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Abstract

Many patients with multiple sclerosis (MS) experience information processing speed

(IPS) deficits, and the Symbol Digit Modalities Test (SDMT) has been recommended

as a valid screening test. Magnetic resonance imaging (MRI) has markedly improved

the understanding of the mechanisms associated with cognitive deficits in

MS. However, which structural MRI markers are the most closely related to cognitive

performance is still unclear. We used the multicenter 3T-MRI data set of the Italian

Neuroimaging Network Initiative to extract multimodal data (i.e., demographic, clini-

cal, neuropsychological, and structural MRIs) of 540 MS patients. We aimed to

assess, through machine learning techniques, the contribution of brain MRI structural

volumes in the prediction of IPS deficits when combined with demographic and clini-

cal features. We trained and tested the eXtreme Gradient Boosting (XGBoost) model

following a rigorous validation scheme to obtain reliable generalization performance.

We carried out a classification and a regression task based on SDMT scores feeding

each model with different combinations of features. For the classification task, the

model trained with thalamus, cortical gray matter, hippocampus, and lesions volumes

achieved an area under the receiver operating characteristic curve of 0.74. For the

regression task, the model trained with cortical gray matter and thalamus volumes,

EDSS, nucleus accumbens, lesions, and putamen volumes, and age reached a mean

absolute error of 0.95. In conclusion, our results confirmed that damage to cortical

gray matter and relevant deep and archaic gray matter structures, such as the
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thalamus and hippocampus, is among the most relevant predictors of cognitive per-

formance in MS.
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1 | INTRODUCTION

Multiple sclerosis (MS) is a chronic, inflammatory, demyelinating, and

neurodegenerative disease of the central nervous system (Filippi

et al., 2018) and is the commonest nontraumatic disabling disease

affecting young adults (Dobson & Giovannoni, 2019). A large propor-

tion of patients with MS, regardless of the clinical phenotype, experi-

ences cognitive deficits (Benedict et al., 2020; Johnen et al., 2017;

Ruano et al., 2017) with predominant involvement of information pro-

cessing speed (IPS) and episodic memory domains (Benedict

et al., 2020; Filippi et al., 2020). Cognitive impairment (CI), sometimes

neglected, has a strong negative impact on social activities, employ-

ment status, and, more generally, on daily living and quality of life of

these patients (Benedict et al., 2020). Therefore, there is an increased

belief that monitoring the cognitive status of MS patients should be

included in routine clinical assessment. To evaluate CI in MS, several

neuropsychological (NP) batteries have been developed and licensed

(Benedict et al., 2002; Langdon et al., 2012). Nevertheless, monitoring

CI with such tools in routine clinical practice is hampered by the short-

age of neuropsychologists and dedicated space and time. A solution

would be to screen MS patients with short batteries, such as the Brief

International Cognitive Assessment for Multiple Sclerosis (Langdon

et al., 2012) or a single test with high sensitivity and predictive value.

In this regard, the Symbol Digit Modalities Test (SDMT), which

primarily assesses IPS (Smith, 1982), owing to its feasibility (a few

minutes to administrate), reliability, sensitivity, ecology, and predictive

value, has been recommended as a valid screening test for CI in MS

(Benedict et al., 2020; Kalb et al., 2018; Parmenter et al., 2007; Van

Schependom et al., 2014).

Magnetic resonance imaging (MRI) has markedly improved our

understanding of the mechanisms associated with CI in MS patients

(Benedict et al., 2020; Rocca et al., 2015), showing the relevant contri-

bution of white matter (WM) lesion burden (Benedict, Weinstock-

Guttman, et al., 2004; Foong et al., 2000; Rao et al., 1989; Stankiewicz

et al., 2011), ventricular enlargement (Christodoulou et al., 2003; Rao

et al., 1985) as well as whole brain and grey matter (GM) atrophy. As

regards GM atrophy, in particular, the most relevant contribution to

CI comes from global (Sanfilipo et al., 2006), cortical (Amato

et al., 2004), and deep and archaic GM (Benedict et al., 2009; Benedict

et al., 2013; Bisecco et al., 2015; Geurts et al., 2007; Houtchens

et al., 2007; Sicotte et al., 2008) damage. However, which structural

MRI markers are the most closely related to the cognitive perfor-

mance of MS patients is still unclear. In fact, these studies have

explored the contribution to CI in MS patients of just one or a limited

number of specific brain structures. Since CI has been found to be

related—as expected—to damage to many different brain regions,

there is still a need to define, for monitoring and treatment

implications, also at a single subject level, which brain regions are the

most relevant or which combination of them is more predictive of CI

in MS. An approach that integrates multiple MRI-derived metrics to

infer brain damage patterns related to cognitive performance should

better capture the complexity behind CI in MS, likely subtended by

multiple biological processes acting together (Dolan, 2008; Van

Schependom & Nagels, 2017). Moreover, the cognitive assessment,

especially if repeated over time, is prone to some reliability concerns

(Kalb et al., 2018). Thus, the selection of few and highly specific imag-

ing and/or nonimaging features able to predict the cognitive status of

an MS patient at a single subject level would also be extremely useful

in a clinical setting.

In order to use MRI features to predict CI in individual patients,

advanced statistical approaches are required (Bzdok et al., 2018). In

the last few years, machine learning (ML) techniques have emerged as

a very promising approach for studying high-dimensional data with a

hidden complex pattern (Paulus et al., 2019). In neuroimaging

research, the support of these advanced tools can help to understand

how the biological system behaves and in forecasting unobserved out-

comes or future behavior (Bzdok et al., 2018). So far, several studies

have applied ML techniques to assist the diagnosis of MS (Bendfeldt

et al., 2019; Mato-Abad et al., 2019; Neeb & Schenk, 2019; Wottschel

et al., 2015; Wottschel et al., 2019; Zhang et al., 2019; Zurita

et al., 2018), for classifying MS patients in the most common clinical

phenotypes (Ion-M�argineanu et al., 2017), or predicting physical dis-

ability (Tommasin et al., 2021). To our knowledge, only one recent

work investigated the relationship between the cognitive status of

MS patients and neuroimaging features using ML techniques

(Buyukturkoglu et al., 2021). Due to the small sample size and some

methodological limitations (i.e., feature selection not performed in the

training/validation set only), previous studies may have shown overly

optimistic results.

