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Abstract
The massive and autonomous structural health monitoring (SHM) of bridges is a problem that is of growing interest due to its 
importance and topicality. However, a considerable amount of data must be elaborated and managed in such an application. 
This paper proposes a set of machine learning (ML) tools to detect anomalies in a bridge from vibrational measurements 
using the minimum amount of data. The proposed framework starts from the fundamental frequencies extracted through 
operational modal analysis (OMA) and clustering, followed by a density-based time-domain tracking algorithm. The funda-
mental frequencies extracted are then fed to one-class classification (OCC) algorithms that perform anomaly detection. Then, 
to reduce the amount of data, we analyze the effect of the number of sensors, the number of bits per sample, the observation 
time, and the measurement noise on damage detection performance. As a case study, the Z-24 bridge is considered because 
of the extensive database of accelerometric measurements in both standard and damaged conditions. A comparison of OCC 
algorithms, such as principal component analysis (PCA), kernel principal component analysis (KPCA), Gaussian mixture 
model (GMM) and one-class classifier neural network (OCCNN)2 is performed, and their robustness to data shrinking is 
evaluated. In many cases, OCCNN2 increases the performance with respect to classical anomaly detection techniques in 
terms of accuracy.

Keywords  Anomaly detection · Dimensionality reduction · Modal analysis · Neural network · Structural health monitoring · 
Vibration measurement · Wireless network · Big data

1  Introduction

Nowadays, structural health monitoring (SHM) represents 
a fundamental research field in a society where historical 
and modern infrastructures must coexist harmoniously. To 
preserve the integrity of thousands of structures, contain 
maintenance costs, and increase safety, early detection of 
anomalies before severe damages occur is a cornerstone of 
civil engineering [1].

As far as bridges are concerned, some statistics highlight 
the relevance of the problem. For example, currently, in 
Italy, there are almost 2000 bridges that require continuous 
and accurate monitoring; in France, 4000 bridges need to 
be restored, and 840 are considered in critical conditions; in 
Germany, 800 bridges are considered critic; in the United 
States of America, among the 600.000 bridges, according 
to a conservative estimate, at least 9% of them is considered 
deficient [2]. In this context, SHM offers several solutions 
for anomaly detection [3–5].

In literature, numerous damage detection and localiza-
tion strategies have been proposed and tested [6, 7]. Part 
of them focuses on extracting the most significant damage-
sensitive features of the structure under analysis. However, 
data management requires further investigation to determine 
how the sensing parameters impact on the anomaly detec-
tors performance. Generally, damage detection techniques 
can be divided into model-free and model-based: in the for-
mer, the only information available is the one gathered by 
measurements (e.g., acceleration, temperature, position) [8], 
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while in the latter, information comes from measurements 
and prior knowledge of the model of the structure [9, 10]. 
Model-based approaches tend to outperform model-free 
ones because of the prior knowledge of the structure; how-
ever, the solutions for a specific case are not easily general-
izable due to the tight coupling with the model. The effect 
of environmental parameters, such as temperature, wind, 
and humidity, [11–14], and the influence of traffic loading 
[15], are usually taken into account to describe the structures 
behaviour exhaustively. In this work, environmental and traf-
fic dependencies have been extracted directly by the anomaly 
detectors from the data. The constraint on the knowledge 
about traffic and environmental parameters has been relaxed 
thanks to the analysis of the long-term continuous monitor-
ing measurements, that explore all the possible operational 
configurations of the structure. Since the monitoring proce-
dure could be complex and requires a specific fine-tuning 
of several parameters that depend on the structure under 
analysis, the adoption of machine learning (ML) techniques 
to detect changes in the damage sensitive features received 
increasing interest recently [16–20]. In particular, in [21] a 
convolutional neural network (NN) is adopted to perform 
automatic features extraction and damage detection simulta-
neously, reducing the computational cost of the procedure. A 
multi-layer perceptron NN is used to evaluate the effective-
ness of a previous feature extraction procedure in [22], and 
a NN is adopted to predict bridge accelerations in order to 
extract damage sensitive features in [23]. These approaches 
are typically tested on scaled or simulated structures, not 
considering the amount of data produced to be managed 
in a real-world monitoring scenario. Sensors displacement 
represents a widely investigated topic in SHM. Usually, the 
proposed strategies start from a model of the structure and 
place the sensors to minimize a cost function [24–26]. In 
this work, we propose a different paradigm. Starting from an 
oversized number of sensors, we first evaluate the effect of 
each accelerometer on the overall data set of measurements, 
than we select the subset of sensors necessary to preserve 
high performance on the anomaly detection task. Moreo-
ver, data management in SHM is still an open problem, 
that can be addressed at sensors network level [27, 28] or at 
structures network level [29, 30]. In this work we provide 
fundamental guidelines to deploy the monitoring system (at 
sensors network level and structures network level), tak-
ing into account the constraints introduced by the available 
resources.

