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We investigate the problem of finding the local analog of the ergotropy, which is the maximum work that can
be extracted from a system if we can only apply local unitary transformation acting on a given subsystem. In
particular, we provide a closed formula for the local ergotropy in the special case in which the local system has
only two levels, and we give analytic lower bounds and semidefinite programming upper bounds for the general
case. As nontrivial examples of application, we compute the local ergotropy for an atom in an electromagnetic
cavity with Jaynes-Cummings coupling and the local ergotropy for a spin site in an XXZ Heisenberg chain,
showing that the amount of work that can be extracted with a unitary operation on the coupled system can
be greater than the work obtainable by quenching off the coupling with the environment before the unitary
transformation.
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I. INTRODUCTION

As quantum technologies are expected to be highly sensi-
tive to the interaction with the environment, it is often useful
to explicitly include the environment in the modeling of a
quantum process. One way of representing open quantum
systems is to extend the Hilbert space of the quantum system
of interest, regarding it as a subspace of a larger Hilbert space
which includes the “environment” of the system.

The problem of work extraction from quantum systems
embedded in an environment was first studied in Ref. [1],
which introduced the concept of strong local passivity, or
CP-local passivity. A quantum state is CP-local passive with
respect to a given subsystem if its energy cannot be decreased
with any completely positive map on the subsystem. As the
energy extractable with a local completely positive and trace
preserving (CPTP) map can be found with a “semidefinite
program” optimization, Ref. [2] provided an algorithm for
computing it and characterized the necessary and sufficient
conditons for CP-local passivity.

As CPTP maps constitute the most general evolution that
a quantum system can undergo, the extractable energy stud-
ied in Refs. [1,2] represents an ultimate upper bound on the
energy that can be drained from a system using only local op-
erations on a given subsystem. However, just like in the global
case [3], it makes sense to consider the energy extractable
under a more limited set of allowed operations.

In Ref. [4] the maximum energy extractable from a com-
posite system has been found, if all the subsystems are
coupled with heat baths at inverse temperature β. This is the
local analog of the nonequilibrium free energy [5]. In this
work we consider instead the local analog of the ergotropy
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[6], which is the energy that we can extract from an isolated
system using only local unitary transformations.

The restriction to unitary operations is a commonly ac-
cepted model for the extraction of work in fully quantized heat
engines, as they describe the dynamics of a quantum system
under Hamiltonian interactions [7–11]. In the same spirit,
local unitary transformations are the class of transformation
that we can perform on the system if one is allowed to perform
a Hamiltonian driving on only one subsystem of the global
quantum system.

In analogy with the notion of (globally) passive states
[12,13], one can define the concept of locally passive states
[14], i.e., states whose energy cannot be decreased by arbitrary
local unitary transformations. In Ref. [14] it was found a set of
necessary and sufficient conditions for the local passivity, but
only in the case in which the Hamiltonian of the system is a
sum of local Hamiltonians. We can define the local ergotropy
with respect to a subsystem S as the energy extractable us-
ing local unitary operations [15] on S. Since the problem of
finding local ergotropy cannot be expressed as a semidef-
inite programming optimization (as the unitarity constraint
UU † = I is not linear), it has been considerably less studied.
In general, any correlated system exhibits an ergotropic gap
[4,16], meaning that the local ergotropy is strictly smaller than
the global ergotropy or that correlations with the environment
are detrimental for work extraction [17–22]. On the contrary,
the role of initial correlations among the various subsystems
can be beneficial when extracting work via global unitary
operations [23–25].

It is important to stress that in all the works mentioned
above concerning the extraction of work with local unitary
transformations, the global Hamiltonian of the systems is
always assumed to be interaction-free. Exceptions to this
general trend can be found in Refs. [26–30] where, study-
ing energy exchanges not directly related with ergotropy
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calculations, the presence of couplings among the various
subsystems is taken into consideration by adding to the energy
bill the cost associated with the abrupt switching off and
switching on of such terms. Apart from these works, it seems,
however, that no general study of the local ergotropy has
been presented when the model explicitly exhibits coupling
among the various subsystems. The aim of this paper is to
fill this gap. In the case in which the local system of interest
is a two-level system, we present a simple method to exactly
compute the maximal amount of work one can extract locally
from a correlated many-body quantum system for Hamilto-
nian models which explicitly exhibit coupling terms among
the various subsystems. In the case in which the system has
a bigger dimension, we present some general bounds for its
local ergotropy.

The material is organized as follows. In Sec. II we formal-
ize the notion of local ergoropy and draw some connection
with previous literature. In Sec. III we describe a general
optimization method to compute the local ergotropy which
takes a considerably simpler form in the case in which the
system S is a qubit. In Sec. IV we apply our technique to
compute the local ergotropy of two simple systems: an atom in
an optical cavity with Jaynes-Cummings coupling and a site in
an anisotropic (XXZ) Heisenberg spin chain. In both systems,
we find regimes in which the local ergotropy is bigger than
the work that can be extracted by decoupling the system from
its environment (i.e., of the ergotropy of the decoupled local
system, minus the energetic cost of isolating the system).
Conclusions and outlooks are finally presented in Sec. V.

