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 28 

Abstract 29 

In animals, Doubly Uniparental Inheritance (DUI) is a major exception to the common Strict 30 

Maternal Inheritance of mitochondria. To date, DUI has only been found in many bivalve species, 31 

but its distribution is still unclear. Given the great species richness of the class, much effort is 32 

needed to further investigate the occurrence of DUI in unsampled species. A compelling evidence 33 

of DUI is generally the presence of a sex-linked heteroplasmy, where two divergent mitochondrial 34 

lineages are found: one is isolated from the male germline, the other one is isolated from the female 35 

germline and, normally, from the soma of both sexes. In the present study, we investigated the sex-36 

linked heteroplasmy in the razor clam Solen marginatus Pulteney, 1799 and in the lagoon cockle 37 

Cerastoderma glaucum (Bruguière, 1789) using two mitochondrial markers (cox1 and rrnL). We 38 

found evidence of DUI in the species S. marginatus, with a divergence up to 21% for the rrnL gene, 39 

but not in C. glaucum. Moreover, our phylogenetic reconstruction includes all the available data for 40 

heterodont species with sex-linked heteroplasmy and suggests multiple origins of DUI in this 41 

subclass, as well as the presence of DUI in other species of the genus Solen. 42 

43 
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 44 

1. Introduction  45 

Mitochondria, beside being the well-known cell compartments where the TCA cycle and 46 

oxidative phosphorylation take place, play different, yet pivotal roles in many eukaryotic cellular 47 

processes, spanning from apoptosis to aging, from cell differentiation to fertilization, from signaling 48 

to nuclear gene regulation through ncRNAs (see as examples Spikings, Alderson, & St. John, 2007; 49 

Scheffler, 2008; Van Blerkom, 2011; López-Otín, Blasco, Partridge, Serrano, & Kroemer, 2013; 50 

Chandel, 2014; Babayev et al., 2016; Bottje et al., 2017; Pozzi, Plazzi, Milani, Ghiselli, & 51 

Passamonti, 2017; Prieto & Torres, 2017; Riggs et al., 2018; Hill, 2019). As a keynote feature of 52 

these multifaceted organelles, mitochondrial inheritance was also shown to involve different 53 

mechanisms. While the Strict Maternal Inheritance (SMI) of mitochondria probably represents the 54 

rule in animals (Birky, 2001), a mechanism alternative to SMI is the Doubly Uniparental 55 

Inheritance (DUI), which has been reported in many species of bivalve molluscs (Breton, Doucet-56 

Beaupré, Stewart, Hoeh, & Blier, 2007; Passamonti & Ghiselli, 2009; Zouros, 2013; Gusman, 57 

Lecomte, Stewart, Passamonti, & Breton, 2016; Zouros & Rodakis, 2019). 58 

In DUI species, both parental mitochondrial lineages pass to the zygote: a paternal, male type 59 

(M), which occurs in sperm, and a maternal, female type (F), occurring in oocytes. Thus, zygotes 60 

are heteroplasmic: in embryos developing to females, M-type mitochondria are dispersed and 61 

disrupted; in embryos developing to males, they are clustered together towards the primordial 62 

germline (Cao, Kenchington, & Zouros, 2004; Milani, Ghiselli, & Passamonti, 2012). Among adult 63 

specimens, females are typically homoplasmic for the F lineage, whereas males maintain 64 

heteroplasmy: the germline is dominated by M-type mitochondria and somatic cells show different 65 

proportions of M-type and (often dominating) F-type mitochondria (Garrido-Ramos, Stewart, 66 

Sutherland, & Zouros, 1998; Chakrabarti et al., 2007; Kyriakou, Zouros, & Rodakis, 2010; Batista, 67 

Lallias, Taris, Guerdes-Pinto, & Beaumont, 2011; Ghiselli, Milani, & Passamonti, 2011; Obata, 68 

Sano, & Komaru, 2011, Brannock, Roberts, & Hilbish, 2013). 69 

DUI is generally detected using sex-linked heteroplasmy as a proxy (for example, Passamonti & 70 

