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GROUP AMENABILITY AND ACTIONS ON Z-STABLE
C*-ALGEBRAS

EUSEBIO GARDELLA AND MARTINO LUPINI

ABSTRACT. We study strongly outer actions of discrete groups on C*-algebras
in relation to (non)amenability. In contrast to related results for amenable
groups, where uniqueness of strongly outer actions on the Jiang-Su algebra is
expected, we show that uniqueness fails for all nonamenable groups, and that
the failure is drastic. Our main result implies that if G contains a copy of Fa,
then there exist uncountably many, non-cocycle conjugate strongly outer ac-
tions of G on any tracial, unital, separable C*-algebra that absorbs tensorially
the Jiang-Su algebra. Similar conclusions hold for outer actions on McDuff
II; factors. We moreover show that G is amenable if and only if the Bernoulli
shift on any finite strongly self-absorbing C*-algebra absorbs the trivial ac-
tion on the Jiang-Su algebra. Our methods consist in a careful study of weak
containment for the Koopman representations of certain generalized Bernoulli
actions.

INTRODUCTION

Amenability for discrete groups was first introduced by von Neumann in the
context of the Banach-Tarski paradox. One of the main early results in the theory,
proved by Tarski, asserts that a group is amenable if and only if it admits no
paradoxical decompositions. The fact that the Banach-Tarski paradox only makes
use of free groups led Day to conjecture that a discrete group is nonamenable if
and only if it contains the free group Fs as a subgroup. This conjecture, known as
the von Neumann problem, was open for about 40 years, until it was disproved by
Ol’shanskii.

Amenability admits a surprisingly large number of equivalent formulations. Here,
we are concerned with those characterizations that are phrased in terms of actions
of the group. These usually come in the form of a dichotomy: roughly speaking,
they assert that there is an object in the relevant category, on which every amenable
group acts in an essentially unique way, while every nonamenable group admits a
continuum of non-equivalent actions. The following is an illustrative example:

Theorem. Let G be a discrete group, and let (X, 1) be a standard atomless prob-
ability space.
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(1) If G is amenable, then all free, measure preserving, ergodic actions of G on
(X, ) are orbit equivalent.

(2) If G is not amenable, then there exist uncountably many non-orbit equiv-
alent free, measure preserving, ergodic actions of G on (X, ).

Part (1) is a combination of classical results of Dye and Ornstein-Weiss. In
reference to (2), the first result in this direction is a theorem of Connes-Weiss,
asserting that every nonamenable group without property (T) admits two such
actions. Much more recently, Ioana proved part (2) for groups containing a copy of
Fy ([19]), using the corresponding result for Fy due to Gaboriau-Popa ([10]), and
finally Epstein extended the result to all nonamenable groups ([7]). In recent work
(14} 15]), the authors strengthened the conclusion in part (2) above: the relation
of orbit equivalence of actions of nonamenable groups is not Borel.

In the context of von Neumann algebras, and specifically for the hyperfinite 11y
factor R, amenability can also be characterized in terms of actions:

Theorem. Let G be a discrete group, and let R be the hyperfinite II; factor.

(1) If G is amenable, then all outer actions of G on R are cocycle conjugate.
(2) If G is not amenable, then there exist uncountably many non-cocycle con-
jugate outer actions of G on R.

Part (1) is due to Ocneanu ([29]), although particular cases were proved by
Connes for cyclic groups ([5]), and by Jones for finite groups ([20]). Part (2) is a
recent result due to Brothier-Vaes (Theorem B in [4]), which also shows that the
relation of cocycle conjugacy of outer actions of G on R is not Borel when G is not
amenable. This result generalizes previous results of Popa ([32]) and Jones ([21]).

In both theorems recalled above, the amenable case was resolved relatively early.
On the other hand, the nonamenable case took much longer, and it required the
invention of new and powerful tools such as Popa’s celebrated deformation/rigidity
theory. Indeed, it was realized that certain nonamenable groups (or certain nona-
menable I1; factors) exhibit striking rigidity phenomena, which are best seen in the
presence of property (T). The richness of the nonamenable world drove researchers
in both Ergodic Theory and in von Neumann algebras to study actions of nona-
menable groups on the standard atomless probability space as well as on R, with
particular focus on the complexity of their classification.

This work revolves around analogs of the above results in the context of C*-
algebras, the central theme being the case of nonamenable groups. Strongly self-
absorbing C*-algebras can be seen as the C*-analog of the hyperfinite II; factor.
(Recall that a unital, separable C*-algebra D is said to be strongly self-absorbing
if D # C and there is an isomorphism ¢: D — D ®,;, D which is approximately
unitarily equivalent to the first tensor factor embedding; see [37].) Examples of
such algebras are the UHF-algebras of infinite type, the Jiang-Su algebra Z, the
Cuntz algebras Os and O, and their tensor products. Moreover, it is conjectured
that these are the only strongly self-absorbing C*-algebras. By a result of Winter
([38]), any strongly self-absorbing C*-algebra absorbs Z tensorially.

C*-analogs of part (1) in the theorem above were explored in the early 1990s by
Bratteli, Evans and Kishimoto ([3]), who studied a concrete family of outer actions
of Z on a specific UHF-algebra. Their results show that outerness in (finite) C*-
algebras is too weak a condition for an analog of Ocneanu’s result to hold. They
also provided evidence for the fact that a uniqueness result may hold if one assumes
outerness not only for the action, but also for its extension to the weak closure in
the GNS representation. This notion is now called strong outerness.

Motivated by a recent breakthrough of Szabé [36], the following conjecture has
been proposed in [16], the first part of which had already been suggested in [36].
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We refer the reader to the introductions of [36] and [16] for motivation and relevant
references (in particular, for the reason why groups with torsion must be excluded).

Conjecture A. Let G be a torsion-free countable group, and let D be a strongly
self-absorbing C*-algebra.

(1) If G is amenable, then any two strongly outer actions of G on D are cocycle
conjugate.

(2) If G is not amenable, then there exist uncountably many non-cocycle con-
jugate strongly outer actions of G on D.

The main result of [36] asserts that part (1) holds when D is either a UHF-
algebra or the Jiang-Su algebra and G is abelian, while [16] asserts that part (2)
holds when D is a UHF-algebra and for groups containing a subgroup with relative
property (T).

In this work, we continue the study of strongly outer actions on C*-algebras,
and particularly on strongly self-absorbing C*-algebras. We are interested in con-
structing many non-cocycle conjugate actions for a given nonamenable group. To
this end, we focus on a specific and very rich class of actions, which we call gener-
alized (noncommutative) Bernoulli shifts. These are constructed as follows: given
a strongly self-absorbing C*-algebra D and an action G ~? X of a discrete group
G on a countable set X, we consider the action of G on &) D = D given by
permuting the tensor factors according to o.

For an arbitrary group G, it seems difficult to produce actions of this form other
than the usual Bernoulli shift 8p: G ~ @, D and the trivial action of G on D.
However, considering these actions leads to a new characterization of amenability.
The implication (1)=-(2) in Theorem [B| appeared in [I3], and can also be deduced
from [34].

reX

Theorem B. Let G be a countable discrete group, and let D be a finite strongly
self-absorbing C*-algebra. Then the following are equivalent:

(1) G is amenable;
(2) the Bernoulli shift 8p absorbs tensorially (up to cocycle conjugacy) the
trivial action idz on Z.

This result implies, in particular, a weak form of part (2) of Conjecture|A} every
nonamenable group admits two strongly outer actions on D which are not cocycle
conjugate, namely, the Bernoulli shift and its stabilization with idz.

We obtain stronger results for groups having sufficiently many finite subquo-

tients. A particular instance of our main result (Theorem 4.5|) confirms part (2) of
Conjecture [A] for groups containing Fo:

Theorem C. Let G be a discrete group containing a nonabelian free group, and
let A be a tracial, separable, unital Z-absorbing C*-algebra. (For example, a
finite strongly self-absorbing C*-algebra.) Then there exist uncountably many non-
cocycle conjugate, strongly outer actions of G on A, acting via asymptotically inner
automorphisms of A. When A is strongly self-absorbing, these actions can also be
chosen to be weak mixing.

The fact that the actions we construct are pointwise asymptotically inner implies
that these actions are not distinguishable by any kind of K- or K K-theoretical
invariant, nor are they classified using the Cuntz semigroup. The way in which
we distinguish them is via the weak equivalence class of the associated Koopman
representation.

Theorem [C| is the C*-version of Ioana’s result on non-orbit equivalent actions
from [19]. Epstein later combined Ioana’s result with Gaboriau-Lyon’s measurable
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solution to the von Neumann problem [9] to generalize Ioana’s work to all nona-
menable groups. A very interesting and promising problem is to find an analog of
the main result in [9] in the context of strongly outer actions on C*-algebras, or
at least for outer actions on R. A satisfactory solution would allow one to extend
Theorem |C| (and Theorem |§| below) to include all nonamenable groups.

