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a b s t r a c t 

Stroke patients with left Hemispatial Neglect (LHN) show deficits in perceiving left contralesional stimuli with 

biased visuospatial perception towards the right hemifield. However, very little is known about the functional 

organization of the visuospatial perceptual neural network and how this can account for the profound reorgani- 

zation of space representation in LHN. 

In the present work, we aimed at (1) identifying EEG measures that discriminate LHN patients against controls 

and (2) devise a causative neurophysiological model between the discriminative EEG measures. To these aims, 

EEG was recorded during exposure to lateralized visual stimuli which allowed for pre-and post-stimulus activity 

investigation across three groups: LHN patients, lesioned controls, and healthy individuals. Moreover, all partic- 

ipants performed a standard behavioral test assessing the perceptual asymmetry index in detecting lateralized 

stimuli. The between-groups discriminative EEG patterns were entered into a Structural Equation Model for the 

identification of causative hierarchical associations (i.e., pathways) between EEG measures and the perceptual 

asymmetry index. 

The model identified two pathways. A first pathway showed that the combined contribution of pre-stimulus 

frontoparietal connectivity and individual-alpha-frequency predicts post-stimulus processing, as measured by 

visual-evoked N100, which, in turn, predicts the perceptual asymmetry index. A second pathway directly links 

the inter-hemispheric distribution of alpha-amplitude with the perceptual asymmetry index. The two pathways 

can collectively explain 83.1% of the variance in the perceptual asymmetry index. 

Using causative modeling, the present study identified how psychophysiological correlates of visuospatial 

perception are organized and predict the degree of behavioral asymmetry in LHN patients and controls. 
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. Introduction 

Left Hemispatial Neglect (LHN) is a frequent and disabling neu-

opsychological syndrome associated with deficits in perceiving, re-

ponding, and orienting attention toward the contralesional hemifield

 Bartolomeo et al., 2007 ; Ladavas et al., 1987 ; Parton et al., 2004 ). LHN

s often due to right hemispheric stroke with lesions over the frontopari-

tal brain network (FPN, ( Bartolomeo et al., 2012 , 2007 ). These lesions

ause abnormal functioning over the dorsal (DAN) and ventral attention

etworks (VAN, Corbetta et al., 2005 ; Mort et al., 2003 ). These networks
∗ Corresponding author. 

E-mail addresses: fabiolaporta@mail.com , fabio.laporta@isnb.it (F. La Porta) . 

ttps://doi.org/10.1016/j.neuroimage.2023.119942 . 

eceived 10 October 2022; Received in revised form 25 January 2023; Accepted 13 

vailable online 14 February 2023. 

053-8119/© 2023 Published by Elsevier Inc. This is an open access article under th
re right hemisphere dominant and while the DAN is involved in orient-

ng perceptual resources toward relevant spatial locations (the “where ”

athway, Capotosto et al., 2009 ; Husain and Nachev, 2007 ; Thiebaut de

chotten et al., 2011 ), the VAN has been described as the “what ” path-

ay ( Parr and Friston, 2018 ; Ungerleider, and Haxby, 1994 ), propagat-

ng perceptual information about stimulus identity. 

Many studies and computational models suggest that the func-

ional integrity of the FPN and the connectivity between the areas

f this network subtend visuospatial perception ( Bartolomeo et al.,

007 ; Briggs et al., 2013 ; Corbetta and Shulman, 2002 ; Doricchi et al.,
February 2023 
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008 ; He et al., 2007, 2007 ; Hembrook Short et al., 2017 ; Hembrook-

hort et al., 2019 ; Parr and Friston, 2018 ). Within this system, neu-

oimaging studies suggest that LHN involves imbalances in the ac-

ivity of the two hemispheres and low inter-hemispheric connectiv-

ty ( Bartolomeo, 2021 ; Bartolomeo et al., 2012 ; Carter et al., 2010 ;

ambeck et al., 2006 ). In particular, fMRI studies identified over-

ctivations of the intact left hemisphere in LHN ( Corbetta et al., 2005 ).

his over-activation can bias attention towards the contralateral hemi-

eld, leading to perceptual asymmetries. This evidence is further sup-

orted by a recent EEG study showing abnormal anticipatory pre-

timulus alpha distribution in LHN with larger amplitude over the left

emisphere compared to the right ( Lasaponara et al., 2019 ). The inter-

emispheric imbalance is supposed to be the neural substrate of the

ateralization of perceptual dysfunctions and is considered an impor-

ant biomarker of LHN. Accordingly, several neurostimulation protocols

ave been applied to reduce inter-hemispheric imbalance in LHN and

esults are promising in terms of the reduction of the perceptual bias to-

ards the right hemifield ( Brighina et al., 2003 ; Jacquin-Courtois, 2015 ;

och et al., 2012 ; Oliveri, 2011 ). 

Notably, the speed of alpha oscillations also plays a crucial role in

he perceptual processing of incoming sensory stimuli with faster al-

ha oscillations leading to higher perceptual sampling and more accu-

ate perceptual experience ( Bertaccini et al., 2022 ; Cecere et al., 2015 ;

oldea et al., 2022 ; Cooke et al., 2019 ; Di Gregorio et al., 2022c ;

amaha and Postle, 2015 ; Trajkovic et al., 2022 ). In particular, faster

re-stimulus Individual Alpha Frequency (IAF), which is the frequency

eak within the alpha band, predicts better perceptual accuracy ( Di Gre-

orio et al., 2022c ; Trajkovic et al., 2022 ). Moreover, alpha-frequency

s commonly impaired after stroke, with peaks shifting over slower fre-

uencies ( Pietrelli et al., 2019 ; Qureshi et al., 2018 ), leading to various

erceptual and cognitive impairments( Giaquinto et al., 1994 ; Ippolito

t al., 2022 ; Qureshi et al., 2018 ). In general, dysfunctions of the FPN

nd pre-stimulus alpha activity might be considered the neural basis

f perceptual asymmetries and deficits in LHN ( Corbetta et al., 2005 ;

usain and Rorden, 2003 ). Furthermore, besides alterations at the an-

icipatory pre-stimulus level, there is also evidence of impaired stimu-

us processing. In particular, LHN patients show an impaired amplitude

nd delayed latency in the visual-evoked N100 and P300 in response to

he right presented stimuli ( Deouell et al., 2000 ; Di Russo et al., 2008 ;

oricchi et al., 2021 ; Lasaponara et al., 2021 ; Verleger et al., 1996 ). 

The Pre- and post-stimulus EEG measures are widely used to in-

estigate neural substrates of multiple stages of perception in healthy

articipants and to characterize perceptual deficits in LHN patients

 Lasaponara et al., 2021 ). However, although EEG measures can reflect

ssential aspects of perceptual processing, single measures may not be

ble to capture the complexity of visuospatial perception. For instance, it

s unclear how EEG measures are associated with each other and how the

nderlying psychophysiological networks and pathways are organized

n the healthy brain and LHN. Thus, we hypothesized that different pre-

nd post-stimulus EEG parameters, known to subtend visuospatial per-

eption based on the current literature, can be associated and organized

n hierarchical networks. 

To test these hypotheses, we set the following two aims: (1) To iden-

ify EEG measures that discriminate patients with LHN against controls. We

resented to a sample of LHN patients, healthy and brain damaged con-

rols (i.e., patients with no evidence of LHN) lateralized visual stimuli

uring EEG recording to extract EEG correlates of visuospatial percep-

ion. Then, EEG correlates were compared between the three groups

o identify those EEG measures best discriminating LHN from controls.

