prove your assertion.

(13) In this exercise, we will compare exponential functions to factorials. Let a ≥ 2 be a positive
integer.

(a) Show that if an < n! for some positive integer n, then an+1 < (n+ 1)!.

(b) To show that an < n! for all n larger than some fixed integer, it remains to demon-
strate that an < n! for some positive integer n. This is a challenging problem. It is
conjectured that, for a > 3, the sequence

s(a) = round
(
ae−

(
1

2

)
log(2aπ)− 1

a

)
gives the smallest positive integer n so that an < n!. ‡ (The function round means to
round to the nearest integer.) Verify this formula for a = 4, a = 5, and a = 6.

(14) Round Robin Tournaments. Consider a tournament involving m players in which each
player plays every other player just once and there are no ties. A cycle in the tournament
is a set {P1, P2, . . . , Pn} of players so that player P1 beats player P2, player P2 beats player
P3, and so on, and player Pn beats player P1. Show that if there is a cycle in the tournament,
then there is a cycle consisting of exactly three players.

(15) In this investigation, we proved that

1 + 2 + 3 + · · ·+ n =
n(n+ 1)

2

for every positive integer n. Then, in Exercise (2), you were asked to show that

12 + 22 + 32 + · · ·+ n2 =
n(n+ 1)(2n+ 1)

6

for every positive integer n. Mathematical induction is a useful tool for verifying such for-
mulas, but how do we actually find the formulas in the first place? In this exercise, we will
consider ways to answer this question.

(a) Let’s next determine a formula for the sum of cubes. Our starting place is the expansion
of (x− 1)4. Note that

(x− 1)4 = x4 − 4x3 + 6x2 − 4x+ 1.

Then
x4 − (x− 1)4 = 4x3 − 6x2 + 4x− 1.

Next, we will calculate each side of the previous equation as x ranges from 1 to n:

n4 − (n− 1)4 = 4n3 − 6n2 + 4n − 1
(n− 1)4 − (n− 2)4 = 4(n− 1)3 − 6(n− 1)2 + 4(n− 1) − 1
(n− 2)4 − (n− 3)4 = 4(n− 2)3 − 6(n− 2)2 + 4(n− 2) − 1

...
...

44 − 34 = 4(4)3 − 6(4)2 + 4(4) − 1
34 − 24 = 4(3)3 − 6(3)2 + 4(3) − 1
24 − 14 = 4(2)3 − 6(2)2 + 4(2) − 1
14 − 04 = 4(1)3 − 6(1)2 + 4(1) − 1

‡By Benoit Cloitre; see sequence A086824 in the On-Line Encyclopedia of Integer Sequences (https://oeis.org/).
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Now we can add the entries on each side to find a formula for

13 + 23 + · · ·+ n3.

Complete this process, and then prove your formula by induction.

(b) Repeat the process from part (a) to find a formula for

14 + 24 + · · ·+ n4.

Then prove your formula.

(16) The Towers of Hanoi. In an ancient city in India, so the legend goes, monks in a temple have
to move a pile of 64 sacred disks from one location to another. The disks are fragile; only one
can be carried at a time. A disk may not be placed on top of a smaller, less valuable disk. In
addition, there is only one other location in the temple (besides the original and destination
locations) sacred enough that a pile of disks can be placed there.

So the monks begin moving disks back and forth, between the original pile, the pile at the
new location, and the intermediate location, always keeping the piles in order (largest on the
bottom, smallest on the top). The legend is that, before the monks make the final move to
complete the pile in the new location, the temple will turn to dust and the world will end.

Generalize this problem to show that if there were n disks to move, it would take a total of
2n − 1 moves to complete the transfer from one location to another. Should we be worried
about the world coming to an end?

(17) The usual total ordering given by ≤ on Z behaves nicely with respect to addition. Show that
there is no total ordering of Zn that behaves nicely with respect to addition in Zn. That is,
show that there is no total ordering on Zn such that, for all [a], [b], [c] ∈ Zn, if [a] ≤ [b], then
([a] + [c]) ≤ ([b] + [c]). (Hint: If there is such an ordering with [0] ≤ [1], use transitivity to
show that [0] ≤ [n− 1], and explain why this leads to a contradiction. Then think about what
similar argument needs to be made to complete the proof.)



Appendix C
Methods of Proof

Preliminaries

This section is meant primarily for review and to clearly state the definitions that will be used in
proofs throughout the appendix. For those who are familiar with this material, it is not necessary
to read this section. It is included primarily for reference for the discussion of proofs in subsequent
sections.

Definitions

Definitions play a very important role in mathematics. A direct proof of a proposition in mathe-
matics is often a demonstration that the proposition follows logically from certain definitions and
previously proven propositions. A definition is an agreement that a particular word or phrase will
stand for some object, property, or other concept that we expect to refer to often. In many elementary
proofs, the answer to the question, “How do we prove a certain proposition?”, is often answered by
means of a definition. For mathematical proofs, we need very precise and carefully worded defini-
tions.

Definition C.1.

• The set of natural numbers, denoted N, contains the counting numbers (1, 2, 3, and so on);
that is,

N = {1, 2, 3, . . .}.

• The set of whole numbers, denoted W, contains the counting numbers and zero; that is,

W = {0, 1, 2, 3, . . .}.

• The set of integers, denoted Z, contains the whole numbers and their opposites (or nega-
tives); that is,

Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}.

Definition C.2. An integer a is an even integer provided that there exists an integer n such that
a = 2n. An integer a is an odd integer provided there exists an integer n such that a = 2n+ 1.

Definition C.3. A nonzero integer m divides an integer n provided that there is an integer q such
that n = m · q.

• If a and b are integers and a ̸= 0, we frequently use the notation a | b as a shorthand for “a
divides b.”

87
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• If a and b are integers and a ̸= 0 and a divides b, we also ay that m is a divisor of n, m is a
factor of n, and n is a multiple of m.

• The integer 0 is not a divisor of any integer and is a multiple of every integer.

Definition C.4. A natural number p is a prime number provided that it is greater than 1 and the
only natural numbers that are factors of p are 1 and p. A natural number other than 1 that is not a
prime number is a composite number. The number 1 is neither prime nor composite.

Definition C.5. Let n ∈ N. If a and b are integers, then we say that a is congruent to b modulo n
provided that n divides a− b.

Note: A standard notation for “a is congruent to b modulo n is a ≡ b (mod n). This is read as “a
is congruent to b modulo n” or “a is congruent to b mod n.”

Definitions Involving Sets

Definition C.6. Two sets, A and B, are equal when they have precisely the same elements.

The set A is a subset of a set B provided that each element of A is an element of B.

• When sets A and B are equal, we write A = B and when they are not equal, we write
A ̸= B.

• When the set A is a subset of the set B, we write A ⊆ B and also say that A is contained in
B. When A is not a subset of B, we write A ̸⊆ B.

Definition C.7. Let A and B be two sets contained in some universal set U . The set A is a proper
subset of B provided that A ⊆ B and A ̸= B.

Note: When a set A is a proper subset of a set B, we write A ⊂ B.

Definition C.8. Let A and B be subsets of some universal set U. The intersection of A and B,
written A ∩B and read “A intersect B,” is the set of all elements that are in both A and B. That is,

A ∩B = {x ∈ U | x ∈ A and x ∈ B}.

The union of A and B, written A ∪ B and read “A union B,” is the set of all elements that are in
A or in B. That is,

A ∪B = {x ∈ U | x ∈ A or x ∈ B}.

Definition C.9. Let A and B be subsets of some universal set U. The set difference of A and B,
or relative complement of B with respect to A, written A − B and read “A minus B” or “the
complement of B with respect to A,” is the set of all elements in A that are not in B. That is,

A−B = {x ∈ U | x ∈ A and x /∈ B}.

The complement of the setA, writtenAc and read “the complement ofA,” is the set of all elements
of U that are not in A. That is,

Ac = {x ∈ U | x /∈ A}.
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Useful Logic for Constructing Proofs

A statement is a declarative sentence that is either true or false but not both. A compound state-
ment is a statement that contains one or more operators. Because some operators are used so fre-
quently in logic and mathematics, we give them names and use special symbols to represent them.

• The conjunction of the statements P and Q is the statement “P and Q” and is denoted by
P ∧Q . The statement P ∧Q is true only when both P and Q are true.

• The disjunction of the statements P and Q is the statement “P or Q” and is denoted by
P ∨Q . The statement P ∨Q is true only when at least one of P or Q is true.

• The negation (of a statement) of the statement P is the statement “not P ” and is denoted
by ¬P . The negation of P is true only when P is false, and ¬P is false only when P is
true.

• The implication or conditional is the statement “If P then Q” and is denoted by P → Q.
The statement P → Q is often read as “P implies Q. The statement P → Q is false only
when P is true and Q is false.

• The biconditional statement is the statement “P if and only if Q” and is denoted by P ↔
Q. The statement P ↔ Q is true only when both P and Q have the same truth values.

Definition C.10. Two expressions X and Y are logically equivalent provided that they have the
same truth value for all possible combinations of truth values for all variables appearing in the two
expressions. In this case, we write X ≡ Y and say that X and Y are logically equivalent.

The following theorem states some of the most frequently used logical equivalencies used when
writing mathematical proofs.

Theorem C.11 (Important Logical Equivalencies).
For statements P , Q, and R,

De Morgan’s Laws ¬ (P ∧Q) ≡ ¬P ∨ ¬Q
¬ (P ∨Q) ≡ ¬P ∧ ¬Q

Conditional Statements P → Q ≡ ¬Q→ ¬P (contrapositive)
P → Q ≡ ¬P ∨Q
¬ (P → Q) ≡ P ∧ ¬Q

Biconditional Statement (P ↔ Q) ≡ (P → Q) ∧ (Q→ P )

Double Negation ¬ (¬P ) ≡ P

Distributive Laws P ∨ (Q ∧R) ≡ (P ∨Q) ∧ (P ∨R)
P ∧ (Q ∨R) ≡ (P ∧Q) ∨ (P ∧R)

Conditionals with P → (Q ∨R) ≡ (P ∧ ¬Q) → R
Disjunctions (P ∨Q) → R ≡ (P → R) ∧ (Q→ R)
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Direct Proofs

In order to prove that a conditional statement P → Q is true, we only need to prove that Q is true
whenever P is true. This is because the conditional statement is true whenever the hypothesis is
false. So in a direct proof of P → Q, we assume that P is true, and using this assumption, we
proceed through a logical sequence of steps to arrive at the conclusion that Q is true. Unfortunately,
it is often not easy to discover how to start this logical sequence of steps or how to get to the con-
clusion that Q is true. We will describe a method of exploration that often can help in discovering
the steps of a proof. This method will involve working forward from the hypothesis, P , and back-
ward from the conclusion,Q. We will illustrate this “forward-backward” method with the following
proposition.