We hypothesized that ML techniques may identify the brain

structural MRI volumes that, along with demographic and clinical data,

are the best predictors of the cognitive status of patients with MS, as

assessed by SDMT score. To investigate our hypotheses, we run a

study with the following characteristics: (1) the use of a large multi-

center multimodal data set containing high-quality clinical, NP, and 3T

MRI data; (2) the application of appropriate and “state of the art”
methodology for the harmonization of MRI data acquired in different

centers; and (3) the implementation and use of ML algorithms follow-

ing a rigorous validation scheme to obtain a robust, reliable, and gen-

eralizable prediction of the cognitive performance in MS.

2 MARZI ET AL.
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2 | MATERIALS AND METHODS

2.1 | Participants

Five hundred and forty MS patients, whose NP and MRI examinations

were included in the Italian Neuroimaging Network Initiative (INNI)

repository (https://database.inni-ms.org) (Filippi et al., 2017) were

included in the study. INNI is a multicenter multimodal repository

financially supported by a special research grant from the Italian MS

Foundation, where demographic, clinical, NP as well as 3T structural

and functional MRI data sets are collected. Currently, the INNI project

is run by the four founding centers (Milan, Neuroimaging Research

Unit, IRCCS San Raffaele Scientific Institute; Rome, Department of

Human Neurosciences, Sapienza University; Naples, Department of

Advanced Medical and Surgical Sciences, University of Campania;

Siena, Department of Medicine, Surgery and Neuroscience, University

of Siena). Hereinafter, the centers are referred to as A, B, C, and D in

any specific order, according to previous literature (Filippi et al., 2017;

Storelli et al., 2019).

In the current cross-sectional study, MS patients were selected

from the INNI repository based on the following inclusion criteria:

(1) availability of complete demographic and clinical data, including sex,

age, years of education, disease onset, disease course, and clinical dis-

ability, as assessed by the Expanded Disability Status Scale (EDSS) score

(Kurtzke, 1983); (2) availability of axial T2-weighted (T2w) and anatomi-

cal, isotropic, 3D-T1-weighted (3D-T1w) scans; and (3) collection of clin-

ical and NP data within 180 days from the reference MRI scan.

2.1.1 | Neurological and NP evaluation

All enrolled MS patients underwent a neurological evaluation and an

NP assessment performed at each participating site by experienced

neurologists and neuropsychologists. The neurological evaluation

included the main information about disease history/evolution and

clinical disability scores. In particular, among the clinical data available

in the INNI repository, we picked up the disease duration and the

EDSS score.

The INNI protocol includes a comprehensive NP evaluation based

on the Brief Repeatable Battery of Neuropsychological Tests (BRB-N)

(Rao, 1991) (Filippi et al., 2017). Among BRB-N tests, we selected the

SDMT (Smith, 1982) in order to explore the cognitive domain that is

most commonly affected by MS (Chiaravalloti & DeLuca, 2008), that is,

the IPS. It consists of a symbol substitution task with a time limit, and

the score is the number of correct answers (range 0–110) (Smith, 1982).

Thus, higher SDMT scores represent better performance. In this study,

we used the available normative data that are based on a sample of

200 healthy Italian adults to calculate demographic- and education-

adjusted scores (Amato et al., 2006) and, successively, the Z-scores.

Descriptive statistics of clinical and NP data, along with demo-

graphic information of the MS patients included in this study, are

reported in Table 1.

2.1.2 | MRI examination

All MS patients were scanned on the 3T MR system located in each

INNI center. In this study, 3D-T1w and T2w images were utilized. All

MRI data sets were acquired, at each center, on the same scanner with

the same protocol, except for the 3D-T1w scans provided by center A,

which were acquired with two different sequences. Thus, to adequately

apply post-acquisition harmonization techniques (details in Section 2.2.3),

we consider the images of center A as belonging to two different groups

(A_0 and A_1). MRI acquisition parameters are detailed in Table 2.

2.2 | Methods overview

A schematic diagram of the data-analysis pipeline applied to each MS

patient is shown in Figure 1. Briefly, after a preprocessing stage which

TABLE 1 Demographic, clinical, and neuropsychological information for each center participating in the INNI project

Center A Center B Center C Center D Total

Demographic information

# MS patients 279 151 83 27 540

Age, years mean (SD) 40.63 (12.16) 37.00 (10.62) 40.75 (10.59) 40.93 (7.91) 39.65 (11.43)

Sex, females/males 167/112 101/50 63/20 20/7 351/189

Education, years median (IQR) 13 (5) 13 (5) 13 (4) 13 (2.5) 13 (5)

Clinical evaluation

Clinical phenotype, RR/PP/SP/CIS/BMS 182/18/54/1/24 127/1/6/17/0 75/2/3/3/0 25/1/0/0/1 410/22/63/2025

Disease duration, years mean (SD) 11.44 (7.98) 9.03 (8.95) 9.39 (8.73) 9.07 (6.89) 10.87 (8.75)

EDSS, median (IQR) 2 (3) 2 (1.5) 2 (1.5) 1.5 (0.5) 2 (2)

Neuropsychological assessment

SDMT mean (SD) 43.14 (15.87) 40.31 (14.80) 46.18 (12.17) 41.85 (14.67) 42.75 (15.09)

