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Abstract: The considerable economic losses in citrus associated with ‘Candidatus Liberibacter’ and
‘Candidatus Phytoplasma’ presence have alerted all producing regions of the world. In Chile, none
of these bacteria have been reported in citrus species. During the years 2017 and 2019, 258 samples
presenting symptoms similar to those associated with the presence of these bacteria were examined.
No detection of ‘Ca. Liberibacter’ associated with “huanglongbing” disease was obtained in the tested
samples; therefore, this quarantine pest is maintained as absent in Chile. However, 14 plants resulted
positive for phytoplasmas enclosed in subgroups 16SrV-A (12 plants) and 16SrXIII-F (2 plants).
Although they have been found in other plant species, this is the first report of these phytoplasmas in
citrus worldwide.

Keywords: citrus diseases; phytoplasmas; Liberibacter; nested-PCR/RLFP; sequencing; molecu-
lar identification

1. Introduction

Different species of ‘Candidatus Liberibacter’ have been reportedly associated with
“huanglongbing” (HLB), the most important disease in citrus worldwide [1,2]. This disease
is spread through a large part of citrus-growing areas worldwide [3,4]. In South America,
‘Ca. L. asiaticus’ and ‘Ca. L. americanus’ are present in Brazil [5,6] and Paraguay [7],
while only ‘Ca. L. asiaticus’ is reported in Argentina and Colombia [8,9]. Furthermore,
Diaphorina citri, the main vector of both bacteria, has been found in all these countries,
and also in Uruguay [10], Ecuador [11], and Venezuela [12]. In the American continent,
the presence of ‘Ca. L. africanus’ and its vector Trioza erytreae were never reported. Until
recently, HLB-associated bacteria and their insect vector(s) have not been detected in Chile;
since 2011, monitoring plans have been developed to prevent the entry of the disease’s
agents and their insect vectors [13]. Given Chile’s geographic proximity to many countries
in which they are present, the risk of the disease spread into its territory is high. Therefore,
the Chilean citrus industry is making a great effort in monitoring and verifying the absence
of these pathogens and of their insect vectors.

It has been repeatedly observed that citrus plants infected by ‘Candidatus Phytoplasma’
show the typical symptoms observed in HLB infected plants, such as irregular yellowing
of the leaves and weakening of the tree. In some cases, it was possible to verify co-infection
between the two bacteria [14–16]. For this reason, both pathogens were surveyed to verify
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the local situation [17] with a meticulous inspection followed by specific molecular tests
to verify the presence of these bacteria in citrus plants in Chile. The sampling was mainly
directed to plants showing symptoms attributable to these bacteria in all the citrus growing
areas of the country.

2. Results

All the PCR analyses for the detection of ‘Candidatus Liberibacter’ species in citrus
samples were negative. However, 14 samples were positive for phytoplasma presence after
amplification on 16S rRNA and Ssu12p genes [18,19]. The amplicons obtained were cloned,
and five clones of each sample were sequenced. The sequences resulting from the five
clones obtained from each sample were identical and were aligned and compared with the
phytoplasma sequences available in GenBank (NCBI).