Using the Definitions of Congruence and Divides

We will consider the following proposition and try to determine if it is true or false.

Proposition C.12. For all integers a and b, if a ≡ 5 (mod 8) and b ≡ 6 (mod 8), then (a + b) ≡
3 (mod 8).

Before we try to prove a proposition, it is a good idea to try some examples for which the hypothesis
is true and then determine whether or not the conclusion is true for these examples. The idea is
to convince ourselves that this proposition at least appears to be true. On the other hand, if we
find an example where the hypothesis is true and the conclusion is false, then we have found a
counterexample for the proposition and we would have proven the proposition to be false. The
following table summarizes four examples that suggest this proposition is true.

a b a+ b Is (a+ b) ≡ 3 (mod 8)?
5 6 11 Yes since 11 ≡ 3 (mod 8)
13 22 35 Yes since 35 ≡ 3 (mod 8)
−3 14 11 Yes since 11 ≡ 3 (mod 8)
−11 −2 −13 Yes since −13 ≡ 3 (mod 8)

We will now attempt to construct a proof of this proposition. We will start with the backwards
process. Please keep in mind that it is a good idea to write all of this down on paper. We should not
try to construct a proof in our heads. Writing helps.

We know that the goal is to prove that (a+ b) ≡ 3 (mod 8). (We label this as statement Q.) We
then ask a “backwards question” such as, “How do we prove (a + b) ≡ 3 (mod 8)?” We may be
able to answer this question in different ways depending on whether or not we have some previously
proven results, but we can always use the definition. So an answer to this question is, “We can prove
that 8 divides (a + b) − 3.” (We label this as statement Q1). We now ask, “How can we prove that
8 divides (a + b) − 3?” Again, we can use the definition and answer that we can prove that there
exists an integer k such that (a+ b)− 3 = 8k. (This is statement Q2.) Here is what we should have
written down.

• Q: (a+ b) ≡ 3 (mod 8).
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• Q1: 8 divides (a+ b)− 3.

• Q2: There exists an integer k such that (a+ b)− 3 = 8k.

The idea is that if we can prove that Q2 is true, then we can conclude that Q1 is true, and then
we can conclude that Q is true. Q2 is a good place to stop the backwards process since it involves
proving that something exists and we have an equation with which to work. So we start the forward
process. We start by writing down the assumptions stated in the hypothesis of the proposition and
label it statement P . We then make conclusions based on these assumptions. While doing this, we
look at the items in the backward process and try to find ways to connect the conclusions in the
forward process to the backward process. From statement P , we conclude that 8 divides a−5 and 8
divides b− 6. (This becomes statement P1.) We make a conclusion based on statement P1, which
becomes statement P2. The forward process can be summarized as follows:

• P : a and b are integers and a ≡ 5 (mod 8) and b ≡ 6 (mod 8).

• P1: 8 divides a− 5 and 8 divides b− 6.

• P2: There exists an integer m such that a− 5 = 8m and there exists an integer n such that
b− 6 = 8n.

It now seems that there is a way to connect the forward part (P2) to the backward part (Q2) using
the existence of m and n (which have been proven to exist) and the equations in P2 and Q2.

Solving the two equations in P2 for a and b, we obtain a = 8m + 5 and b = 8n + 6. We can
now use these in Q2.

Important Note: In the proof, we cannot use the integer k inQ2 since we have not proven that such
an integer exists. This is why we used the letter m in statement P2. The goal is to prove that the
integer k exists.

We can now proceed as followings:

(a+ b)− 3 = (8m+ 5) + (8n+ 6)− 3

= 8m+ 8n+ 8

= 8(m+ n+ 3)

Since the integers are closed under addition, we conclude that (m+ n+ 3) is an integer and so the
last equation implies that 8 divides (a+ b)− 3. We can now write a proof.

Proposition C.12. For all integers a and b, if a ≡ 5 (mod 8) and b ≡ 6 (mod 8), then (a + b) ≡
3 (mod 8).

Proof. We assume that a and b are integers and that a ≡ 5 (mod 8) and b ≡ 6 (mod 8). We will
prove that (a+ b) ≡ 3 (mod 8). From the assumptions, we conclude that

8 divides (a− 5) and 8 divides (b− 6).

So there exist integers m and n such that

a− 5 = 8m and b− 6 = 8n.

Solving these equations for a and b, we obtain a = 8m+ 5 and b = 8n+ 6. We can now substitute
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for a and b in the expression (a+ b)− 3. This gives

(a+ b)− 3 = (8m+ 5) + (8n+ 6)− 3

= 8m+ 8n+ 8

= 8(m+ n+ 3)

Since the integers are closed under addition, we conclude that (m + n + 3) is an integer and so
the last equation implies that 8 divides (a + b) − 3. So by the definition of congruence, we can
conclude that (a + b) ≡ 3 (mod 8). This proves that for all integers a and b, if a ≡ 5 (mod 8) and
b ≡ 6 (mod 8), then (a+ b) ≡ 3 (mod 8). ■

Note: This shows a typical way to construct and write a direct proof of a proposition or theorem. We
will not be going into this much detail on the construction process in all of the results proved in this
book. In fact, most textbooks do not do this. What they most often show is only the final product
as shown in the preceding proof. Do not be fooled that this is the way that proofs are constructed.
Constructing a proof often requires trial and error and because of this, it is always a good idea to
write down what is being assumed and what it is we are trying to prove. Then be willing to work
backwards from what it is to be proved and work forwards from the assumptions. The hard part is
often connecting the forward process to the backward process. This becomes extremely difficult if
we do not write things down and try to work only in our heads.

We sometimes think that a proposition is true and attempt to write a proof. If we get stuck, we
need to consider that a possible reason for this is that the proposition is actually false. Consider the
following proposition.

Proposition. For each integer n, if 7 divides
(
n2 − 4

)
, then 7 divides (n− 2).

If we think about starting a proof, we would let n be an integer, assume that 7 divides
(
n2 − 4

)
and from this assumption, try to prove that 7 divides (n − 2). That is, we would assume that there
exists an integer k such that n2 − 4 = 7k and try to prove that there exists an integer m such that
n− 2 = 7m. From the assumption, we can using factoring and conclude that

(n− 2)(n+ 2) = 7k.

There does not seem to be a direct way to prove that there is an integer m such that n− 2 = 7m. So
we start looking for examples of integers n such that 7 divides

(
n2 − 4

)
and see if 7 divides (n−2)

for these examples. After trying a few examples, we find that for n = 5, 7 divides
(
n2 − 4

)
. (There

are many other such values for n.) For n = 5, we see that

n2 − 4 = 21 = 7 · 3 and n− 2 = 3.

However, 7 does not divide 3. This shows that for n = 5, the hypothesis of the proposition is true and
the conclusion is false. This is a counterexample for the proposition and proves that the proposition
is false.

Direct Proofs Involving Sets

One of the most basic types of proofs involving sets is to prove that one set is a subset of another
set. If S and T are both subsets of some universal set U , to prove that S is a subset of T , we need to
prove that

For each element x in U , if x ∈ S, then x ∈ T .
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When we have to prove something that involves a universal quantifier, we frequently use a method
that can be called the choose-an-element method. To prove that a set S is a subset of a set T , the
key is that we have to prove something about all elements in S. We can then add something to the
forward process by choosing an arbitrary element from the set S. This does not mean that we can
choose a specific element of S. Rather, we must give the arbitrary element a name and use only the
properties it has by being a member of the set S.

The truth of the next proposition may be clear, but it is included to illustrate the process of
proving one set is a subset of another set. In this proposition, the set S is the set of all integers that
are a multiple of 6. So when we “choose” an element from S, we are not selecting a specific element
in S (such as 12 or 24), but rather we are selecting an arbitrary element of S and so the only thing
we can assume is that the element is a multiple of 6.

Proposition C.13. Let S be the set of all integers that are multiples of 6, and let T be the set of all
even integers. Then S is a subset of T.

Proof. Let S be the set of all integers that are multiples of 6, and let T be the set of all even integers.
We will show that S is a subset of T by showing that if an integer x is an element of S, then it is
also an element of T .

Let x ∈ S. (Note: The use of the word “let” is often an indication that the we are choosing an
arbitrary element.) This means that x is a multiple of 6. Therefore, there exists an integer m such
that

x = 6m.

Since 6 = 2 · 3, this equation can be written in the form

x = 2(3m).

By closure properties of the integers, 3m is an integer. Hence, this last equation proves that x must
be even. Therefore, we have shown that if x is an element of S, then x is an element of T , and hence
that S ⊆ T . ■

One way to prove that two sets are equal is to prove that each one is a subset of the other one.
This is illustrated in the next proposition.

Proposition C.14. Let A and B be subsets of some universal sets. Then A−B = A ∩Bc.

Proof. Let A and B be subsets of some universal set. We will prove that A − B = A ∩ Bc by
proving that each set is a subset of the other set. We will first prove that A − B ⊆ A ∩ Bc. Let
x ∈ A − B. We then know that x ∈ A and x /∈ B. However, x /∈ B implies that x ∈ Bc. Hence,
x ∈ A and x ∈ Bc, which means that x ∈ A ∩Bc. This proves that A−B ⊆ A ∩Bc.