II. LOCAL ERGOTROPY

Consider a bipartite quantum system SE initialized in the
possibly correlated quantum state ρ̂SE and characterized by
the joint Hamiltonian

ĤSE := ĤS ⊗ ÎE + ÎS ⊗ ĤE + V̂SE , (1)

with ĤS and ĤE being the local energy terms and with V̂SE

being the interaction contribution which we assume to have
zero partial trace on the S side, i.e., TrS[V̂SE ] = 0. The (global)
ergotropy [6] of the state ρ̂SE with respect to the Hamiltonian
ĤSE is the maximum amount of energy that can be extracted
from ρ̂SE by means of unitary transformation acting on the
bipartite system SE ; in formula it is expressed by the positive-
semidefinite functional

E (ρ̂SE , ĤSE )

:= max
ÛSE ∈U(dSdE )

{Tr[ĤSE (ρ̂SE − ÛSE ρ̂SEÛ †
SE )]}

= Tr[ρ̂SE ĤSE ] − min
ÛSE ∈U(dSdE )

Tr[ÛSE ρ̂SEÛ †
SE ĤSE ]. (2)

To gain insight into the problem (2), it is useful to consider the
following classical analog. Let Scl be a classical system which
may be in one of the d states {s1, . . . sd}, having energies
{ε1, . . . εd}. A state of this classical system is specified by
a probability distribution �p = {p1, . . . pd} over the d states.
The expected value of the energy of the system in the state
�p is 〈E〉 =∑d

i=1 piεi. We can act on the classical system by
applying an arbitrary permutation π ∈ Sd on the states, so
that �p → π ( �p) = {pπ (1), . . . pπ (d )}. Then the classical analog

of the ergotropy problem is to find the permutation which
maximizes the expected value of the energy decrement, that
is,

Ecl( �p, �ε) =
d∑

i=1

piεi − min
π∈Sd

d∑
i=1

pπ (i)εi. (3)

The classical problem (3) can be immediately solved using the
rearrangement inequality [31], which states that

min
π∈Sd

d∑
i=1

pπ (i)εi =
d∑

i=1

p↓
i ε

↑
i , (4)

where p↓
i denote the components of the vector �p arranged in

decreasing order (that is, p↓
1 � · · · � p↓

d ), and similarly ε
↑
i are

the energies arranged in increasing order. The quantum er-
gotropy problem (2) can be solved in a completely analogous
way, invoking the Hermitian-matrices analog of the rearrange-
ment inequality, i.e., Von Neumann’s trace inequality [32]:

min
ÛSE ∈U(dSdE )

Tr[ÛSE ρ̂SEÛ †
SE ĤSE ] =

d∑
i=1

p↓
i ε

↑
i , (5)

where this time p↓
i are the eigenvalues of the density matrix

ρ̂SE arranged in decreasing order, and ε
↑
i are the eigen-

values (energy levels) of the Hamiltonian ĤSE arranged in
increasing order. Writing ρ̂SE =∑d

i=1 p↓
i |i〉SE 〈i| and ĤSE =∑d

i=1 ε
↑
i |εi〉SE 〈εi|, the optimal unitary transformation which

achieves the minimum is given by Û (opt)
SE :=∑d

i=1 |εi〉SE 〈i|.
The S-local ergotropy of the model is now defined as the

maximum amount of work one can extract from SE by means
of local unitary operations that act locally on S while not
affecting E , i.e.,

ES (ρ̂SE , ĤSE )

:= max
ÛS∈U(dS )

Tr{ĤSE (ρ̂SE − [ÛS ⊗ ÎE )ρ̂SE (Û †
S ⊗ ÎE )]}, (6)

where the maximization is performed over the set U(dS ) of
the unitary transformations on the dS-dimensional Hilbert
space associated with S. This is a non-negative quantity which
by construction is upper-bounded by E (ρ̂SE , ĤSE ). Simple
algebra reveals that ES (ρ̂SE , ĤSE ) bares no functional depen-
dence upon the local Hamiltonian of HE of the subsystem
E and that it is convex with respect to ρ̂SE and ĤSE . We
observe that in the absence of interactions (i.e., for V̂SE = 0),
the S-local ergotropy reduces to the ergotropy E (ρ̂S, ĤS ) :=
maxÛS∈U(dS ) Tr[ĤS (ρ̂S − ÛSρ̂SÛ †

S )] of the reduced state ρ̂S :=
TrE [ρ̂SE ] associated with the local Hamiltonian ĤS , i.e.,

ES (ρ̂SE , ĤSE )|V̂SE =0 = E (ρ̂S, ĤS ), (7)

which in the case where V̂SE 
= 0 is sufficiently regular can be
replaced by the inequality

|ES (ρ̂SE , ĤSE ) − E (ρ̂S, ĤS )| � 2‖ρ̂SE‖2‖V̂SE‖2, (8)

with ‖�̂‖2 =
√

Tr[�̂†�̂] representing the Hilbert-Schmidt
norm of the operator �̂ (see Appendix A). Notice also
that when the input state of the system factorizes ρ̂SE =
ρ̂S ⊗ ρ̂E , ES (ρ̂SE , ĤSE ) reduces to the erogotropy of the den-
sity ρ̂S evaluated for the effective free local Hamiltonian
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Ĥ (eff)
S := ĤS + TrE [V̂SE ρ̂E ] obtained by adding to ĤS the in-

teraction term contracted on the state of E , i.e.,

ES (ρ̂S ⊗ ρ̂E , ĤSE ) = E
(
ρ̂S, Ĥ (eff)

S

)
. (9)

Besides Eq. (8) no universal ordering can be drawn between
ES (ρ̂SE , ĤSE ) and E (ρ̂S, ĤS ). Similar considerations also ap-
ply if we compare ES (ρ̂SE , ĤSE ) with the work Eoff

S (ρ̂SE , ĤSE )
one can get in a two-stage procedure where first the coupling
term V̂SE is abruptly switched-off, as in Refs. [26–30], and
then local operations are applied to the resulting interaction-
free Hamiltonian model. As discussed in Appendix B, by
neglecting Lamb-shift corrections this quantity can be esti-
mated as

Eoff
S (ρ̂SE , ĤSE ) := E (ρ̂S, ĤS ) − �off (ρ̂SE , V̂SE ), (10)

with

�off (ρ̂SE , V̂SE ) := −Tr[ρ̂SEV̂SE ] (11)

being the energy cost associated with the switching-off event.
In this case, Eq. (8) gets replaced by the inequality∣∣ES (ρ̂SE , ĤSE ) − Eoff

S (ρ̂SE , ĤSE )
∣∣ � ‖ρ̂SE‖2‖V̂SE‖2, (12)

which while bounding the distance between ES (ρ̂SE , ĤSE ) and
Eoff

S (ρ̂SE , ĤSE ) cannot be used to establish a general ordering
among them.