A 100% nucleotide identity in the 16S rRNA gene was present with samples enclosed
in the ‘Ca. P. ulmi’ and ‘Ca. P. hispanicum’ strains. In the case of the Ssu12p gene, the
nucleotide identity percentages observed were 99.52% and 100% in comparison with the
sequences available in GenBank, respectively. Among the 14 phytoplasma-positive samples,
12 were infected by ‘Ca. P. ulmi’ (elm yellows group, 16SrV-A), and two were infected by
‘Ca. P. hispanicum’ strains (Mexican periwinkle virescence group, 16SrXIII-A). Maximum
parsimony phylogenetic reconstruction using 16S rRNA and Ssu12p gene sequences, in-
cluding the strains obtained in this study, confirm that the detected phytoplasmas cluster
with phytoplasmas enclosed in ribosomal groups 16SrV and 16SrXIII. In particular, phy-
toplasma strains from the samples CTC 202, CTC 199, and CTC 192 are closely related to
the strain EY1 (GenBank accession number AY197655) (Figure 1A). Strains CTC 170 and
CTC 134 grouped with those of the ribosomal subgroup 16SrXIII-F, in particular, strain
StrCL-1 (GenBank accession number MH939193), from a Chilean strawberry sample. The
phylogenetic tree of the Ssu12p gene confirms these phylogenetic relationships (Figure 1B).
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Figure 1. Phylogenetic tree of (A) 16S rRNA gene region (1240 nt) and (B) Ssu12p region (724 nt)
enclosing phytoplasmas detected in citrus from Chile, highlighted with filled diamonds, and selected
‘Ca. Phytoplasma’ strains. Information on the phytoplasma strains is reported in Table 1. The tree was
constructed using the maximum parsimony algorithm. The numbers in the nodes represent starting
values based on 500 pseudo-replications for stability estimation and clade support A. laidlawii is used
as outgroup strain.
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Table 1. List of phytoplasma strains used for the phylogenetic analyses.

16Sr Group Subgroup Associated Disease (‘Ca. Phytoplasma’ Species) Acronym GenBank Accession Number
SSU12p 16S rRNA

16SrI A Aster yellows witches’ broom AYWB CP000061
B Onion yellows mild strain OY-M NC_005303
B Primrose virescence PRIVA MT161512 AY265210
C Clover phyllody KVE MT161514 AY265217
F Aster yellows from apricot A-AY MT161515 AY265211

16SrII A Peanut witches’ broom PnWB AMWZ00000000

A Echinacea purpurea witches’ broom E. purpurea
WB LKAC00000000

C Faba bean phyllody FBP MT161516 EF193354
D Tomato big bud TBB MT161517 EF193359

16SrIII A Peach × disease (‘Ca. P. pruni’) CX LHCF00000000
B Italian clover phyllody ItClPh AKIM00000000
D Goldenrod yellows GR MT161522 FJ376627
H Poinsettia branch inducing PoiBI AKIK00000000
J Phytoplasma Vc33 Vc33 LLKK00000000

16SrV A Elm yellows (‘Ca. P. ulmi’) EY MT161527 AY197655
16SrVI A Clover proliferation CP1 MT161528 HQ589189
16SrVII A Ash yellows (‘Ca. P. fraxini’) ASHY MT161529 HQ589190
16SrIX B Almond witches’ broom (‘Ca. P. phoenicium’) SA213 JPSQ00000000

C Picris echioides yellows PEY MT161530 JQ868441
16SrX A Apple proliferation (‘Ca. P. mali’) AT CU469464

B European stone fruit yellows (‘Ca. P. prunorum’) ESFY MT161533 AM933142
C Pear decline (‘Ca. P. pyri’) PD MT161535 AJ542543

16SrXII A “stolbur” (‘Ca. P. solani’) STOL SA-1 MPBG00000000
B Austral. grapev. yellows (‘Ca. P. australiense’) AUSGY AM422018
C Strawberry lethal yellows CPA CP002548

16SrXIII F Fragaria × ananassa phyllody StrPh-CL1 MT161538 MH939191
K Fragaria × ananassa phyllody StrPh-CL2 MT161539 MH939192
K Fragaria × ananassa phyllody StrPh-CL4 MT161541 MH939194

16SrV A Citrus × sinensis Lane late yellows CTC192 OL690419 OL677628
16SrXIII F Citrus × sinensis Fukumoto witches’ broom CTC170 OL690418 OL672243