Scali, 2001; Theologidis, Fodelianakis, Gaspar, & Zouros, 2008; Boyle & Etter, 2013; Plazzi, 71 

Cassano, & Passamonti, 2015; Plazzi, 2015; Vargas, Pérez, Toro, & Astorga, 2015; Dégletagne, 72 

Abele, & Held, 2016; Gusman et al., 2016). Over one hundred species have been currently reported 73 

to show this peculiar phenomenon; however, it is possible that for many other bivalves, if not 74 

molluscans, DUI species are still to be discovered (Gusman et al., 2016). Furthermore, evidence is 75 

growing towards a multiple-origin scenario: the scattered distribution of DUI within bivalve species 76 

(Gusman et al., 2016; Plazzi & Passamonti, 2019), as well as significant molecular differences 77 
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among different DUI systems (Zouros, 2013; Plazzi, 2015; Plazzi & Passamonti, 2019; and 78 

reference therein), are consistent with the idea that DUI evolved multiple times in different groups 79 

of bivalves (Milani, Ghiselli, Guerra, Breton, & Passamonti, 2013; Milani, Ghiselli, & Passamonti, 80 

2016; Zouros, 2013; Plazzi & Passamonti, 2019). However, with more than 3,500 extant and extinct 81 

genera (Millard, 2001), the diversity of bivalves overwhelms the availability of empirical data on 82 

sex-linked heteroplasmy, and the current knowledge of DUI distribution within the class is still 83 

insufficient to draw conclusions. The DUI phenomenon is apparently restricted to bivalves, 84 

although only a limited research has been carried out among gastropods (Parakatselaki, Saavedra, & 85 

Ladoukakis, 2016; Gusman, Azuelos, & Breton, 2017); however, DUI is probably widespread 86 

within bivalves (Gusman et al., 2016). 87 

The razor clam Solen marginatus Pulteney, 1799, order Solenoidea, family Solenidae, has a broad 88 

geographic distribution extending from Norway to the Mediterranean Sea, North Africa, the 89 

Southeast and Western coasts of England (Darriba Couñago & Fernandez Tajes, 2011; Ayache et 90 

al., 2016). The so-called “razor clam” is an infaunal bivalve (Semeraro et al., 2016) living in soft 91 

sea beds and present in the deepest sediments, generally up to 20–50 cm below the surface 92 

(Macedo, Macedo & Borges, 1999). Despite its economic interest, especially in the Southern 93 

Mediterranean area (Ayache et al., 2016), limited data are available on its biology, ecology and 94 

bioaccumulation profiles (see Sfriso et al., 2018 and references within). Moreover, few data are 95 

available on molecular markers (Fernandez Tajes & Mendez, 2007; Francisco Candeira, Gonzalez 96 

Tizon, Varela, & Martinez Lage, 2007), genetic diversity of its populations (Semeraro et al., 2016; 97 

Hmida, Fassatoui, Ayed, Ayache, & Romdhane, 2012), gene structures and arrangements (Gonzalez 98 

Romero, Ausio, Mendez, & Eirin-Lopez, 2009; Mesías Gansbiller, et al., 2012) and cytogenetics 99 

(Fernandez Tajes, Gonzalez-Tizon, Martinez-Lage, & Mendez, 2003). To date, sex-linked 100 

heteroplasmy has been suggested for the congeneric, Indo-Pacific species Solen grandis Dunker, 101 

1862; however, only three sequences have been released in GenBank (Accession Numbers 102 

AB064983, AB064984 and AB064985) and they are still unpublished. 103 

The lagoon cockle Cerastoderma glaucum (Bruguière, 1789), order Veneroida, family Cardiidae, is 104 

also a benthic bivalve occurring in surface soft bottom sediments (Karray et al., 2015) or inside the 105 

algal biomass. The species is distributed from the Atlantic coast of Norway to the Caspian Sea 106 