Finally, our methods allow one to replace Z with the hyperfinite II; factor R,
thus obtaining the following result.

Theorem D. Let G be a discrete group containing a copy of Fy, and let M be
a McDuff II; factor. Then there exist uncountably many non-cocycle conjugate,
outer actions of G on M, acting via asymptotically inner automorphisms of M.
When M =R, these actions can also be chosen to be weak mixing.

It was shown by Brothier and Vaes [4, Theorem B], using Popa’s deforma-
tion/rigidity theory from [33] [32], that an arbitrary nonamenable group G admits
uncountably many pairwise non-cocycle conjugate outer actions on R. The argu-
ments of this paper produce actions of G on R that are furthermore weak mixing,
under the additional assumption that G contains Fs. It would be interesting to
know whether there exist uncountably many pairwise non-cocycle conjugate weak
mizing outer actions of G on R for an arbitrary nonamenable group G.

The rest of the paper is organized as follows. In Section 1, we establish a number
of basic facts about subgroups with finite index that will be important in the later
sections. In Section 2, we study the generalized Bernoulli shift associated with an
action G 7 X on a discrete set X, and relate its Koopman representation to the
canonical unitary representation of G on ¢2(X). In Section 3, we specialize to a
particular family of generalized Bernoulli shifts, obtained from finite subquotients

of G. Finally, Section 4 contains the proofs of our main results (Theorem 4.4] and
‘Theorem 4.5)), from which Theorems and @ follow.

Acknowledgements: The authors thank Todor Tsankov for a conversation on
quasiregular representations, as well as Hannes Thiel and the anonymous referee
for very valuable feedback.

1. QUASIREGULAR REPRESENTATIONS
We begin by recalling the notion of quasiregular representation.

Definition 1.1. Let G be a discrete group, and let H be subgroup. We denote
by Ag/m: G — U((*(G/H)) the unitary representation induced by the canonical
left translation action of G on G/H. We call A,y the quasiregular representation
associated with H.

When H is a normal subgroup of G, the quasiregular representation A\g g is
precisely the left regular representation of the quotient group G/H.

Let G be a discrete group and let p: G — U(H,) and v: G — U(H,,) be unitary
representations. Recall that p is said to be (unitarily) contained in v, written
i C v, if there exists an isometry ¢: H,, — H, satisfying ¢ o g = v4 0 ¢ for all
g € G. When ¢ can be chosen to be surjective, we say that p and v are unitarily
equivalent, and write p =2 v.

Lemma 1.2. Let G be a discrete group, and let Hy,..., H, be subgroups of G
whose indices in G are finite. Set H = H; N---N H,,. Then:
(1) H has finite index in G, and [G : H| < [G : Hy]---[G : Hy). If the indices
of Hy,...,Hy, in G are pairwise coprime, then equality holds.
(2) We have Aq g € Ag/m, © - @D Ag/m,,, and this containment is an equiva-
lence whenever the indices of Hy, ..., H, in G are pairwise coprime.
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Proof. Tt is enough to prove both parts for n = 2. We begin with some notation.
Consider the diagonal action of G on ¢(G/Hy) ® (*(G/Hz) = (*(G/H; x G/H>)
via Ag/H, ® Ag/m,- Set v = (Hy, Hs) € G/Hy x G/Hj. Then the stabilizer of =
is precisely Hy N Hs. Define a map ¢: G — G/Hy x G/H3 by ¥(g) = g - « for all
g €G.

(1). Since % is the orbit map associated with x, we have

When [G : Hq] and [G : Hs| are coprime, one checks that 1 is surjective, so we get
equality. R
(2). Consider the induced map ¢: G/(H1NHz) — G/Hy x G/Hs, which is given
by ¥(g(Hy N Hz)) = (gH1,gH>2) for all g € G. Define
©: 1*(G/(H, N Hy)) — (*(G/H, x G/Hs,)

on the canonical orthonormal basis by setting ©(dg(m,n,)) = 51/7(57) for all g € G.

It is clear that ¢ is an isometry, and that it is a unitary if [G : H;] and [G : H] are
coprime. It remains to show that ¢ intertwines Aq/(m,nm,) and Ag/u, ® A\q/H,-
Given g,k € G, we have

(/\G/H1 ® ’\G/Hz)k ((p(dg(HlﬂHZ))) = ()‘G/Hl ® /\G/H2)k (5(9H1,9H2))
= OkgH, kgH,
= <P(5kg(HmH2))
=@ ((/\G/(HlﬁHz))k(6g(H1ﬂH2))) s
as desired. This finishes the proof. O

Our final lemma is well-known, so we only sketch the proof; see [22, Lemma 3.3].

Lemma 1.3. Let G be a discrete group, let S be a subgroup of G, and let H be a
subgroup of S with [S': H] < co. Then A\g/5 € Ag/p. In particular, if S is a finite
subgroup of G, then A\¢/s C Ag.

Proof. Let m: G/H — G/S be the canonical quotient map. Then ¢: (?(G/S) —

(?(G/H) given by ¢(§) = \/[51_715 o for £ € (2(G/S), is an equivariant isometry.
0

2. GENERALIZED BERNOULLI SHIFTS

In this section, we study a class of group actions on C*-algebras which are
obtained from permutation actions of G on (discrete) sets. First, we need to discuss
how the GNS construction behaves with respect to infinite tensor products.

2.1. Infinite tensor products and the GNS construction. We briefly review
the GNS construction.

Definition 2.1. Let D be a unital C*-algebra, and let ¢: D — C be a state on
D. Define (-,-)¢: D x D — C by (a,b)y = ¢(a*b) for all a,b € D. Let [ |, , be
the corresponding seminorm on D, given by [lall, , = p(a*a)'/?. Let ’Hg denote
the Hilbert space obtained as the Hausdorff completion of D with respect to the
seminorm ||-[|, ,. We denote by 1+ D — MY the canonical map with dense image.
When D is clear from the context, we will simply write H4 and ¢g.

We turn to infinite tensor products of Hilbert spaces.
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Definition 2.2. Let H be a Hilbert space, let n € H be a unit vector, and let X

be a discrete set. We define the tensor product @ H of H over X (along 7) to be
reX
the completion of

span { ® & & € H, and €, = 7 for all but finitely many « € X} ,
zeX

in the norm induced by the pre-inner product given by

<®5m,®cm> = [ & ¢)-

reX zeX reX

(Observe that all but finitely many of the multiplicative factors above are equal to
1, so that the product is indeed well-defined.)

It will be convenient to have a description of an orthonormal basis of an infinite
tensor product of Hilbert spaces.

Lemma 2.3. Let H be a Hilbert space, let n € H be a unit vector, and let X be a
discrete set. Denote by r the dimension of H. Let {n,: n € x} be an orthonormal
basis for H with ng = n. Set

F={f: X — ksuch that {z € X: f(x) # 0} is finite}.

In particular, F contains the function fo: X — x that is constantly equal to O.
Then an element f € F can be canonically identified with the element &), x 7¢(x)
of @,cx H. In turn, this allows one to identify 7 with an orthonormal basis for

H

zeX 'Y

We will need infinite (minimal) tensor products of unital C*-algebras. Let D be
a unital C*-algebra, and let X be a countable set. Write P;(X) for the set of all
finite subsets of X, ordered by inclusion. We define the tensor product @,y D to
be the direct limit of the minimal tensor products &), g D, for S € P;(X), with the
canonical connecting maps ts7: @,cg D — &, cp D given by 15 7(d) =d®@ 11\
for d € @,cg D, whenever S, T € Py(X) satisfy S C T If ¢ is a state on D, then
the direct limit of the states ) g ¢, for S € P;(X), defines a state on &),y D,
which we denote by @, x ¢-

Next, we show that GNS constructions commute with infinite tensor products.
The result is folklore and well-known, and we include a proof for the convenience
of the reader.

Theorem 2.4. Let D be a unital C*-algebra, let X be a discrete set, and let
¢: D — C be a state. Set D = R,ex D and 5 = Q,cx @ Then there is a
canonical unitary
D D
w: J@( Hy — H$
determined on a dense subset by

U <® L¢(az)> =13 <® am> ,

where a, € D for all € X, and a, = 1p for all but finitely many x € X. (The
tensor product @, . x ’Hg is taken along n = t4(1p) € ’Hg.)

