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Abstract: Drought risk is significantly increasing as a consequence of climate change, and the Mediter-
ranean basin will be among the most affected areas by water scarcity in Europe. The development of
agronomic strategies enabling the reduction in drought stress in cultivated crops is, therefore, a crucial
priority. Superabsorbent polymers (SAPs) are soil amendments capable to retain water and release it
when drought occurs. In the present study, the ability of a commercial SAP to improve the drought
tolerance of processing tomato (Solanum lycopersicum L.) was assessed on a commercial farm located
in northern Italy. A strip plot experimental design was adopted, where three irrigation treatments
(IRR100, IRR75, and IRR50, respectively, restituting 100%, 75%, and 50% of crop evapotranspiration)
were combined with the application of the SAP (control vs. soil amended with SAP). No significant
interaction was observed between irrigation treatments and SAP application in yield and quality
traits. SAP application allowed for an average increase in tomato yield (+16.4%) and irrigation water
use efficiency (IWUE) (+15.8%), determined by a higher number of marketable fruits. The irrigation
strategy IRR75 + SAP maintained the same yield and quality as the full irrigation control (IRR100),
increasing the IWUE by about 37%. The experiment demonstrated that, for processing tomatoes
grown in the Mediterranean, it is possible to reduce the water supply by 25% when SAP amendment
is applied to the soil.

Keywords: superabsorbent polymer; processing tomato; deficit irrigation; drought tolerance;
water-saving strategies

1. Introduction

Water scarcity is a major challenge to crop productivity under changing climate con-
ditions, especially in arid and semi-arid regions [1]. In the Mediterranean area, irrigation
is of vital importance for food security and economic development, despite the water
shortage characterizing this area [2]. While climate change will affect water timing and
distribution, the rising global population will determine an increase in water demand
(especially by cities) in the upcoming decades, with potential conflicts for the agricul-
tural water allocation [3]. Currently, agriculture uses 70% of the accessible freshwater
globally, but almost 35% of this is wasted due to leaky irrigation systems and inefficient
irrigation water management [4,5]. Additionally, irrigation requirements by agriculture
are expected to increase in the near future, not only because of climate change but also
as a consequence of the increasing food demand [2,4]. Therefore, improving water use
efficiency in the agricultural sector is urgent [3]. Nonetheless, agriculture is also the sector
with the largest scope for improvement [6]. Fader et al. [2] estimated the implementation
of more efficient irrigation systems can enable the reduction of up to 35% of irrigation
water requirements. Accordingly, developing new water-saving irrigation strategies is a
crucial priority. Currently, different strategies are widely studied for optimizing water
use efficiency (WUE), and deficit irrigation is among the most studied [7,8]. Furthermore,
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soil application of superabsorbent polymers (SAPs) is a new water-saving strategy that
is gaining attention [9–11]. Superabsorbent polymers are macromolecular cross-linked
hydrophilic polymer chains with the ability to absorb water or aqueous fluids through an
osmotic process [12,13]. When the polymer is applied to the soil, water from irrigation
and rainfall is absorbed by the polymer, acting as an additional water reservoir. Then, as
the soil dries, the absorbed water is released, making it available to the plants [13]. These
materials are generally safe and non-toxic since the polymer chains are biodegraded by
soil microbes through mineralization into carbon dioxide, water, ammonia, and potassium
ions [14,15]. SAPs are considered soil improvers, as they can positively influence some
physical and chemical characteristics. Accordingly, previous studies in the literature show
that the swelling of the polymer in the soil positively affects soil porosity, increasing air
capacity [16], but it is also known to increase the cation exchange capacity and decrease
the soil infiltration rate [17]. However, one of the main purposes of their use in agriculture
is to improve the soil water status, allowing crops to overcome drought periods, thus
limiting the damage caused by water stress. The application of SAPs to soil is known to
increase water availability in the root zone for absorption by plants, by increasing the soil’s
water-holding capacity [9,18]. Positive effects on plant growth indicators were reported
as a consequence of the application of SAPs to the soil in rosemary, such as the seedling
establishment percentage, fresh biomass production, and plant height [17]. Several studies
proved that the application of SAPs to the soil enhanced water use efficiency in different
crops, such as beans [11,19], maize [10], and peanuts [20]. Therefore, SAPs have the po-
tential to be included in water deficit irrigation strategies. Accordingly, Satriani et al. [11]
demonstrated that is possible to reduce up to 30% of irrigation water when a SAP is applied
to the soil in a Mediterranean environment, but more water-saving irrigation strategies
have to be developed for other water-demanding crops, such as processing tomato.