(Brock, 1979) and in Mediterranean coastal lagoons. Compared to the closely related common 107 

cockle Cerastoderma edule (Linnaeus, 1758), C. glaucum prefers semi-enclosed, shallow and 108 

nontidal lagoons (Brock, 1979) or choked areas. C. glaucum has been used in different 109 

environments as a bioindicator species of environmental contamination (see Karray et al., 2015; 110 

Sfriso et al., 2018 and citations within). Moreover, since it represents an interesting model of a 111 
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benthic organism with a fragmented distribution, genetic diversity of its populations have been 112 

extensively investigated, by traditional Sanger sequencing of ITS and mtDNA sequences (Nikula & 113 

Vainola, 2003; Freire, Arias, Mendez, & Insua, 2010; Ladhar Chaabouni, Hamza Chaffai, 114 

Hardivillier, Chenais, & Denis, 2010; Tarnowska, Chenuil, Nikula, Feral, & Wolowicz, 2010; 115 

Tarnowska et al., 2012; Vergara Chen, Gonzalez Wanguemert, Marcos, Perez Ruzafa, 2013; 116 

Sromek et al., 2016) by allozymic (Mariani, Ketmaier, & de Matthaeis, 2002; Sromek et al., 2016 117 

and references within), and by microsatellite markers (Sromek et al., 2016). More recently, 118 

population genomics has been investigated by NGS-based RAD markers (Sromek, Forcioli, Lasota, 119 

Furla, & Wolowicz, 2019). Data have also been collected on its karyotype (Thiriot Quievreux & 120 

Wolowicz, 1996).  121 

Despite the occurrence of genetic and genomic data available for lagoon cockle, to our knowledge 122 

there are no published papers regarding the possible occurrence of DUI phenomenon; up to now, 123 

there is no evidence of DUI from cardiids (Gusman et al., 2016). 124 

Therefore, in the present study S. marginatus and C. glaucum have been selected as target species 125 

for a new study on the DUI phenomenon in bivalves.  126 

 127 

2. Materials and methods 128 

2.1 Sample collection and tissue preparation  129 

Mature specimens of S. marginatus (3 females and 6 males) and C. glaucum (5 females and 7 130 

males) were collected in Summer 2017 in the Venice Lagoon (Northern Adriatic Sea) in two 131 

stations facing the west side of the Malamocco-Marghera Canal. Razor clams were collected at 132 

Verto Sud (sexagesimal coordinates: VS - 45.382987°/12.254941°); lagoon cockles were collected 133 

at Torretta Bianca (TB - 45.393239°/12.264009°). The individuals were sampled by hand and 134 

transported to the laboratory in an aerated basin with seawater.  135 

Sample dissections were carried out within 24 hours following protocols already tested for previous 136 

DUI analyses (Gusman et al., 2016). In detail, each individual was dissected, and the gonadal 137 

content was analyzed under a light microscope (100×) to identify the occurrence of eggs or sperm.  138 

Unambiguously sexed individuals were then selected for genetic analyses.  139 

Somatic tissues (mantle and foot) and gonadal content were carefully separated for each specimen 140 

and preserved in absolute ethanol at −20°C for DNA extractions (see next section). 141 

 142 

2.2 DNA extraction and purification  143 
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Total DNA was isolated individually from both the mantle/foot and the gonadal content, using the 144 

DNeasy Blood & Tissue kit (Qiagen, Germantown, MD, USA), following the manufacturer’s 145 

instructions.  146 

The quality and quantity of DNA were assessed by electrophoresis on 1% agarose gels and 147 

spectrophotometric analysis.   148 

 149 

2.3 Mitochondrial marker amplification and sequencing 150 

Amplification of two different mitochondrial gene regions was carried out to investigate the 151 

occurrence of intraspecific F and M haplotypes (Gusman et al., 2016): cytochrome c oxidase 152 

subunit 1 (cox1) and 16S (rrnL). 153 

Amplifications were performed by using universal primers LCO1490 (5'-154 

GGTCAACAAATCATAAAGATATTGG-3') and HCO2198 (5'-155 

TAAACTTCAGGGTGACCAAAAAATCA-3') for the cox1 fragment (Folmer, Black, Hoeh, Lutz, 156 