Proof. Let x € X and write ¢p: D — @ cx D = D for the 2-th tensor factor

embedding. Since ¢ = (Z o 1,, it follows that 1, induces a Hilbert space isometry
Uy Hy — 'Hg satisfying ug o 1y = Lzo Vg
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Denote by s, : 7—[5 — Qex 7—[5 the canonical isometry as the z-th tensor factor.
By the universal property of the tensor product, there exists a bounded linear map
u: Quex "Hf — 7—[$D satisfying u, = u o s, for all x € X. It is then easy to check

that u is a unitary, and that it satisfies the identity in the statement. We omit the
details. O

2.2. Generalized Bernoulli shifts. In classical dynamical systems, the Bernoulli
shift is the transformation on the space {0, 1}Z of bi-infinite binary sequences given
by sending (an,)nez to the shifted sequence (an41)nez; see [30, 27]. More generally,
one can replace {0,1} with an arbitrary finite alphabet or a compact space T
(which is called the base or state space), in which case one considers the space
T? endowed with the product topology. Even more generally, one can replace Z
with an arbitrary discrete group G, which then naturally acts on T¢ by setting
g (tn)nea = (tgn)nea-

A generalized Bernoulli shift is defined by replacing the left translation action
G ~ G with an arbitrary action of G on a set X, that is, a homomorphism ¢: G —
Perm(X) into the group Perm(X) of permutations of X. We usually abbreviate
this to G ~? X, and when the action o is clear from the context, we write g - x
instead of o4(x) for g € G and x € X. These notions admit natural generalizations
to noncommutative C*-algebras, which we proceed to define.

For a C*-algebra D and a state ¢ on it, we say that an action a: G — Aut(D)
is ¢p-preserving, or that ¢ is a-invariant, if ooy = ¢ for all g € G.

Definition 2.5. Let G be a countable group, let X be a countable set, and let
G ~? X be an action. Endow X with the counting measure, and let D be a unital
C*-algebra.

(1) The unitary representation associated with o is the unitary representation
Uy G = U?(X)) given by (uy)y(dz) = 64.5 for all g € G and all z € X.

(2) The generalized Bernoulli shift associated with o is the action 8, p: G —
Aut (®gex D) given by permuting the tensor factors according to G ~7 X.

Notation 2.6. Let G be a discrete group. We will denote by Ltg the action of
left translation G ~ G, so that ury, is the left regular representation Ag: G —
U(P*(@)). Similarly, if H is a subgroup of G, we will denote by Lt/ g the canonical
action G ~ G/H by left translation of left cosets, so that urs,, /18 the quasiregular

representation Ag g : G — U((*(G/H)) from

We will also need the Koopman construction, which is a way of obtaining unitary
representations from group actions. In measurable dynamics, an invertible measure-
preserving transformation T' of the standard probability space (X, u) gives rise to
a unitary operator Ur on L%(X, i), called Koopman operator, defined by Ur(f) =
foT ! for f € L*(X,p); see [23]. Thus, a measure-preserving action a: G —
Aut(X, p) induces a unitary representation s(a): G — U(L*(X,p)), called the
Koopman representation associated to o, which is given by r(a), = U,, for all
g € G. In the definition below, we recall its natural noncommutative analogue.

Definition 2.7. Let G be a countable group, let (D, ¢) be a unital C*-algebra with
a state ¢, and let « be a ¢-preserving action of G on D.

e The Koopman representation of o (with respect to ¢) is the unitary rep-
resentation kg(a): G — U(Hg) determined by rg(a)q(te(a)) = ty(ay(a))
for all g € G and all a € D.

e The reduced Koopman representation of a (with respect to ¢ ), denoted by

nfpo) (), is the restriction of k() to the orthogonal complement of ty(1p).
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Remark 2.8. In the notation of the definition above, and with 15 denoting the

trivial representation, there is a unitary equivalence ry (o) = n((bo)(oz) ® 1g.

We will need the following easy observation, whose proof is straightforward.

Lemma 2.9. Let G be a countable group, let (A4,¢4) and (D, ¢p) be unital C*-
algebras with states, and let a: G — Aut(A4) and 3: G — Aut(D) be actions
preserving ¢4 and ¢p, respectively. Then the canonical unitary

. A D ARD
u: Hdm ® H¢D - H¢A®¢D

determined by u(LﬁA (a) ® LgD(d)) = L?ﬁ%ﬂ)(@ ®d) for all a € A and d € D,

implements a unitary equivalence between kg, () ® k¢, (8) and kg, 00, (@ ® B).

If G ~7 X and G ~" Y are actions on countable sets, we let o X p be the action
G ~ X x Y defined by

(0% p)g(z,y) = (04(x), pg(y))
for g € G, for x € X, and for y € Y. We also let o LI p be the unique action of G on
the disjoint union X UY which extends the actions o and p. The disjoint union of
an n-tuple of actions, or even an infinite sequence of actions, is defined similarly.
We proceed to collect some elementary lemmas that will be needed later.

Notation 2.10. Let G be a countable group, let G ~? X be an action of G on a
countable set X, and let H be a separable Hilbert space with a distinguished unit
vector . We denote by k7t: G — U(Q,cx H) the unitary representation given by
permuting the tensor factors according to G ~? X. When H and 7 are clear from
the context, we simply write x,. We define m(,o) to be the restriction of x, to the
orthogonal complement of 7 in &),y H.

Remark 2.11. Let G be a countable group, let (D, ¢) be a unital C*-algebra
endowed with a state ¢, and let G ~? X be an action of G on a countable set X.

HD
Write k. for ke ¢ . Then:

(1) The Koopman representation of 5, p is unitarily equivalent to k.

(2) The reduced Koopman representation of 3, p is unitarily equivalent to k.

Lemma 2.12. For n € N, let G ~?" X,, be actions, and let G ~? X denote their
disjoint union. Let # be a Hilbert space with a distinguished unit vector 7.

(1) The representations u, and €D, cy Uo,, are unitarily equivalent.

(2) The representations x* and Xen /fi‘n are unitarily equivalent.

Proof. Set X = ||, .y Xn. Then (?(X) is canonically isometrically isomorphic to
@D,,cn ?(X,), as witnessed by a unitary intertwining the representations u, and
U@, _, on» Which shows (1). Similarly, &,y &, cx, H is canonically isometri-
cally isomorphic to @),y H, as witnessed by a unitary that intertwines s, and

®n€N /Qo'n . D

Lemma 2.13. For n € N, let D,, be a unital C*-algebra with a state ¢,, and 3,
be a ¢n-preserving action of G on D,,. Set D = @Q),,cy D and ¢ = ),y ¢n, and
let 5: G — Aut(D) be the infinite tensor product of the actions f,, for n € N.
Then ¢ is S-invariant and there is a unitary equivalence

K¢(IB) = ®K¢n (ﬁn)
neN

Proof. It is immediate that ¢ is B-invariant. It suffices to observe that Hf is

canonically isometrically isomorphic to &), <y 'Hf:, with the tensor product taken
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along the unit vectors Lg: (1p,) € ”Hf:, as witnessed by a unitary that intertwines
the representations x4 (3) and &),,cy K, (Bn)- O

2.3. Weak containment of representations. We recall the definition of weak
containment for representations in the sense of Zimmer.

Definition 2.14. Let G be a discrete group, and let yu: G — U(H,) and v: G —
U(H,) be unitary representations. We say that p is weakly contained in v in the
sense of Zimmer, in symbols p <z v, if for any € > 0, for any &1,...,&, € H,, for
any finite subset F' C G, and for any € > 0, there exist n1,...,n, € H, satisfying

{19 (&), &) = (Vg (), i) < &

for all g € F and for all j,k=1,...,n.
We say that p and v are weakly equivalent in the sense of Zimmer, written
Wy v if p <z vand v <z p.

We will not be using the standard notion of weak containment, which is weaker.
It is obvious that, when G is countable, u <z v if and only if x4/ <z v for every
separable subrepresentation ' of u.

Below, we present a characterization of weak containment in the sense of Zimmer
that will be convenient for our purposes. We need a short discussion on ultrapowers
of unitary representations first. Let U be a nonprincipal ultrafilter over N and let
H be a Hilbert space. Set

HY = 0N, 1) /{(&))en € £ (N, H): lim (1€ = 0}

The class in HY of a sequence & € £>°(N, H) is denoted by [£]. Then HY is a Hilbert
space with respect to the inner product given by

(el b = lim (&5, m,)

for all £,n € £>°(N,H). If v: G — U(H) is a unitary representation of a discrete
group G on H, then there is an induced representation v%: G — U(HY) given by

1/2’{([5]) = [(v4(&)))jen] for all g € G and all £ € £>°(N, H).

Remark 2.15. Adopt the notation from the discussion above. If v and vy are
unitary representations, then it is easy to verify that (v1©v;)¥ is unitarily equivalent
to 4 @ 4.

For the convenience of the reader, we now recall several well-known properties
of weak containment of representations.