Processing tomato (Solanum lycopersicum L.) is among the vegetable crops mostly
cultivated in the Mediterranean basin, especially in Italy [21]. The tomato crop is highly
sensitive to water stress; indeed, drought is known to have injurious effects on growth,
development, and yield [22,23]. Since water supply is undoubtedly among the main
problems for processing tomato cultivation, new water-saving strategies are needed to be
investigated. The present study aims to assess the effects of a commercial SAP on the yield
and quality of processing tomatoes in a Mediterranean climate under different degrees
of drought stress. Additionally, new water-deficit irrigation strategies that integrate the
adoption of the SAP are compared. The assumption is that plants treated with SAP can
increase drought tolerance and improve the irrigation water use efficiency (IWUE).

2. Materials and Methods
2.1. Location and Experimental Design

The experiment was carried out during the summer season (between June and Septem-
ber 2021) on a commercial farm located in Rivarolo Mantovano (MN), in northern Italy
(45◦04′41′′ N and 10◦28′04′′ E, 26 m a.s.l.). The local climate is Cfa type according to the
Koppen classification. Soil texture is classified as sandy according to the USDA classifica-
tion and is a Cambisol (IUSS, 2014). The characteristic of soil used for experimentation was
as follows: sand = 53.7%, silt = 46.3%, clay = 0%; pH = 8.12; total CaCO3 = 99.1 g kg−1; bulk
density = 1.34 g cm−3; total organic matter (TOM) = 1.95%; total nitrogen = 1.41 g kg−1; the
wilting point (WP) and field capacity (FC) were 6.48% v:v and 21.9% v:v, respectively.

To assess the interactions between drought stress levels and the application of a super-
absorbent polymer (SAP) to the soil, a two-factor strip-plot experiment with three replicates
was set up. Three irrigation treatments in the main plots were randomized, while in the
subplot, two levels of the superabsorbent polymer were applied to the soil (non-treated
control vs. SAP-treated). During the whole crop cycle, starting 14 days after the transplant,
the irrigation treatments restored 100%, 75%, and 50% of crop evapotranspiration ETc,
henceforth called IRR100, IRR75, and IRR50, respectively.
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2.2. Materials and Growing Conditions

All the agronomical operations followed the common farmers’ practices of the region.
Processing tomato (Solanum lycopersicum L. cv. Heinz 3604) was transplanted in a double-
row cropping system at 36,765 plants ha−1 (0.5 m distance between the single rows, 1.6 m
between the center of the double row, and 0.34 m within the row). A drip irrigation system
was used, which consisted of 22 mm PE laterals with drippers spaced at 0.3 m. A single
drip line per two plant rows was used, with 1 l h−1 discharge measured at 1 bar operating
pressure. At planting, nitrogen, phosphorus, and potassium were applied at the rates of
150, 100, and 180 kg ha−1, respectively. The tested SAP was a potassium polyacrylate-
based molecule (Evonik Industries, Essen, Germany) commercialized in Italy with the label
RainPower (Endofruit, Bussolengo, Italy). The SAP was localized in the furrow at 8 cm
below the transplanting lines through a micro-granulator (25 kg ha−1).

2.3. Crop Evapotranspiration (ETc) and Irrigation Management

The irrigation management was based on the estimation of crop evapotranspiration
(ETc), restoring 100%, 75%, and 50% of ETc according to the respective irrigation treat-
ment. ETc was calculated using the double Kc factor, according to the FAO guidelines,
paper 56 [24] using the following equation:

ETc = ET0 × (Kcb + Ke) (1)

where ETc (mm day−1) is the crop evapotranspiration, ET0 is the reference evapotranspira-
tion (mm day−1), and the sum (Kcb + Ke) represents the double crop coefficient calculated
according to the FAO guidelines [24].

The estimation of ET0 was performed using the Penman–Monteith formula, which is
shown in Equation (2):

ET0 =
0.408∆(Rn −G) + γ 900

T+273 u2(es − ea)

∆ + γ(1 + 0.34u2)
(2)

where ET0 is the reference evapotranspiration (mm day−1), Rn is the net radiation at the
crop surface (MJ m−2 day−1), G is the soil heat flux density (MJ m−2 day−1), T is the mean
daily temperature at 2 m height (◦C), u2 is the wind speed at 2 m height (m s−1), es is
the saturation water pressure (kPa), ea is the actual water pressure (kPa), es − ea is the
saturation vapor pressure deficit (kPa), ∆ is the slope vapor pressure curve (kPa ◦C−1), and
γ is the psychrometric constant (kPa ◦C−1).