& Vrijenhoek 1994) and by more specific primers 16 Sar-ALT (5'-157 

CGCCTGTTTATCAAAAACATSG-3') and 16 Sbr-ALT (5'-CCGGTCTGAACTCAGATCACGT-158 

3') designed for bivalves for rrnL fragment (Mikkelsen, Bieler, Kappner, & Rawlings, 2006). 159 

The amplification reactions were performed in a total volume of 25 µl, including 15.2 µl of 160 

sterilized distilled water, 5 µl of 5× colorless GoTaq reaction buffer (7.5 mM MgCl2), 1 µl of each 161 

10 µM primer, 0.5 µl of dNTP mixture, 0.3 µl Go Taq G2 (Promega, Madison, WI, USA), and 2 µl 162 

of DNA. 163 

For the cox1 gene fragment, PCR was carried out for 10 min at denaturation temperature of 95°C, 164 

followed by thirty-five cycles of 30 sec at 95 °C, 40 sec at 47 °C and 60 sec at 72 °C, followed by a 165 

final extension of 10 min at 72 °C.  166 

For the rrnL gene fragment, PCR amplifications were performed by denaturing DNA for 2 min at 167 

95 °C, followed by thirty-five cycles of 30 sec at 94 °C, 40 sec at 52 °C and 1 min at 72 °C, and a 168 

final extension of 10 min at 72 °C. 169 

The amplification products were checked by electrophoresis in TBE buffer and in 2% agarose gel 170 

containing SafeView Nucleic Acid Stain (NBS Biologicals, Huntingdon, Cambridgeshire, UK) and 171 

visualized under UV light: products were approximately 750 and 510 bp long for cox1 and rrnL 172 

amplicons, respectively. 173 

Amplicons were then purified with EXOSAP-IT (Thermo Fisher Scientific, Affymetrix Inc., Santa 174 

Clara, CA 95051, USA) following the standard protocol and Sanger sequencing was conducted by 175 

Eurofins Genomics Germany GmbH.  176 

 177 
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2.4 Phylogenetic analysis  178 

Electropherograms were handled and edited using MEGA X (Kumar, Stecher, Li, Knyaz, & 179 

Tamura 2018). The taxonomic identity of the obtained sequences was evaluated using BLAST+ 180 

(Camacho et al., 2009). Uncorrected p-distances within and between female and male samples were 181 

computed using MEGA X. 182 

The complete sequences of cox1 and rrnL genes were downloaded from complete mitochondrial 183 

genomes available in GenBank from the bivalvian clade Imparidentia sensu Combosch et al. 184 

(2017), using the anomalodesmatan Lyonsia norwegica (Gmelin, 1791) (GenBank Accession 185 

Number NC_034302) as an outgroup. Ruditapes philippinarum (Adams & Reeve, 1850) and 186 

Meretrix lamarckii Deshayes, 1853 are DUI species whose complete mtDNA is available in 187 

GenBank and were therefore included in the analysis. 188 

Moreover, all the (currently) known cox1 and rrnL sequences related to a sex-linked heteroplasmy 189 

among Imparidentia were added to the dataset, following the list compiled by Gusman et al. (2016): 190 

Cyclina sinensis (Gmelin, 1791), Donax trunculus Linnaeus, 1758, Donax cuneatus Linnaeus, 191 

1758, Donax faba Gmelin, 1791, Pseudocardium sachalinensis (Schrenck, 1862), and 192 

Scrobicularia plana (da Costa, 1778). The putative M-type sequence of Solen grandis Dunker, 193 

1862 was released in GenBank under the Accession Number AB064985 (Gusman et al., 2016); 194 

however, it has never been published and it is consistently placed outside the family Solenidae in all 195 

preliminary analyses. As a possible contamination, we decided to exclude this sequence from our 196 

dataset, along with the putative, unpublished F-type sequence extracted from the female gonad 197 