Furthermore, the sequence of sample CTC 192 (deposited in GenBank under the
accession number OL677628) was subjected to RFLP in silico to complete the identification
of the phytoplasmas at the ribosomal subgroup level using the enzymes RsaI and BfaI for
phytoplasmas enclosed in the 16SrV group [20]. The virtual digestion with the RsaI enzyme
showed that the profiles of the strains corresponding to groups 16SrV-A, 16SrV-C, 16SrV-D,
and 16SrV-E were identical to the one of this strain. The digestion with the BfaI enzyme
generated differentiable profiles with the strains of the mentioned subgroups, identical only
to those of the ribosomal subgroup 16SrV-A (Figure 2). The enzymes used for in silico RFLP
of the phytoplasma strain CTC170 (deposited in GenBank under the accession number
OL672243) were KpnI and RsaI [21]. Both digestion profiles show that the Chilean strains
are identical to the strains in the subgroup 16SrXIII-F (Figure 3).

The molecular characterization of the strains from 14 citrus samples indicates that
12 samples were positive for phytoplasmas enclosed in the subgroup 16SrV-A, and two
samples were positive for phytoplasmas enclosed in subgroup 16SrXIII-F. The overall per-
centage of phytoplasma infection in the plants was 5.43%. The citrus samples positive for
16SrV-A phytoplasmas were collected in two orchards, both located in the Metropolitana
Region (Table 2). The symptoms showed by these plants were leaf yellowing undistinguish-
able from those reported as associated with the presence of ‘Ca. Liberibacter’ (Figure 4).
The samples positive for 16SrXIII-F phytoplasmas were collected in two orchards located
in the O’Higgins Region (Table 2), showing (sample CTC134) symptoms of generalized
yellowing of the tree, abortion of fruits, defoliation of shoots, and asynchronous flowering
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compared with non-infected trees. Sample CTC 134 showed threadlike leaves and witches’
broom shoots (Figure 5).
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Figure 2. In silico RFLP profiles of the phytoplasma strains in the 16SrV subgroups. (A) Restriction
profiles generated by the RsaI enzyme. (B) Restriction profiles generated by the BfaI enzyme. CTC
192 is a citrus sample. MW: molecular marker PhiX174 digested with HaeIII. Fragment size (nt)
from top to bottom: 1353, 1078, 872, 603, 310, 281, 271, 234, 194, 118, and 72. Phytoplasmas used for
comparison are: 16SrV-A, elm yellows (EY) ‘Ca. P. ulmi ‘(GenBank accession number: AY197655);
16SrV-B, jujube witches’ broom (JWB-G1) ‘Ca. P. ziziphi ‘(GenBank accession number: AB052876);
16SrV-C, “flavescence dorée” (FD-C) (GenBank accession number: X76560); 16SrV-D, “flavescence
dorée” (FD-D) (GenBank accession number: AJ548787); 16SrV-E, rubus stunt (RuS) ‘Ca. P. rubi
‘(GenBank accession number: AY197648); 16SrV-G, Korean jujube witches’ broom (GenBank accession
number: AB052879).
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Figure 3. In silico RFLP profiles of phytoplasmas in the subgroups of 16SrXIII ribosomal group.
(A) Restriction profiles generated by the KpnI enzyme. (B) Restriction profiles generated by the RsaI
enzyme. CTC 192 citrus sample. MW: molecular marker PhiX174 digested with HaeIII. Fragment size
(nt) from top to bottom: 1353, 1078, 872, 603, 310, 281, 271, 234, 194, 118, and 72. Phytoplasmas used
for comparison: 16SrXIII-A, Mexican periwinkle virescence (MPV) ‘Ca. P. hispanicum’ (GenBank
accession number: AF248960); 16SrXIII-B, strawberry green petal (STRAWB2) (GenBank accession
number: U96616); 16SrXIII-C, Chinaberry yellows (CBY1) (GenBank accession number: AF495882);
16SrXIII-D, Mexican potato purple top (SINPV) (GenBank accession number: FJ914647); 16SrXIII-E,
papaya apical curl necrosis (PACN) (GenBank accession number: EU719111); 16SrXIII-F strawberry
red leaf (GenBank accession number: KJ921641); 16SrXIII-G, Chinaberry yellowing (ChTY) ‘Ca. P.
meliae ‘(GenBank accession number: KU850940); 16SrXIII-H broccoli stunt phytoplasma (GenBank
accession number: JX626329); 16SrXIII-I Mexican periwinkle virescence phytoplasma (GenBank
accession number: KT444664).