The proposed framework starts with the fundamental 
frequencies extraction from accelerometric measurements 
through stochastic subspace identification (SSI), cleaning, 
and clustering [9, 16, 31–36] and then performs modal 
frequencies tracking in the time domain [19]. The first 
two fundamental frequencies are considered a feature 
space to train one-class classifiers to perform anomaly 

detection; intended as any non-negligible deterioration of 
the structure that affects its standard behaviour. In this 
work, we investigate the impact of data shrinking strat-
egies on damage detection in bridges. In particular, we 
derive the performance of ML-based anomaly detection 
techniques varying the number of sensors, samples, and 
resolution bits to minimize the data storage/transmission 
requirements, in view of large-scale bridge monitoring.

This goal is crucial for several reasons: (i) If damage 
detection is performed locally on the bridge, reducing the 
size of the data set can contain energy consumption for 
elaboration and allow the use of low-cost computational 
units. (ii) If data are processed remotely and a battery-
powered wireless network enables the connection with the 
remote server, reducing the amount of data can increase 
the network lifetime. Moreover, several internet of things 
(IoT) solutions have limited throughput, so reducing the 
volume of data collected may pave the way for the use of 
IoT networks in bridge monitoring. (iii) Continuous moni-
toring over the years generates a huge amount of data. 
Therefore, to contain the database size, it is recommended 
to use the minimum amount of information necessary.

To summarize, the main contributions are the following:

–	 The performance of several ML algorithms for anomaly 
detection, such as principal component analysis (PCA), 
kernel principal component analysis (KPCA), Gaussian 
mixture model (GMM), and one-class classifier neural 
network (OCCNN)2 are compared in terms of accuracy, 
precision, recall, and F1 score.

–	 The effect of the number of sensors on algorithms’ per-
formance is investigated.

–	 The impact of the number of samples and the resolution 
bits (bits per sample) on the classification accuracy is 
quantified.

–	 To account for low-cost sensors in a typical large-scale 
monitoring, the effect of measurement noise power on 
damage detection is investigated [37].

–	 The combined effects of the number of sensors, num-
ber of samples, and resolution bits are analyzed to find 
operational limits that ensure a predefined performance 
of the classification task.

The performance of the proposed solution is investigated 
on a real structure data set using the accelerometric data 
available for the Z-24 bridge [38, 39].

Throughout this paper, capital boldface letters denote 
matrices and tensors, lowercase bold letters denote vectors, 
(⋅)T stands for transposition, (⋅)+ indicates the Moore–Pen-
rose pseudoinverse operator, || ⋅ || is the �2-norm of a 
vector, ℜ{⋅} and ℑ{⋅} are the real and imaginary parts 
of a complex number, respectively, �{⋅} is the variance 
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operator, and 1{a, b} is the indicator function equal to 1 
when a = b , and zero otherwise.

This paper is organized as follows. In Sect. 2, a brief over-
view of the acquisition system, the accelerometers setup, 
and the monitoring scenario is presented. The fundamen-
tal frequencies extraction technique adopted is described 
in Sect. 3. A survey of anomaly detection techniques is 
reported in Sect. 4. The volume of data generated by the 
acquisition system and some possible strategies to reduce 
it are presented in Sect. 5. Numerical results are given in 
Sect. 6. Finally, conclusions are drawn in Sect. 7.

2 � System configuration

The Z-24 bridge was located in the Switzerland canton Bern. 
The bridge was a part of the road connection between Kop-
pigen and Utzenstorf, overpassing the A1 highway between 
Bern and Zurich. It was a classical post-tensioned concrete 
two-cell box girder bridge with a main span of 30m and two 
side spans of 14m . The bridge was built as a freestanding 
frame, with the approaches backfilled later. Both abutments 
consisted of triple concrete columns connected with con-
crete hinges to the girder. Both intermediate supports were 
concrete piers clamped into the girder. An extension of the 
bridge girder at the approaches provided a sliding slab. All 
supports were rotated with respect to the longitudinal axis 
that yielded a skew bridge. The bridge was demolished at the 
end of 1998 [38]. During the year before its demolition, the 
bridge was subjected to long-term continuous monitoring 
to quantify the bridge dynamics environmental variability. 
Moreover, progressive damage tests took place over a month, 
shortly before the complete demolition of the bridge, alter-
nated with short-term monitoring tests while the continu-
ous monitoring system was still running. The tests proved 
experimentally that realistic damage has a measurable influ-
ence on bridge dynamics.