SDMT z-scores mean (SD) �0.90 (1.57) �1.21 (1.44) �0.71 (1.27) �1.05 (1.52) �0.96 (1.50)

Abbreviations: BMS, benign multiple sclerosis; CIS, clinically isolated syndrome; EDSS, Expanded Disability Status Scale; IQR, interquartile range; MS,

multiple sclerosis; PP, primary progressive; RR, relapsing remitting; SD, standard deviation; SDMT, symbol digit modalities test.
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includes (i) focal MS lesions segmentation from T2w scans, (ii) lesion

refilling and bias field correction of 3D-T1w images (Section 2.2.1),

cortical, subcortical, and cerebellum tissues segmentation was per-

formed (Section 2.2.2) to compute the volumes of several brain struc-

tures (Section 2.2.2). For handling nonbiological variance introduced

by different MRI scanners and acquisition protocols, MRI-derived vol-

umes were harmonized (Section 2.2.3). We then performed SDMT

score prediction using different combinations of demographic, clinical,

and MRI-derived volumes through an advanced ML approach

(Section 2.2.4).

2.2.1 | MRI preprocessing

Focal WM hyperintensities of the whole brain were semi-

automatically segmented in T2w images by experienced researchers

at each of the participating centers using a local thresholding

segmentation technique (Medical Image Processing, Analysis, and

Visualization; v. 4.2.2; http://mipav.cit.nih.gov; Jim 8, Xinapse Sys-

tems Ltd, Northants, UK). For each subject, the total T2w lesion vol-

ume (T2LV) was then computed to be used as a predictor in the ML

analysis.

All 3D-T1w MRI data went through two preprocessing stages.

In the first stage, focal WM lesion masks were used to refill lesions

in the 3D-T1w images using the lesion_filling tool (Battaglini

et al., 2012) part of the FMRIB Software Library (FSL version 6.0.1;

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki). Refilling the lesions with

intensities matching the surrounding normal-appearing WM

ensured accurate tissue segmentation and measurement of brain

subregional volumes. In the second stage, intensity inhomogeneity

(bias field) in lesions-refilled 3D-T1w images was estimated and

corrected by using the well-established N4 method from the

Advanced Normalization Tools (ANTs) toolbox version 1.9 (Tustison

et al., 2010).

TABLE 2 MRI acquisition parameters for each MR scanner participating in the INNI project

A_1 A_2 B C D

MR scanner

Philips Medical System

Intera (A04051C)

Philips Medical System

Intera (A04051C)

GE Healthcare

Signa HDxt

Siemens

Magnetom Verio

Philips Medical

System Achieva

Coil Eight-channel head coil Eight-channel head coil
Eight-channel
head coil

Twelve-channel
head coil

Thirty two-channel
head coil

3D T1-weighted imaging

Sequence FFE TFE IR-FSPGR MPRAGE FFE

Imaging plane Axial Sagittal Sagittal Sagittal Axial

Matrix 256 � 256 256 � 240 256 � 256 256 � 256 256 � 256

FOV (mm2) 230 � 230 � 176 256 � 240 � 192 256 � 256 � 199.2 256 � 256 � 176 256 � 256 � 192

Slice thickness (mm) 0.8 1 1.2 1 1

Number of slices 220 192 166 176 192

TR (ms) 25 7 6.988 1900 10

TE (ms) 4.6 3.2 2.85 2.9 3.9

TI (ms) - 900 650 900 900

FA (�) 30 8 8 9 8

T2-weighted imaging

Sequence Dual-echo Dual-echo Dual-echo Dual-echo Dual-echo

Imaging plane Axial Axial Axial Axial Axial

Matrix 256 � 256 256 � 256 384 � 256 384 � 384 240 � 240

(recon 352 � 352)

FOV (mm2) 240 � 240 240 � 240 240 � 240 220 � 220 240 � 240

Slice thickness (mm) 3 3 3 3 3

Number of slices [44–50] [44–50] 44 45 44

TR (ms) [2599–2910] [2599–2910] 3120 [3320–5310] 4000

TE (ms) 16/80 16/80 24/122 10/103 15/100

FA (�) 90 90 90 150 90

ETL 6 6 8 6 4

Abbreviations: ETL, echo train length; FA, flip angle; FFE, fast field echo; FOV, field of view; FSPGR, fast spoiled gradient echo; IR, inversion recovery;

MPRAGE, magnetization prepared gradient echo; MRI, magnetic resonance imaging; TE, echo time; TFE, turbo field echo; TI, inversion time; TR,

repetition time.
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2.2.2 | Tissue segmentation

Brain tissue segmentation was carried out applying FSL v.6.0.3 scripts

(Jenkinson et al., 2012) to lesions-refilled and bias field-corrected 3D-

T1w images. In particular, we used (i) the cross-sectional pipeline

included in the SIENA-XL package (Battaglini et al., 2018) for computing

whole brain, cortical GM; WM; thalamus; basal ganglia (i.e., putamen,

caudate nucleus, nucleus accumbens, globus pallidus); hippocampus;

and amygdala volumes, and (ii) FIRST scripts for cerebellar segmenta-

tion (Patenaude et al., 2011) with specific options (-cort option in the

first_flirt registration tool and -intref option in the run_first tool).

All segmented volumes, including the T2LV obtained during the

preprocessing (see Section 2.2.1) were computed in cm3 and multi-

plied by the SIENAX scaling factor (which estimates the scaling

between each subject's naïve image and standard space) to reduce

head-size-related variability between subjects. For subcortical and

cerebellar volumes, we considered the average volume between left

and right structures.