2) To devise a causative neurophysiological model between EEG measures .

o reach this aim, we applied Structural Equation Models ( Bentler and

uan, 1999 ; Hair et al., 2014 ; Koechlin et al., 2003 ) (i.e., SEM) to define

he causative associations and hierarchies between the EEG measures

dentified in the first step and to study whether and to what extent EEG

easures can collectively predict perceptual performance measured by

he perceptual asymmetry index ( Mancuso et al., 2019 ). 
2 
. Materials and methods 

.1. Aim 1: To identify EEG measures that discriminate patients with LHN 

gainst controls 

.1.1. Population 

For this aim, we planned to enroll three groups of patients. The first

roup (Left Hemispatial Neglect, LHN) included stroke patients with

linical evidence of left hemispatial neglect assessed with the Bells Test

inclusion criterion for LHN patients = asymmetry score in the Bells test

 3) ( Mancuso et al., 2019 ). The second group (Brain Damaged Control,

DC) included stroke patients with no clinical evidence of left hemispa-

ial neglect (inclusion criterion = asymmetry score in the Bells test < 3).

ligibility criteria for all stroke patients were: 1. Diagnosis of ischemic

r hemorrhagic stroke confirmed by encephalic CT scan or MRI; 2. In-

atient or outpatient rehabilitation setting; 3. Age between 18 and 80

ears; 4. Time after stroke between 3 weeks and 12 weeks; 5. Adequate

anguage comprehension to give informed consent. Exclusion criteria: 1.

edical instability at the time of enrollment; 3. Presence of alteration

n the consciousness-vigilance rhythm; 4. Cortical blindness, visual ag-

osia and/or evidence of hemianopia reporting occipital lesions; 5. Pre-

ious psychiatric disorders and/or history of substance abuse; 6. Severe

eduction of visual acuity not compensated by optic lenses; and 7. pre-

ious diagnosis of cognitive impairment. All patients, after enrollment,

erformed a broader assessment of Neglect related symptoms (i.e., the

luff Test and the Picture Scanning test) and of the motor functioning

i.e., the Motricity index in the right limbs, MI). BDC patients show-

ng Neglect related symptoms during the assessment were not included

n the study. The third group included voluntary healthy participants

Healthy Controls, HC). All participants were recruited at UOC Medicina

iabilitativa e Neuroriabilitazione of the IRCCS Istituto delle Scienze Neu-

ologiche di Bologna, Italy. Participants gave written informed consent

efore participating in the study, and all procedures were conducted in

ccordance with the Declaration of Helsinki and approved by the Ethical

ommittee Area Vasta Emilia Centro (CE num. 17075) Bologna, Italy. 

.1.2. Intervention: experimental procedure 1 

All participants underwent EEG recordings. During the experimen-

al sessions, participants were comfortably seated in a silent room with

immed light and requested to attend the presentation of lateralized

isual stimuli ( Fig. 1 A) during concurrent EEG recordings. No active ac-

ion was requested in response to the stimulus presentation. The stimu-

us presentation protocol was programmed in a PC running the “Presen-

ation ” software (Neurobehavioral Systems, Albany, CA), which, during

EG recording, controlled stimuli presentation. Stimuli were presented

n a 21-inch color monitor, and participants kept a constant viewing dis-

ance of 50 cm. Each trial started with a white central fixation cross over

 black background, and participants were prompted to fix the central

xation cross throughout the experiment. Then, after a varying stimu-

us onset asynchrony (SOA between 640 and 960 ms with steps of 80

s), a stimulus was presented randomly on the right or the left of the

xation cross along the midline on a view distance angle of 28°. Stimuli

ere yellow squares (1 cm X 1 cm) presented in the black background

o optimize color contrast between the stimulus and the background.

timuli were displayed for 96 ms; the central fixation cross was kept

n the screen for 1000 ms before the beginning of the subsequent trial.

n expert technician visually monitored eye movements and whenever

articipants lost the central fixation provided feedbacks to recover it.

ixty-four stimuli were presented in a single block (32 in each hemi-

eld). 

EEG data were recorded using the BrainVision recorder system from

9 Ag/AgCl-cup electrodes positioned according to the 10/20 system

nd referenced to the linked ear lobes. The EEG signal was recorded

rom 12 scalp electrodes: Fz, Cz, Pz, C4, C3, P4, P3, F4, F3, Oz, O1, O2.

he CMS Common Mode Sense (CMS) and the Driven Right Leg (DRL)

lectrodes were used as reference and ground electrodes. Impedance
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Fig. 1. Experimental procedure. A . Lateralized visual stimulus presentation. In the pre-stimulus time, a fixation cross is presented on a black background for 1 s. 

Then, a stimulus is presented randomly for 96 milliseconds (ms) either on the left or right of the fixation cross. Before a new trial begins, the fixation cross is again 

presented for 1 sec (post-stimulus time period). B . Bells Test protocol. After each EEG session, participants were asked to cross out all the bells on a A4 paper and 

ignore the other figures to study clinical and behavioral performance. 
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or EEG and electrooculogram (EOG) electrodes were kept below 10

 Ω. The vertical and horizontal electrooculogram (EOG) was recorded

rom electrodes above and below the right eye and on the outer can-

hi of both eyes. EEG and EOG data were continuously recorded at a

ampling rate of 1024 Hz ( Babiloni et al., 2020 ). Offline, all electrodes

ere re-referenced to the average reference, re-sampled to 500 Hz, and

ltered with a 0.5–30 Hz band-pass filter. EEG data were analyzed us-

ng EEGLAB v14.0.0 ( Delorme and Makeig, 2004 ) and custom routines

ritten in MatLab R2015b (The Mathworks, Natick, MA, USA). For the

timulus-locked data, epochs of 1000 ms before and 1000 ms after stim-

lus onset were extracted and baseline-corrected using the entire pre-

timulus period. Epochs contaminated with artifacts were excluded us-

ng the pop_autorej function in EEGLAB v14.0.0, which first excludes

rials with voltage fluctuations higher than 1000 μV and then excludes

rials with data values outside five standard deviations using an iter-

tive algorithm. The mean percentage of excluded trials was 14.45%

SE = 1.17%) for the stimulus-locked averages (excluded trials in the

HN = 17.7%, SE = 2.53%; BDC = 12.46%, SE = 1.48%; HC = 12.46%, SE

 1.23%). No statistically significant differences emerged in the percent-

ge of excluded trials between groups ( F(2,36) = 2.55; p = .093). Three

EGs were excluded from the analyses for abundant artifacts. An inde-

endent components analysis (ICA) was performed for each participant’s

EG ( Jutten and Herault, 1991 ; Makeig et al., 1996 ) using the infomax

lgorithm ( Bell and Sejnowski, 1995 ) to correct the remaining artifacts.

hen, independent components (ICs) representing stereotyped artifact

ctivity, such as horizontal (saccades) and vertical (blinks) eye move-

ents, and muscle artifacts were identified through a multistep corre-

ational template-matching process implemented in CORRMAP v1.02

 Campos Viola et al., 2009 ). Topographies of ICs labeled as artifacts by

he CORRMAP procedure were visually inspected and then calculated

ut of the data using inverse matrix multiplication. Artifact corrected

pochs were categorized based on stimulus location in left and right

rials. 

