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ABSTRACT

At the beginning of lactation, high-producing cows 
commonly experience an unbalanced energy status 
that is often responsible for the onset of metabolic 
disorders and impaired health and performance. Blood 
β-hydroxybutyrate (BHB) and nonesterified fatty acids 
(NEFA) are indicators of excessive fat mobilization and 
circulating ketone bodies. Recently, prediction models 
based on mid-infrared (MIR) spectroscopy have been 
developed to assess blood BHB and NEFA from rou-
tinely collected individual milk samples. This study 
aimed to estimate genetic parameters of blood BHB 
and NEFA predicted from milk MIR spectra and to as-
sess their phenotypic and genetic correlations with milk 
production and composition traits in early-lactation 
Holstein cows. The data set comprised the first test-day 
record within lactation and spectra of individual milk 
samples (n = 22,718) of 13,106 Holstein cows collected 
from 5 to 35 d in milk (DIM). Blood BHB and NEFA 
were predicted from milk MIR spectra using previ-
ously developed prediction models. Genetic parameters 
of blood metabolites and milk traits were estimated 
for the whole observational period (5–35 DIM) and 
within 6 classes of DIM. Blood BHB and NEFA showed 
similar genetic variation across DIM, with the highest 
heritability in the first 10 d after calving (0.31 ± 0.06 
and 0.19 ± 0.05 for BHB and NEFA, respectively). The 
genetic correlation between BHB and NEFA was mod-
erate (0.51 ± 0.05). Genetic correlations of BHB with 
milk yield, SCS, protein percentage, lactose percentage, 
and urea nitrogen content were similar to, or at least 
in the same direction as, the correlations of NEFA with 
the same traits, whereas opposite correlations were ob-
served with fat percentage and fat-to-protein ratio. Re-
sults of the current study suggest that blood BHB and 
NEFA predicted from milk MIR spectra have genetic 
variation that is potentially exploitable for breeding 

purposes. Therefore, they could be used as indicator 
traits of hyperketonemia in a selection index aimed to 
reduce the susceptibility of dairy cows to metabolic 
disorders in early lactation.
Key words: blood metabolite, infrared spectroscopy, 
bovine milk, genetic correlation

INTRODUCTION

Early lactation is a critical period for dairy cows, 
commonly coinciding with an unbalanced energy status 
due to disequilibrium between energy intake (input) and 
increased requirements for milk production (output). 
In particular, the energy demand necessary to support 
lactogenesis at the beginning of lactation affects body 
reserves (Pryce et al., 2016) and leads to a negative 
energy balance that is often responsible for increased 
incidence of metabolic disorders and reproductive is-
sues (LeBlanc, 2010; McArt et al., 2013; Suthar et al., 
2013; Esposito et al., 2014). The excessive mobilization 
of body reserves involves the increase of circulating 
BHB and nonesterified fatty acids (NEFA) in dairy 
cows (Carvalho et al., 2019). The determination of 
these metabolites in blood is commonly considered the 
reference test to monitor cow metabolic and nutritional 
status. For instance, Carvalho et al. (2019) reported 
that NEFA concentration ≥0.70 mmol/L is a potential 
alert for postpartum health problems; moreover, BHB 
concentration ≥1.2 mmol/L is used to define hyperke-
tonemia and has been associated with ketosis (Benedet 
et al., 2019b). Although blood metabolic profile testing 
relies on laboratory analyses, it requires blood sampling 
and thus it is expensive, time consuming, and invasive. 
To limit costs and labor, milk mid-infrared (MIR) spec-
troscopy has been used to develop prediction models for 
blood metabolites (Benedet et al., 2019a; Grelet et al., 
2019; Luke et al., 2019b). Mid-infrared spectroscopy 
allows large-scale data collection and has been success-
fully implemented in the routine milk recording system 
to determine milk composition (De Marchi et al., 2014). 
Moreover, phenotypes assessed from routinely collected 
data could be exploited at both phenotypic and ge-
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netic levels. In fact, blood metabolites may be used to 
monitor and diagnose metabolic issues in dairy farms 
and could be evaluated as indicator traits in breeding 
programs to reduce the prevalence of ketosis (Pryce 
et al., 2016). For instance, in the study of Carvalho et 
al. (2019), blood BHB was more heritable than ketosis 
(0.09 to 0.37 vs. 0.02 to 0.08, respectively) and showed 
moderate genetic correlation with the observed disease 
(Belay et al., 2017b). Considering that veterinary diag-
noses of ketosis are scarce in Italy, an indirect selection 
based on predicted blood BHB could be effective.