All climatic data were measured by a weather station localized in the field.
The irrigation water was applied whenever the readily available water (RAW) was

completely depleted. RAW was determined as follows:

RAW = (FC−WP) p Zn (3)

where FC and WP are, respectively, the field capacity and the wilting point (mm m−1), p
is the depletion factor (0.4 for tomato), and Zn is the root depth (m) during the crop cycle
(from 0.2 m at the initial growth stage up to 0.7 m). Soil water moisture was daily estimated
and monitored by computing the soil water balance hereby reported (Equation (4)).

Dr,i = Dr,i−1 − (P− RO)i − Ii −CRi − ETc,i + DPi (4)

where Dr,i is the water depletion in the root zone at the end of day i (mm), Dr,i−1 water
depletion in the root zone at the end of the previous day (mm), Pi is the precipitation on
day i (mm), ROi is the runoff from the soil surface on day i (mm), Ii is the net irrigation in
day i that infiltrates the soil (mm), CRi is the capillary rise from the groundwater on day i,
ETc,i is the crop evapotranspiration estimated for day i (mm), and DPi is the water loss out
of the root zone by deep percolation on day i (mm) [24].
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2.4. Plant Measurements

At harvest, which occurred at the 87–88 stage according to the BBCH phenological
scale [25], three plants per subplot were randomly sampled in the field to determine yield.
Total fruits were classified and separately counted as marketable (ripe) and unmarketable
(unripe, overripe, and damaged). Accordingly, the total and marketable yield (ton ha−1)
and fruit number, average fruit weight (g), and fresh vegetative biomass (stem and leaf)
(g plant−1) were determined. Irrigation water use efficiency (IWUE, g L−1) was calculated
as the ratio between the fresh weight of the commercial biomass (g m−2) and the water
applied with irrigation (L m−2) [26].

Then, four fruits per plant were randomly chosen to determine the qualitative measure-
ment. Before the measurements, the fruits were stored in the refrigerator at 4 ◦C degrees
for 2 days. One fruit per plant was chosen for the determination of fruit dry weight, after
oven-drying at 65 ◦C until a constant weight was reached. On the remaining three fruits,
the following measures were taken: Maximum fruit diameter (mm) was determined with
an electronic caliper. Fruit color was assessed with a CR 200 Chroma-Meter Colorimeter
(Konica Minolta, Sensing, Tokyo, Japan), taking three measures on the equatorial plane
of each fruit, and (a*/b*)2 was calculated given the existing correlation with lycopene
concentration [27]. Fruit firmness was determined with an electronic penetrometer (8 mm
diameter probe) after removing the peel on one side with a manual mandolin. Then, the
three fruits were smoothed together to obtain juice. The total soluble solids (TSSs, expressed
as ◦Brix) were determined with a digital refractometer (PAL-1 Atago, Tokyo, Japan), while
the pH and total acidity of the fruit were determined with a Titromatic instrument (Crison,
Barcelona, Spain) after mixing 10 mL of tomato juice with 30 mL of distilled water.

2.5. Statistical Analysis

Data were analyzed using two-way ANOVA, and means were separated with the
Tukey HSD test at p < 0.05. Before the analysis, the normality and heteroscedasticity were
checked with the Shapiro–Wilk test and Levene test, respectively. Means and standard
errors (SEs) were also calculated. R software (version 3.3.2, packages “car” and “emmeans”)
was used (R Development Core Team, Vienna, Austria).

3. Results
3.1. Climate during the Experiment

During the experiment, the maximum daily air temperature ranged between 26.6 ◦C
and 39.2 ◦C, with an average of 33.1 ◦C. The minimum daily temperature ranged between
12.2 ◦C and 21.0 ◦C (average 17.3 ◦C). Concerning the relative humidity, the maximum
daily value varied between 74% and 98% (91.4% on average), while the minimum varied
between 27% and 72% (38.7% on average). The daily average ETc was 4.53 mm d−1.
The cumulative ETc during the experiment was 482 mm, which was almost completely
restored in IRR100 through irrigation (351 mm) and effective rainfalls (57.2 mm) during
the crop cycle. The restoration of ETc in IRR100 was not complete, given the necessity to
stop the irrigations before the harvest to increase the soluble solids content of the fruits, as
commonly performed by the farmers. Accordingly, the irrigation volumes in IRR75 and
IRR50 were 263 mm and 175 mm, respectively.