Proposition 2.16. Let G be a countable discrete group, and let p: G — U(H,,)
and v: G — U(H,) be unitary representations, with H, separable. Let U be a
nonprincipal ultrafilter on N. Then the following assertions are equivalent:

(1) p=zv;

(2) uC M.

Proof. Both directions follow from general results in model theory for metric struc-
tures [2]. (In this case, the structures are unitary representations of G.) Precisely,
(2) = (1) follows from Los’ theorem, while (1) = (2) follows from countable sat-
uration of ultrapowers; see for example, Sections 2.3 and 4.3 in [§]. We include a
proof for the sake of completeness.

(1) = (2): Fix an increasing sequence (F},)nen of finite subsets of G such that
Fy contains the unit of G and |J,,cy F» = G. Fix an increasing sequence (Q,)nen
of finite subsets of Q such that |J,, .y @» = Q. Fix also an increasing sequence H,
of finite subsets of H,, with dense union such that Z?Zl ajfig; (&) belongs to H,yq
for every n € N, for every g1,..., g9, € Fy, for every ay,...,a, € Q,, and for every
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§1,...,&n € Hy. Set H = J,,cy Hn. By assumption, for every n € N there exists a
function s,,: H,, — H, such that

(g (€),m) — (Vg(sn (&), sn(n))| <277

for every &, € H,, and for every g € F,. Set 5,({) =0forn € Nand £ € H\ H,.
Let s: H — HY be determined by letting s(£) be the class of (s,,(£))nen, for & € H,,.
One checks that s is Q-linear, isometric, and G-equivariant, so it extends to a linear
isometry s: M, — HY satisfying s(uy(£)) = V4 (s(€)) for every g € G and every
EeH,.

(2) = (1): Suppose that s: H,, — HY is a linear isometry satisfying s(u,(€)) =
vy(s(€)) for every g € G and § € H,,. Fix finite subsets F' C G and H C H,,, and
fix e > 0. We need to find elements f(£) € H,, for £ € H, satisfying

(g (€),m) — (v ((£)), F(n))| <&

for every {,n € H and g € F. For every { € H,, fix a representative sequence
(5n(6))nen of s(&). By definition of the representation ¥ on HY, there exists
n € N such that

(15 (5(6)), 5(n)) = (Vg(5n(€))s s ()] < €

for every £, € H and g € F'. Since s is an equivariant isometry, it follows that

(v (5()), s(n)) = (g (&), () = (g(&).m)

and hence |(14(§),n) — (¥g(sn(§)), $n(n))| < €. The proof is concluded by setting
[ =sn. O

Proposition 2.17. Let G be a countable discrete group, and let p: G — U(H,,)
and v;: G — U(H;), for j =1,...,n, be unitary representations. Assume that p is
irreducible and finite-dimensional, and that u <z 11 @& -+ @ v,. Then there exists
ke {1,...,n} such that u <z v.

Proof. Let U be any nonprincipal ultrafilter on N. Use |Proposition 2.16| to choose
an equivariant isometry s: H, — (H1 & -+ & H,)" witnessing the fact that u <z
v @ @ vy, Weidentify (Hi @ - @ H,)Y equivariantly with HY @ --- @ HY in

a canonical way via [Remark 2.15, For j = 1,...,n, we denote by s;: H,, — ’HZJ/’

the composition of s with the canonical projection onto H?. Since s is nonzero,

there exists k € {1,...,n} such that sy is nonzero. Since p is irreducible and
finite-dimensional, by Schur’s lemma sj is a scalar multiple of an isometry. This
concludes the proof. O

Lemma 2.18. Let G be a discrete group, and let u: G — U(H,) and v: G —
U(H,) be unitary representations. Let m,: C*(G) — B(H,) and 7,: C*(G) —
B(H,) denote the canonical unital homomorphisms induced by p and v, respec-
tively. If u <z v, then ker(m,) C ker(m,).

Proof. Let x € ker(m,) be a positive contraction. We need to show that 7, (x) = 0.
Fix € > 0 and a unit vector £ of #,. For g € G, we denote by u, € C*(G) the
canonical unitary associated to g. Find a finite subset F' C G and scalars a4 € C,

for g € F, such that y = 3 agug is a contraction with ||z — y[| <e.
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Fix § > 0 such that }°  plag[0 < e. Since p <z v, we can find a unit vector
n € H, such that |(ug(§), &) — (v4(n),n)| < d for g € F. Thus,

(mu(2)€,8) < Zag<Ug<§)a€> te

geF

< Zag<ug(77),77> +Z‘ag|6+5
geF geEF
= [{mu()n,m| + 2e < [|lm, (y)|| + 2¢ < 3e.
This concludes the proof. O

Lemma 2.19. Let G be a discrete group admitting a finite-dimensional represen-

tation p such that p <z €D, .y Ag. Then G is amenable.

Proof. Denote by i and A\g the conjugate representations of  and A, respectively.
Then the assumption implies that p ® i <z @,y e ® Ag. Since p is finite-
dimensional, the trivial representation 1 of G is contained in p ® f. Therefore
lg <z P, enra ® Ag. Hence G is amenable by [I, Theorem 5.1]. O

2.4. Koopman representations of generalized Bernoulli shifts. Let D be a
unital, separable C*-algebra and let &/ be a nonprincipal ultrafilter over N which
is fixed throughout. We denote by DY the C*-algebra ultrapower of D, and we
identify D with its image inside DY under the diagonal embedding. With a slight
abuse of notation, we denote by [a,,] the element of DY with representative sequence
(an)nen. Welet Dy = D' NDY be the relative commutant of D inside the ultrapower
(also called the U-central sequence algebra). A state ¢ on D extends to a state ¢“
on DY, and we let ¢y denote its restriction to Dy. If G is a discrete group,
and « is an action of G on D, then « induces actions o¥: G — Aut(DY) and
Qyy: G— Aut(Du).

Remark 2.20. Adopt the notation from the discussion above. Then there is
a canonical linear isometry s: Hg: — (HE), determined by s(L(f;([an])) =
[[,g (an)]- Moreover, if ¢ is a-invariant, then s intertwines I{((;:L)(Oéu) and (f{fﬁo)(a))u.

If ’H,g is separable, then it follows from |Proposition 2.16| that ”fz;ozj (o) <z /—@((;)(

Q).

Many properties of C*-algebras are defined or characterized in terms of realizing
certain configurations in the central sequence algebra. Examples of such proper-
ties include tensorial absorption of a given strongly self-absorbing C*-algebra (|37,
Theorem 2.2]) or G-C*-algebra ([35, Theorem 3.7]), as well as the Rokhlin property
for compact group actions ([I8, Definition 3.2], [I2, Definition 2.3]), and some of
its variations. The property we consider in the following definition is defined in
terms of (weakly) realizing a certain configuration in the GNS representation of
the central sequence algebra with respect to a given invariant state.

Definition 2.21. Let G be a countable group, let D be a unital, separable C*-
algebra, let ¢ be a state on D, and let p1: G — U(H,,) be a unitary representation.
An action a: G — Aut(D) is said to commutant weakly contain p with respect to

@, if ¢y is ay-invariant and p <z mgg (o).

The terminology in is chosen for consistency with the notion of

commutant positive weak containment for actions on C*-algebras, which was defined
in Section 3.2 of [17]. We briefly recall this notion, and show in|[Proposition 2.22/how

it relates to Recall that U denotes a fixed nonprincipal ultrafilter
on N. For a discrete group G and actions a: G — Aut(A4) and 8: G — Aut(B) on
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unital C*-algebras A and B, we say that £ is commutant positively weakly contained
in «, if there is a unital, equivariant, injective homomorphism (B, 8) — (Ay, oy)

Proposition 2.22. Let G be a discrete group, let A and D be unital, separable
C*-algebras, and suppose that D has a unique trace 7p. Let 7 be a trace on A
such that 7, is ay-invariant, and suppose that § is commutant positively weakly
contained in . Then a comutant weakly contains HS-(B (8) with respect to 7.

Proof. Let ¢: (D,B) — (Ay,ay) be a unital, equivariant homomorphism. Since
Tp is the unique trace on D, we have 7p = 74 0 . Therefore, ¢ induces a linear
isometry s: HE — HAu which is determined by s(¢2 (d)) = it (p(d)) for all
d € D. Since ¢ is equivariant, it follows that s intertwines k., (8) and K, ().