To prove that A ∩ Bc ⊆ A − B, we let y ∈ A ∩ Bc. This means that y ∈ A and y ∈ Bc, and
hence, y ∈ A and y /∈ B. Therefore, y ∈ A − B and this proves that A ∩ Bc ⊆ A − B. Since we
have proved that each set is a subset of the other set, we have proved that A−B = A ∩Bc. ■

Using Logical Equivalencies in Proofs

It is sometimes difficult to construct a direct proof of a conditional statement. Fortunately, there are
certain logical equivalencies in Theorem C.11 on page 89 that can be used to justify some other
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methods of proof of a conditional statement. Knowing that two expressions are logically equivalent
tells us that if we prove one, then we have also proven the other. In fact, once we know the truth
value of a statement, then we know the truth value of any other statement that is logically equivalent
to it.

Using the Contrapositive

One of the most useful logical equivalencies to prove a conditional statement is that a conditional
statement P → Q is logically equivalent to its contrapositive, ¬Q → ¬P . This means that if we
prove the contrapositive of the conditional statement, then we have proven the conditional statement.
The following are some important points to remember.

• A conditional statement is logically equivalent to its contrapositive.

• To prove the statement P → Q we can use a direct proof to prove the equivalent statement
that ¬Q→ ¬P is true.

• Caution: One difficulty with this type of proof is in the formation of correct negations. (We
need to be very careful doing this.)

• We might consider using a proof by contrapositive when the statements P and Q are stated
as negations.

We will use the following proposition to illustrate how the contrapositive of a conditional state-
ment can be used in a proof.

Proposition C.15. For each integer n, if n2 is an even integer, then n is an even integer.

Proof. We will prove this result by proving the contrapositive of the statement, which is

For each integer n, if n is an odd integer, then n2 is an odd integer.

So we assume that n is an odd integer and prove that n2 is an odd integer. Since n is odd, there
exists an integer k such that n = 2k + 1. Hence,

n2 = (2k + 1)2

= 4k2 + 4k + 1

= 2
(
2k2 + 2k

)
+ 1

Since the integers are closed under addition and multiplication,
(
2k2 + 2k

)
is an integer and so

the last equation proves that n2 is an odd integer. This proves that for all integers n, if n is an
odd integer, then n2 is an odd integer. Since this is the contrapositive of the proposition, we have
completed a proof of the proposition. ■

Using Other Logical Equivalencies

There are many logical equivalencies, but fortunately, only a small number are frequently used when
trying to construct and write proofs. Most of these are listed in Theorem C.11 on page 89. We will
illustrate the use of one of these logical equivalencies with the following proposition:
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For all real numbers a and b, if a ̸= 0 and b ̸= 0, then ab ̸= 0.

First, notice that the hypothesis and the conclusion of the conditional statement are stated in the
form of negations. This suggests that we consider the contrapositive. Care must be taken when we
negate the hypothesis since it is a conjunction. We use one of De Morgan’s Laws as follows:

¬ (a ̸= 0 ∧ b ̸= 0) ≡ (a = 0) ∨ (b = 0) .

So the contrapositive is:

For all real numbers a and b, if ab = 0, then a = 0 or b = 0.

The contrapositive is a conditional statement in the form X → (Y ∨ Z). The difficulty is that
there is not much we can do with the hypothesis (ab = 0) since we know nothing else about the
real numbers a and b. However, if we knew that a was not equal to zero, then we could multiply

both sides of the equation ab = 0 by
1

a
. This suggests that we consider using the following logical

equivalency based on a result in Theorem C.11 on page 89:

X → (Y ∨ Z) ≡ (X ∧ ¬Y ) → Z.

Proposition C.16. For all real numbers a and b, if a ̸= 0 and b ̸= 0, then ab ̸= 0.

Proof. We will prove the contrapositive of this proposition, which is

For all real numbers a and b, if ab = 0, then a = 0 or b = 0.

This contrapositive, however, is logically equivalent to the following:

For all real numbers a and b, if ab = 0 and a ̸= 0, then b = 0.

To prove this, we let a and b be real numbers and assume that ab = 0 and a ̸= 0. We can then

multiply both sides of the equation ab = 0 by
1

a
. This gives

1

a
(ab) =

1

a
· 0.

We now use the associative property on the left side of this equation and simplify both sides of the
equation to obtain (

1

a
· a
)
b = 0

1 · b = 0

b = 0

Therefore, b = 0 and this proves that for all real numbers a and b, if ab = 0 and a ̸= 0, then b = 0.
Since this statement is logically equivalent to the contrapositive of the proposition, we have proved
the proposition. ■
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Proofs of Biconditional Statements

One of the logical equivalencies in Theorem C.11 on page 89 is the following one for biconditional
statements.

(P ↔ Q) ≡ (P → Q) ∧ (Q→ P ) .

This logical equivalency suggests one method for proving a biconditional statement written in the
form “P if and only if Q.” This method is to construct separate proofs of the two conditional
statements P → Q and Q→ P .

We will illustrate this with a proposition about right triangles.

Recall that the Pythagorean Theorem for right triangles states that if a and b are the lengths of
the legs of a right triangle and c is the length of the hypotenuse, then a2 + b2 = c2. We also know
that the area of any triangle is one-half the base times the altitude. So for the right triangle we have

described, the area is A =
1

2
ab.

Proposition C.17. Suppose that a and b are the lengths of the legs of a right triangle and c is the
length of the hypotenuse. This right triangle is an isosceles triangle if and only if the area of the

right triangle is
1

4
c2.

Proof. We assume that we have a right triangle where a and b are the lengths of the legs of a right
triangle and c is the length of the hypotenuse. We will prove that this right triangle is an isosceles

triangle if and only if the area of the right triangle is
1

4
c2 by proving the two conditional statements

associated with this biconditional statement.

We first prove that if this right triangle is an isosceles triangle, then the area of the right trian-

gle is
1

4
c2. So we assume the right triangle is an isosceles triangle. This means that a = b, and

consequently, A =
1

2
a2. Using the Pythagorean Theorem, we see that

c2 = a2 + a2 = 2a2.

Hence, a2 =
1

2
c2, and we obtain A =

1

2
a2 =

1

4
c2. This proves that if this right triangle is an

isosceles triangle, then the area of the right triangle is
1

4
c2.

We now prove the converse of the first conditional statement. So we assume the area of this

isosceles triangle is A =
1

4
c2, and will prove that a = b. Since the area is also

1

2
ab, we see that

1

4
c2 =

1

2
ab

c2 = 2ab

We now use the Pythagorean Theorem to conclude that a2 + b2 = 2ab. So the last equation can be
rewritten as follows:

a2 − 2ab+ b2 = 0

(a− b)
2
= 0.
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The last equation implies that a = b and hence the right triangle is an isosceles triangle. This proves

that if the area of this right triangle is A =
1

4
c2, then the right triangle is an isosceles triangle.

Since we have proven both conditional statements, we have proven that this right triangle is an

isosceles triangle if and only if the area of the right triangle is
1

4
c2. ■

Proof by Contradiction

Explanation and an Example

Another method of proof that is frequently used in mathematics is a proof by contradiction. This
method is based on the fact that a statement X can only be true or false (and not both). The idea is
to prove that the statement X is true by showing that it cannot be false. This is done by assuming
that X is false and proving that this leads to a contradiction. (The contradiction often has the form
(R ∧ ¬R), where R is some statement.) When this happens, we can conclude that the assumption
that the statement X is false is incorrect and hence X cannot be false. Since it cannot be false, then
X must be true.

A logical basis for the contradiction method of proof is the tautology

[¬X → C] → X,

whereX is a statement and C is a contradiction. The following truth table establishes this tautology.

X C ¬X ¬X → C (¬X → C) → X

T F F T T
F F T F T

This tautology shows that if ¬X leads to a contradiction, then X must be true. The previous
truth table also shows that the statement ¬X → C is logically equivalent to X . This means that if
we have proved that ¬X leads to a contradiction, then we have proved statement X . So if we want
to prove a statement X using a proof by contradiction, we assume that ¬X is true and show that
this leads to a contradiction.

When we try to prove the conditional statement, “If P thenQ” using a proof by contradiction, we
must assume that P → Q is false and show that this leads to a contradiction. Since we are assuming
the conditional statement is false, we are assuming its negation is true. According to Theorem C.11
on page 89,

¬ (P → Q) ≡ P ∧ ¬Q.

We will illustrate the process of a proof by contradiction with the following proposition.

Proposition C.18. For each real number x, if 0 < x < 1, then
1

x(1− x)
≥ 4.

Proof. We will use a proof by contradiction. So we assume that the proposition is false, or that there
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exists a real number x such that 0 < x < 1 and

1

x(1− x)
< 4. (C.1)

We note that since 0 < x < 1, we can conclude that x > 0 and that (1−x) > 0. Hence, x(1−x) > 0
and if we multiply both sides of inequality (C.1) by x(1− x), we obtain

1 < 4x(1− x).

We can now use algebra to rewrite the last inequality as follows:

1 < 4x− 4x2

4x2 − 4x+ 1 < 0

(2x− 1)2 < 0

However, (2x − 1) is a real number and the last inequality says that a real number squared is less
than zero. This is a contradiction since the square of any real number must be greater than or equal
to zero. Hence, the proposition cannot be false, and we have proved that for each real number x, if

0 < x < 1, then
1

x(1− x)
≥ 4. ■

Proving that Something Does Not Exist

In mathematics, we sometimes need to prove that something does not exist or that something is
not possible. Instead of trying to construct a direct proof, it is sometimes easier to use a proof by
contradiction so that we can assume that the something exists.

Proposition C.19. For all integers x and y, if x and y are odd integers, then there does not exist an
integer z such that x2 + y2 = z2.