III. GENERAL FORMULAS AND BOUNDS

The study of the local ergotropy functional (6) is consid-
erably more complex than the study of the global one (2). To
appreciate this fact, consider the local analog of the classical
rearrangement problem (3),

ES,cl( �p, �ε) =
∑
i, j

pi, jεi, j − min
π

∑
i, j

pπ (i), jεi, j, (13)

obtained by considering the case in which given a probability
distribution pi, j on a set of bipartite classical states {si, j}
specified by two indices i and j, and characterized by energies
εi, j , one is asked to improve the mean energy of the model
by permuting only one of two indices (i.e., sending pi, j →
pπ (i), j). The minimization in Eq. (13) is an instance of the
ubiquitous and widely studied assignment problem [33,34]. It
can be efficiently solved with several algorithms [35–37], but
the solution cannot be written with a closed formula in terms
of {pi, j} and {εi, j}. Since the quantum problem (6) includes
as a special case the classical problem (13) (which can be
seen as the case in which ρ̂SE and ĤSE are both diagonal in
a tensor product basis), this implies that no general closed
solution can exist for ES (ρ̂SE , ĤSE ). Even the set of states ρ̂ for
which ES (ρ̂, Ĥ ) = 0 does not admit an easy characterization,
and it is not, in general, a convex set, in contrast with the
sets of states such that E (ρ̂, Ĥ ) = 0, which is a simplex in the
space of density matrices [38]. As we see in the forthcoming
subsections, an explicit formula can, however, be derived in
the special case where the quantum system S has only two
levels. Furthermore a bound for ES (ρ̂SE , ĤSE ) can be obtained
in terms of the maximum energy decrement under local unital
transformation, which can be calculated with a semidefinite
programming (SDP) optimization (see Sec. III B).

A. A closed formula for a single qubit

To get a closed expression for the S-local ergotropy we find
it useful to adopt the generalized Pauli operator (GOP) expan-
sion formalism reviewed in Appendix C. In the case where S
is a finite-dimensional system, this allows us to represent the
density matrix ρ̂SE as

ρ̂SE = ÎS

dS
⊗ ρ̂E + 1

2

d2
S −1∑
i=1

σ̂
(i)
S ⊗ ρ̂

(i)
E , (14)

with ρ̂E := TrS[ρ̂SE ] being the reduced state of E , ρ̂
(i)
E :=

TrS[σ̂ (i)
S ρ̂SE ], and {σ̂ (i)

S ; i = 1, . . . , d2
S − 1} being the GPO set

adopted for S. Similarly we can write the Hamiltonian terms
ĤS and V̂SE as

ĤS = cÎS +
d2

S −1∑
i=1

hi σ̂
(i)
S , (15)

V̂SE = 1

2

d2
S −1∑
i=1

σ̂
(i)
S ⊗ V̂ (i)

E , (16)

with c := Tr[ĤS]/dS , hi := Tr[σ̂ (i)
S ĤS]/2, and V̂ (i)

E :=
TrS[σ̂ (i)

S V̂SE ]. Notice that in writing Eq. (16) we assumed
that V̂SE contains no expansion term that is proportional to
the identity: as a matter of fact, in case such a term exists we
can drop it by properly redefining ĤE [39]. Invoking now the
orthonormal conditions of the GPO [see Eq. (C1)], we can
express Eq. (D1) in the compact form

ES (ρ̂SE , ĤSE ) = max
ÛS∈U(dS )

Tr[OUM − M], (17)

with OU ∈ O(d2
S − 1) being the orthogonal matrix which cor-

responds to the unitary ÛS in the selected GOP representation
and with M being the (d2

S − 1) × (d2
S − 1) real matrix of

elements

Mik := −(rihk + 1
2 TrE

[
ρ̂

(i)
E V̂ (k)

E

])
, (18)

with ri := Tr[σ̂ (i)
S ρ̂S] being the components of the generalized

Bloch vector of the reduced density matrix ρ̂S . The solution
which maximizes the right-hand side of Eq. (17) has, in gen-
eral, no closed formula expression; but it can be solved with
a convex optimization algorithm (e.g., steepest descent). An
exception to this is provided by the special case where S is
a qubit, i.e., for dS = 2 [40]. Under these circumstances, in
fact, one has that {OU | ÛS ∈ U (2)} exactly coincides with the
subgroup SO(3) of the orthogonal group O(3). If the matrix
M has an even number of negative eigenvalues—that is, if
det[M] � 0—we can find by polar decomposition a matrix
in SO(3) which turns M into |M|. If instead M has an
odd number of negative eigenvalues (det[M] < 0), no special
orthogonal matrix can transform it into |M|, and the best that
one can do is to transform M into a matrix whose smallest
eigenvalue is negative. Therefore, we can write

ES (ρ̂SE , ĤSE )|qubit = max
O∈SO(3)

Tr[OM − M]

=
{

Tr[|M| − M], for det[M] � 0,

Tr[|M| − M] − 2
‖M−1‖ , for det[M] < 0,

(19)
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with |M| :=
√
M†M and ‖ · · · ‖ representing the operator

norm.

B. Bounds for dS � 3

In this section we derive some bounds for the local er-
gotropy functional ES (ρ̂SE , ĤSE ) in the case of dS > 2.

a. Polar upper bound. To begin with let us observe that
the set of orthogonal matrices {OU | ÛS ∈ U (dS )} is a proper
subgroup in the subgroup SO(d2

S − 1); it follows that the
formula in the right-hand side of Eq. (19) is always a proper
upper bound for ES (ρ̂SE , ĤSE ), i.e.,

ES (ρ̂SE , ĤSE ) � max
O∈SO(d2

S −1)
Tr[OM − M]

=
{

Tr[|M| − M], for det[M] � 0,

Tr[|M| − M] − 2
‖M−1‖ , for det[M] < 0.

