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GROUP AMENABILITY AND ACTIONS ON Z-STABLE

C∗-ALGEBRAS

EUSEBIO GARDELLA AND MARTINO LUPINI

Abstract. We study strongly outer actions of discrete groups on C*-algebras
in relation to (non)amenability. In contrast to related results for amenable

groups, where uniqueness of strongly outer actions on the Jiang-Su algebra is

expected, we show that uniqueness fails for all nonamenable groups, and that
the failure is drastic. Our main result implies that if G contains a copy of F2,

then there exist uncountably many, non-cocycle conjugate strongly outer ac-
tions of G on any tracial, unital, separable C*-algebra that absorbs tensorially

the Jiang-Su algebra. Similar conclusions hold for outer actions on McDuff

II1 factors. We moreover show that G is amenable if and only if the Bernoulli
shift on any finite strongly self-absorbing C*-algebra absorbs the trivial ac-

tion on the Jiang-Su algebra. Our methods consist in a careful study of weak

containment for the Koopman representations of certain generalized Bernoulli
actions.

Introduction

Amenability for discrete groups was first introduced by von Neumann in the
context of the Banach-Tarski paradox. One of the main early results in the theory,
proved by Tarski, asserts that a group is amenable if and only if it admits no
paradoxical decompositions. The fact that the Banach-Tarski paradox only makes
use of free groups led Day to conjecture that a discrete group is nonamenable if
and only if it contains the free group F2 as a subgroup. This conjecture, known as
the von Neumann problem, was open for about 40 years, until it was disproved by
Ol’shanskii.

Amenability admits a surprisingly large number of equivalent formulations. Here,
we are concerned with those characterizations that are phrased in terms of actions
of the group. These usually come in the form of a dichotomy: roughly speaking,
they assert that there is an object in the relevant category, on which every amenable
group acts in an essentially unique way, while every nonamenable group admits a
continuum of non-equivalent actions. The following is an illustrative example:

Theorem. Let G be a discrete group, and let (X,µ) be a standard atomless prob-
ability space.
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(1) If G is amenable, then all free, measure preserving, ergodic actions of G on
(X,µ) are orbit equivalent.

(2) If G is not amenable, then there exist uncountably many non-orbit equiv-
alent free, measure preserving, ergodic actions of G on (X,µ).

Part (1) is a combination of classical results of Dye and Ornstein-Weiss. In
reference to (2), the first result in this direction is a theorem of Connes-Weiss,
asserting that every nonamenable group without property (T) admits two such
actions. Much more recently, Ioana proved part (2) for groups containing a copy of
F2 ([19]), using the corresponding result for F2 due to Gaboriau-Popa ([10]), and
finally Epstein extended the result to all nonamenable groups ([7]). In recent work
([14, 15]), the authors strengthened the conclusion in part (2) above: the relation
of orbit equivalence of actions of nonamenable groups is not Borel.

In the context of von Neumann algebras, and specifically for the hyperfinite II1

factor R, amenability can also be characterized in terms of actions:

Theorem. Let G be a discrete group, and let R be the hyperfinite II1 factor.

(1) If G is amenable, then all outer actions of G on R are cocycle conjugate.
(2) If G is not amenable, then there exist uncountably many non-cocycle con-

jugate outer actions of G on R.

Part (1) is due to Ocneanu ([29]), although particular cases were proved by
Connes for cyclic groups ([5]), and by Jones for finite groups ([20]). Part (2) is a
recent result due to Brothier-Vaes (Theorem B in [4]), which also shows that the
relation of cocycle conjugacy of outer actions of G on R is not Borel when G is not
amenable. This result generalizes previous results of Popa ([32]) and Jones ([21]).

In both theorems recalled above, the amenable case was resolved relatively early.
On the other hand, the nonamenable case took much longer, and it required the
invention of new and powerful tools such as Popa’s celebrated deformation/rigidity
theory. Indeed, it was realized that certain nonamenable groups (or certain nona-
menable II1 factors) exhibit striking rigidity phenomena, which are best seen in the
presence of property (T). The richness of the nonamenable world drove researchers
in both Ergodic Theory and in von Neumann algebras to study actions of nona-
menable groups on the standard atomless probability space as well as on R, with
particular focus on the complexity of their classification.

This work revolves around analogs of the above results in the context of C*-
algebras, the central theme being the case of nonamenable groups. Strongly self-
absorbing C*-algebras can be seen as the C*-analog of the hyperfinite II1 factor.
(Recall that a unital, separable C*-algebra D is said to be strongly self-absorbing
if D 6= C and there is an isomorphism ϕ : D → D ⊗min D which is approximately
unitarily equivalent to the first tensor factor embedding; see [37].) Examples of
such algebras are the UHF-algebras of infinite type, the Jiang-Su algebra Z, the
Cuntz algebras O2 and O∞, and their tensor products. Moreover, it is conjectured
that these are the only strongly self-absorbing C*-algebras. By a result of Winter
([38]), any strongly self-absorbing C*-algebra absorbs Z tensorially.

C*-analogs of part (1) in the theorem above were explored in the early 1990s by
Bratteli, Evans and Kishimoto ([3]), who studied a concrete family of outer actions
of Z on a specific UHF-algebra. Their results show that outerness in (finite) C*-
algebras is too weak a condition for an analog of Ocneanu’s result to hold. They
also provided evidence for the fact that a uniqueness result may hold if one assumes
outerness not only for the action, but also for its extension to the weak closure in
the GNS representation. This notion is now called strong outerness.

Motivated by a recent breakthrough of Szabó [36], the following conjecture has
been proposed in [16], the first part of which had already been suggested in [36].
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We refer the reader to the introductions of [36] and [16] for motivation and relevant
references (in particular, for the reason why groups with torsion must be excluded).

Conjecture A. Let G be a torsion-free countable group, and let D be a strongly
self-absorbing C*-algebra.

(1) If G is amenable, then any two strongly outer actions of G on D are cocycle
conjugate.

(2) If G is not amenable, then there exist uncountably many non-cocycle con-
jugate strongly outer actions of G on D.

The main result of [36] asserts that part (1) holds when D is either a UHF-
algebra or the Jiang-Su algebra and G is abelian, while [16] asserts that part (2)
holds when D is a UHF-algebra and for groups containing a subgroup with relative
property (T).

In this work, we continue the study of strongly outer actions on C*-algebras,
and particularly on strongly self-absorbing C*-algebras. We are interested in con-
structing many non-cocycle conjugate actions for a given nonamenable group. To
this end, we focus on a specific and very rich class of actions, which we call gener-
alized (noncommutative) Bernoulli shifts. These are constructed as follows: given
a strongly self-absorbing C*-algebra D and an action G yσ X of a discrete group
G on a countable set X, we consider the action of G on

⊗
x∈X D ∼= D given by

permuting the tensor factors according to σ.
For an arbitrary group G, it seems difficult to produce actions of this form other

than the usual Bernoulli shift βD : Gy
⊗

g∈GD and the trivial action of G on D.
However, considering these actions leads to a new characterization of amenability.
The implication (1)⇒(2) in Theorem B appeared in [13], and can also be deduced
from [34].

Theorem B. Let G be a countable discrete group, and let D be a finite strongly
self-absorbing C*-algebra. Then the following are equivalent:

(1) G is amenable;
(2) the Bernoulli shift βD absorbs tensorially (up to cocycle conjugacy) the

trivial action idZ on Z.

This result implies, in particular, a weak form of part (2) of Conjecture A: every
nonamenable group admits two strongly outer actions on D which are not cocycle
conjugate, namely, the Bernoulli shift and its stabilization with idZ .

We obtain stronger results for groups having sufficiently many finite subquo-
tients. A particular instance of our main result (Theorem 4.5) confirms part (2) of
Conjecture A for groups containing F2:

Theorem C. Let G be a discrete group containing a nonabelian free group, and
let A be a tracial, separable, unital Z-absorbing C*-algebra. (For example, a
finite strongly self-absorbing C*-algebra.) Then there exist uncountably many non-
cocycle conjugate, strongly outer actions of G on A, acting via asymptotically inner
automorphisms of A. When A is strongly self-absorbing, these actions can also be
chosen to be weak mixing.

The fact that the actions we construct are pointwise asymptotically inner implies
that these actions are not distinguishable by any kind of K- or KK-theoretical
invariant, nor are they classified using the Cuntz semigroup. The way in which
we distinguish them is via the weak equivalence class of the associated Koopman
representation.

Theorem C is the C*-version of Ioana’s result on non-orbit equivalent actions
from [19]. Epstein later combined Ioana’s result with Gaboriau-Lyon’s measurable
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solution to the von Neumann problem [9] to generalize Ioana’s work to all nona-
menable groups. A very interesting and promising problem is to find an analog of
the main result in [9] in the context of strongly outer actions on C*-algebras, or
at least for outer actions on R. A satisfactory solution would allow one to extend
Theorem C (and Theorem D below) to include all nonamenable groups.

Finally, our methods allow one to replace Z with the hyperfinite II1 factor R,
thus obtaining the following result.

Theorem D. Let G be a discrete group containing a copy of F2, and let M be
a McDuff II1 factor. Then there exist uncountably many non-cocycle conjugate,
outer actions of G on M , acting via asymptotically inner automorphisms of M .
When M = R, these actions can also be chosen to be weak mixing.

It was shown by Brothier and Vaes [4, Theorem B], using Popa’s deforma-
tion/rigidity theory from [33, 32], that an arbitrary nonamenable group G admits
uncountably many pairwise non-cocycle conjugate outer actions on R. The argu-
ments of this paper produce actions of G on R that are furthermore weak mixing,
under the additional assumption that G contains F2. It would be interesting to
know whether there exist uncountably many pairwise non-cocycle conjugate weak
mixing outer actions of G on R for an arbitrary nonamenable group G.

The rest of the paper is organized as follows. In Section 1, we establish a number
of basic facts about subgroups with finite index that will be important in the later
sections. In Section 2, we study the generalized Bernoulli shift associated with an
action Gyσ X on a discrete set X, and relate its Koopman representation to the
canonical unitary representation of G on `2(X). In Section 3, we specialize to a
particular family of generalized Bernoulli shifts, obtained from finite subquotients
of G. Finally, Section 4 contains the proofs of our main results (Theorem 4.4 and
Theorem 4.5), from which Theorems B, C and D follow.

