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Abstract 

 

     This is an investigation of the use of surface electromyography (sEMG) as a tool to improve 

human interfacing devices (HID) information bandwidth through the transduction of the fingertip 

workspace. It combines the work of Merletti et al and Jarque-Bou et al to design an open-source 

framework for Fingertip Workspace based Human Interfacing Devices (HID).  In this framework, 

the fingertip workspace is defined as the system of forearm and hand muscle force through a tensor 

which describes hand anthropometry. The thesis discusses the electrophysiology of muscle tissue 

along with the anatomy and physiology of the arm in pursuit of optimizing sensor location, muscle 

force measurements, and viable command gestures. Algorithms for correlating sEMG to hand joint 

angle are investigated using MATLAB for both static and moving gestures.  

Seven sEMG spots and Fingertip Joint Angles recorded by Jarque Bou et al are investigated for 

the application of sEMG to Human Interfacing Devices (HID). Such technology is termed Gesture 

Computer Interfacing (GCI) and has been shown feasible through devices such as CTRL Labs 

interface, and models such as those of Sartori, Merletti, and Zhao. Muscles under sEMG spots in 

this dataset and the actions related to them are discussed, along with what muscles and hand actions 

are not visible within this dataset.  Viable gestures for detection algorithms are discussed based on 

the muscles discerned to be visible in the dataset through intensity, spectral moment, power 

spectra, and coherence. Detection and isolation of such viable actions is fundamental to designing 

an EMG driven musculoskeletal model of the hand needed to facilitate GCI. 

    Enveloping, spectral moment, power spectrum, and coherence analysis are applied to a 

Sollerman Hand Function Test sEMG dataset of twenty-two subjects performing 26 activities of 

living to differentiate pinching and grasping tasks. Pinches and grasps were found to cause very 

different activation patterns in sEMG spot 3 relating to flexion of digits I - V. Spectral moment 

was found to be less correlated with differentiation and provided information about the degree of 

object manipulation performed and extent of fatigue during each task.  Coherence was shown to 

increase between flexors and extensors with intensity of task but was found corrupted by crosstalk 

with increasing intensity of muscular activation. Some spectral results correlated between finger 

flexor and extensor power spectra showed anticipatory coherence between the muscle groups at 

the end of object manipulation. 

    An sEMG amplification system capable of capturing HD-sEMG with a bandwidth of 300 and 

500 Hz at a sampling frequency of 2 kHz was designed for future work. The system was designed 

in ordinance with current IEEE research on sensor-electrode characteristics. Furthermore, 

discussion of solutions to open issues in HD-sEMG is provided. This work did not implement the 

designed wristband but serves as a literature review and open-source design using commercially 

available technologies.  
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Chapter 1 – Introduction 

 

1.1 - Muscle Electrophysiology and Neuromuscular Control 

    The neuromuscular system is responsible for generating voluntary and involuntary movement 

in the human body. Movement is initiated when electrochemical signals called action potentials 

travel onto Motor Units (MUs), which are composed of a motor neuron and all the muscle fibers 

it innervates. These signals originate from nerves as Intracellular Action Potentials (IAP) that 

propagate from the central and peripheral nervous system. The exchange between these signals 

and muscle fibers leads to Motor Unit Action Potentials (MUAP), which prompt muscle fiber 

contraction to generate movement [1]. This interaction takes place at the cervicothoracic junction 

for forearm muscles.  

    During the muscle contraction process, an action potential travels down a motor neuron as an 

IAP. When this action potential reaches the neuromuscular junction of a single fiber in the MU, it 

triggers cross-bridging between actin and myosin protein fibers, causing the muscle to contract. 

The influx and outflux of sodium and potassium in the cross-bridging cycle lead to a potential 

difference in the membrane of active tissue, which is propagated to the surface of the skin through 

conduction. The measurement of this neuromuscular signal from the surface of the skin is known 

as surface electromyography (sEMG) [1]. This signal is modeled as a linear combination of MUAP 

deep and proximal to the electrode and Gaussian noise, which represents electromagnetic 

interference, motion artifacts, and other unintentionally acquired bioelectric signals. Proper 

electrode placement allows sEMG to effectively drive physiological models of humans through 

the DEMOVE grant project [1]. 
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    Action potentials originate from alpha motor neurons and travel as IAP to the muscles they 

innervate. This is achieved through the release of acetylcholine (ACH) from the terminal bouton 

of the neuron onto the muscles’ motor end plates. ACH reacts with nicotinic ACH receptors on 

the motor end plate, triggering sodium influx into the myofibrils, generating an action potential on 

the myofibrils, which travels to the transverse tubules of the cell and activates DHP receptors. 

Calcium influx from the sarcoplasmic reticulum to the sarcomere occurs due to DHP receptor 

activation. Calcium presence induces the cross-bridging cycle and causes contraction of the muscle 

cell [2]. 

    Muscular contraction is the summation of the force caused by all activated motor units, which 

are comprised of small (slow-twitch) and large (fast-twitch) muscle fibers; these motor units are 

bundled and  integrated randomly throughout the entire muscle. Summation occurs 

spatiotemporally as both quantal (the number of MU recruited) and wave (frequency of stimulus) 

summation. Therefore, graded contractions can be produced through activation of combinations 

of muscle fibers. Additionally, sustained contractions are produced by the asynchronous 

stimulation of different motor units. Motor control is also affected by agonist inhibition of 

antagonist muscles, innervation of the muscle spindle to maintain proper tension, and the Golgi 

tendon response protecting muscle from tearing by inhibiting during excessive load [2]. 

    The body has three types of muscle fibers that motor units may activate to fine-tune the muscular 

contraction generated shown in Figure 1.1; namely Type IIx, Type IIA, and Type I. Type II fibers 

are fast twitch and produce tension quickly after stimulation, used for quick and powerful 

movements. Type IIA has a higher oxidative capacity, meaning it can produce tension for a longer 

time, while Type I fibers are slow twitch and can sustain contraction for long periods without 

fatigue due to their rich blood supply and increased mitochondrial density [2]. Selective activation 
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of different muscle fiber groups enables differentiation of muscle tension or force through the 

coordination of these three fiber types, allowing the same muscle to be utilized for endurance, 

strength training, and precise motion. 

 

Figure 1.1: Time vs Tension Muscle Fibers [2] 

1.2 - Surface Electromyography 

    Unamplified, measuring electromyography (EMG) signals measured from the surface of the 

skin will yield voltages ranging between 0 and 10 millivolts, and capture electrical activity 

approximately 2 centimeters below the surface of the skin. Most of the power of this signal is 

concentrated to frequencies ranging from 20 to 200 Hz, but sEMG signals do have artifacts 

extending up to 1000 Hz [3]. The signal measured is the linear combination of proximal MUAP 

beneath the sensor and noise generated by the conductor effects of the arm. Furthermore, noise is 

caused by inherent noise in electronic equipment, motion artifacts, ambient noise, and inherent 

instability in the signal [4]. This noise can be one to three orders of magnitude larger than the 

muscle’s signal.  

    A significant area of study in the reduction of sEMG noise is the Electrode - Gel - Skin Interface. 

Merletti et al states that these interfaces are required to have low noise with a standard deviation 

approximately between 5 and 10 microvolts, and an impedance for the entire electrode skin 
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interface to be less than 0.5 megaohms [1]. Most of this impedance comes from the Gel - Skin 

interface, methods to reduce this impedance have been reviewed extensively. The optimal method 

for reduction of this impedance was found by Piervirgili et al to be through rubbing the surface 

with an abrasive conductive paste [5]. A circuit model for the electrode skin impedance is shown 

below in Figure 1.2 where the half or full cell potential is dependent on monopolar or bipolar 

configuration. 

 

Figure 1.2: Electrode Skin Impedance Circuit [1] 

    If noise is controlled, muscle activity can be amplified and measured as electrical signals from 

the surface of the skin. The measurement of these electric potentials requires sensors with high 

signal to noise ratio that can capture the full frequency spectra of the signal and pass required 

safety measures for use on human patients. If these sensors are small enough and in high enough 

density, an accurate estimate of a muscle’s force can be made. A high-density map of forearm 

electrical activity is desired to estimate locomotive drivers for the hand and reduce the crosstalk 

between individual sEMG channels measured [6].  

    One of the most heavily studied methods for quantization of MUAP activity is 

electromyography (EMG). This technology uses electrodes to measure the firing pattern of 

muscles and condition the signal into a measurable quantity. When this technology is applied using 

electrodes on the surface of the skin, it is known as surface EMG or sEMG. The technology is used 
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widely in the study of biomechanics and is less invasive than other prevalent methods of measuring 

muscle activity such as fine wire EMG. The signal measured from one sEMG sensor is equal to 

the linear combination of MUAP active underneath the sensor plus gaussian noise. The voltage of 

this signal ranges from several tens of microvolts to millivolts [7]. The Thevenin equivalent circuit 

for the human body can be approximated with a source impedance of a 100-pF capacitor in series 

with a 1.5-kΩ resistor [8].  

    In sEMG, there are two main types of electrode montages – single differential and monopolar. 

Merletti, Botter, and Barone designed a novel switchable montage which can be converted between 

single differential and monopolar [1]. The sEMG Sensor observed are a modified topology of a 

single differential electrode montage designed by Wang, Tang, and Bronlund [9]. This topology 

was chosen for its reduction of common mode voltage, and precision at low voltage measurements. 

Modifications suggested to the topology have been designed for the sensor to interface with digital 

components. The sensor’s inverting Op Amp has been replaced with a limiter using 3.3V Zener 

diodes to protect the ADC inputs from over voltage. An optional rectifier array can be integrated 

into the topology to measure the envelope of the sEMG signal. Further modification could be made 

to this topology to implement the switchable montage. A complete schematic and analysis of 

Wang’s circuit is shown in section 2.3 
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1.2.a - Electrode Types 

    Electrodes are loosely classified by their shape and size as well as their electrical properties. 

While large electrodes measure linear combinations of MUAP from muscle fiber near the 

electrode, small electrodes have the capability to capture individual MUAP [1]. Electrodes are 

furthermore differentiated resistive or capacitive based on the impedance between the skin 

electrode barrier.  

1.2.a.1 - Resistive Electrodes 

    Resistive (Galvanic) Electrodes are those which conduct small currents from biopotentials 

which are representative of the underlying MUAP. Such electrodes must have direct skin contact 

during measurement, but signal integrity of these sensors is more consistent with movement, and 

observed signals have a much smaller signal to noise ratio (SNR). Shown below in Figure 1.3 is 

the representative circuit for a resistive electrode [1].  

 

Figure 1.3: Gelled Electrode and Equivalent Circuit [1] 

1.2.a.2 - Capacitive Electrodes 

    Capacitive Electrodes are galvanically isolated from the body; instead of measuring currents 

proportional to MUAP, these sensors measure a change in capacitance as muscle activity changes. 

A benefit of such sensors is that they can be used to measure potential without direct skin contact 

[10] but come with the cost of low noise immunity and small signals. Shown below in Figure 1.4 
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is the representative circuit for a resistive electrode. Future development of capacitive sEMG may 

lead to the development of wearable technologies above clothing. 

 

Figure 1.4: Capacitive Electrode and Equivalent Circuit [1] 

1.2.b - Designing with Resistive Electrodes 

    In the design of this device, resistive electrodes were implemented. This decision was made 

despite the ability to sense over clothing, because signal integrity is essential in the design of an 

HD-sEMG device. Due to the low frequency noise induced by movement, small signals and high 

SNR, capacitive electrodes were deemed too early in their development for use in an sEMG 

Interfacing Development Platform [11].  

1.2.c - Microelectrodes 

    While large electrodes induce spatial filtering through treating the surface underneath the 

electrode as equipotential, micro-electrodes are furthermore constrained by their spatial Nyquist 

Criterion. The sampling criterion shown in equation 1, states that the inter electrode distance (IED) 

must be the inverse of twice the highest harmonic in the signal. In this sense, the “heat map” 

captured during each cycle of the device contains all the information content in the signal below 

this harmonic [1]. It has been shown by Farina et al in Figure 1.5 that an IED of 5 mm between 

electrodes with a diameter of 5mm captures all information present in the forearm [1]. At an 

interelectrode distance of 5 mm, the sampling frequency is 200 cycles/m. This correlates to a 
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minimum harmonic of 300 Hz being measured on the forearm when a MUAP propagates at 3 m/s. 

Because most of the information content of sEMG is found below 500 Hz and specifically high 

information content below 60 Hz, this is an acceptable bandwidth for the electrodes. 

𝑓𝑠𝑎𝑚𝑝 =
1

𝐼𝐸𝐷
> 2𝑓𝑀𝐴𝑋 

Equation 1 

  

 

Figure 1.5: Electrode Size Transfer Functions [1] 

    Regarding the material properties, electrode impedance must be greater than skin impedance, 

but less than the amplifier’s input impedance [1]. In sEMG systems, cross talk is a very important 

factor to consider for interelectrode distance and signal isolation. Large IED has been shown by 

Gallina et al to significantly increase crosstalk between sEMG sensors [12]. Crosstalk is caused 

by the volume conductor properties of the forearm, and thus the “blurring” it causes cannot be 
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negated without the use of needle electrodes, spatial filtering, or other reduction methods reviewed 

in literature [1, 6, 13,14]. 

    Extraction of neuromuscular signals through HD-sEMG has been shown to drastically reduce 

crosstalk, alluding to the measurement of the entire forearm surface [12]. Measurement locations 

can be chosen through consideration of the entire forearm surface and optimized to target areas of 

the forearm which cause the most movement in the fingertip workspace and greatest visibility of 

activation patterns. Optimization of locations for signal measurement and power could be 

performed using k-means clustering to isolate optimal signal locations [15]. Independent 

Component Analysis (ICA) such as JADE [16, 17] and Blind Source Separation (BSS) to extract 

principal signals from electrode pairs has been shown as an effective crosstalk reduction method 

but requires the acquisition of an unimpeded signal such as fine wire EMG [6, 14]. Specifically in 

this research, sEMG is measured using seven forearm locations which were prerecorded. 

Considering that this device would be used by consumers, HD-sEMG is likely the best option. 

    While it has been shown by Jarque-Bou et al that all forearm neuromuscular control can be 

derived from seven locations [18], significant signal processing must be performed to do so. 

Furthermore, measurement above a muscle does not directly imply muscle signal acquisition. 

Spatiotemporal summation of motoneurons and muscle action potentials is impeded by noise and 

summed with other proximal muscles. Analysis using these seven sources is prone to crosstalk 

from multiple muscles firing under the same sEMG spot. Merletti et al have shown microelectrodes 

and HD -sEMG could significantly increase selectivity of muscles by sourcing multiple sensors 

for measurement of its MUAP activity [1].  
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1.3 – Muscle Force Transduction 

    Muscle force is generated as the summation of muscle fibers being stimulated asynchronously 

to produce contraction. The tension produced by the muscle sums both quantally and spatially 

through all motor units in the muscle, whose individual stimulus is defined as a MUAP. Using 

sEMG, MUAP are sensed at electrodes on the surface of the skin through volume conductor 

properties of the limb. The signal recorded from a sEMG sensor can therefore represent the 

activation of many muscles and is not a direct isolation of the electrical signal generated by a single 

muscle. Non linearities of EMG further abstracts the measurement of muscle force as changes in 

EMG are often much smaller than the associated force change at low levels and change often 

becomes much more volatile with activation of larger motor units [1].  

    Muscle response to stimulus can generally be separated into two categories - twitch and 

summation. A muscle twitch is defined as a single response to a single stimulus. Summation 

considers both the number of motor units activated -known as quantal summation and  the 

frequency of stimulus known as wave summation. In wave summation, repeated stimulus at a 

frequency higher than the relaxation threshold for the fiber causes stimuli to add to the tensile force 

developed by the previous twitch. Tetanus is high frequency summation such that the twitch 

responses fuse into a smooth contraction as seen in vivo. This is to say that EMG analysis is 

primarily performed in the frequency domain, and that the rate of stimulation is related to forces 

developed. 

    Muscle contraction can be divided into two subtypes based on the length change of the muscle. 

Isometric contractions are those which cause no length change in a muscle, while isotonic are those 

which do cause length change. Isotonic contractions are subdivided based on the direction of length 

change. Eccentric contractions lead to an increase in length and are caused by the load applied to 
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the muscle being greater than the force generated by the muscle. Concentric contractions are those 

which cause a decrease in length of the muscle from the force generated being greater than the 

load. Such distinction is important as different types of contractions require various experimental 

setups. Different types of muscle contractions require various experimental setups and can result 

in different effects on joint angles and muscle activation, which should be taken into consideration 

when analyzing muscle activity. 

    Muscle force generation is influenced by several factors, including the length-tension 

relationship, force-velocity relationship, fatigue, and the balance between agonistic and 

antagonistic muscle groups. The length-tension relationship describes how the length of a muscle 

fiber affects its ability to generate tension. If the sarcomeres within the muscle fiber are too short 

or too long, nonlinearities in force generation can occur. The force-velocity relationship describes 

how muscle velocity and force are inversely related, meaning that a muscle cannot generate high 

force and high velocity at the same time due to a power ceiling. Fatigue occurs when ATP stores 

in the muscle deteriorate, leading to a decrease in the force generated over time [3]. Finally, neural 

control is important for coordinating the activation of both agonistic and antagonistic muscle 

groups, which is achieved through reciprocal innervation of bilateral pairs by sensory neurons [1]. 
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    In summary, the tension generated by a muscle force is guided by complex relationships 

between various factors such as length and tension, force and velocity, and fatigue and force. 

Additionally, factors such as optimal filament overlap, power ceiling, and reciprocal innervation 

of agonistic and antagonistic muscle groups also contribute to the generation of muscle force [2]. 

Algorithms for muscle force transduction must consider the relationship between EMG and the 

firing pattern of motor units in targeted muscles as well as the kinematics and dynamics of the 

musculoskeletal system. Specifically in the case of an sEMG system, sensitivity and selectivity of 

sensors also becomes a factor of increasing importance in small and deep muscles. While it has 

been shown that HD - sEMG drastically improves the selectivity of muscles [12], this research 

does not directly investigate methods for isolating muscles in HD -sEMG. Instead, this research 

assumes that sEMG signals capture the muscle directly underneath an sEMG sensor with little 

interference from nearby muscles and compares their envelopes to joint angles in order to observe 

gross motor function. Muscles observed are verified using volumetric models provided by the 

Visible Body platform [19]. 

1.4 - Hand Anthropometry and Functional Groups 

    Neuromusculoskeletal modeling (NMM) of a limb implies deriving its kinematic properties and 

is often used for either determining the final position and velocity of a limb because of muscular 

activation (forward kinematics) or determining the forces and moments present to generate a vector 

of observed motion (inverse kinematics) [1]. Through neuromusculoskeletal modeling, local 

physiology of the hand’s musculoskeletal system can be integrated with muscle force transduction 

to observe changes in hand conformation as they relate to EMG. This conformational change 

manifests in joints of motion defined in the model and can be as simple as modeling open 

hand/grasping or as complex as the skeletal anatomy of the hand. Shown below in Figure 1.6 is 
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the skeletal anatomy of the hand derived into its three elementary bone types (phalanges, 

metacarpals and carpals). Phalanges make up the fingers, while metacarpals and carpals make up 

the hand and wrist respectively. 