3.2. Morphological and Productive Parameters

No significant interaction was detected between irrigation treatment and SAP appli-
cation for any parameters assessed, as reported in Table 1. Marketable yield, total and
marketable fruits, and IWUE were significantly affected by irrigation treatment and also by
the application of SAP to the soil (Table 1).
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Table 1. Results of two-way ANOVA analysis on yield component and morphological parameters
of processing tomato grown under different irrigation treatments (IRR) factorially combined with
the application of two levels of a superabsorbent polymer (SAP-treated and non-treated control).
Interaction results are also described (IRR × SAP).

Treatments Marketable
Yield

Total
Fruits

Marketable
Fruits

Fruit
Weight Dry Matter Fresh

Biomass HI IWUE

Irrigation (IRR) *** *** *** ns ns ** ns ***
F-value 16.27 25.17 17.05 1.22 1.77 13.50 0.782 58.66
p-value <0.001 <0.001 <0.001 0.334 0.219 1.14 × 10−3 0.483 <0.001

Sum of square 1406 367 209 5.85 0.463 158,335 0.001 768

SAP application
(SAP) ** *** *** ns ns ns ns **

F-value 18.50 24.49 22.65 0.014 1.22 0.725 3.12 20.79
p-value 1.15 × 10−3 <0.001 <0.001 0.909 0.295 0.414 0.107 1.04 × 10−3

Sum of square 799 178 139 0.033 0.159 4252 0.003 136

IRR × SAP ns ns ns ns ns ns ns ns
F-value 0.118 0.458 0.389 3.97 0.288 1.46 0.595 0.912
p-value 0.890 0.645 0.687 0.054 0.755 0.278 0.570 0.432

Sum of square 10.27 6.68 4.78 18.96 0.075 17,120 0.001 11.96

HI stands for “harvest index”, IWUE for “irrigation water use efficiency”. ** p < 0.01, *** p < 0.001, ns “not significant”.

The marketable yield trend reflected the irrigation treatments, with the highest yield
detected in IRR100, followed by IRR75 and IRR50 (Figure 1a). Plants grown under full
irrigation (IRR100) produced the greatest number of total and marketable fruits (54 and
39, respectively) (Figure 1b,c). The IRR75- and IRR50-treated plants produced statistically
comparable numbers of total and marketable fruits (45 and 33 as mean values, respectively),
which resulted in a reduction of 16.3%, compared with IRR100 (Figure 1b,c).

Moreover, the irrigation treatments significantly affected the fresh vegetative biomass
(Table 1). No significant difference was observed in fresh biomass produced by plants
grown under IRR75 and IRR50 treatments (801 g plant−1 and 709 g plant−1, respectively).
Contrariwise, the fresh vegetative biomass produced using IRR100 (937 g plant−1) was
significantly higher (+19.4%) than the values observed in water-stressed treatments (data
not shown). Fruit weight, fruit dry matter, and harvest index (HI) were not affected by
irrigation treatments (Table 1).

SAP application did not significantly affect fruit weight, fruit dry matter, fresh vegeta-
tive biomass production, and HI (Table 1). Nonetheless, SAP application led to an increase
in marketable yield (+16.4%) (Figure 2a), total fruit number (+14%), and marketable fruit
number (+17.2%) (Figure 2b,c), compared with non-treated control.

The IWUE was significantly affected by irrigation treatments and by the application
of SAP as well (Figure 3). Accordingly, the IWUE progressively increased as the amount
of water applied through irrigation was reduced as a consequence of irrigation treatment
(Figure 3a). In particular, the IRR50 and IRR75 treatments determined an increase in the
IWUE of about 56% and 18.5%, respectively, compared with IRR100 (Figure 3a). Moreover,
the IWUE was significantly increased by SAP application (+15.8%), as shown in Figure 3b.