(GenBank Accession Number AB064983), retaining only somatic sequences of S. grandis. All 198 

sequences obtained for this study and downloaded from GenBank are listed in Supporting 199 

Information Table S1. 200 

Sequences were aligned with the T-Coffee algorithm (Notredame, Higgins & Heringa, 2000), using 201 

the packages PSI-BLAST (Altschul et al., 1997), Muscle (Edgar, 2004), ProbconsRNA (Do, 202 

Mahabhashyam, Brudno & Batzoglou, 2005), RNAplfold (Lorenz et al., 2011), and MAFFT (Katoh 203 

& Standley 2013); the option Psicoffee was set for cox1 amino acids and the MR-Coffee mode was 204 

set for rrnL nucleotides. Aligned amino acids were retro translated into nucleotides using a custom-205 

tailored R script; sites with low or noisy phylogenetic signal were masked using 206 

masking_package_v1.1 (Plazzi, Puccio, & Passamonti, 2016; available at 207 

https://github.com/mozoo/masking_package), retaining sites selected as phylogenetically useful by 208 

at least four of the five tool Aliscore 2.0 (Misof & Misof, 2009), BMGE 1.1 (Criscuolo & Gribaldo, 209 

2010), Gblocks 0.91b (Castresana, 2000), Noisy (Dress et al., 2008), and Zorro (Wu, Chatterji, & 210 

file:///C:/Users/Stefania/AppData/Local/Temp/Rar$DIa6360.6607/using
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Eisen, 2012). The cox1 alignment was further subdivided into the three codon positions using a 211 

custom-tailored Python script, obtaining four datasets: cox1_1, cox1_2, cox1_3, and rrnL. 212 

We estimated the degree of saturation in our datasets using the substitution saturation test developed 213 

by Xia and colleagues (Xia & Lemey, 2009; Xia, Xie, Salemi, Chen, & Wang, 2003); moreover, we 214 

used the distmat application of EMBOSS 6.6.0 (Rice, Longden, & Bleasby, 2000) to compute 215 

pairwise (uncorrected) p-distances and plotted them over pairwise ML distances computed with 216 

RAxML 8.2.12  (Stamatakis, 2014). Since the cox1_3 partition was detected to be highly saturated 217 

(Supporting Information Figure S1, Supporting Information Table S2), it was excluded from 218 

subsequent analyses. 219 

The three remaining datasets were concatenated into the final dataset; the phylogenetic inference 220 

was carried out using IQ-TREE 1.7-beta7 (Nguyen, Schmidt, von Haeseler, & Minh, 2015) with 221 

1000 ultrafast bootstrap replicates (Hoang, Chernomor, von Haeseler, Minh, & Vinh, 2018). 222 

Substitution models were selected using ModelFinder (Kalyaanamoorthy, Minh, Wong, von 223 

Haeseler, & Jermiin, 2017) and the best partitioning scheme was selected with the greedy strategy 224 

implemented in ModelFinder (Chernomor, von Haeseler, & Minh, 2016; Lanfear, Calcott, Ho, & 225 

Guindon, 2012). Nodes with an ultrafast bootstrap support value lower than 85 were collapsed with 226 

PhyloWidget (Jordan & Piel, 2008) and the phylogenetic tree was graphically edited with 227 

Dendroscope 3.6.3 (Huson & Scornavacca, 2012). 228 

 229 

3. Results and Discussion 230 

We obtained 13 sequences of S. marginatus cox1 gene (2 from female germline, 1 from female 231 

soma, 5 from male germline, 5 from male soma), and 10 sequences of the C. glaucum cox1 gene (4 232 

from female soma, 3 from male germline, 3 from male soma). Most cox1 sequences ranged from 233 

592 to 644 bp in length; due to a poor electropherogram quality, the S. marginatus F8 and C. 234 

glaucum M7 somatic sequences were trimmed to 366 and 406 bp, respectively, and the S. 235 

marginatus sequences obtained from the male gonad were trimmed to 140-231 bp, with the 236 

exception of M7 (594 bp). All sequences were deposited in GenBank under the Accession Numbers 237 