The overall experimental procedure duration was about 20 min. Par-

icipants repeated the procedure and the EEG recording during four con-

ecutive days (2 participants repeated the EEG 8 times) for a total of 154

EG recordings. Each EEG recording was used as a separate session in

he analyses. The EEG experimental design was already presented in

revious studies ( Di Gregorio et al., 2021a , 2021b ). 

 

3 
.1.3. Control 

No control for the intervention was planned, but BDC and HC groups

ere used as control groups. 

.1.4. Outcome 

Measures based on EEG data (i.e., EEG features), known to be associ-

ted to visuospatial perception, were extracted before and after stimulus

resentation, establishing a temporal hierarchy between EEG features.

hus, we distinguished three main outcome measures: EEG features pre-

eding (i.e., pre-stimulus features) and following stimulus presentation

i.e., post-stimulus processing) and a behavioral performance test. 

1 Pre-stimulus features . Alpha parameters (IAF and alpha-

amplitude) and connectivity measures (phase lag index) were

extracted from the pre-stimulus activity. IAF and alpha-amplitude

were computed from the power spectra of each EEG session. To

identify the IAF, data epochs in the 1000 ms following the pre-

sentation of the fixation cross (i.e., pre-stimulus alpha from -1000

ms to stimulus presentations) were analyzed with a fast Fourier

transformation (MatLab function spectopo, frequency resolution:

0.166 Hz). Power was calculated in this time window and nor-

malized in (10 ∗ log10( 𝜇v)2) at each frequency. IAF was defined

as the maximum local power within 7-13 Hz (i.e., alpha range).

In the same time window, alpha-amplitude was defined as the

maximum alpha power, expressed in normalized power. IAF and

alpha-amplitude were measured over frontal (electrodes F3 and F4),

parietal (electrodes P3 and P4) and occipital (electrodes O1 and

O2) regions of interest (ROIs) in the right and left hemispheres. To

calculate the phase lag index (PLI) ( Stam et al., 2007 ; Vinck et al.,

2011 ), pre-stimulus EEG data were merged into 1000 ms non-

overlapping windows ( Lee et al., 2019 ; Trajkovic et al., 2021 ).

Then the cross-spectra of the time series signals were calculated,

where PLI estimates the magnitude of the imaginary part of the

cross-spectrum between pairs of electrodes. Specifically, the PLI

calculates phase differences (i.e., phase lag) between two time series

signals and can assume values between 0 and 1. Larger PLI values

reflect a consistent phase lag between two signals. If the relation

between two signals is random or the phases coincide (as for

electrodes with same neural source), the PLI value is 0. Moreover, a

threshold for each participant is set to detect residual false positive
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connectivity. For this reason, The PLI is a robust estimator of scalp-

level connectivity that is more invariant to volume conduction in

comparison to other estimators ( Hardmeier et al., 2014 ; Stam et al.,

2007 ). For each EEG, PLI was estimated as a function of individual

alpha frequency peaks (for methods details see also ( Di Gregorio

et al., 2022a ; Trajkovic et al., 2021 ), and 12 × 12 connectivity ma-

trices were generated over the scalp electrodes. Inter-hemispheric

connectivity based on PLI was estimated between parietal (PLI

between P3-P4) and frontal (PLI between F3-F4) electrodes, while

frontoparietal connectivity was estimated in the right (PLI between

F4-P4) and the left hemisphere (PLI between F3-P3). 

2 Post-stimulus features. Visual-evoked potentials (VEPs) in the post-

stimulus time window (i.e., from stimulus presentations to 1000 ms

after) were calculated. The amplitude in microvolt ( 𝜇v), and the la-

tency in milliseconds (ms) of the negative peak of the N100 (time

window between 80 ms and 200 ms) were analyzed separately for

left and right-presented stimuli over parietal electrodes (i.e., P3 and

P4) ( Di Gregorio et al., 2021a , 2021b ; Di Russo et al., 2013 , 2008 ).

Then, indices based on VEPs were extracted. In particular, the Vi-

suospatial Attention Bias Index (vABI) ( Di Gregorio et al., 2021a ,

2021b ) was calculated on the N100 peak amplitude, and the Inter-

Hemispheric Transmission Time (IHTT) ( Moes et al., 2007 ), was cal-

culated on the N100 peak latency. The vABI is a lateralization in-

dex which reflects the difference in the activation of the two hemi-

spheres in response to lateralized stimuli. Specifically, positive val-

ues of the vABI reflect larger activations for right presented stim-

uli and thus a right bias in visual processing, while negative values

reflect a left bias. Details of vABI calculation are reported in previ-

ous studies ( Di Gregorio et al., 2021a , 2021b ). Similarly, the IHTT

reflects the transmission times of lateralized information between

the two hemispheres (from right to left and from left to right hemi-

spheres ( Brown et al., 1994 ; Moes et al., 2007 ). In particular, the

right to left IHTT (r-l IHTT) is calculated as the difference between

the latencies of the negative peak of N100 for left presented stimuli

over electrodes P4 and P3 (i.e., r-l IHTT = N100 latency over P4 –

N100 latency over P3). Instead, the left to right IHHT (l-r IHTT) is

calculated for right presented stimuli as the difference: N100 latency

over P3 – N100 latency over P4. The same indexes (i.e, the vABI and

the IHTT) with the same procedures were also calculated for the

P300 in a time window between 200-400 ms relative to stimulus

onset. 

3 Behavioral performance test . After each EEG session, all partici-

pants underwent a Bells Test ( Mancuso et al., 2019 ) ( Fig. 1 B) to as-

sess asymmetries in lateralized perception. Asymmetry scores were

calculated as the difference between the number of target bells

checked on the right and the left side. Positive values indicate a more

considerable number of misses on the left side, indicating asymme-

tries in spatial perception ( Mancuso et al., 2019 ). 

.1.5. Statistical analyses 

To reach the first aim, we compared EEG features across EEG ses-

ions between groups (HC, BDC, and LHN) to identify neural correlates,

hich could discriminate between individuals without (healthy partic-

pants and brain damaged controls) and with left hemispatial neglect.

he variables Age and Gender were included as additional covariates

n the analyses for all the EEG measures. Between-subjects planned

omparisons were analyzed using two-tailed independent samples t-

ests (for all measures) and two-way mixed-model ANCOVAs with re-

eated measurements (for IAF, alpha amplitude and connectivity). The

ithin-subject variable ROI for IAF and alpha-amplitude was calculated

ver electrodes (O1, O2, P3, P4, F3, and F4) and for PLI connectiv-

ty over electrodes pairs (P3-P4, F3-F4, F3-P3 and F4-P4), while IHTT

as analyzed for the within-subject variable direction (right to the left

nd left to right). One-way ANCOVAs were used to analyze the vABI

nd the clinical data between groups. The significance level was set

t p < .05. Greenhouse-Geisser correction was applied when necessary
4 
 Greenhouse and Geisser, 1959 ) to compensate violations of sphericity.

000 Bootstrap correction was applied whenever necessary for multiple

omparisons. Effect sizes were reported as Cohen’s d (d) for the t-test

nd partial eta squared ( 𝜂p 2 ) for the ANCOVAs. All analyses were per-

ormed with MatLab and SPSS software (version 13). 