Acknowledgements: The authors thank Todor Tsankov for a conversation on
quasiregular representations, as well as Hannes Thiel and the anonymous referee
for very valuable feedback.

1. Quasiregular representations

We begin by recalling the notion of quasiregular representation.

Definition 1.1. Let G be a discrete group, and let H be subgroup. We denote
by λG/H : G → U(`2(G/H)) the unitary representation induced by the canonical
left translation action of G on G/H. We call λG/H the quasiregular representation
associated with H.

When H is a normal subgroup of G, the quasiregular representation λG/H is
precisely the left regular representation of the quotient group G/H.

Let G be a discrete group and let µ : G→ U(Hµ) and ν : G→ U(Hν) be unitary
representations. Recall that µ is said to be (unitarily) contained in ν, written
µ ⊆ ν, if there exists an isometry ϕ : Hµ → Hν satisfying ϕ ◦ µg = νg ◦ ϕ for all
g ∈ G. When ϕ can be chosen to be surjective, we say that µ and ν are unitarily
equivalent, and write µ ∼= ν.

Lemma 1.2. Let G be a discrete group, and let H1, . . . ,Hn be subgroups of G
whose indices in G are finite. Set H = H1 ∩ · · · ∩Hn. Then:

(1) H has finite index in G, and [G : H] ≤ [G : H1] · · · [G : Hn]. If the indices
of H1, . . . ,Hn in G are pairwise coprime, then equality holds.

(2) We have λG/H ⊆ λG/H1
⊕ · · · ⊕ λG/Hn , and this containment is an equiva-

lence whenever the indices of H1, . . . ,Hn in G are pairwise coprime.
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Proof. It is enough to prove both parts for n = 2. We begin with some notation.
Consider the diagonal action of G on `2(G/H1) ⊗ `2(G/H2) ∼= `2(G/H1 × G/H2)
via λG/H1

⊗ λG/H2
. Set x = (H1, H2) ∈ G/H1 × G/H2. Then the stabilizer of x

is precisely H1 ∩H2. Define a map ψ : G → G/H1 × G/H2 by ψ(g) = g · x for all
g ∈ G.

(1). Since ψ is the orbit map associated with x, we have

[G : H1 ∩H2] = |ψ(x)| ≤ [G : H1][G : H2].

When [G : H1] and [G : H2] are coprime, one checks that ψ is surjective, so we get
equality.

(2). Consider the induced map ψ̂ : G/(H1∩H2)→ G/H1×G/H2, which is given

by ψ̂(g(H1 ∩H2)) = (gH1, gH2) for all g ∈ G. Define

ϕ : `2(G/(H1 ∩H2))→ `2(G/H1 ×G/H2)

on the canonical orthonormal basis by setting ϕ(δg(H1∩H2)) = δψ̂(g) for all g ∈ G.

It is clear that ϕ is an isometry, and that it is a unitary if [G : H1] and [G : H2] are
coprime. It remains to show that ϕ intertwines λG/(H1∩H2) and λG/H1

⊕ λG/H2
.

Given g, k ∈ G, we have(
λG/H1

⊕ λG/H2

)
k

(
ϕ(δg(H1∩H2))

)
=
(
λG/H1

⊕ λG/H2

)
k

(
δ(gH1,gH2)

)
= δkgH1,kgH2

= ϕ(δkg(H1∩H2))

= ϕ
(
(λG/(H1∩H2))k(δg(H1∩H2))

)
,

as desired. This finishes the proof. �

Our final lemma is well-known, so we only sketch the proof; see [22, Lemma 3.3].

Lemma 1.3. Let G be a discrete group, let S be a subgroup of G, and let H be a
subgroup of S with [S : H] <∞. Then λG/S ⊆ λG/H . In particular, if S is a finite
subgroup of G, then λG/S ⊆ λG.

Proof. Let π : G/H → G/S be the canonical quotient map. Then ϕ : `2(G/S) →
`2(G/H) given by ϕ(ξ) = 1√

[S:H]
ξ ◦ π for ξ ∈ `2(G/S), is an equivariant isometry.

�

2. Generalized Bernoulli shifts

In this section, we study a class of group actions on C*-algebras which are
obtained from permutation actions of G on (discrete) sets. First, we need to discuss
how the GNS construction behaves with respect to infinite tensor products.

2.1. Infinite tensor products and the GNS construction. We briefly review
the GNS construction.

Definition 2.1. Let D be a unital C*-algebra, and let φ : D → C be a state on
D. Define 〈·, ·〉φ : D × D → C by 〈a, b〉φ = φ(a∗b) for all a, b ∈ D. Let ‖·‖2,φ be

the corresponding seminorm on D, given by ‖a‖2,φ = φ(a∗a)1/2. Let HDφ denote
the Hilbert space obtained as the Hausdorff completion of D with respect to the
seminorm ‖·‖2,φ. We denote by ιDφ : D → HDφ the canonical map with dense image.
When D is clear from the context, we will simply write Hφ and ιφ.

We turn to infinite tensor products of Hilbert spaces.
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Definition 2.2. Let H be a Hilbert space, let η ∈ H be a unit vector, and let X
be a discrete set. We define the tensor product

⊗
x∈X
H of H over X (along η) to be

the completion of

span

{⊗
x∈X

ξx : ξx ∈ H, and ξx = η for all but finitely many x ∈ X

}
,

in the norm induced by the pre-inner product given by〈⊗
x∈X

ξx,
⊗
x∈X

ζx

〉
=
∏
x∈X
〈ξx, ζx〉.

(Observe that all but finitely many of the multiplicative factors above are equal to
1, so that the product is indeed well-defined.)

It will be convenient to have a description of an orthonormal basis of an infinite
tensor product of Hilbert spaces.

Lemma 2.3. Let H be a Hilbert space, let η ∈ H be a unit vector, and let X be a
discrete set. Denote by κ the dimension of H. Let {ηn : n ∈ κ} be an orthonormal
basis for H with η0 = η. Set

F = {f : X → κ such that {x ∈ X : f(x) 6= 0} is finite}.
In particular, F contains the function f0 : X → κ that is constantly equal to 0.
Then an element f ∈ F can be canonically identified with the element

⊗
x∈X ηf(x)

of
⊗

x∈X H. In turn, this allows one to identify F with an orthonormal basis for⊗
x∈X H.

We will need infinite (minimal) tensor products of unital C*-algebras. Let D be
a unital C*-algebra, and let X be a countable set. Write Pf (X) for the set of all
finite subsets of X, ordered by inclusion. We define the tensor product

⊗
x∈X D to

be the direct limit of the minimal tensor products
⊗

x∈S D, for S ∈ Pf (X), with the
canonical connecting maps ιS,T :

⊗
x∈S D →

⊗
x∈T D given by ιS,T (d) = d⊗ 1T\S

for d ∈
⊗

x∈S D, whenever S, T ∈ Pf (X) satisfy S ⊆ T . If φ is a state on D, then
the direct limit of the states

⊗
x∈S φ, for S ∈ Pf (X), defines a state on

⊗
x∈X D,

which we denote by
⊗

x∈X φ.
Next, we show that GNS constructions commute with infinite tensor products.

The result is folklore and well-known, and we include a proof for the convenience
of the reader.

Theorem 2.4. Let D be a unital C*-algebra, let X be a discrete set, and let

φ : D → C be a state. Set D̃ =
⊗

x∈X D and φ̃ =
⊗

x∈X φ. Then there is a
canonical unitary

u :
⊗
x∈X
HDφ → HD̃φ̃

determined on a dense subset by

u

(⊗
x∈X

ιφ(ax)

)
= ιφ̃

(⊗
x∈X

ax

)
,

where ax ∈ D for all x ∈ X, and ax = 1D for all but finitely many x ∈ X. (The
tensor product

⊗
x∈X HDφ is taken along η = ιφ(1D) ∈ HDφ .)

Proof. Let x ∈ X and write ψx : D →
⊗

x∈X D = D̃ for the x-th tensor factor

embedding. Since φ = φ̃ ◦ ψx, it follows that ψx induces a Hilbert space isometry
ux : Hφ → Hφ̃ satisfying ux ◦ ιφ = ιφ̃ ◦ ψx.
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Denote by sx : HDφ →
⊗

x∈X HD̃φ the canonical isometry as the x-th tensor factor.
By the universal property of the tensor product, there exists a bounded linear map

u :
⊗

x∈X HDφ → HD̃φ̃ satisfying ux = u ◦ sx for all x ∈ X. It is then easy to check

that u is a unitary, and that it satisfies the identity in the statement. We omit the
details. �

2.2. Generalized Bernoulli shifts. In classical dynamical systems, the Bernoulli
shift is the transformation on the space {0, 1}Z of bi-infinite binary sequences given
by sending (an)n∈Z to the shifted sequence (an+1)n∈Z; see [30, 27]. More generally,
one can replace {0, 1} with an arbitrary finite alphabet or a compact space T
(which is called the base or state space), in which case one considers the space
TZ endowed with the product topology. Even more generally, one can replace Z
with an arbitrary discrete group G, which then naturally acts on TG by setting
g · (th)h∈G = (tgh)h∈G.

A generalized Bernoulli shift is defined by replacing the left translation action
Gy G with an arbitrary action of G on a set X, that is, a homomorphism σ : G→
Perm(X) into the group Perm(X) of permutations of X. We usually abbreviate
this to G yσ X, and when the action σ is clear from the context, we write g · x
instead of σg(x) for g ∈ G and x ∈ X. These notions admit natural generalizations
to noncommutative C*-algebras, which we proceed to define.

For a C*-algebra D and a state φ on it, we say that an action α : G → Aut(D)
is φ-preserving, or that φ is α-invariant, if φ ◦ αg = φ for all g ∈ G.

Definition 2.5. Let G be a countable group, let X be a countable set, and let
Gyσ X be an action. Endow X with the counting measure, and let D be a unital
C*-algebra.