Proof. We will use a proof by contradiction. So we assume that the proposition is false or that there
exist integers x and y such that x and y are odd and there exists an integer z such that x2+y2 = z2.
Since x and y are odd, there exist integers m and n such that x = 2m + 1 and y = 2n + 1. So we
get

x2 + y2 = (2m+ 1)2 + (2n+ 1)2

= 4m2 + 4m+ 1 + 4n2 + 4n+ 1

= 2
(
2m2 + 2m+ 2n2 + 2n+ 1

)
(C.1)

Since the integers are closed under addition and multiplication, we see that
2
(
2m2 + 2m+ 2n2 + 2n+ 1

)
is an integer, and so the last equation shows that x2+ y2 is an even

integer. Hence, z2 is even since z2 = x2 + y2. So using the result in Proposition C.15 on page 94,
we can conclude that z is even and that there exists an integer k such that z = 2k. Now, using
equation (1) above, we see that

z2 = 2
(
2m2 + 2m+ 2n2 + 2n+ 1

)
(2k)2 = 2

(
2m2 + 2m+ 2n2 + 2n+ 1

)
4k2 = 2

(
2m2 + 2m+ 2n2 + 2n+ 1

)
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Dividing both sides of the last equation by 2, we obtain

4k2 = 2
(
2m2 + 2m+ 2n2 + 2n+ 1

)
2k2 = 2

(
m2 +m+ n2 + n

)
+ 1

However, the left side of the last equation is an even integer and the right side is an odd integer. This
is a contradiction, and so the proposition cannot be false. Hence, we have proved that for all integers
x and y, if x and y are odd integers, then there does not exist an integer z such that x2+y2 = z2. ■

Rational and Irrational Numbers

One of the most important ways to classify real numbers is as a rational number or an irrational
number. (See the section on subsets of the real numbers in Investigation 3 of the textbook.)

Definition C.20. A real number x is defined to be a rational number provided that there exist
integers m and n with n ̸= 0 such that x =

m

n
. A real number that is not a rational number is called

an irrational number.

We use the symbol Q to stand for the set of rational numbers.

Because the rational numbers are closed under the standard operations and the definition of an
irrational number simply says that the number is not rational, we often use a proof by contradiction
to prove that a number is irrational. This is illustrated in the next proposition.

Proposition C.21. For all real numbers x and y, if x is rational and x ̸= 0 and y is irrational, then
x · y is irrational.

Proof. We will use a proof by contradiction. So we assume that there exist real numbers x and y
such that x is rational, x ̸= 0, y is irrational, and x · y is rational. Since x ̸= 0, we can divide by
x, and since the rational numbers are closed under division by nonzero rational numbers, we know

that
1

x
∈ Q. We now know that x · y and

1

x
are rational numbers and since the rational numbers are

closed under multiplication, we conclude that

1

x
· (xy) ∈ Q.

However,
1

x
· (xy) = y and hence, y must be a rational number. Since a real number cannot be both

rational and irrational, this is a contradiction to the assumption that y is irrational. We have therefore
proved that for all real numbers x and y, if x is rational and x ̸= 0 and y is irrational, then x · y is
irrational. ■

Using Cases in Proofs

The method of using cases in a proof is often used when the hypothesis of a proposition is a dis-
junction. This is justified by the logical equivalency

[(P ∨Q) → R] ≡ [(P → R) ∧ (Q→ R)] .
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This is one of the logical equivalencies in Theorem C.11 on page 89. In some other situations when
we are trying to prove a proposition or a theorem about an element x in some set U , we often run
into the problem that there does not seem to be enough information about x to proceed. For example,
consider the following proposition:

Proposition. If n is an integer, then
(
n2 + n

)
is an even integer.

If we were trying to write a direct proof of this proposition, the only thing we could assume is
that n is an integer. This is not much help. In a situation such as this, we will sometimes construct
our own cases to provide additional assumptions for the forward process of the proof. Cases are
usually based on some common properties that the given element may or may not possess. The
cases must be chosen so that they exhaust all possibilities for the object in the hypothesis of the
proposition. For this propostion, we know that an integer must be even or it must be odd. We can
thus use the following two cases for the integer n:

• The integer n is an even integer; or

• The integer n is an odd integer.

Proposition C.22. If n is an integer, then
(
n2 + n

)
is an even integer.

Proof. We assume that n is an integer and will prove that
(
n2 + n

)
. Since we know that any integer

must be even or odd, we will use two cases. The first is that n is an even integer, and the second is
that n is an odd integer.

In the case where n is an even integer, there exists an integer m such that

n = 2m.

Substituting this into the expression n2 + n yields

n2 + n = (2m)2 + 2m

= 4m2 + 2m

= 2(2m2 +m)

By the closure properties of the integers, 2m2 +m is an integer, and hence n2 + n is even. So this
proves that when n is an even integer, n2 + n is an even integer.

In the case where n is an odd integer, there exists an integer k such that

n = 2k + 1.

Substituting this into the expression n2 + n yields

n2 + n = (2k + 1)2 + (2k + 1)

=
(
4k2 + 4k + 1

)
+ 2k + 1

=
(
4k2 + 6k + 2

)
= 2

(
2k2 + 3k + 1

)
By the closure properties of the integers, 2k2 + 3k + 1 is an integer, and hence n2 + n is even. So
this proves that when n is an odd integer, n2 + n is an even integer.

Since we have proved that n2 + n is even when n is even and when n is odd, we have proved
that if n is an integer, then

(
n2 + n

)
is an even integer. ■
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Some Common Situations to Use Cases

When using cases in a proof, the main rule is that the cases must be chosen so that they exhaust
all possibilities for an object x in the hypothesis of the original proposition. Following are some
common uses of cases in proofs.

When the hypothesis is, Case 1: n is an even integer.
“n is an integer.” Case 2: n is an odd integer.

When the hypothesis is, Case 1: m and n are even.
“m and n are integers.” Case 2: m is even and n is odd.

Case 3: m is odd and n is even.
Case 4: m and n are both odd.

When the hypothesis is, Case 1: x is rational.
“x is a real number.” Case 2: x is irrational.

When the hypothesis is, Case 1: x = 0. OR Case 1: x > 0.
“x is a real number.” Case 2: x ̸= 0. Case 2: x = 0.

Case 3: x < 0.

When the hypothesis is, Case 1: a = b. OR Case 1: a > b.
“a and b are real Case 2: a ̸= b. Case 2: a = b.
numbers.” Case 3: a < b.

Using Cases with the Division Algorithm

In Investigation 1 of the textbook, we introduced an important result for the set of integers is known
as the Division Algorithm, which is stated below.

The Division Algorithm
Let a and b be integers with a > 0. Then there exist unique integers q and r such that

b = aq + r and 0 ≤ r < a.

When we speak of the quotient and the remainder when we “divide an integer b by the positive
integer a,” we will always mean the quotient (q) and the remainder (r) guaranteed by the Division
Algorithm. So the remainder r is the least nonnegative integer such that there exists an integer
(quotient) q with b = aq + r.

The Division Algorithm can sometimes be used to construct cases for a proof dealing with the
integers. For example, if the hypothesis of a proposition is that “n is an integer,” then we can use
the Division Algorithm to claim that there are unique integers q and r such that

n = 3q + r and 0 ≤ r < 3.

We can then divide the proof into the following three cases: (1) r = 0; (2) r = 1; and (3) r = 2.
This is done in Proposition C.23.

Proposition C.23. If n is an integer, then 3 divides n3 − n.
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Proof. Let n be an integer. We will show that 3 divides n3 − n by examining the three cases for the
remainder when n is divided by 3. By the Division Algorithm, there exist unique integers q and r
such that

n = 3q + r, and 0 ≤ r < 3.

This means that we can consider the following three cases: (1) r = 0; (2) r = 1; and (3) r = 2. In
the case where r = 0, we have n = 3q. By substituting this into the expression n3 − n, we get

n3 − n = (3q)
3 − (3q)

= 27q3 − 3q

= 3
(
9q3 − q

)
.

Since
(
9q3 − q

)
is an integer, the last equation proves that 3 |

(
n3 − n

)
. In the second case, r = 1

and n = 3q + 1. When we substitute this into
(
n3 − n

)
, we obtain

n3 − n = (3q + 1)
3 − (3q + 1)

=
(
27q3 + 27q2 + 9q + 1

)
− (3q + 1)

= 27q3 + 27q2 + 6q

= 3
(
9q3 + 9q2 + 2q

)
.

Since
(
9q3 + 9q2 + 2q

)
is an integer, the last equation proves that 3 |

(
n3 − n

)
.

For the third case, r = 2 and n = 3q + 2. When we substitute this into
(
n3 − n

)
, we obtain

n3 − n = (3q + 2)
3 − (3q + 2)

=
(
27q3 + 54q2 + 36q + 8

)
− (3q + 2)

= 27q3 + 54q2 + 33q + 6

= 3
(
9q3 + 18q2 + 11q + 2

)
.

Since
(
9q3 + 18q2 + 11q + 2

)
is an integer, the last equation proves that 3 |

(
n3 − n

)
. We have

now proved that 3 divides (n3−n) in all 3 of the possible cases. Therefore, we have proved that for
each integer n, 3 divides (n3 − n). ■

Exercises

(1) Construct a table of values for
(
3m2 + 4m+ 6

)
using at least six different integers for m.

Make one-half of the values for m even integers and the other half odd integers. Is the follow-
ing proposition true or false?

If m is an odd integer, then
(
3m2 + 4m+ 6

)
is an odd integer.
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Justify your conclusion. (If the proposition is true, then write a proof of the proposition. If the
proposition is false, provide an example of an odd integer for which

(
3m2 + 4m+ 6

)
is an

even integer.)

(2) The Pythagorean Theorem for right triangles states that if a and b are the lengths of the legs
of a right triangle and c is the length of the hypotenuse, then a2 + b2 = c2. For example, if
a = 5 and b = 12 are the lengths of the two sides of a right triangle and if c is the length
of the hypotenuse, then the c2 = 52 + 122 and so c2 = 169. Since c is a length and must be
positive, we conclude that c = 13.

Construct and provide a well-written proof for the following proposition.

Proposition. If m is a real number and m, m+1, and m+2 are the lengths of the three sides
of a right triangle, then m = 3.

(3) One way to prove that two sets are equal is to prove that each one is a subset of the other one.
Consider the following proposition:

Proposition. Let A and B be subsets of some universal set. Then
A− (A−B) = A ∩B.

Prove this proposition is true or give a counterexample to prove it is false.

(4) Are the following statements true or false? Justify your conclusions.

(a) For each a ∈ Z, if a ≡ 2 (mod 5), then a2 ≡ 4 (mod 5).