Few studies have estimated genetic parameters of 
blood BHB measured by reference methods (Oikonomou 
et al., 2008; van der Drift et al., 2012; Cecchinato et al., 
2018) or predicted using milk MIR spectra (Belay et al., 
2017b). Therefore, the present study aimed to estimate 
heritability of blood BHB and NEFA predicted from 
milk MIR spectra and to assess their genetic correla-
tions with milk production and composition traits in 
the first month of lactation of Holstein cows. Moreover, 
genetic parameters of blood metabolites were estimated 
within classes of DIM to depict the trend of genetic 
variation of BHB and NEFA in different stages of early 
lactation.

MATERIALS AND METHODS

Data

The initial data comprised 536,685 spectra of indi-
vidual milk samples of Holstein cows collected during 
monthly test-day recording procedures in Bolzano 
province (Italy) between January 2011 and December 
2018. The study area is characterized by small farms, 
with an average herd size of 22 lactating cows pres-
ent throughout the year (Zuliani et al., 2018), and 
traditional feeding (forage or hay and concentrates). 
Also, approximately 15% of herds move their animals 
to highland pastures in summer season. After milk col-
lection, preservative (Bronysolv; ANA.LI.TIK Austria, 
Vienna, Austria) was immediately added and samples 
were processed according to International Committee 
for Animal Recording recommendations (ICAR, 2019) 
in the milk laboratory of the South Tyrolean Dairy 
Association (Sennereiverband Südtirol; Bolzano, Italy). 
For each milk sample, fat, protein, casein, and lactose 
percentages and MUN (mg/dL) were determined, and 
the fat-to-protein ratio (F/P) was calculated. Spectral 
information containing 1,060 infrared transmittance 
data in the region between 5,000 and 900 cm−1 were 
stored using MilkoScan FT6000 (Foss Electric A/S, 
Hillerød, Denmark). Values of SCC (cells/μL) were 
determined using Fossomatic (Foss Electric A/S) and 

transformed to SCS through the formula SCS = 3 + 
log2(SCC/100).

Mid-infrared prediction models previously developed 
by Benedet et al. (2019a) were applied on the stored 
spectral data to predict blood BHB and NEFA. Briefly, 
between December 2017 and June 2018, 295 blood and 
milk samples were collected from early-lactation dairy 
cows in 20 herds of northeast Italy. Reference analyses 
were performed on blood samples for the determination 
of BHB and NEFA concentrations (mmol/L), and BHB 
values were log10-transformed to achieve normality and 
homogeneity of variances and to improve the accuracy 
of prediction (Luke et al., 2019b). Milk spectra were 
used to develop the prediction models through partial 
least squares regression after applying backward in-
terval partial least squares algorithm. Coefficients of 
determination in cross-validation were 0.64 for BHB 
and 0.53 for NEFA.

Days in milk were restricted to be between 5 and 35, 
and only the first test day of each lactation of a cow 
was kept in the data set. Parity ranged from 1 to 10, 
and 47% of the cows had repeated observations across 
lactations (i.e., they had 1 test day in more than 1 
lactation). Moreover, for each milk trait, values that 
exceeded 3 standard deviations (SD) from the mean 
were set to missing. No restrictions were imposed to 
predicted BHB and NEFA to avoid discarding potential 
diseased animals. Herds were required to be present for 
at least 4 yr between 2011 and 2018 and have at least 
5 cows sampled per year. After editing, 22,718 test-day 
records of 13,106 cows in 456 herds were available for 
genetic analyses.

Estimation of Genetic Parameters

The pedigree of cows with phenotypic information 
was traced back to 6 generations of ancestors, ending 
up with 43,943 animals. Variance and covariance com-
ponents of predicted blood metabolites and milk traits 
were estimated in ASReml 4.1 software (Gilmour et 
al., 2015) using univariate and bivariate repeatability 
animal models, respectively. The general form of the 
model adopted for the entire data set (5–35 DIM), in 
matrix notation, was