(20)

Saturation of the inequality (20) is unlikely unless the matrix
M admits polar decomposition

M = O∗|M|, (21)

with the orthogonal matrix O∗ being an element of {OU |
ÛS ∈ U (dS )} (a fact that always occurs for dS = 2).

b. SDP upper bound. An alternative bound for the local
ergotropy (6) can be obtained by exploiting a convexity argu-
ment (see Appendix E) to write

min
ÛS∈U(dS )

Tr[ĤSE (ÛS ⊗ ÎE )ρ̂SE (Û †
S ⊗ ÎE )]

= min
	S∈U(dS )

Tr[ĤSE (	S ⊗ IE )(ρ̂SE )], (22)

where IE represents the identity map on E and where
U(dS ) denotes the set of all convex combinations of unitary
channels, i.e., U(dS ) := {	S | 	S (ρ̂S ) =∑ pkUk ρ̂SU †

k ,Uk ∈
U(dS ), pk > 0,

∑
pk = 1}. Following Ref. [2] we can now

introduce the operator

ĈSS′ := TrE
[
ρ̂

TS
SE ĤS′E

]
, (23)

where ρ̂
TS
SE is the partial transpose of ρ̂SE and recall that for

any quantum channel 	S on S it holds that

Tr[ĤSE (	S ⊗ IE )(ρ̂SE )] = Tr
[
ĈSS′ Ê (	S )

SS′
]
, (24)

with Ê (	S )
SS′ being the Choi matrix [41,42] of the channel 	S .

Accordingly we can express Eq. (6) as

ES (ρ̂SE , ĤSE ) = Tr[ĤSE ρ̂SE ] − min
	S∈U(dS )

Tr
[
ĈSS′ Ê (	S )

SS′
]
. (25)

A computable upper bound can extracted from this by re-
laxing the minimization to include all the 	S’s belonging
to the set of unital channels, U(dS ) ⊃ U(dS ) [43], i.e., the
quantum channels such that 	S (IS ) = IS . With this relaxation,
we obtain a SDP bound for the local ergotropy:

ES (ρ̂SE , ĤSE ) � Tr[ĤSE ρ̂SE ] − min
ÊSS′

Tr[ĈSS′ ÊSS′ ], (26)

where now the minimum is now performed over the whole set
of operators fulfilling the conditions

ÊSS′ � 0, (27)

TrSÊSS′ = ÎS′ , TrS′ ÊSS′ = ÎS, (28)

(the first ensuring complete positivity, the second ensuring
trace preservation, and the last ensuring the unitality require-
ment). Notice that, in the case dS = 2, we have U(dS ) =
U(dS ), and therefore the bound (26) coincides with the exact
formula (19). When dS � 3, however, the bound (26) will be,
in general, larger than the local ergotropy of the system.

IV. EXAMPLES

The simplest, yet nontrivial, model of quantum optics is
the Jaynes-Cummings model, which describes the interaction
of a two-level atom S, with energy levels spaced by ωS , with
the electromagnetic radiation field of a high-Q cavity mode E
of frequency ωE [44,45]. Expressed in terms of the two-level
atom Pauli operators its Hamiltonian is given by

Ĥ (JC)
SE := ωE â†â + ωS

2
σ̂ z

S + �

2
(â ⊗ σ̂+

S + â† ⊗ σ̂−
S ), (29)

with � being the Rabi frequency, a and a† being the an-
nihilation and creation operators of the mode, and σ̂+

S :=
(σ̂ x

S − iσ̂ y
S )/2 and σ̂−

S := (σ̂ x
S + iσ̂ y

S )/2 being the raising and
lowering operators of the atom (hereafter h̄ = 1). The Hamil-
tonian Ĥ (JC)

SE admits as energy eigenvectors the (dressed) states

|n,+〉 := cos θn |1〉 ⊗ |n〉 + sin θn |0〉 ⊗ |n + 1〉 , (30)

|n,−〉 := sin θn |1〉 ⊗ |n〉 − cos θn |0〉 ⊗ |n + 1〉 , (31)

with |n〉 being the nth Fock state of the cavity mode and

θn := 1

2
arctan

(
�

√
n + 1

ωS − ωE

)
, (32)

the corresponding eigenvalues being En,± := ωE n ±
1
2

√
(ωS − ωE )2 + �2(n + 1). By direct application of

Eqs. (11) and (18) we get

�off (ρ̂SE , V̂SE ) := −�

2

(〈
σ̂ x

S ⊗ X̂
〉− 〈σ̂ y

S ⊗ Ŷ
〉)
, (33)

and

M = −1

2

⎡
⎢⎣�
〈
σ̂ x

S ⊗ X̂
〉 −�

〈
σ̂ x

S ⊗ Ŷ
〉

ωS
〈
σ̂ x

S

〉
�
〈
σ̂

y
S ⊗ X̂

〉 −�
〈
σ̂

y
S ⊗ Ŷ

〉
ωS
〈
σ̂

y
S

〉
�
〈
σ̂ z

S ⊗ X̂
〉 −�

〈
σ̂ z

S ⊗ Ŷ
〉

ωS
〈
σ̂ z

S

〉
⎤
⎥⎦, (34)

with X̂ := (â† + â)/2 and Ŷ := i(â† − â)/2, and where we
used 〈· · · 〉 to indicate the expectation value with respect to
ρ̂SE . In what follows we focus on the special cases where the
input state ρ̂SE corresponds to one of the eigenvectors |n,±〉
of the model, showing that under such assumption the S-local
ergotropy values of the model are never smaller than the corre-
sponding switch-off ergotropy values (10). To see this, let us
start by observing that Eq. (33) gives �off (|n,±〉; V̂SE ) = 0.
Therefore, using the fact that for θn as in Eq. (32) one has
cos2 θn � sin2 θn, we get