2.1 � Data collection and pre‑processing

The accelerometer’s position and their measurement axis 
are shown in Fig. 1. In this work, we considered l = 8 accel-
erometers, identified as 03, 05, 06, 07, 10, 12, 14, and 16, 
which are present in both long-term continuous monitoring 
phase and in the progressive damage one.1 The accelerom-
eter orientation is highlighted in Fig. 1 with different colors, 
red, green, and blue, staying respectively for transversal, ver-
tical, and longitudinal orientation. Every hour Ns = 65, 536 
samples are acquired from each sensor with sampling 

frequency fsamp = 100Hz which corresponds to an acquisi-
tion time Ta = 655.36 s . Each accelerometer has a built-in 
antialiasing filter to avoid aliasing during the acquisition. 
Since the measurements are not always available, there are 
Na = 4107 acquisitions collected in a period of 44 weeks.

The block diagram depicted in Fig.  2 represents the 
sequence of tasks performed for the fully automatic anomaly 
detection approach presented in this work. Some pre-process-
ing steps have been applied to the data to reduce disturbs, the 
computational cost, and the memory occupation of the subse-
quent elaborations. This could be particularly useful when the 
computational resources are limited, and in wireless networks, 
when the amount of data to be stored and transmitted represent 
an important constraint. First, a decimation by a factor of 2 is 
applied to each acquisition; hence the sampling frequency is 
scaled to fsamp = 50Hz . Such sampling frequency is consid-
ered sufficient because the Z-24 fundamental frequencies fall 
in the [2.5, 20]Hz frequency range [38]. After decimation, 
data are processed with a bandpass finite impulse response 
(FIR) filter of order 30 with band [2.5, 20]Hz , to remove out-
of-band disturbances. At the end of the decimation step, the 
amount of samples for each acquisition Ndec is already halved 

Fig. 1   ata acquisition setup along the Z-24 bridge: the selected accel-
erometers, their positions, and the measured acceleration direction 
[40]

Fig. 2   Block diagram for signal acquisition, processing, feature 
extraction, tracking, and anomaly detection

1  Data collected by some accelerometers that experienced failures 
during the long-term monitoring have been removed in our analysis.
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( Ndec = Ns∕2 = 32, 768 ) and that represent a first important 
step in the data management process.

To keep the notation compact, from now on we consider 
the data organized in a tensor D of dimensions Na × l × Ndec.

3 � Fundamental frequencies extraction

In this section, we approach the problem of extracting damage-
sensitive features from the accelerometric measurements of the 
structure. Among a wide set of algorithms, we select the SSI, a 
data-driven strategy able to provide damage-sensitive features 
without a priori information about the structure [9]. After this 
procedure, a mode selection phase is provided to distinguish 
physical modes from spurious ones. Four different widely 
known metrics are used to accomplish this task that will be 
presented in the following [32, 34, 35, 41]. Finally, K-means 
algorithm is applied to cluster the data [16, 31] followed by a 
tracking algorithm performed onto the first two fundamental 
frequencies to filter outliers [19].

3.1 � Stochastic subspace identification

SSI requires the selection of a model order n ∈ ℕ and a time-
lag i ≥ 1 . The following constraint must be ensured to correctly 
apply the algorithm, l ⋅ i ≥ n [9]. In this application we con-
sider the model order n unknown, so it is varied in the range 
n ∈ [2, 160] (with step 2), while the time-lag is i = 60 [9].

First of all, we define the block Toeplitz matrix for a given 
time-lag i, shift s, and acquisition a

of dimensions li × li where

is a correlation matrix of dimension l × l , and matrix �(a,b∶c,∶) 
is extracted from the data tensor D selecting a particular 
acquisition a. We drop index a to simplify the notation; for 
this reason, all the following tasks will be repeated for each 
acquisition. In order to factorize the block Toeplitz matrix 
(1) with s = 1 , we apply the singular values decomposition 
(SVD) as follows

where �(n) is an li × n matrix that contains the left singular 
vectors arranged in columns, �(n) is an n × li matrix that 
contains the right singular vectors arranged in rows, and � 
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is an n × n diagonal matrix that contains the singular values 
on its diagonal sorted in descending order. We also drop the 
index n so that the next steps will be applied for each model 
order. Selecting the correct number of singular values from 
the SVD, the matrix �1|i can be split in two parts

�i = [� ��…��i−1]T and �i = [�i−1�…�� �] repre-
sent, respectively, the observability matrix and the reversed 
controllability matrix. In (4) the matrix � is set equal to 
the identity matrix � , that is because it plays the role of a 
similarity transformation applied to the state-space model. 
The matrices � , � , and � represent the state matrix, the 
output influence matrix, and the next state-output covari-
ance matrix, respectively. Matrices � and � can be easily 
extracted from the matrices �i and �i , consequently � can 
be calculated by (1) as � = �+

i
�2|i+1�

+
i
 . Applying now the 

eigenvalues decomposition to � we get

where � is an orthonormal matrix that contains the eigen-
vectors arranged in columns, and � = diag(�̃1,… , �̃n) is 
an n × n diagonal matrix that contains the n eigenvalues of 
the state matrix. Reintroducing now the previously dropped 
indices, we can estimate the continuous-time damage sensi-
tive parameters of the pth mode as follows:

–	 eigenvalues �(a,n)
p

= fs ln(�̃
(a,n)
p

);
–	 natural frequencies �(a,n)

p
= |�(a,n)

p
|∕(2�);

–	 dumping ratios �(a,n)
p

= −ℜ{�(a,n)
p

}∕|�(a,n)
p

|;
–	 mode shapes �(a,n)

p
= �(a,n)� (a,n)

p
;

where �(a,n)
p

 is a l × 1 vector, and � (a,n)
p

 is the pth column 
vector of �(a,n) defined in (5). Figure 3a reports the stabi-
lization diagram obtained extracting natural frequencies 
through the described procedure for the first acquisition 
( a = 1 ) varying the model order n.

3.2 � Mode selection

The SSI algorithm generates a broad set of modes; some 
of these are real, others are spurious, and must be ignored. 
In literature, several approaches are present to accomplish 
this task [32]. In this work, we use four metrics to evalu-
ate if a mode is real or spurious: modal assurance crite-
rion (MAC), mean phase deviation (MPD), dumping ratio 
check, and complex conjugate poles check. In the follow-
ing, we briefly describe each metric.

MAC. It is a dimensionless squared correlation coef-
ficient between mode shapes, defined as [41]

(4)�1|i = �i�i with �i = ��1∕2� and �i = �−1�1∕2�T

(5)� = ���T
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with values between 0 and 1. When MAC is greater than 0.9, 
the mode is considered physical; otherwise, it is discarded. 
A metric based on MAC can also be defined as follows [39]

where the first term measures the distance between the pth 
and qth eigenvalues. Using (7) a mode can be considered 
physical when dm(a, n, j, p, q) < 0.1.

MPD. It measures the deviation of a mode shape com-
ponents from the mean phase (MP) of all its components. 
Usually to evaluate the MP the SVD is adopted [39]

where � is l × 2 , � is 2 × 2 , and � is 2 × 2 . The MPD can, 
therefore, be evaluated as follows

When the ratio MPD(�(a,n)
p

)∕(𝜋∕2) > 0.75 a mode is consid-
ered spurious and it is neglected, otherwise it is considered 
as physical one.

Damping ratio and complex conjugate poles. In an 
actual structure, the dumping ratio evaluated for each mode 
must be positive and lower than 0.2; for this reason, only 
modes with 0 < 𝛿(a,n)

p
< 0.2 are considered. Furthermore, 

if ℜ
{
𝜆(a,n)
p

}
> 0 the mode represent an unstable structure 
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In Fig. 3b, the stabilization diagram after mode selection 
is shown, from now on the remaining modes are represented 
with 𝜇̄(a,n)

p
.

3.3 � Data partitioning for damage detection

At the end of the mode selection procedure, a phase that per-
forms clustering and tracking is applied to extract the temporal 
profile of the first two fundamental frequencies �s =

{
f (a)
s

}Na

a=1
 

with s ∈ {1, 2} [16, 19, 31, 42]. The result is stored in the fol-
lowing matrix (see also Figs. 3b, 4)

As reference parameters of the structure under normal 
conditions, the average values of the two fundamental 
frequencies evaluated by the first 100 measurements are 
�̄1 = 4.00Hz and �̄2 = 5.12Hz . At this point, the fundamental 

� =

[
�1
�2

]T
=

[
f
(1)

1
f
(2)

1
… f

(Na)

1

f
(1)

2
f
(2)

2
… f

(Na)

2

]T

.

Fig. 3   Example of stabilization 
diagram for the first hour moni-
toring: a through SSI, b after 
mode selection and clustering. 
Vertical blue lines represent the 
estimated frequencies after the 
clustering procedure

Fig. 4   First two natural frequencies estimation after the density-based 
tracking algorithm. Blue and green backgrounds highlight the acqui-
sitions made during the bridge’s normal condition, used respectively 
as training and test sets, while the red background stands for damaged 
condition acquisitions used in the test phase. Red vertical dashed line 
indicates the instant of damaged detection performed by OCCNN2 , 
that corresponds to acquisition 3283, 29  h after the introduction of 
the actual damage
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frequencies extracted must be divided into training, test in 
standard condition, and test in damaged conditions sets. As 
described in [38], the damage is introduced at the acqui-
sition a = Nd = 3253 , corresponding to the installation of 
a lowering system. Therefore, from now on, the matrix 
�̄ = �1∶2Nd−Na−1,∶

 contains the training points (blue back-
ground in Fig. 4b), �̄ = �2Nd−Na∶Nd−1,∶

 contains the test points 
in standard condition (green background in Fig. 4b), and 
�̄ = �Nd∶Na,∶

 contains the test points in damaged condition 
(red background in Fig. 4b). The three subsets of acquisi-
tions that correspond to training, standard test, and dam-
aged test points are, respectively, Ix = {1, ..., 2Nd − Na − 1} , 
Iy = {2Nd − Na, ...,Nd − 1} , and Iu = {Nd, ...,Na}.