(1) The unitary representation associated with σ is the unitary representation
uσ : G→ U(`2(X)) given by (uσ)g(δx) = δg·x for all g ∈ G and all x ∈ X.

(2) The generalized Bernoulli shift associated with σ is the action βσ,D : G →
Aut (⊗x∈XD) given by permuting the tensor factors according to Gyσ X.

Notation 2.6. Let G be a discrete group. We will denote by LtG the action of
left translation G y G, so that uLtG is the left regular representation λG : G →
U(`2(G)). Similarly, if H is a subgroup of G, we will denote by LtG/H the canonical
action Gy G/H by left translation of left cosets, so that uLtG/H is the quasiregular

representation λG/H : G→ U(`2(G/H)) from Definition 1.1.

We will also need the Koopman construction, which is a way of obtaining unitary
representations from group actions. In measurable dynamics, an invertible measure-
preserving transformation T of the standard probability space (X,µ) gives rise to
a unitary operator UT on L2(X,µ), called Koopman operator, defined by UT (f) =
f ◦ T−1 for f ∈ L2(X,µ); see [23]. Thus, a measure-preserving action α : G →
Aut(X,µ) induces a unitary representation κ(α) : G → U(L2(X,µ)), called the
Koopman representation associated to α, which is given by κ(α)g = Uαg for all
g ∈ G. In the definition below, we recall its natural noncommutative analogue.

Definition 2.7. Let G be a countable group, let (D,φ) be a unital C*-algebra with
a state φ, and let α be a φ-preserving action of G on D.

• The Koopman representation of α (with respect to φ) is the unitary rep-
resentation κφ(α) : G → U(HDφ ) determined by κφ(α)g(ιφ(a)) = ιφ(αg(a))
for all g ∈ G and all a ∈ D.

• The reduced Koopman representation of α (with respect to φ), denoted by

κ
(0)
φ (α), is the restriction of κφ(α) to the orthogonal complement of ιφ(1D).
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Remark 2.8. In the notation of the definition above, and with 1G denoting the

trivial representation, there is a unitary equivalence κφ(α) ∼= κ
(0)
φ (α)⊕ 1G.

We will need the following easy observation, whose proof is straightforward.

Lemma 2.9. Let G be a countable group, let (A, φA) and (D,φD) be unital C*-
algebras with states, and let α : G → Aut(A) and β : G → Aut(D) be actions
preserving φA and φD, respectively. Then the canonical unitary

u : HAφA ⊗H
D
φD → H

A⊗D
φA⊗φD

determined by u(ιAφA(a) ⊗ ιDφD (d)) = ιA⊗DφA⊗φD (a ⊗ d) for all a ∈ A and d ∈ D,

implements a unitary equivalence between κφA(α)⊗ κφD (β) and κφA⊗φD (α⊗ β).

If Gyσ X and Gyρ Y are actions on countable sets, we let σ×ρ be the action
Gy X × Y defined by

(σ × ρ)g(x, y) = (σg(x), ρg(y))

for g ∈ G, for x ∈ X, and for y ∈ Y . We also let σt ρ be the unique action of G on
the disjoint union X t Y which extends the actions σ and ρ. The disjoint union of
an n-tuple of actions, or even an infinite sequence of actions, is defined similarly.

We proceed to collect some elementary lemmas that will be needed later.

Notation 2.10. Let G be a countable group, let Gyσ X be an action of G on a
countable set X, and let H be a separable Hilbert space with a distinguished unit
vector η. We denote by κHσ : G→ U(

⊗
x∈X H) the unitary representation given by

permuting the tensor factors according to Gyσ X. When H and η are clear from

the context, we simply write κσ. We define κ
(0)
σ to be the restriction of κσ to the

orthogonal complement of η in
⊗

x∈X H.

Remark 2.11. Let G be a countable group, let (D,φ) be a unital C*-algebra
endowed with a state φ, and let G yσ X be an action of G on a countable set X.

Write κσ for κ
HDφ
σ . Then:

(1) The Koopman representation of βσ,D is unitarily equivalent to κσ.

(2) The reduced Koopman representation of βσ,D is unitarily equivalent to κ
(0)
σ .

Lemma 2.12. For n ∈ N, let Gyσn Xn be actions, and let Gyσ X denote their
disjoint union. Let H be a Hilbert space with a distinguished unit vector η.

(1) The representations uσ and
⊕

n∈N uσn are unitarily equivalent.

(2) The representations κHσ and
⊗

n∈N κ
H
σn are unitarily equivalent.

Proof. Set X =
⊔
n∈NXn. Then `2(X) is canonically isometrically isomorphic to⊕

n∈N `
2(Xn), as witnessed by a unitary intertwining the representations uσ and

u⊕
n∈N σn

, which shows (1). Similarly,
⊗

n∈N
⊗

x∈Xn H is canonically isometri-

cally isomorphic to
⊗

x∈X H, as witnessed by a unitary that intertwines κσ and⊗
n∈N κσn . �

Lemma 2.13. For n ∈ N, let Dn be a unital C*-algebra with a state φn, and βn
be a φn-preserving action of G on Dn. Set D =

⊗
n∈NDn and φ =

⊗
n∈N φn, and

let β : G → Aut(D) be the infinite tensor product of the actions βn, for n ∈ N.
Then φ is β-invariant and there is a unitary equivalence

κφ(β) ∼=
⊗
n∈N

κφn(βn).

Proof. It is immediate that φ is β-invariant. It suffices to observe that HDφ is

canonically isometrically isomorphic to
⊗

n∈NH
Dn
φn

, with the tensor product taken
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along the unit vectors ιDnφn (1Dn) ∈ HDnφn , as witnessed by a unitary that intertwines

the representations κφ(β) and
⊗

n∈N κφn(βn). �

2.3. Weak containment of representations. We recall the definition of weak
containment for representations in the sense of Zimmer.

Definition 2.14. Let G be a discrete group, and let µ : G → U(Hµ) and ν : G →
U(Hν) be unitary representations. We say that µ is weakly contained in ν in the
sense of Zimmer, in symbols µ ≺Z ν, if for any ε > 0, for any ξ1, . . . , ξn ∈ Hµ, for
any finite subset F ⊆ G, and for any ε > 0, there exist η1, . . . , ηn ∈ Hν satisfying

|〈µg(ξj), ξk〉 − 〈νg(ηj), ηk〉| < ε

for all g ∈ F and for all j, k = 1, . . . , n.
We say that µ and ν are weakly equivalent in the sense of Zimmer, written

µ ∼Z ν, if µ ≺Z ν and ν ≺Z µ.

We will not be using the standard notion of weak containment, which is weaker.
It is obvious that, when G is countable, µ ≺Z ν if and only if µ′ ≺Z ν for every
separable subrepresentation µ′ of µ.

Below, we present a characterization of weak containment in the sense of Zimmer
that will be convenient for our purposes. We need a short discussion on ultrapowers
of unitary representations first. Let U be a nonprincipal ultrafilter over N and let
H be a Hilbert space. Set

HU = `∞(N,H)/{(ξj)j∈N ∈ `∞(N,H) : lim
j→U
‖ξj‖ = 0}.

The class in HU of a sequence ξ ∈ `∞(N,H) is denoted by [ξ]. Then HU is a Hilbert
space with respect to the inner product given by

〈[ξ], [η]〉 = lim
j→U
〈ξj , ηj〉

for all ξ, η ∈ `∞(N,H). If ν : G → U(H) is a unitary representation of a discrete
group G on H, then there is an induced representation νU : G → U(HU ) given by
νUg ([ξ]) = [(νg(ξj))j∈N] for all g ∈ G and all ξ ∈ `∞(N,H).

Remark 2.15. Adopt the notation from the discussion above. If ν1 and ν2 are
unitary representations, then it is easy to verify that (ν1⊕ν2)U is unitarily equivalent
to νU1 ⊕ νU2 .

For the convenience of the reader, we now recall several well-known properties
of weak containment of representations.

Proposition 2.16. Let G be a countable discrete group, and let µ : G → U(Hµ)
and ν : G → U(Hν) be unitary representations, with Hµ separable. Let U be a
nonprincipal ultrafilter on N. Then the following assertions are equivalent:

(1) µ ≺Z ν;
(2) µ ⊆ νU .

Proof. Both directions follow from general results in model theory for metric struc-
tures [2]. (In this case, the structures are unitary representations of G.) Precisely,
(2) ⇒ (1) follows from  Los’ theorem, while (1) ⇒ (2) follows from countable sat-
uration of ultrapowers; see for example, Sections 2.3 and 4.3 in [8]. We include a
proof for the sake of completeness.

(1) ⇒ (2): Fix an increasing sequence (Fn)n∈N of finite subsets of G such that
F1 contains the unit of G and

⋃
n∈N Fn = G. Fix an increasing sequence (Qn)n∈N

of finite subsets of Q such that
⋃
n∈NQn = Q. Fix also an increasing sequence Hn

of finite subsets of Hµ with dense union such that
∑n
j=1 ajµgj (ξj) belongs to Hn+1

for every n ∈ N, for every g1, . . . , gn ∈ Fn, for every a1, . . . , an ∈ Qn, and for every
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ξ1, . . . , ξn ∈ Hn. Set H =
⋃
n∈NHn. By assumption, for every n ∈ N there exists a

function sn : Hn → Hν such that

|〈µg(ξ), η〉 − 〈νg(sn(ξ)), sn(η)〉| < 2−n

for every ξ, η ∈ Hn and for every g ∈ Fn. Set sn(ξ) = 0 for n ∈ N and ξ ∈ H \Hn.
Let s : H → HUν be determined by letting s(ξ) be the class of (sn(ξ))n∈N, for ξ ∈ Hn.
One checks that s is Q-linear, isometric, and G-equivariant, so it extends to a linear
isometry s : Hµ → HUν satisfying s(µg(ξ)) = νUg (s(ξ)) for every g ∈ G and every
ξ ∈ Hµ.