MN630857-MN630869 for S. marginatus and MN613229-MN613238 for C. glaucum (see 238 

Supporting Information Table S1). 239 

Conversely, 18 sequences of S. marginatus rrnL gene (3 from female germline, 3 from female 240 

soma, 6 from male germline, 6 from male soma) and 21 sequences of C. glaucum rrnL gene (2 from 241 

female germline, 5 from female soma, 7 from male germline, 7 from male soma) were produced, 242 

globally ranging from 419 to 469 bp. All sequences were deposited in GenBank under the 243 
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Accession Numbers MN603377-MN603394 for S. marginatus and MN602566-MN602586 for C. 244 

glaucum (see Supporting Information Table S1). 245 

Variable positions of cox1 and rrnL alignments are shown in Figure 1. Within-group (i.e., within-246 

mitotype) uncorrected p-distances are generally low, ranging for nucleotides from 0.0004 for S. 247 

marginatus F rrnL to 0.0871 for S. marginatus M cox1 and for amino acids from 0 for C. glaucum 248 

cox1 to 0.0886 for S. marginatus M cox1 (Table 1). However, while average uncorrected p-distance 249 

between mitotypes is comparably low for C. glaucum (up to 0.0071 for cox1 nucleotides), it is two 250 

or three orders of magnitude higher for S. marginatus (up to 0.2122 for rrnL), which entails that 251 

average sequence similarity between F-type and M-type lineages is not higher than ~85% for cox1 252 

and ~80% for rrnL (Table 1). Therefore, there is no evidence for sex-linked heteroplasmy in C. 253 

glaucum cox1 and rrnL genes, while we provide strong evidence of sex-linked heteroplasmy for S. 254 

marginatus. The only exception to this is the cox1 sequence of the male specimen number 7 (see 255 

Figure 1): it has been extracted from the gonad, but it turned out to be a F-type sequence, most 256 

likely because of somatic tissue contaminating the germline. 257 

The final dataset was comprised by 95 sequences and 614 sites: the phylogenetic tree is shown in 258 

Figure 2 and supports the same conclusion about sex-linked heteroplasmy. The family Cardiidae 259 

was retrieved as monophyletic with an ultrafast bootstrap (UF-Boot) support value of 100. The 260 

cluster Fulvia mutica (Reeve, 1844) + Vasticardium flavum (Linnaeus, 1758) is the sister group of 261 

remaining cardiids, which split into Tridacninae on one side, and Acanthocardia + Cerastoderma 262 

(UF-Boot support value = 100) on the other side. However, C. glaucum sequences were uniformly 263 

distributed and there were no strongly supported clusters with respect to sex or tissue. 264 

Conversely, the family Solenidae was also recovered as monophyletic (UF-Boot support value = 265 

100), but the cluster of S. marginatus M-type sequences (i.e., sequences extracted from male 266 

germline) is strongly supported to be monophyletic (UF-Boot support value = 100) and the sister 267 

group of the remaining F-type sequences (i.e., sequences extracted either from male soma or from 268 

female tissues), which are also strongly supported (UF-Boot support value = 99). Notably, however, 269 

the cluster of F-type sequences is comprised by all included F-type sequences from the genus Solen: 270 

F-type sequences from S. marginatus, which were newly obtained for this study, are the sister group 271 

of a cluster with the topology S. strictus + S. grandis (UF-Boot support value = 100).  272 

All this considered, we suggest the presence of the DUI phenomenon in the species S. marginatus. 273 

Contrastingly, there is no evidence supporting the same for C. glaucum. Actually, we did not find 274 

sex-linked heteroplasmy in the latter species, which would have strongly suggested the presence of 275 