Since s(:2 (1p)) = 144(14), we deduce that K9 () C I{-(,—?)(Oéu). We conclude that
HS%) (8) is commutant weakly contained in « with respect to 7. O

Next, we use generalized Bernoulli shifts to construct examples of actions that
commutant weakly contain the representation u, associated to an action G ~7 X

as in [Definition 2.5

Proposition 2.23. Let G be a countable group, let D be a unital, separable C*-
algebra, and let ¢ be a state on D that is not a character. Let G T X be an action
on a countable set X satisfying o = idy x 0. Set D = @,y D and ¢ = @), oy ¢-

(1) The action B, p: G — Aut(ﬁ) commutant weakly contains u, with respect
to the invariant state 5

(2) Let a: G — Aut(A) be any action on a separable, unital C*-algebra A,
and let ¢ be an a-invariant state on A. Then a ® S, p commutant weakly
contains u, with respect to ¢ ® 5

Proof. (1) Using that ¢ = idy X o, we identify D with Ry x D, and 5 with
Qnx x ¢, and will show that the action Sig,xo,p of G on D commutant weakly

contains u, with respect to (;NS Note that qg is Bidyxo, p-invariant, and hence ¢~5u is
(Bidyx o, D )Ju-invariant. By Choi’s multiplicative domain theorem (see, for example,
Theorem 3.18 in [31]), there exists a positive contraction dg € D such that ¢(d2) >
é(dp)?. Set

1
- (d2) — ¢(dp)? (do — ¢(do)1p) € D,

and observe that
(2.1) o(d) =0 and ¢(d*d)=1.

For n € N and z € X, denote by jg(gn): D — D the canonical embedding into the
(n,z)-th tensor factor, and set diM = jgﬁ”)(d) € D. Given z € X, consider the
sequence (di”))neN in l~), and let d, € DY denote the induced equivalence class in
the sequence algebra.

Fix x € X. We claim that d, belongs to the relative commutant Eu =D'NDY.

To this end, fix y € X, m € N and ¢ € D, and set cém) = jém)(c) € D. Then
||Cg(;m)dw - dwcg(/m)H _ T}% ||c§m)d§cn) _ dg;n)cém)‘l'
Note that di™ = 5" (d) and ¢{™ = j{"™(c) are commuting elements of D whenever

n > m. Since U is nonprincipal, we have

{n € N: [|efmdim — almelm || = o} cu
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and hence

||c?5m)dz . drcg(;m)H _ 7}% ||C?(Jm)d£6n) _ d;n)cz(Jm)H = 0.

It follows that d; commutes with cg(,m). Since elements of the form cg(,m), for c e D,

y € X and m € N, generate D as a C*- algebra the claim follows.
Using the notation introduced in [Definition 2.1} define a bounded linear map

s: 2(X) — 'HD“ by setting s(d,) = Lgu( ) for all x € X. We will show that s
U
1mplements a contamment of u, into the reduced Koopman representation of the

action on Dz,, D’ N DY induced by Bidyxe, D, With respect to qbu
First, we show that s is an isometry. Given z € X, we have

(5(02),8(62)) = (12 (o), 12 () )
= du(did,)
= lim §((d{")"d)
= lim 9" (d)*54 (d)
= lim ¢( (")(d*d))
—o(@d) B 1.

On the other hand, for =,y € X with x # y, we have

((62),5(0,)) = (12(dy), 1P (a,) )
= ¢M(dzay)
= lim §((d")"af")
= lim 651" (d)"5" (d))

:7}%¢(1x N(d)(i5M (d))

= o(d")o(d) =0

In particular, s is an isometry. Moreover, for z € X we have
51,{ . Dy DM
(e (p,)rs00)) = (13215, ) 5% ()
= du(d,) = lim §(d")
n—U
= 1im 3 () = o(d) & 0

Thus, s maps £?(X) to the orthogonal complement of L~ (1~ ) inside ’H?”. We
u

now check equivariance of s. Fix g € G and x € X. Usmg that (Bidyxo.D)g ojg(c") =

js(ﬁx) , one readily checks that

(22) ((ﬁidNXo’,D)M)g(dm) = dqw

Usmg the definition of the Koopman representation <0 ((ﬁldNXJ D)) from [Defini-
u
at the second step; using the definition of s at the fourth step; and using
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Definition 2.5| at the last step, we get

K ((Biayxo.0)t) g (5(52)) =

0 (B0 )g (12 ()

ﬁgu bu
= Lg: (((6idNXo’,D)U)g(d$))

L?; (dg-z) = 5(59-30) = (g (0z))-

It follows that s intertwines u, and ﬁg)((ﬂidwm D)y). We have shown that u, C
U
I{g)lj((ﬁidNXU,D)u)7 and in particular u, <z ﬁg:j((ﬂidwmp)u), as desired.
(2) Let a: G — Aut(A) be an action on a separable, unital C*-algebra A, and

let 9 be an a-invariant state on A. Since ¢ ® 5 is o ® Biqy x o, p-invariant, the state
(Y ® $)u is (@ ® Bidyxo,p)u-invariant.

We keep the notation for the elements d&") € l~), for x € X and n € N, from
part (1). For z € X and n € N, we set ol =14 ®d"™ € A® D, and let
ay € (A® D) denote the equivalence class determined by the sequence (ag"))neN.
The same proof as above shows that a, belongs to the commutant (4 ® E)U of
A® D inside (A® D)4,

As above, one defines a bounded linear operator ¢: ¢*(X)

A®RD
02) = g
contained in the orthogonal complement of ¢

(A®5)u
- H(UJ@@M

(az) for all x € X. Then t is a linear isometry whose range is
(A®D)y

(P®d)u
same computation as above shows that ¢ intertwines u, and the reduced Koopman

© ((a ® Bidyxo.0)u)- This shows that there is a containment
(Y@9)u ’

((a ® Biayxo,p)u) and, in particular,

by setting

(1(A®f>)u)' Furthermore, the

representation k

(0)

C _
Yo =R pedu

0
Ug <7 HEJ@&T)L{((Q ® Biduxo,D)U)-

We conclude that u, is commutant weakly contained in a ® Bigyxo,p With respect
to ¥ ® ¢, as desired. O

The following definition is standard.

Definition 2.24. Let G be a discrete group, and let a: G — Aut(A) and 5: G —
Aut(B) be actions of G on unital C*-algebras A and B. We say that o and
are cocycle conjugate if there exist an isomorphism 6: B — A and a function
u: G — U(A) satistying

ugn = ugay(up) and B, =607 o (Ad(u,) 0 ay) o b
for all g,h € G. The function u is called an a-cocycle.

Let o, 8: G — Aut(D) be actions of a discrete group G on a unital C*-algebra
D. If a and B are cocycle conjugate, there is in general no relationship between
k(a) and k(B), even if they both preserve the same tracial state. This can be
seen, for example, by letting a:: Zy — Aut(Maz) be the trivial action, and 5: Zs —

Aut(Ms) be the inner action determined by the order two unitary < (1) (1) > (In

this case, with respect to the unique tracial state, k() is conjugate to @?:1 124,
while () is conjugate to @?:1 Az,.) In particular, if k() contains a given unitary
representation, we cannot conclude that so does k(f3).
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Lemma 2.25. Let G be a discrete group, and let a: G — Aut(A) and 5: G —
Aut(B) be actions of G on unital C*-algebras A and B. Assume that a and j are
cocycle conjugate, and let §: B — A and u: G — U(A) be as in
Let ¢ be a state on A, and set ¢ = ¢ o 6.
(1) oy is conjugate to Gy via 0y.
(2) If ¢y is ay-invariant, then iy, is Sy-invariant and H((;?M) (o) = ’%1(1?13 (Bu)-
(3) Let u: G — U(H) be a unitary representation. If o commutant weakly
contains p with respect to ¢, then f commutant weakly contains p with
respect to .
(4) If ¢ is tracial and a-invariant, then ¢ is tracial and S-invariant.

Proof. (1) Let g € G. Note that Ad(u,) induces the trivial automorphism on Ay,.
Then
O o Bug =00 (07" o Ad(uy) o ay 0 0)y
=0y 00;," o (Ad(uy))u © g © O
=0y0 9&1 oogyg 00y
= ay,g © by,
as desired.
(2) Since ¢ is ay-invariant, we have
Yu © Pu,g = du 0 by o Pu,g = du © g 0 by = du o by =Yy
for all g € G. Thus, vy, is pB-invariant. Moreover, since oy and [y, are conjugate
via 0 and iy 060y = ¢y, it follows that 6;; induces a unitary operator 7—[5;4 — 7—[2;
that intertwines I@EZEB (By) and “Ebozj (o).
(3) This follows directly from (2) in view of [Definition 2.21
(4) If ¢ is tracial and a-invariant, then clearly v is tracial as well. Furthermore,
P o fy :¢0Ad(’u,g)oozgoQ:gboagoQ:gon:qp
for all g € G. Thus, ¢ is S-invariant. Il

3. ACTIONS INDUCED BY FINITE SUBQUOTIENTS

In this section, we specialize the discussion to Bernoulli shifts associated with
a particular class of actions on countable sets which are constructed from quasi-
regular representations (see [Definition 1.1]). If H is a subgroup of a discrete group
F, then the quasiregular representation Ap/gp induces a unital homomorphism
wy: C*(F) — B((*(F/H)), by universality of C*(F). When H is normal in F,
then the image of 7y is C;(F/H).