.2. Aim 2: To devise a causative neurophysiological model between EEG 

easures 

To reach this aim, we built a hierarchical causative model with struc-

ural equation modelling (SEM) techniques based on the data generated

ithin aim 1. The experimental procedure used in aim 1 (i.e., EEG and

ehavioral performance assessed with an external test, the Bells Test) is

articularly indicated for SEM applications. Indeed, the SEM analyzes

he causative relationship between latent variables ( Tenenhaus et al.,

005 ; Vinzi et al., 2010 ) and models single variables or their associations

i.e., pathways) to predict external clinical outcomes. A crucial advan-

age of SEM is that the model can identify associations between different

ypes of measures (i.e., psychophysiological and behavioral measures)

nd can provide a statistical-driven approach, based on the hypothesis

i.e., confirmatory analysis), describing the structure underlying the ob-

erved variables. In other words, the SEM model can link the functioning

f psychophysiological networks with the behavioral performance in ex-

ernal clinical tests. SEM models have been previously implemented in

xperimental and clinical neurosciences to investigate cognitive func-

ioning in healthy participants ( Koechlin et al., 2003 ) and to predict be-

avioral and clinical outcomes in neurological and psychiatric patients

 Koshiyama et al., 2021 ; Parkes et al., 2019 ; Wang et al., 2019 , p. 201)

.2.1. Model generation 

To build the model, we hypothesized the following latent variables:

1 First-order variables (pre-stimulus time period): perceptual sam-

pling (IAF over the ROIs as indicators), attention distribution (alpha-

amplitude over the ROIs as indicators) and connectivity within the

visuospatial perceptual network (PLI over the ROIs as indicators). 

2 Second-order variables (post-stimulus time period): stimulus pro-

cessing bias (vABI as single indicator) and latency (right to left and

left to right IHTT as indicators). 

3 Higher order variable (behavioral performance): perceptual asym-

metry, indicated by the asymmetry score generated by the Bells test.

Based on the literature data, we hypothesized an initial model, where

ll first-order latent variables influenced both the second-order and the

igher order latent variable, assuming that the latter was also influ-

nced by the second-order latent variables. In other words, the initial

odel was conceived to be able to capture all possible connections and

he temporal progression of perceptual processing, distinguishing earlier

re-stimulus and later post-stimulus EEG activity as well as behavioral

erformance. 

Based on the results generated from aim 1, the best between-groups

iscriminative EEG features were associated to the corresponding hy-

othesized latent variable ( Koshiyama et al., 2021 ). In this way, the

nitial hypothesized model was completed by associating a specific ob-

ervable indicator (EEG feature) to each first- and second-order latent

ariable. Preliminary Shapiro-Wilk test for normality distribution was

erformed for all measures ( Shapiro and Wilk, 1965 ). 

.2.2. Model assessment 

SEM analyses were performed with Partial Least Squares using the

LS-PM MatLab toolbox ( Aria et al., 2018 ). The overall model assess-

ent was performed using the following fit statistics: 𝜒2 , RMSEA (Root

ean Square Error of Approximation), SRMR (Standardized Root Mean

quare Residual), CFI (Comparative Fit Index) and TLI (Tucker-Lewis

ndex) ( Xia and Yang, 2019 ). Fit to the model was considered ade-

uate if the 𝜒2 was not significant, RMSEA < .06, SRMS < .08 CFI > .90,

LI > .95( Aria et al., 2018 ). SRMR is particularly indicated for studies



F. Di Gregorio, V. Petrone, E. Casanova et al. NeuroImage 270 (2023) 119942 

w  

p  

t  

e  

M  

fi  

T  

w  

(  

c  

L  

i  

G  

r  

s  

o  

t

 

o  

2  

r  

V  

.  

v  

e  

9

2

 

m  

o  

v  

s  

m  

f

𝑑

w  

m  

m  

M  

1  

A  

w  

l

2

 

a  

E

3

3

a

 

f  

h  

d  

(  

c  

p  

d  

n  

t  

t  

t  

o  

S  

M  

t  

s  

t  

c  

a  
ith sample sizes < 500 units ( Cangur and Ercan, 2015 ). However, the

rimary indicator of model fit is the 𝜒2 statistic, which provides a test for

he null hypothesis that the theoretical model does not fit the data. Mod-

ls with non-significant 𝜒2 statistics are deemed to have good fit. Root

ean Square Error of Approximation (RMSEA) is a measure of model

t relatively unaffected by sample size and model estimation methods.

he Comparative fit index (CFI) compares the model with a null model,

hich assumes that the main variables in the model are not associated

i.e., the independence model). The Tucker-Lewis Index (TLI) is an in-

remental fit index which is not significantly affected by sample sizes.

arger TLI value indicates better fit for the model but 0.95 is reported

n the literature as an acceptable cut-off value ( Cangur and Ercan, 2015 ;

ibbons et al., 2013 ). Internal consistency of the model (i.e., construct

eliability) was assessed for each variable with the Cronbach Alpha. Con-

truct reliability was considered adequate for between groups analyses

r for single subject analyses with Cronbach Alpha > .70 or > .85 respec-

ively ( Pellicciari et al., 2020 ). 

Loadings were calculated for each variable to analyze the reliability

f single indicators, and loadings less than 0.4 were excluded ( Aria et al.,

018 ). Convergence validity, which calculates if a set of indicators rep-

esents only one underlying latent variable, was expressed in Average

ariability Explained (AVE). Convergence Validity is satisfied if AVE >

50. A path-weighting scheme specifies the relationships between latent

ariables, and total effects (i.e., path coefficients) are reported. Path co-

fficients were bias-corrected (500 Bootstrap replications). p-values and

5% confidence intervals are reported. 

.2.3. Model identification and sample size estimation 

An overidentified model is a model that is based on enough infor-

ation in the data to estimate the model parameters (i.e., the number

f estimable parameters is less than the number of data points, such as

ariances and covariances of the observed variables). This situation re-

ults in positive degrees of freedom that allow for scientific use of the

odel ( Byrne, 2011 ). Degrees of freedom (df) are calculated with the

ollowing formula 1: 

𝑓 = 𝑝 ( 𝑝 + 1 ) ∕2 

here p is the number of estimated model parameters (6 in the final

odel). Thus, accordingly to the formula 1, degrees of freedom for our
Table 1 

Demographic and clinical data. 

Patients (Case) Group (LHN,BDC) Sex (M/F) A

1 LHN M 5

2 LHN M 5

3 LHN F 5

4 LHN M 6

5 LHN F 4

6 LHN M 3

7 LHN F 5

8 LHN F 5

9 LHN M 5

10 LHN F 7

11 LHN M 5

12 LHN F 7

13 LHN F 5

14 LHN M 4

15 BDC M 5

16 BDC F 5

17 BDC F 4

18 BDC M 6

19 BDC M 4

20 BDC F 7

21 BDC F 6

22 BDC M 5

23 BDC F 5

M = male, F = female. LHN = Left Hemispatial Neglect, BDC = Brain Damaged C

nuclei, FPC = Fronto-Parietal Cortex, TS = Temporal Sulcus, PFC = PreFrontal Cor

Stroke Scale (Italian version). 

5 
odel are 21, which identifies the model as overidentified. Raykov and

arcoulides (2006) recommended a minimum sample size greater than

0 times the number of estimated model parameters for SEM analyses.

s in our model estimated parameters are 6, the minimum sample size

ould be 60. The sample size used in our model (151 EEG sessions) was

arger of the minimum requested. 

