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ABSTRACT: The plethora of increasingly precise experiments which hunt for axion-like
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understanding of ALP couplings at loop-level. We derive the one-loop contributions to
ALP-SM effective couplings, including finite corrections. The complete leading-order —
dimension five — effective linear Lagrangian is considered. The ALP is left off-shell, which
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Zr~, WW, gluons and fermions. All results are obtained in the covariant R gauge. A
few phenomenological consequences are also explored as illustration, with flavour diagonal
channels in the case of fermions: in particular, we explore constraints on the coupling of
the ALP to top quarks, that can be extracted from LHC data, from astrophysical sources
and from Dark Matter direct detection experiments such as PandaX, LUX and XENONI1T.
Furthermore, we clarify the relation between alternative ALP bases, the role of gauge
anomalous couplings and their interface with chirality-conserving and chirality-flip fermion
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1 Introduction

The field of axions and axion-like particles (ALPs) is undergoing a phase of spectacular
development, both theoretical and experimental. This should come as no surprise. No
firm signal of new physics has shown up yet at colliders or elsewhere, which transforms the
fine-tuning issues of the Standard Model of particle physics (SM) in most pressing ones, and
also impacts on the dark matter (DM) quest. The silence of data is calling for a rerouting
guided by fundamental issues such as the strong CP problem, as well as for an open-minded
approach to hunt for the generic tell-tale of global hidden symmetries: derivative couplings,
as in the case of axions and ALPs.

Indeed, axions appear in dynamical solutions to the strong CP problem as the pseudo
Goldstone-bosons (pGB) of a global chiral U(1) symmetry [1-4]. Theories of pGBs extend
well beyond those true axions, though. They appear in a plethora of beyond the SM (BSM)
constructions, typically as SM scalar singlets, and often receive the generic name of ALPs (in
particular when gauge anomalous couplings are present in addition to pure derivative ones).
Paradigmatic examples of pGBs physics include: i) theories with extra dimensions, because
the Wilson line around a compact dimension behaves as a 4-dimensional axion; ii) dynamical
explanations to the smallness of neutrino masses, with the Majoron [5] as a pGB of a hidden
U(1) lepton symmetry (the Majoron and the axion could even be identified [6, 7]); iv) string
theory models, which tend to have a plethora of hidden U(1)’s and axions [8]; iv) dynamical
flavour theories (“axiflavons” [9-11]), to cite just a few examples. As a wonderful byproduct,
axions and a variety of ALPs are often excellent candidates to account for DM.

The landscape of experimental searches for axions and/or ALPs is undergoing a
flourishing period, covering orders of magnitude in energy scale and using very different
techniques. In particular, the couplings of ALPs to heavy SM bosons are under increasing
experimental scrutiny [12-20]. Indeed, because of electroweak gauge invariance they are
generically expected at the same level as the photonic interactions. Through the ensemble of
ALP bosonic couplings, ALP scales ranging from hundreds of GeV to several TeV are within



the reach of the LHC and of future collider experiments, favored by the prospects of increasing
energy and precision. In addition, the impact of ALP electroweak couplings on flavour rare
decays is already setting impressive constraints on the ALP parameter space [21, 22] (for
ALP masses below 5 GeV), offering a complementary window of high-precision.

A model-independent approach to the search for a true axion or an ALP — both
denoted here as a — is that of effective Lagrangians, with the tower of effective operators
weighted down by its BSM scale f,. The parameter space is then simply defined by the
mass vs. scale {mg, f,} plane, with m, < f, and the model-dependence encoded in the
arbitrary operator coefficients. The couplings are mainly derivative — proportional to
the ALP momentum — as befits pGBs, plus anomalous couplings to gauge field strengths.
The practical difference between a canonical QCD axion [3, 4] which solves the strong CP
problem and generic ALPs is that for the latter f, and m, are treated as independent
parameters. The exploration of the ALP parameter space is thus free from the stringent
phenomenological constraints which hold for the canonical QCD axion.! For the purpose of
this work, the difference between a true axion and an ALP is of no consequence and the
name ALP will be used indistinctly.

We explore at one-loop order all possible CP-even operators coupling one pseudoscalar
ALP to SM fields: to the gluon, the photon, W*, Z, the Higgs particle and to fermions,
at next-to leading order (NLO) of the linear effective field theory (EFT) formulation, i.e.
mass dimension five operators. The approach is in the same spirit as the usual SMEFT
theory, but including the ALP «a as an additional low-energy active field. The necessity
to address these interactions at loop-level stems, on one side, from the high precision
experimentally achieved in certain channels, and on the other from the very different energy
scales explored by different experiments. Motivated by the latter, updated studies of the
renormalization group evolution of the ALP effective Lagrangian have already appeared
very recently [43, 44].

We provide here the complete one-loop corrections, i.e. divergent and finite contribu-
tions, for an off-shell ALP and on-shell SM fields. Previously, those corrections had been
worked out only for the contributions to the axion-photon-photon coupling gq-, and to the
axion leptonic coupling (in certain limits), for an on-shell ALP [14]. Recently, fermionic
contributions to g,z have also appeared [44] for an on-shell ALP. The physical impact of
our results will be presented as contributions to the set of measurable CP-even interactions
{9aryy» 9awws 9az2 » Gan7 + Gagg » Ct}, Where the first five denote ALP anomalous couplings
to gauge bosons and f denotes a generic fermion, with the SM fields on-shell. All our
computations are performed in the covariant R¢ gauge. The only restriction on fermions
is that flavour diagonal channels are computed, disregarding generation mixing. Neutrino
masses are disregarded as well.

Furthermore, the constraints that gauge invariance imposes on the complete set of ALP
couplings will be discussed, showing how the one-loop corrections modify the tree-level

!The anomalous coupling to gluons is necessarily present for axions that solve the strong CP problem. For
true axions, the precise relation between m, and f, depends on the characteristics of the strong interacting
sector of the theory: QCD in the case of the canonical axion, and an enlarged confining sector for true
axions which are either heavier [23-39] or lighter [40-42] than the canonical QCD axion.



gauge invariance relations which relate physical channels. The results impact in particular
the variety of LHC and collider ALP searches.

We will also clarify the one-loop impact of ALP-fermion couplings on gauge anomalous
ALP interactions. This will allow to elucidate ongoing discussions in the literature on the
relation between different types of complete and non-redundant bases of operators. Some
aspects of the RG running above the electroweak scale will be briefly discussed as well.

The structure of the paper can be easily inferred from the Table of Contents.

2 Effective Lagrangian

The formulation of the CP-even ALP effective Lagrangian at next-to-leading order (NLO)
of the linear expansion, i.e. up to O(1/f,) couplings of mass dimension five, is discussed
next assuming the field a to be a pseudoscalar. A complete basis of independent ALP
operators — bosonic plus fermionic — is considered, and its relation to other complete
bases and to the purely bosonic one is also clarified.

In addition to ALP kinetic energy and mass terms, any ALP EFT is defined by an
ensemble of effective operators which are invariant under the shift symmetry a — a + ¢
where ¢ is a constant (i.e. purely derivative ALP couplings, as it would befit Goldstone
bosons) plus ALP-gauge couplings resulting from the axial anomaly of the form aX WX .
where X, denotes a generic SM gauge field strength and XM its dual XM = %e’“’p"X po

with 0123 = 1.2

2.1 Complete and non-redundant bases

A complete and non-redundant ALP effective Lagrangian is given at O(1/f,) by
Larp = Low + L0 (2.1)

where %5y denotes the SM Lagrangian,

1 _
— ~G4,G" + D, D'D + Y filpf

4 7 (2.2)
- [QLYd@dR 1+ QLY dup + LY. Pep + h.c.] —V(alD).

1 1
L = — Wi, W — 2B, B

4 M

Here, the index f runs over the chiral fermion fields f = {Qp,ur,dgr, Lr,er} which are
vectors in three-dimensional flavour space, Y; denote n, x ny, Yukawa matrices in flavour
space, where ng, denotes the number of fermion generations, ® is the Higgs doublet with
P = io2®*, and V(®'®) is the Higgs potential. In this equation, G, W, and By, denote
respectively the SU(3)., SU(2);, and U(1)y gauge field strengths. Neutrino masses are
disregarded here and all through this work; no right-handed neutrino fields will be considered.

2We do not consider other shift-invariant ALP couplings to gauge fields which have been recently argued
to be independent in some BSM theories [45].



All possible shift-invariant fermionic coupling of mass dimension five are contained in
the set

o, = 8}” (@py"ur) 0, = 8],:a (JR’y“dR) , Og= (?;a (QL’Y“QL) . (2.3
Or = 8J,Za (QL’Y“QL) , Oc= 8;(1 (erY"er) (2.4)

in a compact notation in which each of these terms is a ny x ny matrix in flavour space,
with flavour indices {i,j} left implicit, e.g. O, = {O% = d,a/f, (ﬂ’é'yuu%)}. The question
is how many of those fermionic couplings can be included in a complete and non-redundant
basis of ALP operators.

The most general CP-conserving ALP effective Lagrangian X;Otal, including bosonic
and fermionic ALP couplings [46, 47], admits many possible choices of basis. A complete
and non-redundant basis — to be used in this paper — is that defined by the Lagrangian

1 2
.Zat"tal:iﬁuaﬁ“cﬂ—%a2+CWOW—I—cBOB+CGOG+ Z ce Os+ Z cs O, (2.5)
f=u,d,e f=Q,L

where the effective operators are as given in table 1, and the coefficients c; are ng x ng
hermitian tensors; in addition, because of the assumption of CP conservation, they will
obey ¢t = ch. The convention to be used for the ¢ O products is the popular one in which
their implicit flavour indices {i,j} are not contracted as a matrix product, but as follows:

cO = Z (©);; o (2.6)

Note that the fermionic basis is chosen here to include all possible right-handed currents,
while — in order to avoid redundancies — one of the quark operators made out of left-handed
currents has been excluded (see (/)Q) together with all diagonal elements of the leptonic
operators made out of left-handed currents (Q;), as indicated in short-hand notation, i.e.

 da - :
Q)Q = {Og = fia (QLvuQ7) where i,j #1, 1} (2.7)
O, = {Og = (‘);a (Liy, L)) where i # j} . (2.8)

The exclusion of the (@Q)u element can be replaced by that of any other of the diagonal
elements of (DQ.
It follows that the most general CP-conserving ALP Lagrangian is described by a total of

3(bosonic) + [ng(5ng + 3)/2 — 1](fermionic) = 2 + ny(5ng + 3)/2 (2.9)

independent couplings, i.e. 6 couplings in the case of just one generation, and 29 couplings
for ng = 3.

The key point to identify redundancies, and the origin of the different number of degrees
of freedom for quarks and leptons, is related to baryon and lepton number conservation.



Oy = ——Wo, Tom 0; = —fﬁBWBW O = —fﬁGgyéW
o.a a.a /- o,a
0, = = (upy"ur) O, = }L (dm“dﬁc) O, = }L (ery"er)
oua [~ 0,a /-
— 1 e H
Qg £ (QL’Y QL)Z‘J;’&L1 o)) £ (LL’Y LL)i#

Table 1. A complete and non-redundant basis of bosonic+fermionic operators, in the presence of
quark mixing. FEach fermionic structure is a ngy X n, matrix in flavour space, with flavour indices
{1, 7} left implicit except in the operators on the last row (which become redundant — for ny = 1).
For the anomalous terms, a “hatted” renaming will be used when convenient, o) v =ax/41O%,
see text.

Classically, with neutrino masses disregarded (only the SM left-handed neutrino fields are
considered), lepton number L; is separately conserved for each generation i (i.e. L¢, L, and
L, for ng = 3), while for quarks with all generations mixed only the total baryon number
B is. In consequence, ng leptonic diagonal couplings become redundant, in contrast to just
one for quarks. Indeed, the ALP coupling to the baryonic and leptonic currents reads (see
appendix B.2)

o,.a Op+0,+0 n

J‘ja JE =Ty | =< ; d} — 32;2 <920W —9’203) : (2.10)
8 a i 1
ﬁ T =100+ 0" = o (QQOW - 9’203) , (2.11)

where in the last equation there is no sum over the ¢ index, and the right-hand side of
these equations stems from the fermion rotations involved. These relations provide one
constraint on diagonal quark operators and n, constraints on diagonal leptonic operators,
which reduce in consequence the number of independent degrees of freedom.

Eqgs. (2.10) and (2.11) also illustrate that the ALP coupling to the B 4 L current Jp
is anomalous, where L denotes total lepton number L =, L;, which is precisely why that
coupling can be traded by purely derivative operators.®> The B — L current J 5 is instead
exactly conserved,

a,a OQ+Ou+Od n

2 Ty = Tr[ : +0; +oe] = 0 (PO - 705) . (212
Og+0,+0

8;aJ§L—Tr[ Q+3 * d—oL—oe]_o. (2.13)

The role of the left-handed and right-handed ALP operators in table 1. can be exchanged.
For completeness, we discuss in the next subsection other fair choices of shift-invariant
fermionic operators — e.g. containing all possible left-handed currents.

3This is analogous to how the Peccei-Quinn current, precisely because it is anomalous, allows to rotate
away the 6 terms which combine fermion mass and anomalous gauge terms.



A frequent redefinition. Often in the literature [14, 15, 44, 48-50] the normalization
used for the ALP coupling to gauge anomalous currents differs slightly from that in table 1.

We will denote with a hat (“hat basis”) that variant:
o1 (6]

Q
»

O, (2.14)

W
3

where oy = g% /4w, as = g2 /47 and o = g2 /4w denote respectively the SU(3)., SU(2), and
U(1) fine structure constants. The corresponding Wilson coefficients of the ALP anomalous
gauge couplings are simply related by

a1

cB:éBE, CVV:éW47T7 cé:ééﬂ. (2.15)

2.2 Alternative complete basis

Many choices of complete basis other than that in eq. (2.5) and table 1 are possible, as far
as the total number of independent couplings is consistently maintained. Several examples
have been proposed in the literature.

Chirality-conserving fermionic alternatives. A valid option is to include in the basis
all possible operators made out of left-handed fields, including all diagonal couplings, i.e.
all ng x (ng + 1)/2 operators Og and all ng x (ng + 1)/2 operators Oy, see eqgs. (2.3)
and (2.4). With respect to the choice in table 1, and still maintaining in the basis the three
anomalous couplings, this would require — to avoid redundancies — to drop all flavour
diagonal leptonic operators in O (i.e. replace O, — @, = d,a/ fo (ErV"eR); » plus one of
the flavour-diagonal ones in Os—,, or O¢—4. Several other intermediate exchange patterns
are legitimate as far as the number of degrees of freedom is consistently maintained.

It is also valid to omit from the basis some of the anomalous bosonic operators,
substituting them for flavour-diagonal fermionic couplings. Indeed, egs. (2.10) and (2.11)
show that a complete and non-redundant basis would result for instance from substituting
@Q in table 1 by the whole set O¢ together with the omission of either Oy, or Op, or
other similar tradings involving the lepton sector.