Pathogens 2022, 11, 48 5 of 11

Table 2. Detail of citrus samples positive to phytoplasmas.

Sample Species and Variety Region and Locality Phytoplasma Detected
(Ribosomal Subgroup)

CTC 182 Citrus reticulata Murcott Metropolitana (Pomaire) 16SrV-A
CTC 184 Citrus reticulata Murcott Metropolitana (Pomaire) 16SrV-A
CTC 188 Citrus reticulata Murcott Metropolitana (Pomaire) 16SrV-A
CTC 190 Citrus × limon Fino 49 Metropolitana (Pomaire) 16SrV-A
CTC 192 Citrus × sinensis Lane late Metropolitana (Pomaire) 16SrV-A
CTC 193 Citrus × sinensis Lane late Metropolitana (Pomaire) 16SrV-A
CTC 199 Citrus × limon Eureka Metropolitana (Mallarauco) 16SrV-A
CTC 200 Citrus reticulata Murcott Metropolitana (Mallarauco) 16SrV-A
CTC 202 Citrus × sinensis Valencia Metropolitana (Mallarauco) 16SrV-A
CTC 203 Citrus × limon Eureka Metropolitana (Mallarauco) 16SrV-A
CTC 207 Citrus reticulata Murcott Metropolitana (Mallarauco) 16SrV-A
CTC 212 Citrus reticulata Murcott Metropolitana (Mallarauco) 16SrV-A
CTC 134 Citrus reticulata Orri L. B. O’Higgins (Peumo) 16SrXIII-F
CTC 170 Citrus × sinensis Fukumoto L. B. O’Higgins (Pichidegua) 16SrXIII-F
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Figure 5. Symptoms in citrus associated with the 16SrXIII-F phytoplasma presence. (A) CTC 170,
orange plant with generalized yellowing and untimely flowering. (B) CTC 134, mandarin plant with
threadlike leaves and witches’ broom.

3. Discussion

This survey provides results about the monitoring of HLB and phytoplasma presence
in citrus species in Chile. The country maintains the absence of bacterial species and
insect vectors of HLB disease in citrus plants. It is important to note that the Chilean
Agricultural and Livestock Service (SAG) has, since 2011, been carrying out an intense
sampling monitoring to detect these bacteria and their main insect vector, D. citri. In
addition, SAG personnel are constantly developing technical dissemination and training
sessions for producers with the objective of preventing a possible epidemic with timely
detection, avoiding the spread of the disease in Chilean territory. To date, 7809 samples
from all citrus-producing regions in Chile were tested by SAG (personal communication),
including citrus plants used as ornamentals [22]. In this study, highly suspected plants
were sampled, and different detection protocols were applied in different laboratories in
and out of Chile to confirm the results obtained.

Symptoms attributable to HLB have been observed in various citrus orchards in Chile.
However, molecular tests to verify the liberibacters presence were negative. It is possible to
attribute the symptom observed to various factors, such as nutritional deficiencies, insect
attack, presence of soil pathogens, or insufficient general agronomic management. This
work confirms that phytoplasmas are associated with symptoms like those induced by
‘Ca. Liberibacter’ species in citrus, as reported in China, Brazil, Mexico, and the Caribbean
(Cuba, Guadeloupe, and Jamaica), where phytoplasmas were also identified in plants
with HLB symptoms and co-infections between pathogens [14,15,17,23,24]. Moreover,
the only phytoplasma presence was associated with HLB-like symptoms in both Asian
and American countries [23–27]. The samples positive for phytoplasma 16SrV-A in this
study showed leaf symptoms resembling those shown by HLB-infected plants. This
situation has been frequently observed in regions where other phytoplasmas have been
identified as infecting citrus [14,15,17,28]. On the other hand, citrus samples positive for
phytoplasma 16SrXIII-F showed symptoms more commonly associated with the presence
of these pathogens, such as witches’ broom, severe leaf deformation, and flower alterations.
This symptomatology has also been described in citrus plants infected by 16SrII group
phytoplasmas (‘Ca. P. aurantifolia’ and related strains) in Asia and Australia [27,29].