.3. Data and code availability statement 

The clinical datasets used and analyzed during the current study are

vailable from the corresponding author on request. The anonymized

EG raw data are publicly available for download at zenodo.org. 

. Results 

.1. Aim 1: To identify EEG measures that discriminate patients with LHN 

gainst controls 

For aim 1, 37 participants were enrolled. Of these, 14 patients suf-

ered of right hemispheric stroke and presented clinical evidence of left

emispatial neglect (LHN group), while 9 patients had no clinical evi-

ence of left hemispatial neglect (BDC group). 14 healthy participants

7 females, age mean = 49.3, SE = 3.23) were additionally included as

ontrol group (HC group). Demographic data and lesion profiles are re-

orted in Table 1 . No lesion size analyses were reported. In fact, lesion

ata were collected from MRI or TC (see inclusion criteria), thus we can-

ot provide a coherent measure of the lesion size for all patients. The

wo stroke patient groups (LHN and BDC) did not significantly differ in

he initial level of stroke severity, as demonstrated by the National Insti-

ute of Health Stroke Scale (NIHSS) score ( t (21) = 0.2, p = .984, d = 0.041),

r in the time elapsed from stroke to enrollment (LHN = 30.57 days,

E = 3.39; BDC = 34.55 days, SE = 4.44) ( t (21) = 0.72, p = .479, d = 0.099).

oreover, BDC group was screened to exclude visuo-spatial deficit. To

his aim, we used a standardized neuropsychological test battery as-

essing selective attention (Attentional Matrices) and visuospatial short-

erm memory (Digit and Corsi Span). The patients’ performance was

ompared to large sample normative data, in which raw scores are first

djusted for age, sex, and education, and then transformed into stan-
ge (years) Lesion Location (Areas) NIHSS (Score) 

9 rPPC, rFPC, rTha 19 

4 rPPC, rFPC 8 

3 rPPC 15 

6 rPPC, rFPC 21 

4 rPPC, rTha 13 

7 rPPC 10 

4 rPPC, rFPC 21 

3 rPPC, rTha 14 

3 rPPC, rFPC, rTha, rTS 17 

0 rPPC 12 

6 rPPC, rFPC 10 

5 rPPC, rFPC, rTha 12 

7 rPPC, rTS 14 

8 rPPC, rFPC 12 

3 lTS, VmPFC, ACC 20 

0 PFC 18 

5 PFC 16 

3 lTS, PFC, ACC 12 

0 PFC 15 

0 lPPC, lFPC 12 

5 lPPC, lFPC, lTha 10 

0 lPPC, FPC, lTha 12 

0 FPC 12 

ontrols. R = right, l = left, PPC = Posterior Parietal Cortex, Tha = Thalamic 

tex, ACC = Anterior Cingulate Cortex; NIHSS = National Institute of Health 
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Table 2 

Planned comparisons in the exanimated features and variables (Aim 1). 

Variable Statistics Planned Comparisons 

df t-stat p-value d 

Pre-stimulus Activity Mean IAF 21 > 3.502 < .016 > 0.731 ∗ LHN < HC;LHN < BDC 

Alpha asymmetry 13 2.303 .038 0.616 P3 > P4 in LHN 

r Fronto-parietal PLI 21 > 2.436 < .037 > 0.518 ∗ LHN < HC;LHN < BDC 

Inter-hemispheric PLI 26 > 2.475 < .03 > 0.468 ∗ HC > LHN;HC > BDC 

Post-Stimulus Processing vABI 21 > 3.142 < .007 > 0.655 ∗ LHN > HC;LHN > BDC 

r-l IHTT 21 > 2.605 < .031 > 0.555 ∗ LHN > HC;LHN > BDC 

Behavioral Asymmetry Bells Test 21 > 1.815 < .043 > 0.387 ∗ LHN > BDC > HC 

t-test statistics (t-stat) with degree of freedom (df), p values and Cohen’s d are reported. IAF = Individual Alpha Frequency, ROIs = Regions of interest, r = right, 

l = left, PLI = Phase Lag Index, vABI = Visuospatial Attention Bias Index, IHTT = Inter-Hemispheric Transmission Time. LHN = Left Hemispatial Neglect, HC = Healthy 

Controls, BDC = Brain Damaged Controls. ∗ Analyses are referred to multiple between-groups comparisons. 
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ardized scores (named Equivalent Scores, ES, range between 0 = patho-

ogical performance and 4 = performance higher than the median). The

europsychological test battery did not reveal any pathological perfor-

ance in the BDC group: Attentional matrix (M = 3; SE = 0.3) and

isual-spatial short term memory (M = 2.5; SE = 0.6) p. 13. 

All participants repeated the EEG recording during four consec-

tive days. However, no effects of the variable repetition emerged

n the alpha parameters ( F (1,147) = 651, p = .421, 𝜂p 2 = .004), connec-

ivity ( F (1,147) = .011, p = .916, 𝜂p 2 = .001) and post-stimulus measures

 F (1,147) < .948, p > .332, 𝜂p 2 < .006). This allowed us to exclude the ef-

ect of the repetitions over the EEG variables and to directly compare

articipants across repetitions. 

.1.1. Pre-stimulus features 

PSD figure ( Fig. 2 A) showed slower IAF in the LHN group compared

o the other groups. Moreover, as expected, the figure shows maximal

lpha asymmetry in the LHN group, no asymmetry in the HC group,

nd an intermediate picture for the BDC group. This trend of groups

ifferences is observable also in the correlation matrices of the Phase Lag

ndex ( Fig. 2 B), with minimal, intermediate, and maximal connectivity

ithin the ROIs for LHN, BDC and HC groups respectively. 

The statistical analysis of EEG on the pre-stimulus IAF con-

rmed a significant difference between groups with a large effect size

 F (2,34) = 13.01, p < .001, 𝜂p 2 = .449, Fig. 2 C). The planned comparisons

 Table 2 ) specifically showed that IAF was significantly slower in the

HN group compared to HC and BDC in all considered ROIs, while no

ifferences emerged between BDC and HC ( Fig. 2 C). No effect of the

ariable ROI emerged ( F (2,34) = 633, p = .514, 𝜂p 2 = .019). No signifi-

ant effects of the covariates ( all ps > .079) were found. 

Similarly, analyses on between groups differences in the pre-stimulus

lpha-amplitude ( Fig. 2 C) did not show significant effects ( all ps > .245).

ost importantly however, an asymmetry in the alpha-amplitude be-

ween right and left posterior electrodes emerged in the LHN group.

pecifically, alpha-amplitude in LHN was larger over the left posterior

lectrode (P3) compared to the right posterior electrode (P4), while no

ifferences were found between electrodes in the HC group and in the

DC group (all t s < 1.737, p > .106, d < 0.464, Table 2 ). No significant ef-

ects of the covariates ( all ps > .511) were found. 