The case ny = 1. In the simplified case of one generation, the operators ®{Q, ) in the
basis in table 1 are absent and pure right-handed operators suffice in addition to the three
anomalous ones. That is, for just one generation the set of operators {Oy;,, 03,04, Oy,
0,4 0.} in table 1 suffices to form a complete basis of linearly independent operators, unlike
for ng > 1. Indeed, in the one-generation case the following relations hold

_ 3 24 _ 2y
Oq = _[Ou+0d]+32? (9 Oy —yg 03) ) (2.16)

(920W — 9/203) : (2.17)

1
O,=-0
L et 3272
which demonstrate that it would be redundant to consider any element of Og and Op,
in addition to all possible operators made out of right-handed currents plus the three

anomalous couplings.



No flavour mixing, CKM = 1. When n, > 1 but CKM flavour mixing is disregarded,
the quark sector mirrors what is described above for the lepton sector. There will be then
ngy quark baryon charges independently conserved, each of them obeying separately an
equation alike to eq. (2.11), instead of only the combined one eq. (2.10). In consequence, ng
constraints follow on the diagonal elements of the quark sector, and all diagonal elements of
O( become redundant (assuming that the complete set of right-handed quark currents is
retained in the basis together with the anomalous operators). In other words, when CKM
mixing is disregarded, a complete and non-redundant basis is given by that in table 1 albeit
with the redefinition
_ Oua

O = {o"j =4 (Q7,Q%)  where i # j} (2.18)

We will use this simplified framework in the one-loop computations in section 4.

On the use of chirality-flip fermionic operators. Chirality-flip fermion currents are
sometimes used to describe the ALP Lagrangian, together with the three anomalous gauge
couplings. That is, some or all of the chirality-conserving fermionic structures in table 1
are traded by chirality-flip ones, i.e.

OuQEiEQL&)uR, OdQEiEQL‘I)dR, Oe¢EigEL(I)€R. (2.19)
Ja Ja Ja
Although this is possible if done with care, it could be misleading. The point is that, in all
generality, the operators in eq. (2.19) do not belong to the ALP Lagrangian in the sense
that they are not invariant per se under the required shift symmetry a — a + ¢ (which in
the ALP paradigm is assumed to be broken only by gauge anomalous currents).

Only in some particular cases the chirality-flip couplings are tradable for generic
chirality-preserving ones (plus redefinitions of the c¢¢ anomalous coeflicients). For instance,
this is the case for just one fermion generation or when the EFT respects Minimal Flavour
Violation (MFV).* Otherwise, it suffices to note here that the number of degrees of freedom
of a hermitian coefficient matrix (as for chirality-preserving operators) differs in general
from that of a general ny x ny matrix (as for chirality-flip ones). In the CP-even case, any
complete and non-redundant basis made out of purely shift-invariant fermionic operators
spans ng(5ng + 3)/2 — 1 degrees of freedom — see eq. (2.9), which differs from the 3n7
independent parameters of the chirality-flip set {Oyue, O4e, Oca} in eq. (2.19). The precise
combinations of chirality-flip structures which are equivalent to shift-invariant ALP couplings
(plus anomalous gauge couplings) are identified in appendix B.2, see also ref. [43].

Trading anomalous operators by fermionic ones. Anomalous gauge couplings are
intrinsically non shift-invariant. Chirality-flip structures will thus necessarily appear if
anomalous operators were to be traded by purely fermionic ones. It is shown in appendix B.3
how each of the operators Op, Oy and O can be traded by a combination of purely
fermionic structures which necessarily includes chirality-flip terms.

4This requires the coefficients of the chirality-flip operators to be proportional to the corresponding
Yukawa matrices.



Let us consider here as illustration the situation when only one anomalous gauge
coupling is removed from the complete Lagrangian. Eq. (2.12) showed that O, can be
removed without introducing any chirality-flip operator if O is maintained, and viceversa,
as a consequence of B + L being an anomalous global symmetry of the SM. For instance,
in our basis in table 1 it would suffice to replace either O or Oz by a trace of chirality-
conserving fermionic structures defined in egs. (2.3) and (2.4). In contrast, the combination
of Oz and Oy, with opposite sign to that in eq. (2.12) does not correspond to an anomalous
current, and thus requires chirality-flip structures when traded by fermionic currents, namely

n 2 9
20 (4205 + 0) = 2Tr 0L —2(Y.0u5 + hc)

2
= g Tr (OQ - 20, + 4Od) +2 (Ydod.p —Y, 0.0 + hC) . (220)

Analogously, and as expected from the non-perturbative nature of a G W(ﬁ” and the
fact that this term may induce a potential for the ALP field,? it is not possible to remove
O altogether in favour of another anomalous coupling plus purely chirality-conserving
(and thus shift-invariant) terms. For instance, some alternative equivalences of interest are

327r

2
Op = 22T 104 + (YiOus + he)] - 22 0 (2.21)
nggs 3 gs
3272 8¢
Ox = Tr O, + (Y, 0, h. 7—0~ 2.22
6= 7y g7 [TOut (VuOue hee)] = 575 05, (2.22)
3272
Oc=35" 5 [Tr (Oy — 404) + (YuOus — 4Y4Oue + h.c.)] . (2.23)
ggs

An interesting question in the chirality-flip vs. chirality conserving arena is that of
the one-loop (O(ax)) impact of fermionic operators on anomalous ALP-couplings. The
results allow to understand which combinations of chirality-flip operators discussed are
exactly equivalent to purely derivative fermionic ones. That this happens at all could seem
paradoxical from the quantum loop perspective, as chirality-flip operators will exclusively
induce at one-loop corrections proportional to fermion masses squared, while derivative
chirality-conserving operators contribute in addition a finite and mass independent term,
which is the contribution from the chiral anomaly of the fermionic currents. Nevertheless,
the relations above among both type of fermionic structures — see also appendix B.2 —
are precisely such that the matching holds at any order. An illustrative example of the
one-loop matching of chirality flip and chirality conserving contributions can be found at
the end of section B.1.

2.3 Purely bosonic basis

The addition of an ALP to the SM interactions is an enlargement of the scalar sector of
the low-energy theory. In some contexts, it may be pertinent to focus exclusively on the
bosonic Lagrangian.

5In fact, it is well-known that O generates a scalar potential for the QCD axion [3, 4].



O = —FWR W O = L BuB" Og =~ Gp,G
a

a a

Oup = 8;a (21iD,o)

a

Table 2. Purely bosonic operator basis.

The most general and complete purely bosonic effective ALP Lagrangian describing CP-
even couplings at NLO is extraordinarily simple. It contains just four linearly independent
effective operators [17, 46, 47, 51]:

gg)osonic — CWOW + CBOB + CG’OG’ + 3043 , (224)

where c,¢ is a real constant and

Opp = 24 (2'iDs2) . (2.25)
Ja
being @Tiﬁﬂ) = i®1(D,®)—i(D,®")®. The purely bosonic basis is summarized in table 2.
The operator Q¢ is equivalent to a precise linear combination of the fermionic operators
in table 1:
O, =Tr (0. + 04— 0,) , (2.26)

and it would have thus been redundant to add it to the set in table 1. The direct impact
of Oge is to induce a kinetic mixing between a and the would-be Goldstone boson eaten
by the Z boson. This mixing is cumbersome to work with, and it can be removed via a
Higgs field redefinition of the form ® — ® e*a®@/fa [17, 46, 52], which is equivalent to the
application of the Higgs EOM. This delivers chirality-flip operators that can next be turned
via the fermionic EOM into the chirality-conserving combination in eq. (2.26). Note that
no trace of anomalous gauge couplings remains in the final expression eq. (2.26) in spite
of the fermion rotations involved, as expected for a purely bosonic ALP interaction. A
comprehensive discussion of how the anomalous terms that a priori could be induced by
fermion rotations cancel each other for this operator can be found in appendix B.1.

Finally, note that O,¢ could be kept as one of the operators of a complete and non-
redundant basis at the expense of some other coupling. Eq. (2.26) shows that it could
be included at the price of omitting any of the diagonal operators of the right-handed
set {O¢, Oy, O,}. Another possibility — among many — is for O,¢ to replace certain
flavour-diagonal fermionic couplings of the left-handed set {O¢g, O}, as indicated by the
identity (see appendix B.1)

1
Oup = —Tr (01 +0q +20,) + (%0 — 9705 ny . (2.27)

This equation also suggests yet another alternative: to include O, in the complete and non-
redundant basis at the expense of omitting either Oy; or Opz. The exact expression of the
degrees of freedom which may be replaced by O,s is to be analyzed for each possible basis.



2.4 Phenomenological parameters

The ALP EFT presented above in terms of SU(3). x SU(2)r x U(1l)y gauge invariant
operators leads to multiple experimental signals. The ultimate goal is to detect or constraint
from data the set of fundamental independent variables

{CVV s CRHCas Cf} , (2.28)

which are to be treated as free Lagrangian parameters.
The three anomalous gauge couplings, Oz, Oy and O, induce five distinct physical
interactions with gluons, photons, W and Z bosons, which are customarily codified as

1 1 o o1 o1 -
ga o — 7 Yagg aG,u,z/Gl“/ - Zga'y'yanuFuV - ZQGWZGFNVZHV - ZgaZZaZp,VZHV - EgaWWaW;/W v ’

4
(2.29)
where
4 4
Yagg = 7 C&> Gayy = 7= (Sz2u o t C%u ), (2.30)
fa fa
4 4
JaWww = E i s 9az7 = ﬁ (0121; Cyy + 512,] c3), (2.31)
8
9arz = 4 swew(cyy — ¢3), (2.32)
a

where s, and ¢, denote respectively the sine and cosine of the Weinberg mixing angle,

given at tree-level by
_ Mw

:MZ.

It follows that the two independent electroweak anomalous couplings may source four

(2.33)

Cw

independent measurable quantities,

{ew ey — {9avy Yaww, 90225 Ganz} » (2.34)

a fact that allows to overconstrain the electroweak gauge sector of the parameter space. In
other words, electroweak gauge invariance imposes at tree-level the constraints

Cw
JaWw = Gayy + 2 GavyZ »
w
e (2.35)
w w
Jaz2 = Jayy + 2Cw5w JanZ -

From the experimental point of view these two expressions are quite useful, since they can
be used to set constraints on one coupling based on the constraints on other couplings,
barring fine-tuned cancellations. For example, g, is strongly constrained from multiple
experiments, while g,zz is harder to measure directly. Nevertheless, applying eq. (2.35) one
can translate the constraints on g, into constraints on g,z that are stronger than those
extracted from direct searches of the latter. This approach has already led to cross-relations
among different measurements, resulting in a noticeable reduction of parameter space
allowed by present data [14, 53|. It is thus relevant from the phenomenological point of
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view to determine how the relations in eq. (2.35) are modified when one-loop corrections
are taken into account. We will address this task in section 5.

It is also convenient for later use to consider the following combination of the couplings
in eq. (2.31) and (2.32), which corresponds to the aB,,, B, coupling:

4 1
9aBB = ff Cg = GaWw —

JavZ - (2.36)

a 2 wHw
Furthermore, in the cases in which the hatted basis of gauge invariant operators in eq. (2.15)
is preferred as description, the corresponding phenomenological parameters g;xx follow
trivially form the substitution {¢; — &, gixx — Gixx} in egs. (2.30)—(2.32), i.e.
. 4 R 4 R 4
GaGG = & Ca Jaww = — G JaBB = — Cj, (2.37)

fa € u fa

with the relation between ¢; and ¢; as discussed in eq. (2.15).

In all cases, the data on fermion EFT couplings can be directly expressed in terms of
the EFT Lagrangian parameter matrix c¢ corresponding to the complete basis in table 1.
For practical purposes, a simplified notation can be useful when considering flavour-diagonal
transitions. The latter are proportional only to the axial part of the fermionic derivative
couplings, i.e. the coupling has Lorentz structure R—L. For instance, a general — basis
independent — definition of phenomenological flavour-diagonal couplings can be written as

cu = (cy —cg)'t, ce = (cu — cg)*?, a = (ey —cg)™, (2.38)
ca = (cq — UleqU)' cs = (cqg — UleqU)2, e = (cg— UlegU)®,  (2.39)
ce = (ce —cp)M, ey = (ce —cp)*, ¢ = (co — )3, (2.40)

where U = Ugkwm is the CKM mixing matrix. This notation simplifies further in the
particular complete basis in table 1 in which de facto (cg)'* =0 and (c1)= =0, e.g.

cu = (€)™, ce=(co)'t, cu=(co)??, ¢ =(c)®. (2.41)

3 Non-renormalization theorems

The renormalization group (RG) properties of the ALP effective coupling have received
considerable attention lately.

Above the electroweak scale. CP-odd anomalous gauge couplings within the SM, i.e.
Lagrangian terms of the generic form ax X WX' # where X, denotes a generic gauge field
strength and ax its fine structure coupling, are not multiplicatively renormalized at any
order in perturbation theory. The reason is their topological character, which ensures
anomaly matching conditions [54]. Indeed the combinations o /27 BB, ay/2nr WW and
as/2m GG appear in the Lagrangian multiplied by “6” angles which are periodic variables
with periodicity 27, and cannot thus be multiplicatively renormalized [55, 56]. This can be
inferred from the fact that a chiral rotation induces a contribution to the divergence of the
axial current J, precisely of the form

ax ~
oud, D —X, X 3.1
ne o1t o ( )

- 11 -



N
N
N

9

Figure 1. One-loop diagrams which renormalize the effective @ GG interaction. The blob in the
last diagram stands for one-loop gluon and quark contributions (a similar contribution holds for the
other external gauge leg).

W W W W - 0%

W w W w

Figure 2. One-loop diagrams which renormalize the effective a WW interaction. The blob in the
last diagram stands for one-loop W and SU(2)y, charged fermion contributions (a similar contribution
holds for the other external gauge leg).

Now, when considering ALP-SM anomalous couplings, the ratio a/f, plays the role of an
effective angle. The non-renormalization theorems thus apply as well to ALP couplings of
the form ax/(2nf)a X Wf( m where 27 f is the periodicity of a [57]. In consequence, no
UV divergent terms can result from corrections to the combinations ay/27 Oy, az/27 Op
and as/2m Og. In other words, in the hat basis of effective ALP operators — see eqs. (2.14)
and (2.15) — the /8 functions for the electroweak anomalous couplings must vanish,

d . d d
¢g=0, 5@W=dlogMCW=07 Beg,

Bey = éa=0.  (3.2)

dlog it :dlogu

It is easy to check these results at one-loop, from the contributions of the Feynman diagrams
in figures 1, 2 and 3. Correspondingly, the RG evolution of the {ca, cyj,, ¢z} coefficients for
the basis in table 1 reflects that of the a; couplings, see eq. (2.15),

d 1 10 a7 41 (65)

Beg = mcg = B = (12 + gng> - Cg = 12 Chs (3.3)
d 43 2 (6% 19 (%)

Bey, = dlogp W = Bas = — (12 - 3%) =T v (3.4)
d 11 2 Qg 7 g

o = rogee = o == (5 ~5m0) Fea= 5 o (35)

where ny is the number of generations of fermions, and n, = 3 has been taken on the last
equalities of these equations. This results had been previously derived in ref. [43].