(2) ⇒ (1): Suppose that s : Hµ → HUν is a linear isometry satisfying s(µg(ξ)) =
νg(s(ξ)) for every g ∈ G and ξ ∈ Hµ. Fix finite subsets F ⊆ G and H ⊆ Hµ, and
fix ε > 0. We need to find elements f(ξ) ∈ Hν , for ξ ∈ H, satisfying

|〈µg(ξ), η〉 − 〈νg(f(ξ)), f(η)〉| < ε

for every ξ, η ∈ H and g ∈ F . For every ξ ∈ Hµ, fix a representative sequence
(sn(ξ))n∈N of s(ξ). By definition of the representation νU on HUν , there exists
n ∈ N such that

|〈νUg (s(ξ)), s(η)〉 − 〈νg(sn(ξ)), sn(η)〉| < ε

for every ξ, η ∈ H and g ∈ F . Since s is an equivariant isometry, it follows that

〈νUg (s(ξ)), s(η)〉 = 〈s(µg(ξ)), s(η)〉 = 〈µg(ξ), η〉

and hence |〈µg(ξ), η〉 − 〈νg(sn(ξ)), sn(η)〉| < ε. The proof is concluded by setting
f = sn. �

Proposition 2.17. Let G be a countable discrete group, and let µ : G → U(Hµ)
and νj : G→ U(Hj), for j = 1, . . . , n, be unitary representations. Assume that µ is
irreducible and finite-dimensional, and that µ ≺Z ν1 ⊕ · · · ⊕ νn. Then there exists
k ∈ {1, . . . , n} such that µ ≺Z νk.

Proof. Let U be any nonprincipal ultrafilter on N. Use Proposition 2.16 to choose
an equivariant isometry s : Hµ → (H1 ⊕ · · · ⊕ Hn)U witnessing the fact that µ ≺Z

ν1 ⊕ · · · ⊕ νn. We identify (H1 ⊕ · · · ⊕ Hn)U equivariantly with HU1 ⊕ · · · ⊕ HUn in
a canonical way via Remark 2.15. For j = 1, . . . , n, we denote by sj : Hµ → HUj
the composition of s with the canonical projection onto HUj . Since s is nonzero,
there exists k ∈ {1, . . . , n} such that sk is nonzero. Since µ is irreducible and
finite-dimensional, by Schur’s lemma sk is a scalar multiple of an isometry. This
concludes the proof. �

Lemma 2.18. Let G be a discrete group, and let µ : G → U(Hµ) and ν : G →
U(Hν) be unitary representations. Let πµ : C∗(G) → B(Hµ) and πν : C∗(G) →
B(Hν) denote the canonical unital homomorphisms induced by µ and ν, respec-
tively. If µ ≺Z ν, then ker(πν) ⊆ ker(πµ).

Proof. Let x ∈ ker(πν) be a positive contraction. We need to show that πµ(x) = 0.
Fix ε > 0 and a unit vector ξ of Hµ. For g ∈ G, we denote by ug ∈ C∗(G) the
canonical unitary associated to g. Find a finite subset F ⊆ G and scalars ag ∈ C,
for g ∈ F , such that y =

∑
g∈F agug is a contraction with ‖x− y‖ < ε.
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Fix δ > 0 such that
∑
g∈F |ag|δ < ε. Since µ ≺Z ν, we can find a unit vector

η ∈ Hν such that |〈µg(ξ), ξ〉 − 〈νg(η), η〉| < δ for g ∈ F . Thus,

〈πµ(x)ξ, ξ〉 ≤

∣∣∣∣∣∣
∑
g∈F

ag〈µg(ξ), ξ〉

∣∣∣∣∣∣+ ε

≤

∣∣∣∣∣∣
∑
g∈F

ag〈νg(η), η〉

∣∣∣∣∣∣+
∑
g∈F
|ag|δ + ε

= |〈πν(y)η, η〉|+ 2ε ≤ ‖πν(y)‖+ 2ε < 3ε.

This concludes the proof. �

Lemma 2.19. Let G be a discrete group admitting a finite-dimensional represen-
tation µ such that µ ≺Z

⊕
n∈N λG. Then G is amenable.

Proof. Denote by µ̄ and λ̄G the conjugate representations of µ and λG, respectively.
Then the assumption implies that µ ⊗ µ̄ ≺Z

⊕
n∈N λG ⊗ λ̄G. Since µ is finite-

dimensional, the trivial representation 1G of G is contained in µ ⊗ µ. Therefore
1G ≺Z

⊕
n∈N λG ⊗ λ̄G. Hence G is amenable by [1, Theorem 5.1]. �

2.4. Koopman representations of generalized Bernoulli shifts. Let D be a
unital, separable C*-algebra and let U be a nonprincipal ultrafilter over N which
is fixed throughout. We denote by DU the C*-algebra ultrapower of D, and we
identify D with its image inside DU under the diagonal embedding. With a slight
abuse of notation, we denote by [an] the element of DU with representative sequence
(an)n∈N. We letDU = D′∩DU be the relative commutant ofD inside the ultrapower
(also called the U-central sequence algebra). A state φ on D extends to a state φU

on DU , and we let φU denote its restriction to DU . If G is a discrete group,
and α is an action of G on D, then α induces actions αU : G → Aut(DU ) and
αU : G→ Aut(DU ).

Remark 2.20. Adopt the notation from the discussion above. Then there is
a canonical linear isometry s : HDUφU → (HDφ )U , determined by s(ιDUφU ([an])) =

[ιDφ (an)]. Moreover, if φ is α-invariant, then s intertwines κ
(0)
φU

(αU ) and (κ
(0)
φ (α))U .

If HDφ is separable, then it follows from Proposition 2.16 that κ
(0)
φU

(αU ) ≺Z κ
(0)
φ (α).

Many properties of C*-algebras are defined or characterized in terms of realizing
certain configurations in the central sequence algebra. Examples of such proper-
ties include tensorial absorption of a given strongly self-absorbing C*-algebra ([37,
Theorem 2.2]) or G-C*-algebra ([35, Theorem 3.7]), as well as the Rokhlin property
for compact group actions ([18, Definition 3.2], [12, Definition 2.3]), and some of
its variations. The property we consider in the following definition is defined in
terms of (weakly) realizing a certain configuration in the GNS representation of
the central sequence algebra with respect to a given invariant state.

Definition 2.21. Let G be a countable group, let D be a unital, separable C*-
algebra, let φ be a state on D, and let µ : G→ U(Hµ) be a unitary representation.
An action α : G → Aut(D) is said to commutant weakly contain µ with respect to

φ, if φU is αU -invariant and µ ≺Z κ
(0)
φU

(αU ).

The terminology in Definition 2.21 is chosen for consistency with the notion of
commutant positive weak containment for actions on C*-algebras, which was defined
in Section 3.2 of [17]. We briefly recall this notion, and show in Proposition 2.22 how
it relates to Definition 2.21. Recall that U denotes a fixed nonprincipal ultrafilter
on N. For a discrete group G and actions α : G→ Aut(A) and β : G→ Aut(B) on
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unital C*-algebras A and B, we say that β is commutant positively weakly contained
in α, if there is a unital, equivariant, injective homomorphism (B, β)→ (AU , αU )

Proposition 2.22. Let G be a discrete group, let A and D be unital, separable
C*-algebras, and suppose that D has a unique trace τD. Let τ be a trace on A
such that τU is αU -invariant, and suppose that β is commutant positively weakly

contained in α. Then α comutant weakly contains κ
(0)
τD (β) with respect to τ .

Proof. Let ϕ : (D,β) → (AU , αU ) be a unital, equivariant homomorphism. Since
τD is the unique trace on D, we have τD = τU ◦ ϕ. Therefore, ϕ induces a linear
isometry s : HDτD → H

AU
τU which is determined by s(ιDτD (d)) = ιAUτU (ϕ(d)) for all

d ∈ D. Since ϕ is equivariant, it follows that s intertwines κτD (β) and κτU (αU ).

Since s(ιDτD (1D)) = ιAUτU (1A), we deduce that κ
(0)
τD (β) ⊆ κ(0)

τU (αU ). We conclude that

κ
(0)
τD (β) is commutant weakly contained in α with respect to τ . �

Next, we use generalized Bernoulli shifts to construct examples of actions that
commutant weakly contain the representation uσ associated to an action Gyσ X
as in Definition 2.5.

Proposition 2.23. Let G be a countable group, let D be a unital, separable C*-
algebra, and let φ be a state on D that is not a character. Let Gyσ X be an action

on a countable set X satisfying σ ∼= idN × σ. Set D̃ =
⊗

n∈ND and φ̃ =
⊗

n∈N φ.

(1) The action βσ,D : G→ Aut(D̃) commutant weakly contains uσ with respect

to the invariant state φ̃.
(2) Let α : G → Aut(A) be any action on a separable, unital C∗-algebra A,

and let ψ be an α-invariant state on A. Then α⊗ βσ,D commutant weakly

contains uσ with respect to ψ ⊗ φ̃.

Proof. (1) Using that σ ∼= idN × σ, we identify D̃ with
⊗

N×X D, and φ̃ with⊗
N×X φ, and will show that the action βidN×σ,D of G on D̃ commutant weakly

contains uσ with respect to φ̃. Note that φ̃ is βidN×σ,D-invariant, and hence φ̃U is
(βidN×σ,D)U -invariant. By Choi’s multiplicative domain theorem (see, for example,
Theorem 3.18 in [31]), there exists a positive contraction d0 ∈ D such that φ(d2

0) >
φ(d0)2. Set

d =
1√

φ(d2
0)− φ(d0)2

(d0 − φ(d0)1D) ∈ D,

and observe that

(2.1) φ(d) = 0 and φ(d∗d) = 1.

For n ∈ N and x ∈ X, denote by j
(n)
x : D → D̃ the canonical embedding into the

(n, x)-th tensor factor, and set d
(n)
x = j

(n)
x (d) ∈ D̃. Given x ∈ X, consider the

sequence (d
(n)
x )n∈N in D̃, and let dx ∈ D̃U denote the induced equivalence class in

the sequence algebra.

Fix x ∈ X. We claim that dx belongs to the relative commutant D̃U = D̃′ ∩ D̃U .