Finally, functional connectivity was analyzed in the pre-stimulus

ime period. The between-subjects ANCOVA on connectivity ROIs

 Fig. 2 C) showed a main effect of ROI ( F (1,34) = 144, p < .001,

p 2 = .81) and a significant interaction ROI ∗ Group ( F (2,34) = 4.76,

 < .001, 𝜂p 2 = .219). In particular, impaired right fronto-parietal con-

ectivity (PLI between electrodes F4-P4) emerged in the LHN group

ompared to the HC group and the BDC group. No differences were

ound between HC and BDC. Analyses additionally showed larger inter-

emispheric connectivity (PLI between electrodes P3-P4) in the HC

roup compared to the LHN group and the BDC group. However, no

ifferences were found between LHN and BDC ( t (21) = 0.411, p = .685,

 = 0.087). Finally, no differences were found in the frontal inter-

emispheric connectivity (PLI between electrodes F3-F4) all ps > .382 
6 
Taken together, pre-stimulus results showed slower IAF, imbalance

n the posterior alpha-amplitude and dysfunctional connectivity within

he right fronto-parietal network specifically in the LHN group com-

ared to the other control groups. Moreover, both groups of lesioned

atients (LHN and BDC) showed impaired connectivity between hemi-

pheres. 

.1.2. Post-stimulus features 

Two indices derived from VEPs were investigated in the post-

timulus time period. In particular, the vABI and the IHTT reflect asym-

etries in the amplitude and latency respectively in the VEPs. VEPs

nalyses ( Fig. 3 A) show the typical negative deflection after stimulus

resentation with peaks around 150ms (i.e., the N100). N100, in par-

icular, was slightly larger for left compared to right presented stim-

li in the BDC and HC groups, while LHN patients show an oppo-

ite pattern. Larger amplitudes were also shown for right compared to

eft presented stimuli in the P300 time window, with stronger asym-

etries in the LHN group. The between-subjects one-way ANCOVAs

n the N100 confirmed the impression and showed an effect of group

 F (2,36) = 8.722, p < .001, 𝜂p 2 = .326), with larger vABI in the LHN groups

ompared to HC and BDC, reflecting an asymmetry in perceptual pro-

essing in favor of stimuli presented in the right hemifield in the LHN pa-

ients. BDC and HC showed smaller and comparable vABI ( t (21) = 0.809,

 = .428, d = 0.169) ( Fig. 3 B). The between-subject ANCOVA on the N100

HTT with the within subject factor direction (right to left and left to

ight) showed a significant Direction ∗ Group interaction ( F (2,34) = 4.893,

 = .014, 𝜂p 2 = .224) with slower right to left transmission times in the

HN group compared to HC and BDC. No differences were found be-

ween HC and BDC ( t (21) = 1.389, p = .179, d = 0.392). Analyses on left

o right IHTT did not show any significant difference between groups,

 all ts < 1.567, all ps > .129, all ds < 0.296, Table 2 ). Thus, only right to

eft IHTT was slower in the LHN group compared to the other control

roups. 

The ANCOVA on the P300 vABI shows a marginally significant ef-

ect of group ( F (2,36) = 3.02, p = .062, 𝜂p 2 = .16) with larger bias towards

ight presented stimuli for LHN (P300 vABI = 2.03 𝜇v, SE = .678

v) compared to HC (M = 0.257 𝜇v, SE = .422 𝜇v) ( t(26) = 2.22,

 = .035, d = 0.419). No differences emerged between LHN and BDC (1.51,

E = .619) ( t(21) = .537, p = .597, d = 0.112) and between HC and BDC

 t(21) = 1.73, p = .1, d = 0.361). Finally, the ANCOVA on the P300 IHTT

id not show any significant effect ( all ps > .437). No significant effects

f the covariates in the N100 and P300 vABI and in the IHTT were found

 all ps > .299). 

.1.3. Behavioral performance test 

The between-subjects one-way ANOVA on the asymmetry score

howed a significant effect of group ( F (2,34) = 7.279, p = .002, 𝜂p 2 

 .287). As expected, LHN patients committed more errors in the left

emifield (asymmetry score mean M = 3.91, SE = 1.01) compared to HC

M = 0.446, SE = 0.951) and BDC group (M = 1.944, SE = 0.407). Moreover,
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Fig. 2. Pre-stimulus activity (aim 1). A . Grand average Power spectral Density (PSD) over ROI (Regions of Interest) for the electrodes O1, O2, P3, P4, F3 and F4. 

Topographies show scalp distribution of alpha amplitude for the Left Hemispatial Neglect Patients (LHN), Brain Damaged Controls (BDC) and Healthy Controls (HC). 

Shaded areas correspond to the windows used for statistical analyses. The comparative visual assessment of spectrograms shows, respectively, maximal, intermediate 

and minimal asymmetry in the LHN, BDC and HC groups for the pre-stimulus IAF and alpha amplitudes. B . Correlation matrices of the Phase Lag Index for the three 

groups and over all electrodes. The visual analysis shows minimal, intermediate, and maximal connectivity within the ROIs between LHN, BDC and HC groups, 

respectively. C. Mean Individual Alpha Frequency (IAF) across ROIs for all groups, Alpha-amplitude results expressed in percentage for electrodes P3 and P4 and 

Phase Lag Index (PLI) results for Right fronto-parietal connectivity between electrodes F4-P4 and Inter-hemispheric connectivity between electrodes P3-P4. Two-tailed 

t-test statistical significance is reported ( ∗ p < 0.05). Error bars represent standard error of the mean, 𝜇v = microvolt, Hz = Hertz. 
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DC committed more errors compared to HC. In general, these re-

ults showed a graded modulation of the clinical performance between

roups. In particular, LHN patients committed significantly more errors

n the left hemifield compared to BDC and HC while BDC committed

ore errors only compared to HC ( Table 2 ). No effect of test repetition

merged ( F (7,150) = 0.572, p = .777, 𝜂p 2 = .026). 
7 
.2. Aim 2: To devise a causative neurophysiological model between EEG 

easures 

For the second aim, we investigated the relationship between the

ost between groups discriminative EEG measures using hierarchical

ausative modeling. Preliminary analyses on the variables, inferred from
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Fig. 3. Post-stimulus Processing. A . Stimulus-locked Visual evoked potentials. Grand average waveforms for left and right stimuli at the averaged electrodes P3 

and P4 in healthy controls (HC), Left Hemispatial Neglect patients (LHN) and Brain Damaged Controls (BDC). B . N100 Visuospatial Attention Bias Index (vABI) and 

Inter-Hemispheric Transmission time (IHTT) results for Right to Left (R-L) and Left to Right conditions (L-R). Two-tailed t-test statistical significance is reported ( ∗ p 

< 0.05). Error bars represent standard error of the mean. S = time point of stimulus onset; μV = microvolt; ms = milliseconds; shaded areas correspond to the time 

windows used for statistical analyses. 

Table 3 

Shapiro-Wilk Test of Normality. The Shapiro-Wilks test detects for each EEG 

measure entered in the SEM analysis a difference from the normal distribution. 

The test rejects the hypothesis of normality when the significance level is less 

than or equal to .05. 

Shapiro-Wilks test Statistics Significance 

IAF > .849 > .509 

Alpha-amplitude > .879 > .154 

Inter-Hemispheric Connectivity > .924 > .254 

Right Fronto-Parietal Connectivity > .950 > .559 

N100 vABI > .849 > .072 

N100 IHTT > .876 > .052 
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im 1 results, showed that all EEG measures were normally distributed

see Table 3 ). 