The beta functions for the ALP-fermion couplings have been previously obtained as
well, using a variety of fermionic bases, and we refer the reader to the corresponding
literature [43, 44, 49]. The beta function for the bosonic operator O, can be found In
ref. [49], in a redundant basis which contemplates all possible operators.
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B B

B

Figure 3. One-loop diagrams which renormalize the effective a BB interaction. The blob in the
last diagram stands for one-loop fermion contributions (a similar contribution holds for the other
external gauge leg).

4 Complete one-loop contributions to ALP couplings

We present here the one-loop contributions to the phenomenological ALP couplings, including
all finite corrections. The ALP field will be left off-shell (which is of practical interest
for collider and other searches away from the ALP resonance, besides adapting trivially
to ALP on-shell searches), while the external SM fields will be considered on-shell. For
channels with external fermions, we only provide corrections to the flavour diagonal ones.
Furthermore, CKM mixing is disregarded in the loop corrections to all couplings, which
means the framework depicted in section 2.2 for CKM= 1. That is, the complete and
non-redundant basis corresponds to that in table 1 with the proviso in eq. (2.18).

The operator basis used is that defined in eq. (2.5) and table 1. We will trade the
set of two linearly independent electroweak anomalous couplings {cy;,,cz} for the set of
four phenomenological couplings {gayy; gaWww 9az7, Gayz} in egs. (2.29)—(2.32), which are
in consequence linked by gauge invariance (as shown at tree-level in eq. (2.35)). The latter
means that the final one-loop results for a given effective electroweak coupling ggf)f( y can
be expressed in terms of just two tree-level phenomenological couplings of choice, e.g. in
terms of the set {g,xx,gaww }. These can be easily transcribed back in terms of the set
{4y, cp} if wished, using eqgs. (2.30)-(2.32) and (2.36).

All computations have been carried out in the covariant R¢-gauge, with the help of
Mathematica packages FeynCalc and Package-X [58, 59]. The individual one-loop diagrams

are in general £-dependent. The same applies to each of the one-loop corrected amplitudes in

eff
ayy’

phenomenological couplings {ga~~, Jaww, 9az2, garyz}- Their {-independence (with external

the ensemble {g gZ%VW, ggfg 75 gsgz} resulting from directly inserting all possible tree-level
SM fields on-shell) becomes explicit only when the gauge invariance relations in eq. (2.35)
are applied to the electroweak radiative results, so as to reduce the parameter space. Details
of ¢&-dependent intermediate steps are provided in NotebookArchive.

Renormalization and measurable parameters. We will use as renormalization frame-
work of the electroweak sector the scheme in which its four linearly independent parameters
(other than fermion Yukawa couplings), i.e. the SU(2), and U(1)y coupling constants (g
and ¢’ respectively), the Higgs vev v and Higgs self-coupling denoted here ), are to be
traded by precisely measured input parameters as follows

{9,d, v, \} — {aem, Mz, My, Mg }Heap (4.1)
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where the experimental value of ., is extracted from Thompson scattering (e.g. Q* = 0)
and the values of My, My, and My are determined from their resonant peaks.® The ALP
effective operators do not contribute to these observables at one-loop and O(1/f,;). In
consequence, the relation between the Lagrangian parameters and those four observables is
not modified with respect to the SM case. In other words, at tree-level it holds that

e2 g2gl2 a1 A 1
[0 = —_—— _= = — gV
T Ar An(?+9?)  artay’ W I (4.2)
1 -
MZ:§\/92 + g0, ME = M2,

a set of relations that can be easily inverted. All other SM observable quantities to be
predicted can be expressed in terms of those four input observables plus fermion masses.
While the fermion masses of leptons have a direct physical meaning which allows simple
renormalization procedures, in QCD due to confinement such a natural scale does not exist.
Alike considerations apply to the QCD coupling strength as. The renormalization scale and
scheme must be chosen with other criteria, based on simplicity and convergence. There are
many alternative ways proposed to deal with the infrarred behaviour of the QCD coupling
constant, that is, on how to extract from observables the strength of o, at a variety of
scales, see for instance ref. [60] and section 4.2.

One-loop corrections. Let us briefly rename with a bar the one-loop renormalized
parameters whose values are to be identified with the experimentally inputs mentioned
above, i.e. {@em, Mz, My, Mp}. Their relation with the (unbarred) tree-level quantities
can be written as

Qem = Qem + 00 MQZ = M% + 5M%, (4.3)
My = M2 + 5ME, Moy = M+ 6ME . '
While the symbol § is used here for the corrections involved in the definition of the input
parameters, we will use the symbol A for the physical predictions, that is, for the measurable
deviations with respect to the SM, that follow for any other observable. Of particular
practical interest is the Weinberg angle, defined at tree-level in eq. (2.33). Let us define a
ratio ¢,, as

M Acy
ew = — <1+ c), (4.4)
My

Cw
where

Cw 2

M; o My

Acy, 1<5M§ 5M5V> (45)

and 5M‘2/: 7w are computed in terms of the Z and W transverse self-energies as 5M‘2, =
Yv(g? = M‘Q,), see whose exact expressions can be found in appendix D. The tree-level

Saem = 1/137.035999139(31) at Q> = 0, Mz = 91.1876(21) GeV, My = 80.379(12) and
My = 125.25(17) GeV.
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a--- a--- a---
174 174 |74
A B C
V ‘ W/z
a--- a --- h
V! ‘ W)z
D E

Figure 4. One-loop diagrams contributing to gagg: Jayy, Gavz, gazz and geww at one-loop (the
corresponding diagrams with Goldstone bosons and the diagrams exchanging the gauge boson legs
are left implicit), where V' and V' are either a gluon, a photon, a Z boson or a W boson. The last
diagram only corrects insertions of the g,zz and g,ww couplings.

variables {gayy: ayz, Jazz} can now be written as a combination of the set {cz,c}; } and
physical boson masses,

4 8 _ Acy

Jayy = E(CQ cpts CW) 7 (02 cp+s CW) + EC%U(CW - CB)Z ; (4.6)
8 8 _ e — 52 Acy

Jayz = ﬁcwsw(cw —cp) = ﬁcwsw(cw —cp) (1 + ? - ) , (4.7)

Yazz = ;1 (shep + cueyy) = 7. (32 cp+ Cocyir) — ﬁcw(cw —cp) (4.8)

a

We will denote below by {gg{;fg, gggw ggf/fz, ggféz, gfj‘;,fvw, cfff} the physical amplitudes
computed at one loop, which are to be compared with data. They will be expressed in terms
of the tree-level variables {gagg, Yavys Javz: 9oz 2, Jaww, ¢t} and SM quantities. The Ac,
corrections shown above are to be taken into account whenever a fit to the fundamental
electroweak ALP variables {cg, ¢}3 } is attempted from data, i.e. the equalities to the right
in egs. (4.6)—(4.8) must be used in the transcription. Aside from taking into account this

proviso, the bars will be omitted from now on in all expressions.

4.1 ALP anomalous coupling to photons

The Feynman diagrams which induce one loop corrections to the effective anomalous ALP
coupling to photons, gq-, are depicted in figure 4 A, B, C and D, with V' = V' =~ (which
implies that W is the gauge boson running in the closed gauge loops, while the virtual
gauge boson coupled to a in diagram D is either a photon or a Z boson). Among the four
effective electroweak couplings, insertions of the set {ga+~, gaww, gayz} contribute to the
one-loop corrected effective coupling ggfyfy. Using the gauge-invariance relations eq. (2.35),
we choose to express the final result in terms of just two of them, e.g. the set {gayy, gaww },
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a--- =a--- +a---
V/ V/ V/
D D1 D2
h o~ W/Z ~hw)z 4
4+ a--- + a--- a---
V/ V/ V/
D3 D4 D5

Figure 5. One-loop diagrams contributing to the correction to the external gauge boson legs.
Diagrams with Goldstone bosons and Higgs tadpole diagrams are included. Notice that diagrams
D3 and D4 are only present for a Z or W boson external legs.

plus fermionic couplings:

2 2
9o = Gary {1 + Og% AZM_”} - QO:mgaWWBZ (4]]\042W> — i}j ;Cf QiNc By <4;n2f> ,
(4.9)
where here and all through the rest of the paper (unless stated otherwise) the sum over
fermions denotes all possible individual fermion flavours, f = u,c,t,d,s,b,e, u, 7, and p
denotes the 4-momentum of the ALP, N¢ is the number of colours for a given fermion f

(i.e. 3 for quarks and 1 for leptons), Qs is its electric charge. The functions B; and By have
already been defined in ref. [14] as:

) 9 arcsin — for 7>1
Bi(r)=1-7f(1), Ba(r)=1-(7—-1)f*(7), with f(r)= . i\/;_\/ﬁ :
5"‘511117@ f0r7-<1
(4.10)

The function A%/7>7 encodes pure leg radiative corrections stemming from diagramas D1,
D2 and D5 in figure 5 (with the virtual gauge boson attached to a being either a photon
or a Z boson, while the W boson runs in the closed gauge loops),

A=y :1—22Q2N010g A—Q —l—glog A—Q (4.11)
= m?) "2 M2, ) ‘

This computation has been carried out in dimensional regularization, trading next the 1/e
UV-divergent terms for an energy cutoff A via the MS prescription 1/¢ —yg + log (4mu?) —
log A2. This leg correction correspond to the SM one-loop redefinition of aw,. Indeed, were
the hatted basis of gauge operators to be used — in which «; and as enter explicitly in the
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operators definition (see egs. (2.15) and (2.37)), the one-loop corrections would read

N . 20em . 4M3, Am2
955 = Gy + —5-Gaww Ba Z QfNeBy | =L | (4.12)
TSy p p

a result which in the on-shell ALP limit reduces straightforwardly to that in ref. [14].

Eq. (4.9) could be rewritten if wished in terms of {cgz, ¢;3,} (and cf) applying eq. (2.31)
for goww and the last equality in eq. (4.6) for g,y (and analogously for eq. (4.12)).

For an on-shell ALP (p? =m ) the one-loop corrected decay width is simply given by

3 ‘ga'y'y|2

4.13
i (4.13)

I'(a—vy) =

or the equivalent expression in the hat basis with the replacement gmw — Qe /AT § gaw.
We show next some limits of the exact results above for the functions B; and Bs, for an
off-shell ALP, which are of interest in particular experimental contexts.

4.1.1 ngf/’y for high, intermediate and low ALP p?

o For p? — oo (p? > (m?, M%, M3,)), only the anomaly contribution remains from
fermion coupling insertions. These contributions and those from g, insertions
reduce to, respectively,

2
1 M,
B =1, By = ~1 <log ( ) + m) . (4.14)
p?

o For intermediate values of p? (mf < p? < (M%, M%) < m?), i.e. smaller than the
top and all gauge bosons masses but larger than all other fermion masses, it results

1, for light fermion insertions: m? < p? < M2,
Blz{ 8 N Z° By=0. (4.15)

0, for top quark insertion: p? < M% <m?,

e For p?> = 0, i.e. smaller than all fermion masses, both functions vanish By = By = 0.

4.2 ALP anomalous coupling to gluons

The Feynman diagrams which induce one loop corrections to the effective anomalous
coupling of an ALP to two gluons, gug4, are depicted by diagrams A, B, C and D of figure 4
with V' =V’ = g (which implies that all virtual gauge bosons are also gluons). Only the
ALP-quark couplings c;, and g,g4 itself, can contribute at one-loop to the ggaa amplitude,

4m

eff

= 5 G99 B

gagg gagg{ 127’(‘ } 27Tfa f—%;t Ct B1 ( p2 > ) (416)
d,s,b

where B; was defined in eq. (4.10), and the function G99 encodes the corrections stemming
from the vertex diagram A in figure 4 plus those from external leg corrections in diagrams
D1, D2 and D5 of figure 5.
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We have performed the computation of gagg in the R¢ gauge and using dimensional
regularization. The latter respects gauge invariance and regulates both ultraviolet (UV) and
infrared (IR) divergences when present, portraying both as poles in 1/e and thus mixing
them. It is possible to separate UV and IR divergences, though, via the implementation as
a previous step of any IR regularization procedure [61] — e.g. setting the external gluons off-

»T

shell or using an effective gluon “mass”’ — so as to identify first the UV divergences, and then

using this information on the complete pure dimensional regularization result. We obtain,

Ar 1 4
@9 =-2 Y <—7E+log< ”“;JV)) +33 (—’yE—i-log( ”“UV>>
f=u,c,t, mg €uv p

d,s,b

2
1 4 i 1 4 32
—9<—VE+log (— M;IR>> —33 (—7E+log< M;IR>) +36+—
€IR D €IR p 2

(4.17)

where eyy (er) and pfy (udy) account respectively for the UV (IR) divergence and renor-
malization scale. This result can be rewritten in terms of UV and IR cutoffs via the MS

prescription
1 2 2
a — g + log (47[-/J’UV> — log A=, (418)
1 2 2

where A and A denote respectively the UV and IR energy cut-offs, leading to

A2 A2 A2 2 32
G99—33log< )—2 Z log< )—33log<p2>—9<10g<p )—I—m) +36—|—%.
f=u,c,t,

d,s,b
(4.20)
When computing the probability for a given physical processes, the unphysical depen-
dence on IR divergences will cancel with that stemming from soft and/or collinear gluon
bremsstrahlung. In turn, the UV-divergent terms in this equation lead to the beta function
for ¢ in eq. (3.5).

4.3 ALP anomalous coupling to Z plus photon

The effective gqz coupling receives one-loop corrections from the fermion-ALP couplings c¢
and from the complete set of electroweak couplings {gav~, Jaww, 9az7, gayz}- The relevant

It is meant here to simply replace the gluon propagator by a massive one. This is not a gauge invariant
procedure and it thus leaves finite terms which are {-dependent and in consequence physically meaningless,
but it allows to identify properly the UV divergences (and with this information restart the whole procedure
using only dimensional regularization). It is of course possible to give a mass to the gluon in a gauge invariant
way by “Higgsing” QCD: this would add the contribution of the would-be gluonic Goldstone bosons, and we
checked that all the ¢-dependence would cancel then. Nevertheless, this Higgsed theory does not recuperate
QCD in the massless gluon limit: for instance, the beta function is modified by the contribution of the extra
scalar degrees of freedom present.
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Feynman diagrams are those in figures 4 and 5 (except diagram E), with the external
vector bosons being either photon or Z, and with V' # V’. In consequence, the gauge boson
running in closed gauge loops can only be the W boson, while the virtual boson attached
to a in diagrams D1, D2 and D5 is either Z or ~, and V' = 7 in diagrams D3 and D4.
The results are shown to become £-independent — as they must — only when the
gauge-electroweak parameter space is reduced to three couplings, using eq. (2.35). Applying
the latter again, the electroweak set can be further reduced to two anomalous electroweak
operators, that we choose to be the set {gaz, gaww }. The total result can be summarized as

off Aem Z/y— 1 z/ _>Z>} Qem Cw Qem Cf ¢
— gang A1 8em (pzhn L p7 Qem Cw gy AWV em Gy
Jaryz ng{ +127T< +C%Us2 T 50 +7rcwsw = fo

w
(4.21)
where the exact expressions for all the functions in this equation can be found in appendix C.1,
for an off-shell ALP and on-shell external SM particles. They are defined as follows:

o AZ/777 gathers the external leg corrections with a photon as final particle, (figure 5
D1-D5 with V =~ and V' = Z). Its expression was given in eq. (4.11).

o AZ/7=Z encodes the external leg corrections with Z as final particle (figure 5 D1-D5
with V' = Z and V' = ). It can be expanded as

Z/y—2 Zjy—Z Z—Z Z/y—2
VR IR e VN Ve (4.22)
where
- Aéﬁgﬁz accounts for the SM fermion loop corrections, figure 5 D5, see eq. (C.1).
— Aﬁggzs encodes Higgs corrections to external legs in figure 5 D3 and D4, see
eq. (C.2).
- AgZa/gg Z gathers the gauge boson corrections to external legs in figure 5 D1

and D2 (with W bosons running in the loop), plus the gq,yz component of the
corrections stemming from gq+, and g,z 7z insertions in figure 5 D1-D5, projected
on the parameter space {gqvz, gaww }, see eq. (C.3).