(b) For each a ∈ Z, if a2 ≡ 4 (mod 5), then a ≡ 2 (mod 5).

(c) For each a ∈ Z, a ≡ 2 (mod 5) if and only if a2 ≡ 4 (mod 5).

(5) A real number x is defined to be a rational number provided

there exist integers m and n with n ̸= 0 such that x =
m

n
.

A real number that is not a rational number is called an irrational number.
It is known that if x is a positive rational number, then there exist positive integers m and n
with n ̸= 0 such that x =

m

n
.

Is the following proposition true or false? Explain.

Proposition. For each positive real number x, if x is irrational, then
√
x is irrational.

(6) (a) Determine at least five different integers that are congruent to 2 modulo 4. Are any of
these integers congruent to 3 modulo 6?

(b) Is the following proposition true or false? Justify your conclusion with a counterexample
(if it is false) or a proof (if it is true).

Propostion. For each integer n, if n ≡ 2 (mod 4), then
n ̸≡ 3 (mod 6).

(7) For the following, it may be useful to use the facts that the set of rational numbers Q is closed
under addition, subtraction, multiplication, and division by nonzero rational numbers.

Prove the following proposition:

Proposition. For all real numbers x and y, if x is rational and y is irrational, then x+ y
is irrational.
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(8) Consider the following proposition:

Proposition. For each integer a, if 3 divides a2, then 3 divides a.

(a) Write the contrapositive of this proposition.

(b) Prove the proposition by proving its contrapositive. Hint: Consider using cases based
on the Division Algorithm.

(9) Complete the details for the proof of Case 3 of Proposition C.23.

(10) Is the following proposition true or false? Justify your conclusion with a counterexample or a
proof.

Proposition. For each integer n, if n is odd, then 8 divides n2 − 1.



Appendix D
Proof that R[x] is a Ring

In this appendix, we will give a formal proof that R[x] is a commutative ring when R is a com-
mutative ring. Before we give the proof, we will show how to write the sum and product of two
polynomials using summation notation. Let f(x), g(x) ∈ R[x] with

f(x) = anx
n + an−1x

n−1 + · · ·+ a2x
2 + a1x+ a0 with an ̸= 0, and

g(x) = bmx
m + bm−1x

m−1 + · · ·+ b2x
2 + b1x+ b0 with bm ̸= 0.

Since it must be true that m ≤ n or n ≤ m, we can assume that m ≤ n without loss of generality.
We will then use the fact that bm+1 = bm+2 = · · · = bn = 0, and so we can write

f(x) = anx
n + an−1x

n−1 + · · ·+ a2x
2 + a1x+ a0, and

g(x) = bnx
n + bn−1x

n−1 + · · ·+ b2x
2 + b1x+ b0.

Using summation notation, we can write the sum and product of these two polynomials as follows:

f(x) + g(x) =

n∑
i=0

aix
i +

n∑
i=0

bix
i =

n∑
i=0

(ai + bi)x
i, and

f(x)g(x) =

(
n∑

i=0

aix
i

)(
n∑

i=0

bix
i

)
=

n+m∑
j=0

(
j∑

i=0

(aj−ibi)

)
xj , or equivalently

f(x)g(x) =

n+m∑
j=0

 ∑
r+s=j

(arbs)

xj .

Theorem D.-1. If R is a commutative ring, then R[x] is a commutative ring. In addition, if the ring
R has an identity, then the ring R[x] has an identity.

Proof. Let R be a commutative ring and let

f(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0,

g(x) = bmx
m + bm−1x

m−1 + · · ·+ b1x+ b0, and

h(x) = ckx
k + ck−1x

k−1 + · · ·+ c1x+ c0

be elements of R[x]. In proving the ring properties for R[x], we will assume (without loss of gener-
ality) that k ≤ m ≤ n and extend the polynomials g(x) and h(x) to have n coefficients. This means
that for m < i ≤ n, bi = 0, and for k < i ≤ n, ci = 0.

The definitions of addition and multiplication of polynomials show that f(x) + g(x) and
f(x)g(x) are polynomials in R[x], so R[x] is closed under addition and multiplication.
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To show that addition is commutative in R[x], we use the commutativity of addition in R and
obtain

f(x) + g(x) =

n∑
i=0

(ai + bi)x
i =

n∑
i=0

(bi + ai)x
i = g(x) + f(x).

Thus, addition is commutative in R[x].

For associativity of addition in R[x], the associativity of addition in R gives us

[f(x) + g(x)] + h(x) =

(
n∑

i=0

(ai + bi)x
i

)
+

n∑
i=0

cix
k

=

n∑
i=0

[(ai + bi) + ci]x
i

=

n∑
i=0

[ai + (bi + ci)]x
i

=

n∑
i=0

aix
i +

n∑
i=0

(bi + ci)x
i

= f(x) + [g(x) + h(x)].

Therefore, addition is associative in R[x].

We can show that an additive identity in R[x] is the polynomial z(x) = 0R, the polynomial all
of whose coefficients are 0R, as follows:

f(x) + z(x) =

n∑
i=1

aix
i + z(x) =

n∑
i=1

(ai + 0R)x
i =

n∑
i=0

aix
i = f(x).

Therefore, z(x) is an additive identity in R[x].

We will now show that R[x] contains an additive inverse for f(x) (and hence for any element
of R[x]). For each i with 0 ≤ i ≤ n, we know that ai ∈ R and hence, ai has an additive inverse,
−ai ∈ R. Let

q(x) =

n∑
i=0

(−ai)xi = (−an)xn + (−an−1)x
n−1 + · · ·+ (−a1)x+ (−a0).

Then q(x) ∈ R[x] and

f(x) + q(x) =

n∑
i=0

[ai + (−ai)]xi =
n∑

i=0

0Rx
i = z(x).

Therefore, R[x] contains an additive inverse for each of its elements.

We now turn our attention to multiplication in R[x]. We will first show that multiplication is
commutative. Using the definition of multiplication of polynomials, we see that

f(x)g(x) =

(
n∑

i=0

aix
i

)(
m∑
i=0

bix
i

)

=

(
n+m∑
i=0

( ∑
r+s=i

(arbs)

)
xi

)
. (D.1)
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Since s + r = r + s = i and multiplication in R is commutative, we see that arbs = bsar and
hence, we can rewrite equation (D.1) as follows:

f(x)g(x) =

(
n+m∑
i=0

( ∑
s+r=i

(bsar)

)
xi

)

=

(
n∑

i=0

aix
i

)(
n∑

i=0

bix
i

)
= g(x)f(x).

This shows that multiplication in R[x] is commutative.

We will now show that multiplication is an associative operation in R[x]. (Note that the notation
in this part of the proof can be a bit overwhelming; this is why we explored a special case of the
associative property of multiplication in Activity 8.16. It will help in understanding the notation in
this proof to have the work from this activity to refer to while reading the proof.) We will start with
the formula for f(x)g(x) in equation (D.1). To simplify the notation, for 0 ≤ i ≤ n +m, we let
ui =

∑
r+s=i

arbs. We then obtain

[f(x)g(x)]h(x) =

(
n+m∑
i=0

uix
i

)(
k∑

i=0

cix
i

)

=

(n+m)+k∑
j=0

 ∑
p+q=j

upcq

xj .

We can now substitute for up and then use the fact that( ∑
r+s=p

arbs

)
cq =

∑
r+s=p

(arbs) cq,

which is true by the distributive property in R. This gives

[f(x)g(x)]h(x) =

(n+m)+k∑
j=0

 ∑
p+q=j

( ∑
r+s=p

arbs

)
cq

xj
=

(n+m)+k∑
j=0

 ∑
p+q=j

( ∑
r+s=p

(arbs) cq

)xj . (D.2)

In equation (D.2), notice that r+s+q = p+q = j, and so equation (D.2) shows that the coefficient
of xj in [f(x)g(x)]h(x) is the sum of all products of the form (arbs) cq where r + s+ q = j. This
means that we can rewrite equation (D.2) as follows:

[f(x)g(x)]h(x) =

(n+m)+k∑
j=0

 ∑
r+s+q=j

(arbs) cq

xj . (D.3)
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Using a similar procedure for f(x)[g(x)h(x)], we see that

f(x)[g(x)h(x)] =

(
n∑

i=0

aix
i

)[
m+k∑
w=0

( ∑
s+q=w

bscq

)
xw

]

=

n+(m+k)∑
j=0

 ∑
r+w=j

(
ar

∑
s+q=w

bscq

)xj
=

n+(m+k)∑
j=0

 ∑
r+w=j

( ∑
s+q=w

ar (bscq)

)xj . (D.4)

In equation (D.4), r+ s+ q = r+w = j, and so equation (D.4) shows that the coefficient of xj in
f(x)[g(x)h(x)] is the sum of all products of the form ar (bscq) where r+ s+ q = j. Therefore, we
can write

f(x)[g(x)h(x)] =

n+(m+k)∑
j=0

[ar (bscq)]x
j . (D.5)

Since multiplication in R is associative, we know that ar (bscq) = (arbs) cq , so using this and
equation (D.5), we can conclude that

f(x)[g(x)h(x)] =

n+(m+k)∑
j=0

[(arbs) cq]x
j . (D.6)

Comparing equations (D.3) and (D.6), we see that [f(x)g(x)]h(x) = f(x)[g(x)h(x)], which proves
that multiplication in R[x] is associative.

We will now prove the distributive law. (Since we have proved that multiplication in R[x] is
commutative, we only have to prove one of the distributive laws.) For this, recall that we have
assumed that k ≤ m ≤ n, and so

f(x)[g(x) + h(x)] =

(
n∑

i=0

aix
i

) m∑
j=0

(bj + cj)x
j


=

n+m∑
j=0

 ∑
r+s=j

ar(bs + cs)

xj
=

n+m∑
j=0

 ∑
r+s=j

(arbs + arcs)

xj
=

n+m∑
j=0

 ∑
r+s=j

arbs

xj +

n+m∑
j=0

 ∑
r+s=j

arcs

xj

= f(x)g(x) + f(x)h(x).

Therefore, multiplication distributes over addition in R[x], and we conclude that R[x] is a ring.