To this end, fix y ∈ X, m ∈ N and c ∈ D, and set c
(m)
y = j

(m)
y (c) ∈ D̃. Then

‖c(m)
y dx − dxc(m)

y ‖ = lim
n→U

‖c(m)
y d(n)

x − d(n)
x c(m)

y ‖.

Note that d
(n)
x = j

(n)
x (d) and c

(m)
y = j

(m)
y (c) are commuting elements of D̃ whenever

n > m. Since U is nonprincipal, we have{
n ∈ N : ‖c(m)

y d(n)
x − d(n)

x c(m)
y ‖ = 0

}
∈ U
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and hence

‖c(m)
y dx − dxc(m)

y ‖ = lim
n→U

‖c(m)
y d(n)

x − d(n)
x c(m)

y ‖ = 0.

It follows that dx commutes with c
(m)
y . Since elements of the form c

(m)
y , for c ∈ D,

y ∈ X and m ∈ N, generate D̃ as a C*-algebra, the claim follows.
Using the notation introduced in Definition 2.1, define a bounded linear map

s : `2(X) → HD̃U
φ̃U

by setting s(δx) = ιD̃U
φ̃U

(dx) for all x ∈ X. We will show that s

implements a containment of uσ into the reduced Koopman representation of the

action on D̃U = D̃′ ∩ D̃U induced by βidN×σ,D, with respect to φ̃U .
First, we show that s is an isometry. Given x ∈ X, we have

〈s(δx), s(δx)〉 =
〈
ιD̃U
φ̃U

(dx), ιD̃U
φ̃U

(dx)
〉

= φ̃U (d∗xdx)

= lim
n→U

φ̃((d(n)
x )∗d(n)

x )

= lim
n→U

φ̃(j(n)
x (d)∗j(n)

x (d))

= lim
n→U

φ̃(j(n)
x (d∗d))

= φ(d∗d)
(2.1)
= 1.

On the other hand, for x, y ∈ X with x 6= y, we have

〈s(δx), s(δy)〉 =
〈
ιD̃U
φ̃U

(dx), ιD̃U
φ̃U

(ay)
〉

= φ̃U (d∗xay)

= lim
n→U

φ̃((d(n)
x )∗a(n)

y )

= lim
n→U

φ̃(j(n)
x (d)∗j(n)

y (d))

= lim
n→U

φ̃(j(n)
x (d∗))φ̃(j(n)

y (d))

= φ(d∗)φ(d)
(2.1)
= 0.

In particular, s is an isometry. Moreover, for x ∈ X we have〈
ιD̃U
φ̃U

(1D̃U ), s(δx)
〉

=
〈
ιD̃U
φ̃U

(1D̃U ), ιD̃U
φ̃U

(dx)
〉

= φ̃U (dx) = lim
n→U

φ̃(d(n)
x )

= lim
n→U

φ̃(j(n)
x (d)) = φ(d)

(2.1)
= 0.

Thus, s maps `2(X) to the orthogonal complement of ιD̃U
φ̃U

(1D̃U ) inside HD̃U
φ̃U

. We

now check equivariance of s. Fix g ∈ G and x ∈ X. Using that (βidN×σ,D)g ◦ j(n)
x =

j
(n)
g·x , one readily checks that

(2.2) ((βidN×σ,D)U )g(dx) = dg·x.

Using the definition of the Koopman representation κ
(0)

φ̃U
((βidN×σ,D)U ) from Defini-

tion 2.7 at the second step; using the definition of s at the fourth step; and using
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Definition 2.5 at the last step, we get

κ
(0)

φ̃U
((βidN×σ,D)U )g(s(δx)) = κφ̃U ((βidN×σ,D)U )g(ι

D̃U
φ̃U

(dx))

= ιD̃U
φ̃U

(((βidN×σ,D)U )g(dx))

(2.2)
= ιD̃U

φ̃U
(dg·x) = s(δg·x) = s(uσ(δx)).

It follows that s intertwines uσ and κ
(0)

φ̃U
((βidN×σ,D)U ). We have shown that uσ ⊆

κ
(0)

φ̃U
((βidN×σ,D)U ), and in particular uσ ≺Z κ

(0)

φ̃U
((βidN×σ,D)U ), as desired.

(2) Let α : G → Aut(A) be an action on a separable, unital C*-algebra A, and

let ψ be an α-invariant state on A. Since ψ⊗ φ̃ is α⊗ βidN×σ,D-invariant, the state

(ψ ⊗ φ̃)U is (α⊗ βidN×σ,D)U -invariant.

We keep the notation for the elements d
(n)
x ∈ D̃, for x ∈ X and n ∈ N, from

part (1). For x ∈ X and n ∈ N, we set a
(n)
x = 1A ⊗ d

(n)
x ∈ A ⊗ D̃, and let

ax ∈ (A⊗ D̃)U denote the equivalence class determined by the sequence (a
(n)
x )n∈N.

The same proof as above shows that ax belongs to the commutant (A ⊗ D̃)U of

A⊗ D̃ inside (A⊗ D̃)U .

As above, one defines a bounded linear operator t : `2(X)→ H(A⊗D̃)U

(ψ⊗φ̃)U
by setting

t(δx) = ι
(A⊗D̃)U

(ψ⊗φ̃)U
(ax) for all x ∈ X. Then t is a linear isometry whose range is

contained in the orthogonal complement of ι
(A⊗D̃)U

(ψ⊗φ̃)U
(1(A⊗D̃)U

). Furthermore, the

same computation as above shows that t intertwines uσ and the reduced Koopman

representation κ
(0)

(ψ⊗φ̃)U
((α ⊗ βidN×σ,D)U ). This shows that there is a containment

uσ ⊆ κ(0)

(ψ⊗φ̃)U
((α⊗ βidN×σ,D)U ) and, in particular,

uσ ≺Z κ
(0)

(ψ⊗φ̃)U
((α⊗ βidN×σ,D)U ).

We conclude that uσ is commutant weakly contained in α⊗ βidN×σ,D with respect

to ψ ⊗ φ̃, as desired. �

The following definition is standard.

Definition 2.24. Let G be a discrete group, and let α : G→ Aut(A) and β : G→
Aut(B) be actions of G on unital C*-algebras A and B. We say that α and β
are cocycle conjugate if there exist an isomorphism θ : B → A and a function
u : G→ U(A) satisfying

ugh = ugαg(uh) and βg = θ−1 ◦ (Ad(ug) ◦ αg) ◦ θ

for all g, h ∈ G. The function u is called an α-cocycle.

Let α, β : G → Aut(D) be actions of a discrete group G on a unital C*-algebra
D. If α and β are cocycle conjugate, there is in general no relationship between
κ(α) and κ(β), even if they both preserve the same tracial state. This can be
seen, for example, by letting α : Z2 → Aut(M2) be the trivial action, and β : Z2 →

Aut(M2) be the inner action determined by the order two unitary

(
0 1
1 0

)
. (In

this case, with respect to the unique tracial state, κ(α) is conjugate to
⊕4

j=1 1Z2
,

while κ(β) is conjugate to
⊕2

j=1 λZ2 .) In particular, if κ(α) contains a given unitary

representation, we cannot conclude that so does κ(β).
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Lemma 2.25. Let G be a discrete group, and let α : G → Aut(A) and β : G →
Aut(B) be actions of G on unital C*-algebras A and B. Assume that α and β are
cocycle conjugate, and let θ : B → A and u : G → U(A) be as in Definition 2.24.
Let φ be a state on A, and set ψ = φ ◦ θ.

(1) αU is conjugate to βU via θU .

(2) If φU is αU -invariant, then ψU is βU -invariant and κ
(0)
φU

(αU ) ∼= κ
(0)
ψU

(βU ).

(3) Let µ : G → U(H) be a unitary representation. If α commutant weakly
contains µ with respect to φ, then β commutant weakly contains µ with
respect to ψ.

(4) If φ is tracial and α-invariant, then ψ is tracial and β-invariant.

Proof. (1) Let g ∈ G. Note that Ad(ug) induces the trivial automorphism on AU .
Then

θU ◦ βU,g = θU ◦ (θ−1 ◦Ad(ug) ◦ αg ◦ θ)U
= θU ◦ θ−1

U ◦ (Ad(ug))U ◦ αU,g ◦ θU
= θU ◦ θ−1

U ◦ αU,g ◦ θU
= αU,g ◦ θU ,

as desired.
(2) Since φU is αU -invariant, we have

ψU ◦ βU,g = φU ◦ θU ◦ βU,g = φU ◦ αU,g ◦ θU = φU ◦ θU = ψU

for all g ∈ G. Thus, ψU is β-invariant. Moreover, since αU and βU are conjugate
via θU and ψU ◦θU = φU , it follows that θU induces a unitary operator HBUψU → H

AU
φU

that intertwines κ
(0)
ψU

(βU ) and κ
(0)
φU

(αU ).

(3) This follows directly from (2) in view of Definition 2.21.
(4) If φ is tracial and α-invariant, then clearly ψ is tracial as well. Furthermore,

ψ ◦ βg = φ ◦Ad(ug) ◦ αg ◦ θ = φ ◦ αg ◦ θ = φ ◦ θ = ψ

for all g ∈ G. Thus, ψ is β-invariant. �

3. Actions induced by finite subquotients

In this section, we specialize the discussion to Bernoulli shifts associated with
a particular class of actions on countable sets which are constructed from quasi-
regular representations (see Definition 1.1). If H is a subgroup of a discrete group
F , then the quasiregular representation λF/H induces a unital homomorphism

πH : C∗(F ) → B(`2(F/H)), by universality of C∗(F ). When H is normal in F ,
then the image of πH is C∗r (F/H).

Definition 3.1. Let F be a discrete group, let P ⊆ N be a set of pairwise coprime
numbers. A family {Hp}p∈P of subgroups of F is said to be separated if it satisfies
the following properties:

(S.1) Hp has index p in F for every p ∈ P, and
(S.2) for p ∈ P and Q ⊆ P, if

⋂
q∈Q

ker(πHq ) ⊆ ker(πHp), then p ∈ Q.