AW contains the contributions from direct vertex insertions of Jaww in diagrams A

and B of figure 4, plus the gqww component of the corrections stemming from g4~ and
Jazz insertions in figure 5 D1-D5 projected on the parameter space {gayz, gaww },
see eq. (C.4).

«+ Af encodes the fermion triangle correction from diagram C in figure 4, see eq. (C.5).

Eq. (4.21) can be rewritten in terms of {cp, ¢} } (and ¢f) applying eq. (2.31) for goww and
the last equality in eq. (4.7) for gaz.

An example of physical process to which the exact results can be directly applied in
case mg < My is given by the decay width of a Z boson to photon plus ALP,

M (2’
Pz === \'"az)
Z

(4.23)
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while for mq > Mz, the ALP decay width into Z plus photon reads

m3|QEHZ‘2 M2 3
Ia—~Z) = “12% <1 — mg) . (4.24)
a

We illustrate next the results obtained above for a generic off-shell ALP in some
particular limits of practical interest.

4.3.1 gggz for high ALP p?

For p? — oo, (p? > (m?, M2, Ma,)), the anomaly contribution yields:
Al =2NoQ3s? (4.25)

while the correction proportional to g, is given by

A2M2, + M2 A2 NeQ(Ts.—2Q¢s2) A2 M2 2
AW _ w Z _ , w/ = 1—(1 W ;
12M3, °8 M2, ; 3c2, °8 m? ©8 p? )

(4.26)

where the terms proportional to log A are kept, because consistency of the EFT expansion
requires p? < AZ.

4.3.2 ggfflz for intermediate and low ALP p?

Both for m% <P < (M%, Ma,) < m?2, where f refers to all fermion mass but the top one,
and for p? — 0 (p? < (m#, M%)), i.e. smaller than all fermion masses (which can apply for
instance to Z decay to ALP + photon), the contribution of fermionic ALP couplings to
gggz is well approached by

A 2NCQ%33,, for light fermions: m? < M3%, (4.27)
%Qt , for the top quark: m? > M% ,
while the correction proportional to g reads
42M3, + M? A? NeQi(Ts 1 — 2Qss> A?
AWW — W —"; Z 10g ( 5 _ Z CQf( 37f2 Qfsw) log 72 + e (428)
12M, Mg, - 3¢z, my

where dots stand for constant terms.

4.4 ALP anomalous coupling to ZZ

The effective g,zz coupling receives corrections induced by three of the four electroweak
gauge couplings: the set {goww, 9azz,9aryz}, Plus cf fermion corrections. All Feynman
diagrams in figures 4 and 5 contribute with V"=V’ = Z. Using eq. (2.35), the contributions
resulting from electroweak gauge insertions can be projected on a two-dimensional space of
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couplings, which we choose to be here {g,zz7, gaww }. The total effective coupling g,z can
then be expressed as

geff =g {1 + Qem, (AZ/'yHZ + BHiggs)} + Oem ig BWW Qem, Z
azz = 027 6mc s2, m 820w 2 2

(4.29)
where the complete expressions for the functions in this expression can be found in ap-
pendix C.2. They correspond to:

o A%/77Z encodes corrections to the external legs (diagrams D1-D5 in figure 5), see
eq. (C.1) for the exact result.

« BHigss gtems from the vertex insertion of g,z with a Higgs particle exchanged between
the two Z bosons (diagram E in figure 4), see eq. (C.10).

BWW collects the contributions proportional to geww resulting from direct vertex

insertions of g, in figure 4 A and B, plus the g, component of the contributions
seeded by the insertion of g,yz in the external legs and then projected onto the
parameter space {g.zz, gaww }, see eq. (C.11).

o Finally, the function Bf encodes the contributions from vertex insertions of the
fermionic couplings ¢f (figure 4 C), see eq. (C.12).

Eq. (4.29) can be rewritten in terms of {cp,cy } (and ¢f) applying eq. (2.31) for goww and
the last equality in eq. (4.8) for g,zz.

The results in this subsection can be applied to a variety of transitions in which the
ALP may be on-shell or off-shell. For instance, for m, > 2My the one-loop corrected ALP
decay width into two Z bosons is simply given by

malgs I anz\”
gaZZ’ _ Z
Pla—22)= =22 (1 s ) : (4.30)

We present next for illustration the limit of the complete results in appendix C.2 in the
particular case of high ALP four-momentum squared, which can be of interest for instance
for non-resonant collider ALP searches.®

4.4.1 gngfZ for high ALP p?

For p*> — oo (p* > (m#, M%, M3,)), only the anomaly contribution remains from the
insertion of ALP-fermions couplings,

B' = —NcQisi,, (4.31)
while the contribution proportional to g.ww simplifies to
A2 M2, + M2 A2 NeQ(Ts1—2Q:s2) A2\ 1 M2 2
BWW w Z lo _ ) w/ =121 w ;
1202, e\ g 2 3c2, o8z ) g lel e )T

f f
(4.32)

8For intermediate ALP momentum (mf < p® < (MZ, M{,) < m7?) and low four-momentum (p® <
(mg, M%)) the transition is not kinematically possible with the gauge bosons on-shell.
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and that proportional to g,zz corrected by Higgs boson exchange between external legs
vanishes, BHiges = (.

4.5 ALP anomalous coupling to W+ W~

All four couplings in the ensemble {gay~, gaww, 9azz, gayz} induce one-loop corrections to
the effective Qg/fvw coupling. All Feynman diagrams in figures 4 and 5 contribute. The
complete results can be found in appendix C.3. Using eq. (2.35), the total result can be
expressed for instance as a function of {g,ww, gayy} plus fermionic couplings,

off Qem (A WSW | ~AWW | ~Higgs Qem vy 4 Qem N G o
gaWW_gaWW{1+247T82 (A +C +C )}+ o ga’Y’yC ‘f‘ﬂ_S%};f(lC ’

’ (4.33)

where:

o AW=W contains two sources of one-loop external-leg SM corrections to the insertion
of goww itself: fermionic and Higgs corrections,

AVEW = AW 4 AtV (4.34)

wW—-w

ferm

eq. (C.17), and the Higgs-dependent term Alv{vig—g};” stemming from diagrams D3 and
D4 in figure 5, see eq. (C.18).

with only fermion doublets contributing to A , see diagram D5 in figure 5 and

C"W accounts for corrections proportional to g.ww, and gathers one-loop SM

corrections on the external legs (figure 5 D1 and D2) together with vertex ones
(figure 4 A and B) (see eq. (C.19) for the complete expression):

— The leg corrections and those from the vertex diagram B are directly seeded by
the insertion of g,ww -

— The contributions originated from diagram A correspond to the combination of
direct vertex insertions of gqww, plus the g,iww component of the contributions
seeded by {guzz, gayz} insertions projected onto the {gsyy, gaww } parameter
space.

« COMiess ig a pure vertex correction resulting from the direct insertion of g,y with
the Higgs boson exchanged between the two W legs (diagram E in figure 4), see
eq. (C.20).

e The vertex function C77 corresponds to figure 4 A, combining the results from
the direct insertion of g,y and the g4y, component of the contributions seeded
by {9ayz,9azz} insertions projected onto the {g,-,gaww} parameter space, see
eq. (C.21).

o Finally, the vertex function Cf accounts for the fermionic triangle contributions
(figure 4 C), induced by fermionic couplings ¢ insertions, see eq. (C.22).
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Eq. (4.33) can be rewritten in terms of {cp, ¢y} (and ¢f) applying eq. (2.31) for goww and
the last equality in eq. (4.6) for ggy-

We present next for illustration the high ALP four-momentum squared limit of the
functions in eq. (4.33).

4.5.1 g¢°ff o for high ALP p?

In the limit p? — oo (p? > (m?, M2, M%), the fermionic contribution to the anomaly
vanishes. The same holds in this limit for the correction proportional to gy, as well as
that stemming from Higgs boson-exchange between the external W bosons,

ct=cr=cMtiess =, (4.35)

The only non-vanishing contributions in this limit are those proportional to g,ww itself
and stemming from AW =W and C"W. The function A" =W is independent of p?: in
consequence, it is not further simplifed from the relatively cumbersome complete expressions
in egs. (C.17) and eq. (C.18), see eq. (4.34). The function CW'W simplifies to

A2 M2 2 22 M2
C"W = 43log| —- | =12 [log[ = | +in | —12s%log| — | [ 1+im+log( —2 | ...
og <M3v> (og( p2 +am Sy log M{%V +1m+log p2 ,

(4.36)

where A is the UV cutoff (this logarithmic dependence cannot be disregarded in front of that
in p? for EFT consistency), and A denotes the IR cutoff. The computation has been carried
out entirely in dimensional regularization, with the 1/e terms traded next for energy cutoffs

via a protocol alike to that used for gffgfg — eq. (4.17) — and the prescription in eq. (4.18).

The log A dependence contained in C'V'W AV—-W

combined with that in the leg correction
determines the beta function for ¢ in eq. (3.4).

The two first terms in eq. (4.36) are the leading contributions for large enough p?. The
third term exhibits a logarithimic dependence on the IR cutoff which is instead physically
irrelevant and can be disregarded, as it will exactly cancel for any physical observable against
the contributions from soft and/or collinear photon brehmsstrahlung. The latter may also
contribute additional finite terms to be combined with the finite and p? independent terms
in C"W (see the exact expression in eq. (C.19) in appendix C.3), encoded here by dots.

For intermediate (m? < p? < (M%, M%) < m?) and low (p? < (m#, M2)) ALP
four-momentum, the ALP-WW transition is again not kinematically possible for gauge
bosons on-shell.

4.6 ALP fermionic couplings

The one-loop corrections to the effective ALP-fermion-fermion couplings are depicted in
figures 6 and 7, where the internal wavy lines denote either the gluon in the case of
the gluon-ALP coupling g,4s (only possible for quark final states) or electroweak gauge
bosons. Contrary to the case for all previous effective couplings described, the individual
contributions seeded by each of the electroweak couplings in the set {gay~, GaWww 9oz 2 Javz }
are separately gauge invariant. In other words, the {-independence of the results holds

~ 93 -



—~
Rl

Figure 6. One-loop diagrams contributing to ¢f at one-loop (plus the corresponding diagrams with
Goldstone bosons). The wavy lines denote gauge bosons: gluons, photons, W and Z bosons.

already at the level of each one of those contributions, that is, prior to their projection
onto a reduced parameter space of electroweak gauge couplings. For this reason, we will
present those contributions individually. If wished, the reader can trivially project those
results in the two-coupling {c5,, ¢z} parameter space, or on any other parameter space (e.g.
{9a~y~> gaww }), using the gauge-invariance relations in eq. (2.35).

The results can be summarized as

@l {Ham D42 Dcf} Sem L ep DT +Y ey D
fa fa 3m 27 fa ¥ v le (437)
Qem, Ww s 99
+—-— o {ga’y’yD +9a ZD +gaZZD +gaWWD }"‘37 {gaggD } ;

where the sum over fermions runs over all possible flavours, ¥ = u, ¢, t,d, s, b, e, u, 7, and
the terms in the second line account — respectively — for vertex insertions of the phe-
nomenological ALP electroweak couplings {gayy, 9av7, 9az2z, Gaww } plus the anomalous
gluon coupling gugq: they all stem from diagram A in figure 6, and each term is separately
gauge invariant. The complete expressions for the functions DY, D% D4% and DWW can
be found in egs. (C.23)-(C.27) of appendix C.4. The first line in eq. (4.37) encodes instead
insertions of:

e The fermionic coupling ¢ itself accompanied by one-loop exchange of a gluon, encoded
in Dgf, or by the one-loop exchange of either a photon, a Z, a W or a Higgs boson, i.e.

D = D& + DY + Dl, + D, (4.38)

where Dy}, is a pure leg correction from W exchange (figure 7 D1), and it is &-
independent by itself, see eq. (C.31). In contrast, in to order get results in an explicitly
gauge invariant formulation, the one-loop corrections due to photon or Z exchange —
encoded respectively in DIf and D% — require the combination of the vertex diagram
B in figure 6 and the leg correction in figure 7 D1, see egs. (C.29) and (C.30).

— 24 —



=l
il
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Figure 7. One-loop diagrams contributing to the correction to the external fermion legs. Diagrams
with Goldstone bosons are included.

Similarly, manifest gauge invariance of the Higgs-exchange corrections — encoded
in D;f — results after combining the vertex correction in figure 6 C and the leg
corrections in figure 7 D2, see eq. (C.33).

o The contribution from cp, where f* denotes the SU(2)y flavour partner of fermion
f, encoded in the function D given in eq. (C.32). It corresponds to the vertex
correction due to W exchange in figure 6 B, which is gauge invariant by itself.

o All possible fermionic contributions to the mixed a-Z correction in figure 6 E, which

Cyp

are encoded through the functions D}, which are also separately gauge-invariant,

see the complete result in eq. (C.34).

The results can be applied to a variety of physical transitions with an ALP on- or off-shell.
For instance, for ALP decay into a fermionic ff channel when mg > 2my, the one-loop
corrected width is simply obtained from

— Nemgmi|csf|? 4m?
a a

For simplicity and for illustration purposes, we present next in this subsection some
useful limits of the exact functions in appendix C.4, for a generic off-shell ALP.
4.7 c?ff for high ALP p?