Finally, we will prove that if R has an identity, 1R, then R[x] also contains an identity. Let
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u(x) = 1R. Then u(x) ∈ R[x] and

f(x)u(x) =

(
n∑

i=0

aix
i

)
(1R)

= f(x).

Therefore, if R is a commutative ring with identity, then R[x] is also a commutative ring with
identity. ■





Appendix E
The Cubic Formula

The quadratic formula tells us how to find all solutions to quadratic equations in C[x]. There is
also a general formula for solving cubic equations, although it is much more complicated than the
quadratic formula.

First note that when we want to find roots of polynomials, it suffices to work with only monic
polynomials. To see why, consider the general polynomial f(x) =

∑n
i=0 aix

i (with an ̸= 0) in
F [x], where F is a field. Let g(x) = xn +

∑n+1
i=0 a

−1
n aix

i, and assume r ∈ R is a root of f(x).
Then f(r) = 0, and so

anr
n + an−1r

n−1 + · · ·+ a1r + a0 = 0.

Multiplying both sides by a−1
n gives us

rn + a−1
n an−1r

n−1 + · · ·+ a−1
n a1r + a−1

n a0 = a−1
n 0 = 0.

But the left hand side of the last equation is just g(r). Thus, g(r) = 0.

Now assume r ∈ R is a root of g(x). Then g(r) = 0. So

rn + a−1
n an−1r

n−1 + · · ·+ a−1
n a1r + a−1

n a0 = 0.

Multiplying both sides by an yields

anr
n + an−1r

n−1 + · · ·+ a1r + a0 = an0 = 0.

But the left hand side of the last equation is just f(r). Thus, f(r) = 0. What we have shown is that
r is a root of f(x) if and only if r is a root of g(x).

One conclusion we can draw from this is that when looking for roots of polynomials over a field,
it is enough to consider roots of monic polynomials. So when finding roots of cubics, it suffices to
consider only cubics of the form x3+ax2+ bx+ c. Let a, b, c ∈ C, and consider the cubic equation

x3 + ax2 + bx+ c = 0. (E.1)

Our first step in solving this cubic equation is to reduce the cubic polynomial x3 + ax2 + bx+ c to
what is often called a depressed cubic—that is, a cubic of the form x3 + px+ q. One way to do this
is to make the change of variable x = z − a

3 .

Activity E.1.

(a) Evaluate the cubic polynomial x3 +6x2 +x+3 at x = z− a
3 and show that the result is the

depressed cubic z3 − 11z + 17.

(b) Evaluate the general cubic x3 + ax2 + bx+ c at x = z − a
3 and show that

x3 + ax2 + bx+ c = z3 +

(
3b− a2

3

)
z +

(
2a3 − 9ab+ 27c

27

)
.
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Activity E.1 shows that the substitution x = z− a
3 transforms our general cubic x3+ax2+bx+c

to the depressed cubic z3 + pz+ q = 0 with p = 3b−a2

3 and q = 2a3−9ab+27c
27 . Now we just need to

solve the depressed cubic.

Theorem E.2. Let p ∈ C be nonzero, and let q ∈ C. The roots of

z3 + pz + q = 0 (E.2)

are given by z = 3
√
A − p

3
3√
A

, where A = − q
2 +

√
q2

4 + p3

27 and 3
√
A can be any one of the three

cube roots of A in C.

Proof. Our first step will be to reduce equation (E.2) to a quadratic. We do this by substituting
y − p

3y for z to obtain (
y − p

3y

)3

+ p

(
y − p

3y

)
+ q = 0

y3 − 3

(
p

3y

)
y2 + 3

(
p

3y

)2

y −
(
p

3y

)3

+ py − p

(
p

3y

)
+ q = 0

y3 − py +

(
p2

3y

)
−
(

p3

27y3

)
+ py −

(
p2

3y

)
+ q = 0

y3 −
(
p3

27

)(
1

y3

)
+ q = 0

(
y3
)2

+ qy3 −
(
p3

27

)
= 0. (E.3)

Setting v = y3 transforms the last equation into the quadratic equation

v2 + qv −
(
p3

27

)
= 0. (E.4)

We can solve equation (E.4) with the quadratic formula, which yields the following two roots:

A =

−q +
√
q2 + 4

(
p3

27

)
2

and B =

−q −
√
q2 + 4

(
p3

27

)
2

.

After some simplifying, we see that

A = −q
2
+

√
q2

4
+
p3

27
and B = −q

2
−
√
q2

4
+
p3

27
.

So our solutions to equation (E.3) are the cube roots of A and B. At first glance it might appear that
there are then 6 solutions to equation (E.4) and therefore 6 solutions to equation (E.2). However, if
r is a cube root of A, then (

− p

3r

)3
= − p3

27r3
=

p3

27A
.

Since

AB =
q2

4
−
(
q2

4
+
p3

27

)
=
p3

27
,

we see that (
− p

3r

)3
= − p3

27r3
=

p3

27A
= B,
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and so − p
3r is a cube root of B. So if we let r1, r2, and r3 be the cube roots of A, then s1 = − p

3r1
,

s2 = − p
3r2

, and s3 = − p
3r3

are the cube roots of B. Since z = y − p
3y is equal to ri + si whenever

y = ri or y = si, it follows that the solutions to equation (E.2) are r1+s1, r2+s2, and r3+s3. ■

To illustrate the cubic formula, we will find the solutions to the cubic equation x3+x2+x+1 =
0. We begin by reducing this equation to the depressed cubic

z3 +
2

3
z +

20

27
= 0

by substituting x = z − 1
3 , where p = 3(1)−(1)2

3 = 2
3 and q = 2(1)3−9(1)(1)+27(1)

27 = 20
27 . To solve

the depressed cubic, we need to find the cube roots of

A = −q
2
+

√
q2

4
+
p3

27
= −10

27
+

2
√
3

9
.

Let r = 3
√
A, and let ω be the primitive cube root∗ of 1 given by ω = − 1

2 +
√
3
2 i. Then, using the

same notation as in the proof of Theorem E.2, we obtain:

r1 = rω s1 = − p

3r1
= − 2

9rω
= − 2

9r
ω2

r2 = rω2 s2 = − p

3r2
= − 2

9r
ω

r3 = r s3 = − p

3r3
= − 2

9r
.

So the roots of the depressed polynomial z3 + 2
3z +

20
27 are

z1 = rω − 2

9r
ω2

z2 = rω2 − 2

9r
ω

z3 = r − 2

9r
.

We can simplify these roots a bit. First, note that
(
− 1

3 +
√
3
3

)3
= − 10

27 + 2
√
3

9 , so r = − 1
3 +

√
3
3 .

∗If A is a real number and ω = cos( 2π
n
) + i sin( 2π

n
), then ω is called a primitive nth root of 1, and the n complex nth

roots of A are given by n
√
A, ω n

√
A, ω2 n

√
A, . . . , ωn−1 n

√
A.



114 Appendix E. The Cubic Formula

Then

z3 = r − 2

9r

= −1

3
+

√
3

3
− 2

9
(
− 1

3 +
√
3
3

)
= −1

3
+

√
3

3
− 2

9
(
− 1

3 +
√
3
3

) (− 1
3 −

√
3
3

− 1
3 −

√
3
3

)

= −1

3
+

√
3

3
−

2
(
− 1

3 −
√
3
3

)
9
(
1
9 − 3

9

)
= −1

3
+

√
3

3
+

(
−1

3
−

√
3

3

)

= −2

3
.

Similar simplification gives z1 = 1
3 + i and z2 = 1

3 − i. The solutions to our original equation
x3 + x2 + x+1 = 0 have the form xi = zi − a

3 = zi − 1
3 . So the solutions to x3 + x2 + x+1 = 0

are
x1 = i, x2 = −i, and x3 = −1.

Theorem E.2 shows us how to find the roots of cubic polynomials in C[x]. There is a corre-
sponding formula for finding roots of quartic (degree 4) polynomials as well, but we won’t consider
that formula here. When we use the quadratic and cubic formulas to solve equations, we are find-
ing the solutions in a form that only depends on the sums, differences, products, or quotients of
the coefficients of the polynomial along with roots (square, cube, etc.) of such combinations of the
coefficients. When we do this, we say we are solving an equation by radicals. Some of the best
mathematicians throughout history, including Euler and Lagrange, attempted to find solutions by
radicals of general quintic (degree 5) polynomial equations over C. It wasn’t until 1826 that the first
generally accepted proof of the insolvability of quintic polynomials was published by Abel. Galois
later developed a theory of solvability of equations involving groups and fields, and he used this
theory to show that polynomial equations of degree 5 or higher over C are not solvable by radicals.



Appendix F
The Fundamental Theorem of Algebra

In this appendix we provide a proof of the Fundamental Theorem of Algebra. This particular proof
comes from the paper “The Fundamental Theorem of Algebra” by Frode Terkelsen in The American
Mathematical Monthly, Vol. 83, No. 8, (Oct. 1976), p. 647. As is true with most proofs of this
theorem, some complex analysis is required, and we will gloss over those points. While our proof
will not be complete and rigorous, it is instructive to have some idea of how this important theorem
is proved. For complete details, consult a text on complex analysis.

Theorem (The Fundamental Theorem of Algebra.). Every polynomial of degree 1 or greater in
C[x] has a root in C.

Proof. Let f(z) ∈ C[z] be a non-constant polynomial. We know that |f(z)| → ∞ as |z| → ∞, and
along with the continuity of the polynomial f(z), this implies the existence of a complex number
z0 such that |f(z0)| ≤ |f(z)| for all z ∈ C. In other words, the function |f(z)| attains a minimum
value. ∗ (Recall that the norm |f(z)| of the complex number f(z) is a nonnegative real number.)
We can always translate f so that z0 is at the origin (by considering the polynomial f(z + z0)), so
we will assume z0 = 0 without loss of generality. Our job is then to show that f(0) = 0. We will
proceed by contradiction and assume f(0) ̸= 0.