2.2.3 | MRI-derived volumes harmonization

The success of pooling multicenter MR scans and MRI-derived met-

rics, for example, cortical and subcortical volumes, critically depends

on the comparability of the images across centers, scanners, and imag-

ing sequences. Indeed, MR images are subject to a large variability

across scans due to differences in scanner manufacturers and hetero-

geneity in the imaging protocols (Fortin et al., 2017). For these rea-

sons, before pooling our multicenter MRI-derived volumes data, we

harmonized them to minimize the “center-effect” on MRIs while pre-

serving between-subject biological variability. In particular, we used

the NeuroComBat package v. 0.1.dev0 (freely available at https://

github.com/ncullen93/neuroCombat), an open-source and easy-to-

use Python module that can be integrated into any existing processing

pipelines (Fortin et al., 2018). For each MS subject, MRI-derived vol-

umes are known to be influenced by demographic, clinical, and NP

factors, such as age (Courchesne et al., 2000), sex (Goldstein, 2001),

education (Arenaza-Urquijo et al., 2013), disease duration, EDSS score

(Rusz et al., 2019), clinical phenotype, and SDMT. For this reason,

these variables were included in the harmonization process as a

source of intersubject biological variability. The harmonization process

was performed after the training/validation and test set split (details

in “Training, validation, and test” section) to avoid any potential data

leakage.

Then, for both training/validation and test sets, an analysis of

covariance (ANCOVA) was run to evaluate the existence of the “cen-
ter effect” on MRI-derived volumes before and after the harmoniza-

tion step, considering the effects of different demographic and clinical

data (i.e., age, sex, education level, disease duration, EDSS score, clini-

cal phenotype, and SDMT).

All subsequent analyses used harmonized MRI-derived volumes.

2.2.4 | Prediction of the cognitive performance
using ML techniques

After MRI preprocessing, tissue segmentation, and MRI-derived vol-

umes harmonization, we predicted the cognitive performance of MS

F IGURE 1 Overview of the entire magnetic resonance imaging (MRI) processing and machine learning (ML) analysis

MARZI ET AL. 5
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patients using advanced ML techniques (Figure 1). Indeed, we carried

out both a classification and a regression task by also evaluating the

potentials of several feature combinations fed in input, as detailed in

the following.

Classification task: MS patients were subdivided into “IPS-
preserved (IPS-p)” and “IPS-impaired (IPS-i)” subgroups, based on

their SDMT Z-scores. 1 SD below the mean (i.e., SDMT Z scores

≤�1.0) was selected as the cutoff for IPS deficit (Buyukturkoglu

et al., 2021). Thus, 285 MS patients were classified as IPS-p and

255 as IPS-i. In this task, we performed a prediction of the patient

class label (IPS-p vs. IPS-i).

Regression task: we performed a direct prediction of the SDMT Z-

score of each patient.

For both the classification and regression tasks, we trained, vali-

date, and tested the eXtreme Gradient Boosting (XGBoost) (Chen &

Guestrin, 2016). XGBoost is a scalable end-to-end tree boosting sys-

tem that is widely used to achieve state-of-the-art performance on

many recent ML challenges (Chen & Guestrin, 2016). One of its major

benefits regards the great potential interpretability due to its recursive

tree-based decision system.

To examine the contribution of nonimaging and imaging fea-

tures to SDMT performance and to assess the most contributing

features, we considered (1) a priori knowledge-based sets of fea-

tures coupled with (2) a data-driven approach in which we automati-

cally select the best combination of features without preconfigured

sets. For the a priori sets of features, we built different combina-

tions of demographic, clinical, and MRI-derived features, starting

from a simple model including only demographic and clinical fea-

tures and gradually increasing complexity to reach a comprehensive

model that included all variables. These different combinations of

features were inferred from the literature and clinical practice

through highly qualified MS neurologists (details in Table 3). Briefly,

we first considered a model combining demographic and the main

clinical features in MS research, such as the disease duration and

the EDSS score. Structural neuroimaging metrics, that is, T2-WM

lesion volume (accounting for WM lesions extent) and brain vol-

umes, were progressively introduced in the analyses to consider fur-

ther the impact of different structural alterations on cognitive

performance. Although controlled through the use of normative

data, the potential residual effect of age, sex, and education on cog-

nitive performance was accounted for by including these variables

in each feature combination. For the data-driven approach, we

applied an automated feature selection procedure through an

XGBoost estimator as proposed recently by Yan et al. (2020). For

each feature, the XGBoost algorithm estimates the importance gain,

that is, the improvement in performance brought by each feature.

Thus, we iteratively retrained a new XGBoost model using the top

n features in the feature ranking obtained with the combination

“All” (see Table 3) using n = 1, 2, …, 16. We then observed the

potential increase in performance by adding, one by one, the fea-

tures with the top importance gain. The final selection of the best

feature set (from a priori and data-driven approaches) was based on

the highest performance and, in the case of equal performance, we

preferred the feature set with the lowest number of features, fol-

lowing Occam's razor principle and reducing potential overfitting

(Witten & Frank, 2016).

Training, validation, and test

The XGBoost model has been trained, validated, and tested using the

following approach: 80% of the entire data set (i.e., 432 randomly

chosen patients) were considered as the training/validation set, and

the remaining 20% (i.e., 108 patients) as the test set. On the training/

validation data, each model has been trained and validated using a

nested k-fold cross-validation (CV) strategy (stratified for the classifi-

cation task) to estimate the unbiased generalization performance of

the models along with performing, at the same time, data standardiza-

tion, hyperparameters optimization, and feature selection (Varma &

Simon, 2006). In detail, the inner loop was used for searching for the

best data standardization approach and optimizing the estimator

hyperparameters, and the outer loop for the feature selection. Specifi-

cally, the Grid Search parameters space was composed of different

transformers for data standardization, that is, standard, robust scaling,

and quantile transformation, and of a set of hyperparameters of the

XGBoost estimator (see details in Supporting Table S1). The feature

selection has been performed according to the performance in the

outer loop of the nested CV (i.e., the validation set).