Eoff
S

(|n,+〉 , Ĥ (JC)
SE

) = ES
(
ρ̂

(n,+)
S , ĤS

) = ωS cos 2θn, (35)

which by construction is always positive semidefinite, and

Eoff
S

(|n,−〉 , Ĥ (JC)
SE

) = ES
(
ρ̂

(n,−)
S , ĤS

) = 0, (36)

(in the above expressions ρ̂
(n,±)
S stand for the reduced density

matrices on S of |n,±〉SE ). Notice next that replacing |n,+〉
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in Eq. (34) we get instead

M+ = 1

2

⎡
⎢⎣−�

√
n+1
2 sin 2θn 0 0

0 �
√

n+1
2 sin 2θn 0

0 0 −ωS cos 2θn

⎤
⎥⎦,

which has a determinant that is always positive semidefinite
due to the fact that Eq. (32) forces |θn| � π/4. Therefore in
this case Eq. (19) implies

ES
(|n,+〉, Ĥ (JC)

SE

) = ωS cos 2θn +
√

n + 1

2
|� sin 2θn|, (37)

which is clearly greater than or equal to the corresponding
switch-off value (35)—the gap being an increasing function
of the intensity of the coupling term and of the index level n.
Similarly assuming as input state |n,−〉, we obtain a matrix
M− = −M+, whose determinant is now always negative
semidefinite. Therefore, from Eq. (19) we get

ES
(|n,−〉 , Ĥ (JC)

SE

) =
√

n + 1

2
|� sin 2θn|

− min

{
ωS cos 2θn,

√
n + 1

2
|� sin 2θn|

}
,

(38)

which again is always greater than the corresponding (zero)
switch-off value Eoff

S (|n,−〉 , Ĥ (JC)
SE ) reported in Eq. (35)—the

only exception being the weak-coupling regime (ωS cos 2θn �√
n+1
2 |� sin 2θn|) where also ES (|n,−〉, Ĥ (JC)

SE ) nullifies. Most
notably, at resonance (ωS = ωE ⇒ |θn| = π/4) the gap
between the local and the switch-off ergotropy terms
of |n,−〉SE match that recorded for |n,+〉SE as one

has Eoff
S (|n,±〉 , Ĥ (JC)

SE )|res = 0 and ES (|n,±〉 , Ĥ (JC)
SE )|res =√

n+1
2 |�|. On the contrary, one notices that, in the off-resonant

regime (i.e., for |ωS − ωE | � |�|√n + 1 ⇒ |θn| � 0), for
both |n,+〉SE and |n,−〉SE the gap between ES and Eoff

S always
tends to collapse to zero. It is also worth noticing that, at vari-
ance with the global ergotropy, the local ergotropy functional
does, in general, change with the time evolution of the system.
In Fig. 1 we plot, as an example, the local ergotropy of a
superposition of the states |n = 10,+〉 and |n = 10,−〉. The
system alternates between time intervals in which ES = 0 and
intervals in which ES > 0, with a behavior reminiscent of the
entanglement sudden death and revival [46,47].

As a second example assume the system S to be one ele-
ment of an XXZ Heisenberg model of N spin-1/2 particles
disposed on a ring [48]. In this case the Hamiltonian can be
expressed as

Ĥ (XXZ )
SE := ε

N∑
i=1

σ̂ z
i

−
N∑

i=1

[
J
(
σ̂ x

i ⊗ σ̂ x
i⊕1+σ̂

y
i ⊗ σ̂

y
i⊕1

)+ Jzσ̂
z
i ⊗ σ̂ z

i⊕1

]
,

(39)

with the positive constants ε, J , and Jz representing the local
energy contribution and the coupling terms of the model, and

FIG. 1. Local ergotropy of the state cos α |n,+〉 +
sin α |n, −〉 ei�t as a function of the time t , for the choice of
parameters ωS = 1, ωE = 1.2, � = 0.1, n = 10, and α = 0.4π .

where, to enforce periodic boundary conditions, ⊕ indicates
the sum modulus N . We remind that as Ĥ (XXZ )

SE admits the
total magnetization Ŝz :=∑N

i=1 σ̂ z
i as a conserved quantity

([Ĥ (XXZ )
SE , Sz] = 0), we can diagonalize it on subspaces of

fixed values of Ŝz. Specifically assuming J to be the sub-
leading term with respect to ε and Jz, the ground state of
the model is provided by EG := −N (ε + Jz ) corresponding
to the all spin-down state |φG〉 :=⊗N

i=1 |↓〉i (total magne-
tization sector with Ŝz = −N). The next excited states |φk〉
can instead be found on the Ŝz = −N + 2 sector spanned
by superpositions of vectors σ̂ x

n |φ0〉 := (
⊗n−1

i=1 |↓〉i ) ⊗ |↑〉n ⊗
(
⊗N

i=n+1 |↓〉i ), which have n − 1 spin down and one spin
up. Specifically, invoking the Bethe ansatz [49,50] the corre-
sponding eigenvectors of Ĥ (XXZ )

SE can be expressed as

|φk〉 := 1√
N

N∑
n=1

e
2πki

N nσ̂ x
n |φ0〉 , (40)

with k being an integer term belonging to the interval
(−�N/2�, �N/2�], the associated eigenvalues being Ek :=
−[(N − 2)ε + (N − 4)Jz + 4J cos( 2kπ

N )]. In what follows we
compute the local ergotropy and the switch-off local ergotropy
for these special states. To do so, we notice that, identifying
the system S with the first site of the chain and identifying the
environment E with the remaining ones, from Eqs. (11) and
(18) we get