First, we will rewrite f(z) in a more useful form. By subtracting out the constant term of f(z),
we obtain a polynomial whose smallest degree term is n for some n ≥ 1. Thus,

f(z) = a0 + anz
n + zn+1Q(z),

where an ̸= 0 and Q(z) is a polynomial. (As an illustration, consider the polynomial f(z) =
2 + 3z3 + 4z4 + 5z6. Note that n = 3 and Q(z) = 4 + 5z2 in this case.) For ease of notation, we
let a = a0 and b = an. Note that f(0) ̸= 0 implies a ̸= 0. We will now use the fact that every
complex number has nth roots. In particular, let ω be an nth root of −a

b —that is ωn = −a
b . For each

real number x, we have

f(xω) = a+ b(xω)n + (xω)n+1Q(xω)

= a+ bxnωn + (xω)n+1Q(xω)

= a+ bxn
(
−a
b

)
+ (xω)n+1Q(xω)

= a(1− xn) + (xω)n+1Q(xω).

∗The formal proof of this result requires some more sophisticated results from analysis and topology, but the idea is similar to
why every even-degree polynomial p(x) in R[x] attains a minimum value. For any such p(x), the Extreme Value Theorem
guarantees that p(x) will attain a minimum value ma on each closed interval of the form [−a, a]. But p(x) → ∞ as
|x| → ∞, and so there must be some a ∈ R+ for which p(x) > ma for all x < −a and all x > a. It follows that this ma

is the (global) minimum value of p(x).
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SupposeQ(z) = q0+q1z+q2z
2+ · · ·+qmzm. If 0 < t < 1, then the triangle inequality shows

that

|Q(tω)| ≤
m∑

k=0

|qk(tω)k| =
m∑

k=0

|t|k|qkωk| <
m∑

k=0

|qkωk|.

Note that the quantity
∑m

k=0 |qkωk| does not depend on t. Therefore, there exists t ∈ R with
0 < t < 1 such that

t|ωn+1Q(t ω)| < |a|.

Thus,

|f(tω)| ≤ |a|(1− tn) + tn
(
t|ωn+1Q(tω)|

)
< |a|(1− tn) + tn|a|
= |a|
= |f(0)|,

which contradicts the fact that |f(z)| attains its minimum value at 0. Therefore, it must be that
f(0) = 0, and f(z) has a root. ■



Appendix G
Complex Roots of Unity

Focus Questions

By the end of this investigation, you should be able to give precise and thorough
answers to the questions listed below. You may want to keep these questions in mind
to focus your thoughts as you complete the investigation.

• How do we represent complex numbers using a polar or trigonometric form?

• What is a complex root of unity?

• What is de Moivre’s theorem and what does it tell us about powers of complex
numbers?

• How do we find all complex nth roots of unity?

• How can we find complex nth roots of an arbitrary complex number?

Preview Activity G.1. Consider the problem of determining all solutions to the polynomial equa-
tion x3 − 1 = 0. We know that x = 3

√
1 = 1 is one solution, but the Fundamental Theorem of

Algebra tells us that there are two more solutions. That is, there are three complex numbers that
satisfy the equation x3 − 1 = 0. These solutions are called the third roots of unity (where 1 is the
unity).

(a) Let z0 = cos
(
0π
3

)
+ i sin

(
0π
3

)
. Evaluate the trigonometric functions at 0π

3 and calculate
exact numeric values for the real and imaginary parts of z0. Then calculate z20 and z30 .

(b) Let z1 = cos
(
2π
3

)
+ i sin

(
2π
3

)
. Evaluate the trigonometric functions at 2π

3 and calculate
exact numeric values for the real and imaginary parts of z1. Then calculate z21 and z31 .

(c) Let z2 = cos
(
4π
3

)
+ i sin

(
4π
3

)
. Evaluate the trigonometric functions at 4π

3 and calculate
exact numeric values for the real and imaginary parts of z2. Then calculate z22 and z32 .

(d) How are z0, z1, and z2 related to the polynomial x3 − 1?

In this investigation we will expand on Preview Activity G.1 to explicitly determine all complex
roots of unity and see how these roots of unity help us solve polynomial equations.
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The Trigonometric form of a Complex Number

Multiplication of complex numbers is a pretty straightforward algebraic process, but the algebra
doesn’t provide much visual insight into a complex product. One idea that helps us visualize com-
plex multiplication and makes the determination of complex roots of unity possible is the trigono-
metric (or polar) form of a complex number. This trigonometric form connects the algebra of com-
plex numbers to trigonometry in a very useful way.

θ

b

a

r

z

Figure G.1
Trigonometric form of a complex number.

If z = a + bi is a complex number, then we can plot z in the plane as shown in Figure G.1. In
this situation, we will let r be the magnitude of z (that is, the distance from z to the origin) and θ
the angle z makes with the positive real axis as shown in Figure G.1.

We can use trigonometry to see that

a = r cos(θ) and b = r sin(θ).

We can then write z in trigonometric form as

z = r(cos(θ) + i sin(θ)) (G.1)

and call (G.1) the trigonometric (or polar) form (or representation) of the complex number z. (The
word polar here comes from the fact that this process can be viewed as occurring with polar coor-
dinates.) The angle θ is called the argument of the complex number z and the real number r is the
modulus or norm of z. To find the polar representation of a complex number z = a + bi, we first
notice that

r = |z| =
√
a2 + b2.

To find θ, we have to consider cases.

• If z = 0 = 0 + 0i, then r = 0 and θ can have any real value.
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• If z ̸= 0, then tan(θ) = b
a if a ̸= 0 and θ is determined by the quadrant in which z lies.

• If z ̸= 0 and a = 0 (so b ̸= 0), then

– θ = π
2 if b > 0

– θ = −π
2 if b < 0.

Activity G.2.

(a) Find the polar form of the complex numbers w = 4 + 4
√
3i and z = 1− i.

(b) Find a, b ∈ R so that a+ bi = 3
(
cos
(
π
6

)
+ i sin

(
π
6

))
.

Products of Complex Numbers in Polar Form

There is an important product formula for complex numbers that the polar form provides. We illus-
trate with an example.

Example G.3. Let w = − 1
2 +

√
3
2 i and z =

√
3 + i. Now |w| =

√(
− 1

2

)2
+
(√

3
2

)2
= 1 and the

argument of w satisfies tan(θ) = −
√
3. Since w is in the second quadrant, we see that θ = 2π

3 , so
the polar form of w is

w = cos

(
2π

3

)
+ i sin

(
2π

3

)
.

Also, |z| =
√(√

3
)2

+ 12 = 2 and the argument of z satisfies tan(θ) = 1√
3

. Since z is in the first
quadrant, we know that θ = π

6 and the polar form of z is

z = 2
[
cos
(π
6

)
+ i sin

(π
6

)]
.

Computing wz directly gives

wz =
(√

3 + i
)(

−1

2
+

√
3

2
i

)
= −

√
3 + i.

Now |wz| = 2 and the argument of zw satisfies tan(θ) = − 1√
3

. Since wz is in quadrant II, we
see that θ = 5π

6 and the polar form of wz is

wz = 2

[
cos

(
5π

6

)
+ i sin

(
5π

6

)]
.

Notice that |wz| = |w| |z| and that the argument of zw is 2π
3 + π

6 or the sum of the arguments
of w and z.

In general, we have the following important result about the product of two complex numbers.



120 Appendix G. Complex Roots of Unity

Theorem G.4. Let w = r(cos(α) + i sin(α)) and z = s(cos(β) + i sin(β)) be complex numbers
in polar form. Then the polar form of the complex product wz is given by

wz = rs (cos(α+ β) + i sin(α+ β)) .

The verification is left for Exercise (2).

An illustration of this is given in Figure G.2. Theorem G.4 tells us that to multiply two complex
numbers together, we add their arguments and multiply their magnitudes.

α

w

β

z

α+β

wz

Figure G.2
A geometric interpretation of complex multiplication.

Activity G.5. Let w = 3
[
cos
(
5π
3

)
+ sin

(
5π
3

)]
and z = 2

[
cos
(
−π

4

)
+ sin

(
−π

4

)]
.

(a) What is |wz|?

(b) What is the argument of wz?

(c) In which quadrant is wz? Explain.

(d) Find the polar form of wz.

An alternate representation for the polar form of a complex number is the exponential form of a
complex number. If w = r(cos(α)+ i sin(α)) and z = s(cos(β)+ i sin(β)), then the polar product

wz = rs (cos(α+ β) + i sin(α+ β))

allows us to multiply the magnitudes and add the arguments. Exponential functions have the same
properties. That is, if u = aex and v = bey , then

uv = abex+y.
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This similarity provides a shorthand way of representing the polar form of a complex number. We
write eiθ to mean

eiθ = cos(θ) + i sin(θ)

(this equation is called Euler’s formula). Then the polar form r(cos(θ) + i sin(θ)) of a complex
number can be written as reiθ:

reiθ = r(cos(θ) + i sin(θ)).

An interesting consequence is the elegant and unexpected relationship between four of the most
famous mathematical constants (0, 1, e, and π). If we substitute π for θ in eiθ we see that

eiπ = −1 or eiπ + 1 = 0.

This last equation is called Euler’s identity.

Theorem G.4 gives us a quick way to compute powers of a complex number, and hence to find
roots of complex numbers. If z = r(cos(θ) + i sin(θ)), then Theorem G.4 shows us that

z2 = (r)(r) (cos(θ + θ) + i sin(θ + θ))

= r2 (cos(2θ) + i sin(2θ)) .

We can continue this process to obtain the following theorem.

Theorem G.6 (de Moivre’s Theorem). Let z = r(cos(θ) + i sin(θ)) be a complex number and n
any integer. Then

zn = rn(cos(nθ) + i sin(nθ)). (G.2)

The proof is left for Exercise (5). In exponential form we have(
reiθ

)n
= rneinθ.

Note that de Moivre’s Theorem works for negative integer powers as well as positive integer
powers.

Activity G.7. Use de Moivre’s Theorem to find z10 where z = 1− i.