TABLE 3 Combination of features used for both the classification
and regression task

Combination name Features

Clinical Age, sex, education, EDSS, disease

duration

Whole brain Age, sex, education, BV

GM + WM Age, sex, education, cGMV, WMV,

ThalV, AccuV, PutaV, CaudV,

PallV, AmygV, HippV

GM + WM + cerebellum Age, sex, education, cGMV, WMV,

ThalV, AccuV, PutaV, CaudV,

PallV, AmygV, HippV,

CerebellumV

Whole brain + les Age, sex, education, BV, T2LV

GM + WM + cerebellum + les Age, sex, education, cGMV, WMV,

ThalV, AccuV, PutaV, CaudV,

PallV, AmygV, HippV,

CerebellumV, T2LV

All Age, sex, education, EDSS, disease

duration, cGMV, WMV, ThalV,

AccuV, PutaV, CaudV, PallV,

AmygV, HippV, CerebellumV,

T2LV

Abbreviations: AccuV, nucleus accumbens volume; AmygV, amygdala

volume; BV, whole brain volume; CaudV, caudate nucleus volume;

CerebellumV, cerebellum volume; cGMV, cortical grey matter volume;

EDSS, Expanded Disability Status Scale; HippV, hippocampus volume; les,

WM lesions; PallV, globus pallidus volume; PutaV, putamen volume; T2LV,

lesions load; ThalV, thalamus volume; WMV, white matter volume.
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Moreover, since the selected features combination may vary

depending on how the training/validation data are split in each fold of

the nested CV, the latter has been repeated 10 times using random

splits. A detailed diagram of the validation scheme has been reported

in Supporting Figure S1. The average and standard deviation of the

performance on the unseen test sets across all repetitions were com-

puted to get the final scores. In particular, for the classification and

regression tasks, the performance was quantified in terms of the area

under the receiver operating characteristic curve (AUROC) and mean

absolute error (MAE), respectively.

Experimental tests

The extraction of advanced neuroimaging features was carried out on

a Dell PowerEdge T620 workstation equipped with two 8-core Intel

Xeon E5–2640 v2, for a total of 32 CPU threads and 128 GB RAM,

using the Oracle Grid Engine scheduler. For each subject, the proces-

sing time of a single-core CPU required approximately 20 and 15 min

for the quantification of cerebral and cerebellar features, respectively.

The training, validation, and test of the pipelines were carried out

using a custom-made code in Python language (v. 3.8.1) using the fol-

lowing modules: graphviz v.0.15, matplotlib v.3.3.4, numpy v.1.18.1,

pandas v.1.0.2, pingouin v.0.3.5, scikit-learn v.0.22.2.post1 (Pedregosa

et al., 2011), seaborn v.0.11.0, and xgboost v.1.2.1. In particular, we

used XGBClassifier and XGBRegressor estimators for the classification

and regression task, respectively. The total computation time for the

training, validation, and test was about 5 days on a single core of a

Linux workstation equipped with a 4-core (eight threads) Intel

i7-7700K CPU and 64 GB RAM.

3 | RESULTS

3.1 | Data harmonization

Before data harmonization, ANCOVA results showed highly signifi-

cant differences in MRI-derived volumes among different INNI cen-

ters (p-values <10�3 for all structures except for NT2LV in the

training/validation set and p-values <10�2 for all structures except for

NT2LV and NCaudmV in the test set). In particular, cortical GM, WM,

and cerebellar volumes showed the most relevant differences, while

the volumes of the whole brain and subcortical structures showed less

pronounced differences (Table 4 and Figures 2 and 3). After data har-

monization, volume differences among groups were either removed

(ANCOVA test p-values >.05) or highly reduced (the partial η2 coeffi-

cients relating to the group effects were reduced) in all structures for

both the training/validation and test sets (Table 4 and Figures 2

and 3).

3.2 | Classification task

For the prediction of the cognitive class (IPS-p vs. IPS-i), the AUROC

scores in the validation set are reported in Table 5 and represented

in Figure 4. All the models showed good performance (average

AUROC in the range 0.71–0.74). In particular, the best performance,

that is, AUROC of 0.74 (0.01) [mean (standard deviation, SD)], was

achieved by the following features' combinations: Whole brain + les

(i.e., age, sex, education, brain volume, T2LV) and Auto 4

TABLE 4 ANCOVA test p-values and partial η2 coefficients relating to the group, before and after the harmonization step, are reported for

both the training/validation and test sets. After data harmonization, volume differences among groups were either removed (p-values >.05) or
highly reduced (reduced partial η2 coefficients relating to the group effects) in all structures

Before harmonization After harmonization

Training/validation Test Training/validation Test

Volume p-Value Partial η2 p-Value Partial η2 p-Value Partial η2 p-Value Partial η2

NBV 2E-5 0.06 9E-4 0.17 0.02 0.03 .47 0.04

NWMV 2E-106 0.69 1E-26 0.73 0.34 0.01 .38 0.04

cpGMV 6E-93 0.64 2E-25 0.71 0.00 0.04 .26 0.05

NthalmV 3E-9 0.10 6E-4 0.18 0.04 0.02 .83 0.02

NhippmV 7E-19 0.19 4E-5 0.23 0.12 0.02 .93 0.01

NamygmV 6E-14 0.15 3E-3 0.15 0.73 0.00 .96 0.01

NaccumV 2E-34 0.32 3E-9 0.37 0.25 0.01 .99 0.00

NcaudmV 3E-4 0.05 0.15 0.07 0.09 0.02 .83 0.01

NpallmV 2E-16 0.17 2E-05 0.24 0.53 0.01 .82 0.02

NputamV 2E-24 0.24 2E-7 0.31 0.34 0.01 .92 0.01

Ncerebellum_mV 3E-54 0.46 4E-15 0.53 0.97 0.00 .98 0.00

NT2LV 0.76 0.004 0.62 0.03 0.61 0.01 .82 0.02

Abbreviations: NAccumV, normalized mean accumbens volume; NAmygmV, normalized mean amygdala volume; NBV, normalized whole brain volume;