 

Figure 1.6: Skeletal Anatomy of Hand 

    The skeletal anatomy of the hand yields six different types of joints labeled by the bones which 

interface the joint. These joints can be furthermore abstracted to synovial joints - of which the hand 

has three different types. The wrist can be modeled as a condyloid joint consisting of the carpal 

bones, radius and ulna. The convex shape of the carpal bones interfaces with the concavity of the 

radius and ulna in order to allow for biaxial motion [20]. The MCP joints of the fingers as well as 

the MCP and CMC joints of the thumb are modeled as saddle joints. Saddle joints are biaxial and 

lead to the opposability of the thumb, and the ability to abduct/adduct digits II-V [20]. All IP, PIP 

and DIP joints are modeled as hinge joints. In hinge joints, the concave end of one bone interfaces 

with the convex face of another bone to create a uniaxial point of motion [20]. The joints of the 

hand are shown below in Figure 1.7 with their synovial analogues, marking the CMC joint of digits 

IV-V unlabeled as an area of contention in hand modeling. 
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Figure 1.7: Hand Joints and Synovial Joint Models 

    Considering the mapping from muscles to their moments on joints in the hand, the tensile force 

generated by a muscle pulls the insertion on a distal bone towards its origin on a proximal bone 

[2]. Merletti designs the interaction between muscles and the conformation of the limb it acts on 

through principal vectors of tension from the origin of the muscle to its insertion on the distal bone 

[1]. Tensile forces of muscles counteract one another at joints, the derivation of this relation is 

known as its kinematics. In this derivation, a joint’s axes constitute unique degrees of freedom 

(DOF) in the model and muscle forces change the angle at these DOF. In the language of 

physiology, the direction of angle change constitutes which muscles are considered flexors, 

extensors, or opposers (Abductors and Adductors). The functions of these muscle types are listed 

below in Table 1.1. DOF can either be derived using mathematical methods such as D-H 

parameters [21, 22, 23], or captured using a joint angle glove as discussed later in this section [18]. 
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Table 1.1: Actions of Muscle Types 

Muscle Type Action 

Extensor Increase the angle at a joint 

Flexor Decrease the angle at a joint 

Abductor Moves limb away from midline of body 

Adductor Moves limb toward the midline of body 

  Functionally the hand actions originating from forearm muscles can be differentiated as shown 

in Figure 1.8. Ensemble flexion and extension of Digits II-V is actuated largely by the digitorum 

muscles and is easily measured using sEMG from the forearm. While opposition is actuated by the 

thenar and hypothenar muscles originating from the transverse carpal ligament, it is also actuated 

by the palmaris longus superficial to the flexor digitorum and deep to the bicipital aponeurosis and 

may therefore be measured from the forearm [24]. Further muscle groups observable from the 

forearm are Digit I flexion and extension, supination and pronation, and wrist actuation. Index 

finger extension may be observable with the use of HD-sEMG, but the muscle is deep to the 

forearm, and therefore the measurement of its actuation is impeded by the muscles superficial to 

it. Missing from this model are muscles of the hand, such as the lumbricals and palmar and dorsal 

interossei originating from the volar interosseous of the metacarpals and inserting into the sheaths 

of the terminal flexor digitorum and extensor expansions [15]. These muscles aid in fine motor 

control of the hand, but their measurement would be unwieldy for a subject because sensors would 

have to be on their hands. 
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Figure 1.8: Hand Functional Groups in Forearm 

    A functional mapping from muscles to the joint angles which they control involves the 

derivation of a computational model such as that of ARMS Lab Hand and Wrist Model shown 

below in Figure 1.9. This is the most extensive open-source hand model available to date and 

integrates the BioSim framework to perform both forward and inverse kinematics on a 23 DOF 

model of the hand [25]. Other notable computational models for the hand include joint angle 

gloves, and kinematic models such as the 25 DOF model generated using D-H parameters by 

Peña-Pitarch et al [21, 22, 23]. This thesis did not investigate kinematic derivation for the hand, 

it instead shares the open-source models available for a more mechanically minded researcher to 

investigate. A beneficial development in this field would be integration of variant DOF models 

into the ARMS Lab Model.  
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Figure 1.9: ARMS Lab Hand and Wrist Model (23 DOF) [25] 

    This thesis applies the 18 DOF joint angle glove measurements captured by Jarque Bou et al 

with prescribed hand conformations defined in the Sollerman Hand Function Test (SHFT) [26] to 

visualize hand conformation. sEMG signals captured in this dataset were then compared to joint 

angle motions to observe hand functional groups effectively measurable from the forearm. Joint-

Angle or Data Gloves are a core component of hand research platforms as they can be used to track 

the conformation of a hand under study. Jarque Bou et al used the CYBERGLOVE II as shown 

below in Figure 1.10 to capture their hand joint angle data which measures the hand in 18 DOF 

[18, 27]. These gloves are composed of an array of sensors, supporting materials to mount the 

sensors on a hand, and electronics for signal processing [27,28].  

 

Figure 1.10: CYBERGLOVE II Joint Angle Glove (18 DOF) 
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    In order to integrate any dataset with the ARMS Lab Hand and Wrist Model, a dataset of joint 

angles would need to be or cast to 23 DOF. Furthermore, the generation of a computational hand 

model would also involve the integration of neuromusculoskeletal modeling with the ARMS Lab 

Model. This would involve the targeting of muscles or functional groups, quantization of their 

force through methods in 1.3, coupling to the ARMS Lab Model, and derivation of forward 

kinematics. Implementing neuromusculoskeletal modeling within the ARMS Lab Model is 

significant because these models can be optimized for real time performance on embedded systems 

[1].   

1.5 - Human Interface Device (HID) 

    Human Interface Devices (HID) refer to devices which use USB-HID protocol to allow a user 

to control a computer [29]. Historic examples of such devices are the keyboard and mouse invented 

in 1819 and 1964 respectively, or voice control devices such as the Amazon Alexa shown below 

in Figure 1.11. Such devices interface with computers by generating reports of a structure defined 

in the Device Class Definition for Human Interface Devices (HID) [29]. When a user clicks a key 

on a keyboard, button on a mouse, or speaks to a voice control device the system converts that 

information into a report formatted for specific HID interfaces. In this way, transactions are 

standardized to a single interface class, and developers can focus efforts on designing devices to 

existing drivers such as keyboard or mouse formats. This field of computing has seen significant 

development over recent years to keep up with the capabilities of modern computer systems, and 

the use of HID protocol enhances the generalization of such technologies to many different 

platforms. 
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Figure 1.11: Human Interface Devices (HID) 

    Modern HID development has invested significant research into the anthropometry of the 

human body. Devices such as joysticks and mice take the conformation of the hand into account 

when designing grips, while three-dimensional interface devices such as the Oculus and head up 

displays attempt to merge computation with dynamic motion of the body and the ocular field. The 

development of a neuromusculoskeletal hand model for HID would be the most advanced 

interfacing tool for the upper limb and would allow for users to manipulate digital objects with 

their fingers. HID reporting is not investigated in this research as the development of sEMG 

technology is still in its infancy. HID instead is regarded as a destination for such a 

neuromusculoskeletal model of the hand and promises an unparalleled degree of applications from 

hazardous chemical handling to robotic surgery and prosthetic limb interfacing. 

     A Neuromusculoskeletal-HID would likely emulate the driver for a computer mouse, as many 

of the same controls available for a two-dimensional interface apply. Three-dimensional hand 

location could be monitored using an accelerometer and zero point, while HD-sEMG could be 
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used to update the NMM and determine when a user is performing a control gesture. Control 

gestures could be related to computer mouse commands such as right/left click and scroll to 

emulate the traditional performance of a mouse. These control gestures could be simple tasks such 

as pinching and grasping over a threshold force, while a relaxed hand could mean no control 

gestures are being sent. Viable options for gesture control are discussed further in chapter 3 using 

the KIN - MUS UJI dataset. 

1.6 – Outline of Thesis 

    This thesis utilized existing models of the hand, the KIN-MUS UJI dataset, and the sEMG 

Driven Musculoskeletal modeling of Sartori to analyze the viability of using forearm sEMG as a 

control interface for computing. The electrophysiology of muscle tissue and anatomy and of the 

arm will be studied in conjunction with the Sollerman Hand Function test and optimally recorded 

muscles reported by Jarque Bou in order to determine how much of the hand can be actuated by 

an EMG driven musculoskeletal model. Furthermore, this thesis investigated the development of 

an HD-sEMG sleeve with much lower inter-electrode distance than that utilized in the KIN-MUS 

UJI dataset. 

    Bottlenecks in the development of an sEMG Driven Musculoskeletal model are the sensors, 

EMG acquisition from specific muscles, the musculoskeletal model, linking sEMG and joint angle 

data to the musculoskeletal model hyperparameter tuning, and development of a data analysis 

platform. This thesis sought to narrow the scope of future development in this field through not 

only showcasing the opportunity for pinch and grasp detection within open-source datasets, but 

also through investigation of open source sEMG sensors and computer architectures utilized in 

similar research. The thesis concludes with the development of Microelectrode Preamplifiers 

which can be used to make a sensor grid smaller than that utilized in the KIN-MUS UJI dataset. 
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While these sensors can be utilized to capture similar recordings to Jarque Bou, further 

investigation of the fingertip workspace may require a smaller inter electrode distance to spatially 

sample the forearm at a higher resolution. All applications discussed in this thesis are available 

through the associated GitHub repositories listed in the appendix of this thesis. 

    This research aims to show applicability of the KIN - MUS UJI dataset for study of the ARMS 

Lab Hand and Wrist Neuromusculoskeletal Model, along with developing a review of applicable 

technologies to recording forearm HD - sEMG. This research has application in robotic medicine, 

space missions, computer interfacing, and any task in dangerous environments where precise hand 

control is needed. Neuromusculoskeletal modeling is a highly interdisciplinary field at the cutting 

edge of biomedical research, and therefore requires the cumulative effort of its researchers to make 

advances. The dissemination of this work coincides with seven years of personal work on this topic 

and the hope that future efforts will be expedited by its development. 

 

Figure 1.12: Artist Rendering Forearm Muscular Control of Hand 
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Chapter 2 - Review of Literature 

 

2.1 - Sollerman Hand Function Test (SHFT) 

    The Sollerman Hand Function Test (SHFT) is a physiologic assessment used to measure the 

ability of the hand [26]. The test consists of a prescribed apparatus and observes a subject 

performing tasks on the apparatus.  The level of detail described in the tasks of this test allows a 

physician to compare subjects based on their ability to perform them. The SHFT was used to 

observe hand motion during this study due to the expectation that subjects will perform tasks 

through similar hand-grips if they have full limb functionality. Hand-grips describe a normal 

conformation of the hand, those useful to this study are shown below along with the relaxed hand 

in Figure 2.1. 

 

Figure 2.1: Observed Hand Conformations 

    Tasks of the SHFT constitute hand manipulation tasks which are used regularly and are therefore 

known as Activities of Daily Living (ADL). ADL of interest to this research are those which show 

the gradient of flexor intensity between pinches with digit II and grasps with all digits. Shown later 

in this research, the KIN-MUS UJI dataset is only able to capture ensemble digital flexor activity 

with electrodes of 20 mm IED. These ADL are namely 1,3,6, and 14 shown below in Table 2.1 

reflecting their hand grip and numeral in both the Sollerman-Ejeskar test and the KIN-MUS UJI 
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dataset [18, 26]. These ADL are chosen to illustrate the gradient between a pinch and a grasping 

task. 

Table 2.1: Relating KIN - MUS UJI ADL to SHFT ADL 

ADL 

(JB) 

ADL 

(SE) 

Description Hand-Grips 

1 2 Collecting a coin and putting it into a change purse Pulp Pinch 

3 4 Removing the coin from the change purse and leaving it 

on the table 

Pulp Pinch 

Five-Finger Pinch 

6 7 Taking a screwdriver and turning a screw clockwise 

360° with it 

Diagonal Volar 

Grip 

(Supination) 

14 11 Taking a knife with the right hand and a fork with the 

left hand and splitting a piece of clay (sitting) 

Diagonal Volar 

Grip 

(Opposition) 

    Each ADL begins from a relaxed hand and conforms to the desired hand-grip to manipulate the 

object in the activity. After the activity has been performed, the subject returns to the relaxed hand 

conformation. ADL 1 and 3 are likely to use Pulp Pinch to pick up coins, while ADL 3 is also 

likely to use the Five-Finger Pinch if the location of coins is unknown in the purse. Similarly, ADL 

6 and 14 will utilize the Diagonal Volar Grip to manipulate their objects but will vary in the use 

of the grip for force generation. ADL 6 utilizes the Diagonal Volar Grip to hold on to a screwdriver, 

while supination muscles are used for force generation. ADL 14 uses the Diagonal Volar Grip to 

directly oppose the force generated by cutting clay with a knife. The four ADL activities show an 

increase in dexterous force as first more fingers are recruited, then more force is generated by the 

ensemble in opposition to forces acting against the hand closing. 
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2.2 - KIN-MUS UJI and RAW_EMG Datasets 

    The Jarque Bou Dataset referenced refers to the “KIN-MUS UJI” and “RAW_EMG” Datasets 

included in “A calibrated database of kinematics and EMG of the forearm and hand during 

activities of daily living”. It is a collection of 22 subjects performing modified tasks from the SHFT 

while measuring both sEMG activity and joint angles of the hand. Joint angles are recorded in 18 

degrees of freedom and captured at 100 Hz by the CYBERGLOVE II. The sEMG was collected 

using SX230 electrodes placed over seven optimal recording locations for the forearm as shown 

below in Figure 2.2 [18]. The sEMG signals are recorded using an 8-channel sEMG Biometrics 

Ltd device with a sampling frequency of 1000 Hz. This dataset was chosen because of its high-

quality kinematics acquisition, recording of sEMG measurement locations, and segmentation of 

data into reaching, manipulation of objects, and their release. 

 

Figure 2.2: Optimal sEMG Recording Spots 

    Actions with the largest contribution to each sEMG spot are shown below in Table 2.2. Notably, 

fingertip workspace actuation is only visible from spots 3-5 in this dataset, while all others measure 

wrist actuation. Consequently, bilateral control of the wrist and ensemble finger motion are the 

only actions visible. Thumb extension is measurable from spot 4, but spot 3 measures flexion for 
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both the thumb and digits II-V. Electrode three is noted to be positioned on the dorsal side of the 

interosseous crest since the hand has a limited number of muscle bellies on the dorsal side of this 

region, and most of the activation group is present on the palmar forearm. 

Table 2.2: sEMG Spot and Associated Action 

Spot Actions of Muscles Identified by Jarque Bou 

1 Wrist Flexion & Ulnar Deviation 

2 Wrist Flexion & Radial Deviation 

3 Flexion I-V 

4 Extension I 

5 Extension II-V 

6 Wrist Extension and Ulnar Deviation 

7 Wrist Pronation, Supination, Extension 

    Though opposition of digits I&V is largely actuated by muscles originating from the transverse 

carpal ligament and inserting distally on the hand, it may be visible in a subset of subjects through 

measurement of the Palmaris Longus muscle. The muscle originates from the medial epicondyle 

of the humerus and inserts to transverse carpal ligament and activates during oppositional tasks for 

stabilization of the wrist and oppositional muscles. The Palmaris Longus may be visible from spot 

2, but abstracting these are orders of signal magnitude and some subjects lack a Palmaris Longus. 

The presence of the Palmaris Longus varies more than any other muscle in the body and can be 

missing in 1.5% to 63.9% of populations around the world [24].  
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    Another important consideration of this dataset is that because the signals are sEMG, the 

crosstalk between signals is significant. Muscles may be measurable from more than one sEMG 

spot, and this needs to be considered when studying the relationship between sEMG and joint 

angles. Not only does measuring EMG from the surface of the skin induce volume conductor 

interference as current travels through the forearm to the sensor, but these signals then sum at 

sensors [1]. Due to this it is not likely that small or deep muscles will be measurable, but instead 

that the largest movements induced by forearm muscles in the fingertip workspace will be visible 

with minor interference. 

    Two subsets of the dataset are utilized during this thesis: namely “RAW_EMG” and “KIN-MUS 

UJI”. These two datasets measure raw sEMG and rectified integrated sEMG with joint angles 

respectively. Each subset records 22 patients performing 26 ADL. Included in the repository 

discussed later is a script for concatenating the two datasets signals together for comparison. This 

allows for comparison of frequency domain characteristics captured only in the raw sEMG to be 

compared to the joint angle data implemented in KIN-MUS UJI. 

    The “RAW_EMG” dataset constitutes the raw sEMG recordings for each of the seven spots. 

This is recorded for 22 patients performing 26 ADL. Signals are sampled at 1000 Hz. No 

segmentation is performed by object manipulation in this dataset, there is one signal per spot per 

recording. The “KIN-MUS UJI” data set comprises rectified and integrated envelopes of the seven 

sEMG recordings as well as the 18 joint angles recorded by the CYBERGOVE II. This dataset 

resamples the enveloped sEMG to 100 Hz so that it is coordinated with the joint angle data. 

Furthermore, this dataset is also abstracted by segmentation around the time of object 

manipulation. Each subject’s ADL are segmented into three recordings for pre, during, and post 

object manipulation. 
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    While the authors briefly mention the validation of their methods by stating that they used 

standard procedures for data collection and calibrated the data with known physical values, they 

do not provide any specific details about the validation process or the results of any validation 

studies. The dataset was collected from a relatively small sample size of twenty-two healthy 

individuals, and it is possible that the kinematic and EMG data collected from this sample may not 

generalize well to other populations with different levels of motor ability or health status. 

Furthermore, sEMG data is not all normalized to maximal voluntary contraction (MVC), with the 

exception being spot 4 normalized to ADL 11. Researchers analyzing this dataset do not have 

access to the MVC measurements, which may abstract results. Most significantly, it is noted by 

the authors that wrist angle measurements are subject to much higher variability than those of the 

hand due to the design of the apparatus. This is a significant limitation to the dataset as the majority 

of sEMG sensors track wrist motion, while only three are dedicated to measuring actuators of the 

fingertip workspace. 