 y = Xb + Za + Ww + e, 

where y is the vector of observations for blood BHB, 
NEFA, and milk traits; b is the vector of fixed effects 
of parity (4 classes: 1, 2, 3, and ≥4), classes of DIM (6 
classes: 5–10, 11–15, 16–20, 21–25, 26–30, and 31–35 d), 
year of sampling (2011 to 2018), season of calving (4 
levels: December to February, March to May, June to 
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August, and September to November), and herd (n = 
456); a is the vector of solutions for the random additive 
genetic effect of the animal; w is the vector of solutions 
for the random permanent environmental effect of the 
cow across lactations; e is the vector of random residu-
als; and X, Z, and W are incidence matrices relating 
the corresponding effects to the dependent variable. All 
random effects were assumed to be normally distribut-
ed with zero means and variance–covariance structures 
of additive genetic, permanent environmental, and re-
sidual effects in the bivariate models that were G ⊗ A, 
P ⊗ I, and R ⊗ I, respectively, where G, P, and R 
are 2 × 2 additive genetic, permanent environmental, 
and residual (co)variance matrices, respectively; ⊗ is 
the Kronecker product of matrices; A is the additive 
genetic relationship matrix; and I is an identity matrix 
of appropriate order. The above-mentioned model, with 
the exclusion of the fixed effect of DIM classes, was 
used to estimate genetic parameters of the traits within 
each class of DIM.

Heritability (h2), repeatability (t), phenotypic cor-
relations (rp), and genetic correlations (ra) were calcu-
lated as

 h
       

a

a pe e

2
2

2 2 2
=

+ +

σ

σ σ σ
,  

 t
 

       
a pe

a pe e

=
+

+ +

σ σ

σ σ σ

2 2

2 2 2
,  

 r
 

p
p

p p

=
×

σ

σ σ

12

1
2

2
2
,  

and

 r
 

a
a

a a

=
×

σ

σ σ

12

1
2

2
2
,  

where σa
2 ,  σpe

2 ,  and σe
2  are the additive genetic, perma-

nent environmental, and residual variances of the trait, 
respectively; σp12 and σa12 are the phenotypic and the 
additive genetic covariances estimated between trait 1 
and trait 2, respectively; σp1

2  and σp2
2  are the pheno-

typic variances of traits 1 and 2, respectively; and σa1
2  

and σa2
2  are the additive genetic variances of traits 1 

and 2, respectively.

The coefficient of phenotypic variation (CVp) was 
computed for each trait as the ratio of the phenotypic 
SD to the mean of the trait, and the coefficient of ad-
ditive genetic variation (CVa) was calculated as the 
ratio of the additive genetic SD to the mean of the 
trait (Houle, 1992). Sires’ EBV for the investigated 
traits were obtained for the whole period (5–35 DIM) 
using variance components previously assessed through 
univariate models, but including a larger pedigree file 
(n = 27,557 sires) than that used to estimate genetic 
parameters. Pearson correlations between sires’ EBV of 
blood metabolites and EBV of milk traits were assessed 
without restrictions on reliability.

RESULTS

Descriptive Statistics

Concentrations of BHB and NEFA averaged 0.66 ± 
0.24 and 0.41 ± 0.21 mmol/L, respectively, with mean 
values across classes of DIM depicted in Figure 1. Con-
cerning BHB, the greatest values were from 5 to 10 
DIM (0.69 mmol/L) followed by a slight decrease until 
35 DIM, whereas NEFA showed a linearly decreas-
ing trend moving from the class 5 to 10 DIM (0.54 
± 0.23 mmol/L) to the class 31 to 35 DIM (0.32 ± 
0.17 mmol/L). The CVp between 31 and 35 DIM was 
the greatest for NEFA and the lowest for BHB (Figure 
1). Moving from 5 to 35 DIM, fat percentage, protein 
percentage, and SCS decreased by 15, 18, and 28%, 
respectively, whereas milk yield of the last DIM class 
(31–35 DIM) was 13% higher than milk yield of the 
first DIM class (5–10 DIM; Table 1). Lactose percent-
age and MUN content increased with DIM, and, on 
average, F/P did not show a clear trend, peaking in 
the DIM class between 21 and 25 DIM and decreasing 
thereafter (Table 1).

Genetic Variation and Heritability

Although BHB exhibited lower CVa than NEFA, it 
was more heritable in the first month of lactation; in-
deed, overall h2 from 5 to 35 DIM was 0.21 ± 0.02 for 
BHB and 0.14 ± 0.02 for NEFA (Table 2). For both 
metabolites the highest h2 was estimated between 5 and 
10 DIM and the lowest between 11 and 15 DIM (Table 
2). Moreover, the lowest CVa for BHB (6.21%) and 
NEFA (9.86%) corresponded with the lowest h2 (11–15 
DIM). Repeatabilities of BHB and NEFA estimated for 
the whole period (5–35 DIM) were 0.26 ± 0.01 and 0.21 
± 0.01, respectively.