Let us define the offset �̂ as the column vector containing 
the row-wise mean of the matrix �̄ , and the rescaling factor 
xm = maxa,s |x̄a,s − x̂a| . Before proceeding with the anomaly 
detection, the matrices �̄ , �̄ and �̄ are centered and nor-
malized subtracting the offset �̂ row-wise and dividing each 
entry by the rescaling factor xm . The resulting data matrices 
are � , � and � , of size Nx × D , Ny × D , and Nu × D , respec-
tively, with D = 2 features. The result of this procedure is 
depicted on the left of Fig. 5.

4 � Survey of anomaly detection techniques

In this section, we briefly review PCA, KPCA, GMM 
which are often adopted for one-class classification (OCC) 
and introduce OCCNN2 , a neural network based approach 
recently presented [43–47].

4.1 � Principal component analysis

This technique remaps the training data from the feature 
space ℝD in a subspace ℝP (where P < D is the number of 
components selected) that minimizes the Euclidean distance 
between the data in the feature space and their projection 
into the chosen subspace [48]. To find the best subspace to 

project the training data, the evaluation of the D × D sample 
covariance matrix

is needed. The sample covariance matrix �x can be fac-
torized by eigenvalue decomposition as �x = �x�x�x

T , 
where �x is an orthonormal matrix whose columns are the 
eigenvectors, while �x is a diagonal matrix that contains 
the D eigenvalues. The eigenvalues magnitude measures the 
importance of the direction pointed by the relative eigenvec-
tor. In our setting, we select the largest component, hence 
P = 1 ; therefore, the best linear subspace of dimension one 
is �P , which coincides with the eigenvector related to the 
largest eigenvalue of �x . The projection into the subspace 
is obtained by multiplying the data by �P , i.e., �P = ��P , 
�P = ��P , and �P = ��P . The error is evaluated reconstruct-
ing the data in the original feature space, i.e., �̃ = �P�

T
P
 , 

�̃ = �P�
T
P
 , and �̃ = �P�

T
P
 . After the reconstruction, it is pos-

sible to calculate the error as the Euclidean distance between 
the original and reconstructed data.

Unfortunately, PCA can be ineffective when the number 
of frequencies considered is low. Moreover, the variability of 
the frequencies estimated due to environmental effects can 
affect its performance [49]. This is because PCA finds only 
linear boundaries in the original feature space; therefore, it 
is recommended when the dimensionality of the problem 
is high and classes can be well separated via hyperplanes.

4.2 � Kernel principal component analysis

Due to the inability of PCA of finding non-linear bounda-
ries, here we propose KPCA as an alternative [50]. KPCA 
first maps the data with a non-linear function, named kernel, 
then applies the standard PCA to find a linear boundary in the 
new feature space. The kernel function, applied to the linear 
boundary, makes it non-linear in the original feature space. A 
delicate point in the development of KPCA algorithm is the 

(10)�x =
�T�

Nx − 1

Fig. 5   Examples of feature 
transformation due to the effect 
of a low number of sensors, a 
low number of bits, and a low 
number of samples with respect 
to the standard measurement 
condition reported on the left
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kernel function choice. In [51], where the data distribution is 
unknown, the radial basis function (RBF) kernel is proposed 
as the right candidate. Given a generic point � that correspond 
to a 1 × D vector, we can apply the RBF as

where � is a kernel parameter (which controls the width of 
the Gaussian function) that must be set properly, �n is the nth 
row of � , and K(�)

n
 is the nth component of the point � in the 

kernel space. Overall, the vector � is mapped in the vector 
�(�) = [K

(�)

1
,K

(�)

2
,… ,K

(�)

Nx
] . Remapping all the data in the 

kernel space, we obtain the subsequent matrices �x of size 
Nx × Nx for training, �y of size Ny × Nx for validation, and 
�u of size Nu × Nx for test, respectively.

Applying now the PCA to the new data set, it is possible to 
find non-linear boundaries in the original feature space.

4.3 � Gaussian mixture model

Another well-known data analysis tool, named GMM, has 
been used to solve OCC problems in literature [52]. This 
approach assumes that data can be represented by a mixture 
of M multivariate Gaussian distributions. The outputs of the 
algorithm are the covariance matrices, �m , and the mean val-
ues, �m , of the Gaussian functions, with m = 1, 2,… ,M . The 
GMM algorithm finds the set of parameters �m and �m of a 
Gaussian mixture that better fit the data distribution through 
iterative algorithms, such as stochastic gradient descent or 
Newton–Raphson [16, 17].