    This dataset is significant to the development of an sEMG interfacing device because it 

implements recording of both raw EMG and joint angles. This dataset is utilized for the purpose 

of determining how much of the fingertip workspace is visible using low dimensional sEMG 

recording. Because all flexors of the digits are visible from a single spot, the dataset provides 

insight into ensemble flexion of digits. Furthermore, the rectified envelope function utilized by 

Jarque Bou allows for similar study of sEMG to that as performed in EMG Driven Musculoskeletal 

Models such as those by Sartori et al [30]. EMG Driven Musculoskeletal Models use sEMG 

enveloping and Hill Type muscle models to determine joint moments. Because Jarque Bou 

implements such enveloping, the dataset offers future opportunities for Musculoskeletal Modeling 

of the Hand. 
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    This dataset is significant to the development of an HD-sEMG Driven Musculoskeletal Model 

because it constitutes the most apparent sEMG signals measured from the forearm and coordinates 

them with a kinematic recording device for hand joint angles. This is the largest open-source 

dataset available with this breadth of information and is further notable for its recording of practical 

and reproducible actions through the SHFT. The largest drawback for this dataset is its use of 20 

mm IED electrodes, which cause significant spatial filtering and impedes the selectivity of the 

sEMG sensors to specific muscles. Despite this, the dataset provides needed insight into forearm 

muscle control of the hand and wrist through its application of the SHFT and the CYBERGLOVE 

II to sEMG recordings. If it is found that the spatial sampling frequency needs to be increased to 

accurately track joint moments, this research also develops upon open-source HD-sEMG to 

develop an electrode sleeve with a higher spatial sampling frequency than that utilized in the KIN 

- MUS UJI dataset. 

2.3 - sEMG Sensor  

2.3.a - Topology 

    The sEMG Sensor investigated is a modified topology of the single differential sEMG sensor 

designed by Wang, Tang, and Bronlund [9]. Their sensor topology is shown in Figure 2.3 and 

analyzed further in subsequent sections. The sensor has a total gain of 2900 and a usable bandwidth 

of 20 Hz to 500 Hz. It consists of a preamplifier, second order high pass, second order low pass, 

inverting amplifier, and second order low pass filter . While the upper bandwidth of the expected 

signal is 500 Hz, due to the non-ideal roll off of the filter, aliasing may be present to much higher 

frequencies. Wang and his team made use of a (sigma)-(delta) ADC to sample the data at 2000 Hz, 

but only return 1000 samples per second (SPS).  
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Figure 2.3: Wang et al sEMG Sensor 

2.3.b - Preamplifier 

    The pre-amplifier in the sEMG sensor topology shown above in figure 2.3 utilized the ECG 

Amplifier (low voltage signal measurement) schematic from the INAX28 data sheet. Desired 

characteristics of this circuit are high CMRR, high input impedance, a strong DC current source, 

and a short distance from the electrodes. Positive and negative leads are placed on the muscle 

belly’s origin and insertion end respectively, while the two op-amp inverter circuit is used to inject 

common mode input back into the body and reject it from the sensor [31]. The gain equation for 

the pre-amplifier is shown below in equation 2.  
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𝐺 =  1 +  
50 𝑘𝛺

𝑅𝐺
 =   1 +  

50 𝑘𝛺

2K4 +  2𝐾4
 =  11.4 

Equation 2 

2.3.c - Sallen-Key Filters 

    The filters utilized in the design of this sensor are Second Order Sallen-Key filters. While 

Merletti et al state that usable sEMG artifacts only extend 0-250 Hz, Wang et al designed their 

EMG system to capture 0-500 Hz bandwidth [9]. High pass filters are utilized in the design of this 

sensor to remove low frequency noise and motion artifacts, while the low pass filter removes high 

frequency content and noise from amplification. The high pass filter was designed with a cutoff 

frequency of approximately 20 Hz to remove low frequency movement artifacts from the signal; 

its derivation of cutoff frequency and gain are shown in equations 3-4(a). The low pass filter is 

designed with a cutoff frequency of 709 Hz and two are cascaded to reach the cutoff frequency of 

500 Hz; its derivation of cutoff frequency and gain are shown below in equations 3-4(b). 

    While both fourth order and second order low pass filters were tested in this circuit, 

amplification changes within the pass band were not significant enough for designers to merit the 

implementation of a fourth order low pass filter. While Nyquist - Shannon Limit states that the 

sampling frequency needs to be twice the upper band limit, this upper band limit is not 500 Hz as 

expected with EMG. Due to the non-ideal nature of the low pass filters, the roll off past the cutoff 

frequency allows frequencies above the cutoff to pass to the output of the filter. This risk of aliasing 

was circumnavigated by the designers through implementation of a 𝚺 - Δ analog to digital 

converter (ADC) which samples at 2000 Hz, but only outputs a 1000 Hz resampling of the signal 

[9]. In this way computational load is not increased by having the entire system run at a higher 

frequency, but aliasing is circumnavigated through a sufficiently high sampling rate. 
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𝑓𝑐  =  
1

2𝜋√390𝐾 ∗  390 𝐾 ∗  22𝑛 ∗  22𝑛
 =  18.55 [𝐻𝑧] 

Equation 3.a 

𝐺𝑝𝑎𝑠𝑠  =   1 +  
16𝐾

51𝐾
 =  1.31 [𝑉/𝑉] 

Equation 4.a 

𝑓𝑐  =   
1

2𝜋√68𝐾 ∗  68 𝐾 ∗  3.3𝑛 ∗  3.3𝑛
  =  709.25 [𝐻𝑧] 

Equation 3.b 

𝐺𝑝𝑎𝑠𝑠  =   1 +  
24𝐾

51𝐾
 =  1.47 [𝑉/𝑉] 

Equation 4.b 

 

2.3.d - Inverting Op-Amp 

    The inverting op amp is a topology in which there is a feedback resistor from the output to the 

negative input terminal. The inverting op amp in the sEMG sensor is utilized as a second 

amplification stage. The gain of the amplifier is set to -100 as shown in equation 5.  It was found 

that most of the noise induced by this amplifier was high frequency power line interference, 

therefore a low pass filter was utilized after the amplifier to reduce this. 

𝑉𝑂𝑈𝑇

 𝑉𝐼𝑁
  = −

240𝐾

2.4𝐾
 =  −100 [𝑉/𝑉] 

Equation 5 
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2.4 - Hill-Type EMG Driven Muscles 

    Using Hill Type muscle models, Heine et al designed an algorithm to generate EMG driven 

forward dynamics of musculoskeletal geometries. This was performed in four steps as shown 

below in Figure 2.4, namely capturing EMG, muscle activation dynamics, muscle contraction 

dynamics, and computation of moment arms within the geometry. This algorithm has been verified 

by several groups including Sartori et al, Heine et al, and Kong et al [30, 32, 33]. Furthermore, this 

algorithm requires the development of a musculoskeletal model of the target limb - such as those 

shown in section 2.5.  Several research groups have shown that such models can be implemented 

using sEMG but is limited to major superficial muscle groups [1, 34-37]. 

 

Figure 2.4: Forward Dynamic Neuromusculoskeletal Modeling [32] 

    Figure 2.5 below outlines the process of converting raw EMG into a signal representative of the 

muscle activation dynamics related to that signal. To transform the EMG into this envelope, the 

signal must be full wave rectified, low pass filtered at 4 Hz, and transformed by activation 

dynamics & nonlinearization. This process provides a signal representative of muscular activation 

related to the EMG signal measured. All steps are implemented digitally in this research except 

for EMG acquisition, though analog rectification is discussed in section 6.4. 
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Figure 2.5: Muscle Activation Dynamics [32] 

    After EMG was rectified and filtered, it was transformed to represent the activation dynamics 

of the muscle. The transform was assumed to be a critically damped second order differential 

system, and its discretized form is shown below in equation 6.  The transformation from rectified 

filtered signal can be described as a function of three parameters, 𝛾1, 𝛾2, and d which were initially 

guessed as 0.5, 0.5, and 40 mS and then refined later. The coefficients  𝛼,  𝛽1, and 𝛽2 are 

coefficients for the second order differential system, while d represents the electromechanical 

delay of the system. 

𝑢(𝑡)  =  𝛼𝑒(𝑡 − 𝑑) −  𝛽1𝑢(𝑡 − 1)  −  𝛽2𝑢(𝑡 − 2) Equation 6 

    Coefficients  𝛽1, and 𝛽2 are functions of 𝛾1, and 𝛾2 which can be evaluated using equations 7 

and 8 on the next page. After  𝛽1, and 𝛽2 have been calculated  𝛼 can be evaluated using equation 

11.  𝛽1, and 𝛽2 are constrained further by equation 9 and 10.  These coefficients are updated 

iteratively after estimated joint moments are compared to actual joint moments. 

𝛽1  =  𝛾1  +  𝛾2 Equation 7 

𝛽2  =  𝛾1  ∗  𝛾2 Equation 8 
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| 𝛾1 |  <  1 Equation 9 

| 𝛾2 |  <  1 Equation 10 

𝛼 − 𝛽1  −  𝛽2  =  1 Equation 11 

    After activation dynamics are evaluated, the nonlinear musculoskeletal activation can then be 

computed using equation 12 below. This transformation is shown pictorially as the fitting from 

neural activation to logarithmic muscle activation shown in Figure 2.6 below. Coefficients d, c, m, 

and b refine the nonlinearity of low EMG amplitude, and can be evaluated as a single point on the 

“A-Line” shown between points P and O. Point P represents the translation from neural activation 

to muscle activation reported for the biceps brachii by Woods and Bigland-Ritchie, while point O 

represents a completely linear relationship between activations [32]. Sartori et al has shown that 

by learning a single distance A between point O and point P, the nonlinearity of EMG to muscle 

activation can be characterized much better at low amplitudes. Finding this nonlinearity was done 

by performing several isometric contractions and performing gradient descent to optimize A from 

a good starting point while keeping variation between one standard deviation of standard 

physiologic values.  

𝛼(𝑡)  =  𝑑 𝑙𝑛(𝑐𝑢(𝑡)  +  1);   0 ≤  𝑢(𝑡)  <  ~0.3 

𝛼(𝑡)  =  𝑚𝑢(𝑡)  +  𝑏;  ~0.3 ≤  𝑢(𝑡)  <  1 

Equation 12 
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Figure 2.6: Non-linearization to Muscle Activation Relationship [32] 

    Finding the Euclidean Distance along the A line implies finding the node point (𝑢0,𝑎0) by 

performing measurement of separate maximum effort isometric tasks with EMG and a load cell as 

described in the methods by Buchanan et al [38]. A was initialized with a value of 1.0 and a location 

for the node point was evaluated using equations 13 and 14. Constants M and b for the linear 

portion of the graph can be found by solving for the line from (1,1) to the node point, while 

constants d and c are solved using equations 15-18. Constant d was solved iteratively using the 

Euler - Cauchy method as described in [38]. As tasks are isometric, DOF remain fixed, and a(t) 

was the only parameter varying in the Hill muscle model. 

𝑢0 = 0.3085 − 𝐴𝑐𝑜𝑠(𝜋/4) Equation 13 
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𝑎0 = 0.3085 + 𝐴𝑠𝑖𝑛(𝜋/4) Equation 14 

𝑐 =  
𝑒(𝑎0/𝑑) − 1

𝑢0
 

Equation 15 

𝑑𝑖 = 𝑑𝑖−1 −
𝑓(𝑑𝑖−1)

𝑓′(𝑑𝑖−1)
 

Equation 16 

𝑓(𝑑)  =  𝑚 −
𝑑𝑐

𝑐𝑢0 + 1
 

Equation 17 

𝑓′(𝑑)  =  
1

𝑢0
[−1 +  (1 −

𝑎0

𝑑
𝑒𝑎0/𝑑] 

Equation 18 

    After muscle activation was calculated, force could then be described by equation 19 below. 

This equation evaluates time varying musculotendon force (𝐹𝑚𝑡(𝑡)) as a function of normalized 

force-velocity (𝑓(𝑣)) , active and passive normalized length dependent fiber force (𝑓𝐴(𝑙), 𝑓𝑃(𝑙)), 

activation (a(t)), maximum isometric muscle fiber force (𝐹0
𝑚), and length dependent muscle fiber 

pennation angle (𝛷(𝑙)). The activation a(t) was described above in equations 12-18, while force-

length and force velocity curves have been described by Zajac et al [39]. The pennation angle as a 

function of muscle length was described by Scott and Winter [40]. Muscle forces are computed all 

at once for the model, as each muscle force has an impact on the pennation angle of all other 

muscles in the model. 

𝐹𝑚𝑡(𝑡)  =  𝐹𝑡  =  [𝑓𝐴(𝑙) 𝑓(𝑣) 𝑎(𝑡) 𝐹0
𝑚  + 𝑓𝑝(𝑙)𝐹0

𝑚]𝑐𝑜𝑠(𝛷(𝑙)) Equation 19 



55 

 

    To compute joint moments and fiber lengths, a musculoskeletal model was needed. The equation 

above also implements an improvement to the optimal fiber length as shown below in equations 

20 and 21.  Equation 7 describes the percent difference in optimal fiber length over the entire range 

of activation (typically between 0 and 0.5). Equation 21 was used to initially calculate the length, 

while equation 21 was used in subsequent updates of this equation. As described in Murray and 

Zajac et al, the musculoskeletal model used must be capable of producing musculotendon lengths 

[39] to properly interface with the Hill - Type muscle force computation model. Heine also used 

Murray et al’s initial values for optimal fiber length, tendon slack length, maximal muscle force, 

and resting pennation angle. Joint moments are computed as the sum of musculotendon forces 

multiplied by their respective moment arms [32]. Heine computes moment arms using equation 

22, this method is the tendon displacement method described by An et al [41].  

𝑙0−𝑛𝑒𝑤
𝑚 = 𝑙0

𝑚(𝛿(1 − 𝑎(𝑡)) + 1) Equation 20 

𝑙𝑡  =  𝑙𝑚𝑡 − 𝑙𝑚𝑐𝑜𝑠(𝛷) Equation 21 

𝛾(𝜃)  =  
𝜎𝑙𝑚𝑡(𝜃)

𝜎𝜃
 

Equation 22 

    Optimization was performed by minimizing the squared error between predicted joint moments 

and physical joint moments as shown in equation 23. Physical joint moments are measured through 

application of load cells, a joint angle glove, or other DOF marker. Modeled joint moments require 

input from both EMG and the musculoskeletal model. While tuning for A was described in the 

methods of Buchanan and Manal et al [38], similar optimization tasks must be performed for the 

hyperparameters mapping EMG envelope to neural activation (d,𝛾1,𝛾2). Optimization has been 
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shown in literature for A, d, and 𝛾 as reported in Table 2.3 with typical initial guesses and bounding 

by physiological limits. 

𝑚𝑖𝑛 ∑(𝑀𝑚𝑜𝑑 − 𝑀𝑚𝑒𝑎𝑠)2

𝑛

𝑖

 
Equation 23 

Table 2.3: Hyperparameters in Hill Type Muscle Model 

Parameter Range Initial Guess 

A 0 ≤  𝐴 ≤  0.12 0.1 

d 10 ≤  𝑑 ≤  100 40 

𝛾1 | 𝛾1 |  <  1 & Equation 9 0.5 

𝛾2 | 𝛾2 |  <  1 & Equation 10 0.5 

    Hill-Type muscles are observed in this thesis because their activation stage closely resembles 

the 8 Hz filtration and rectification method used for enveloping sEMG by the KIN-MUS UJI 

dataset. Hill-Type Muscles are utilized in the ARMS Lab Model, Sartori Model, and can be used 

to simulate joint moments with a high degree of precision while needing to optimize relatively few 

hyperparameters. While force transduction and moment computation have not been analyzed in 

this thesis, the enveloping utilized by Jarque Bou and Heine are similar enough to observe gross 

motor control and determine likely muscles for implementation in a neuromusculoskeletal model. 

It was noted that for such a model to be developed, not only must the anthropometry of the hand 

and forearm be modeled, but also origin and insertion of each muscle in the model, their pennation 

angle, respective torques on different joints, and how the conformation of the hand impacts the 
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maximum force of muscles. Using the work of Heine et al, muscles can be simulated in a 

neuromusculoskeletal model such as theirs depicted below in Figure 2.7. 

 

Figure 2.7: Heine Neuromusculoskeletal Model 

2.5 - Hand and Wrist Models 

2.5.a - 25 DOF Model 

    Currently, the most advanced computational model of the hand uses 25 DOF [21, 22, 42]. Using 

this model, the location of the fingertips can be described by multiplying a vector of hand joint 

angles by the product of two matrices – one which defines the movement of each finger locally, 

and one projecting these local finger movements into the global workspace of the hand. Because 

of the unanimity of this model, it is used throughout 2.5 as a reference tool for which DOF of the 

hand are observed in different models. The 25 DOF model of the hand is shown below in Figure 

2.8. 

    Pitarch designs this hand model to include 25 DOF in the hand, the wrist in this model contains 

a further 2 DOF. The model defined flexion/extension for all IP joints of digits I-V. 

Flexion/extension and abduction/adduction has been modeled for all MCP joints as well as a CMC 

joint for the thumb, digit IV and digit V. While Pitarch does not include a wrist in his model, he 

does show how one could be implemented using D-H parameters similarly to other joints in the 
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model [21, 22, 43]. Because a wrist was included in the 25 DOF model of Peña-Pitarch, a wrist 

has been included in Figure 2.8. 

 

Figure 2.8: 25 DOF Model 

    As this model includes Digit I MCP and two oppositional DOF for digit IV-V, it was promising 

for the simulation of oppositional tasks and the end locations of digits IV-V. Furthermore, this 

model was extensively designed in literature, and is opportune for the design of an EMG driven 

Musculoskeletal Model from first principles. An important consideration of this hand model was 

that there are no muscles associated with it. This was a significant drawback because joint moments 

are dependent on parameters such as muscle tendon length, pennation angle, and the 

origin/insertion of the muscle. Therefore, for this model to be utilized for an EMG driven 

Musculoskeletal Model it must be developed to include muscles. 

    While this model was the most advanced anthropometric projection of the hand currently 

available, the lack of a musculoskeletal model means that it was not a viable option for this 

research. Pitarch states that in future research this model will be developed into a complete 
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musculoskeletal model. For researchers interested in the continuation of this project, Pitarch’s 

work may be useful in the application of D-H parameters to describe hand motion, forward and 

inverse kinematics. Until this model is developed to include muscles, it cannot be used to develop 

an EMG Driven Musculoskeletal Model. 

2.5.b - 18 DOF MODEL (CYBERGLOVE II) 

    The 18 DOF hand model implemented by the CYBERGLOVE II was utilized in the KIN-MUS 

UJI dataset for kinematic feedback [18]. This model implemented PIP and MCP flexion and 

extension of digits II- IV like the model implemented by Pitarch et al. It differs in implementation 

of digit I, digits II-IV abduction/adduction, the conformation of digit IV-V opposition to digit I, 

and this model does not implement PIP actuation. This model only implements three angles 

between digits II-IV and not the individual joint abduction and adduction as in Pitarch’s model. 