Heritability estimates of milk traits are summarized 
in Table 2. Focusing on the entire time window (5–35 
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DIM), the minimum h2 was observed for SCS (0.06 ± 
0.01) and the maximum for lactose percentage (0.38 ± 
0.02). On the other hand, CVa ranged from 1.93% (lac-
tose percentage) to 20.77% (SCS). In all DIM classes, 
the highest h2 were obtained for lactose percentage.

Correlations of Blood Metabolites

The rp and ra between BHB, NEFA, and milk yield 
and composition traits during the whole observational 
period (5–35 DIM) are presented in Table 3. In general, 
rp of BHB with NEFA, milk yield, protein percentage, 
and lactose percentage were similar to ra between BHB 
and the same traits. Conversely, rp and ra between 
NEFA and fat percentage (0.21 ± 0.01 and −0.43 ± 
0.07, respectively) and between NEFA and F/P (0.41 
± 0.01 and −0.11 ± 0.08, respectively) had opposite 
directions. Moreover, correlations between NEFA and 
milk traits were negative except for rp and ra with milk 
yield (0.16 ± 0.01 and 0.53 ± 0.07, respectively).

The ra between BHB and NEFA estimated within 
each DIM class are summarized in Table 4. The 
strongest (0.78 ± 0.06) and weakest (0.18 ± 0.26) ra 
were assessed from 5 to 10 DIM and 11 to 15 DIM, 
respectively. The ra of BHB and NEFA with milk yield 
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Figure 1. Mean (A) and coefficient of phenotypic variation (CVp; 
B) of infrared-predicted blood BHB (◊) and nonesterified fatty acids 
(■) across classes of DIM. T
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and composition traits in the different DIM classes are 
depicted in Figure 2. The pattern of ra between BHB 
and milk yield fluctuated across DIM classes, whereas 
a decrease was observed between NEFA and milk yield. 
The ra of BHB and NEFA with fat percentage had an 
erratic trend, with a peak between 16 and 25 DIM. 
Moreover, the ra between NEFA and fat percentage 
were negative and moderate between 26 and 35 DIM. 
The patterns of ra between BHB and protein percent-
age was almost identical to the pattern of ra between 
NEFA and protein percentage. Also, the trend of ra 
between BHB and F/P resembled that between NEFA 
and F/P, but overall, the ra between BHB and F/P 
were positive whereas they fluctuated from positive 
to negative between NEFA and F/P. Both BHB and 
NEFA were negatively genetically associated with lac-
tose percentage across DIM; however, the pattern of ra 
with NEFA was more flat. The ra between BHB and 
MUN ranged from −0.43 ± 0.23 (11–15 DIM) to 0.12 ± 
0.35 (31–35 DIM), and the ra between NEFA and MUN 
ranged from −0.62 ± 0.18 (26–30 DIM) to 0.15 ± 0.50 
(31–35 DIM). Regarding SCS, a more erratic trend of 
ra was observed for BHB compared with NEFA; indeed, 
estimates for BHB varied from −0.26 to 0.35 within the 
observing period, whereas they were positive for NEFA, 
except for the negative association in the last DIM class 
(31–35 DIM).

Pearson correlation between sires’ EBV of blood 
NEFA and BHB was moderate (0.52; P < 0.001), even 
when only sires with reliability ≥0.50 (n = 218) were 
selected (0.52; P < 0.001). Figure 3 depicts Pearson 
correlations between EBV of blood metabolites and 
EBV of milk yield, composition traits, MUN, and SCS. 
The strongest association was between NEFA and lac-
tose percentage (−0.49; P < 0.001) and the weakest 
between BHB and SCS (0.03; P < 0.001). Milk urea ni-
trogen, protein percentage, and lactose percentage were 
negatively correlated with NEFA and BHB, whereas 
the relationships of NEFA and BHB with milk yield, 
fat percentage, F/P, and SCS were positive (Figure 3).