For non-resonant searches at the LHC and other colliders, and/or for very heavy ALPs,
the limit m? < (M2, M2,, M%) < m? < p? is of physical interest, where mg refers to all
fermion masses but the top one. In this subsection we set ms = 0 except in divergent terms.
4.7.1 Limit of light external fermions for f = u,d, s, b, e, u

Let us first consider the contribution of gauge-anomalous couplings to c?ﬁ. For instance,
D99 encodes the g,4¢ contribution with gluons running in the internal loop of diagram A in

figure 6, which in this limit reduces to

A? 272 1 m? , 2
D99 — {3log <m%> —4— =3 "3 <log <]92 +im . (4.40)
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Analogously, D77 accounts for the g4~ insertion with two photons running in the internal
loop of diagram A in figure 6, with an expression very close to that of D9 which in this
limit reduces to

2
DY = %Dgg, (4.41)

while the D% term stems from that same diagram with one photon and one Z boson in
the internal loop,

2
Qr (T3¢ — 2Q¢s2) A2 272 Mg
DV = : w/ 21210 —19-=—"— —92/1
16¢y 8w 8 M% 3 8 p? am

m? M2
—log<M2> 6+427T+4log<p )]} (4.42)

Similarly, the same diagram in figure 6 A although with two internal Z bosons results in

1 A?
D%Z — 8@3%0{ (Tif—QTs,foSiJr?QtSfu) (610g <Mg> —11>

w Z
M2 M3 2
+4T3 ¢ <1+10g < e )—i—m) +4QF 52 (T3 1—Qys2) <log < e >—|—z7r> }, (4.43)
while DWW corresponds to that same diagram, albeit with internal W bosons,

M2, > 4 } for leptons and quarks

{610g (%) — 2log (
except top and bottom
DWW — pLiop (4.44)

1682 {610g (A—2) — 2log (m—f) -9+ 4i7r} , for the bottom quark.

N

For the contributions resulting from the insertions of ALP fermionic couplings, the
one-loop gluon corrections (vertex plus legs), and the analogous one-loop photon corrections
lead in this limit to, respectively,

c 2 2 . m% 1 m% ) 2
Dgf:—2{1—6+log<m% 1+im+log el +§ log 2 +im , (4.45)

D = Q—% Dt (4.46)
Y 2 g°

where A is an infrared cutoff which encodes the IR-divergent contributions to the 1/e
dimensional regularization terms via the prescription in eq. (4.18), following the same
protocol used for the gluonic IR divergences in eq. (4.17). and the photonic ones in
eq. (4.36). Those unphysical IR logarithmic dependences will again exactly cancel in
physical transitions against those from the phase space integral terms stemming from
tree-level soft and/or collinear gluon and photon bremsstrahlung.
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In turn, Z exchange (vertex plus legs) is free from IR divergences and leads to

2

2 g2
2cz, 84, 3

The cfﬂ component resulting from one-loop W-exchange corrections to ALP fermion-
coupling insertions unfolds as explained as two &-independent contributions: i) the leg
correction from the insertion of ¢f in figure 7 D1, encoded in Djj,, which in this particular
limit vanishes, and ii) the vertex correction induced by the insertion of the SU(2) flavour-
partner coupling cp in figure 6 B, encoded in D:

0 for leptons and quarks

2 2 M?2
i () 1 (3

except top and bottom,

Der = (4.48)

) +g+2i7r} , for the bottom quark.

The one-loop Higgs corrections to ¢f insertions also vanish in this limit, D} = 0. Finally,
the mixed one-loop contribution to c?ﬁ from diagram E in figure 6 receives contributions
from all possible ALP fermionic couplings — quarks and leptons, and it is also &-independent
by itself. Its expression is particularly simple even in the exact case (see eq. (C.34) in
appendix C), while in the present limit all contributions vanish but for that with the top
quark running in the loop,

3Ty m; A? ,
D = _2312”]\45;{ log (172 +2+im (4.49)

where T3¢ denotes the third component of weak isospin for the external flavour f. The
logarithimic dependence was already obtained in ref. [62]. This result shows that, in the
limit under study, the top-coupling contribution can be the dominant one on the quest for
signals of ALP couplings to light fermions, because the contributions are proportional to
the mass of the fermion running in the loop and independent of the external flavour. In
fact, this conclusion extends as well to the exact result in eq. (C.34). This may be very
relevant for instance on the searches for ALP couplings to electrons in XENON and other
experiments, see section 6.

4.7.2 Limit of light internal fermions for external f = ¢

The analogous high ALP p? results when the external fermion is the top, i.e. the contributions
to cfﬁ neglecting light fermion masses, are reported next.

Let us consider first the impact of the insertions of ALP gauge anomalous couplings.
In the case of the ALP-photon and ALP-gluon couplings, gag¢ and g, the corresponding
functions D9 and D7 are exactly as those in egs. (4.40) and (4.41) albeit with the
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replacement ms — my. For the other anomalous couplings, the results simplify to

pZ - @ (Ts.1—-2Qss0) {310g (;;) —4} , (4.50)

4cywSw "

1 A?
D?% — (T2, —2T3,Qs% +2Q;s>) <3log <> —4>
4c2 52 { 3¢ ’ m?

wTw
2
2 1 m?\ m?
—i—2<lg<p2 i +2T3t log 2 +im

(4.51)

1 A2 2
DWW _ Sz {3log ( > —log (TZ > 3+3z7r} (4.52)

In turn, the one-loop gluon and photon contributions to ctelcf stemming from ALP-fermion

+2Q7 52 (Ts,1— Qs,)

couplings, i.e. Dgf and D!, are respectively identical to those found above for the light
external fermion hmlt in egs. (4.45) and (4.46). The rest of the one-loop boson corrections
to insertions of ALP-fermion couplings reads in this limit:

1 m?Ts, A2 ) m2
DS — - Lllog | = | +24im | — (T2, +4T5 Q52 —4Q%s* ) log | —L
VA 20%08,3) { M% p2 ( 3,t 5t w t w) M%

w2 m? m? m? ?
§—|—210g <M2 ) <log (p?t> +z'7r> — <log <p2t> +2'7T>

—QtS%U(T?),t—QtS?U)

(4.53)

DIC,{,——&\Z%ES%U{Iog (:;>+1+Z7r}, (4.54)
Dyt = _877525\4%/ { log (Mj%) +log <J\ZZ2{> —2—Z7r} , (4.55)
o _43?322% { log (ﬁi ) +2+m} (4.56)

while Dyf; = 0 with f’ = b in this particular case.

4.8 cfff for intermediate ALP p? and light fermions

We explicit now the limits for an ALP with a low p?, smaller or equal than all SM
boson gauge boson masses but larger than the mass squared of all light fermions m? <
P’ < M%, M%V, MIQ{ with f = u,d, ¢, s, b, e, u, 7. This limit is of interest for instance when
considering decays of a light ALP to leptons or light fermions, such as those searched for in
rare decays.

The contribution stemming from the insertions of gqgy and ge-, i.e. the functions D99
and D77, are again exactly as those in eqs. (4.40) and (4.41). For the other anomalous
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couplings, the results simplify in this limit to

Qs (T — 2Qs2) A?

DV = 2 wl6log | — | — 13 4.57
8CwSw e\ ) (4.57)

(T3; — T3,12Qss2 + 2Q¢ss) { A?
D% = = : - 2i6log | —5 | — 19}, (4.58)

8c2 52, M2

1 A2

DVW — = l6log| — | —19}. 4.59
163%}{ 8 (M%) } (4.59)

The results for D77 and eqgs. (4.57)—(4.59) have been addressed previously in ref. [14] for an
on-shell ALP (p? = m2); our results are in agreement with those, except for a minor factor
in D77, eq. (4.41).

We consider next the impact of inserting ALP fermionic couplings. Their contributions
vanish in this particular limit for the following functions:

DY =D =D, = D§' =0, (4.60)

while the gluon and photon corrections Dgf and DS coincide with those in eqgs. (4.45)
and (4.46). Finally, the a-Z mixing corrections read in this limit [62]

3T37f m2 A2

5 Gauge invariance at one-loop level

This section analyzes the modifications to the tree-level gauge invariance relations in
eq. (2.35) and (2.36), which result from rewriting the only two independent parameters of
the electroweak sector goww and g.pp (i-e. ¢5, and cp, see egs. (2.31) and (2.36)) in terms
of the measured phenomenological couplings, e.g.
Cuw
JaWW = GYayy + 5—9arZ ,
w

2s (5.1)

2 2
9aBB = CyYayy T SwYaZZ — CwSwYavZ -

Radiative corrections which include mass effects (spontaneously) break the explicit
gauge invariance of the original Lagrangian in eq. (2.5) and table 1. In other words,
corrections proportional to the Higgs vev v are to be expected, which can be summarized
as contributions to both the original SU(2)z x U(1)y-invariant operators and to additional
effective couplings which are not invariant under the electroweak (and custodial) symmetry.
The results can then be encoded as the strength of the following set of four effective couplings

{a B“”BH,,, a W’“’VVW, a B"W3

pvo

AW W} (5.2)

where the last two are new and do not respect electroweak and custodial symmetries, while
the first two were already present in the original gauge-invariant Lagrangian eq. (2.5). The
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radiative corrections to the aW/}l,Wl“” coupling must equal exactly those for the aWﬁVVVQ””
coefficient because of electric charge conservation: gflng will encode them as well as the
identical ones for the aWil,Wg“l’ interaction, while the “excess” will be accounted for in the
coefficient for a a W, Wj interaction denoted Ayyy. In turn, Ay will encode corrections
of the form aBWWs’y, ie.
total 1 T3uy 1 3 1i73uv
5‘Ca D) EABWCLBNVW HY 4 ZAWWG’WHVW e, (5.3)

The two new effective couplings can be expressed as the following combinations of radiatively-
corrected phenomenological parameters:

=2 eff 2 eff = g qeff eff
Aww = 5, Yayy T Cw 9azz T CwSw Jayz — GaWw

w da w JanZ (5.4)
Apw = 2ewsu(gin, — 9557) + (64 — 52)9eh 5

It is straightforward to compute the exact values of Ay and Apgyy from the results for the
effective couplings in section 4 and appendix C and the expression for ¢,, in eq. (4.4). The
tree-level closed gauge-invariance relations in eq. (2.35) will be modified in consequence.

Gauge invariant ancestors of radiatively corrected couplings. As stated above,
the operators aB,, W*" and aﬂfﬁ’yww” are neither custodial nor SU(2);, invariant. Nev-
ertheless, there must be a fully gauge-invariant formulation of any possible correction to the
effective Lagrangian and its corrections, because electroweak gauge symmetry is unbroken in
nature. Indeed, in generic EFTs, one-loop corrections are expected to give contributions to
higher order terms in the EFT expansion. Both in the SMEFT and in the linear ALP EFT,
these contributions are always finite, i.e. all UV-divergences are reabsorbed order-by-order
in the EFT expansion. Well-known examples in the SM are the magnetic and electric dipole
moments in the SM, whose gauge invariant version corresponds to operators with mass
dimension six and above.

Higher order radiative corrections, and in particular mass dependent ones (which are
equivalent to multiple Higgs insertions that then take a vev) can imply that a full tower
of operators may be needed to formulate those corrections in a gauge invariant way. The
putative SU(2); x U(1)y-invariant ancestors of the four gauge anomalous couplings in the
Lagrangian L% 4 §total e eqs. (2.5) and eq. (5.3), can be formulated alike to those
in ref. [63] for CP-conserving Higgs couplings. For our ALP set, we expect v-dependent
radiative corrections encoded in the gauge invariant operators

(542n): a(®'®)"B*B,,, (5.5)
(5+4+2n): a(@TO)"WHW,,, (5.6)
(T+2n): a(®'®)" (2160) WH B, — a BWS,, (5.7)
9+2n):  a(@D)" (@Tg1d) (BTo?®) W Wy, — a WIS, (5.8)

where n is integer, n > 0. In the last two lines it is indicated that those two towers of
operators lead — after spontaneously symmetry breaking — to the custodial and SU(2),
non-invariant couplings a B“”WEU and a WY VW;’V postulated earlier: note that their mass
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Figure 8. Illustration of fermionic one-loop contributions which induce an effective coupling
aB/‘”VNVEV.

dimension is at least seven and nine, respectively, and that they vanish for v = 0. In contrast,
the couplings in the first two lines can receive mass-independent one-loop corrections even
for n = 0, as computed in the previous section. An important consequence of this is that
loops induced by dimension-5 ALP operators can give UV-divergent contributions to the
structures in (5.5) and (5.6) for n = 0, while contributions to all other structures must be
finite. We find that this is indeed the case for Ay w and Agy .

A pertinent question is the scale that would weight down those higher-dimension
operators. Only one inverse power of f, is possible, because ALP insertions must enter
as powers of a/f,, and only one ALP insertion is considered here. The remaining scale
dependence must then correspond to either another BSM scale (not considered here) or
simply to SM mass parameters when only SM radiative corrections are present as in the
present work, i.e. to powers of the electroweak scale. These SM corrections should generate
coefficient contributions proportional in addition to the SM sources of custodial breaking.

5.1 Gauge invariance relations among effective electroweak couplings at
one-loop

It is easy to verify that Ay = Agw = 0 in the massless limit, i.e. for v = 0,° and the
one-loop corrections to the anomalous gauge couplings satisfy the tree-level gauge invariance
relations eq. (2.35). Instead, when mass corrections are taken into account, non-zero values
for Aww and Apw do emerge. As an example, our results show that the contributions
stemming from ALP-fermion coupling insertions — see figure 8 — are finite and take the
general form

ABW = YL (FL(ml) — FL(mQ)) + YRl FR(ml) — YR2 FR(mQ) y (59)

where m;—; 2 denote fermion masses of SU(2), fermion partners and the functions Fr(m) and
Fr,(m) cancel in the massless fermion limit, F7, g(0) = 0. In other words, a non-vanishing
Apw coupling requires as expected that the sources of custodial breaking be at play:
different fermion hypercharges and non-degenerate fermion partners running in the loop.
More in general, it follows from the analysis above that the tree-level gauge invariance
relations in eq. (2.35) are to be substituted by the one-loop corrected ones, which we choose

9Moreover, the radiative correction to gapp is proportional as expected to Z " yi, where y,, denote the
fermion hypercharges.
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to parametrize as:

ff f Cu  off c
Jaww = Gany T 72;0 Janz — 72;'1 Apw — Aww ,
w w
& & 52 _ §2 & 1 (510)
€ — € w w € _ A
Yazz Jar~y + DY Yayz 2B BW

where ¢, was defined in eq. (4.4). These one-loop corrections gauge invariance relations
may impact on the limits inferred for a given coupling from the experimental bounds on
another couplings known at present with higher precision (e.g. the bounds on the ALP-ZZ
anomalous coupling obtained from the experimental limits on the ALP-~+ coupling in
certain mass regimes [14, 53, 64]).

Limit m?,M%,M&V,M?{ <L p? < rnt2 Because Ay and Apy vanish for v = 0,
they vanish in the limit p? — co. The contribution of the top quark may thus dominate for
large p? close to m?. That is, the contribution of the top-ALP coupling ¢; may dominate in
the limit in which all SM particle masses but the top one are neglected with respect to the
ALP p?%:

« m? . 4m? 4m? 4m? ?
Apw ~ —cp ———36+6i /1 — —Lf | —5- ) —4f =55 ¢ (5.11)
TCwSw P p p p
AWW ~ Ct Baﬂ@ 14 m?C (0, 0,p2, my, 0, mt) 5 (512)
2782 p?

where the function f(7) was defined in eq. (4.10) and C is defined in egs. (C.13)—(C.16) of
appendix C.2. Notice that these expressions vanish in the limit p? — oo, as they must.