Furthermore, while Pitarch’s model implemented four DOF for digits IV-V opposition, this model 

only implemented one angle of flexion as shown below in Figure 2.9. 
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Figure 2.9: 18 DOF Model 

    The Cyberglove II is a joint angle glove which measures fingertip joint angles in 18 DOF at 100 

Hz. The device is wireless and has sensor resolution of less than one degree. Jarque Bou used this 

glove for measurement of joint angles in the KIN-MUS UJI dataset. Joint angles were validated 

within individual studies to expected ranges of motion (ROM), yet these ROM themselves were 

measured with the CYBERGLOVE II. It was notable for its use in the verification of the ARMS 

Lab Hand and Wrist Model in two simulations, which supports its accuracy during pinch and grasp 

tasks and the validation procedure of Jarque Bou et al [18, 25]. An image of CYBERGLOVE II is 

shown below in Figure 2.10. While this glove itself was not a musculoskeletal model, its 

coordination with a full model allows for tracking of joint angles and moments during live data 

collection. 
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Figure 2.10: CYBERGLOVE II 

2.5.c - ARMS Lab Hand and Wrist Model 

   The ARMS Lab Hand and Wrist Model was designed by Heine et al as an open-source kinematic 

hand model for the OpenSim platform. It was also notable for including all 43 intrinsic and 

extrinsic muscles of the hand [25]. It differs from the 25 DOF model only in that it does not 

implement adduction/abduction of the thumb MCP and one CMC joint for digits IV and V. This 

model differs from the 18 DOF model by including DIP and modeling abduction/adduction 

directly at MCP joints as shown in Figure 2.11. In ARMS Lab’s method for verification of the 

model, forward dynamics and optimal control theory were used in conjunction with the 

CYBERGLOVE II to conform hyperparameters to the current patient under study. For this reason 

and the development team’s commitment to making the most robust open-source model of the 

upper limb, the ARMS Lab Hand and Wrist Model offers the greatest opportunity to develop an 

sEMG Driven Musculoskeletal Model for the Hand. 
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Figure 2.11: 23 DOF Model 

    A significant attribute of the ARMS Lab model for this research was its detailed tutorial on the 

simulation of pinch and grasp tasks. In their white paper on the model, ARMS Lab verified 

maximal pinch and grasp force estimates with two patient trials using the CYBERGLOVE II. 

Training of the model required input of grip force, distribution of finger forces, EMG, and joint 

posture [25]. While the KIN - MUS UJI dataset only measured seven sEMG signals and joint 

posture, the methods of the SHFT detail the object under manipulation and the typical hand 

conformation during its manipulation [18]. Other significant discrepancies between the dataset and 

this model were the use of sEMG instead of EMG and converting the 18 DOF of the 

CYBERGLOVE II into the 23 DOF of the ARMS Lab model. 

    Though ARMS Lab verified their model using the CYBERGLOVE II, no open-source 

conversion between these two hand models currently exists [33, 44]. A relation between the PIP 

and DIP angle has been defined by VanZwieten et al shown in equations 23-28 and visualized in 

Figure 2.12 [45].  This relationship defines the DIP joint angle as an equation of the spindle fiber 
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and interphalangeal angle divided by the radius of curvature on the distal end of the middle 

phalanx. Correlating MCP abduction and adduction angles between the two models has not been 

investigated but would implement similar methods.  

 

Figure 2.12: Relating DIP and PIP Angle 

𝜑(𝜃)  =  
√𝑎𝑥(0)2  +  𝑎𝑦(0)2  +  𝑠(0)  −  √𝑎𝑥(𝜃)2  +  𝑎𝑦(𝜃)2  −  𝑠(𝜃)

𝑅(𝜃)
 

Equation 24 

𝑎𝑥(0)  =  𝑠(0) ⋅ 𝑠𝑖𝑛(𝛼0) Equation 25 

𝑎𝑦(0)  =  𝑠(0) ⋅ 𝑐𝑜𝑠(𝛼0) + 𝑑 Equation 26 

𝑎𝑦(𝜃)  =  𝑠(𝜃) ⋅ 𝑠𝑖𝑛(𝜃 + 𝛼0)  

Equation 27 

𝑎𝑦(𝜃)  =  𝑠(𝜃) ⋅ 𝑐𝑜𝑠(𝜃 + 𝛼0) + 𝑑 Equation 28 

 

    The model was limited by its lack of validation datasets, modeling of passive joint properties 

(namely in digits IV-V) and its negation of the extensor mechanism. Due to its lack of modeling 

the extensor mechanism, the extensor digitorum communis (EDC) has been reported by McFarland 
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et al to exhibit higher activation than expected [25]. Because the model is open source, there is an 

opportunity for future readers to validate this model using the KIN - MUS UJI dataset. As shown 

through tutorial of pinch and grasp experiments, different muscles in the model can have zero, 

constant, and time varying activation in the same study. Through proper selection of sEMG targets 

and peripheral muscle activation, the KIN - MUS UJI dataset could offer 28 more validation 

subjects for both pinch and grasp tasks. 

    Correlating the Jarque Bou dataset to the ARMS Lab Hand and Wrist Model was significant for 

the development of a neuromusculoskeletal model of the hand because of its similarity to the 

validation dataset used for the model. Specifically, the Jarque Bou dataset modeled four tasks 

which show a variation in pinch and grasp intensity. In the ARMS Lab model these tasks are 

demonstrated extensively through tutorial, and therefore offer the greatest opportunity for 

integration of this dataset. To perform this experiment, the seven EMG spots in the KIN-MUS UJI 

dataset must be correlated to muscles in the ARMS Lab model. Furthermore, because digit II-V 

flexion and extension was only measured bilaterally through one group of electrodes in the KIN-

MUS UJI dataset but actuated through a multi-body muscle in the ARMS Lab model, a relationship 

between these two models must be realized to complete the relationship between the two models. 
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Chapter 3 – Viable Gestures for Fingertip Workspace HID 

 

3.1 – Introduction 

    The human hand is one of our most important tools, and its ability to perform complex 

movements has led to significant interest in using it to control computer devices. Human Interface 

Devices (HID) such as mice and keyboards have been in use for decades, but recent developments 

in biophysical signal modeling have allowed for the development of more sophisticated HID. One 

such technology, sEMG, has been used by companies like CTRL Labs for Gesture Computer 

Interfacing (GCI) [46]. This chapter focuses on the feasibility of using sEMG to control computer 

devices through hand gestures. It discusses the dataset used, in which Jarque Bou et al recorded 

sEMG activity of the forearm and fingertip joint angles performing the Sollerman Hand Function 

Test (SHFT) and explores what muscles and hand actions are visible within the dataset [18, 26]. 

The purpose of this chapter was to investigate viable hand gestures for the application of surface 

electromyographic (sEMG) technology to human interfacing devices (HID) for Gesture Computer 

Interfacing (GCI) specifically for extrinsic muscles of the hand in the forearm. 

3.2 - Methods 

3.2.a - KIN-MUS UJI Dataset 

    Jarque Bou investigated an original thirty sEMG recording sites on the forearm to determine 

seven optimal recording locations for the forearm used in the dataset [18]. Forearm regions with 

similar sEMG activity are shown below in Figure 3.1.a, while the final recording spots are shown 

in Figure 3.1.b. Figure 3.1.c shows anatomical landmarks used to locate these recording spots [18, 

47]. To record joint angles in this study, the CYBERGLOVE II was utilized to record the fingertip 
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workspace in eighteen degrees of freedom [27]. The fingertip workspace and sEMG spots are 

recorded for 22 patients and 26 ADL of the SHFT. The SHFT Apparatus (a) and the 

CYBERGLOVE II (b) are shown below in Figure 3.2. 

 

Figure 3.1: sEMG Recording Spots and Anatomical Landmarks 

 

Figure 3.2: SHFT Apparatus and CYBERGLOVE II 

    Optimal sEMG recording locations for the forearm were identified by determining regions with 

similar sEMG activity using functional principal component analysis (fPCA) and locating 

anatomical landmarks to record joint angles [47]. While the study provided a table of expected 

actions causing increased sEMG activity at each spot, the actual recorded actions require the 

synchronization of many muscles, and the list of likely contributing muscles was not exhaustive. 

To address this, the subsequent study utilized the visual body platform to perform an exhaustive 
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analysis of the muscles under these spots. This enabled a complete musculoskeletal model of the 

limb to be investigated while discerning the likely muscles under each spot. 

3.2.b - Actuation of the Fingertip Workspace 

    Joint angles between bones are controlled through bilateral pairs of muscles producing 

contractile forces opposing one another at the joint. Moment arms are perpendicular linearizations 

of rotational force which a muscle contributes to an axis of rotation. The sum of the forces opposing 

one another at a joint angle is known as its moment and informs the direction of angular motion 

caused by muscular action [1, 2, 32]. For example, shown below in Figure 3.3 is the wrist being 

actuated by flexors and extensors. Force generated by the wrist flexors was greater than extensors 

leading to the larger moment arm shown. Because the flexor moment arm was greater than the 

extensor, the moment caused the joint angle to decrease.  

 

Figure 3.3: Moment Arms of Wrist Flexors and Extensors 

    Functionally, the hand actions originating from forearm muscles can be differentiated as shown 

in Figure 3.4. Sartori et al designed the interaction between muscles and the conformation of the 

limb it acts upon through principal vectors of tension from the origin of the muscle to its insertion 

on the distal bone [1, 38, 34-37]. Tensile forces of muscles counteract one another at joints, the 

derivation of this relation is known as its kinematics. A joint’s axes constitute unique degrees of 

freedom (DOF) in the model and muscle forces change the angle at these DOF [36]. In the language 
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of physiology, the direction of angle change constitutes which muscles are considered flexors, 

extensors, or opposers (Abductors and Adductors) [48]. In order to compare the activation of 

muscles between subjects, the sEMG signals of each subject are normalized to their maximal 

voluntary contraction (MVC). 

 

Figure 3.4: Hand Functional Groups in Forearm 

    Ensemble flexion and extension of Digits II-V was actuated largely by the digitorum muscles 

and was easily measured using sEMG from the forearm [18, 47]. While opposition was actuated 

by the thenar and hypothenar muscles originating from the transverse carpal ligament, it was also 

actuated by the palmaris longus superficial to the flexor digitorum and deep to the bicipital 

aponeurosis and can therefore be measured from the forearm [19, 43, 48]. Further muscle groups 

observable from the forearm are Digit I flexion and extension, supination and pronation, and wrist 

actuation. Index finger extension may be observable with the use of HD-sEMG, but the muscle is 

deep to the forearm, and therefore the measurement of its actuation was impeded by the muscles 

superficial to it. Missing from this model are muscles of the hand which would require 

cumbersome measurement devices, and muscles actuating supination & pronation as they are 

measured from the same spot and lack a kinematic representation in the CYBERGLOVE II. 
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3.2.c -Modeling of the Fingertip Workspace 

    To model the Fingertip Workspace in real time, a Musculoskeletal Model is needed to drive 

simulation of Musculotendon Kinematics [1]. Therefore, one of the most significant developments 

to fingertip workspace modeling was the creation of the ARMS Lab BioSim model [25]. While 

the benefit of sEMG driven musculoskeletal models proposed by Merletti et al was that they can 

be reduced for embedded processing [1], several stages of development stand in the way of 

developing a model of similar caliber to their lower body model [38, 34-37]. These stages are 

visualized below in Figure 3.5. Primarily, the Cyberglove II used to record joint angles by Jarque 

Bou et al recorded the fingertip workspace in 18 DOF, while the ARMS Lab model described the 

hand in 23 DOF. The conversion method between these two models is known as a Denavit-

Hartenberg transformation and has not been investigated in this research [23]. Furthermore, due to 

the proximity of muscles within the forearm, neural drives for many actions of the hand are 

recorded from the same SEMG spot. This summation abstracted muscular activation, and therefore 

must be either differentiated into muscular activation, or used in conjunction with other signal 

processing methods to describe activation without direct muscular activation input. It was therefore 

important to the development of sEMG Driven Musculoskeletal Simulation that optimal recording 

sites are chosen, and that the muscles within these spots are accurately mapped to the ARMS Lab 

model.  
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Figure 3.5: Jarque Bou Dataset as Input to ARMS Lab Model 

    Several other methods for further analysis of a single sEMG signal include Activation 

Enveloping, and Spectral Moment Analysis. Spectral moment is a statistical measure of the power 

distribution within an sEMG signal. As muscular activation is frequency modulated by motor 

neurons, spectral moment can provide insight into which motor units are active, the fatigue of 

motor units, and the intensity of a task. Thongpanja et al has shown correlation between median 

and mean frequency of the bicep and flexor pollicis longus with joint angle [49], while the 

differentiation between pinching and grasping hand conformations using the Jarque Bou dataset 

has been shown in this research through the application of activation envelopes from a single 

sEMG recording. While these research show that more information than activation can be obtained 

from low dimensional sEMG recordings, further studies are required to implement direct activation 

of the ARMS Lab model. 

  



71 

 

3.3 - Results 

3.3.a - Neuromuscular Control - KIN-MUS UJI Dataset 

    In order to interpret sEMG recorded in the Jarque Bou Dataset for their relation to 

neuromuscular control of the hand, recording spots from the Jarque Bou Dataset were analyzed 

for likely muscles contributing to each sEMG signal. Jarque Bou et al proposed likely muscles 

which constitute most of the observed signal at each spot, these muscles are labeled with check 

marks in Table 3.1 below. Furthermore, because these signals have been physically identified by 

forearm landmarks, muscles underneath these landmarks have been labeled with an asterisk in 

Table 3.1 for further research into signal contribution. Volumetric models of the forearm were 

observed in the Visible Body platform for observation of muscles underneath electrode spots [19]. 

    Groupings of sEMG spots are likely to record the same muscles due to the volume conductor 

effects of the forearm. The signal at spot 1 was stated by Jarque Bou to be largely composed of the 

Extensor Carpi Ulnaris [14, 47]. This made sense because it was a superficial muscle and had 

many motor units [19]. Cross talk at this source likely came from muscles actuating digits III-V 

due to its location on the forearm. Despite this, some muscles such as the APL and EPL which 

contribute to thumb actuation and radial adduction may also contribute to this signal. Furthermore, 

spot 6 which likely measured wrist extension and ulnar deviation was likely to contain artifacts of 

spot 1 due to the proximity of the sensors. Spots 5 and 6 were likely to record mutual sources 

originating near the interosseous of the ulna and radius and actuating near digit I.   

    Special care should be taken in the placement of electrodes at spots 5-7 due to their proximity 

to the brachioradialis. The muscle will cause significant interference with electrodes in this range 

due to its high number of motor units and proximity to the surface of the skin. Similarly, electrode 
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three should be placed on the dorsal side of the interosseous crest to focus the signal on digital 

flexors. Digital flexors are visible from spot 3 due to the hand having few muscle bellies on the 

dorsal side of this region of the forearm, and significant crosstalk sources were seen on the palmar 

forearm. Spot 2 observes wrist flexion at the origin of the digital flexors, the flexor carpi radialis 

is superficial, and it was therefore measured from this point. 

    Wrist pronation and supination can be observed from sEMG spot 7 because the muscles 

responsible for these movements are in the same region of the forearm and therefore have 

overlapping activation patterns. The pronator teres muscle is responsible for pronation (palm 

down), while the supinator muscle is responsible for supination (palm up). Accurately decoding 

the activation of individual muscles from the sEMG signal can be difficult due to crosstalk, a 

phenomenon where the activation of one muscle interferes with the signal of another muscle [6]. 

Therefore, bilateral control of supination and pronation was not visible directly within this dataset. 

    Through experimentation with a Myoware Muscle Sensor, it was noted that spot 3 exhibits 

significant interference from the Extensor Digiti Minimi [50]. Spot 3 was chosen to be placed on 

the dorsal side of the interosseous crest of the ulna to measure forearm flexion, yet in previous 

work it was shown to have a significant activation region on the palmar side of the forearm as well 

[51]. Further care should be taken in the placement of electrodes for spot 3 to reduce interference 

from extensors. Table 3.1 is illustrated in further detail in Appendix A. 

    While Table 3.1 outlines muscles whose activation pattern may be visible from an sEMG spot, 

it does not quantify the quality of that muscle’s EMG in an sEMG spot signal. Accurately decoding 

the activation of individual muscles from the sEMG signal can be difficult, and the reduction of 

crosstalk between sEMG was reviewed extensively by Mesin and Talib et al [6, 14]. Signal 

processing methods discussed in these works are not utilized in this work for lack of validation 
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methods determining which muscle EMG has been separated. Although Farina discusses pure 

sEMG crosstalk reduction algorithms, not knowing which muscles are causing crosstalk at each 

spot limits investigation without actuating the ARMS Lab model or using fine wire EMG for 

validation [52]. 

Table 3.1: Muscles Under sEMG Spots; Mutual (✔), This Research (*) 

Muscle Spot 1 Spot 2 Spot 3 Spot 4 Spot 5 Spot 6 Spot 7 

APL *   ✔  *  

BR    *   ✔ 

ECRB    * *  ✔ 

ECRL    *   ✔ 

ECU *  *   ✔  

EDC *    ✔ *  

EDM *  *   *  

EI     *   
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EPB    ✔ *   

EPL *  * ✔ * *  

FCR  ✔ *    * 

FCU ✔  *     

FDP  * ✔     

FDS  * ✔     

FPL   ✔    * 

PL  ✔      

PT  *     ✔ 

    Continuing from the work shown above in Table 3.1, Table 3.2 below shows the actions related 

with each sEMG spot. This table was notable for future use of this dataset, as it outlined bilateral 

pairs for finger flexion and extension in spots 3 and 5, thumb flexion and extension in spots 4 and 

5, and wrist control abstracted through spots 1,2,6, and 7. Bilateral control of radial and ulnar 

deviation was observed through spot 2 (radial) and spots 1&6 (ulnar). Wrist flexion and extension 
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was controlled bilaterally through spots 1 & 2 for flexion and spots 6 & 7 for extension. This table 

coincided with the spot actions described by Jarque Bou [18]. 

Table 3.2: sEMG Spot and Associated Action 

Spot Actions of Muscles Identified by Jarque Bou 

1 Wrist Flexion & Ulnar Deviation 

2 Wrist Flexion & Radial Deviation 

3 Flexion I-V 

4 Extension I 

5 Extension II-V 

6 Wrist Extension and Ulnar Deviation 

7 Wrist Pronation, Supination, Extension 

 

3.3.b - Correlating Gestures to KIN-MUS UJI Dataset 

    Expanding upon the most likely muscles observed at each EMG spot, gestures easily 

differentiable using these spots would generate the greatest muscle activity in muscles directly 

below these sensors. Because the spots isolated bilateral wrist actuation, gestures using wrist 

motion are easily detectable. Digits I-V flexion was measured from spot 3, therefore bilateral 

control of digit I (thumb) was not differentiable from digits II-V solely through measurement of 

activation of these seven spots. Despite this, opening and closing the hand was grossly observable 

through the activation of spots 3,4, and 5. Gestures differentiable from the Jarque Bou Dataset are 

shown below in Figure 3.6. 
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Figure 3.6: Differentiable Activation Jarque Bou Dataset 

    In chapter four, the variability in the activation envelope of spot 3 has been investigated. While 

not directly representative of fingertip joint angles, it was shown that the intensity and frequency 

of activation stimulus increased with the intensity of hand manipulation [49]. Manipulating 

lightweight targets such as coins required significantly less muscle activation than heavy targets 

such as weights. Variability in activation for spot 3 as shown below in Figure 3.7 provided 

opportunity to encode different intensity grasps due to the high degree of separation between task 

envelope distributions. 