The combined effect of both strategies (irrigation treatments and SAP application) is
reported in Figure 4, which resulted in a significant increase in the IWUE. IRR50 + SAP
determined a significant increase of +79% of the IWUE, compared with IRR100. A slighter
increase in the IWUE was determined by using the IRR75 + SAP strategy (+37%), compared
with IRR100. No significant differences were observed for the IRR100 + SAP strategy in
comparison to IRR100 and IRR75 + SAP strategies.
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If the effective rainfalls were considered in the calculation of the WUE, the increase
determined by IRR75 + SAP in comparison to the control strategy (IRR100) was reduced to
+30%, while for IRR50 + SAP, it was reduced to +57% (data not shown).
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3.3. Qualitative Parameters

No significant interaction effect between irrigation treatment and the application of
SAP for any qualitative parameters was detected (Table 2). Moreover, neither irrigation
treatments nor SAP application significantly affected the qualitative parameters measured.
The only exception was the sunburned fruits (expressed as % of the total fruit produced by
a plant), which were significantly increased as the irrigation volumes decreased (Figure 5),
reaching the maximum incidence of 9.3% in IRR50, compared with IRR100 (1.9%) and
IRR75 (2.5%). No significant difference was observed in sunburned fruits between IRR100
and IRR75. Furthermore, a significant negative correlation (p < 0.05) between the fresh
vegetative biomass and the sunburned fruit rate was observed (Figure 6).

Table 2. Results of two-way ANOVA analysis on qualitative parameters of processing tomato grown
under different irrigation treatments (IRR) factorially combined with the application of two levels
of a superabsorbent polymer (SAP-treated and non-treated control). Results of interaction are also
reported (IRR × SAP).

Treatments Brix pH Titratable
Acidity Firmness Color Sunburn

Irrigation (IRR) ns ns ns ns ns ***
F-value 0.084 0.250 0.500 0.384 3.152 33.73
p-value 0.920 0.783 0.620 0.690 0.086 <0.001

Sum of square 0.013 0.001 0.034 0.011 0.064 201

SAP application ns ns ns ns ns ns
F-value 0.472 0.248 0.189 0.119 1.556 0.001
p-value 0.507 0.629 0.673 0.736 0.240 0.972

Sum of square 0.038 7 × 10−4 0.006 0.001 0.015 0.04

IRR × SAP ns ns ns ns ns ns
F-value 0.168 2.03 1.53 0.991 1.84 1.02
p-value 0.847 0.181 0.263 0.404 0.207 0.395

Sum of square 0.027 0.012 0.104 0.028 0.037 6.104

*** p < 0.001, ns “not significant”.
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4. Discussion

It is well known that water is a limiting factor in processing tomato production, as re-
ported by previous studies in the literature [28–30], and water availability for irrigation will
become a challenging issue in the Mediterranean basin because of climate change [2,4]. The
progressive drought stress determined by treatments applied in the present study induced
a significant reduction in the marketable yield of processing tomatoes (Figure 1a) [23,31].
Since fruit weight was not affected by irrigation treatments (Table 1), such a decrease in
marketable yield can be associated with the reduction in marketable fruits number pro-
duced per plant, as observed in Figure 1c [32]. This result is in agreement with the findings
of Zegbe-Dominguez et al. [33], who observed a significantly lower number of fruits for
processing tomatoes cultivated under irrigation deficit conditions, compared with the fully
irrigated control. Flowering is a phenological stage that can negatively be affected by
abiotic stresses in several crops, and tomato is known to be vulnerable to drought stress
during this growth stage [34]. The limited water availability determines a low stomatal
conductance, reducing the CO2 assimilation and, thus, the photosynthetic rate [35]. This
physiological mechanism can lead to a decreased availability of photoassimilates used
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for the development of floral organs and posing to the abscission of flowers and flower
buds [36,37], causing a reduced number of fruits per plant.

Although the reduction in water applied to the crop as a consequence of the irrigation
treatment allowed for an increase in the IWUE (Figure 3a), the implementation of deficit
irrigation strategies during the whole crop cycle is not recommended without a water
stress tolerance strategy being in place, due to the negative effect on the marketable yield
(Figure 1a). Accordingly, IRR75 suffered a reduction of 11.3% in the marketable yield in
comparison to IRR100 (Figure 1a). Nonetheless, such a yield reduction in IRR75 was highly
compensated by the application of SAP to the soil in the IRR75 + SAP strategy, allowing
an increase in marketable yield (+16.4%) (Figure 2a) [38]. This was mainly due to the
increase in the number of marketable fruits by the plants grown under SAP-treated soil
(+17.2%), compared with the non-treated control (Figure 2c). As reported in the previous
literature [39], the use of SAP in tomato cultivation can increase the number of flowers
and fruits, compared with a non-treated control. Similar results have been previously
reported [12], according to which an increase in yield of 16% in tomato cultivation grown in
sandy soils treated with SAP in Spain and Italy was observed. Other previous studies [16,18]
demonstrated that the addition of SAP to the growing media can improve its water-holding
capacity and may be useful in providing water to plants during drought stress, especially if
tomato plants are grown in sandy soils, as in the present study. Additionally, the imbibition
of SAP leads to an increase in the soil’s volume and porosity, resulting in better oxygenation
of the root zone [40]. SAP application revealed also an increase in the IWUE of processing
tomatoes (+15.8% on average) (Figure 3b) [41]. The irrigation strategy IRR75 + SAP allowed
the combination of IWUE enhancement effect determined by adopting both strategies
(deficit irrigation and SAP application to the soil), increasing it up to 37% compared with
the control (IRR100) (Figure 4).