Definition 3.1. Let F' be a discrete group, let P C N be a set of pairwise coprime
numbers. A family {H,},ep of subgroups of F is said to be separated if it satisfies
the following properties:

(S.1) H, has index p in F for every p € P, and
(S.2) forpe P and Q C P, if () ker(rg,) C ker(rp,), then p € Q.
q€Q
We say that F' is separated over P if it contains a separated family of subgroups
indexed over P. Finally, we say that F' is infinitely separated if it is separated over
an infinite set P of pairwise coprime numbers.

We do not require the subgroups H, in the definition above to be normal. Our
standard example of an infinitely separated group is F.,, as we show next.

Lemma 3.2. The free group F is infinitely separated.
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Proof. Let {x,: n € N} be free generators of Fo,, and let P C N denote the set of
prime numbers. For p € P, let H,, be the normal subgroup generated by
{o, . apn, @b 2p40,. .} CF.
It is clear that Foo /H, = Z/pZ, so property (S.1) is satisfied.
We proceed to check property (S.2). For p € P, the quotient map
mh,: C*(Fs) — C*(Z/pZ) = CP

can be described as follows. We identify F,, with its image inside the unitary
group of C*(F..). We also identify C*(F.,) with the full free product x> ,C/(S*)
amalgamated over C, by regarding z,, € F, as the canonical generator of the n-th
free factor C(S'). Given f € C(SY) and n € N, set f(®) = 1% ... x fx1--- €
x22 1 C(S1), where the nontrivial entry is in the n-th position. Then

) = {(fa),f(em/p), @RI/ i = p,
Now fix p € P and @ C P and suppose that p ¢ Q. Let f € C(S') be any function

satisfying f(1) = 0 and f(e2™"/?) # 0. Then f®) belongs to ker(mp,) for all ¢ € Q,
but not to ker(mp,). Thus (S.2) is satisfied as well. O

Notation 3.3. Let G be a discrete group, let F' be a subgroup, let P be a set
of pairwise coprime natural numbers, and suppose that F is separated over P, as

witnessed by a family {H,,},ecp as in [Definition 3.1

Given p € P, we establish the following notations:

o we write G, = G/H, and F,, = F/H, for the left coset spaces;
e we write G ¢ G, and F A" F, for the canonical left translation

actions; see |[Notation 2.6

Definition 3.4. Let G be a discrete group, let F' be a subgroup, let P be a set
of pairwise coprime natural numbers, and suppose that F is separated over P, as

witnessed by a family {H,,},cp as in [Definition 3.1

For a (possibly empty) subset P C P, set

xE=]cu|]|]G and Xp=||Ful]|]F.

neN neNpeP neN neNpeP

and define actions G ~76 X5 and F ~7F XE as follows:
e ol acts on each copy of G via Ltg, and on each copy of G, via Ltg,;
e oF acts on each copy of F' via Ltp, and on each copy of F, via Ltp,.

We isolate one example in the definition above, which will be needed in the proof

of Theorem 4.4l

Example 3.5. Adopt the assumptions and notation from and as-
sume that G is at most countable. Let P = () be the empty set. Then X% =Nx G
and 0% = idy X Ltg. For a unital, separable C*-algebra D, consider the generalized
Bernoulli shifts

,Bag’D: G — Aut(®n,gyenxaD) and  Breg,p: G — Aut(®4eaD).
Then 50%’17 can be naturally identified with &), . free,p- Set D= &X,en D- Then

a rearranging of the tensor factors shows that X, cy free,p is conjugate to ﬂLtG B
and thus

(31) ﬁag,D = ﬂLtg,E'

For later use, we identify the restriction of O‘g to F' with an amplification of 01{3.
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Lemma 3.6. Let the notation be as in Then the restriction Ltg|r
of Lt to F is conjugate to idg,p x Lt p. Similarly, for p € P, the restriction Ltg, |r
is conjugate to idg,/r X Ltp,.
Proof. Choose a section t: G/F — G for the canonical quotient map, that is, a
function satisfying t,r € gF for all g € G. Let f: G — G/F x F be given by
f(g) = (g *F,gty-1p) for all g € G. Then f is a bijection.

We claim that f implements a conjugacy between Ltg|r and idg,/p xLtp. Given
k € F and g € G, we have

F((Lte)n(g) = f(kg)
= (g_lk_va kgtg_lk_lF)
= (9 ' F kgty-1p)
= (idg/r x Ltr)x(f(g)).

This concludes the proof that Ltg|r is conjugate to idg p x Ltp.
The proof that Ltg, | is conjugate to idg,p X Lt g, is completely analogous, and
is left to the reader. O

Recall the notation u, from [Definition 2.5

Corollary 3.7. Let G be a discrete group, let F' be a subgroup, let P be a set
of pairwise coprime natural numbers, and suppose that F' is separated over P, as
witnessed by a family {H,},cp as in [Definition 3.1} Let P C P be a subset, and
use the notation introduced in [Definition 3.4l Then

uag‘p g@)\p@@@)\pp.

neN neNpeP

In particular, if P is nonempty, then 15 C Uyr |F.

Proof. The first assertion follows immediately from [Lemma 3.6| and part (1) of

If P is nonempty and p € P, then 1¢ C Ag, by !Zemma 1.3|7 and
hence 1¢ C u,z|r by the first part. O

Recall the notation x’* from [Notation 2.10

Lemma 3.8. Let GG be a discrete group, let F' be a subgroup, let P be a set of
pairwise coprime natural numbers, and suppose that F' is separated over P, as

witnessed by a family {H),},ecp as in [Definition 3.1

Let (H,n) be a separable Hilbert space with a distinguished unit vector, let

P C P be a (possibly empty) subset, and let ag be as in |Definition 3.4} Following

Notation 2.10}, we abbreviate /{Z“P to simply %, . Then
G

0
'if,é\F C ugrlp.

Proof. We begin by providing an alternative description of the restriction mfﬂl |F of
G

/-;EIO,Z to F. Find an orthonormal basis {n,: n € N} of H with ny =7, and set
G

F={¢XE - N: {z e XE: &(x) #0} is finite}.
In particular, F contains the function &, which is constantly equal to 0. By
we can identify F with an orthonormal basis for &) r ‘H. Moreover,
such an orthonormal basis of &), . XE ‘H is invariant under the unitary representa-
tion K, |p. Thus, the unitary representation ,r|p induces a (set-theoretic) action
of F' on the countable set F, which is easily seen to be given by

(F5)g(€) = €0 (06)g1
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for all g € F and all £ € F. Observe that & is fixed by this action.

We set Fo = F\ {&} and H(®) = spanFy. Then H(®) is the orthogonal com-
plement of & in @, XE H, and F, is an orthonormal basis for H(?). Moreover,
the set Fy (and hence also the subspace H(?)) is invariant under Kor|r, and the
restriction of r,r|r to HO) is Ii((:g |F.

For £ € Fo, we let [£] denote its F-orbit

€)= {(2)g(©): g € ).

We denote by Go the F-orbit space {[{]: { € Fo} of the action k,z|F of F' on Fo.
For £ € Fo, we write Stabp(¢) for the stabilizer subgroup {g € F': (r,2)4(§) = £}

of F. Since each F-orbit [£] is F-invariant and F' acts transitively on [£], it is easy
to see that

0 ~
(3.2) ﬁg§|F = EB AF/Stabp(£)-
[€]€Yo

Fix &£ € Fo. Then supp(¢) = {x € XE: &(x) # 0} is finite and nonempty.

Claim: If supp(¢) meets one of the copies of G in XE, then AF/Stabp () 15
unitarily contained in \p.

Proof of the claim. Let hq, ..., h, be the elements of such a copy of G that belong
to supp(§). Note that if g € Stabg(£), then supp(€) is invariant under (of),. In
particular, this implies that ghy € {hq,...,h,} and hence there exists j € {1,...,n}
with g = h;hy!. This shows that Stabp(¢) is finite. (In fact, the same argument

shows that Stabg () is finite.) Thus Ap/stab.(e) € Ar by as desired.

Claim: If supp(§) does not meet any of the copies of G in Xg, then Ap/stabp(¢)
s unitarily contained in @pep AR, -
Proof of the claim. Since supp(€) is finite, the set

Pe = {p € P: supp(€£) meets some copy of G, inside X&'}

is also finite. Let pq,...,p, be an enumeration of Pe. Set H = H,, N---N H,,, .
Since H,, is a subgroup of F' for every p € P, we deduce that H C F'. We proceed
to show that H is contained in Stabp(§). For this, let ¢ € H. We need to show
that (kyz)g(§) = € or, equivalently, that £ o (c£),~1 =& Fixz e XE.