 

Figure 3.7: Normalized EMG Intensity Spot 3 (Digit Flexion) Pinch & Grasp 
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    The identification of this gradient in flexor intensity between pinch and grasp tasks is significant 

to the utilization of the KIN-MUS UJI dataset for a neuromusculoskeletal model. Many ADL in 

the dataset were performed isometrically and the time under manipulation marked. Therefore, time 

under manipulation could be used as a calibration task for Hill Muscle hyperparameters. Then, the 

entire task from relaxed hand to manipulation back to relaxed hand could be simulated. An 

important consideration is that the KIN-MUS UJI dataset did not measure any EMG for intrinsic 

hand muscles. Therefore, they will need to be simulated using a priori knowledge from the SHFT, 

or assumptions based on joint angle motion. 

3.4 – Discussion  

    This research showed that using the sEMG groupings in the KIN-MUS UJI dataset, bilateral 

actuation of the entire wrist, as well as digits II-V flexion and extension are visible. Due to sEMG 

spot 3 recording digit I-V flexion, bilateral control of digit I was not possible using activation 

envelopes supplied by Jarque Bou. Furthermore, ensemble study of digits II - V was required as 

digits could not be differentiated from the sEMG envelopes alone.  Application of this dataset to 

the ARMS Lab model would require similar ensemble activation of muscles as to the nature of the 

recordings. Further investigation to signal composition could apply coherence, entropy, or spatial 

filtering methods to the sEMG to attempt a reduction of signal crosstalk [6, 14, 53]. Furthermore, 

muscle inferences could be contributed by joint angle change and observing activation change with 

the model based on weights of depth and motor unit pool size. 

        Gestures not differentiable within this dataset are any whose bilateral control was not 

observed from separate EMG spots. An example of such a gesture is a peace sign, which uses the 

dorsal interossei between digits 1 and II to abduct digit II, and the palmar interossei to adduct digit 

III. These muscles originate from the proximal side of the metacarpals and insert on the extensor 



78 

 

expansions and phalanges. Therefore, they are not observable from any of the seven sEMG spots. 

It is a good rule of thumb that abduction and adduction of digits will not be visible bilaterally due 

to their reliance on hand muscles. Pronation and Supination are not differentiable in this dataset 

using activation because both actions are controlled by muscles observable only from spot 7. While 

these actions would not be visible using muscle force, application of an accelerometer to an sEMG 

wristband would not only allow actuation of supination and pronation, but also create insight on 

limb conformation and three-dimensional position. 

    While these gestures are not part of the SHFT, actions such as pointing with digit II or digit V 

may be visible from sEMG data. Extensors for these digits were observed at spots 5 and 3 using 

the visible body software, and through observation on volunteers. Finger II extension is actuated 

from the extensor indicis and likely observable from spot 5, while finger V extension is actuated 

by the extensor digiti minimi visible from spot 3. The lack of fingertip workspace data and SHFT 

tasks to observe these actions limit the development of this investigation. Future work could 

involve directly observing these two actions to differentiate more fingertip workspace control from 

forearm musculature. 

    The GitHub link provided in Appendix B.1 is an open-source repository to aid in physiologic 

study of the forearm through the Jarque Bou dataset [18]. Code was designed in conjunctive 

research to aid in the differentiation of pinch and grasp tasks using forearm sEMG. The Fingertip 

Workspace Atlas is a spreadsheet containing the muscles of the forearm and hand as well as their 

physiologic properties within multiple models of the fingertip workspace. The purpose of this 

research was integration of the ARMS Lab model, Hill Type Musculoskeletal Modeling, Jarque 

Bou Dataset, and Lower Limb EMG Driven Musculoskeletal Models by Sartori et al to generate 
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an open source sEMG Driven Musculoskeletal Model of the forearm. This technology would aid 

in the development of Gesture Computer Interfacing. 

    Using sEMG Driven Musculoskeletal models for human interfacing devices implies the 

transduction of a computational model of the hand using information derived solely from sEMG. 

The analysis of the Jarque Bou Dataset in this research implied a significantly lower dimensional 

model than that designed by the ARMS Lab. This can be circumnavigated through conversion 

between models. Further investigation into signal extraction from the Jarque Bou Dataset, or an 

HD-sEMG sleeve could be designed to spatially sample the forearm using a smaller interelectrode 

distance in order to isolate more signals. Through development of such a model, insight into hand 

conformation could aid in assistive technologies, protecting humans from hazardous materials 

testing, or improve human interfacing to complex technologies. 

    An important consideration of this research is that Jarque Bou initially identified thirty regions 

of the forearm to record and reduced these thirty down to seven by finding principal signals using 

functional principal component analysis (fPCA). These thirty locations were recorded using 

electrodes with an inter electrode distance of 20 mm, and therefore induced significant spatial 

filtering and low selectivity. While this research showed several degrees of bilateral control are 

possible using seven sEMG spots, more neuromuscular control may be visible when sampling at 

a higher spatial resolution as discussed in crosstalk reduction methods by Gallina [12]. This would 

not only reduce the need for spatial filtering but may also provide more selectivity of which 

muscles are being measured.  

    Using sEMG for such interfacing devices was intuitive because the technology is noninvasive 

and can therefore be implemented as a wearable device not limited to laboratory study like fine 

wire EMG. Such sensors can be easily applied to measure large, superficial muscles up to 
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approximately two centimeters below the surface of the skin. Disadvantages of the technology are 

its nonlinear nature, noise, and the presence of motion artifacts [1]. Furthermore, due to sEMG 

recording electrical activity deep to the electrodes, many muscles are superimposed upon one 

another in each recording within the Jarque Bou Dataset. It was therefore imperative to the 

development of GCI that viable muscles and their respective actuation of the fingertip workspace 

are outlined, and the location from which they are optimally measured is discerned.  

     This dataset was analyzed for its implementation into sEMG Musculoskeletal Modeling of the 

hand and forearm. The Jarque Bou Dataset was found to measure full bilateral control of the 

forearm, and ensemble bilateral control of digits II-V. sEMG groups were analyzed for muscles 

underneath them and correlated to the actions of the muscles which were most likely to contribute 

to measured signals. Development of this technology was not only useful for the development of 

assistive technologies, but imperative to streamline the control of devices which require three-

dimensional control. Limitations in this technology are discussed as they relate to the Jarque Bou 

dataset, and methods for further investigation of the fingertip workspace are introduced. 

Specifically, it is of utmost importance that crosstalk reduction is addressed so that individual 

muscle signals can be identified. sEMG Driven Musculoskeletal Modeling proposes that 

musculoskeletal actuation can be transduced as a vector of sEMG signals which can be used to 

biometrically encode motor control.   
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Chapter 4 - Differentiation of Pinch and Grasp Tasks using Forearm sEMG and Joint 

Angles from KIN-MUS-UJI Dataset 

 

4.1 – Introduction 

    This chapter explores the use of sEMG enveloping, spectral moment analysis, coherence, and 

joint angle observation to differentiate pinch and grasp tasks using data from the Sollerman Hand 

Function Test (SHFT) dataset recorded by Jarque Bou et al. The analysis involved the use of one 

sEMG sensor to observe all digit flexors in the KIN-MUS-UJI dataset, making it particularly 

significant for the development of neuromusculoskeletal models with few inputs. By measuring 

envelopes, mean and median frequency, and their ratio, as well as coherence analysis of sEMG 

signals, this study seeks to assess muscle activation patterns, fatigue levels, and neuromuscular 

coupling between agonistic and antagonistic muscle pairs controlling ensemble digit motion. The 

chapter investigated the depth of information that could be extracted from the coordinated analysis 

of intensity with spectral characteristics, such as median and mean frequency and coherence, to 

differentiate between pinch and grasp tasks in the KIN-MUS-UJI dataset. Methods for the time 

frequency analysis of sEMG were largely informed from the combined works of Merletti, 

Lindstrom, DeLuca, Lago, Clancy, and Mesin et al [1, 14, 54-57]. 

4.2 - Methods 

4.2.a - Experiment 

   Gestures within the SHFT were differentiated between pinching and grasping tasks, then sEMG 

was used to observe measures of activation, spectral moments, and coherence. Joint angles were 

observed for the ensemble average of the PIP and MCP for digits II-V, and index finger, while the 
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IP, MCP, and CMC were observed for the thumb. Muscle groups observed included thumb, index 

finger, and ensemble finger flexion and extension. Muscles were not measured directly, but instead 

through 7 optimal locations for forearm sEMG measurement as described by Jarque Bou [18] and 

shown below in Table 4.1 shown below. 

    As shown through previous research, many muscles overlap underneath these seven sEMG spots 

[18, 19, 47]. The actions associated with sEMG spots in Table 4.1 are correlated to the muscles 

reported by Jarque Bou to be directly below the electrodes [18]. Only spots 3,4, and 5 constituted 

bilateral motion in the fingertip workspace, all other recording spots measured wrist motion. Spot 

3, which measured all digit flexors, was used to indicate intensity.  The spectral moment and 

coherence analysis of the sEMG signals were used to assess the activation patterns, 

synchronization, and fatigue levels of the muscles involved in the pinch and grasp tasks. 

Table 4.1: sEMG Spot and Associated Action 

Spot Actions of Muscles Identified by Jarque 

Bou 

1 Wrist Flexion & Ulnar Deviation 

2 Wrist Flexion & Radial Deviation 

3 Flexion I-V 

4 Extension I 

5 Extension II-V 

6 Wrist Extension and Ulnar Deviation 

7 Wrist Pronation, Supination, Extension 
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4.2.b - Data Collection and Filtering 

    The dataset used in this study was designed by Jarque-Bou et all and observed the Sollerman 

Hand Function test through seven sEMG signals representative of all muscle activity in the forearm 

and fingertip joint angles recorded by the Cyberglove II [18]. This dataset was designed to aid in 

physiologic study of the forearm and was notable for its investigation into optimal sEMG recording 

and integration with the fingertip workspace in 18 degrees of freedom (DOF). SX230 electrodes 

were used in conjunction with an sEMG Biometrics Ltd device to collect the data with a gain of 

1000. Data was sampled at a frequency of 1 kHz and had a usable bandwidth between 20 and 460 

Hz. Joint angles and envelopes recorded by Jarque Bou were resampled to 100 Hz. Patients’ hair 

was removed by shaving and skin was cleaned with alcohol before the electrodes were placed. 

Signal filtering was performed using a fourth order band-pass filter between 25 and 500 Hz on raw 

sEMG [18]. 

4.2.c - Enveloping and Activation 

    Enveloping of sEMG has been traditionally used in kinematic studies to assess the activation 

levels of muscles during movement. Enveloping involves rectifying and smoothing raw sEMG 

signal to obtain an envelope representative of the overall muscle activity. This signal can then be 

used to quantify the timing and intensity of muscle activation during movement. Rectification is a 

debated topic in EMG studies because it significantly changes the frequency spectra of the signal 

[1]. Low-pass filters between 4-8 Hz are commonly chosen for sEMG enveloping because they 

attenuate high-frequency noise and physiological artifacts while preserving the desired signal 

components [18, 32, 47]. Rectification converts the negative portions of the sEMG signal into 

positive values, resulting in a loss of phase information and spectral distortion. However, 

rectification can improve the signal-to-noise ratio and make the envelope signal more 
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representative of muscle activity [1]. In the dataset used for this study, all envelopes were 

normalized by a maximal voluntary contraction (MVC) experiment for comparison of sEMG 

activity across different individuals and muscle sites [18].  

    To observe the activation of muscles, two different enveloping functions were observed. The 

first from the Jarque Bou Dataset itself, raw sEMG was rectified and filtered using a fourth order 

low pass filter at 8 Hz and gaussian smoothing [18]. Furthermore, activation analogous to Hill 

Type Muscle activation was investigated in this research by rectifying and filtering using a 4th 

order Butterworth lowpass filter at 4 Hz [32]. Application of the second order recursive filter was 

not performed due to lack of knowledge on electromechanical delay and scaling coefficients for 

musculoskeletal models of the forearm [32]. While the rectified and filtered envelope was reported 

by Heine et al to be a poor representation of neural drive, this assessment pertains to the 

nonlinearities of the peaks of the envelope [32]. The application of the filter was instead used for 

comparison to the enveloped sEMG within the dataset. 

4.2.d – Spectral Moment Analysis 

    Spectral moment analysis is a technique used to analyze surface electromyography (sEMG) 

signals in the frequency domain. It involved calculating statistical moments of the power spectrum 

of the sEMG signal, which provided information about the shape and distribution of the frequency 

content [1]. Spectral moment analysis has been used in various applications such as muscle fatigue 

assessment, motor unit recruitment analysis, and muscle activation pattern recognition [57]. This 

method can provide valuable insights into the underlying neuromuscular activity during different 

tasks and can complement other sEMG analysis techniques such as activation envelopes. In this 

section, spectral moment analysis methods are outlined for application to analyzing sEMG signals 

during activities of daily living (ADL). 
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    Median Frequency is commonly used in sEMG studies as an indicator for fatigue and has also 

been shown by Thopanja et al to be an indicator for joint angle motion [1,49,58]. Median frequency 

was observed to track changes in frequency spectra of flexor sEMG with tasks of varying intensity 

flexion. This was done without any window overlap. The algorithm is shown below in equations 

29 and 30 where total power was first calculated for each time segment (29), then power 

summation was reiterated until the half power point was reached (30). The median frequency 

vector was then regressed for the timespan in which the subject was touching the object under 

manipulation to observe frequency changes based on the specific ADL. This reduction of time 

span removed the effect of resting frequency of the muscles from the regression. 

𝑃𝑡𝑜𝑡 = ∑ 𝑋2(𝑓)

𝑓𝑚𝑎𝑥

𝑓=0

 

Equation 29 

∑ 𝑋2(𝑓)

𝑓𝑚𝑒𝑑𝑖𝑎𝑛

𝑓=0

 =  
1

2
𝑃𝑡𝑜𝑡 

Equation 30 

   The mean frequency function is another commonly used tool in sEMG studies. Mean frequency 

is defined as the average frequency weighted by the amplitude of the sEMG signal. It has been 

observed that mean frequency decreases with increasing fatigue and is often used as an indicator 

of muscle fatigue [1]. To calculate mean frequency, the power spectral density of the sEMG signal 

was first computed, followed by the determination of the spectral moments. The first moment, 

which is the mean frequency, is then calculated by dividing the second moment by the first moment 

as shown below in equation 31 [1]. Similarly to median frequency, the mean frequency vector can 

be regressed for the timespan in which the subject was touching the object under manipulation to 

observe changes in frequency related to the specific ADL.  



86 

 

𝑓𝑚𝑒𝑎𝑛 =
∑ 𝑓 𝑋(𝑓)

𝑓𝑠/2
𝑓=0

∑ X(𝑓)
𝑓𝑠/2
𝑓=0

 
Equation 31 

    Spectral moment analysis is a powerful tool in the analysis of sEMG signals. One of its primary 

applications is the assessment of muscle fatigue. As muscles fatigue, larger motor units are 

recruited to perform the same action, and these motor units produce action potentials at lower 

frequencies. This leads to a decrease in the median frequency of the sEMG signal. By observing a 

negative slope in the regression of median frequency over time, it is possible to discern the onset 

of muscle fatigue. The ability to detect muscle fatigue using sEMG signals can be a valuable tool 

in understanding the underlying neuromuscular mechanisms involved in different tasks and 

activities. However, it was important to note that mean frequency is more susceptible to high-

frequency interference. As a result, Merletti et al suggests using both median and mean frequency 

in tandem to accurately assess muscle fatigue [1]. 

    Another application of spectral moment analysis is the assessment of muscle activation patterns 

in the neuromusculoskeletal system. The ratio defined in equation 32 is an indicator of spectral 

skew used for this assessment. Skewness of the power spectrum can be used to indicate changes 

in muscle fiber recruitment patterns and occurs when there is an asymmetry in the distribution of 

power within a frequency spectra [1]. Analyzing this ratio can provide insights into the function 

of the system and its response to different stimuli or interventions. In this study, spectral skew was 

measured using a single sEMG sensor on the forearm to gain insights into muscle recruitment 

patterns during reaching, manipulation, and release stages of tasks. By studying muscle activation 

patterns, researchers can better understand the biomechanics of different movements and develop 

more effective interventions. 
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𝑟 =
𝑓𝑚𝑒𝑎𝑛

𝑓𝑚𝑒𝑑𝑖𝑎𝑛
 

Equation 32 

 

4.2.e - Magnitude Squared Coherence Analysis  

    Magnitude-squared coherence (MSC) is a frequency domain analog of a squared correlation 

coefficient (r2), the work of Lovett et al develops a Coherence Spectrogram (CS) which can be 

used to observe localized changes in coherence between two signals [53]. The algorithm involves 

calculating the average of a Discrete Prolate Spheroidal Sequence (DPSS) windowed MSC for 

every second in the signal. The CS can be interpreted as the cross spectra divided by the 

spectrograms of the two signals. The equations for the CS and spectrogram are shown respectively 

in equations 33 and 34. 

𝐶𝑆[𝑛, 𝑘]  =  
|∑ 𝑋𝑖[𝑛, 𝑘]𝑌𝑖

∗[𝑛, 𝑘]𝐿−1
𝑖=0 |

2

∑ |𝑋𝑖[𝑛, 𝑘]|2𝐿−1
𝑖=0 ∑ |𝑌𝑖[𝑛, 𝑘]|2𝐿−1

𝑖=0

 
Equation 33 

𝑆[𝑛, 𝑘]  =  ∑|𝑋𝑖[𝑛, 𝑘]|2

𝐿−1

𝑖=0

 

Equation 34 

    The Magnitude-squared Coherence (MSC) is a measure of the degree of coherence or 

correlation between two signals x and y in the frequency domain. The implementation provided 

first applied the DPSS window to each window of the data and then calculated the Fourier 

transforms of each window of the data. The input parameters for the function include the two 

signals x and y, sampling frequency (fs), number of data points in the FFT (nfft), and the amount 

of overlap between consecutive windows (noverlap). The DPSS window was applied to obtain a 
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set of overlapping windows, and the Fourier transforms of each window are calculated. The cross 

and auto power spectral densities are then computed, which are used to calculate the MSC. Here, 

‘i’ represents the window index in the DPSS, k represents the frequency bin index, and n represents 

the time segment index.  