DISCUSSION

The objective of the present study was to estimate 
genetic parameters of blood BHB and NEFA predicted 
using MIR spectroscopy in a large data set of early-
lactation Holstein cows. The coefficients of determina-
tion of prediction models were 0.64 for BHB and 0.53 
for NEFA (Benedet et al., 2019a). Such models do not 
allow precise determination of blood metabolites, but 
they can be considered sufficiently accurate for screen-
ing purposes and for phenotypic and genetic investiga-
tions at population level (Belay et al., 2017a,b; Visentin 
et al., 2017; Wang and Bovenhuis, 2019).

Descriptive Statistics

The current study focused on early-lactation cows, 
and a decreasing concentration of blood BHB and 
NEFA across DIM was somehow expected (Carvalho 
et al., 2019). However, mean BHB was generally lower 
and exhibited a smaller decrease across DIM compared 
with previous studies in Holstein (van der Drift et al., 
2012) and Norwegian Red (Belay et al., 2017a) cows. 
The BHB trend was more similar to that observed 
by Oikonomou et al. (2008) in primiparous Holsteins. 
Conversely, NEFA concentrations agreed with results 
observed by Mäntysaari et al. (2019) in the first 3 wk 
of lactation of Nordic Red cows.

The decrease of fat and protein percentages and the 
increase of milk yield and lactose percentage from 5 to 
35 DIM were also reported in other studies (Miglior et 
al., 2006; Abdullahpour et al., 2013; Haile-Mariam and 
Pryce, 2017). The trend for F/P was similar to that 
observed in Canadian Holsteins by Koeck et al. (2014). 
Moreover, our results for fat, protein, lactose, MUN, 
and F/P agreed with those of Ederer et al. (2014) at 
first test day in early-lactation (8–49 DIM) Austrian 
Fleckvieh cows.

Genetic Variance

Overall, h2 estimates of BHB and NEFA were con-
sistent with those reported by Hammami et al. (2017) 
and obtained from MIR predictions in Holstein cows. 
Despite this, lower h2 for BHB and higher h2 for NEFA 
have been recently observed in Australian early-lacta-
tion cows (Luke et al., 2019a). In agreement with the 
literature (Oikonomou et al., 2008), the highest h2 for 
BHB and NEFA were estimated from 5 to 10 DIM. 
Then, h2 of both metabolites slightly decreased in the 
subsequent weeks in the current study. Repeatabilities 
of BHB and NEFA were low; overall, this was expected 
because we estimated across-lactation repeatability. 
Indeed, the concentrations of BHB and NEFA in blood 
and milk and the occurrence of hyperketonemia tend to 
increase with parity (Santschi et al., 2016; Benedet et 
al., 2019b).

Benedet et al.: GENETIC PARAMETERS OF BLOOD METABOLITES

Table 4. Genetic correlation (SE in parentheses) between infrared-
predicted log10-transformed blood BHB and blood nonesterified fatty 
acids across DIM

DIM Genetic correlation

5–10 0.78 (0.06)
11–15 0.18 (0.26)
16–20 0.43 (0.14)
21–25 0.63 (0.11)
26–30 0.33 (0.17)
31–35 0.44 (0.19)
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Figure 2. Genetic correlations of infrared-predicted log10-transformed blood BHB (A) and blood nonesterified fatty acids (B) with milk traits 
across classes of DIM. F/P = fat-to-protein ratio. Standard errors of genetic correlations ranged from 0.10 to 0.35 for log10-transformed blood 
BHB and from 0.11 to 0.50 for blood nonesterified fatty acids.
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The patterns of h2 for milk yield and fat and protein 
percentages were similar to those assessed for Iranian 
Holsteins by Abdullahpour et al. (2013). Heritability 
of lactose percentage increased along DIM, as reported 
by Haile-Mariam and Pryce (2017). In general, h2 of 
F/P, MUN, and SCS estimated for the whole period 
(5–35 DIM) agreed with previous findings in Holstein 
(Negussie et al., 2008; Koeck et al., 2014; Hammami et 
al., 2017) and Austrian Fleckvieh (Ederer et al., 2014) 
cows.