Thus, three pre-stimulus variables were considered for the refined

odel: (1) Perceptual sampling , which is expressed by a single indicator

i.e., mean IAF across all ROIs); (2) Attention distribution , which is ex-

ressed by the alpha-amplitude over the right parietal electrode; and,

3) Connectivity within the visuospatial perceptual network , which is ex-

ressed by PLI over P3-P4 and over F4-P4. In the post-stimulus time, we

onsidered: (1) stimulus processing bias (expressed by the N100 vABI and

300 vABI) and (2) latency (expressed by the right to left N100 IHTT).

inally, behavioral asymmetry was expressed by the asymmetry score in

he Bells test. Indicators from 151 EEG (3 EEG with strong artifacts were

xcluded) were extracted and entered the model ( Fig. 4 A). 

The Fig. 4 shows the initial hypothesized model, the refined model

ith the results of aim 1 and the final model based on SEM anal-
8 
ses. Model fit statistics showed acceptable overall model assess-

ent ( 𝜒2 not significant; RMSEA = .001; SRMR = .037 Fig. 4 ). Internal

onsistency reliability (mean Cronbach Alpha = .926) was acceptable

or single subject measurements ( > .850). Moreover, indicators rep-

esented only one underlying latent variable (AVE > .686). Bootstrap

oadings showed supra-threshold (0.40) discriminant validity for the

ariable connectivity, which has more then one indicator (PLI P3-

4 loading = .896, PLI F4-P4 loading = .707). However, loadings showed

nder-threshold discriminant validity for the indicator P300 vABI

loading = .289) and supra-threshold validity for the indicator N100

ABI (loading = .931). Thus, the P300 vABI was excluded in the final

odel. 

Results of the associations among variables are reported in Table 4

ith path coefficients (sample and bootstrap estimations), t-values and

5% confidence intervals. Results showed a significant pathway linking

re-stimulus IAF and connectivity with post-stimulus vABI, predicting

he asymmetry score. While this pathway reflects the impact of pre-

timulus IAF and connectivity over post-stimulus vABI to predict behav-

oral performance, results additionally showed a direct link between pre-

timulus alpha-amplitude and behavioral performance. Together, these

wo pathways explain 83.08% of the variance in the asymmetry score

f the Bells test ( Fig. 4 B). Analyses finally show an association between

onnectivity and IHTT, but no significant links were found with the be-

avioral performance. 

The model was further validated considering the scores from other

ehavioral measures for the assessment of LHN cognitive (i.e., the Fluff

est and the Picture Scanning) and motor functioning (i.e., the MI).

RMR results showed good model fit for both cognitive (all SRMR <

0431), and motor functioning tests (SRMR = .0419). 
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Fig. 4. Structural Equation Modeling 

(SEM). A . Original Hypothesized causative 

associations between latent variables (el- 

lipses). B. Refined model and indicators 

definition (rectangles) based on results of 

between-subjects analyses (aim 1). C. Final 

model optimization based on SEM results (aim 

2). Arrows reflect associations (i.e., pathways) 

between latent variables and between vari- 

ables and indicators. The relative variance 

explained by each pathway is reported on the 

regression arrow and errors of measurement 

are represented as circles for both indicator 

and second-order latent variables. Results of 

model fit statistics are reported and ∗ represent 

acceptable and good fit ∗ ∗ . IAF = Individual 

Alpha Frequency, PLI = Phase Lag Index, 

r-l IHTT = right to left Inter-Hemispheric 

Transmission Time, vABI = Visuo-spatial 

Attention Bias Index, N = sample size, 𝜒2 = chi 

squared with degree of freedom in brackets 

and p value, SRMR = Standardized Root Mean 

square Residual, RMSEA = Root Mean Square 

Error of Approximation, TLI = Tucker-Lewis 

Index, CFI = Comparative Fit Index. 
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. Discussion 

Many studies have focused on EEG indices of visuospatial percep-

ion and some of these indices are considered potential biomarkers of

HN ( Deouell et al., 2000 ; Di Russo et al., 2013 , 2008 ; Doricchi et al.,
9 
008 ; He et al., 2007 ; Lasaponara et al., 2019 , 2018 ; Verleger et al.,

996 ). The main purpose of the present study was to investigate the

ausal association between these EEG biomarkers to understand how

hese relationships could predict clinical outcomes of LHN. To this aim,

e recorded EEG during lateralized stimuli presentation, where no mo-
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Table 4 

Paths coefficients results (Aim 2). 

Sample Estimation Bootstrap Estimation t-stat p-value CI LB CI UB 

Pre-stimulus Activity IAF → vABI -.135 -.127 -1.686 .047 -.302 -.005 

IAF → IHTT .138 .132 1.544 n.s. -.01 .344 

IAF → Bells Test -.041 -.038 -0.461 n.s. -.23 .125 

Alpha-amplitude →vABI -.111 -.106 -1.515 n.s. -.262 .028 

Alpha-amplitude →IHTT .061 .059 0.732 n.s. -.119 .222 

Alpha-amplitude →BellsTest .34 .346 3.513 < .001 .149 .506 

Connectivity → vABI -.234 -.231 -4.466 < .001 -.342 -.139 

Connectivity → IHTT .288 .285 3.796 < .001 .161 .469 

Connectivity → Bells Test -.204 -.213 -3.087 < .001 -.323 -.054 

Post-Stimulus Processing vABI → Bells Test .461 .462 6.938 < .001 .333 .597 

IHTT → Bells Test .036 .042 0.584 n.s. -.092 .148 

Path Coefficients are reported for all considered associations in the model as sample and bootstrap estimations, t-stats, relative p-values and 

lower (LB) and uper (UB) bounds of the 95% confidence intervals. IAF = Individual Alpha Frequency, IHTT = Inter-Hemispheric Transmission 

Time, vABI = Visuospatial Attention Bias Index, n.s. = not significant. 
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or responses were required, in LHN patients and controls. This allowed

s to directly investigate asymmetries in the visuospatial abilities and

n the processing of lateralized stimuli between groups. Then, we used

he SEM to generate a neurophysiological hierarchical causative model

etween the EEG correlates of visuospatial perception. The SEM model

as able to identify psychophysiological pathways behind visuospatial

erception and to describe how these pathways can predict perceptual

erformance in LHN and controls. In particular, the model identified

n indirect and a direct pathway, highlighting a possible structure of

isuospatial perception abilities. Notably, these two pathways can col-

ectively explain more than 80% of the variance in the perceptual asym-

etry index. 