6 Some phenomenological consequences of loop-induced ALP couplings

High-precision measurements may be increasingly able to probe loop corrections to tree-
level effective couplings. Currently, sensitivity to loop-induced couplings is particularly
interesting when a tree-level coupling is suppressed and the loop contributions dominate.

In this section we are going to explore two examples of such situations: high-energy
gluon-initiated production of an electroweak ALP, and very precise low-energy searches for
ALPs which rely on couplings to electron-positron. In both cases, we focus on the loop
effects of the ALP coupling to top quarks.

6.1 LHC probes for heavy ALPs

In the Lagrangian eq. (2.5), we provided the ALP with couplings to the whole SM: the
electroweak bosons, gluons and fermions. This is a rather general coupling structure, yet
ALPs may have restrictions on how they communicate at tree-level to the SM. For example,
ALPs could originate from a UV sector participating in the mechanism of electroweak
symmetry breaking, coupled to the SU(2);, x U(1)y sector and not to the SU(3). one, e.g.
in Composite Higgs models where an additional heavy CP-odd state arises as a partner to
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Figure 9. One-loop contribution to ALP production via gluon-fusion, and its decay to a pair
of tops.

the Composite Higgs [65, 66]. This is just an example of theories with vanishing or very
suppressed tree-level effective ALP-gluon coupling (g,g4 in eq. (2.30)): an electroweak ALP.
These models of electroweak ALPs would be hard to probe at the LHC, as protons are
mainly made of light quarks and gluons. Then, the leading contribution to gluon-fusion
cross-section could correspond to integrating out tops. For definiteness, let us consider

exclusively the ALP-top diagonal coupling ¢; defined in eq. (2.38),
oua

XDCth

a

(E7"75t) - (6.1)

The ALP production would then be mediated by a top running in the gluon loop and could
be constrained, for instance, in gg — a — tt processes, as illustrated in figure 9. In this
process, the ALP could be either resonant or non-resonant [19], depending on its mass.'®

For definiteness, here we consider ALPs with m, > 2m;, such that the top-antitop pair
can be resonant. This allows us to derive constraints from existing searches for resonances
in t¢ final states, that are at a very mature stage in the LHC collaborations. This is true
in particular at high-mass, where the fully hadronic topology can be accessed using jet
substructure techniques. As an illustration of how LHC probes could be used to search for
heavy ALPs, we re-interpret the recent ATLAS analysis [67] to set bounds on ¢/ f,.

We simulate separately the pure gg — a — tt signal and the component stemming from
the interference of this process with SM gg — tt production. Expressing gggg as a function
of ¢; as in eq. (4.16), the former scales with (¢;/f,)* and the latter with (c;/f,)?. The

simulation is performed generating 10° events in each channel with MadGraph5_aMCG@NLO [68],

eff
agg

with p? are neglected, as they only induce a few % correction to the numerical value of the

using an in-house UFO implementation of the Lagrangian in eq. (2.5). Variations of g

gluon coupling. The imaginary part stemming from expanding the B loop function is also
subdominant and can be safely neglected in the simulation.

We perform a very simple analysis at parton level, without decaying the top quarks and
without performing full parton shower and detector simulations. To partially compensate for
this, a gaussian smearing with a 6% width is applied to the simulated top-antitop invariant
mass (my;) distribution, and the latter is multiplied by a m-dependent suppression factor

10A competing channel, that takes place at tree level, is pp — tta with a — tt. However, the phase-space
suppression for this channel is stronger than the loop suppression in gg — tt. For example, for mg = 1 TeV,
o(gg — a)/o(pp — tta) ~ 2 x 10%.

— 33 —



estimated from figure 2 in ref. [67], that accounts for the tagging efficiencies.!! The
acceptance correction is implemented by applying, at the generator level, the cuts reported
in ref. [67] on the top quarks pseudo-rapidities 7, ; and transverse momenta pr(t,t), and on
their rapidity and azimuthal-angle separations, Ay,; and A¢,; respectively.

The distribution obtained (summing signal and interference components) is compared
to the difference between measured and predicted number of events in the m,; spectra
reported in ref. [67], that is available on HEPdata. We implement a basic test statistics
constructing a X2 as

1 |¢f 2
X(ee/fa) =D — t Cap+ 5 ik by — di| (6.2)
t %k a f

where the index k runs over the bins of the m,; distributions for the 1- and 2-b-tagged
signal regions, ay (i) is the number of events estimated for the pure ALP signal (ALP-SM
interference) in the k-th bin with ¢;/f, = 1TeV~!. In this equation, by (dy) is the number
of expected background events (observed events) reported by the ATLAS Collaboration.
Finally, the uncertainty oy is estimated by summing in quadrature the total systematic
uncertainty reported by ATLAS, the statistical error v/d; on the measured data points and
the statistical uncertainty associated to our Monte Carlo simulation. As a conservative
choice, bins with 0 observed events are removed from the analysis, as in this case a 2
statistics cannot be applied. We repeat this analysis for various values of m, in the range
from 1.6 to 4.6 TeV and extract, for each value, a 95%CL upper limit on ¢/ f,.

The results of this naive re-interpretation are shown in figure 10. The limits on f,
obtained lie at the boundaries of a good effective description of the ALP Lagrangian as, for
lce] = 1, the bound on f, is mostly below m,. On the other hand, in a strongly interacting
regime where |c¢;| >~ 47 (as could be the case of a Composite Higgs model), the limits on
fa improve by an order of magnitude and result well above m,. A dedicated analysis,
potentially extended to the leptonic and semi-leptonic channels, could improve these bounds
significantly.

6.2 Limits on the couplings to top quarks for light ALPs

Another interesting use of loop-induced ALP couplings appears when a tree-level coupling is
very well measured and can provide a good constraint on loop-induced couplings, assuming
no substantial cancellations happen between tree and loop-induced couplings. Among these,
the loop-induced ALP-electron diagonal coupling c. (defined in eq. (2.40)),

f:)cea

o7, (ev'yse) (6.3)

is particularly interesting as electrons are found in stable matter. Astrophysical objects
like red giants or precise non-collider experiments such as Dark Matter Direct Detection

1We assume that the efficiency for the ALP detection does not differ significantly from that for a Z’.
A more detailed analysis would require simulating both particles and comparing how the fat-jet tagging
efficiency varies depending on the coupling properties of the resonance. This dependence has been often
found to be subdominant in previous studies, see e.g. refs. [69, 70].
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95%CL excluded region from gg — a — tt

0.0 . . . . . .
2.0 2.5 3.0 3.5 4.0 4.5
m, [TeV]

Figure 10. Limits on f,/|c|, as a function of the ALP mass, extracted from the all-hadronic tt
resonance search by ATLAS of ref. [67].

experiments provide an excellent handle on that coupling. Here we consider the current
limits on the axion-electron coupling collected in ref. [71], that include results from Red
Giants [72], Solar neutrinos [73] and LUX [74], which are derived for solar axions and extend
to very low ALP masses, as well as from Edelweiss [75], PandaX [76], SuperCDMS [77] and
XENON-1T [78-80], that cover the region 100eV < m, < 100keV assuming the ALP to be
the main DM constituent.!? The most stringent bounds are those from red giants and from
DM direct detection at XENON-1T, and give || (m./f,) < 10713,

These limits can be translated into limits on the diagonal ALP-top coupling, using the
one-loop contributions computed in section 4.6, corresponding to diagram E in figure 6, see
also refs. [62, 81]. Note that in DM direct detection experiments the typical energy range is
the keV, hence our expressions must be taken in the limit of low-momentum exchange in
the detector between the ALP and the electron, i.e. below the electron mass. In this case
one finds the log-enhanced expression found in eq. (4.61), namely:

ff A2
ot ~ 2,48 ¢t ey log (m%) . (6.4)

For consistency, the cutoff of the loop integrals A should be of the same order as f,. As
the A dependence is logarithmic we will use A = 106 TeV in this equation, to extract the
bounds on f,/c; shown in figure 11,'3 from which it follows

fa/lc] > 2.2 x 10° TeV (6.5)

12Note that — strictly speaking — the bounds extracted from DM searches only apply in scenarios where
the ALP is stable and can be produced with the correct relic abundance. Verifying the latter condition for
the particular ALP scenario considered here is beyond the scope of this work.

13The value 10° TeV was chosen a posteriori, so as to match the limits on fa.
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95%CL excluded region from constraints on ALP-electron coupling

BB EDELWEISS (DM)
107 Il 1L.UX (solar axions)
BN PANDA-X (DM)
_ 10 BN SUPERCDMS (DM)
c EEE XENONIT (DM)
% 10° 7 8 XENONIT (solar axions)
= XENONIT excess
= 10* [ red giants
[ solar v
10
102

10 107% 107* 1072 100 102 104
mg [eV]

Figure 11. Limits on f,/|c| as a function of the ALP mass, extracted rescaling existing constraints
on the ALP-electron coupling, taken from ref. [71]. The grey hatched box marks the region roughly
compatible with the excess observed by XENONIT [79].

in the entire range considered. If the ALP is assumed to be DM, XENONIT bounds apply,
leading to the stronger constraint

fa/lce] > 1.4 x 107 TeV . (6.6)

XENONIT recently observed an excess in their data, which could have been explained
by solar axions coupled to electrons and/or photons in the mass range m, ~ 0.1 — 100 eV
for the QCD axion [79, 82]. Thus, instead of a limit, in this case XENONI1T would identify
a finite preferred region in the plane (gay~, e/ fa). Unfortunately, this interpretation of a
QCD axion is in conflict with the data from red giants. Nevertheless and for the sake of the
exercise, one can consider what would be the preferred value for f,/¢; if that XENON1T
excess was taken at face value. Using then eq. (6.4), and the one-loop corrections to
Ja~y computed in section 4.1 which correspond to diagram C in figure 4, it follows that
the induced value of g4+ is strongly suppressed for the ALP mass range considered here
(p? = m2 < m?): ggf% <107 8aemer/ fo < %/ f,. In this limit, the results from XENONIT
could be interpreted as a preferred range for c‘;ff independent of g4,~. This broadly includes
values 2 x 10712 < |c¢f|(me/f.) < 4 x 1072, The projection of this interval in terms of
fa/ct is shown as a grey-hatched region in figure 11.

Finally, note that the type of analysis carried out in this subsection can be also applied
to the flavour-diagonal ALP-bottom coupling ¢, (defined in eq. (2.39)). Numerically, limits
on f,/cp can be approximately estimated rescaling by m? /m? [81] those on f,/c; in eqgs. (6.5)
and (6.6) above, leading respectively to f,/|cy| > 1.0 x 103 TeV and f,/|cpy| > 6.5 x 103 TeV,
for A = 103 TeV.
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7 Conclusions

The search for axions and ALPs is intensifying in both the energy and the precision frontiers.
The vastly different energy regions explored range from those typical of astrophysics and low-
energy laboratory experiments to collider energies. At the same time, increasingly precise
probes are targeted e.g. photon and/or invisible channels in rare hadron decays and other
low-energy channels. The point is well past in which the estimation of one-loop effects in the
couplings of ALPs to SM particles is needed to explore optimally BSM physics through the
detection of pseudo-Goldstone bosons signals. From the theoretical point of view, effective
Lagrangian formulations allow to pursue this quest in a very model-independent way.

In this work, we have first clarified the relations among alternative — complete and non-
redundant — CP-even bases for the d =5 ALP linear effective Lagrangian. In doing so, we
derived the exact relations between bases which differ in their choices of fermionic operators
constructed with left-handed and right-handed currents and/or chirality-flip couplings.
We identified the precise combinations of gauge anomalous couplings involved in trading
different bases. This includes the relations stemming from the anomalous global B + L
current and the conserved B — L one. Although we then chose to work on a complete and
non-redundant basis containing gauge anomalous operators plus all possible right-handed
fermionic currents and certain couplings made out of left-handed currents, the relations
obtained will allow easy translation of the results to other bases.

Furthermore, illustrative practical checks of bases equivalences were as well performed.
For instance, the purely bosonic operator O, can be written either as a combination of
right-handed fermion currents or as a combination of left-handed fermion currents, right-
handed ones and gauge anomalous couplings: it is explicitly shown how all anomalous
corrections vanish at one-loop level, as they should.

In a second step, we have computed the complete one-loop corrections — thus including
all divergent and finite terms — to all possible CP-even couplings of an ALP to SM fields,
for a generic off-shell ALP and on-shell SM particles. Our results are formulated in the
form of the effective one-loop interactions {gggg , ggfva, i S ggfyfz , e where the
latter is computed for all SM fermions — light and heavy — but restricted to flavour
diagonal external channels. Moreover three-generation CKM mixing is disregarded in the
loop corrections. Neutrino masses are disregarded as well. Our computations thus carry
to novel territory previous studies restricted to on-shell ALPs and to certain channels and
limits. All our computations have been performed in the covariant R¢ gauge, and the
intermediate £-dependent steps made publicly available at NotebookArchive, together with
the exact final gauge-invariant results. The latter are shown as well in appendix C, while
in the main text limits relevant for high, intermediate and low energy experiments are
extracted. Particular attention has been dedicated to the isolation of infrared divergences
when present. As a byproduct, the UV divergent terms of our computations also allowed to
do a straightforward check of recent RG results in the literature in different bases.

An illustration of the reach of our results is the impact that any putative ALP coupling
induces at one-loop on any other ALP interaction. For instance, we explored how, for heavy
ALPs, the ALP-top coupling can be constrained by LHC measurements of top-pair final
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states, processes which are induced at one-loop by this coupling. These channels, pumped
up by gluon fusion via a top loop, open up the possibility of studying many ALP final
states with a sizeable cross-section, even when the tree-level coupling ALP-gluon would be
zero. We also explored constraints on ALP-top interactions for light ALPs. In this case,
the strictest limits are those derived from bounds on the ALP-electron coupling, extracted
from astrophysical constraints and from DM Direct Detection searches [62].

An interesting point also clarified in this work is the one-loop modification of the
electroweak tree-level gauge invariance relations. These are relevant as far as custodial
symmetry breaking, i.e. mass and hypercharge differences, are relevant. We have deter-
mined these corrections, which will impact future one-loop extractions at LHC and other

experiments of the sensitivity to a given ALP coupling from more precise data on another

eff
ayy

A plethora of experimental channels should be explored using the results of this paper.

ALP coupling (e.g. goww from data on ¢g&- . or gflfyfz, and similar analyses).