The information provided by this study represents the first report of phytoplasmas in
citrus plants in Chile. Furthermore, this is the first detection of the phytoplasmas 16SrV-A
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and 16SrXIII-F in citrus plants in the world. Phytoplasmas of the ribosomal group 16SrII
have been reported to infect citrus plants in Brazil, China, and Iran [22,30,31]. Further-
more, in Brazil, the phytoplasmas of the ribosomal groups 16SrIII and 16SrIX have been
detected [17,28]. In Mexico and China, a ‘Ca. P. asteris’ strain (16SrI) was reported [14,15].
Specific detections of ribosomal subgroups not widely distributed worldwide include the
16SrIX group in lemon and orange trees in Puerto Rico [32] and a phytoplasma of the
16SrXIV-A subgroup in lemon trees in India [33]. The presence of 16SrV-A phytoplasma
in Chile was previously identified in vineyards of the Metropolitana Region, associated
with reddening and short internodes of the grapevine shoots [34]. Moreover, transmission
tests with the leafhopper Amplicephalus curtulus, widespread in the central zone of Chile,
showed the ability of this insect species to transmit the 16SrV-A phytoplasmas [35]. On
the other hand, the phytoplasma 16SrXIII-F was detected for the first time in Chile in
strawberry orchards of the Region of Valparaíso, associated with symptoms of phyllody
and virescence [36]. Subsequent studies showed that this phytoplasma was present in
all the strawberry production regions in Chile, including the localities where positive
citrus samples have been detected in this survey [21,37]. In addition, this phytoplasma
has been reported in calafate (Berberis microphylla G. Forst.), a shrub of the Berberidaceae
family native to Chilean and Argentinian Patagonia [38,39]. So far, the vector(s) of this
phytoplasma is not known. The 16SrXIII group is widely distributed in the other countries
of South America, affecting various crops such as potato (Solanum tuberosum L.), broccoli
(Brassica oleracea L.), and papaya (Carica papaya L.), among others [40–43].

Evidence shows that citrus phytoplasma infections are sporadic in isolated orchards,
sometimes in remote areas surrounded by spontaneous vegetation. In times with higher-
than-average rainfall during spring and autumn, the growth of spontaneous shrubs and
weeds is favored, thereby increasing insect-feeding in these plants. Insect vectors can,
therefore, sporadically visit crops and transmit phytoplasmas, suggesting that spontaneous
vegetation may also be a reservoir for these phytoplasmas [29,44,45]. This situation has been
evidenced in epidemiological studies associated with grapevine yellows in Chile [46–48].

The presence of viruses and viroids that infect citrus plants in Chile could lead to
confusion among the symptoms. It is essential to consider all these factors in the climate
change scenario. Studies carried out in Chile show that the climatic conditions that are
projected for the future could influence the appearance of diseases of alien origin [49]. The
discovery of phytoplasmas associated with symptoms like those of HLB reinforces the need
to continue monitoring and promoting epidemiological studies on citrus. Preventing these
diseases is everyone’s job, including governments, nurseries, technical advisers, producers,
and researchers. Chile is surrounded by countries in which HLB and its insect vector D.
citri are present. Fortunately, the country has climatic and geographical barriers that have
contributed positively to the present local phytosanitary situation. Chile has great potential
as a citrus-growing country and being an HLB-free territory is a commercial advantage
that should not be lost.