    The Coherence Spectrum (CS) function computes the Magnitude Squared Coherence (MSC) 

value for a given frequency bin k and time segment n. The MSC value quantifies the degree of 

coherence or correlation between two signals at a particular frequency and time. A coherence 

spectrogram can help visualize the coherence between the two signals at different frequencies and 

times. An MSC value of 0 means that there is no correlation between the two signals at that 

frequency and time, while an MSC value of 1 indicates perfect coherence. The phase difference 

between the two signals at a given frequency can also be inferred from the MSC value. When the 

phase difference is constant over time, the MSC value is high, indicating a high degree of 

coherence. However, when the phase difference varies over time, the MSC value is lower, 

indicating a lower degree of coherence. 

    Specifically, in this research the coherence between digit flexors and extensors was observed 

for changes in synchronization patterns during the increased utilization of hand flexors from pinch 

to grasp tasks. In the study of sEMG signals, coherence analysis can be performed by examining 

the synchronization of these signals within different frequency bands. Frequency bands are specific 

ranges of frequencies within the electromagnetic spectrum that correspond to different types of 

brain waves that oscillate at those frequencies as shown below in Table 4.2. By examining the 

coherence between sEMG signals within these different frequency bands, researchers can gain 

insights into the neuromuscular coupling between different muscle groups and their coordination 

during various tasks. 
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Table 4.2: Frequency Bands 

Frequency Band Frequency Range [Hz] 

Delta 0.5 – 4 

Theta 4-8 

Alpha 8-12 

Beta 12-35 

Gamma >35 

4.3 – Results 

4.3.a – Flexor Intensity during ADL 

    Shown below in Figure 4.1 is a box chart displaying normalized EMG flexor intensity of for all 

26 ADL. Of particular interest to this investigation were ADL 1,3, 6 and 14 in which the intensity 

of flexion was varied controllably. In ADL 1 and 3, subjects were picking up coins on a desk, 

putting them in a purse, and retrieving them from the purse respectively. ADL 6 involved picking 

up a screwdriver, and turning a screw 360 degrees with it, while ADL 14 increased flexion force 

further by cutting a piece of clay with a knife.  

    ADL 1 and 3 were pinch tasks that required the subject to perform fine motor movements with 

their fingers. In ADL 1, the subject collected a coin and put it into a change purse using a pulp 

pinch hand conformation. In ADL 3, the subject removed the coin from the change purse and left 

it on the table using both pulp pinch and five-fingered pinch hand conformations. Although both 

tasks involved pinching, ADL 3 had a much longer object manipulation phase as compared to 

ADL 1. This led to a larger intensity envelope observed during ADL 3 than in ADL 1. 
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    ADL 6 and 14 were grasp tasks that required the subject to apply a greater amount of force. In 

ADL 6, the subject took a screwdriver and turned a screw clockwise 360° with a diagonal volar 

grip hand conformation. This task therefore required both grasping and rotational forces. ADL 14 

involved taking a knife with the right hand and a fork with the left hand and splitting a piece of 

clay while sitting. This task had the highest intensity rating and required solely grasping forces 

with a diagonal volar grip hand conformation. 

    While ADL 14 required the subject to resist forces associated with cutting clay, ADL 6 involved 

picking up a screwdriver and turning a screw 360 degrees with it. Both ADL 6 and 14 were 

grasping tasks that required different levels of grasping force. In ADL 14, the subject needed to 

apply a higher level of grasping force as compared to ADL 6, which involved both grasping and 

rotational force as the subject turned the screwdriver. ADL 14 created a maximum in spot 3 

intensity due to subjects resisting friction, deformation, and cutting forces required to split the clay. 

The difference in the grasping force and the rotational force required in ADL 6 and 14 could 

potentially affect the activation envelopes seen in the sEMG signals recorded during these tasks. 

The activation envelopes may be different due to the difference in the required muscle activity and 

the involvement of different muscle groups during these tasks. 
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Figure 4.1: Normalized EMG Intensity of all ADL Spot 3 (Digit I-V Flexion) 

4.3.b - Pinch and Grasp Excitation 

     Figure 4.2 displays the activation envelope reported by Jarque Bou et al and the envelopes 

derived using the filtering reported by Heine. As shown, the Heine envelope appears to match 

the shape of the Bou envelope, but the Bou envelope has had gaussian smoothing applied to it. 

Due to the similarity seen between the two envelopes, the envelope applied by Jarque Bou was 

used to observe joint angles in further investigation for this experiment. 
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Figure 4.2: Bou and Heine Normalized EMG Intensity Comparison 

    Four tasks were found to be representative of the gradient between a pinch and a grasp, namely, 

ADL 1, 3, 6, and 14. This was determined as these four ADL increase in envelope intensity and 

utilization of flexor muscles to maintain a hold of the object under manipulation. While ADL 1 

and 3 are similar in task, ADL 3 likely produces larger intensity measures due to the subject 

digging around the coin purse. Similarly, while ADL 6 and 14 both cause larger intensity than 1 

and 3, ADL 14 likely causes the largest activation envelopes due to resisting the force of the knife 

as clay was cut. 

    Likely hand confirmations for these four ADL are listed below in Table 4.3 along with their 

relative intensity of flexor activation. Shown below in Figures 4.3 - 4.6 are individual figures 

showing the change in joint angles in each ADL with respect to envelope intensity. Activation 

envelopes for digits I - V flexion, digits II-V extension, and digit I extension were observed with 

CYBERGLOVE II joint angles for digit I, digit II, and an ensemble of digits II-V. Red asterisk 

bound the time a subject has an object under manipulation. 
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Table 4.3: Observed ADL Intensity 

ADL Description Hand Conformation Intensity 

1 Collecting a coin and putting it into a change purse Pulp Pinch 1 

3 Removing the coin from the change purse and 

leaving it on the table 

Pulp Pinch, 

Five-Fingered Pinch 

2 

6 Taking a screwdriver and turning a screw 

clockwise 360° with it 

Diagonal Volar Grip 3 

14 Taking a knife with the right hand and a fork with 

the left hand and splitting a piece of clay (sitting) 

Diagonal Volar Grip 4 
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    Shown below in Figure 4.3 are the MCP and PIP for digit I, digit II, and an ensemble average 

of digits II - V along with the activation envelopes for digits I-V flexion, digits II-V extension, and 

digit I extension for ADL 1. ADL 1 involved collecting a coin and putting it into a change purse. 

Observing the activation envelope for digit I flexion, it is noted that there are two pulses which 

occur before the subject grasped the coin. Furthermore, there was a decrease in intensity of all 

fingertip workspace actuators from the point the coin was touched to the point that it was placed 

in the purse. There are similar pulses observed in both digit I extension and digit II extension. 

 

Figure 4.3: Subject 1 ADL 1 (Pulp Pinch) 
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    Figure 4.4 displays the same parameters in the hand model as those in Figure 4.3, but for ADL 

3. ADL 3 involved removing the coin placed within the coin purse and leaving it on the table. It 

was noted that there was much higher intensity sEMG observed in this experiment, and that there 

were several pulses of flexor intensity while the subject was holding on to the coin. It was further 

noted that in this experiment, digit II-V extension became tetanized with high intensity. There was 

much more volatility in the joint angle motion for this ADL. 

 

Figure 4.4: Subject 1 ADL 3 (Pulp Pinch/ Five-Fingered Pinch) 
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    Shown below in Figure 4.5 are similar joint angle and intensity data to previous experiments for 

ADL 6. ADL 6 involved taking a screwdriver and turning a screw 360 degrees with it. All sEMG 

appeared to tetanize in this experiment, and joint angles fluctuated rapidly. Notably, four pulses 

appeared in the stimulation of the three observed sEMG spots. Observing the average PIP and digit 

II PIP, these pulses were visible as quick fluctuations in joint angle as the subject twisted the 

screwdriver. Intensity of sEMG did not settle to zero in between pulses, suggesting that force was 

used to oppose the pulses generated in antagonistic muscles. 

 

Figure 4.5: Subject 2 ADL 6 (Diagonal Volar Grip) 
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    Shown below in Figure 4.6 are the markers for fingertip workspace and sEMG intensity for 

ADL 14. ADL 14 involved taking a knife with the right hand and a fork with the left hand to split 

a piece of clay while sitting. This ADL involved significant force and control of the knife, this 

control was reflected in the frequency and amplitude of stimulus observed in sEMG intensity. Joint 

angles were held nearly constant with minor fluctuations for stabilization and adjustment of grip.  

 

Figure 4.6: Subject 1 ADL 14 (Diagonal Volar Grip) 
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4.3.c – Spectral Moment Analysis 

    Shown below in Figure 4.7 are the spectral moment markers for flexors for digits I-V during 

ADL 1 with time the subject was manipulating a coin linearly regressed. Median and mean 

frequency while the coin was being held are roughly 70 and 90 Hz respectively but fluctuated more 

right before the coin was released. Interestingly, frequency markers decreased before the hand 

touched the coin, and this decrease was preceded by a spike in MNF/MDF suggesting high 

frequency spectral skew. A similar spike was observed at the end of the manipulation phase before 

the subject released the object. Before and after the hand was used for manipulation, much higher 

and more volatile frequencies appeard. In further regard to these regions, there appears to be a 

more symmetric frequency spectra during the recovery than in the reaching phase.  

 

Figure 4.7: Subject 1 ADL 1 Spectral Moment Markers 
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    Shown below in Figure 4.8 is the power spectra observed for flexors in ADL 1. Comparing 

Figures 4.7 and 4.8, it was seen that the high median frequency at the beginning and end of the 

trial was not caused by a high-power signal. In contrast, a high intensity low frequency signal was 

observed where the median frequency drops. This high intensity patch was also related to an 

increase in flexor activation in the time domain. 

 

Figure 4.8: Subject 1 ADL 1 Spectrogram 

        Shown below in Figure 4.9 are the spectral moment markers for flexors during ADL 3 

similarly to ADL 1 above. In the time domain, ADL 3 exhibited tetanization which was not seen 

in ADL 1. In the frequency domain this translated to significantly more motor unit activation 

sustained over time. The median and mean frequency in Figure 4.9 were regressed with a much 

greater y intercept frequency and a negative slope instead of a positive one as shown in ADL 1. 

Furthermore, contrasting the pinch observed in ADL 1 and ADL 3 was that the coin was 

manipulated for much longer in ADL 3. There was less time where the fingers were manipulated 

before the object was grasped in ADL 3, and the coins were manipulated for much longer in ADL 

3 than in ADL 1. In regard to the ratio of MNF/MDF, there were less spikes showing spectral 

skewing. Notably though, there was a much more volatile increase in this ratio during recovery 

than what was observed during ADL 1. 
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Figure 4.9: Subject 1 ADL 3 Spectral Moment Markers 

    Figure 4.10 displays the spectrogram for flexor sEMG during ADL 3. There was significantly 

more spectral activity observed in ADL 3 than there was in ADL 1. Comparing the time domain 

activation for the two pinches, the larger amount of spectral activity related to the tetanization of 

the pinch flexion in ADL 3. The highest intensity spectral activity seemed to occupy the same 

range in both ADL. The beginning and end of flexor activation exhibited a decrease in frequency. 

 

Figure 4.10: Subject 1 ADL 3 Spectrogram 
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        Shown below in Figure 4.11 are the spectral moment markers for flexor sEMG in ADL 6. 

Like ADL 3, the object was manipulated for much longer than ADL 1. Interestingly though, the 

median and mean frequency of ADL 6 were between the median frequencies of ADL 1 and 3 

despite generating larger activation envelopes than both in the time domain. While flexor 

activation intensity was greater for flexors in ADL 6 than in ADL 3, Jarque Bou reported an overall 

greater activation of sEMG in ADL 6 than 3. Furthermore, Jarque Bou reported a greater degree 

of joint angle manipulation in ADL 6 than in ADL 3. The ratio of MNF/MDF was notable in ADL 

6 for having significantly lower spikes than ADL 1 or 3. ADL 6 exhibited the ramp in MNF/MDF 

at the end of the manipulation phase similarly to ADL 1 and 3.  

 

Figure 4.11: Subject 2 ADL 6 Spectral Moment Markers 
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       Figure 4.12 shows the spectrogram for flexor sEMG during ADL 6. This experiment appeared 

to show further tetanization than that observed in ADL 3 and continued for a longer duration. 

When observing the spectrogram, it was not initially clear that the median frequency was lower in 

ADL 6 than it was in ADL 3. Furthermore, the intensity of contraction was also abstracted from 

the spectrogram. 

 

Figure 4.12: Subject 2 ADL 6 Spectrogram 

    Shown in Figure 4.13 are the spectral moment markers for flexor sEMG during ADL 14. The 

median and mean frequency observed in ADL 14 was the largest observed in the dataset. It was 

the second largest decrease in median and mean frequency during object manipulation, with 

ADL 3 causing the largest decrease. This was interesting because Jarque Bou reported the largest 

change in joint angle manipulation from ADL 14, ADL 3 had a comparable change in joint angle 

manipulation to ADL 1. The ratio between MNF and MDF remained between 0 and 2 for most 

of the study with no noticeable ramp after the manipulation phase. This contrasted with all three 

ADL before it. 
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Figure 4.13: Subject 1 ADL 14 Spectral Moment Markers 

    Shown below in Figure 4.14 is the spectrogram for flexor sEMG during ADL 14. Flexors 

exhibited the highest amount of activation in ADL 14, and this could be seen below by the high 

intensity frequency activity between 20 and 150 Hz. ADL 14 also differed from others in that it 

caused high intensity signals up to nearly 200 Hz. All other ADL stopped near 150 Hz. The 

background noise of this ADL was significantly higher than other ADL. 

 

Figure 4.14: Subject 1 ADL 14 Spectrogram  
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4.3.d - Coherence Analysis 

    Coherence between flexors and extensors of digits II -V were compared with spectral images, 

activation of muscles, and the average joint angle motion of digits II-V MCP. Coherence was 

observed to increase from the lightest pinch to the strongest grasp observed.  Some Alpha and 

Gamma wave coherence observed overlapped with power spectra of flexor and extensor sEMG. 

Coherence appeared often when a joint angle was maintained against an opposing force.  

    Anticipatory activation appeared to be visible in the coherence spectra of flexors and extensors. 

High coherence was observed in delta through gamma frequencies before the object under 

manipulation was grasped and let go. This was reflected with power observed near these points, 

but it did not occupy the same bandwidth as the entire coherence spike. Coherent results presented 

similar bandwidths in spectra and the coherence may have been caused by sEMG sensors 

measuring the same source. 

    Shown below in Figure 4.15 are the power spectra, intensity time plots and coherence for digits 

I-V flexion and digits II-V extension during ADL 1. Low frequency coherence in delta - alpha 

band appeared near chirps in the spectra of flexion and extension. Coherent spikes in the beta and 

delta range also correlated with high power information in the spectrograms. The patch of delta 

coherence near 60 Hz and 5 seconds also showed up in both power spectra at low intensity. A 

decreasing chirp in beta-gamma coherence was present during the largest change in joint angles 

but did not appear to relate to high power spectra of flexion or extension. An increase in low 

frequency power was only noted in extensors after object manipulation, yet high coherence was 

observed between flexors and extensors during this phase in the beta frequency band. 
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Figure 4.15: Subject 1 ADL 1 Coherence 
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    Shown below in Figure 4.16 are the power spectra, intensity time plots and coherence for digits 

I-V flexion and digits II-V extension during ADL 3. Notably despite not relating to high intensity 

artifacts in either power spectra, beta coherence is much more present in low frequency coherence 

between the signals. Coherence around 2 seconds and 40 Hz appeared to relate to power spectra 

of flexors and extensors and related to the start of tetanization of hand muscles. During extension 

tetanus there was high power visible for extensors, and low power for flexors, this matched their 

respective intensity graphs. The region afterward had minimal coherence and a significant change 

in joint angle during object manipulation. Coherence exhibited after this patch appeared to 

correlate with a high degree of joint angle change. When both flexors and extensors were at their 

maximum tetanization between 4 and 6 seconds, there was almost no coherence visible from 0-60 

Hz except for some in the delta-theta range.  

    Before the object was released, there was an increase in high frequency power in both flexors 

and extensors correlating to a high coherence between the muscles. This was likely anticipatory 

coherence as there was a significant change in both activation envelopes and joint angles after this 

spike. After the object manipulation phase, both flexors and extensors exhibited an increase in low 

frequency power that showed little to no coherence between the two signals in this band. There 

appeared to be more high-power signals observed in the alpha and beta range for extensors post 

object manipulation. This coordinated well with an increase in joint angle at the MCP during this 

time. 
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Figure 4.16: Subject 1 ADL 3 Coherence 
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    Shown in Figure 4.17 are the power spectra, intensity time plots and coherence for digits I-V 

flexion and digits II-V extension during ADL 6. Similar to all other ADL, there appeared to be 

high coherence in all bandwidths when the user first grasped and let go of the object being 

manipulated. This coherence occurred as spikes before the subject grasped and let go of the object. 

More coherence in the range of 0.6 to 0.4 was visible in this task than in the pinching tasks. The 

patch of coherence at 8 seconds near 40 Hz occurred at the same time as a significant decrease in 

joint angle. Leading up to this point there was an increase in flexor activity and afterward flexors 

decreased, and extensors increased. There was an increase in high frequency spectra after 

manipulation similarly to ADL 3. Notably after the manipulation phase there was higher coherence 

observed between the power spectra of flexors and extensors. A similar pattern of coherence was 

not observed in ADL 1 or 3 suggesting that the increase in coherence was related to an increase in 

flexor intensity. It appeared the periodicity of the screwdriver rotation was encoded into the spectra 

of the flexors and extensors, though this relationship is discussed in much greater detail during 

section 4.3.d. The largest coherence signal during object manipulation appeared between 8 and 9 

seconds, despite there being minimal extensor power observed in this region. As there was no 

significant change in crosstalk levels of forearm muscles between supination and pronation of the 

wrist [59, 60], activation and coherence patterns observed suggested neural control of grip strength 

and rotational force. 
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Figure 4.17: Subject 2 ADL 6 Coherence  
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    Shown below in Figure 4.18 are the power spectra, intensity time plots and coherence for digits 

I-V flexion and digits II-V extension during ADL 14. ADL 14 exhibited the highest degree of 

coherence between all datasets and had an overlapping bandwidth with the power spectra of both 

flexor and extensor sEMG in alpha and gamma range. As crosstalk drastically increases with the 

intensity of muscle activation, it is hard to differentiate muscle synergy from the effects of forearm 

volume conduction without techniques like spatial filtering or HD-sEMG. The patches of high 

intensity power observed in both flexor and extensor spectra corresponded to patches of high 

coherence, which suggested that some of the high-intensity coherence may be caused by the 

synergy between flexors and extensors. The relatively consistent joint angle of 40 to 50 degrees at 

the MCP joint indicated that the hand is making fine adjustments to resist the forces of the knife 

during the task. 