Future directions include the one-loop complete results with all external particles off-shell
and also flavour non-diagonal channels. A related interesting task is the computation of
box and other diagrams for certain physical processes, which is mandatory to cancel all
infrared divergences in processes involving g.¢¢, gaww and c?ff. Finally, the analysis of the
ALP bases should be extended to include CP violation in the ALP couplings. These and
other exciting developments lie ahead in the BSM path to uncover novel pseudo-Goldstone
boson physics.
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A Standard Model equations of motion

In this appendix we report the SM EOM for the fermion and Higgs fields, that are relevant
for the discussion in section 2 and appendix B. For chiral fermions, the EOM read

iDQr = dYydp + dY,uR, ipur = YfQy, iPdr = oY) Qy, (A.1)
iDLy = ®Y,ep, iPer = ®Y Ly, (A.2)
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where flavor index contractions are implicit. For the conjugate fields they imply
_iQLE = dgY, o' + agY, ol _ZﬂRB =QLY,®, —iJRB =QLY,®, (A3)
—iELE = epY ol —iéRB =L.Y.®. (A.4)
The EOM for the Higgs field reads
O¢; = — [CZRY;(QL)i +(Qrio*);Yyur + erY.S (Lr); } + 7hq’ —2)\(21®)®; (A.5)
00f = — [(Qu)iYadr + rY (i0°Qr); + (L1)iYeer| + nj@j —2)(@f0)0],  (A.6)

where i is a free SU(2);, index and we have taken V(®T®) = —(m?2/2)0Td + \(2T)2,
where my and A denote respectively the Higgs mass and self-coupling.

The use of fermion EOM is tantamount to chiral rotations of fermion fields, at the
classical level. When considering loop effects as in this work, they must be supplemented
by the contributions of the SM anomalous global currents, i.e.

i i 2 v 392 o Yyrauv 2 a a, I/

Ou(@L1"QL) 2 g —~— B, B" + 29,2 Wi W + 16 2G Gar (A7)
i ) g/2 B 2

Ou(upy"up) D _TﬂB‘“’BH 32 GWG K (A.)
7i i 9’2 v ap

Ouldpy"d) > =15 By B 32 ., G (A.9)
T 7 9/2 1/ Trouy

8M(LL’)/#LL) 307 2BMVB“ “VW H , (Alo)
~i i g

Ou(eryter) D — 6 ——Buw B (A.11)

where we are not summing over the index <.

B Field redefinitions and operator basis reduction

In this appendix we consider the ALP-dependent field redefinitions that are required in
order to relate and reduce the operator basis:

d — exp |:i$¢>a:| D, f— exp [ina} f, (B.1)
Ja fa
where in flavour space f = {Qr,ur,dg, L1, er} are vectors and x¢ = xfj are tensors. For
notation simplicity, the subindices {L, R} will be omitted, i.e. f = {Qr,ur,dr,Lr,er} =
{Q,ud L,e}. We take all rotation parameters x4 and x¢ to be real, consistent with the
assumption of CP conservation of the ALP couplings (the only CP-violation present is that
of the SM contained in CKM, i.e. in the Yukawa matrices). Moreover, due to the hermicity
of the Lagrangian it is only the symmetric component of the matrices x¢ that contributes
to a variation in it. Then, from now on we assume Xy to be symmetric, i.e. x? = xgi, SO
(xf+x{)/2 = x¢. Discussing the basis reduction in terms of field redefinitions rather than
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via the direct use of EOMs makes their impact on the Oy operators more transparent:
because the fermion rotations are chiral, contributions to the latter are generated through
the axial anomaly.

The general procedure for reducing the operator basis is as follows. The rotations
in (B.1) are first applied to Zsm (eq. (2.2)), and an expansion at O(1/f,) is performed
next. The net shift resulting from the most general rotation reads [17]

Ay = —29 000 — >, xtOf+ [(XLYe — Yexe — 19Ye) Oco

f=Q,u,d,L,e
+ (XQYd —Yyx4 — .%'q,Yd) Oup + (XQYU —Y,xy + wq,Yu) Oue + h.C.}
B.2
+£O~Tr 1x —§x —gx +x —2x}+g20~Tr[3x +xr] B2
3272 BT |37Q@ T 3T T gd T AL T e Togoa nW QT AL
g2
+ 32;2 OpsTr[2xg — xy — X4] ,

where the anomalous operators O 3 are defined in table 1, O¢ are the chirality-conserving
fermionic operators defined in eqs. (2.3) (2.4), Og¢gp are the chirality-flip ones defined in
eq. (2.19), and finally O,q is defined in table 2. The trace in the last two lines of eq. (B.2)
is over flavor indices, while in the first two lines the implicit contraction of flavour index of
the effective coefficients and operators respects the convention in eq. (2.6), e.g.

(xLYe = YeXe — 20Ye) Oco = ) (X1Ye — Yexe — 20Ye);; O, etc.,
i.J

while the expressions inside parenthesis are matrix products, i.e. (x1Ye)ij = > p(xL)ik(Ye)k;-

At this point, one is free for instance to choose x¢ and x¢ so that the terms in A Z%gm
cancel off against redundant operators in 2%, Or to choose values for combination
of indices so as to remove one or all of the anomalous coefficients cg. It is not hard
to verify that each field transformation is equivalent — up to shifts to the anomalous
bosonic operators — to the application of the EOM of the corresponding field, provided in
appendix A. In what follows, some specific applications of eq. (B.2) are developed.

B.1 Relation between O, and fermionic operators

Eq. (B.2) indicates that in order to remove O, one needs to fix g = c4e. This @ rotation
comes at the price of introducing a set of chirality-flip operators [17, 46, 52], i.e.

Oa@ = Yu0u¢ — Ydodq) - }/eoe¢> + h.c.. (B3)

As O, is a purely bosonic operator, the flavor structure of the fermionic operators in this
equation necessarily reflects the SM flavour structure. In other words, it follows the MFV
ansatz [83-85], where a U(3) global flavor symmetry is present in the Lagrangian but for
the Yukawa couplings, which are treated as spurions.

The combination of chirality-flip operators obtained can be traded next for chirality-
preserving ones (plus in some cases shifts in the O ¢ operator coeflicients) by fixing the
quantities x¢ such that the coefficients of O¢p,Oysp, Q4o in eq. (B.2) cancel. This is
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equivalent to applying the transformations of the fermion fields in egs. (B.5)—(B.9) be-
low. For instance, it is possible to map O, onto just 3 operators out of the whole
set {Oy,04,0¢,00,0r}, plus Oy operators. For example, the mapping onto the set
{0,,04,0,} is achived choosing x% = Xilj = —x% = §¥ ¢4, and leads to eq. (2.26), that
is a combination of only right-handed fermionic currents. As it can be easily checked from
eq. (B.2), the contributions to gauge anomalous operators O ¢ cancel exactly in this case,
which does not necessarily generalize to other choices.
For instance, one could alternatively map onto the set {0g,0,,0.} by choosing
sz] = xQ = x% /2 = 6 ¢4, which leads to
1 2 2
Oup = = Tr (O + O +20,) + — (¢°Oy — 9”03 n, . (B4)
This result does not mean that O, is anomalous! In fact, we have explicitly checked that
when the product ¢, Q044 is considered at O(a), the contribution from the O ¢ terms on
the last bracket are compensated exactly by the anomalous contributions stemming from
the insertion in figure 4 diagram C of the operators in the first bracket (O,, Og and Op),
and only O(m?) finite terms of remain from the loop contribution. When instead the same
computation is performed using the expression for Q.4 in eq. (2.26), i.e. as combination of
the right-handed set {O,, O4, O}, the anomalous contributions they induce cancel each
other and only the same O(m?) terms are present, as they should.

B.2 Relations among fermionic operators

Collecting the terms proportional to xf in eq. (B.2) one can infer relations among the
fermionic operators. Writing explicitly the flavor indices i, j, it follows that the relations
between chirality preserving and chirality-flip operators (plus anomalous couplings) read
fermion structures can be

0% = [0, (Ya) + O (V)i + (Ohe) (V)i + (0L (¥

g"? 3 . g2 i
+ 16 05 327T20W T 506 ] § (B.5)

.. kj 1 " + 9/2 g2
1) — | _ L ? . _ U

o)/ = [ O, Yu)ki — (0),) (Yu)Jk} [1%20 + oo 506 1 J (B.6)
ij kj b ik (ot g"? g2

04 = [_Od‘b (Ya)ki — (Oge)™ (Vg )jk] B [487#0 32 OG} 5, (B.7)
iy T \kj + g g ij

oY [o (Ye)jk + (Ogg)™ (Yo )m} 25308 T 3550w ] 54 (B.8)
ij j i 9 i

0 = {_016% (Ye)ri — (OLI)) * (YeT)jk} 167 162989 7, (B.9)

where a sum over k is understood. Combining them, the relations between chirality-
conserving operators and chirality-flip ones are determined.

The equations above showed how to express the chirality-conserving couplings as
combinations of chirality-flip ones. What about the inverse relation? It is clear from the
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counting of degrees of freedom shown earlier that the latter cannot be achieved in all
generality. Indeed, only very particular combinations — relatively weighed by Yukawa
factors — of a given chirality-flip operator can be extracted from eqs. (B.5)—(B.9), and
written in terms of chirality-conserving plus anomalous couplings: this reduces in practice
their n?] degrees of freedom per fermionic operator (which sums to a total of 3n3 fermionic
parameters in the ALP Lagrangian) to an active number of ny(5n4 + 3)/2 — 1 fermionic
parameters in total.

B.3 Purely fermionic bases: removing anomalous operators

Finally, one could ask whether the anomalous operators O ¢ could be removed altogether
from the basis, trading them for fermionic structures. In order to do this, one needs to impose

12
# Tr %XQ — gxu — %xd + X[, — 2Xe| = —cp, (B.10)
g
3972 Tr [3xg +x1] = —cy - (B.11)
g2
39,2 Tr 2xg — Xy — Xg) = —Ca . (B.12)

It is not difficult to show explicitly that the anomalous bosonic operators cannot be com-
pletely replaced by purely chirality-conserving fermionic ones.' Indeed, it follows from
eq. (B.2) that the conditions to remove all chirality-flip terms are

xQYy — Yuxy, =0,
XQYd - ded = 0, (B13)
xrYe —Yex. =0,

and it is not possible to satisfy simultaneously these equations and the conditions in
egs. (B.10)—(B.12). Nevertheless, it is sufficient to relax two of the conditions in (B.13)
in order for the system to be solvable. This implies that any solution of egs. (B.5)—(B.9)
always involve chirality-flip terms. One example is:

1672
Op = =7, [TrOc + (Y.Ocp + b)) (B.14)
g9
3272 1 Ye
S T -0,.) - (=£0.p +hec )|, 1
Ow ang{r<OL+20> (2oq,+ C)} .
3272 O, Ye
- Tr [ — Ze) _ vy — 20,9 + hc. )| . B.1
Oc gzng{ (-0a+ ) - (¥i0u - 50w +he.) (10

A final comment on the non-equivalence of anomalous couplings and shift-invariant
fermionic ones is pertinent in the case of the gauge hypercharge, i.e. the operator O 5. As it
is well known, the pure gauge anomalous couplings can be written as total derivatives of non-
gauge invariant quantities, X Wf( m =9, K%, a term that for pure U(1) gauge Lagrangians

1This is as expected on physical grounds, given the non-invariance of anomalous gauge couplings under
the shift symmetry.
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does not contribute to the action because the gauge configurations die sufficiently fast at
infinity, unlike for non-abelian groups. In this sense, it can appear at first sight surprising
that the equations above show that the fermionic equivalent of Oz does include chirality-
flip (and thus not-shift invariant) terms. Nevertheless, in the presence of fermions it is
the combination of Oz and Oy, in eq. (2.12) the one which is shift-invariant, because
it corresponds to the non-conservation of the anomalous B + L global U(1), while the
combination of Oz and Oy, with opposite sign is endowed with a non shift-invariant nature,
see eq. (2.20).

C Complete — finite and divergent — corrections to effective couplings

We gather here the exact expressions for the one-loop corrections to the set of ALP-SM
couplings {gavz, 9azz, gaww } at O(1/f,), for a generic off-shell ALP and on-shell external
SM fields. These couplings were introduced and developed only in certain limits in section 4,
while the complete expressions are presented below.

C.1 ALP-Z-photon anomalous coupling

The results for the one-loop corrected g¢ Z have been introduced in section 4.3, where
the results were also presented in certain limits. We collect in this appendix the exact
expressions for the functions defined in that section (the complete expression for AZ/r—
was already given in eq. (4.11)). All descriptions presented there for the origin of each
term apply here as well. The intermediate £-dependent steps, together with the final
&-independent expressions, can be found in NotebookArchive. The gauge invariant complete
results are as follows:

fZeir?Z 2ZNC{ <_T3fo5 + Qfs )
A2 > MZ—2m?
x | log + 5+ fDB(M%ﬂnf»mf))
( <?> 3 M2 mg
+m% L
M

2 2 A2
— ¢, Qi(T3 5 — 2Q¢sy,) | log po

f

2 o025t | (1 — 2" B2, mpme)
fSw M% — 4m% 75 TTUE, TILf

12m? +5M2  2m? + M2
3M% M2

DB(M, my, mf)] } ; (C.1)

where T3 ¢ denotes the weak isospin of fermion f.

The function Agggzs for the Higgs corrections to external legs is given by

z-7 _ L M} —3MZM3 + M, N 12M$ — 18 M MZ + IMZ M}, — 2ME, o M%
Higgs = M} AMS s\ 2

36MS — 32M L M3 + 13MZ M}, — 2MY,
- DB(MZ, My, M C.2
OME(MZ — 4M3) (Mz, Mz, M) (C.2)
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while the gauge corrections to external legs proportional to g,z are gathered in

AZ/’Y—>Z — 71 42M{/LV + Mé 1Og A2 + MéV IOg M&V
gauee 2 2M3 M2, ) AM} M2

N 180M§, + 153My}, M2 — 12M3, M} — 5MS
3MS
120M6 + 108 My, MZ + 2Mj, M7 + M
4MS

DB(M%,MW,MW)} )

The function contributions AW which encodes the contributions proportional to gaww
reads

AW {42MV2V + M7, ( A? ) 36 M, + 93ME, M2 + 2M3

12M3, M3, 9ME, M2
24 My, + 38ME, M2 + M, 5
DB(Mz, My, M

2 2
() ()

1 A?
- E zf: NCQf(TS,f - ZQfs?U) [bg (mg>

f

12m? +5M%  2m? + M%DB

2
3M§ M% (Mvafv mf)‘| } )

while the complete result for the function Af which encodes the fermion triangle correction
is given by

2
A" = QN {QQfs?u 42 (T?”;; _2?28;”) mi ( f (‘Z’;?) —f <4mf) ) } . (C5)

where the function f(7) has been defined in eq. (4.10) and the function DB(p?, m1,m2)
corresponds to function DiscB in Package-X and is defined as

p(p?,m3, m3) m? +m3 — p* +/p(p?, mi, m3)
DB(p*, my1,ma) = 5 log , (C.6)
P 2mymg
which is symmetric under my <> mo and can be simplified in some specific cases:
2 2 2 2,2
m 4M m* + —4M*m
DB(M?* M,m) = —=1/1 — 1 :

DB(p?, m, m) = 2i4/1 — P f <4m ) (C.8)

and the function p is the Kéllén function, that is defined as

pla,b,c) = a* +b* + ¢t — 2a%0* — 207 — 2c%a?. (C.9)
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C.2 ALP-ZZ anomalous coupling

The results for the one-loop corrected g°%,, have been introduced in section 4.4, where
the results were also presented in certain limits. We collect in this appendix the exact
expressions for the functions defined in that section. All descriptions presented there for
the origin of each term apply here as well. The intermediate £-dependent steps, as well
as the complete £-independent final expressions, can be found in NotebookArchive. The
gauge invariant complete results, presented in the {g,zz, gaww } subspace of anomalous
electroweak couplings, are as follows:

The function A4/77% which encodes corrections to the external legs were given in
eq. (4.22) and (C.1)-(C.3). The function BM&85 accounting for the vertex insertion of g,zz
corrected at one-loop by Higgs exchange between the two Z bosons reads

2M 2
Z_-DB(p*, My, My)

2M7
Z 2’DB(M%,MZ,MH) + 4]\4%7_]?