NCaudmV, normalized mean caudate volume; NCerebellm_mV, normalized mean cerebellum volume; NcGMV, normalized cortical gray matter volume;

NHippmV, normalized mean hippocampus volume; NWMV, normalized white matter volume; NPallmV, normalized mean pallidus volume; NPutamV,

normalized mean putament volume; NT2LV, normalized lesion volume; NThalmV, normalized mean thalamus volume.
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(i.e., thalamus, cortical GM, hippocampus volumes, and T2LV)

(Figure 4a). With the same highest performance but fewer predictors,

the latter combination was considered the best set of predictors for

the cognitive class. This set showed an increase in AUROC of 2.78%

(Figure 4b) compared to the classification performance obtained

using the XGBoost model trained using only the most important

F IGURE 2 Box plot of the volumes of different structures among groups in the training/validation set. The horizontal line inside each box
represents the median value of the plotted data. The box shows the first and third quartiles, while the whiskers extend to show the rest of the
distribution except for points that are determined to be outliers. Features' acronyms are described in Table 4
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predictor, that is, the thalamus volume. Then, the final XGBoost clas-

sifier trained with the thalamus, cortical GM, hippocampus, and

lesions volumes was tested on the unseen test set data obtaining an

AUROC of 0.69 (0.03) [mean (SD)].

3.3 | Regression task

To predict the SDMT z-scores, the average MAE values in the valida-

tion set are reported in Table 5 and Figure 5. The best performance

F IGURE 3 Box plot of the volumes of different structures among groups in the test set. The horizontal line inside each box represents the
median value of the plotted data. The box shows the first and third quartiles, while the whiskers extend to show the rest of the distribution
except for points that are determined to be outliers. Features' acronyms are described in Table 4
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(MAE = 0.95 (0.01) [mean (SD)]) has been achieved by the XGBoost

regressor trained with cortical GM and thalamus volumes, EDSS,

nucleus accumbens, lesions, putamen volumes, and age. This feature

combination, chosen automatically during the training phase, showed

a decrease in MAE score of 10.38%, compared with a regression per-

formed using an XGBoost model trained using only the best predictor,

that is, the cortical GM volume. Finally, this model has been tested on

the unseen test data, obtaining an MAE score of 1.02 (0.01)

[mean (SD)].

4 | DISCUSSION

In this study, we applied ML techniques to predict a proxy (i.e., the

SDMT score) of the cognitive status of MS patients. We performed

both a classification task (IPS-p vs. IPS-i MS patients) and a regression

task (SDMT score prediction) combining the information obtained

from demographic, clinical, and MRI-derived volumes data of 540 MS

patients belonging to the large, multicenter, INNI repository. An

XGBoost estimator was trained, validated, and tested using a com-

bined hold-out/CV scheme (80% of subjects in the training/validation

sets and 20% in the test set). In the training/validation set, the model

was trained and validated using a nested CV strategy (stratified for

the classification task) to perform hyperparameters optimization and

feature selection. Moreover, since the decisions may vary depending

on how the training/validation data are split in each fold of the nested

CV, the nested CV procedure was repeated 10 times using different

random splits. Our results showed that all the features' combinations

showed a good performance. For the classification task, the XGBoost

classifier trained with thalamus, cortical GM, hippocampus, and lesions

volumes, achieved an AUROC score of 0.74 (0.01) in the validation

set, and an AUROC score of 0.69 (0.03) on the (unseen) test set data.

On the other side, in the regression task, the best performance was

achieved by the XGBoost regressor trained with cortical GM and thal-

amus volumes, EDSS, nucleus accumbens, lesions, putamen volumes,

and age, obtaining an MAE equal to 0.95 (0.01) in the validation set,

and an MAE = 1.02 (0.01) on the (unseen) test set.

Our findings confirm that the diffuse damage to the structural

brain architecture subtended to MS pathology may predict conse-

quences on the cognitive status of MS patients (Meijer et al., 2018),

which cannot be sufficiently explained using clinical data alone.

Beyond the model showing the best performance, we were interested

in unveiling the smallest feature set (i.e., that with fewer features) best

predicting the SDMT score and less prone to overfitting. For example,

for the classification task, we observed two models with the same

best performance (i.e., AUROC = 0.74 (0.01)), and we selected the

feature combination with fewer features (i.e., thalamus, cortical GM,

hippocampus volumes, and T2LV). Basically, we showed that, in the

classification task, the thalamus, cortical GM, hippocampus volumes,

and T2 lesion volume are a dense representation of all MRI-related

and clinical/demographic features. We feel that this is an important

result, in line with previous studies (Benedict et al., 2013; Bergsland

et al., 2016; Bisecco et al., 2015; Bisecco et al., 2018; Burggraaff

et al., 2020). Indeed, cortical atrophy, in particular localized area of the

prefrontal, parietal, and temporal cortex, is known to be a critical sub-

strate for CI (Amato et al., 2004; Benedict, Carone, & Bakshi, 2004;

Benedict, Weinstock-Guttman, et al., 2004; Nocentini et al., 2014;

Zivadinov et al., 2001). The thalamus, with its extensive afferent and

efferent connections with the midbrain and the cerebral cortex, serves

as a crucial “cognitive hub” and, thus, its degeneration is likely to con-

tribute to IPS dysfunction (Minagar et al., 2013) and consequently to

a global cognitive dysfunction. At the same time, it is well known that

the thalamic volume highly correlates with the whole-brain volume in

MS populations with a relatively high disease duration—like in our

cohort (mean 10.8 years, SD 8.7 years) (Eshaghi et al., 2018). This may

explain, for example, why combinations with the volume of specific/

localized brain regions or the whole-brain may be equally valuable.