   It was important to note that crosstalk was shown to increase with muscle effort and grip force 

[61]. Coherence is a combination of crosstalk and synergy, and as the intensity of muscle activation 

increases, crosstalk between muscles constitutes a larger ratio of the signal. This was promising, 

as the level of crosstalk in a coherence pattern can be somewhat inferred by magnitude of the 

activation envelopes, but it was important to make the distinction between crosstalk and true neural 

coordination through muscle synergy. The significant increase in coherence between flexors and 

extensors cannot be fully attributed to synergy, and this invalidates the application of coherence 

spectrograms especially at high intensities of muscle activation [3]. Fortunately, this also suggests 

that ADL 1,3, and 6 are less affected crosstalk, and that intensity can be used as a measure for the 

effectiveness of coherence analysis. In order to improve the accuracy of coherence plots, future 

work should investigate crosstalk reduction algorithms to better observe this phenomenon. 
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Figure 4.18: Subject 1 ADL 14 Coherence 
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4.3.e – Detection of Supination and Pronation 

    As spot 7 was speculated to measure both supination and pronation of the forearm and the 

CYBERGLVOE II does not have a DOF for measuring rotation of the wrist, observing these 

actions from the KIN-MUS-UJI dataset proved to be challenging. Figure 4.19 below exhibits 

activation envelopes for spots 3 (Digits I-V Flexion), 5 (Digits II-V Extension), 7 (Supination, 

Pronation, Wrist Extension), power spectra of spots 3, 5, and 7, Digit I CMC, and an average of 

the MCP flexion/extension for digits II-V. The MCP was held relatively constant, making fine 

adjustments as the screwdriver was manipulated in the hand. Digit I CMC appeared to be a better 

indicator for the periodicity of the screwdriver rotation through thumb motion. 

   The troughs of CMC joint angle align closely with the peaks in flexor and spot 7 activity. High 

extensor activity was observed, which is surprising as this task involved a high degree of flexion 

and supination force. Spot 7 exhibits a low frequency spike between 6 and 7 seconds which also 

occurs during a large degree of CMC joint change. This suggests the CMC releasing pressure on 

the screwdriver so that digits II-V are free to configure themselves for screwdriver rotation. 

Flexion appears to exhibit higher intensity and more consistent power spectral intensity when the 

CMC is held constant, suggesting that the thumb joint is resisting the frictional force of the 

screwdriver slipping during rotation. Furthermore, envelope spikes in all three sEMG spots appear 

to occur in synchrony, but due to the time scale of this figure phase relationships are not visible. 
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Figure 4.19: ADL 6 Intensities & Power Spectra: Spot 3, 5 and 7 
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   Figure 4.20 below displays activation envelopes for spots 3 (Digits I-V Flexion), 5 (Digits II – 

V Extension), 7 (Supination, Pronation, Wrist Extension), power spectra of spot 7, coherence 

between spots 3&7, 5&7, Digit I CMC, and an average of the MCP flexion/extension for digits II-

V. Very high coherence between spot 7 (Supination, Pronation, Wrist Extension) and spot 5 (Digit 

II-V  Extension) was observed throughout the entire duration of object manipulation. As spot 7 

observed wrist extensors and spot 5 observed digital extensors, some coherence between these two 

spots may have measured synergy between wrist and digital extensors. However, high coherence 

between these spots could also be a case of mutual source coherence. Shown in table 3.1, the 

extensor carpi radialis brevis was a likely source of crosstalk for spot 5 and could have obstructed 

synergy measurements. 

    In contrast, there was very low coherence between digits I-V flexors and spot 7 despite the 

activation envelopes of the two sEMG spots resembling one another. While synergy measurements 

may be impeded by mutual source coherence of the flexor pollicis longus, sensors were on the 

palmar and distal forearm respectively (see Figure 3.1) and would be impeded by the spatial filter 

of the bones and mass between them. There was an increase in coherence between spot 3 & 7 at 

the end of object manipulation (10s), which may have been an increase in synergy between the 

supinator and digit I-V flexors caused by fatigue. This was furthered by the results of Mogk, Keir, 

Yung, and Wells showing that there is a negligible increase in crosstalk on forearm muscles 

between supination and pronation tasks. These results suggest that this increase in coherence was 

not caused by wrist conformation changing crosstalk properties significantly [59, 60]. Another 

important consideration was that coherence increase may have been caused by the increase in 

crosstalk observed during increase in contractile force as described by Kong et al [61].  
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Figure 4.20: ADL 6 Spot 7 Power Spectra and Coherence with Spot 3 and 5 
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    Shown below in Figure 4.21 are activation envelopes for spots 3 (Digits I-V Flexion), 5 (Digits 

II-V Extension), 7 (Supination, Pronation, Wrist Extension), Digit I CMC, and an average of the 

MCP flexion/extension for digits II-V for all pinch and grasp ADL observed in this experiment. 

This Figure was generated to show the phase relationship between flexors, extensors, and spot 7 

during ADL 6 as it could not be discerned from Figure 4.19.  As shown, the maximum spikes of 

intensity in spot 7 followed the maximum intensities of flexors very closely. Furthermore, these 

spikes of intensity in flexion and spot 7 appeared to be 90 degrees out of phase with the high 

intensity spikes of digits II-V extensors. This phase relationship between supination, pronation and 

wrist extension was exclusively visible during ADL 6. Spikes in flexion appeared to be loosely 

related to decreases in both digits I CMC and average MCP. 

    This phase relationship between spot 7, digit I-V flexors, and digit II-V extensors appeared to 

indicate the sequence of object release, reorientation with the screwdriver, and continued rotation. 

Flexion and spot 7 intensity envelopes aligning implied that the hand was grasping an object while 

supinating. These intensities decreased while extension increased implying a release and 

reorientation phase during the object manipulation of ADL 6. This relationship only appeared 

during ADL 6 with pinch tasks appearing to increase in spot 7 activity during increase of flexion 

and digits II-V extension tetanization. ADL 14 exhibited tetanized envelopes for all sEMG spots 

which appear to reach maximum intensity in tandem. Phase relationships of spot 7 intensity further 

differentiate tasks such as making a fist and rotating a screwdriver and outline the increase in 

information which could be attained through phase relationships between intensity envelopes 

provided in the dataset. 

    It should be noted that spot 7 not only measured supination and pronation, but also measured 

wrist extension. As II-V Extension was observed to be highly coherent with spot 7, crosstalk and 
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muscle synergies between these two locations were significant contributions to this signal which 

needed to be noted. Interestingly there was much less coherence between spots 5 and 7 despite 

their time varying envelopes following each other closely in this task. While the spikes of spot 7’s 

envelopes followed I-V flexion closely, it appeared that intensity followed extensor activity to a 

lesser extent. Intensity of spot seven did not decrease significantly until II-V extension decreased, 

suggesting that wrist extension contributed significantly to the signal observed at spot 7. These 

results show that while information such as rotational joint angles were not visible from the 

CYBERGLOVE II, they may be inferred through the observation of phase relationships between 

envelopes. It also showed that despite supination and pronation being visible from the same 

location on the forearm, inferences could be made about the rotation of the forearm through 

analysis of flexion and extension envelopes and knowledge of expected action during the ADL. 

 

Figure 4.21: Differentiating Rotational Grasp Tasks 
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4.4 - Discussion 

    Results showed that pinch and grasp tasks could be best differentiated through observation of 

activation intensity of sEMG spot 3. This spot was above the flexor digitorum muscles, which are 

thought to be the largest contributors to sEMG signal in spot 3. In pinching tasks, the activation 

was a twitch or light tetanization. Interestingly, the light grasp in ADL 6 led to a smaller initial 

activation twitch than the grasp in ADL 3. This may be due to the subject digging around a coin 

purse and needing to coherently grasp a small coin, while in ADL 6 flexion force was used to 

grossly hold the screwdriver. Supination and pronation were used for rotational force to drive the 

action of screwing the screw into the board. When flexing to stabilize opposing forces, intensity 

of activation significantly increased such as observed in ADL 14. 

    These research findings suggest that both median frequency (MDF) and mean frequency (MNF) 

were inconclusive measures for differentiating between pinch and grasp tasks. The differences in 

MDF and MNF were not consistent across all tasks, and pinch tasks with extended manipulation 

ended up exhibiting steeper decrease in MNF/MDF and higher Y intercepts. This relationship 

between negative slope of MDF and MNF and the intensity of flexion may be due to the fine motor 

motion needing to perform an extended pinch task, which may have fatigued the subject more than 

a light grasp task. Therefore, the ramp in MNF/MDF was a more reliable indicator of muscle 

fatigue in pinch tasks, especially those with extended manipulation phases. Spectral moment was 

interpreted as a measure for fine motor control instead of activation in hand muscles, as fatigue 

was related to the relative intensity and time the object was under manipulation. 

    Coherence results were subdivided into four categories; one source measured from multiple 

electrodes (mutual source coherence), mutual innervation, anticipatory activation, and crosstalk. 

High intensity coherence observed in ADL 6 between spots 5 and 7 was likely an example of 
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mutual source measurement. The spikes before and after object manipulation in ADL 1,3,6, and 

14 were likely anticipatory activation. Anticipatory activation would mean that the opposing 

muscles coherence is common neural input that the hand is to be manipulated and was therefore a 

very interesting finding. As forces increase in the ADL, coherence between spots was more likely 

to be observed. While it has been shown by several research groups that crosstalk increases with 

the intensity of muscular contraction, this coherence could also be influenced by anticipatory or 

mutual innervation as these sources sum. Low frequency coherence was likely caused by phase 

alignment of filtered signals at low frequencies.  

    Through analysis of spot 7 during ADL 6, changes in the phase alignment of intensity between 

flexors and extensors with spot 7 were observed. During non-rotational tasks, spot 7 was observed 

to activate in phase with both flexors and extensors. Conversely during rotation of the screwdriver 

in ADL 6 phase between the flexors and spot 7 was 90 degrees out from that of extensors. This 

phase alignment showed flexors working in tandem with digital flexors, while extensors intensity 

increased during flexor and supinator rest. This was indicative of the hand flexing and supinating 

to tighten the screw, then releasing the screw to readjust hand conformation for the next rotation. 

This encoding of periodicity has significant implications for tool use and shows that even without 

joint angle data for a DOF, information about its activity may still be captured using EMG. 

    Implications for further research suggest a similar amount of activation variability in each sEMG 

spot. Through observation of all spot activations and fingertip workspace data, many more gestures 

may be differentiable with low sensor input as proposed in this thesis. While this dataset has not 

been shown differentiate individual fingers using sEMG, it was shown that through measurement 

of available flexor activation that several degrees of pinch and grasping tasks could be observed. 

The breadth of information on the fingertip workspace included in the Jarque Bou dataset allows 
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researchers to study the hand with a high level of physiologic detail, without the need for direct 

interaction with subjects or complex recording instruments. Pinches and Grasps were 

differentiated using activation envelopes of sEMG sensors, light pinches and hard grasps were 

clearly differentiable actions through the measurement of activation envelopes of spot 3. Spectral 

moment showed some indication of task differentiation but was not as directly apparent as 

activation envelope intensity. Observation of spot 7 provided insight into rotational control of the 

forearm without direct measurement of supination and pronation joint angle. 
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Chapter 5 – Conclusions 

 

    The intent of this research has been to reimagine future human interfacing devices through the 

application of neuromusculoskeletal modeling to the extrinsic muscles of the hand in the forearm. 

The ARMS Lab Hand and Wrist Model, released in December 2021, and its integration of testing 

and training procedures using the CYBERGLOVE II, yielded the most advanced human hand and 

wrist model in existence at the time of the research. The Jarque Bou dataset was analyzed for 

application to the ARMS Lab model due to its application of the CYBERGLOVE II for joint 

angles. Pinch and grasp tasks were analyzed as validation tools for the ARMS Lab model as it 

extensively detailed the process for simulating pinch and grasp tasks. With the continued 

development and analysis of OpenSim models for human limbs and the improvements in 

neuromusculoskeletal modeling seen in the past two decades, this goal is becoming ever more 

achievable. 

    Existing material in musculoskeletal modeling of the hand and forearm was expanded upon 

through two parallel modes: implementing training sets and advancing data collection. The Jarque 

Bou dataset analyzed in chapters 3 and 4 showed the relationship between sEMG signals in the 

dataset and gross limb motion, providing an opportunity for further testing of the ARMS Lab 

model through its similarity of data input. Chapter 3 generated an atlas of every forearm muscle 

observable within this dataset as a tool for investigating actuation of the ARMS Lab model with 

the dataset and to provide likely crosstalk sources for each sEMG spot. Furthermore, analysis of 

the dataset showed that actions such as hand rotation may also be encoded in the sEMG spots 

despite lack of joint angles to compare this with. Future work provided in chapter 6 investigates 

the development of an HD-sEMG sleeve to circumnavigate the use of test data sets and to run the 
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ARMS Lab  model in real time. These two separate investigations, along with the extensive 

literature review of NMM outlined in this thesis, offer a conclusive approach to the edge of this 

technology and ways in which it could be further developed. 

    This research discussed the analog front end needed for capturing sEMG, HD-sEMG, and 

addressed limitations of modern computers in implementing such a device as an HD-sEMG 

embedded system. While significant research is still needed in power, embedded system design, 

data transmission, and embedding of the NMM, it is not likely that this pipeline will be completed 

until the ARMS Lab model can be tested using the KIN-MUS UJI dataset. Future research 

combining this model and dataset is significant to developing such an NMM because the dataset 

is the largest collection of hand joint angle and sEMG data available open source and is further 

significant for its standardization of the SHFT process. Active muscles in the ARMS Lab Model 

could be chosen from results found in chapters 3 and 4 for ADL 1,3,6 and 14 to further simulate 

pinch and grasp tasks, while other ADL could be used to simulate new gestures with the model. In 

this way the thesis produces novel results itself but lays the groundwork for personal PhD study 

on the topic.  

    It was shown how the sEMG groupings in the Jarque Bou dataset can be used to observe bilateral 

actuation of the entire wrist and digits II-V flexion and extension, but some gestures such as the 

peace sign could not be differentiated due to the reliance on hand muscles. Through analysis of 

spot 7, it was found that the KIN-MUS-UJI dataset can provide insight into forearm and hand 

rotation through supination and pronation, even without having a joint angle to directly validate 

rotation. Limitations of the dataset such as large IED, reduction of groupings from thirty to seven 

using functional PCA, lack of MVC recordings, and lack of rotational joint angles were discussed. 

Furthermore, recommendations for improving the dataset such as sampling at a higher spatial 
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resolution, application of crosstalk reduction algorithms, and detection of MVC within ADL are 

discussed. Overall, the dataset provides valuable information about the movements involved in 

forearm and hand motion, which can help in understanding the mechanics of complex hand and 

arm movements. 

    Consolidation of neuromusculoskeletal modeling, HD-sEMG, and existing anthropometric 

models of the hand was performed for the purpose of developing a Human Interfacing Device 

(HID) controlled by sEMG activity of extrinsic hand muscles of the forearm. It is important to 

consider that such NMM technology is highly modular, and does not need to apply to sEMG of 

the forearm. As discussed in this research, NMM technology has been utilized for computational 

models of lower extremities and prosthesis. In this sense, this thesis benefits the study of 

kinematics as open-source development to a proven numerical algorithm which calculates human 

motion with a high degree of precision. Sensors are investigated for capability to capture sEMG at 

a sufficient spatial resolution to generate HD-sEMG, which greatly improves the capability of a 

system to identify optimal muscle locations and reduce crosstalk between muscles. With proper 

selection of muscles, any limb could be projected into the digital workspace given the proper 

musculoskeletal model.  

    Future work on this research will be focused on proving the feasibility of forearm and hand 

NMM for HID. While technologies like Kinect or the CYBERGLOVE II allow a user to translate 

gestures into HID commands, users must either treat the room, or be equipped with unwieldy 

technology to do so. Sensors small enough to fit 900 sEMG into an armband are investigated in 

future work for application of HD-sEMG to the forearm; a development which allows a “heatmap” 

of electrical muscle activity to be measured from the surface of the skin. While this does not 

directly elicit individual muscles being detected, a sleeve will be significantly more intuitive for 
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end users. Developments in HD-sEMG detection are at the edge of this field and constantly 

advancing. Several such sleeves have been designed by labs, but no open-source design has existed 

until the dissemination of this work. 

      This technology has application in the control of devices where precise hand movement is 

needed. Despite initial investigation as an interfacing vector for robotic surgical devices such as 

the DaVinci Robot, a plethora of applications have been considered from home appliance 

interfacing to piloting a crane, operating machinery outside of a spacecraft, prosthesis and assistive 

devices, virtual and augmented reality, gaming, and hazardous chemical handling.  Furthermore, 

NMM has been shown capable for embedded systems, making it a perfect interface for individuals 

with disabilities or those with fully functioning limbs. Individuals with physical limitations on the 

fingertip workspace could still learn to use a high degree of the digital workspace through 

measuring functioning muscles or retraining new muscles to actuate the workspace. In research 

applications, this technology has even been proposed as a technique for physical therapy and 

training to help practicians better visualize subject muscle activity and joint moments. 

    Despite lack of discussion in this thesis, such devices, and the data that they produce will require 

significant ethical development for implementation in consumer products [62]. As shown through 

Neuromusculoskeletal Modeling and the work of Beauchamp et al, coefficients descriptive of an 

individual’s unique somatome are required for transduction of joint angles of a limb. Commercial 

use of such technology raises concern about the ownership and control of biomedical data, while 

also creating a significant knowledge gap between developers and end users. While this thesis 

discusses open-source implementation of this technology purely for scientific development, 

companies selling such a device should be clear about data encryption, secure storage and 
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transmission protocols, and guidelines about the ownership and control of biomedical data for 

users. 

    In the age of modern computing, interfacing devices such as the keyboard and mouse can be the 

bottleneck for information transfer between a user and computer. Information transfer is limited 

by the user’s knowledge of the device, but also the physiological characteristics of the individual 

using the tool, and the effectiveness of the tool at solving a specific task. While tasks such as 

technical writing make the use of a keyboard intuitive, 3D modeling such as CAD may see benefit 

from interfacing with a designer’s hands. By detecting gestures through sEMG signals, the device 

would allow users to control devices and interact with technology in a way that is natural and 

intuitive. Additionally, because the device does not require physical contact with the hand, it could 

be used in situations where the user's hands are otherwise occupied or unavailable. This could 

improve information transfer and increase the user's ability to interact with the environment. In a 

similar manner to how voice recognition software contributed speech as a computer interfacing 

vector, NMM offers the opportunity for gesture recognition and the ability to vectorize human 

hand motion for computer input. 
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Chapter 6 - Suggestions for future research 

 

    Future work was focused on the development of an integrated system architecture for High 

Density surface electromyographic (HD-sEMG) transduction of hand joint angles in human 

interfacing devices (HID). This involved the development of a preamplifier with high 

spatiotemporal resolution, as well as the integration of an ADC and RAM for data acquisition and 

storage. The goal of this work was to create a reliable and efficient HID that can accurately 

translate sEMG signals into intuitive and responsive hand gestures, ultimately enhancing the 

usability and accessibility of human-machine interfaces (HMI). The work in this section was 

included for insight to solve several of the open technical and scientific issues referenced in the 

introduction of IEEE Press’ Surface Electromyography: Physiology, Engineering and Applications 

published in 2016.  Data transmission and storage is not investigated extensively in this work but 

was included for the dissemination of viable solutions and methods for the development of this 

sleeve. For the ARMS Lab Model to be investigated for embedded systems, these open issues must 

be addressed. 