4.4 � One‑class classifier neural network2

This algorithm exploits the flexibility of the standard feed-
forward NN in an anomaly detection problem. It is based on 
the OCCNN method [45] that generates artificially anomalous 
points with a spatial density proportional to the one inferred by 
the Pollard’s estimator [53]. Such anomalous points will then 
be used during training to estimate the class boundaries. This 
procedure is repeated several times to refine the edges step-by-
step. Unfortunately, Pollard’s estimator may exhibit accuracy 
degradation when the data set points distribution deviates from 
Poisson. Based on these considerations, OCCNN2 shares the 
same strategy of OCCNN, but the first boundary estimation 
is made by an autoassociative neural network (ANN) that is 
less sensitive to deviations from the Poisson distribution [19].

5 � Data management

This section analyzes the amount of data that must be 
stored or transmitted to perform anomaly detection and 
proposes some strategies to reduce such volume of data. 

(11)K(�)
n

= e−�||�−�n||2 , with n = 1, 2,… ,Nx

Considering a network of l = 8 synchronized sensors 
interconnected to a coordinator that stores the accelero-
metric measurements, it is easy to observe that if each 
sensor collects Ns = 65, 536 samples each acquisition with 
Nb = 16 resolution bits, the total amount of data stored 
by the coordinator is Mt = NsNbNal ≃ 32Gbit = 4GB 
for Na = 4107 acquisitions. This considerable amount 
of data has been stored in an year of non continuous 
measurements, where the actual acquisition time is 
Tt = TaNa ≃ 44, 860m ≃ 448 h . The volume of data in a 
continuous measurement system in a year would be around 
47GB . To reduce the amount of data the first step is deci-
mation. Considering that in this application the fundamen-
tal frequencies of the bridge fall in the interval [0, 20]Hz , 
to comply with the sampling theorem with a guard band 
of 5Hz a sampling frequency fsamp = 50Hz is enough to 
capture the bridge oscillations. Since the measurements 
are acquired by accelerometers with fsamp = 100Hz , a 
decimation by factor 2 can be adopted so that data volume 
is halved: Md = Mt∕2 ≃ 2GB . Starting from the decimated 
waveforms, three parameters can be tuned to trade-off 
between the volume of data and the performance of the 
OCC algorithms:

–	 The number of sensors l; this also reduces the network 
costs.

–	 The number of samples Ns or equivalently the acquisition 
time Ta ; this has benefits also on the energy consumption 
and network lifetime in battery-powered sensors [54, 55].

–	 The number of bits Nb ; this also reduces the accelerom-
eter cost.

The solutions described before and how they influence the 
anomaly detectors’ accuracy will be presented and widely 
discussed in the next section. In Fig. 5 some working points 
of the system are reported and compared with the reference 
working condition after decimation ( l = 8 , Nd = 32, 768 , 
Nb = 16 ). To clarify the effect of the proposed solutions 
on the amount of data that must be stored to monitor the 
structure effectively, in Table 1 some acceptable working 
conditions are reported.

6 � Numerical results

In this section, the proposed algorithms are applied to the 
Z-24 bridge data set to detect anomalies based on the fun-
damental frequencies estimation [9, 56, 57], and a reduced 
number of features. The performance is evaluated through 
accuracy, precision, recall, and F 1 score, considering only 
the test set:
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where TP , TN , FP , and FN , represent respectively true posi-
tive, true negative, false positive, and false negative pre-
dictions. Such indicators are obtained comparing the actual 
labels [� (1),… , � (Na)] , with those predicted by the OCC 
[�̂ (1),… , �̂ (Na)] . In this application, labels are 0 for nor-
mal condition and 1 for anomaly condition, respectively. 
Therefore

with FN = Nu − TN , and FP = Ny − TP.
The feature space has dimension D = 2 , and the three 

data set used for training, test in normal condition, and dam-
aged condition, have cardinality Nx = 2399 , Ny = 854 , and 
Nu = 854 , respectively. For PCA, the number of components 
selected is P = 1 . For KPCA, after several tests the values 
of P and � that ensure the minimum reconstruction error are 
P = 3 and � = 8 . For GMM the order of the model that maxi-
mize performance is M = 10 . Regarding the OCCNN2 the 
first step boundary estimation is made by a fully connected 
ANN with 7 layers of, respectively, 50, 20, 10, 1, 10, 20 
and 50 neurons, with ReLU activation functions, and a fully 
connected NN with 2 hidden layers with L = 50 neurons 
each one for the second step. All the NNs are trained for a 
number of epochs Ne = 5000 with a learning rate � = 0.05 . 
The error adopted to evaluate the displacement of the points 

Accuracy =
TP + TN

TP + TN + FP + FN

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F1 score = 2 ⋅
Recall ⋅ Precision

Recall + Precision

TP =
∑
a∈Iu

1

{
� (a), �̂ (a)

}
and TN =

∑
a∈Iy

1

{
� (a), �̂ (a)

}

in the feature space from the original position due to the dif-
ferent configurations is the root mean square error (RMSE), 
defined as

where Ns is the number of features ( Ns = 2 ), f (n)
s

 is the sth 
feature of the nth acquisition in the initial configuration, and 
f̄ (n)
s

 is the relative data point in the modified configuration.