The indirect pathway of the model is a two-stages pathway, link-

ng pre-stimulus anticipatory IAF and connectivity within the fronto-

arietal perceptual network with post-stimulus processing bias (as ex-

ressed by the vABI). Here, impaired connectivity and slower IAF as

bserved in LHN are related to a right bias in stimulus processing. Im-

ortantly, these associations predict more perceptual misses over the left

emifield in the Bells test. As previously hypothesized, anticipatory IAF

eems to play a crucial role in visuospatial perception ( Babiloni et al.,

006 ; Di Gregorio et al., 2022a ; Samaha and Postle, 2015 ; Thut et al.,

006 ; Trajkovic et al., 2021 ; Zazio et al., 2020 ). Specifically, trial by

rial variability of IAF can account for the individual ability to accu-

ately perceive incoming stimuli and sample sensory information. In this

ense, IAF may be conceived as the time unit or temporal window within

hich sensory information can be integrated ( Bertaccini et al., 2022 ;

i Gregorio et al., 2022c ; Trajkovic et al., 2022 ). Thus, faster IAF may

eflect a more efficient perceptual sampling and a fine grained senso-

ial processing ( Di Gregorio et al., 2022c ; Iemi et al., 2019 ; Samaha and

ostle, 2015 ; Wutz et al., 2018 ). Accordingly, slower IAF might impair

erceptual resolution by creating less sampling frames per sensory pro-

essing. Moreover, as reported in previous studies, connectivity is en-

anced in the healthy population during spatial attentional task within

he fronto-parietal network ( Hembrook Short et al., 2017 ; Hembrook-

hort et al., 2019 ) and this connectivity predicts perceptual sensitivity

nd metacognitive abilities ( Chiappini et al., 2022 , 2018 ; Di Luzio et al.,

022 ; Romei et al., 2016 ). Our results confirm this view; indeed, better

nter-hemispheric and right intra-hemispheric communications can fa-

ilitate information flow within a visuospatial perception network, thus

mpowering lateralized stimulus processing ( Chiappini et al., 2022 ). On

he other hand, lower right intra-hemispheric connectivity in LHN pa-

ients is related to impaired processing of contralesional stimuli. Impor-

antly, however, Neglect can also occur after left hemispheric lesions

rates between 18-30%) ( Esposito et al., 2021 ). Although, we did not

nroll patients with left stroke etiology, we can hypostasize that intra

nd inter-hemispheric connectivity and perceptual processing could dif-

er between these sub-groups of Neglect patients. 
10 
The IAF and connectivity create together a functional link with post-

timulus processing bias (as indexed by the vABI). In particular, the vABI

eflects the difference in the activation of the inter-hemispheric network

etween stimuli presented in the right and in the left hemifields. In HC

nd BDC, the vABI is around 0, thus demonstrating similar responses to

eft and right presented stimuli. Differently, in the LHN group, a positive

ABI indicates an imbalance in perceptual resources allocation and a

ias in the stimulus processing towards the right hemifield. The percep-

ual processing in LHN is not only biased but also delayed. Indeed, IHTT

esults showed that information sharing, within the inter-hemispheric

etwork in LHN, was slower (see also Di Gregorio et al. (2022b , 2020 )).

owever, BDC showed a similar delay and impaired connectivity within

he inter-hemispheric network. These last results are presumably related

o the effects induced by the lesions over the inter-hemispheric com-

unication. It is important to notice that brain damage sites differed

etween BDC and LHN, as lesions were allocated over the left and the

ight hemispheres respectively. Thus, it is possible to hypothesize that

ysfunctional inter-hemispheric communications in the BDC and LHN

atients are caused by different lesion locations. 

In general, the indirect pathway of the model links anticipatory

ctivity to behavioral asymmetries via post-stimulus activity. Specifi-

ally, pre-stimulus IAF may reflect perceptual sampling ( Busch and Van-

ullen, 2010 ; VanRullen, 2016 ) and the connectivity level could reflect

he ability of the perceptual system to share information ( Dehaene et al.,

014 ; King et al., 2013 ). These two measures are closely related and to-

ether predict the post-stimulus vABI. Hence, in this context, the vABI

ay reflect, in one single index, the distribution of perceptual resources

ithin the system. Accordingly, in LHN patients, where sensory sam-

ling and right hemisphere connectivity are impaired, a positive vABI

ndicates impaired stimulus-processing for left incoming stimuli. This

ltimately leads to biased behavioral performance. 

The model additionally showed a second direct pathway, link-

ng the alpha-amplitude distribution and the behavioral asymmetries.

revious studies suggested that, the hemispheric distribution of pre-

timulus alpha-amplitude accounts for attentive resources allocation

 Capotosto et al., 2009 ; Peylo et al., 2021 ; Thut et al., 2006 ). Specif-

cally, larger alpha-amplitude in one hemisphere reflects a contralateral

ocus of attention ( Capotosto et al., 2009 ; Corbetta and Shulman, 2002 ;

asaponara et al., 2019 ; Romei et al., 2008 ; Thut et al., 2006 ). In this

ense, alpha-amplitude and the direct pathway may reflect the laterality

f attentive resources allocation, influencing behavioral performance.

his result is in line with theories conceiving hemispheric imbalance as

he neural substrate of the cognitive and behavioral symptoms of LHN

 Baldassarre et al., 2014 ; Bartolomeo, 2021 ; Bartolomeo et al., 2007 ;

àdavas et al., 1997 ). Specifically, in LHN an injury of the right pari-

tal area does not only depress the activity of this area, but also causes

isinhibition of the homolog areas of the left hemisphere ( Corbetta and
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hulman, 2011 ; Kinsbourne, 1987 ). Within this theoretical framework,

veractivation of the left hemisphere may bias the locus of attention to-

ards the right hemifield ( Doesburg et al., 2009 ; Klimesch et al., 2007 ;

omei et al., 2008 ), via an inhibitory effect of the left hemisphere over

he lesioned one ( Baldassarre et al., 2016 , 2014 ; Carter et al., 2010 ;

orbetta et al., 2005 ; Làdavas et al., 1997 ; Lasaponara et al., 2019 ). 

The empirical associations found in the model have important clin-

cal and experimental implications. Indeed, the model indicators have

emonstrated high reliability in discriminating patients with behavioral

symmetries, and can be used for the assessment of LHN in clinical con-

exts. Moreover, the model can be considered as a theoretical, empir-

cally tested, framework to formulate hypotheses about psychophysio-

ogical functioning in LHN and perceptual disorders. In general, a pu-

ative interpretation of the model results and of the cognitive functions

nderlying the pathways may suggest that alpha-amplitude reflects at-

entive resources distribution, while IAF, connectivity and vABI together

ay reflect stimulus-processing capacities. Thus, we could hypothesize

hat the pathways presumably reflect two distinct pathological clusters

n LHN which are respectively related to attentive ( Capotosto et al.,

009 ; Lasaponara et al., 2019 ) and stimulus processing impairments

 Deouell et al., 2000 ; Di Russo et al., 2008 ). 

The study results should be considered in the light of some limi-

ations. Our results showed that the the model can be generalized to

ther behavioral measures assessing cognitive (i.e., Fluff Test and Pic-

ure Scanning test) and motor symptoms (i.e., MI in the right limbs) of

HN. However, a larger assessment may help to identify possible func-

ional dissociations between the two model pathways. Moreover, we

nalyzed EEG repetitions across subjects and demonstrated the absence

f repetition dependency effect in the ANCOVA. However, the ANCOVA

nd the SEM are two statistically different models and repetion depen-

ency in the SEM still needs further testing. For instance, a larger sample

ize within a multicentrinc study with single subject data could be used

o confirm the model without repeated measurements. Finally, external

alidations of the model would be necessary to test the model applica-

ility in LHN rehabilitation. For instance, a direct manipulation of the

odel pathways, by the use of specific rehabilitation protcols, may test

he model sensitivity to post-treatment induced changes. Our study is a

reliminary application of the SEM model for the study of Neglect and

isuospatial perception and can represent a reference for future valida-

ions of the model and sample size calculations. 

. Conclusions 

The present study and the proposed model can offer an empirical

ramework to drive hypothesis on the psychophysiological functioning

f perceptual disorders. Moreover, the model allows to test assumptions

bout psychophysiological effects of innovative or existing protocols for

he rehabilitation of perceptual disorders. 
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