Correlations

The overall positive correlations of BHB and NEFA 
with milk yield (Table 3; Figures 2 and 3) indicated 
that the best individuals for milk yield were those with 
offspring exhibiting on average greater blood BHB and 
NEFA in the first 35 DIM, supporting the idea that 
high-producing cows are more susceptible to metabolic 
disorders than low-producing animals and that selection 
for milk yield may have detrimental effects on cows’ 
metabolic status. This also supports the general idea 
that, in dairy cattle, genetic selection only focusing on 
milk production has detrimental effects on health and 
fitness across generations (Stefani et al., 2018; van der 
Werf et al., 2019), especially in early lactation. In fact, 
high-producing cows are subjected to homeorhesis, 
meaning that all metabolic pathways are intended to 
milk synthesis in the mammary gland (Bauman and 
Currie, 1980; Costa et al., 2019b). Therefore, the greater 
the energy requirements for milk synthesis, the greater 

the circulating blood NEFA and ketone bodies due to 
mobilization of fat reserves (Carvalho et al., 2019). The 
ra between BHB and SCS fluctuated from positive to 
negative within the observing period, and it was almost 
zero as a whole. However, NEFA were positively geneti-
cally associated with SCS in the first 35 DIM (Table 
3; Figure 3), suggesting that there may be an indirect 
(desired) selection for udder health by selecting on re-
sistance to metabolic diseases. In fact, several studies 
estimated a positive correlation between ketosis and 
mastitis (Pfeiffer et al., 2015; Pryce et al., 2016; Costa 
et al., 2019a). However, it is worth highlighting that 
the relationship of SCS with blood BHB and NEFA 
in mid and late lactation was not investigated in the 
current study and may exhibit different directions than 
in early lactation. As expected, blood BHB and NEFA 
negatively correlated with lactose percentage (Table 3; 
Figures 2 and 3), which in turn was negatively geneti-
cally related to ketosis in an earlier study (Costa et al., 
2019a). The opposite ra of fat percentage with NEFA 
and BHB across DIM (Figure 2) suggested different ge-
netic dependencies of the 2 blood metabolites with this 
trait in early lactation (≤35 DIM). In particular, the 
difference can be explained by the change of fat synthe-
sis during and after lipomobilization when the peaks 
of NEFA and BHB occur, respectively. The negative ra 
between BHB and protein percentage confirmed recent 
findings (Belay et al., 2017b), whereas the negative rp 
between NEFA and protein percentage was in contrast 
with the estimate (0.12) obtained in Nordic Red cows 
(Mäntysaari et al., 2019). According to the selection 

Benedet et al.: GENETIC PARAMETERS OF BLOOD METABOLITES

Figure 3. Pearson correlations of sires’ EBV (n = 27,557) of infrared-predicted log10-transformed blood BHB (black bars) and nonesterified 
fatty acids (mmol/L; gray bars) with milk traits. All correlations were significant at P < 0.001.
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index theory, our findings support the use of F/P as 
an indicator of ketosis resistance; in fact, F/P showed 
enough genetic variation and genetic association with 
the objective trait to be a potential valid candidate 
to select against ketosis (Klein et al., 2019). On the 
contrary, an unexpected negative ra between NEFA 
and F/P from 11 to 15 DIM and from 26 to 30 DIM 
was observed. These 2 negative peaks might reflect the 
negative association of NEFA with fat percentage in 
the same classes of DIM.

The nonlinear trend of ra between BHB and NEFA 
across DIM classes (Table 4) generally reflects the h2 
patterns of the 2 metabolites in the first month of lac-
tation (Table 2). In fact, between 11 and 15 DIM, both 
metabolites exhibited the lowest CVa and h2 as well as 
the lowest ra between them. The low genetic variation 
observed between 11 and 15 DIM may suggest that the 
potential of genetics in reducing susceptibility to keto-
sis in the Italian Holstein population is not constant, 
fluctuating in the first 35 DIM. To our knowledge, this 
is the first study that estimated ra of BHB and NEFA 
with milk traits specifically in the first month of lacta-
tion. Thus, the comparison with the literature could be 
misleading.

CONCLUSIONS

In this study we estimated h2 of blood BHB and 
NEFA predicted from milk MIR spectra as well as their 
genetic correlations with milk production and composi-
tion traits in the first 35 DIM of Italian Holstein cows. 
The greatest blood concentration and h2 of BHB and 
NEFA were observed in the first 10 d after calving. 
Genetic correlation between blood BHB and NEFA was 
moderate, suggesting that both traits should be taken 
into account if selection against metabolic issues is 
pursued. Blood BHB and NEFA were moderately posi-
tively correlated with milk yield and SCS. On average, 
genetic correlations of BHB and NEFA with MUN con-
tent, protein percentage, and lactose percentage were 
comparable. Data on blood BHB and NEFA concentra-
tions predicted from MIR spectra during routine milk 
recording may be particularly useful in countries where 
veterinarian diagnosis is not available on a large scale 
and selection strategies against ketosis are of interest.
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