If = belongs to some copy of G, then the same is true for (0£),-1(z). In this
case, {((0&)4-1(z)) = &(x) = 0, since supp(€) does not meet any copy of G in XF.

If # belongs to some copy of Gy, for ¢ € P, then the same is true for (¢£),-1 ().
If G, does not meet supp(§), then &((0&),-1(z)) = &(z) = 0. Finally, sup-
pose that G, does meet supp(§). Then ¢ belongs to P¢, and hence H C H,.
Therefore (0&),-1(2) = x since « € Gy = G/Hy, g € Hy, and of, restricted to
G/H, is the canonical left translation action. Since (0£),-1(z) = z, we also have
£((0E)y-1(x)) = &(z). This concludes the proof that & o (6&),-1 = &, and hence
(kop)g(€§) = & We deduce that H C Stabp(¢).

G

Since Hy,, ..., Hp, have finite index in G, the same is true for H by
Applying [Lemma 1.3| with S = Stabp(§) at the first step; and applying part (2) of
Lemma 1.2| at the second step together with property (S.1) in we

get

g

AF/stabp(e) © Ar/H S AR, OB A, C @ AR,
pEP

This concludes the proof of the claim.
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As a consequence of the previous two claims, we have

(3.3) @ AF/Stabg(6) S @ A @ @ @ AR,

[€]€Go neN neN peP

Finally, using at the third step, we conclude that

”%'F = @ AF/Stabg (€) @AF <> EB@AFP S upr|r. 0

[€]€G0 neN neNpeP

Note that only condition (S.1) from [Definition 3.1f was used in the preceding
proof. On the other hand, condition (S.2) will be crucial in the proof of[Lemma 3.10

We define the following order on representations, in terms of weak containment.

Definition 3.9. Let G be a discrete group, and let p: G — U(H,) and v: G —
U(H,) be unitary representations. We set p <g, v if for every finite-dimensional
irreducible subrepresentation 7 of u, one has that m <z v. Moreover, we set p ~g, v
if p <gn v and v <gy .

Lemma 3.10. Let G be a discrete group, let F' be a nonamenable subgroup, let P
be a set of pairwise coprime natural numbers, and suppose that F' is separated over

P, as witnessed by a family {H,},ep as in [Definition 3.1l Let P,Q C P satisfy
U’a'glF <fin 'U/Ué)|F. Then P C Q

Proof. By there are unitary equivalences
vegle = rr o@D, wd gl =D rr s DD,
neN neNpeP neN neNqe@

Fix p € P. We will show that p € Q. If u C Ap, is irreducible and (auto-
matically) finite-dimensional, then p <z u Q| r. Since F is nonamenable and I
is finite-dimensional, by [Lemma 2.19| we cannot have pu <z ®n€N Ap. Therefore
p =<z P,en @qu Ar, by |Pr0p081t10n 2. 17} Since this applies to every irreducible

subrepresentation of Ar,, and Ap, (being finite-dimensional) is equivalent to the
direct sum of its irreducible subrepresentations, it follows that

(34) )\Fp <z @@)\Fq.
neNqeQ

As in [Definition 3.1} we let mg, : C*(F) — B({*(F,)) be the unital homomor-
phism induced by the representation Ap, of F. Similarly, we let 7, : C*(F) —
B(3(Fy)), for ¢ € Q, be the unital homomorphism induced by the representation

Ar, of F. Combining [Lemma 2.18 with (3.4]) at the second step, we get
ﬂkeer = ker @@WH C ker(mp,).

qeQ neNqgeQ
By property (S.2) in [Definition 3.1, we conclude that p € Q. Since p € P is
arbitrary, this shows that P C Q. O

Corollary 3.11. Let the assumptions be as in the preceding lemma. For subsets
P, Q C P, the following assertions are equivalent:

(1) P=0Q;

(2) u P—“ag3

(3) U, P|F ~z U Q|F,
(4) u P|F ~fin U Q|F

Proof. The implications (1) = (2) = (3) = (4) are immediate, while the implication

(4)=(1) is a consequence of [Lemma 3.10 O
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The following lemma is well known; see for example [28) Lemma 1.1]. Recall
that we denote by ® the minimal tensor product of C*-algebras.

Lemma 3.12. Let A and D be unital C*-algebras, and let 7 be a tracial state on
A® D. Let 7p be the tracial state on D given by 7p(d) = 7(1 ® d) for d € D, and
define 74 similarly. If 7p is an extreme tracial state of D, then 7 = 74 ® 7p.

Proof. Fix a positive contraction a € A. It suffices to show that 7(a ® d) =
Ta(a)Tp(d) for all d € D.

If 7(a®1) =0 then 7(a ® d) = 0 for every d € D, since a ® d < a ® (]|d||1) and
7 is order-preserving. We deduce that

T(a®@d)=0=7(a®1)7(1®d) = Ta(a)Tp(d)

for every d € D, as desired.
Assume now that 7(a ® 1) > 0. Define fo, f1: D — C by

fold)=7(a®d) and fi(d)=7((1-a)®d).

for all d € D. Then fy and f; are positive tracial linear functionals on D satisfying

Tp = fo+ f1. Since 7p is an extreme tracial state on D and f; is not zero, we must
have 7p = fo/fo(1). Therefore

Ta(a)mp(d) = fo(1)7p(d) = fo(d) = 7(a @ d),

for all d € D, as desired. This finishes the proof O

In the following lemma, we will use the conventions introduced in|[Notation 2.10)
We denote by 1% the trivial representation of G' on ¢*(N).

Lemma 3.13. Let G be a countable discrete group, let A and D be tracial, sepa-

rable, unital C*-algebras, and assume that D has a unique tracial state 7p which

is not a character. Let G ~? X and G ~* Y be actions of G on countable discrete

spaces X and Y. Suppose that the actions id4 ® 8, p and idg ® B, p are cocycle
D

conjugate. Then u, <z 1¥ @K, ©.

Proof. Set D = XpenD. Let 0: A® D - A® D be an isomorphism and let
u: G — U(A® D) be a cocycle for idy ® Bs,p satisfying

Ad(ug) o (ida ® Bo,p) =00 (ida ® B, p) 007"

for all g € G. Let 7 be a tracial state on A, and set Tp = ),y 7p- Use|Lemma 3.12
to find a tracial state 7/ on A such that (1 ® Tp) 0 = 7/ ® Tp. Note that

- o0 ~ HT,
(3.5) ke (ida) C1F  and  kz,(Bpp) = kp 2,

where the second of these follows from part (1) of [Remark 2.11

By [Proposition 2.23| the action id4 ® 3, p commutant weakly contains u, with
respect to 7p ® 7. Thus [Lemma 2.25|implies that id4 ® B8, p commutant weakly
contains u, with respect to 7’ ® 7p, that is,

(3.6) o <7 KD gz, (14 ® By D))
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In the following, we use for idg ® B,,p at the second step; and
at the fourth step, to get the desired weak containment:

0 .
Uy <7 HEJ(@;D)M((IdA ® B, D)ut)

<z “9@% (ida ® B,,p)

- Rr'®7p (ldA ® 5P’D)
[ HTz(idA) & K7 (6p7D)

(3.5) HE
C 18 ®k, P. [l

Theorem 3.14. Let A and D be tracial, separable, unital C*-algebras, and assume
that D has a unique tracial state which is not a character. Let G be a discrete group
containing a nonamenable subgroup F' which is separated over some set P C N, as
witnessed by a family {H,: p € P}. For non-empty P,Q C P, the following are
equivalent:
(1) P=Q.
(2) ida ® B,z p is conjugate to ida @ B¢ .
: g,
(3) ida ® 505 p is cocycle conjugate to ida ® B e f-
: g,

Proof. The implications (1) = (2) = (3) are trivial. We now prove (3) = (1).
Assume that 505, p ®id4 is cocycle conjugate to Bag’ p ®ida. We abbreviate
D

/@U(;D to K@ s and similarly for its reduced version. Then Uyr <z, 1¥ ® K@ p by

Using this at the first step, we get

(3.7 uag‘p <z (1%O®KJS,D)|Fg1%O®HJS,D|F'
On the other hand, using at the first step, and using at the
second step, we have

~ (0
(3.8) Hag’D|F:l€((7é7D|F€B1FQU(,8|F@1F'
Since 02 = idy X ag, we have Uy =21F® Uy by [Lemma 2.12, In particular,
(3.9) 1% ®ugg|F = u03|p.

Combining these facts, we get

(3.7 (3-8 (3.9
(3.10) Uz |F ’Z 1F ®k,q plr 2 17 @ (u,e|r ®1r) g Uy |F O 1F.