    While the non-invasive nature of sEMG is useful for commercial applications, the significant 

drop off in signal quality from fine wire EMG means that the seven signals measured will be 

corrupted with crosstalk, noise, and motion artifacts. While the dataset only recorded seven sEMG 

spots, the original research performed to find these spots investigated 30 sEMG locations on the 

forearm [47]. The purpose of this future work was to design an sEMG amplification system that 

can capture HD-sEMG with a high bandwidth and sampling frequency for use as an alternative 

input for EMG Driven Musculoskeletal Modeling. The HD-sEMG sleeve designed in this chapter 

implements preamplifiers small enough to observe ~ 900 signal locations on the forearm and 
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benefits previous research as an investigatory tool for increasing the number of sEMG signals 

observable to spatiotemporal resolution. 

    The architecture presented in this section is open source and was designed as a launchpad for 

future work into this topic. While this preamplifier PCB is available on GitHub and scalable for 

HD-sEMG, it requires development of electrode connectors, referencing, and power. Power was 

not investigated in this research, but a suggestion of Merletti et al is the development of battery 

powered preamplifiers [1]. These tasks along with testing of the completed preamplifier should be 

performed before a rigid-flex sleeve is designed for the device. Implementation of the rectification 

circuit provided has not been performed but was included as analog rectification would decrease 

computational load on the neuromusculoskeletal model.  

6.1 – Data Acquisition Units 

    Data Acquisition Units (DAQ) convert voltage signals into digitally stored data and provide a 

robust and programmable tool for the development of an HD-sEMG sleeve. Examples of such 

technologies typically used for sEMG study are the 16-Channel EMG System through Motion 

Labs and PowerLab System through National instruments shown below in Table 6.1. While not 

utilized for data capture in this thesis, many DAQ offer flexibility in data capture through 

expandable I/O, companion signal processing software, and the ability to test sensors before 

implementation of an embedded system. Although these devices are relatively inexpensive for 

time invested in development of an embedded system, most are not small enough to be wearable 

and do not have the number of channels required to capture HD-sEMG.  
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Table 6.1: Example DAQ Devices 

Name Channels Sampling Freq Resolution Citation 

PowerLab C Digital 

DAQ 

<32 <100kHz 16 bit [63] 

MA400 EMG System <16 2kHz 16 bit [64] 

 

6.2 – HD-sEMG Sleeve Architecture 

    The system architecture shown below in Figure 6.1 illustrates the implementation of Wang, 

Tang, and Bronlund’s modified sensor topology discussed in chapter 2.3. Preamplifiers are 

separated from filtering and digitization in this Figure as a reminder to readers that signal integrity 

is significantly impeded by distance between it and electrodes and should therefore be designed to 

reduce this distance as much as possible. The distance between preamp, filter, and rectifier is less 

causal on interference. Implementation of analog rectification is optional and implemented in this 

Figure for visualization purposes, investigation is still needed on the voltage drop of the rectifier. 

Furthermore, this investigation does not include powering this system. Embedded analog to digital 

conversion (ADC) for sEMG was reviewed extensively by Merletti et al [1] but could be 

substituted with a data acquisition (DAQ) unit of a sufficient sampling rate such as the PowerLab 

system [63]. 
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Figure 6.1: HD-sEMG Signal Conditioning, Filtering, and Digitization 

    To produce a wearable device usable as an HMI, neuromusculoskeletal modeling of the hand 

and forearm will need to be implemented on an embedded system. This not only requires all 

sensors to be captured as digital signals at a sufficient sampling frequency of 2 kHz at 1k samples 

per second [9], but also that this data is readily available for signal processing at a sufficient 

frequency for the model of the limb to update. While ADCs for sEMG have been reviewed 

extensively by Merletti et al [1], particular interest has been taken to the ADS1298 for its 

implementation of 𝚺 - Δ converters [65], ability to turn channels on and off, low power 

consumption and small size. 

   Using the ADS1298 for the designed HD-sEMG sleeve addresses limitations in both power and 

the sampling rate through its eight parallel 𝚺 - Δ converters. This parallelism means that for 900 

sEMG sensors, approximately 115 ADC will be required. Equation 35 estimates the maximum 

number of slave ADS1298 modules which can be connected to one master device as the frequency 

of the slave clock divided by the sum of the data rate times the number of bits times the number 

of channels and a 24-bit status word. Using a 48 MHz SCLK for eight 24-bit precision channels 

sampling at 1 kSPS yields a maximum number of 250 devices, significantly higher than the number 
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of ADC required for the system. Furthermore, if analog rectification can be implemented, the data 

rate can be drastically reduced to a minimum of 8 Hz or synchronized with the sample rate of the 

CYBERGLOVE II (90 Hz). 

𝑁𝐷𝐸𝑉𝐼𝐶𝐸𝑆  =  
𝑓𝑆𝐶𝐿𝐾

𝑓𝐷𝑅(𝑁𝐵𝐼𝑇𝑆)(𝑁𝐶𝐻𝐴𝑁𝑁𝐸𝐿𝑆) + 24
 

Equation 35 

    There are several ADCs that offer comparable power consumption, sampling speed, and 

precision to the ADS1298, but with higher channel counts. The AD7793, MCP3911, and 

MAX11131 are three examples of such ADCs that are also SPI devices. Compared to the 

ADS1298, which has 8 parallel Σ-Δ converters and a maximum of 8 input channels, the 

ADAS14400 from Analog Devices offers 40 input channels with 14-bit resolution and a maximum 

sampling rate of 400 kHz, while the MAX11905 from Maxim Integrated offers 20 input channels 

with 14-bit resolution and a maximum sampling rate of 1 MSPS. All three ADCs use the SPI 

interface and have comparable power consumption, making them suitable choices for embedded 

systems requiring high channel count and precision with fast sampling rates. The selection of the 

appropriate ADC will depend on the specific needs and constraints of the project, such as power 

consumption, sampling rate, and number of channels required. 

    When considering data storage on an HD-sEMG device, it's essential to consider the data 

requirements of the specific application. For example, recording raw sEMG for 900 sensors at 

1kSPS and 24-bit resolution would require 5.5 megabytes of memory per second, which is 

impractical for low-cost real-time implementations. However, if the rectified integral of EMG was 

implemented in hardware, this operation would be reduced significantly to 5.52 kilobytes per 

second. Factors such as read and write speeds, power consumption, voltage, and memory density  
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should be considered when choosing a RAM option. Careful evaluation of each option is necessary 

to determine the most suitable choice for the specific requirements of the implementation. 

    For data storage on an HD-sEMG device, several RAM options are available with different 

strengths. The Fujitsu MB85RS256T device is an excellent choice for applications that require fast 

access times and low power consumption operating at 1.8 V over SPI up to 20 MHz and storing 

up to 2 megabytes [66]. However, if large storage capacities are a priority, the Alliance Memory 

AS7C34100A SRAM device offers 8 megabytes of memory density, while maintaining fast access 

times through a 100 MHz parallel interface and low power consumption [67]. On the other hand, 

the Cypress Semper NOR Flash S34ML08G2 device offers an impressive 8 gigabytes of memory 

density and read speeds of up to 133 MHz over SPI, making it the best choice for applications that 

require a large storage capacity [68]. Each RAM option has its unique strengths, and careful 

consideration of the specific requirements of the application is necessary to determine the best 

choice. 

    While visual feedback to raw sEMG signals is only required during determination of 

measurement locations, data acquisition units (DAQ) such as the MA400 system require 

supplemental feedback devices to visualize sEMG which can cost as much as the DAQ itself [69]. 

A solution to this may be utilizing the work of Kandalaft et al, a solution to transmitting HD-sEMG 

data may be using FPGA and MQTT technology. Baud-Rate limitations could be circumvented by 

selecting the number of ADC through FPGA “pipes” to that which can be transmitted over WiFi 

at a sufficient frequency [70]. In this way, parallel WiFi connections can be resynchronized 

sequentially after WiFi transmission to a PC for storage.  
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6.3 - Preamplifier PCB 

    The preamplifier circuit used in this design was based on the INA128 topology used by Wang 

et al for low voltage signal measurement [9] as shown in Figure 6.2. Despite the INA828 being 

available as an upgrade for the INA128, the topology of the circuit has not been modified and the 

two parts can be considered replacements for one another. The INA828 benefits from increased 

precision, ESD ratings, reduced bias current, bandwidth and slew rate. 

 

Figure 6.2: Schematic for EMG Preamplifier 

    The surface area of the forearm is approximately 900 cm2 [71]. As shown in Figure 6.3 below 

only the differential input must be connected to the wristband. The Figure shows the INA128 

configured with positive and negative leads for the preamplifier connected across the measurement 

site, while the shield was connected to the amplifier ground. Furthermore, the Figure shows a 

single reference electrode placed far away from the positive and negative leads [31]. A similar 

topology could be implemented for EMG, but with a significantly smaller IED [72]. 

    Because the Ref electrode was a separate electrode far from the wristband, and the shield was 

connected to the preamplifier PCB ground, there are only two electrodes required per sensor. This 
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is referred to as a bipolar measurement as the sensor measures the difference between the positive 

and negative electrodes. At a pitch and IED of 5 mm, each electrode required an area of 10x10 

mm as shown in Figure 6.3. This led to approximately 900 electrodes which can be placed on the 

forearm. A diagram for connecting preamplifiers to an sEMG wrist band is shown in Figure 6.4. 

 

Figure 6.3: Electrode Spacing 

 

Figure 6.4: sEMG Wristband 

    Each sensor used two electrodes; therefore, the entire preamplifier circuit must occupy a space 

no larger than 10mm x 20mm. For implementation of the preamplifier PCB, 0402 resistors and 

capacitors were chosen for prototyping. The size requirement for the sensor was satisfied as shown 

in Figure 6.5.  For complete implementation, power circuitry and signal would need to be 

exchanged between preamplifiers and the sEMG Backpack as shown in Figure 6.4. 
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Figure 6.5: sEMG Preamplifier PCB 

    This device could be made using individual preamplifier PCBs to be snapped onto an electrode 

wristband but would likely benefit from advancements in Rigid Flex PCB technology to have an 

elastic wristband which can slide on and off the forearm. Using Rigid Flex technology – while 

causing a significant increase in the price of the device – would mean that less assembly is required 

to collect data using the device. Different processes for microelectrode fabrication were 

investigated by Zhou et al [72]. Gold microelectrodes were fabricated at diameters of 150 -300 µm 

by Choi et al using an electrochemical etching technique and a parylene based flexible polymer 

for isolation [73]. This would be beneficial in the design of a rigid flex circuit. A GitHub link  for 

the sensor PCB is listed in Appendix B.2. 

    This sEMG amplification system would be capable of capturing high information signals on the 

forearm satisfying the spatiotemporal Nyquist limit. Implementation of this system would capture 

sEMG at a spatial frequency thirty times that of Jarque Bou et al, offering new opportunities for 

input to the ARMS Lab Hand and Wrist Model. The system was designed in ordinance with current 

IEEE research on optimal HD-sEMG systems with an IED of 5mm and has preamplifier circuitry 

which can fit between IED. Because rigid flex technology would be preferred in the design of such 

a system, flexible parylene isolation between gold microelectrodes was determined optimal for 

this application. Further developments in this device could be explored in electrode material, cross 

talk between sensors, or capacitive sensors. 
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6.4 - Precision Full Wave Rectifier 

    While the Jarque-Bou dataset implemented the envelope of sEMG digitally, computational 

expense could be reduced through the implementation of a full wave rectifier. The two most 

significant issues with implementing analog rectification are the considerations of power and 

voltage drop. The rectifier designed below in Figure 6.6 has a voltage drop of approximately 50 

mV but could likely be reduced by using Schottky diodes in its topology. Furthermore, the design 

below requires a supply voltage of +/-15 V. Output voltage equations are shown for positive and 

negative voltages in equations 36.a and 36.b respectively [74]. 

 

Figure 6.6: Precision Full Wave Rectifier [74] 

𝑉𝑂𝑈𝑇  =  𝑉𝐼𝑁 Equation 36.a 

𝑉𝑂𝑈𝑇

𝑉𝐼𝑁
 =  (−

𝑅2

𝑅1
)  =  −1 [𝑉/𝑉] 

Equation 36.b 
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Appendices 

 

Appendix A - Forearm Muscle Atlas for KIN-MUS UJI Dataset 

Table A.1: Muscles deep to sEMG Spot 1 

Muscle Origin Insertion Action Innerva

tion 

Spinal 

Location 

MU 

Count 

Flexor Carpi Ulnaris 

 

Medial 

epicondyle of 

humerus, 

olecranon, and 

posterior 

border of ulna 

Pisiform, 

hamate, 

base of 

metacarpal 

V 

Wrist 

flexion

, wrist 

adduct

ion 

Ulnar 

nerve 

C7-T1 

 

C7-T1 
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Table A.2: Muscles deep to sEMG Spot 2 

Muscle Origin Insertion Action Innerva

tion 

Spinal 

Location 

MU 

Count 

Flexor Carpi Radialis 

 

Medial 

epicondyle 

of humerus 

Base of 

second 

and third 

metacarp

al bones 

Flexion 

and 

abduction 

at wrist 

Median 

nerve 

C7-C8 235 

Palmaris Longus 

 

Medial 

epicondyle 

of humerus 

Palmar 

aponeur

osis and 

flexor 

retinacul

um 

Wrist 

flexor 

Median 

nerve 

C7-C8  
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Table A.3: Muscles deep to sEMG Spot 3 

Muscle Origin Insertion Action Innerva

tion 

Spinal 

Location 

MU 

Count 

Flexor Digitorum Superficialis 

 

Medial 

epicondyle 

of the 

humerus, 

ulnar 

coronoid 

process, 

below radial 

tuberosity 

Anterior 

margins 

on the 

base of 

middle 

phalange

s of  

digits II 

-V 

Flexor of 

fingers, 

primarily 

at 

proximal 

inter- 

phalangeal 

joints 

Median 

nerve 

C8-T1 306 

Flexor Digitorum Profundus 

 

Upper three 

quarters of 

the anterior 

and medial 

surfaces of 

the body of 

the ulna, 

interosseous 

membrane, 

and deep 

fascia of the 

forearm 

Base of 

the 

digital 

phalange

s of the 

fingers 

Flex hands 

at both 

inter- 

phalangeal 

joints 

digits II-V 

Ulnar  

nerve 

C8-T1 475 
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Flexor Pollicis Longus 

 

Middle half 

of the 

anterior 

surface of 

the radius 

and the 

adjacent 

interosseous 

membrane 

The base 

of the 

distal 

phalanx 

of the 

thumb 

Flexion of 

the thumb 

Median 

nerve 

C7-C8  

 

Table A.4: Muscles deep to sEMG Spot 4 

Muscle Origin Insertion Action Innerva

tion 

Spinal 

Location 

MU 

Count 

Abductor Pollicis Longus 

 

Lateral 

dorsal 

surface 

of ulna 

and 

radius  

interosse

ous 

membra

ne 

 

Pedicle 

of 1st 

metacarp

al 

Thumb 

extension 

(abduction) 

Posterio

r inter- 

osseous 

nerve 

(deep 

division 

radial 

nerve) 

C8-T1 126 
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Extensor Pollicis Brevis 

 

Lateral 

dorsal 

surface 

of body 

of radius                                                        

interosse

ous 

membra

ne 

Base of 

proximal 

phalanx 

of thumb 

Thumb 

extension, 

wrist 

abduction 

 

Posterior 

inter- 

osseous 

nerve 

(deep 

division 

radial 

nerve) 

C7-C8  

Extensor Pollicis Longus 

 

Middle 

third of 

posterior 

surface 

of ulna, 

interosse

ous 

membra

ne 

Thumb, 

distal 

phalanx 

Extension of 

thumb 

Posterior 

inter- 

osseous 

nerve 

(deep 

division 

radial 

nerve) 

C8-T1 14 

Table A.5: Muscles deep to sEMG Spot 5 

Muscle Origin Insertion Action Innervati

on 

Spinal 

Location 

MU 

Count 

Extensor Digitorum 

 

Lateral 

epicondyle 

of 

humerus 

by 

common 

tendon 

Extensor 

expansio

n of 

middle 

and 

distal 

phalanx 

of digits 

2-4 

Extension 

of hand, 

extension 

of wrist, 

extension 

of fingers 

Posterior 

inter- 

osseous 

nerve 

(deep 

division 

radial 

nerve) 

C8-T1 273 
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Table A.6: Muscles deep to sEMG Spot 6 

Muscle Origin Insertion Action Innerva

tion 

Spinal 

Location 

MU 

Count 

Extensor Carpi Ulnaris 

 

Humeral 

head:      

lateral 

epicondyle 

of the 

Humerus. 

Ulnar head:      

olecranon, 

posterior 

surface of 

ulna, ante- 

brachial 

fascia.  

5th 

metacarpal 

Wrist 

extension, 

wrist 

adduction 

Posteri

or 

inter- 

osseous 

nerve 

(deep 

divisio

n radial 

nerve) 

C7-C8  
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Table A.7: Muscles deep to sEMG Spot 7 

Muscle Origin Insertion Action Innerva

tion 

Spinal 

Location 

MU 

Count 

Brachioradialis 

 

Lateral 

supra- 

condylar 

ridge of 

the 

humerus 

Distal 

radial 

styloid 

process 

Flexion of 

the elbow, 

supination 

and 

pronation 

of the 

radioulnar 

joint to 

90deg 

Radial 

nerve 

C5-C6  

Pronator Teres 

 

Humeral 

head: 

medial 

supra- 

condylar 

ridge of 

humerus. 

Ulnar 

head: 

coronoid 

process of 

ulna 

Middle 

of the 

lateral 

surface 

of body 

of the 

radius 

Pronation 

of forearm, 

flexes 

elbow 

Median 

nerve 

C6-C7  

Extensor Carpi Radialis Brevis 

 

Humerus 

at the 

anterior of 

lateral 

epicondyle 

Posterior 

base of 

3rd 

metacarp

al 

Extensor 

and 

abductor of 

the hand at 

the wrist 

joint 

Radial 

nerve 

C5-C7 890* 
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Extensor Carpi Radialis Longus 

 

Lateral 

supra- 

condylar 

ridge 

humerus 

2nd 

metacarp

al 

Extensor at 

the wrist 

joint, 

abducts the 

hand at the 

wrist 

Radial 

nerve 

C5-C7 890* 

 

*Motor unit count for ECRB and ECRL is a joint reference [1].  
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Appendix B – Git Hub Links 

Appendix B.1 - GitHub Link for Forearm Atlas 

https://github.com/beauchab/GestureComputerInterfacing 

Appendix B.2 - Preamplifier GitHub 

https://github.com/beauchab/PreAmplifier-sEMG-PCB- 
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