�off (ρ̂SE , V̂SE ) = J
〈
σ̂ x

S ⊗ ŶE
〉+ J

〈
σ̂

y
S ⊗ X̂E

〉
+ Jz

〈
σ̂ z

S ⊗ ẐE
〉
, (41)

with X̂E := σ̂ x
N + σ̂ x

2 , ŶE := σ̂
y
N + σ̂

y
2 , and ẐE := σ̂ z

N + σ̂ z
2 , and

M=−1

2

⎡
⎢⎣J
〈
σ̂ x

S ⊗ X̂E
〉

J
〈
σ̂ x

S ⊗ ŶE
〉

ε〈σ̂ x
S 〉 + Jz

〈
σ̂ x

S ⊗ ẐE
〉

J
〈
σ̂

y
S ⊗ X̂E

〉
J
〈
σ̂

y
S ⊗ ŶE

〉
ε
〈
σ̂

y
S

〉+ Jz〈σ̂ y
S ⊗ ẐE 〉

J
〈
σ̂ z

S ⊗ X̂E
〉

J
〈
σ̂ z

S ⊗ ŶE
〉

ε
〈
σ̂ z

S

〉+ Jz
〈
σ̂ z

S ⊗ ẐE
〉
⎤
⎥⎦.

(42)
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Taking hence as ρ̂SE the pure state (40), this yields

�off (|φk〉SE , V̂SE ) = 8J

N
cos

(
2πk

N

)
+ 2N − 8

N
Jz (43)

and

Mk =
⎡
⎣ 2J

N cos
(

2πk
N

)
0 0

0 2J
N cos

(
2πk
N

)
0

0 0 N−1
N ε + N−4

N Jz

⎤
⎦.

Notice next that the reduced density matrix ρ̂S of the first spin
is given by ρ̂S = N−1

N |0〉S 〈0| + 1
N |1〉S 〈1|, which is passive

with respect to the local Hamiltonian ĤS = εσ̂ z
S of the model.

Accordingly, from Eq. (10) we get

Eoff
S

(|φk〉SE , Ĥ (XXZ )
SE

)= − 8J

N
cos

(
2πk

N

)
− 2N − 8

N
Jz, (44)

which can be positive for small N (i.e., N � 4) and |k| � N/4,
while being always negative in the large N limit. Regarding
the local ergotropy, we treat here explicitly the case where
N−1

N ε + 2N−8
N Jz � 0, which from Eq. (19) allows us to write

ES
(|φk〉 ; Ĥ (XXZ )

SE

) =
{

0 (|k| � N/4),
8J
N | cos

(
2πk
N

)| (|k| > N/4).
(45)

We can hence recognize that, as long as N � 4,
ES (|φk〉 ; Ĥ (XXZ )

SE ) is always greater or equal to the
corresponding switch-off value. Exactly the opposite occurs
instead for small (N < 4) rings as long as the ratio between J
and Jz is small enough to ensure the applicability of Eq. (45):
under these conditions, in fact, for |k| � N/4 we have
ES (|φk〉 , Ĥ (XXZ )

SE ) = 0, while Eoff
S (|φk〉SE , Ĥ (XXZ )

SE ) becomes
positive.

V. CONCLUSIONS

We derived an exact closed formula for the local ergotropy
of a two-level system, or the maximum work that can be
extracted with local unitary operations from said system in-
teracting with a general environment. We have shown two
examples in which the local ergotropy is strictly bigger than
the amount of work that can be obtained by first isolating
the system and then performing the unitary operation. This
indicates that the environment may be a resource, and not only
a nuisance, for work extraction.

The formula also gives a (loose) upper bound for the local
ergotropy of a system of generic dimension d . The problem of
finding the local ergotropy of a system of dimension d can be
seen as a quantum generalization of the assignment problem;
hence, we know that no general closed formula can exist for
its solution. However, a more careful analysis may improve
the bounds provided here.
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APPENDIX A: DERIVATION OF EQ. (8)

Indicating with Û (free)
S the unitary transformation that

enters in the computation of the local ergotropy in the non-
interacting case (7), we can write

ES (ρ̂SE , ĤSE )

� Tr
{
ĤSE

[
ρ̂SE − (Û (free)

S ⊗ ÎE
)
ρ̂SE
(
Û (free)†

S ⊗ ÎE
)]}

= E (ρ̂S, ĤS ) + Tr[(ρ̂SE − Û (free)ρ̂SEÛ (free)†)V̂SE ]

� E (ρ̂S, ĤS ) − ‖(ρ̂SE − Û (free)ρ̂SEÛ (free)†)‖2‖V̂SE‖2

� E (ρ̂S, ĤS ) − 2‖ρ̂SE‖2‖V̂SE‖2, (A1)

where in the third passage we applied the Cauchy-Schwarz
inequality of the Hilbert-Smith scalar product. On the contrary
by decomposing the maximization of Eq. (6) into two inde-
pendent maximizations that involve the free and interaction
terms of ĤSE , respectively, we can write maximization as

ES (ρ̂SE , ĤSE ) � E (ρ̂S, ĤS ) + ES (ρ̂SE , V̂SE )

� E (ρ̂S, ĤS ) + 2‖ρ̂SE‖2‖V̂SE‖2. (A2)

APPENDIX B: LOCAL ENERGY EXTRACTION FOR
ABRUPT SWITCHING-OFF OF THE COUPLING TERMS

Here we present the derivation of Eq. (10) by estimating
the maximum work we can extract from ρ̂SE in the two-step
scenario, where through a quench we first abruptly switch off
the coupling between S and E and then use local unitaries ÛS .
At the beginning of the process the mean energy contained in
the model is given by the expectation value

E0 := Tr[ρ̂SE ĤSE ]

= Tr[ρ̂SĤS] + Tr[ρ̂E ĤE ] + Tr[ρ̂SEV̂SE ]. (B1)

The switch-off procedure transforms the initial Hamiltonian
ĤSE into an interaction-free term of the form

Ĥ free
SE = Ĥ ′

S ⊗ ÎE + ÎS ⊗ Ĥ ′
E . (B2)

Notice that, in principle, due to the presence of Lamb-shift
contributions, the new local terms Ĥ ′