We claim that ugg| F =<fin uag| r; see [Definition 3.9 Let p be an irreducible
finite-dimensional subrepresentation of Ugr|p; We need to show that u <z UyQ |F.
Suppose first that ¢ = 1p. Using that @ is not empty, choose some g € Q. Using

at the last step, we get
p=1r C A/, € uyelr,
as desired. Suppose now that p is not the trivial representation of F'. Then

(3-10) .
pCusrlr <z u,elr ©1F.

Since p is irreducible, by |Proposition 2.17| we have p <z UyQ |F or p <z 1%°. Since

p is not trivial, we must have p <z u_c[r. Since this holds for every irreducible
G
finite-dimensional subrepresentation of Ugr |, we conclude that Ugr |F <fn U Q|F-
G
Reversing the roles of P and @), one shows that UOQ|F ~fn ugg|p, and hence
G

uJGQ|F ~fin Uag|F- By [Corollary 3.11| this implies that P = Q. O
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4. MAIN RESULTS

In this section, we prove Theorem [B] and Theorem [C] from the introduction,
which make significant contributions to part (2) of Conjecture

The following definition, which is standard by now, originates from the work
of Kishimoto [25], and in this form can be found, among others, in the work of
Matui-Sato [26].

Definition 4.1. Let A be a tracial C*-algebra, and let § € Aut(A). We say that
0 is strongly outer if for every tracial state 7 on A satisfying 7 o 6 = 7, the weak
extension 6 € Aut(A") is outer. An action a: G — Aut(A) of a discrete group G
is said to be strongly outer if oy, € Aut(A) is strongly outer for every g € G\ {1}.

We also recall the following definitions from [24].

Definition 4.2. Let G be an infinite, countable group, let A be a unital C*-algebra
with a unique tracial state 7, and let a: G — Aut(A) be an action. Then « is said
to be weak mizing if for every finite subset ' C A and € > 0 there exists g € G
such that |7(aay (b)) — 7(a)7(b)| < € for all a,b € F.

The following fact is well-known and easy to see.

Lemma 4.3. Let G be an infinite, countable group, let D be a unital C*-algebra,
and let G ~? X be an action on a countable set X with a infinite orbits. Denote
by B, p the corresponding generalized Bernoulli shift. Then:

(a) Bo.p is strongly outer. More generally, if A is any C*-algebra and a: G —
Aut(A) is any action, then o ® S, p is strongly outer.
(b) If D has a unique tracial state, then §, p is weak mixing.

Recall from [37, B8] that any strongly self-absorbing C*-algebra D is simple,
nuclear, Z-stable, and satisfies D = @), . D. Moreover, D is finite if and only if it
has a unique tracial state. Moreover, for a countable group G, the Bernoulli shift

Brie,p (see Definition 2.5|) is commonly abbreviated to fSp.

We are now ready to prove Theorem B.

Theorem 4.4. Let G be a countable group, and let D be a finite strongly self-
absorbing C*-algebra. Then the following are equivalent:
(1) G is amenable;

(2) The Bernoulli shift 8p: G ~ Q) .~ D is cocycle conjugate to fp ® idz.

geaG

Proof. That (1) implies (2) is a consequence of Corollary 4.8 in [I3] (and it can also
be deduced from the proof of Theorem 1.1 in [34]). We prove the converse. For
clarity, we write Pt p in place of Sp. Let 7p and 7z be the unique tracial states of
D and Z, respectively. Being unique, they are invariant by any group action on the
respective algebras. Assume that fii,,p ® idz and Py, p are cocycle conjugate;
we will prove that G is amenable.

Let G ~'¥ N be the trivial action. We identify Z with &X),,en £ throughout, so
that 7p is identified with ®,enTp and idz is identified with Biqy,z = id®neNZ‘

Observe that uiq, is the trivial representation of G on ¢%(N), so in particular
Ui, contains the 1-dimensional trivial representation 1g. Applying part (2) of
[Proposition 2.23| with D = Z and A = D, we deduce that B¢, p ®idz = Pri,,p ®
Bidy,z commutant weakly contains uiq, with respect to 7p ® 7z. Thus

1lg C uiqy <7 55233@72)” ((Brre,p ®@1dz)y) -

Since D has a unique tracial state, and since fii,,p is assumed to be cocycle

conjugate to fri,p ® idz, it follows from part (3) of [Lemma 2.25| (applied to
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= 1g) that Bt p commutant weakly contains 1¢ with respect to 7p. Using this

at the first step, and using at the second step, we deduce that
(4.1) 1 =z o, (Bueo. D)) <z 5% (Bee p).

(o

Using [Example 3.5 and particularly (3.1)), there is a conjugacy of actions
(4.2) Prec,0 = Byo p-

O
In the notation of [Lemma 3.8, we take G = F and P = P = (), so that crg = ag is
just Lt xidy. Using part (1) of[Lemma 2.12|at the second step, and the comments

in |[Notation 2.6|at the third step, we get
(4.3) uag = ULte xidy = @uLtG = @)\Gu

neN neN

Using part (2) of |Remark 2.11| at the second step, and using at the

third step, we get

0 =
(4.4) Kyr) (BLee,p) =

D

) 0 [3)
W) By, p) = Ry C gy 2 D e

Combining @ and (4.4), we conclude that 1¢ <z €D, cyy A This implies that
G is amenable by [Lemma 2.19] as desired. O

The theorem above complements the results in [34] and [I3]: while every strongly
outer action of an amenable group on a finite strongly self-absorbing C*-algebra
absorbs the identity on Z tensorially, this result fails for every nonamenable group.
In particular, we deduce a weak version of part (2) of Conjecture any non-
amenable group admits at least two strongly outer actions on D which are not
cocycle conjugate, namely, the Bernoulli shift fp and Sp ® idz.

Our strongest result concerns groups that contain a non-amenable infinitely sep-
arated subgroup.

Theorem 4.5. Let G be a countable group containing a non-amenable infinitely
separated subgroup F', let D be a finite strongly self-absorbing C*-algebra, and let
A be a separable, unital C*-algebra with a trace. Then there exist uncountably
many pairwise non-cocycle conjugate, strongly outer actions of G on A ® D, which
are moreover pointwise asymptotically inner. When A = C, these actions are also
weak mixing.

Proof. By assumption, there exist an infinite set P C N of pairwise coprime num-
bers, and a separated family {Hp},ep of subgroups of F' as in
We use the notation introduced in [Definition 3.41 By [Theorem 3.14] the family
{ids ® 505,D1 P C P is non-empty} consists of pairwise non-cocycle conjugate ac-
tions of G on A®D. Since P is infinite, this family is uncountable. These actions are
strongly outer by and pointwise asymptotically inner by [6], Theorem
2.2]. When A = C, these actions are weak mixing by O

Since Fo is infinitely separated by the above result implies Theo-
rem |C} which is the noncommutative analog of Ioana’s celebrated result [19].

The methods of this paper apply to the case of II; factors as well. In this
case, one defines generalized Bernoulli shifts as in the case of C*-algebras (see

Definition 2.5|), by replacing minimal C*-algebra tensor products with von Neumann
algebra tensor products (with respect to the unique normal tracial state). One

obtains the analogue of for an action of G on a II; factor M by
replacing states with the unique normal tracial state on M, and by replacing the
C*-algebra ultrapower with the von Neumann algebra ultrapower. The rest of the
proofs apply without change in this setting. We thus obtain the following.
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Theorem 4.6. Let G be a countable group containing a nonabelian free group, and
let M be a McDuff IT; factor with separable predual. Then there exist uncountably
many pairwise non-cocycle conjugate, outer actions of G on M. When M = R,
these actions are also weak mixing.

It was shown by Brothier and Vaes [4, Theorem B] that an arbitrary nonamenable
group admits uncountably many pairwise non-cocycle conjugate outer actions on
R. While our conclusions only hold for groups that contain Fy, the actions on R
that we construct are ergodic (in fact, weak mixing), unlike the actions produced
in the proof of [4] Theorem B]|. This naturally raises the following:

Problem 4.7. For a nonamenable group G, construct uncountably many pairwise
non-cocycle conjugate weak mizing outer actions of G on R.

In the measurable setting, Epstein [7] combined Ioana’s result from [19] with
Gaboriau-Lyons’ solution [9] to the von Neumann problem, to show that any non-
amenable group admits a continuum of non-orbit equivalent free, ergodic actions.
In order to prove part (2) of Conjecture |[A] for all nonamenable groups, one could
attempt a similar approach of inducing actions from Fy to any amenable group.
For this approach to work, however, one would need a noncommutative analog of
the result of Gaboriau-Lyons. This suggests the following interesting problem:

Problem 4.8. Is there an analog of Gaboriau-Lyon’s measurable solution to the
von Neumann problem in the context of strongly outer actions on strongly self-
absorbing C*-algebras? And for outer actions on the hyperfinite II; factor?
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