Besides the thalamus, another relevant “cognitive structure,” such as

the hippocampus, was found to contribute to cognitive dysfunction in

MS patients. The hippocampus is a predilected site for demyelinated

TABLE 5 Performances in the validation set. Mean values
(standard deviation) of 10 repetitions are reported. For the
classification task (IPS-p vs. IPS-i), we computed AUROC values, and
for the regression task (SDMT Z-score prediction), we showed the
MAE values. The combination of features automatically selected are
graphically reported in Figures 4a and 5b for the classification and
regression task, respectively

Feature combination
Classification
AUROC

Regression
MAE

Clinical 0.71 (0.01) 1.05 (0.01)

Whole brain 0.73 (0.01) 0.99 (0.01)

GM + WM 0.72 (0.01) 0.97 (0.01)

GM + WM + cerebellum 0.72 (0.01) 0.97 (0.00)

Whole brain + les 0.74 (0.01) 0.97 (0.01)

GM + WM + cerebellum + les 0.73 (0.02) 0.96 (0.01)

All 0.72 (0.02) 0.96 (0.01)

Auto 1 0.72 (0.01) 1.06 (0.01)

Auto 2 0.73 (0.01) 1.02 (0.01)

Auto 3 0.72 (0.01) 0.99 (0.01)

Auto 4 0.74 (0.01) 0.98 (0.01)

Auto 5 0.73 (0.01) 0.97 (0.01)

Auto 6 0.73 (0.01) 0.98 (0.01)

Auto 7 0.73 (0.01) 0.95 (0.01)

Auto 8 0.73 (0.01) 0.95 (0.01)

Auto 9 0.73 (0.01) 0.96 (0.01)

Auto 10 0.73 (0.01) 0.96 (0.01)

Auto 11 0.73 (0.01) 0.96 (0.01)

Auto 12 0.73 (0.01) 0.96 (0.01)

Auto 13 0.73 (0.01) 0.96 (0.01)

Auto 14 0.73 (0.02) 0.96 (0.01)

Auto 15 0.73 (0.02) 0.96 (0.01)

Abbreviations: AUROC, area under the receiver operating characteristic

curve; Auto, the combination of features automatically selected; GM, gray

matter; les, WM lesions; MAE, mean absolute error; SDMT, Symbol Digit

Modalities Test; WM, white matter.
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F IGURE 4 Classification task
using the XGBoost estimator for
the automated features selection.
(a) Feature ranking and (b) area
under the ROC curve (AUROC)
as a function of the number of
features. In both panels, average
values (using 10 repetitions of
the fivefold nested stratified

cross-validation [CV]) in the
validation set are reported. In
Panel (a), the black lines with
caps indicate the standard
deviation, and the features in the
red rectangle are those that
together get the best AUROC in
the validation set. Features'
acronyms are described in
Table 3

F IGURE 5 Regression task
using the XGBoost estimator for
the automated features selection.
(a) Feature ranking and (b) mean
absolute error (MAE) as a
function of the number of
features. In both panels, average
values (using 10 repetitions of
the fivefold nested cross-
validation [CV]) in the validation
set are reported. In panel (a), the
black lines with caps indicate the
standard deviation, and the
features in the red rectangle are
those that together get the best
MAE in the validation set.
Features' acronyms are described
in Table 3
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lesions (Benedict et al., 2020; Geurts et al., 2007), directly involved in

learning and memory functions. The cortical–thalamic–hippocampal

disruption affects cognitive performance in MS with mild to minimal

CI (Kern et al., 2015).

As regards WM T2LV, although it was retained in our models

among the main predictors of the cognitive status in MS patients, it

could not fully explain the severity of CI in MS patients, once again

confirming the concept of the “clinic-radiological” paradox observed

in MS (Barkhof, 2002). An increasing number of studies, on the other

hand, have shown that focal MS-related WM damage is the tip of the

iceberg, representing just the visible inflammatory processes (Meijer

et al., 2018; Miller et al., 2003; Moll et al., 2011; Rao et al., 2014),

while the most extensive damage is represented by the widespread,

microscopic, involvement of normal-appearing WM as well as cortical

and deep GM (Popescu et al., 2015; Rocca et al., 2017).

4.1 | Methodological considerations on the ML
approach

We explored the predictive abilities of a wide set of demographic,

clinical, and neuroimaging features with an ML approach, in line with

the goals of evaluating cognitive performance on an individual basis.

This approach differs from conventional regression analysis applied to

the entire data set in which the possibility of overfitting may not be

negligible. In particular, we used the hold-out method to split the

entire data set into a training/validation set (80%), and test set (20%),

and, in the training/validation set only, a fivefold nested CV scheme

was applied to perform, simultaneously, hyperparameters optimization

and feature selection. The combination of the hold-out method along

with the nested CV in the training/validation set allowed us to take all

the decisions on the training/validation data only and to evaluate the

performance of the final model on unseen data, thus preventing any

form of peeking (Diciotti et al., 2013).