6.1 � Performance comparison

The performance comparison of the algorithms is reported 
in Fig. 6. As we can see, considering the F 1 score and accu-
racy, OCCNN2 outperforms the other detectors. The confu-
sion matrices for the four OCCs are reported in Table 2. It 
is important to notice that FP is always small, that is because 
the threshold is set on the false alarm rate (selected ensuring 
false alarm rate equal to 0.01 on the training set).

6.2 � Sensors’ relevance

Before evaluating the effect of reducing the number of sen-
sors, assessing each one’s importance in the modal frequen-
cies estimation is informative. It is widely known in the 
literature that the sensor position strongly affects the mode 
estimation [9]. To verify the sensors’ relevance, we removed 
sensors one by one. We then evaluated the RMSE between 
the feature space points with respect to the standard condi-
tion. As can be seen in Fig. 7, sensor S10 generates the most 
significant error in the fundamental frequencies extraction 
when removed. With this approach it is possible to sort the 
sensors from the most relevant to the less one as follows: 
S10, S03, S16, S14, S05, S12, S06, S07 . To evaluate the effect of 

(12)Ef =
1√
NaNs

���� Ns�
s=1

Na�
n=1

(f
(n)
s − f̄

(n)
s )2

Table 1   Memory occupation varying decimation, number of sensors, 
number of samples, and number of bits

Parameters

N
s
= 65, 536 N

b
= 16 N

a
= 4107 l = 8

Overall memory occupation
Mt = NsNbNal ≃ 32Gbit = 4GB

Memory occupation with decimation
Md = Mt∕2 ≃ 2GB

Memory occupation with reduced sensors
Msen = NsNbNa3 ≃ 0.8GB

Memory occupation with reduced samples
Msam = 600NbNal ≃ 0.04GB

Memory occupation with reduced number of bits
Mbit = Ns8Nal ≃ 1GB

Fig. 6   Comparison of the anomaly detection algorithms in terms of 
F 
1
 score, recall, precision, and accuracy
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the number of sensors, they are removed in the same order 
indicated above. This way, we always consider the worst 
possible condition (i.e., the set of accelerometers that results 
in worse performance) for a given number of sensors.

6.3 � Number of sensors

Once the sensor relevance is identified, we can analyze the 
performance by varying the number of sensors used for SSI. 
As can be noticed in Fig. 8, the accuracy remains almost the 
same as long as the number of sensors is greater than two. In 
particular, the RMSE shows a significant increase when the 
number of sensors drops from 3 to 2. Thus we can deduce 
that the minimum number of sensors that must be used to 
monitor the Z-24 bridge is equal to 3. In this configuration 
it is easy to notice that the amount of data stored is reduced 
to Msen = NsNbNa3 ≃ 0.8GB.

6.4 � Number of samples

To evaluate the effect of the acquisition time on the anomaly 
detection performance, we progressively reduced the num-
ber of samples used to extract the fundamental frequencies. 
As we can see in Fig. 9 the performance of the detectors 
remains almost constant as long as the number of samples 
Ns is greater than 600; that corresponds to an acquisition 
time of 12 s with a sampling frequency fsamp = 50Hz . By 
drastically reducing the acquisition time, a significant reduc-
tion in data occupation is obtained, which in this configura-
tion is Msam = 600NbNal ≃ 0.04GB , with no performance 
degradation.

6.5 � Number of bits

The number of bits per sample used to encode waveforms 
extracted from accelerometers can also be dropped to 
reduce the volume of data stored and the cost of the sen-
sor. Such an impact is reported in Fig. 10. The RMSE 
remains limited as far as the number of bits per sample 
is greater than 6; likewise, as expected, the accuracy of 
OCCs remains high as long as the error is small. Several 
low-cost accelerometers are available on the market with 
a resolution Nb = 8 , and these results show that this type 
of sensor could accomplish the anomaly detection task. 
In this case, the data occupation is Mbit = 8NsNal ≃ 1GB . 
This relevant reduction of the number of resolution bits 
is possible because of the anomaly detector capability 
to cope with the error introduced in the modal frequen-
cies estimation (depicted in red in Fig.  10) caused by 
quantization.