We say that F is separated over P if it contains a separated family of subgroups
indexed over P. Finally, we say that F is infinitely separated if it is separated over
an infinite set P of pairwise coprime numbers.

We do not require the subgroups Hp in the definition above to be normal. Our
standard example of an infinitely separated group is F∞, as we show next.

Lemma 3.2. The free group F∞ is infinitely separated.
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Proof. Let {xn : n ∈ N} be free generators of F∞, and let P ⊆ N denote the set of
prime numbers. For p ∈ P, let Hp be the normal subgroup generated by

{x1, . . . , xp−1, x
p
p, xp+1, . . .} ⊆ F∞.

It is clear that F∞/Hp
∼= Z/pZ, so property (S.1) is satisfied.

We proceed to check property (S.2). For p ∈ P, the quotient map

πHp : C∗(F∞)→ C∗(Z/pZ) ∼= Cp

can be described as follows. We identify F∞ with its image inside the unitary
group of C∗(F∞). We also identify C∗(F∞) with the full free product ∗∞n=1C(S1)
amalgamated over C, by regarding xn ∈ F∞ as the canonical generator of the n-th
free factor C(S1). Given f ∈ C(S1) and n ∈ N, set f (n) = 1 ∗ · · · ∗ f ∗ 1 · · · ∈
∗∞n=1C(S1), where the nontrivial entry is in the n-th position. Then

πHp(f (n)) =

{
(f(1), . . . , f(1)), if n 6= p

(f(1), f(e2πi/p), . . . , f(e2πi(p−1)/p)) if n = p.

Now fix p ∈ P and Q ⊆ P and suppose that p /∈ Q. Let f ∈ C(S1) be any function
satisfying f(1) = 0 and f(e2πi/p) 6= 0. Then f (p) belongs to ker(πHq ) for all q ∈ Q,
but not to ker(πHp). Thus (S.2) is satisfied as well. �

Notation 3.3. Let G be a discrete group, let F be a subgroup, let P be a set
of pairwise coprime natural numbers, and suppose that F is separated over P, as
witnessed by a family {Hp}p∈P as in Definition 3.1.

Given p ∈ P, we establish the following notations:

• we write Gp = G/Hp and Fp = F/Hp for the left coset spaces;
• we write G yLtGp Gp and F yLtFp Fp for the canonical left translation

actions; see Notation 2.6.

Definition 3.4. Let G be a discrete group, let F be a subgroup, let P be a set
of pairwise coprime natural numbers, and suppose that F is separated over P, as
witnessed by a family {Hp}p∈P as in Definition 3.1.

For a (possibly empty) subset P ⊆ P, set

XP
G =

⊔
n∈N

G t
⊔
n∈N

⊔
p∈P

Gp and XP
F =

⊔
n∈N

F t
⊔
n∈N

⊔
p∈P

Fp,

and define actions GyσPG XP
G and F yσPF XP

F as follows:

• σPG acts on each copy of G via LtG, and on each copy of Gp via LtGp ;

• σPF acts on each copy of F via LtF , and on each copy of Fp via LtFp .

We isolate one example in the definition above, which will be needed in the proof
of Theorem 4.4.

Example 3.5. Adopt the assumptions and notation from Definition 3.4, and as-
sume that G is at most countable. Let P = ∅ be the empty set. Then X∅G = N×G
and σ∅G = idN×LtG. For a unital, separable C*-algebra D, consider the generalized
Bernoulli shifts

βσ∅G,D
: G→ Aut(⊗(n,g)∈N×GD) and βLtG,D : G→ Aut(⊗g∈GD).

Then βσ∅G,D
can be naturally identified with

⊗
n∈N βLtG,D. Set D̃ =

⊗
n∈ND. Then

a rearranging of the tensor factors shows that
⊗

n∈N βLtG,D is conjugate to β
LtG,D̃

,

and thus

(3.1) βσ∅G,D
∼= β

LtG,D̃
.

For later use, we identify the restriction of σPG to F with an amplification of σPF .
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Lemma 3.6. Let the notation be as in Definition 3.4. Then the restriction LtG|F
of LtG to F is conjugate to idG/F ×LtF . Similarly, for p ∈ P, the restriction LtGp |F
is conjugate to idG/F × LtFp .

Proof. Choose a section t : G/F → G for the canonical quotient map, that is, a
function satisfying tgF ∈ gF for all g ∈ G. Let f : G → G/F × F be given by
f(g) = (g−1F, gtg−1F ) for all g ∈ G. Then f is a bijection.

We claim that f implements a conjugacy between LtG|F and idG/F×LtF . Given
k ∈ F and g ∈ G, we have

f((LtG)k(g) = f(kg)

= (g−1k−1F, kgtg−1k−1F )

= (g−1F, kgtg−1F )

= (idG/F × LtF )k(f(g)).

This concludes the proof that LtG|F is conjugate to idG/F × LtF .
The proof that LtGp |F is conjugate to idG/F ×LtFp is completely analogous, and

is left to the reader. �

Recall the notation uσ from Definition 2.5.

Corollary 3.7. Let G be a discrete group, let F be a subgroup, let P be a set
of pairwise coprime natural numbers, and suppose that F is separated over P, as
witnessed by a family {Hp}p∈P as in Definition 3.1. Let P ⊆ P be a subset, and
use the notation introduced in Definition 3.4. Then

uσPG |F
∼=
⊕
n∈N

λF ⊕
⊕
n∈N

⊕
p∈P

λFp .

In particular, if P is nonempty, then 1G ⊆ uσPG |F .

Proof. The first assertion follows immediately from Lemma 3.6 and part (1) of
Lemma 2.12. If P is nonempty and p ∈ P , then 1G ⊆ λFp by Lemma 1.3, and
hence 1G ⊆ uσPG |F by the first part. �

Recall the notation κHσ from Notation 2.10.

Lemma 3.8. Let G be a discrete group, let F be a subgroup, let P be a set of
pairwise coprime natural numbers, and suppose that F is separated over P, as
witnessed by a family {Hp}p∈P as in Definition 3.1.

Let (H, η) be a separable Hilbert space with a distinguished unit vector, let
P ⊆ P be a (possibly empty) subset, and let σPG be as in Definition 3.4. Following
Notation 2.10, we abbreviate κH

σPG
to simply κσPG . Then

κ
(0)

σPG
|F ⊆ uσPG |F .

Proof. We begin by providing an alternative description of the restriction κ
(0)

σPG
|F of

κ
(0)

σPG
to F . Find an orthonormal basis {ηn : n ∈ N} of H with η0 = η, and set

F = {ξ : XP
G → N : {x ∈ XP

G : ξ(x) 6= 0} is finite}.
In particular, F contains the function ξ0 which is constantly equal to 0. By
Lemma 2.3, we can identify F with an orthonormal basis for

⊗
x∈XPG

H. Moreover,

such an orthonormal basis of
⊗

x∈XPG
H is invariant under the unitary representa-

tion κσPG |F . Thus, the unitary representation κσPG |F induces a (set-theoretic) action

of F on the countable set F , which is easily seen to be given by

(κσPG )g(ξ) = ξ ◦ (σPG)g−1
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for all g ∈ F and all ξ ∈ F . Observe that ξ0 is fixed by this action.
We set F0 = F \ {ξ0} and H(0) = spanF0. Then H(0) is the orthogonal com-

plement of ξ0 in
⊗

x∈XPG
H, and F0 is an orthonormal basis for H(0). Moreover,

the set F0 (and hence also the subspace H(0)) is invariant under κσPG |F , and the

restriction of κσPG |F to H(0) is κ
(0)

σPG
|F .

For ξ ∈ F0, we let [ξ] denote its F -orbit

[ξ] = {(κσPG )g(ξ) : g ∈ F}.

We denote by G0 the F -orbit space {[ξ] : ξ ∈ F0} of the action κσPG |F of F on F0.

For ξ ∈ F0, we write StabF (ξ) for the stabilizer subgroup {g ∈ F : (κσPG )g(ξ) = ξ}
of F . Since each F -orbit [ξ] is F -invariant and F acts transitively on [ξ], it is easy
to see that

(3.2) κ
(0)

σPG
|F ∼=

⊕
[ξ]∈G0

λF/StabF (ξ).

Fix ξ ∈ F0. Then supp(ξ) = {x ∈ XP
G : ξ(x) 6= 0} is finite and nonempty.

Claim: If supp(ξ) meets one of the copies of G in XP
G , then λF/StabF (ξ) is

unitarily contained in λF .
Proof of the claim. Let h1, . . . , hn be the elements of such a copy of G that belong

to supp(ξ). Note that if g ∈ StabF (ξ), then supp(ξ) is invariant under (σPG)g. In
particular, this implies that gh1 ∈ {h1, . . . , hn} and hence there exists j ∈ {1, . . . , n}
with g = hjh

−1
1 . This shows that StabF (ξ) is finite. (In fact, the same argument

shows that StabG(ξ) is finite.) Thus λF/StabF (ξ) ⊆ λF by Lemma 1.3, as desired.

Claim: If supp(ξ) does not meet any of the copies of G in XP
G , then λF/StabF (ξ)

is unitarily contained in
⊕

p∈P λFp .

Proof of the claim. Since supp(ξ) is finite, the set

Pξ = {p ∈ P : supp(ξ) meets some copy of Gp inside XP
G}

is also finite. Let p1, . . . , pn be an enumeration of Pξ. Set H = Hp1 ∩ · · · ∩ Hpn .
Since Hp is a subgroup of F for every p ∈ P, we deduce that H ⊆ F . We proceed
to show that H is contained in StabF (ξ). For this, let g ∈ H. We need to show
that (κσPG )g(ξ) = ξ or, equivalently, that ξ ◦ (σPG)g−1 = ξ. Fix x ∈ XP

G .

If x belongs to some copy of G, then the same is true for (σPG)g−1(x). In this

case, ξ((σPG)g−1(x)) = ξ(x) = 0, since supp(ξ) does not meet any copy of G in XP
G .

If x belongs to some copy of Gq, for q ∈ P, then the same is true for (σPG)g−1(x).