Roots of Unity

Now we return to the problem of solving the polynomial equation x3 = 1. If we draw the graph of
y = x3 − 1 we see that the graph intersects the x-axis at only one point, so there is only one real
solution to x3 = 1. That means the other two solutions must be complex. The key to finding the two
complex third roots of unity is de Moivre’s Theorem. Suppose

z = r [cos(θ) + i sin(θ)]

is a solution to x3 = 1. Then

1 = z3 = r3(cos(3θ) + i sin(3θ)).
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This implies that r = 1 (or r = −1, but we can incorporate the latter case into our choice of angle).
We then have

1 = cos(3θ) + i sin(3θ). (G.3)

Equation (G.3) has solutions when cos(3θ) = 1 and sin(3θ) = 0. This will occur when 3θ = 2πk,
or θ = 2πk

3 , where k is any integer. The distinct integer multiples of 2πk
3 on the unit circle occur

when k = 0 and θ = 0, k = 1 and θ = 2π
3 , and k = 2 with θ = 4π

3 . In other words, the solutions to
x3 = 1 should be

z0 = cos(0) + i sin(0) = 1

z1 = cos

(
2π

3

)
+ i sin

(
2π

3

)
= −1

2
+

√
3

2
i

z2 = cos

(
4π

3

)
+ i sin

(
4π

3

)
= −1

2
−

√
3

2
i.

We already know that z30 = 13 = 1, so z0 actually is a solution to x3 = 1. To check that z1 and z2
are also solutions to x3 = 1, we apply de Moivre’s Theorem:

z31 =

[
cos

(
2π

3

)
+ i sin

(
2π

3

)]3
= cos

(
3
2π

3

)
+ i sin

(
3
2π

3

)
= cos(2π) + i sin(2π)

= 1,

and

z32 =

[
cos

(
4π

3

)
+ i sin

(
4π

3

)]3
= cos

(
3
4π

3

)
+ i sin

(
3
4π

3

)
= cos(4π) + i sin(4π)

= 1.

Thus, z31 = 1 and z32 = 1 and we have found three solutions to the equation x3 = 1. Since a cubic
can have only three solutions, we have found them all.

In general, the solutions to xn = 1 for a positive integer n are called the nth roots of unity.

Definition G.8. If n is a positive integer, the nth roots of unity are the n solutions to the equation
zn = 1.

The argument above can be extended to show that the nth roots of unity are given by

e
2kπi
n = cos

(
2kπ

n

)
+ i sin

(
2kπ

n

)
for k from 0 to n− 1. To verify this statement, note that(

e
2kπi
n

)n
= e2kπi = cos(2kπ) + i sin(2kπ) = 1.

The complex numbers e
2kπi
n are distinct for k from 0 to n− 1, so we have the n different complex

roots of 1.
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Activity G.9.

(a) Find all solutions to x4 = 1. That is, find the fourth roots of unity.

(b) Find all sixth roots of unity.

Activity G.9 illustrates something interesting. There are four complex roots of 1, given by 1, ω,
ω2, and ω3, where

ω = e
2πi
4 = cos

(π
2

)
+ i sin

(π
2

)
= i.

Now ω2 = −1, and 12 = 1 and (−1)2 = 1, while ω2 and
(
ω3
)2

are not equal to 1. So 1 and −1 are
also square roots of 1. We say that an nth root of unity z is a primitive nth root of unity if z is not a
root of unity for some smaller power.

Definition G.10. Let n be a positive integer. The complex number z is a primitive nth root of unity
if zn = 1 but zk ̸= 1 for any k with 1 ≤ k < n.

The complex number e
2πi
n is always a primitive nth root of unity, but this is not the only primitive

nth root of unity. We determine all of the primitive nth roots of unity in the concluding activities.

Roots of Complex Numbers

The final topic we will consider in this investigation is extending this process for finding roots of
unity to calculate roots of other complex numbers. To find the solutions to the equation xn = a+bi,
where n is a positive integer and a+ bi is a complex number with trigonometric form

a+ bi = r [cos(θ) + i sin(θ)] ,

with r > 0, we assume that z = s [cos(α) + i sin(α)] with s > 0 is a solution to xn = a+ bi. Then

a+ bi = zn

= (s [cos(α) + i sin(α)])
n

= sn [cos(nα) + i sin(nα)]

and so
sn = r and cos(θ) + i sin(θ) = cos(nα) + i sin(nα).

Therefore,
sn = r and nα = θ + 2πk

where k is any integer. This give us

s = n
√
r and α =

θ + 2πk

n
.

We will get n different solutions for k = 0, 1, 2, . . ., n − 1, and these will be all of the solutions.
These solutions are called the nth roots of the complex number a+ bi. We summarize the results in
the next theorem.
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Theorem G.11. Let n ∈ Z+. The nth roots of the complex number r [cos(θ) + i sin(θ)] are given
by

n
√
r

[
cos

(
θ + 2πk

n

)
+ i sin

(
θ + 2πk

n

)]
for k = 0, 1, 2, . . ., (n− 1).

In other words, if r is an nth root of a complex number z, then all of the nth roots of z have the
form rωk for 0 ≤ k ≤ n− 1, where ω is a primitive nth root of unity.

Example G.12. We solve the equation

x4 = −8 + 8
√
3i.

Note that we can write the right hand side of this equation in trigonometric form as

−8 + 8
√
3i = 16

(
cos

(
2π

3

)
+ i sin

(
2π

3

))
.

The fourth roots of −8 + 8
√
3i are then

x0 =
4
√
16

[
cos

( 2π
3 + 2π(0)

4

)
+ i sin

( 2π
3 + 2π(0)

4

)]
= 2

[
cos
(π
6

)
+ i sin

(π
6

)]
= 2

(√
3

2
+ i

1

2

)
=

√
3 + i,

x1 =
4
√
16

[
cos

( 2π
3 + 2π(1)

4

)
+ i sin

( 2π
3 + 2π(1)

4

)]
= 2

[
cos

(
2π

3

)
+ i sin

(
2π

3

)]
= 2

(
−1

2
+ i

√
3

2

)
= −1 +

√
3i,

x2 =
4
√
16

[
cos

( 2π
3 + 2π(2)

4

)
+ i sin

( 2π
3 + 2π(2)

4

)]
= 2

[
cos

(
7π

6

)
+ i sin

(
7π

6

)]
= 2

(
−
√
3

2
− i

1

2

)
= −

√
3− i,
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and

x3 =
4
√
16

[
cos

( 2π
3 + 2π(3)

4

)
+ i sin

( 2π
3 + 2π(3)

4

)]
= 2

[
cos

(
5π

3

)
+ i sin

(
5π

3

)]
= 2

(
1

2
− i

√
3

2

)
= 1−

√
3i.

Activity G.13. Find all fourth roots of −256, that is find all solutions to x4 = −256.

Concluding Activities

Activity G.14. Let ω be a primitive sixth root of unity.

(a) Determine the powers of ω2. What does this say about ω2?

(b) Determine the powers of ω3. What does this say about ω3?

(c) Parts (a) and (b) illustrate the following theorem.

Theorem G.15. Let F be a field that contains a primitive nth root of unity. Then F contains
a primitive kth root of unity for every positive divisor k of n.

Complete the following steps to prove this theorem.

i. Let ω be a primitive nth root of unity in F , and let k be a positive divisor of n. Let
d = n

k . Let ρ = ωd. Show that ρk = 1.

ii. We have shown that ρ is a kth root of unity. To prove that ρ is a primitive kth root of
unity, we must demonstrate that ρm ̸= 1 for 1 ≤ m < k. Let m be an integer with
1 ≤ m < k. Show that ρm ̸= 1.

Activity G.16. Let n be a positive integer. The complex number ω = e
2πi
n is always a primitive nth

root of unity, but this is not the only primitive nth root of unity. We know that the nth roots of unity
are ωk for 0 ≤ k ≤ n− 1. In this exercise we determine exactly which of these roots are primitive
nth roots of unity.

(a) Consider the case with n = 6. Determine which powers ωk are primitive sixth roots of unity.
What is the relationship between k and 6 if ωk is a primitive sixth root of unity?

(b) Repeat part (a) with n = 8.

(c) Now generalize parts (a) and (b) and determine in general which powers of ω are primitive
nth roots of unity.

’
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Exercises

(1) Let w = 2− 5i and z = −4 + 7i.

(a) Compute w + z

(b) Compute wz

(c) Find the polar forms of w and z.

(d) Use the polar forms to compute wz. Compare to your earlier result.

(2) Prove Theorem G.4 that if w = r(cos(α) + i sin(α)) and z = s(cos(β) + i sin(β)), then

wz = rs (cos(α+ β) + i sin(α+ β)) .

(3) Find the cube roots of a = −2 + 2i.

(4) In this problem we will find the fifth roots of unity, or the solutions to the equation z5−1 = 0.
This is much more complicated than finding the fourth or sixth roots of unity due to the
difficulty of finding cos

(
π
5

)
and sin

(
π
5

)
. Assume the identity

sin(5α) = 5 sin(α)− 20 sin3(α) + 16 sin5(α). (G.4)

WARNING: This is a very messy problem!

(a) Use (G.4) to find an equation for sin
(
π
5

)
.

(b) Let w = sin
(
π
5

)
. Show that the value of sin

(
π
5

)
is a solution to

16w4 − 20w2 + 5 = 0.

(c) Show that sin
(
π
5

)
=

√
10−2

√
5

4 .

(d) Find the exact values of the fifth roots of unity. Hint: Let φ = 1+
√
5

2 . Show that
sin
(
2π
5

)
= 1

2

√
2 + φ and cos

(
2π
5

)
=
(
1
2

)
(φ− 1). Note that φ2 = φ+1. Express all

fifth roots of unity in terms of φ. Note also that computing inverses in C can be easier
than computing products.

(e) Verify (G.4) for any angle α. You may use the following well-known trigonometric
identities that are valid for any angles α and β:

sin(α+ β) = cos(α) sin(β) + cos(β) sin(α) (G.5)
sin(2α) = 2 cos(α) sin(α) (G.6)

cos(2α) = 1− 2 sin2(α) (G.7)

cos2(α) + sin2(α) = 1. (G.8)

(5) Prove de Moivre’s Theorem that if z = r(cos(θ) + i sin(θ)) is a complex number and n any
integer, then

zn = rn(cos(nθ) + i sin(nθ)). (G.9)
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