S and Ĥ ′
E need not

coincide with the corresponding values ĤS and ĤE appearing
in Eq. (1). Determining the exact structure of Ĥ ′

S and Ĥ ′
E

strongly depends on the specific physical model we are con-
sidering. Typically, however, one expects the discrepancies
between Ĥ ′

S , Ĥ ′
E and ĤS , ĤE to be small, and for the sake

of simplicity in our analysis we neglect them. Accordingly,
we evaluate the energy of the system immediately after the
quench as

E1 := Tr
[
ρ̂SE Ĥ free

SE

] = Tr[ρ̂SĤS] + Tr[ρ̂E ĤE ]

= E0 + �off (ρ̂SE , ĤSE ), (B3)
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where in the second line we invoke Eq. (11). When pos-
itive, the difference between E1 and E0 [i.e., the quantity
�off (ρ̂SE , ĤSE )] accounts for the energy we need to provide
to the system SE in order to suppress the interactions between
the subsystems. Such a term has hence to be subtracted from
the maximal work we can extract from ρ̂SE via local unitary
on S in the second part of the protocol, i.e., the quantity

ES
(
ρ̂SE , Ĥ free

SE

)
:= max

ÛS∈U(dS )
Tr
{
Ĥ free

SE [ρ̂SE − (ÛS ⊗ ÎE )ρ̂SE (Û †
S ⊗ ÎE )]

}
= E (ρ̂S, ĤS ). (B4)

Equation (10) then simply follows by putting together these
observations.

The derivation of Eq. (12) follows along the same lines that
led us to Eqs. (A1) and (A2). Specifically, we can write

ES (ρ̂SE , ĤSE )

� Eoff
S (ρ̂SE , ĤSE ) − Tr

[
Û (free)

S ρ̂SEÛ (free)†

S V̂SE
]

� Eoff
S (ρ̂SE , ĤSE ) − ‖ρ̂SE‖2‖V̂SE‖2, (B5)

where Û (free)
S is the optimal unitary associated with the free

model scenario (7). Similarly, we can write

ES (ρ̂SE , ĤSE )

� Eoff
S (ρ̂SE , ĤSE ) − min

ÛS∈U(dS )
Tr[ÛSρ̂SEÛ †

S V̂SE ]

� Eoff
S (ρ̂SE , ĤSE ) + ‖ρ̂SE‖2‖V̂SE‖2. (B6)

APPENDIX C: GENERALIZED
BLOCH VECTORS

Assuming that the Hilbert space HS of S has a finite dimen-
sion dS , a GPO set is a collection {σ̂ (i)

S ; i = 1, . . . , d2 − 1} of
(d2 − 1) self-adjoint operators that fulfill the properties

Tr
[
σ̂

(i)
S

] = 0, Tr
[
σ̂

(i)
S σ̂

( j)
S

] = 2δi j . (C1)

Together with the identity operator ÎS , a GPO set forms a
basis for the operators θ̂S on HS which leads to the following
expansion formula:

θ̂S = Tr[θ̂]

dS
ÎS + 1

2

d2−1∑
i=1

qiθS ) σ̂
(i)
S , (C2)

where for i ∈ {1, . . . , d2
S − 1} the coefficients

qi(θ̂S ) := Tr
[
θ̂Sσ̂

(i)
S

]
(C3)

are the complex components of a (d2
S − 1)-dimensional vector

�q(θ̂S ) whose norm corresponds to the Hilbert-Schmidt norm of
θ̂S up to a scaling factor of

| �q(θ̂S )| = ‖θ̂S − Tr[θS]ÎS‖2/
√

2. (C4)

Equation (15) is a direct application of (C2), while Eqs. (14)
and (16) follow from a trivial generalization of such an
identity to the case of a joint operator θ̂SE of S and E .
We also recall that given {| j〉S} j=0,...,dS−1, an orthonormal
basis of HS , a special example of GPOs is provided by

the matrices

σ̂ x
S, j j′ := | j〉S〈 j′| + | j′〉S〈 j|,

σ̂
y
S, j j′ := i(| j′〉S〈 j| − | j〉S〈 j′|),

σ̂ z
S,k :=

√
2

dS (dS − 1)

⎛
⎝(1−dS +k)|0〉S〈0|+

dS−k−1∑
j=1

| j〉S〈 j|
⎞
⎠,

(C5)

for 0 � j < j′ � dS − 1 and 0 � k � dS − 2. In the case of a
qubit (i.e., dS = 2), this choice leads to the Bloch vector rep-
resentation [51], which induces a one-to-one correspondence
between the quantum states ρ̂S and the unitary ball of R3 via
the mapping

�r(ρ̂S ) = (Tr
[
ρ̂Sσ̂

x
S

]
, Tr
[
ρ̂Sσ̂

y
S

]
, Tr
[
ρ̂Sσ̂

z
S

])
, (C6)

with σ̂ x
S := σ̂ x

S,01, σ̂
y
S := σ̂

y
S,01, and σ̂ z

S := σ̂ z
S,0 being the stan-

dard Pauli operators. We can also associate (up to a
phase factor) with any unitary matrix ÛS ∈ U(2) an or-
thogonal matrix OU ∈ O(3), such that for every state ρ̂S

we get

�r(ÛSρ̂SÛ †
S ) = OU �r(ρ̂S ). (C7)

For dimension dS > 2, we can still define a generalized Bloch
vector [52], �r(ρ̂S ) ∈ Rd2

S −1, with coordinates as in Eq. (C3),
and it is still true that to any unitary transformation in the
Hilbert space corresponds an orthogonal transformation in the
Bloch space verifying Eq. (C7). In this case, however, it is
no longer true that any vector in the unitary ball |�r| � 1 can
be associated with a physical state [53], and similarly, not all
the orthogonal matrices O ∈ O(d2

S − 1) are associated with
unitary transformations ÛS ∈ U(dS ) via Eq. (C7). However,
it is known that if

|�r| � 2/dS, (C8)

there exists surely a legitimate quantum state ρ̂S associated
with the vector �r [54].