4. Materials and Methods

From the main citrus-producing areas of Chile, 258 samples were collected in two areas
during two periods. From December 2017 to April 2018, the regions of Tarapacá, Coquimbo,
and Valparaíso were surveyed. The second sampling period was carried out between
November 2018 to April 2019 in the Regions of Libertador Bernardo O’Higgins, Maule, and
Metropolitana. The number of samples was established based on the number of hectares
planted per region; one sample was collected for every 100 ha (Table 3). The samples were
collected mainly from citrus trees that showed symptoms referable to HLB, like yellow
shoots, leaves with asymmetric chlorotic spots, and thick and leathery texture [50]. In
addition, trees with symptoms associated with phytoplasma presence, such as witches’
broom, flower abnormalities, and general decline, were sampled [15,27,29]. Samples that
presented symptoms of water deficiency, nutritional deficiencies, nematode, and insect
attacks, and phytotoxicity were not collected. In orchards where no symptoms attributable



Pathogens 2022, 11, 48 8 of 11

to these pathogens were observed, asymptomatic plants were randomly sampled. Each
sample corresponds to one tree, from which four 15 cm long shoots with at least 5 leaves
were collected from different sides of the tree. The geographic coordinates and the origin of
the collected samples were recorded. The samples were transported in thermoregulated
containers and stored at 4 ◦C before nucleic acid extraction.

Table 3. Number of citrus plants collected in the main producing regions of Chile.

Region Number of Samples

Tarapacá 10
Coquimbo 60
Valparaíso 55

Metropolitana 62
Libertador Bernardo O’Higgins 49

Maule 22

DNA was extracted from 1 g of midribs using the CTAB method [48]. The nucleic acids
were dissolved in Tris-EDTA buffer pH 8.0 and kept at 4 ◦C. All samples were analyzed
by PCR and nested-PCR. For the detection of ‘Ca. Liberibacter’ species five amplification
protocols were used: three universal 16S and 23S gene PCRs [51,52]; a PCR-duplex, for
the simultaneous and specific detection of the three HLB-associated ‘Ca. Liberibacter’
species [5,53], and a universal nested PCR for the three species [54,55]. Phytoplasma
detection was performed by nested-PCR of the 16S rRNA gene [18] and the gene coding the
ribosomal Ssu12p gene [19]. The PCR products obtained for both genes were purified from
the agarose gel using the EZNA® Gel Extraction Kit (Omega Bio-tek, Norcross, GA, USA).
The DNA fragments were ligated into the cloning vector pGEM-T Easy, following the
manufacturer’s instructions (Promega Inc., Fitchburg, WI, USA). Putative recombinant
clones were analyzed by colony PCR and selected fragments sequenced in both directions
at Psomagen Inc. (Rockville, MD, USA). The sequences were aligned with the GenBank
database using the BLAST engine for local alignment (Blast version N 2.2.12) and compared
with those of phytoplasmas published in the National Center for Biotechnology Information
(NCBI) available on the internet (http://www.ncbi.nlm.nih.gov/blast/, accessed on 15
November 2021) [56]. The restriction fragment length polymorphism (RFLP) analysis was
performed in silico with the appropriate restriction enzymes according to the ribosomal
groups obtained. The in silico RFLPs were generated in the iPhyClassifier online tool
(https://plantpathology.ba.ars.usda.gov/cgi-bin/resource/iphyclassifier.cgi, accessed on
15 November 2021) [57].

5. Conclusions

The results presented in this study indicate that Chile is free from the “huanglongbing”
associated bacteria, maintaining its status of absence of this quarantine pathogen. In
the citrus industry of Chile, government services and researchers maintain a constant
interaction to prevent the entry of these pathogens and their insect vectors. In some
plants that presented symptoms like those of HLB, phytoplasmas enclosed in 16SrV-A and
16SrXIII-F subgroups were detected. This is the first report of phytoplasmas in citrus in
Chile; the identified phytoplasmas were not described in other citrus-growing regions in
the world.
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