Ideally, any ML model should be evaluated on samples that were

not used to train or fine-tune (e.g., through hyperparameter optimiza-

tion) the model so that they provide an unbiased assessment of the

generalization error, or in other words, a “sense of model effectiveness”
(Kuhn & Johnson, 2013). However, and unfortunately, many studies

in the literature do not use a truly test set with samples unseen during

the training and hyperparameter optimization (Bendfeldt et al., 2019;

Wottschel et al., 2015; Wottschel et al., 2019; Zhang et al., 2019;

Zurita et al., 2018), leading to a risk of overfitting and overly optimistic

results. The lack of data never used during the “decisional” phase

(hyperparameters optimization, and feature selection) does not allow

an unbiased evaluation of the ability of these advanced algorithms to

learn from data and generalize. To the best of our knowledge, only

Buyukturkoglu et al. (2021) applied a nested CV scheme in order to

perform hyperparameters optimization in the inner loop, but the fea-

ture selection was carried out in the outer CV, thus making their

results noncompletely reliable.

Comparing, in the classification task, the AUROC = 0.74 in the

validation set with the AUROC = 0.69 in the test set, we found a drop

of 0.05. This drop value has been considered “modest” in a recent

systematic review comparing the performance of deep learning algo-

rithms on the internal and external data sets (Yu et al., 2022). It is well

known from the ML theory that a drop in the performance in the test

set may be present and can be due to several factors, including (i) a

very different sample distribution in the training/validation and test

sets, (ii) possible overfitting in the model selection procedure, and

(iii) small size of the data set and specifically, of the validation set

(Müller & Guido, 2016). In our study, (i) we split the training/validation

and test set from the same sample population, and we did not notice

different distributions of the features, for example, due to the random

sampling; (ii) we tried not to make the XGBoost hyperparameter opti-

mization too complex because when the space of models searched

over becomes richer, the probability of incurring overfitting is

increased; and (iii) we adopted a fivefold nested CV in the training/

validation set, because it offers a favorable bias-variance trade-off

(Hastie et al., 2013; Lemm et al., 2011) and is also adequate for model

selection (Breiman & Spector, 1992). Although we observe this resid-

ual effect, we highlight that our study applied a rigorous split of train-

ing/validation and test sets for the first time in predicting a cognitive

score in an MS population using a valuable multicenter data set.

4.2 | Methodological considerations on the
multicenter data set and the need for MRI data
harmonization

Multicenter studies confer many distinct advantages, including larger

sample sizes and allowing to find more generalizable findings, sharing

resources among collaborative sites, and promoting networking

(Cheng et al., 2017; Localio et al., 2001). Well-executed multicenter

studies are more likely to improve performance and/or have a positive

impact on research and clinical outcomes (Cheng et al., 2017; Huggett

et al., 2011; O'Sullivan et al., 2010; Payne et al., 2011; Schwartz

et al., 2016). In recent years, multicenter neuroimaging studies in the

field of MS have rapidly increased (Chitnis et al., 2013; Hagens

et al., 2018; Preziosa et al., 2016; Storelli et al., 2019). Even in multi-

center MRI studies with consistent scanner field strength, systematic

differences in scanner manufacturers and acquisition parameters can

lead to severe biases in volumetric analyses (Shinohara et al., 2017),

particularly when subtle differences in tissue volume are being

searched for along with association with cognitive functions. These

nonbiological confounders typically have a priori unpredictable

effects, and several statistical approaches attempted to handle this

source of variability (Fortin et al., 2017). To this aim, in this multicen-

ter study, we harmonized the MRI-derived volumes by using Neuro-

ComBat (Fortin et al., 2017), a technique formerly proposed for

genetic data (Johnson et al., 2007). Recently, the same approach has

been successfully applied to diffusion tensor imaging data (Fortin

et al., 2017), cortical thickness measurements (Fortin et al., 2018;

Radua et al., 2020), and subcortical volumes (Pomponio et al., 2020;

Radua et al., 2020). Moreover, among the advantages of this harmoni-

zation technique, the possibility of applying it directly to MRI-derived

volumes, regardless of how the images were acquired (different scan-

ners and different acquisition protocols), is the most important.
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Indeed, the INNI repository currently collects retrospective 3T MRI

data from four core centers where different scanners and acquisition

protocols were used for specific research purposes.

4.3 | Limitations and future developments

This study presents some limitations. First, we predicted the cognitive

performance in a sample of MS patients with any phenotype of the

disease. It is not yet clear, indeed, whether different MS phenotypes

have overlapping pathophysiological substrates of CI, although similar

NP profiles have been described in all MS courses (Benedict

et al., 2020; De Sonneville et al., 2002; Huijbregts et al., 2006). Unfor-

tunately, we were not able to perform sub-group analyses due to the

paucity of some phenotypes—that is, primary progressive MS, clini-

cally isolated syndrome, and benign MS—and a different distribution

within the participating centers. Future ML studies should investigate

whether different MS phenotypes have different structural brain MRI

predictors of CI.

Second, the INNI repository currently contains MRI data acquired

with imaging protocols set by each center independently. A recent

study concluded that “The use of standardized protocols yielded up

to a five-fold reduction in required sample sizes to detect disease-

related neuroanatomical changes, and is particularly beneficial for

detecting subtle effects” (George et al., 2020). For these reasons, and

according to the INNI main future goals (Filippi et al., 2017), standard-

ized acquisition protocols of advanced structural and functional MRI

data set will be advocated.

Finally, in this study, we evaluated the relationship between the

cognitive status, measured through the SDMT score, and the volumet-

ric data extracted from anatomical T1w and T2w scans. Future

research should investigate predictors of cognitive performance using

other single/combination of NP tests as well as other MRI metrics,

such as diffusion-weighted imaging- and, especially, functional MRI-

derived metrics.

5 | CONCLUSION

Our ML approach using a comprehensive set of brain structural mea-

sures extracted from a large multicenter 3T-MRI data set showed a

good performance in predicting CI in MS. This novel approach con-

firmed how the involvement of some cognitive hubs of the brain, such

as the thalamus and the hippocampus, are more relevant than focal

WM damage (i.e., T2LV) in the prediction of cognitive perfor-

mance in MS.
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