The adoption of the IRR100 + SAP strategy did not lead to a significant increase in the
IWUE (Figure 4) and yield (data not shown), compared with IRR100; therefore, its adoption
is not justified.

Throughout the experiment, IRR50 + SAP was the strategy that allowed for the highest
IWUE (Figure 4). Nonetheless, it should be pointed out that the percentage of sunburn-
damaged fruits was significantly higher in IRR50 (Figure 5) [42]. Higher percentages of
sunburned fruits may entail significant reductions in the selling price, thus reducing the
farmer’s income [43]. The sunburned rate in IRR50 may be reflected in the lower fresh
biomass produced by the severely stressed plants, which was not sufficient to protect the
fruits from the intense solar radiation (Figure 6) [44]. It is widely known that sunburn in
tomato fruits is related to an increase in solar radiation, which is responsible for chloro-
phyll degradation, but it can also be due to the exposure of mature-green tomatoes to
temperatures above 30 ◦C, which inhibits lycopene biosynthesis, resulting in the typical
yellow color of the fruit [45]. However, the application of SAP to the soil did not enhance
the fresh green biomass production at harvest (Table 1); therefore, it resulted in not being
useful in reducing the number of sunburned fruits. Montesano et al. [46] reported that
the application of SAP in the growing media allowed for an increase in the fresh biomass
of cucumber and basil. Nonetheless, the same authors also reported that the effect of
SAP on the basil fresh biomass progressively decreased along the crop cycle, resulting in
non-significant differences compared with the non-treated plants at harvest time. Accord-
ingly, although IRR50 allowed for the highest irrigation water use efficiency, its adoption is
not recommended, even in association with the soil application of SAP. However, further
assessment should consider the effect of the IRR50 + SAP strategy on net income.

The present study shows that the adoption of superabsorbent polymer is suitable for
enhancing the drought stress tolerance of tomato crops, and a new irrigation water-saving
strategy is further suggested with the IRR75 + SAP combination. Similar conclusions were
reported by Satriani et al. [11], who showed that the yield of dry beans cultivated under
70% ETc water restoration was not statistically different from 100% ETc control if a SAP
was applied to the soil. Patanè and Cosentino [31] demonstrated that restoring 100% of
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ETc up to the flowering stage, followed by the restoration of 50% of ETc from the flowering
to the harvest stage, did not significantly reduce the yield and improved the IWUE of
processing tomatoes in southern Italy. Accordingly, the integration of SAPs in regulated
deficit irrigation strategies needs to be an object of further investigation.

To our knowledge, this is the first study that shows that the application of SAP to
the soil did not affect the main fruit quality parameters in processing tomatoes (Table 2),
allowing farmers to maintain the high quality of their products commonly achieved with
the common farmer strategy (IRR100). However, neither irrigation treatment affected the
quality of the fruits (Table 2), differently from what was reported in previous studies.
Indeed, Patanè and Cosentino [31] and Patanè et al. [23] showed that reducing the water
applied with irrigation in processing tomatoes led to an increase in the TSS and fruit
firmness. Therefore, further experiments are recommended to confirm the absence of SAP
effects on quality traits.

5. Conclusions

The present study clearly showed that SAP application to soil allowed for reducing
the amount of irrigation water up to 25% of the crop requirements in processing tomato
production in northern Italy and increased the IWUE by up to 37%. SAP allowed a high
yield to be maintained because of the increase in fruit numbers produced by plants, but it
is not suitable for reducing the percentage of sunburned fruits under severe water stress
conditions. However, further studies are required to also confirm the present results in
a strictly arid environment (e.g., in southern Italy, where the successful production of
processing tomatoes is strongly limited by the water availability), and the absence of effect
in qualitative traits. Economic assessments on the adoption of superabsorbent polymers
are still lacking and may stimulate their adoption by farmers.
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