BHiggs -3¢ —
{ 4M% —p

2M? M? M?
+ M <4M%fpg - 1) C(M3, M3, p*, Mz, My, Myz) + 4M%Iip2 log (Mg :

(C.10)

BWW

The contributions proportional to g, encoded in are given by

B ( {42MV2V + M7 ( A? ) N 36 M, + T5ME, M2 + 2M}
- 1202, S\ M3 9MZ, M2
24 Mgy + 38Myy M7 + My o
12M32, M2
M
M, (p? — 4M7)

BWW

(M%7 MW7 MW)

(DB?, My, My) — DB(M3, My, My))
M (p? — 203) (G11)
2MZ, (v — 4M3)

+ ((4M§V_p2)+ )C(M%vM%7p27MW7MW7MW)}

1 9 A?
~ 52 > NeQi(Tsr — 2Qss,,)4 log | —5
wf

my

12m? +5M%  2m? + M3 5
+ 512 + M2 DB(MZ, ms,me) ¢ | -

Finally, the function Bf which encodes vertex insertions of fermionic couplings ¢ ¢ reads

2
2my

@z (DB(pzamf, mp) —DB(Mg,mf,me T

Bf = —NC{Q%S§+T§f

2
2mj;

* (4MZ—p?)

| M3 (T5.~2Q1s2 )2 +p*Qus (T 1~ Qrs) | € (M3, M3, p e, mag, ) } :

(C.12)
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where the function C(¢?, g3, p?, m1, ma2, m3) is the Co Passarino-Veltman function [86] and
is defined by:

2 2 2 _
C q1,92,P am17m2am3) =

(
d d !
O e T T e E X R e
(C.13)
which can be reduced to a combination of f(7) and DB functions (see eq. (4.10) and
egs. (C.6)—(C.8)) in the following cases:

2
4

C(0,0,p%,m,m,m) = 2f< ]T ) : (C.14)

2 am2\? am?\?
2 2

1

2 2 _ 2

C(M*,M=,0,m,m,m) = 74m2—M2DB(M M, m) (C.16)

C.3 ALP-WW anomalous coupling

The results for the one-loop corrected ggng have been introduced in section 4.5, where the
results were also presented in the high ALP p? limit. We collect in this appendix the exact
expressions for the functions defined in that section. All descriptions presented there for the
origin of each term apply here as well. The intermediate &-dependent steps, as well as the
final {-independent results, can be found in NotebookArchive. The gauge invariant complete
results, projected on the {gqy~, gaww } subspace of anomalous electroweak couplings are
detailed next.

The function AW =W results from the combination of fermionic and Higgs corrections,

see eq. (4.34). Only fermion doublets can contribute to A W (figure 5 D5):

ferm

A% 3Miy (mf -+ mf 2)2 -+ 40

f=u,c,t, 6M3V
Ve ,Vu,Vr
(mf—m3)*— M, (m?> (C.17)
+ log +DB(Mw? mg,me) x :
2M§, m#

)

M6 & (mZ+m2)+2M,mEm3 + M3, (m¢ —m$) +(m? —m2 )+ M§,
M, p(ME,,m2,m2)

where A is an UV cutoff (see eq. (4.18), ms and mg denote the masses of the two fermion
mass eigenstates.

The Higgs corrections to external legs gathered in Aglvlg_g)g/v (figure 5 D3 and D4) read

AW _ M}, — 3M3, M% + MH 12M§, — 18 My, M3 + 9ME, Mp, — 2M Y log M%
Higgs = M, AM, M3,
_ 36Myy, — 32Myy, My + 13Mg, My —
20, (M7, — 4M§,)

2Mj; DB(M3,, My, Mg) . (C.18)
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The gauge corrections proportional to g, encoded by C"W are given by

oW _ {43 log ( A? >+ 236 My, +33 M3, M2 +3M}

M, 3,

N 36MG, —34M, M2 —MZ, M2 +8MS  (24M§, —30Myy, M2 +24 M3, ML —6M3)p?
2ME, M2 2ME, M2 (AME, —p?)

48 M, +108MG, MZ —60My, M}

xDB(MVQV,MW,MZ)Jr(

4MS, M2
—17TM3, M5 +8MY5  (24M$, —54M, MZ+36 M3, M4 —6M5)p* M2 | M3,
4MS, M2 4MS, M2 (4M3Z, —p?) M2

/\2
128 (208 MG Mt M M)~ 12520 3

2 o 16M{, +20M3, M2 — 60, —3p*(4M3, + M2) +2p* c
Y (4M5V %)

(Mvzv,Mgv,p27MW,Mz,MW)}

+6(c2 —52) %DB@Q Mz, Mz)

MZ(2M3—p?)

+ <2(4M%_p2)_ 2 (4M5V*P2) ) C(MI%[UMI%V?Z)QaMZaMWaMZ)}

4M?%
42452 Z DB(MZ,, My, M
{M%/pQ(‘lM%/—pz) ( w w Z)
20} MR\ (M)
PR ) log(Mg g CUMi M0, My M) (C.19)

where A is again an IR cutoff, which encodes the IR contribution to the 1/e terms obtained
in dimensional regularization via the prescription in eq. (4.18), with a protocol alike to that
for gluon corrections in eq. (4.17).

The vertex function C™88 results from the direct vertex insertion of Jaww , With the
Higgs particle exchanged between the two W legs (diagram E in figure 4):

: 2M2 2M2
nggs: W 2 W 2
C 6{ 74M2 DB(MW,Mw,MH) 74M2 DB(p ,Mw,Mw) (CQO)
2M M2 M2
M| - ——1)C(ME,, Mz, p*, My, My, M 2] L)
+ w <4M3V_p2 >C< w My, P, Mw, H W)+4M3V_p2 og MI%V
The vertex function C77 is given by
M2
C" = —p C(Mw,Mw,p 0 MW,O)+WDB(}?2,MZ,MZ) (021)
Mz (2Mz —p
+<4MZ —p?)— 2022((4MQZ %)C(M%M%v,pQ,MZ,MW,Mz)
2 Z
02 (M2 —p?) DB(My, My, My)
2MW MZ MI%V Q(PQ*M%)Z 2 2 2
1 M, M, My, Mz).
( 2 204 4M2 _ 2)) og(M% + p2 C( wr My, p*,0, My, Z)
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Finally, the fermionic triangle contributions induced by ¢ insertions (figure 4 C) lead to

m? m? —m? m?
cf = —Ng f f £ _1)log | —
{4(4]\/[3[, —p?) MI%V m%

2
my

2(4M3V — p2) (
mi (Mg, —mi +mi)
2(4M5V —p?)

+ DB(p2, me, mg) — DB(M%V, mg, mf)> (C.22)

C (MgV,M‘%V,pZ,mf, mf’,mf) } .

C.4 ALP-fermion couplings

The results for the one-loop corrected cfff have been introduced and presented in section 4.6
in certain limits of interest. We collect in this appendix the exact expressions for the
functions defined in that section. All descriptions presented there for the origin of each term
apply here as well. The intermediate £-dependent steps can be found in NotebookArchive.

The gauge invariant complete results are as follows:

99 _ A’ A2 2 .92 9
D99 = < 3log 4 —p“C (mi,mi,p°,0,me, 0) 5. (C.23)

mf
2
DV = %Dﬂg, (C.24)
where the function C was defined in egs. (C.13)—(C.16), and

T e—2 2 A2 M2 _ 2
16¢y 8w M7

2 2 M2 2 M2 2
4o 2E M P EMY (12, )
mép
12m?p2—2m%M§—M%p2 m? (M2 —p?)?
— log | — 4z L ¢ m2,m2,p2,0,mf,MZ .
m?pQ M% p2 ( f f )
(C.25)
77 1 2 2 2.4 A? M%—‘lm%
s 2 (73205 Qes?, +2Q}s, ) | 3log MZ) T
OIM2T2.  MA
(2003 e 00+ 28 Mg ot 20800 ) »
f f

m? 2 2
xlog | —% | +4T5¢DB(p°, Mz, Mz)

Mz ’

2 (2 2 2 4 2072 2
+ 2‘7\4Z (TS,f_ 2T37f Qfsw +2Qf 8211)) _Smf Qfsw (T37f_Qf3w) DB(TI’L%, me, MZ)

my
+4 {M%(T:z,f—2Qf3121,)2+p2Qf312U(T3,f—Qf312U)} C(mi,mf,p*, Mz, mg, MZ)} ,
(C.26)
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DWW

T 1652 m2

{ ( A? )_ (3mf+mf,—MW)

+2m?m2 — (m2 — M, 2
+4D3(p2,Mw,Mw)—mf+ mimg —(mg — My,)? log | 4

4 M2
oo e w (C.27)
+ (mf_:ig—k W)DB(m%,mf’,MW)
f

—4 (m%_m%’_MgV) C(m?7m?ap27MW7mf’7MW)} 5

where the function DB was defined in egs. (C.6)-(C.8).
The contributions to cfff from insertions of ALP fermionic couplings are given by

)\2
Dyt = —2{1—|—log <m2> +(p?—2m?)C (m?,m?,p2,mf,)\,mf> } , (C.28)
f
QQ
DS = %D;f, (C.29)
1 me T32f A2 4mf2T?)2f
D = 2 {— 2 log M2 +4(T3f+T3fo8 —Qfsy)— M2 :

1
> (T3f 275 Qrs2 +2Q7F 50+ —yEa [Tif(2m?—m?M%+5m%M§—2Mg)
f mg My

m2

—4Qss%, (T3, — Qrs ) Mz (mig +mi Mz — Mé)} log (Mfg

Z
2

mg (Mz—4mg)

—4Qrs? (T 1~ Qs ) (mf +3mE MZ — M) | DB(m#, mg, My)

+ | T3~ Tmi+9m? M3 —2M3)

2mf T32 £
M2

DB(an mf, mf)

+2[m%(T3,f—2Qf3 )% +2p°Qrs2, (51— Qssa, )} (m%,m?,PQ,mﬁMZ,mf)}- (C.30)

D 1 2mf1 A? +2(mf+2mfmf 2mg —mZ M2, —2m2 M3, +4M;,)
W 16s2, | MR, M, m3 M2,
mf+3mi (mf+ M) —2(m ?,me%M{}VJJMSV)lOg m#
miMZ, M2,
2
+ {m?—m?(m%&M&V)—m?(3m?v+2m%,MV2V—3M{}V)

AT pond i 017
(5 b My -+ My — T, ) — 2 M3 e + 203 DB, MW)} |

(C.31)
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Do — m? 2 log A? B 3m¢—2mim+(md — M3,)? log m#
1652 | M2, °\ M2, miM2, M2,
domtrmd M) Amtmd ML)
— DB ' M C.32
m%M%V m%Ma/ (mf , Ty, W) ( )

+M7€V

1 2m?2 A2 2(2m?% — M3
sz: o ";f log ) (mf2 i)
167s2, | My, M3, Mz,

2
DB(pQ,mf,mf)+4C(m%,m%,pQ,mf’,MW,mf’)} .

DB(m?, m¢, My) (C.33)

B 2mi —3mZM¥%+ My log ( m? ) 2(m?—M%)

2m? 2m2(M?% —4m?
+—M2f DB(p?, mg,mg)+ il ]\fZ f)C(m%,m?,pQ,mf,MH,mf) )
W w
T. A2
Cy 3,f 2 2
D .. = _312,JM3V NCT3’¢mw{ log (m?p> +2+DB(p ,mw,mw)} . (C.34)

D One-loop corrections to the weak angle

In eq. (4.4) we defined a quantity ¢, as the ratio of two input observables: the W and
Z masses, whose renormalized formulation was expressed in terms of Ac,, see eqs. (4.4),
and (4.5). The exact Ac, expression can be split in three parts,

Ac A cgauge A CHiggs A Cform
w — w + w + w , (D'l)
Cw Cw Cw Cw
which correspond respectively to the gauge boson corrections to the self-energies, the Higgs

corrections and the fermions corrections:
ACEME e, { 42M32, + M2 log ( A? >+ 288 M, +-696 Ms, M2 —T4M2, M3 —3M$

Cw ™ 48M3, M, 288 M, M2
8OMy, —14ME, M2 — M2 | M\ A8ME,+68Myy, MZ—16 M3, Mj—MS y
O
19252,¢2 M, S\ 2 9652 c2 M2, M

Adliss o, { My —24Mfy MG MM (M, +MZ) —6MG M) | (M%v )

o 0T 96 M}, 192M8, M2 M3

My —6Mjy M +18Mp M} —24M5 <M5V>
19252 M2, M} S\ sz
M;}I—4M}§M§+12M§D8
9652 M2, M2
M —4Mp Mg, +12My, DB
9652 ML,

(M%, Mz, M)

(M‘%[/WMW7MH)} )
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Acﬁgrm:aﬂ 5 4(Q%+Q?,)s3u—1lo A
™ 24¢2, &\ m2

Cw

f=u,c,t, f

Ve,Vp,Vr
(mF—m2)?  24m2Qs(2Qss%, —1)+24m2Qp (2Qps% +1)+5MZ (452 (Q7 + Q%) —1)
48s2 M, T2M3,
_ (mmi M2 M) 2Miy MB(SQRst +4Qrsh 4 | <m>
9652, M, m?
(3 —m?)?+ M3, (m? +m#)—2My
48s2 M,
(2m +M3)(8Qf sy, —4Qssy,+1)
48s2 M3,
n (2m?+M2)(8Q3 st +4Qss2 +1)—3m3
4852 M3,

+

+ (MI%vafvmf’)

—3m2
+ LDB(ME, me,my)

,DB(Mgvmf’vmf’)}7 (D4)

where the funcions f(7) and DB(p?, m1,mz) were defined in eq. (4.10) and eqs. (C.6)—(C.8).

These Ac, corrections allow to express the tree-level phenomenological couplings

{9ary» 9av 7+ gazz } as a combination of the two fundamental Lagrangian parameters {cp, ¢}, }

and observable quantities, see egs. (4.6)—(4.8).
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