Table 2   Confusion matrices of the four anomaly detectors analyzed

True True

OCCNN2 KPCA
Predict TP = 803 FP = 16 TP = 786 FP = 8

FN = 51 TN = 838 FN = 68 TN = 846

GMM PCA
Predict TP = 794 FP = 12 TP = 248 FP = 13

FN = 60 TN = 842 FN = 606 TN = 841

S03 S05 S06 S07 S10 S12 S14 S16

9.4
8.4

6.7

3.9

9.7

8.2
8.7 8.9

E
f
[H

z]

·10−3

Fig. 7   RMSE caused by removing the selected sensor

Fig. 8   RMSE and accuracy varying the number of sensors

Fig. 9   RMSE and accuracy varying the number of samples



1422	 Journal of Civil Structural Health Monitoring (2022) 12:1413–1425

123

6.6 � Intrinsic noise

A significant effect that should be investigated when design-
ing a sensor network with low-cost devices is the intrinsic 
noise of the sensors. This kind of noise is strictly related 
to the type of technology adopted. For example, for micro-
electromechanical systems (MEMS) accelerometers, the 
intrinsic noise can be modeled as a combination of ther-
mal noise, flicker noise, and shot noise [58, 59]; for micro-
cantilevers at high frequencies, dominant noise sources are 
adsorption–desorption processes, temperature fluctuations, 
and Johnson noise, whereas the adsorption–desorption noise 
dominates at low frequencies [60].

To maintain generality about the type of sensors, we con-
sidered thermal noise, always present in electro-mechanical 
systems, as dominant effect, modeled as additive white 
Gaussian noise with zero mean and variance �2

N
 depend-

ing on the sensor characteristics. To evaluate the impact of 
noise, we assess the performance of the algorithms varying 
the signal-to-noise ratio (SNR) of the system. Considering 
the accelerometric measurements gathered by the actual sen-
sors as ideal, we progressively increase the noise variance 
�2
N

 to ensure an SNR excursion between −22 and 15 dB as 
reported in Fig. 11. As we can see, the RMSE is tolerable 
when the SNR is greater than −12 dB; likewise, the accuracy 
of the detectors remains high as long as the error is limited.

6.7 � Joint effect of sensors, samples, and bits

Due to the interdependence between the analyzed sensing 
parameters, it is impossible to adjust them independently to 
guarantee a predefined performance. Therefore, in Fig. 12, 
the feature extraction RMSE varying the number of bits, sen-
sors, and samples is reported for different combinations of 
the acquisition parameters. Red regions represent combina-
tions of parameters that lead to high feature extraction error, 

while blue ones identify parameters settings that result in 
low RMSE. For example, reducing the number of sensors l 
from 8 to 3 and the number of bits Nb from 16 to 8, we com-
ply with the limits reported in Figs. 8 and 10, but as depicted 
in Fig. 12, the combination of these two values result in an 
unacceptable RMSE. Although the interplay between acqui-
sition parameters is not straightforward, important guide-
lines can be derived from the heat maps in Fig. 12:

–	 From the first row of plots, it can be seen that the num-
ber of sensors l necessary to guarantee a low RMSE 
decreases by lowering the acquisition time.

–	 From the middle row of plots, we deduce that the number 
of bits is not a critical parameter in the feature extraction 
process due to the similar shapes reported in the heat 
maps.

–	 From the last row, we can infer that 4 sensors are enough 
to ensure low extraction error when the number of sam-
ples Ns is greater than 1000.

–	 From the first plot of the first row, we can see that there 
are no possible configurations that contain the error with 
a number of samples Ns lower than 500.

7 � Conclusions

In this paper, we presented a SHM system that aims to 
extract damage-sensitive features with the minimum 
amount of resources necessary for damage detection with 
high accuracy. In addition, an overview of some widely 
used anomaly detection algorithms is provided. Three dif-
ferent approaches are proposed to reduce the volume of 
data stored or transmitted to limit costs for sensors and 
network infrastructure: (i) when the goal is to reduce the 
amount of data stored, it is good practice to reduce the 

Fig. 10   RMSE and accuracy varying the number of bits Fig. 11   RMSE and accuracy in the presence of intrinsic noise vary-
ing the SNR
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observation time and use several high-resolution sensors; 
(ii) if the target is to minimize the sensor cost, a good prac-
tice is to adopt several low-resolution sensors combined 
with a long observation time; (iii) when the objective is to 
contain the network infrastructure cost, it is recommended 
to adopt high-resolution sensors and long observation 
time. We show that the best practice to reduce the total 
amount of data and hence the memory occupation, without 
affecting the performance, is to reduce the observation 
time. In the considered scenario, this approach reduces the 
memory occupation from 4 to 0.04 GB.

RMSE and accuracy are used to evaluate the error 
introduced by the data containment strategies and the 
corresponding performance of the algorithms. The results 
show that such strategies, when properly designed, can be 
adopted without significant loss of performance. In fact, 
all the algorithms except PCA ensure an anomaly detec-
tion accuracy greater than 94% in all of the proposed con-
figurations, with the maximum performance reached by 
OCCNN2 whose accuracy never goes down below 95%.
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