If Gq does not meet supp(ξ), then ξ((σPG)g−1(x)) = ξ(x) = 0. Finally, sup-
pose that Gq does meet supp(ξ). Then q belongs to Pξ, and hence H ⊆ Hq.
Therefore (σPG)g−1(x) = x since x ∈ Gq = G/Hq, g ∈ Hq, and σPG restricted to

G/Hq is the canonical left translation action. Since (σPG)g−1(x) = x, we also have

ξ((σPG)g−1(x)) = ξ(x). This concludes the proof that ξ ◦ (σPG)g−1 = ξ, and hence
(κσPG )g(ξ) = ξ. We deduce that H ⊆ StabF (ξ).

Since Hp1 , . . . ,Hpn have finite index in G, the same is true for H by Lemma 1.2.
Applying Lemma 1.3 with S = StabF (ξ) at the first step; and applying part (2) of
Lemma 1.2 at the second step together with property (S.1) in Definition 3.1, we
get

λF/StabF (ξ) ⊆ λF/H ∼= λFp1 ⊕ · · · ⊕ λFpn ⊆
⊕
p∈P

λFp .

This concludes the proof of the claim.
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As a consequence of the previous two claims, we have

(3.3)
⊕

[ξ]∈G0

λF/StabF (ξ) ⊆
⊕
n∈N

λF ⊕
⊕
n∈N

⊕
p∈P

λFp .

Finally, using Corollary 3.7 at the third step, we conclude that

κ
(0)

σPG
|F

(3.2)∼=
⊕

[ξ]∈G0

λF/StabF (ξ)

(3.3)

⊆
⊕
n∈N

λF ⊕
⊕
n∈N

⊕
p∈P

λFp
∼= uσPG |F . �

Note that only condition (S.1) from Definition 3.1 was used in the preceding
proof. On the other hand, condition (S.2) will be crucial in the proof of Lemma 3.10.

We define the following order on representations, in terms of weak containment.

Definition 3.9. Let G be a discrete group, and let µ : G → U(Hµ) and ν : G →
U(Hν) be unitary representations. We set µ ≺fin ν if for every finite-dimensional
irreducible subrepresentation π of µ, one has that π ≺Z ν. Moreover, we set µ ∼fin ν
if µ ≺fin ν and ν ≺fin µ.

Lemma 3.10. Let G be a discrete group, let F be a nonamenable subgroup, let P
be a set of pairwise coprime natural numbers, and suppose that F is separated over
P, as witnessed by a family {Hp}p∈P as in Definition 3.1. Let P,Q ⊆ P satisfy
uσPG |F ≺fin uσQG

|F . Then P ⊆ Q.

Proof. By Corollary 3.7, there are unitary equivalences

uσPG |F
∼=
⊕
n∈N

λF ⊕
⊕
n∈N

⊕
p∈P

λFp and uσQG
|F ∼=

⊕
n∈N

λF ⊕
⊕
n∈N

⊕
q∈Q

λFq .

Fix p ∈ P . We will show that p ∈ Q. If µ ⊆ λFp is irreducible and (auto-
matically) finite-dimensional, then µ ≺Z uσQG

|F . Since F is nonamenable and µ

is finite-dimensional, by Lemma 2.19 we cannot have µ ≺Z

⊕
n∈N λF . Therefore

µ ≺Z

⊕
n∈N

⊕
q∈Q λFq by Proposition 2.17. Since this applies to every irreducible

subrepresentation of λFp , and λFp (being finite-dimensional) is equivalent to the
direct sum of its irreducible subrepresentations, it follows that

(3.4) λFp ≺Z

⊕
n∈N

⊕
q∈Q

λFq .

As in Definition 3.1, we let πHp : C∗(F ) → B(`2(Fp)) be the unital homomor-
phism induced by the representation λFp of F . Similarly, we let πHq : C∗(F ) →
B(`2(Fq)), for q ∈ Q, be the unital homomorphism induced by the representation
λFq of F . Combining Lemma 2.18 with (3.4) at the second step, we get

⋂
q∈Q

ker(πHq ) = ker

⊕
n∈N

⊕
q∈Q

πHq

 ⊆ ker(πHp).

By property (S.2) in Definition 3.1, we conclude that p ∈ Q. Since p ∈ P is
arbitrary, this shows that P ⊆ Q. �

Corollary 3.11. Let the assumptions be as in the preceding lemma. For subsets
P,Q ⊆ P, the following assertions are equivalent:

(1) P = Q;
(2) uσPG

∼= uσQG
;

(3) uσPG |F ∼Z uσQG
|F ;

(4) uσPG |F ∼fin uσQG
|F .

Proof. The implications (1)⇒ (2)⇒ (3)⇒ (4) are immediate, while the implication
(4)⇒(1) is a consequence of Lemma 3.10. �
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The following lemma is well known; see for example [28, Lemma 1.1]. Recall
that we denote by ⊗ the minimal tensor product of C*-algebras.

Lemma 3.12. Let A and D be unital C*-algebras, and let τ be a tracial state on
A⊗D. Let τD be the tracial state on D given by τD(d) = τ(1⊗ d) for d ∈ D, and
define τA similarly. If τD is an extreme tracial state of D, then τ = τA ⊗ τD.

Proof. Fix a positive contraction a ∈ A. It suffices to show that τ(a ⊗ d) =
τA(a)τD(d) for all d ∈ D.

If τ(a⊗ 1) = 0 then τ(a⊗ d) = 0 for every d ∈ D, since a⊗ d ≤ a⊗ (‖d‖1) and
τ is order-preserving. We deduce that

τ(a⊗ d) = 0 = τ(a⊗ 1)τ(1⊗ d) = τA(a)τD(d)

for every d ∈ D, as desired.
Assume now that τ(a⊗ 1) > 0. Define f0, f1 : D → C by

f0(d) = τ(a⊗ d) and f1(d) = τ((1− a)⊗ d).

for all d ∈ D. Then f0 and f1 are positive tracial linear functionals on D satisfying
τD = f0 +f1. Since τD is an extreme tracial state on D and f0 is not zero, we must
have τD = f0/f0(1). Therefore

τA(a)τD(d) = f0(1)τD(d) = f0(d) = τ(a⊗ d),

for all d ∈ D, as desired. This finishes the proof �

In the following lemma, we will use the conventions introduced in Notation 2.10.
We denote by 1∞G the trivial representation of G on `2(N).

Lemma 3.13. Let G be a countable discrete group, let A and D be tracial, sepa-
rable, unital C*-algebras, and assume that D has a unique tracial state τD which
is not a character. Let Gyσ X and Gyρ Y be actions of G on countable discrete
spaces X and Y . Suppose that the actions idA ⊗ βσ,D and idA ⊗ βρ,D are cocycle

conjugate. Then uσ ≺Z 1∞G ⊗ κ
HDτD
ρ .

Proof. Set D̃ =
⊗

n∈ND. Let θ : A ⊗ D̃ → A ⊗ D̃ be an isomorphism and let

u : G→ U(A⊗ D̃) be a cocycle for idA ⊗ βσ,D satisfying

Ad(ug) ◦ (idA ⊗ βσ,D) = θ ◦ (idA ⊗ βρ,D) ◦ θ−1

for all g ∈ G. Let τ be a tracial state on A, and set τ̃D =
⊗

n∈N τD. Use Lemma 3.12
to find a tracial state τ ′ on A such that (τ ⊗ τ̃D) ◦ θ = τ ′ ⊗ τ̃D. Note that

(3.5) κτ ′(idA) ⊆ 1∞G and κτ̃D (βρ,D) ∼= κ
HDτD
ρ ,

where the second of these follows from part (1) of Remark 2.11.
By Proposition 2.23, the action idA ⊗ βσ,D commutant weakly contains uσ with

respect to τ̃D ⊗ τ . Thus Lemma 2.25 implies that idA ⊗ βρ,D commutant weakly
contains uσ with respect to τ ′ ⊗ τ̃D, that is,

(3.6) uσ ≺Z κ
(0)
(τ ′⊗τ̃D)U

((idA ⊗ βρ,D)U ).
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In the following, we use Remark 2.20 for idA ⊗ βρ,D at the second step; and
Lemma 2.9 at the fourth step, to get the desired weak containment:

uσ
(3.6)
≺Z κ

(0)
(τ ′⊗τ̃D)U

((idA ⊗ βρ,D)U )

≺Z κ
(0)
τ ′⊗τ̃D (idA ⊗ βρ,D)

⊆ κτ ′⊗τ̃D (idA ⊗ βρ,D)

∼= κτ ′(idA)⊗ κτ̃D (βρ,D)

(3.5)

⊆ 1∞G ⊗ κ
HDτD
ρ . �

Theorem 3.14. Let A and D be tracial, separable, unital C*-algebras, and assume
that D has a unique tracial state which is not a character. Let G be a discrete group
containing a nonamenable subgroup F which is separated over some set P ⊆ N, as
witnessed by a family {Hp : p ∈ P}. For non-empty P,Q ⊆ P, the following are
equivalent:

(1) P = Q.
(2) idA ⊗ βσPG,D is conjugate to idA ⊗ βσQG ,D.

(3) idA ⊗ βσPG,D is cocycle conjugate to idA ⊗ βσQG ,D.

Proof. The implications (1) ⇒ (2) ⇒ (3) are trivial. We now prove (3) ⇒ (1).
Assume that βσPG,D ⊗ idA is cocycle conjugate to βσQG ,D

⊗ idA. We abbreviate

κ
HDτD
σQG

to κσQG ,D
, and similarly for its reduced version. Then uσPG ≺Z 1∞G ⊗ κσQG ,D by

Lemma 3.13. Using this at the first step, we get

(3.7) uσPG |F ≺Z (1∞G ⊗ κσQG ,D)|F ∼= 1∞F ⊗ κσQG ,D|F .

On the other hand, using Remark 2.8 at the first step, and using Lemma 3.8 at the
second step, we have

(3.8) κσQG ,D
|F ∼= κ

(0)

σQG ,D
|F ⊕ 1F ⊆ uσQG |F ⊕ 1F .

Since σQG
∼= idN × σQG , we have uσQG

∼= 1∞G ⊗ uσQG by Lemma 2.12. In particular,

(3.9) 1∞F ⊗ uσQG |F
∼= uσQG

|F .