DUI (as is the case for S. marginatus), but this cannot be taken as a definitive proof of the absence 276 

of this phenomenon. 277 
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As repeatedly observed (e.g., Theologidis et al., 2008; Passamonti & Plazzi, submitted) a sex-linked 278 

heteroplasmy might be present, but standard PCR-based methods may fail to detect it. If the two 279 

mitochondrial genomes are significantly divergent, the selected primer pair might amplify only 280 

either, typically the female one: therefore, recall that a minimal amount of contaminating somatic 281 

cells are always present in gonadal extracts, this would result in the amplification of the female 282 

genome in all the considered tissues. Notably, most cox1 sequences obtained from sperm in S. 283 

marginatus were the shortest in the alignment because of the low quality of the electropherograms, 284 

which in turn is most probably due to a lower efficiency of the universal primers on the male allele. 285 

Conversely, if the divergence between the two genomes is very low (e.g., due to a young origin of 286 

DUI in this species, or due to a recent masculinization event; Stewart, Breton, Blier, & Hoeh, 2009; 287 

Zouros, 2013; and reference therein), two markers might be not enough to detect diagnostic 288 

substitutions. Thus, additional types of data (e.g., massive sequencing of amplicons) are required in 289 

order to completely dismiss the hypothesis of C. glaucum to be a DUI species. 290 

Conversely, the detection of sex-linked heteroplasmy in S. marginatus is a strong clue for the 291 

existence of DUI in this species; moreover, the phylogenetic reconstruction suggests that DUI arose 292 

before the separation of the three species included in our dataset. However, as aforementioned the 293 

only available putative M-type sequence from S. grandis is possibly contaminated, thus additional 294 

samples of the male germline from other species of the genus Solen are mandatory to confirm the 295 

present finding. 296 

Moreover, this sex-specific pattern is neither the rule nor an exception in our phylogenetic tree. 297 

Given our relatively restricted dataset, the present phylogenetic reconstruction of Imparidentia 298 

mitochondrial lineages has definitely to be taken as preliminary: there is sure enough evidence of 299 

little saturation in our datasets (Supporting Information Figure S1, Supporting Information Table 300 

S2) and many UF-Boot support values ranged from 60 to 95. Nonetheless, the pattern of sex-linked 301 

heteroplasmy in the family Veneridae is completely different: for each species (R. philippinarum, 302 

M. lamarckii, and C. sinensis) the F- and the M- type cluster together. In this family, three 303 

independent origins of the DUI phenomenon can be claimed, recalling that masculinization, which 304 

is common among mytilids and would reset the divergence between the two lineages (Zouros, 305 

2013), has never been directly observed for venerids (Plazzi & Passamonti, 2019; and reference 306 

therein). 307 

Within the family Mactridae, the DUI species P. sachalinensis shows a species-specific pattern 308 

similar to that shown by Veneridae, but in this case a single species with sex-linked heteroplasmy is 309 

currently known. The finding of more mactrid species with a sex-linked heteroplasmy will allow to 310 

test for the consistency of this pattern. The situation is more difficult to disentangle for the 311 
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superfamily Tellinoidea. The relationships between the different species are scarcely supported and 312 

the present reconstruction would be compatible with both a sex-specific and a species-specific 313 

pattern. Very long branches, like those leading to D. faba or S. plana male sequences, may hamper 314 

the phylogenetic inference. 315 

As a second conclusion, the first Imparidentia phylogenetic tree spanning over all the available sex-316 

linked sequences, as well as over many complete mitochondrial sequences, is presented in this 317 

study. It supports the hypothesis of multiple DUI origins (Figure 2), which has become more than a 318 

speculation in recent years (Milani et al., 2013, 2016; Plazzi & Passamonti, 2019; Zouros, 2013). 319 

More information is needed to further clarify the distribution and the patterns of DUI evolution 320 

among Imparidentia, and the complete mitochondrial genomes of DUI species are mandatory in 321 

order to obtain robust phylogenetic results. Finally, we report strong evidence for the existence of a 322 

DUI system in the genus Solen (corroborating a previous claim by Gusman et al., 2016), and 323 

specifically for the European species S. marginatus, which deserves further characterization per se. 324 