We finally observe that, if also the dimension dE

of the system E is finite, one can also adopt a GPO
decomposition for its elements [52,53]. In this case,
defining

ri := Tr
[
σ̂

(i)
S ρ̂S

]
, qi := Tr

[
σ̂

(i)
E ρ̂E

]
, (C9)

ti j := Tr
[
ρ̂SE
(
σ̂

(i)
S ⊗ σ̂

( j)
E

)]
, (C10)

vi j := Tr
[
V̂SE
(
σ̂

(i)
S ⊗ σ̂

( j)
E

)]
/4, (C11)

we can write

ρ̂SE = 1

dSdE
ÎS ⊗ ÎE + 1

4

d2
S −1∑
i=1

d2
E −1∑
j=1

ti j σ̂
(i)
S ⊗ σ̂

( j)
E

+1

2

dS∑
i=1

ri σ̂
(i)
S ⊗ ÎE + 1

2

d2
E −1∑
j=1

q j ÎS ⊗ σ̂
( j)
E ,

V̂SE =
d2

S −1∑
i=1

d2
E −1∑
j=1

vi j σ̂
(i)
S ⊗ σ̂

( j)
E , (C12)
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which leads to a rewriting of Eq. (18) as

Mik = −
⎛
⎝rihk +

d2
E −1∑
j=1

ti jvk j

⎞
⎠. (C13)

APPENDIX D: TWO-LEVEL HAMILTONIAN WITH PURE
INPUT STATE

A lower bound for ES (ρ̂SE , ĤSE ) can be established by
rewriting Eq. (6) as

ES (ρ̂SE , ĤSE ) = max
ÛS∈U(dS )

(Tr[ĤS (ρ̂S − ÛSρ̂SÛ †
S )]

+ Tr{V̂SE [ρ̂SE − (ÛS ⊗ ÎE )ρ̂SE (Û †
S ⊗ ÎE )]}),

(D1)

which, thanks to the spectral decompositions ĤS + V̂SE =∑dSdE
k=0 εk |εk〉SE 〈εk| and ρ̂SE =∑dSdE

j=0 p j | j〉SE 〈 j|, can be
casted in the form

ES (ρ̂SE , ĤSE ) = Tr[ρ̂SE (ĤS + V̂SE )]

+ max
ÛS∈U(dS )

dSdE∑
k, j=1

−p jεk

∣∣Tr
[
ÛSN̂ (k, j)

S

]∣∣2, (D2)

with N̂ (k, j)
S := TrE [|εk〉SE 〈 j|]. Next we can notice that, thanks

to the unitarity of ÛS , we have

max
ÛS∈U(dS )

∣∣Tr
[
ÛSN̂ (k, j)

S

]∣∣2 = ∥∥N̂ (k, j)
S

∥∥2

1, (D3)

with ‖ · · · ‖1 being the trace norm symbol. Up to a shift in the
operator ĤS + V̂SE , we can always assume that −εk � 0 for
every k. Then, using Eq. (D3) in Eq. (D2), we immediately
have the bound

ES (ρ̂SE , ĤSE ) � Tr[ρ̂SE (ĤS + V̂SE )]

−
dSdE∑

k, j=1

p jεk

∥∥N̂ (k, j)
S

∥∥2

1. (D4)

Furthermore, we know that for every k and j there exists
a unitary matrix Û (k, j)

S∗ which saturates the inequality (D3).
Therefore, in the special case in which the state ρ̂SE =
|�〉SE 〈�| is a pure state, and in which the Hamiltonian ĤS +
V̂SE has only two levels and a nondegenerate ground state (so
that we can assume, without loss of generality, ε1 = −E and

ε2 = 0), the bound (D4) becomes an exact equality, and we
have

ES
( |�〉SE , Ĥ (two-levels)

SE

)
= Tr[ρ̂SE (ĤS + V̂SE )] − E

∥∥N̂ (1,1)
S

∥∥2

1. (D5)

APPENDIX E: DERIVATION OF EQ. (22)

In this section we prove the equality (22), which follows
from the general fact that the maximum of a convex func-
tional over a convex set must be on one of the vertices of
the set.

Let 	S ∈ U(dS ) be a convex combination of local unitary
maps on the subsystem S, i.e.,

(	S ⊗ IE )(ρ̂) =
∑

i

pi(ÛS,i ⊗ ÎE )ρ̂SE (Û †
S,i ⊗ ÎE ). (E1)

with pi � 0 and
∑

i pi = 1. By linearity of the trace functional
we have

Tr[ĤSE (	S ⊗ IE )(ρ̂SE )]

= Tr

{
ĤSE

[∑
i

pi(ÛS,i ⊗ ÎE )ρ̂SE (Û †
S,i ⊗ ÎE )

]}

=
∑

i

piTr[ĤSE (ÛS,i ⊗ ÎE )ρ̂SE (Û †
S,i ⊗ ÎE )]. (E2)

Now let U �
S ∈ U(dS ) be a unitary transformation such that

Tr[ĤSE (U �
S ⊗ ÎE )ρ̂SE (U �

S
† ⊗ ÎE )]

= min
i

Tr[ĤSE (ÛS,i ⊗ ÎE )ρ̂SE (Û †
S,i ⊗ ÎE )]. (E3)

From Eq. (E2) it follows that

Tr[ĤSE (	S ⊗ IE )(ρ̂SE )]

=
∑

i

piTr[ĤSE (ÛS,i ⊗ ÎE )ρ̂SE (Û †
S,i ⊗ ÎE )]

� Tr[ĤSE (U �
S ⊗ ÎE )ρ̂SE (U �

S
† ⊗ ÎE )]. (E4)

Since this is valid for any possible map 	S ∈ U(dS ) (that is,
for every convex combination of unitary transformation, we
can always find a pure unitary which extracts more work), this
implies the validity of Eq. (22).
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