Combining these facts, we get

(3.10) uσPG |F
(3.7)
≺Z 1∞F ⊗ κσQG ,D|F

(3.8)

⊆ 1∞F ⊗ (uσQG
|F ⊕ 1F )

(3.9)∼= uσQG
|F ⊕ 1∞F .

We claim that uσPG |F ≺fin uσQG
|F ; see Definition 3.9. Let µ be an irreducible

finite-dimensional subrepresentation of uσPG |F ; we need to show that µ ≺Z uσQG
|F .

Suppose first that µ = 1F . Using that Q is not empty, choose some q ∈ Q. Using
Corollary 3.7 at the last step, we get

µ = 1F ⊆ λF/Hq ⊆ uσQG |F ,

as desired. Suppose now that µ is not the trivial representation of F . Then

µ ⊆ uσPG |F
(3.10)
≺Z uσQG

|F ⊕ 1∞F .

Since µ is irreducible, by Proposition 2.17 we have µ ≺Z uσQG
|F or µ ≺Z 1∞F . Since

µ is not trivial, we must have µ ≺Z uσQG
|F . Since this holds for every irreducible

finite-dimensional subrepresentation of uσPG |F , we conclude that uσPG |F ≺fin uσQG
|F .

Reversing the roles of P and Q, one shows that uσQG
|F ≺fin uσPG |F , and hence

uσQG
|F ∼fin uσPG |F . By Corollary 3.11 this implies that P = Q. �
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4. Main results

In this section, we prove Theorem B and Theorem C from the introduction,
which make significant contributions to part (2) of Conjecture A.

The following definition, which is standard by now, originates from the work
of Kishimoto [25], and in this form can be found, among others, in the work of
Matui-Sato [26].

Definition 4.1. Let A be a tracial C*-algebra, and let θ ∈ Aut(A). We say that
θ is strongly outer if for every tracial state τ on A satisfying τ ◦ θ = τ , the weak
extension θ

τ ∈ Aut(A
τ
) is outer. An action α : G→ Aut(A) of a discrete group G

is said to be strongly outer if αg ∈ Aut(A) is strongly outer for every g ∈ G \ {1}.

We also recall the following definitions from [24].

Definition 4.2. Let G be an infinite, countable group, let A be a unital C*-algebra
with a unique tracial state τ , and let α : G→ Aut(A) be an action. Then α is said
to be weak mixing if for every finite subset F ⊆ A and ε > 0 there exists g ∈ G
such that |τ(aαg(b))− τ(a)τ(b)| < ε for all a, b ∈ F .

The following fact is well-known and easy to see.

Lemma 4.3. Let G be an infinite, countable group, let D be a unital C*-algebra,
and let G yσ X be an action on a countable set X with a infinite orbits. Denote
by βσ,D the corresponding generalized Bernoulli shift. Then:

(a) βσ,D is strongly outer. More generally, if A is any C*-algebra and α : G→
Aut(A) is any action, then α⊗ βσ,D is strongly outer.

(b) If D has a unique tracial state, then βσ,D is weak mixing.

Recall from [37, 38] that any strongly self-absorbing C*-algebra D is simple,
nuclear, Z-stable, and satisfies D ∼=

⊗
n∈ND. Moreover, D is finite if and only if it

has a unique tracial state. Moreover, for a countable group G, the Bernoulli shift
βLtG,D (see Definition 2.5) is commonly abbreviated to βD.

We are now ready to prove Theorem B.

Theorem 4.4. Let G be a countable group, and let D be a finite strongly self-
absorbing C*-algebra. Then the following are equivalent:

(1) G is amenable;
(2) The Bernoulli shift βD : Gy

⊗
g∈GD is cocycle conjugate to βD ⊗ idZ .

Proof. That (1) implies (2) is a consequence of Corollary 4.8 in [13] (and it can also
be deduced from the proof of Theorem 1.1 in [34]). We prove the converse. For
clarity, we write βLtG,D in place of βD. Let τD and τZ be the unique tracial states of
D and Z, respectively. Being unique, they are invariant by any group action on the
respective algebras. Assume that βLtG,D ⊗ idZ and βLtG,D are cocycle conjugate;
we will prove that G is amenable.

Let GyidN N be the trivial action. We identify Z with
⊗

n∈NZ throughout, so
that τD is identified with ⊗n∈NτD and idZ is identified with βidN,Z = id⊗

n∈N Z .

Observe that uidN is the trivial representation of G on `2(N), so in particular
uidN contains the 1-dimensional trivial representation 1G. Applying part (2) of
Proposition 2.23 with D = Z and A = D, we deduce that βLtG,D ⊗ idZ ∼= βLtG,D ⊗
βidN,Z commutant weakly contains uidN with respect to τD ⊗ τZ . Thus

1G ⊆ uidN ≺Z κ
(0)
(τD⊗τZ)U

((βLtG,D ⊗ idZ)U ) .

Since D has a unique tracial state, and since βLtG,D is assumed to be cocycle
conjugate to βLtG,D ⊗ idZ , it follows from part (3) of Lemma 2.25 (applied to
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µ = 1G) that βLtG,D commutant weakly contains 1G with respect to τD. Using this
at the first step, and using Remark 2.20 at the second step, we deduce that

(4.1) 1G ≺Z κ
(0)
(τD)U

((βLtG,D)U ) ≺Z κ
(0)
τD (βLtG,D).

Using Example 3.5, and particularly (3.1), there is a conjugacy of actions

(4.2) βLtG,D
∼= βσ∅G,D

.

In the notation of Lemma 3.8, we take G = F and P = P = ∅, so that σPG = σ∅G is
just LtG× idN. Using part (1) of Lemma 2.12 at the second step, and the comments
in Notation 2.6 at the third step, we get

(4.3) uσ∅G
= uLtG×idN

∼=
⊕
n∈N

uLtG
∼=
⊕
n∈N

λG.

Using part (2) of Remark 2.11 at the second step, and using Lemma 3.8 at the
third step, we get

(4.4) κ(0)
τD (βLtG,D)

(4.2)∼= κ(0)
τD (βσ∅G,D

) ∼= κ
(0)

σ∅G
⊆ uσ∅G

(4.3)∼=
⊕
n∈N

λG.

Combining (4.1) and (4.4), we conclude that 1G ≺Z

⊕
n∈N λG. This implies that

G is amenable by Lemma 2.19, as desired. �

The theorem above complements the results in [34] and [13]: while every strongly
outer action of an amenable group on a finite strongly self-absorbing C*-algebra
absorbs the identity on Z tensorially, this result fails for every nonamenable group.
In particular, we deduce a weak version of part (2) of Conjecture A: any non-
amenable group admits at least two strongly outer actions on D which are not
cocycle conjugate, namely, the Bernoulli shift βD and βD ⊗ idZ .

Our strongest result concerns groups that contain a non-amenable infinitely sep-
arated subgroup.

Theorem 4.5. Let G be a countable group containing a non-amenable infinitely
separated subgroup F , let D be a finite strongly self-absorbing C*-algebra, and let
A be a separable, unital C*-algebra with a trace. Then there exist uncountably
many pairwise non-cocycle conjugate, strongly outer actions of G on A⊗D, which
are moreover pointwise asymptotically inner. When A = C, these actions are also
weak mixing.

Proof. By assumption, there exist an infinite set P ⊆ N of pairwise coprime num-
bers, and a separated family {Hp}p∈P of subgroups of F as in Definition 3.1.
We use the notation introduced in Definition 3.4. By Theorem 3.14, the family
{idA ⊗ βσPG,D : P ⊆ P is non-empty} consists of pairwise non-cocycle conjugate ac-

tions of G on A⊗D. Since P is infinite, this family is uncountable. These actions are
strongly outer by Lemma 4.3, and pointwise asymptotically inner by [6, Theorem
2.2]. When A = C, these actions are weak mixing by Lemma 4.3. �

Since F∞ is infinitely separated by Lemma 3.2, the above result implies Theo-
rem C, which is the noncommutative analog of Ioana’s celebrated result [19].

The methods of this paper apply to the case of II1 factors as well. In this
case, one defines generalized Bernoulli shifts as in the case of C*-algebras (see
Definition 2.5), by replacing minimal C*-algebra tensor products with von Neumann
algebra tensor products (with respect to the unique normal tracial state). One
obtains the analogue of Definition 2.21 for an action of G on a II1 factor M by
replacing states with the unique normal tracial state on M , and by replacing the
C*-algebra ultrapower with the von Neumann algebra ultrapower. The rest of the
proofs apply without change in this setting. We thus obtain the following.
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Theorem 4.6. Let G be a countable group containing a nonabelian free group, and
let M be a McDuff II1 factor with separable predual. Then there exist uncountably
many pairwise non-cocycle conjugate, outer actions of G on M . When M = R,
these actions are also weak mixing.

It was shown by Brothier and Vaes [4, Theorem B] that an arbitrary nonamenable
group admits uncountably many pairwise non-cocycle conjugate outer actions on
R. While our conclusions only hold for groups that contain F2, the actions on R
that we construct are ergodic (in fact, weak mixing), unlike the actions produced
in the proof of [4, Theorem B]. This naturally raises the following:

Problem 4.7. For a nonamenable group G, construct uncountably many pairwise
non-cocycle conjugate weak mixing outer actions of G on R.

In the measurable setting, Epstein [7] combined Ioana’s result from [19] with
Gaboriau-Lyons’ solution [9] to the von Neumann problem, to show that any non-
amenable group admits a continuum of non-orbit equivalent free, ergodic actions.
In order to prove part (2) of Conjecture A for all nonamenable groups, one could
attempt a similar approach of inducing actions from F2 to any amenable group.
For this approach to work, however, one would need a noncommutative analog of
the result of Gaboriau-Lyons. This suggests the following interesting problem:

Problem 4.8. Is there an analog of Gaboriau-Lyon’s measurable solution to the
von Neumann problem in the context of strongly outer actions on strongly self-
absorbing C*-algebras? And for outer actions on the hyperfinite II1 factor?
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