 325 

4. Conclusions  326 

The present study focused on the taxonomic coverage of the DUI (Doubly Uniparental Inheritance) 327 

in bivalves. In particular, the occurrence of DUI has been investigated in two species, namely razor 328 

clam S. marginatus and lagoon cockle C. glaucum.  329 

Cytochrome c oxidase subunit 1 (cox1) and 16S (rrnL) mitochondrial regions were selected to test 330 

the presence of intraspecific F and M haplotypes in these two species.  331 

Results herein collected suggested the occurrence of DUI phenomenon in the razor clam S. 332 

marginatus, with a divergence up to the 21% for the rrnL gene, but not in the lagoon cockle C. 333 

glaucum. Moreover, our phylogenetic reconstruction suggests multiple origins of DUI in the 334 

heterodont subclass, as well as the presence of DUI in other species of the genus Solen, which 335 

should be furtherly investigated.  336 
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Figure legends 593 

Figure 1. Variable sites of cox1 and rrnL alignments of newly obtained sequences. “SoMa” (“Solen 594 

marginatus”) is followed by the sex of the specimen (either “F” or “M”), a specimen ID and the 595 

source tissue (“G” for “gonad” and “S” for “soma”; but see text for specimen SoMaM7G). Site 596 

numbers referring to the complete matrix are printed above each alignment. Pink color indicates F-597 

type sequences, blue color indicates M-type sequences. 598 

 599 

Figure 2. Maximum Likelihood phylogenetic reconstruction of Imparidentia sensu Combosch et al. 600 

(2017) using partial sequences of the mitochondrial markers cox1 and rrnL. Node support is shown 601 

as ultrafast boostrap support value as computed by IQ-TREE. Newly obtained sequences are 602 

indicated with the picture of relative species, and the species names are followed by either “F” for 603 

“F-type” or “M” for “M-type” and a specimen ID. The entangled blue and pink rings pinpoint 604 

systems with sex-linked heteroplasmy: again, species names are followed by either “F” or “M” in 605 

that case. For newly obtained sequences and whenever available, the source tissue is also shown 606 

(“G” for “gonad” and “S” for “soma”; but see text for specimen SoMaM7G). 607 

 608 
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Supporting Information Figure S1. Pairwise uncorrected p-distances plotted over pairwise 610 

Maximum Likelihood distances for the four available datasets. 611 
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Supporting Information Table S1. Sequences downloaded from GenBank for the present study. If 613 

the complete mitochondrial genome was available and used to extract cox1 and rrnL sequences, the 614 

corresponding GenBank Accession Number is given; otherwise, separated Accession Numbers for 615 
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 620 

Supporting Information Table S2. Test of substitution saturation for the three cox1 codon 621 

positions and for rrnL. The analysis was performed on fully resolved sites only, assuming an 622 

asymmetrical topology and removing duplicate sequences. For the sake of clarity, given the sample 623 

size only results for 32 OTUs are shown. 624 

Table 1. Uncorrected p-distances† within and between F-type and M-type sequences. 625 
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  cox1 (nt‡) cox1 (aa§) rrnL 

Solen marginatus F 0.0010 ± 0.0007 0.0031 ± 0.0023 0.0004 ± 0.0004 

 M 0.0871 ± 0.0112 0.0886 ± 0.0217 0.0006 ± 0.0006 

 F vs M 0.1597 ± 0.0205 0.1477 ± 0.0347 0.2122 ± 0.0178 

Cerastoderma glaucum F 0.0080 ± 0.0020 0.0000 ± 0.0000 0.0040 ± 0.0019 

 M 0.0094 ± 0.0029 0.0000 ± 0.0000 0.0040 ± 0.0021 

 F vs M 0.0071 ± 0.0018 0.0000 ± 0.0000 0.0037 ± 0.0017 

† Mean within- and between-groups uncorrected p-distance with pairwise deletion of gaps ± standard deviation (1,000 626 

bootstrap replicates). 627 

‡ nt, nucleotides. 628 

§ aa, amino acids. 629 


