
This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/) 

When citing, please refer to the published version. 

 

 

 

 

 

This is the final peer-reviewed accepted manuscript of:  

Chinni, G. (2022). (SEMI-)GLOBAL ANALYTIC HYPOELLIPTICITY FOR A CLASS OF 
“SUMS OF SQUARES” WHICH FAIL TO BE LOCALLY ANALYTIC 
HYPOELLIPTIC. Proceedings of the American Mathematical Society, 150(12), 5193-
5202 

The final published version is available online at 
https://dx.doi.org/10.1090/proc/14464 

Terms of use: 

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are 
specified in the publishing policy. For all terms of use and more information see the publisher's 
website.   

 

https://cris.unibo.it/
https://dx.doi.org/10.1090/proc/14464
https://dx.doi.org/10.1090/proc/14464


(SEMI-)GLOBAL ANALYTIC HYPOELLIPTICITY FOR A CLASS

OF “SUMS OF SQUARES” WHICH FAIL TO BE LOCALLY

ANALYTIC HYPOELLIPTIC

GREGORIO CHINNI

Abstract. The global and semi-global analytic hypoellipticity on the torus

is proved for two classes of sums of squares operators, introduced in [1] and
[2], satisfying the Hörmander condition and which fail to be neither locally nor

microlocally analytic hypoelliptic.

1. Introduction

Our aim, in this work, is to prove global and semi-global, i.e. local in some variables
and global in others, analytic hypoellipticity on the torus for some models of sums
of squares of vector fields with real valued and real analytic coefficients which satisfy
Hörmander condition, [5].
In two recent papers, [1] and [2], Albano, Bove and Mughetti and Bove and Mughetti
produced and studied the first models of sums of squares operators not consistent
with the (micro-)local Treves conjecture, [9]. They showed that the sufficient part
of the Treves’ conjecture, for details on the subjet see [9], does not hold neither
locally nor microlocally. More precisely, in [1] the authors studied the model

(1.1) P
ABM

(x,D) = D2
1+D2

2+x
2(r−1)
1

(
D2

3+D2
4

)
+ x

2(p−1)
2 D2

3 + x
2(q−1)
2 D2

4 ,

on Ω, open neighborhood of the origin in R4, where r, p and q are positive integers
such that 1 < r < p < q. They showed that even if P

ABM
has a single symplectic

stratum, in meaning of the Poisson-Treves stratification, it is Gevrey hypoelliptic
of order s = r(q − 1)[q − 1 + (r − 1)(p− 1)]−1 and not better.
In [2] the authors investigated the following operator

(1.2) P
BM

(x,D)=D2
1+x

2(r+`−1)
1

(
D2

3 +D2
4

)
+x2`1

(
D2

2 + x
2(p−1)
2 D2

3 + x
2(q−1)
2 D2

4

)
,

on Ω, open neighborhood of the origin in R4, with 1 < r < p < q. They proof
that even if the codimention of the characteristic manifold of P

BM
is 2 and the

related stratification, in the sense of Treves, is made up by two symplectic strata
the operator is not analytic hypoelliptic. It is Gevrey hypoelliptic of order s =
(`+ r)(q − 1)[(q − 1)(`+ 1) + (r − 1)(p− 1)]−1 and not better.
Our purpose will be analyze the global and the semi-global analytic regularity on
the four dimensional torus for two classes of operators which include as particular

Date: November 9, 2018.
2010 Mathematics Subject Classification. 35H10, 35H20, 35B65,35A27.

Key words and phrases. Sums of squares, Global, Semi-global analytic hypoellipticity.
The author is supported by the Austrian Science Fund (FWF), Lise-Meitner position, project

no. M2324-N35.

1
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cases the global version of the operators P
ABM

and P
BM

.
Statement of the results.

Theorem 1.1. Let P1(x,D) =
∑6
j=1X

2
j (x,D) be the operator given by

(1.3) D2
1 +D2

2 + a2(x1)
(
D2

3 +D2
4

)
+ b21(x2)D2

3 + b22(x2)D2
4

on T4 where a, b1 and b2 are real value real analytic functions not identically zero.
Then given any sub-interval I ⊂ T2

x′ , x
′ = (x1, x2), and given any u in D′(I×T2

x′′),
x′′ = (x3, x4), the condition P1u ∈ Cω(I × T2

x′′) implies u ∈ Cω(I × T2
x′′).

Theorem 1.2. Let P1(x,D) be as in (1.3). Assume that a, b1 and b2 are 0 at zero
and the zero order at x2 = 0 of b2 is strictly greater than that of b1. Let I an open
neighborhoods of (x1, x2) = (0, 0) and U a sub-interval of T1

x4
. Then if P1u = f ,

with f real analytic on I × T1
x3
× U then u is analytic on I × T1

x3
× U .

A few remarks are in order.

(a) If we take a(x1) =(sinx1)r−1, b1(x2) =(sinx2)p−1 and b2(x2) =(sinx2)q−1,
with r, p and q positive integers such that 1 < r < p < q, the operator
P1(x,D) is the global version on the torus of the operator P

ABM
, (1.1),

which is not local analytic hypoelliptic.
(b) We point out that if the zero order at 0 of b2 is equal than that of b1 then

the operator P1(x,D) is microlocally anlytic hypoelliptic as showed in [1],
hence also global analytic hypoelliptic. Otherwise if the zero order at 0 of
b2 is smaller than that of b1 then the role of the directions x3 and x4 is
exchanged, i.e. the operator P1(x,D) is locally analytic hypoelliptic with
respect to the variables x1, x2 and x3 but globally analytic hypoelliptic
with respect to the variable x4.

(c) The operator P1, (1.3), belongs to the class studied by Cordaro and Hi-
monas, [3], therefore it is globally analytic hypoelliptic.

For completeness we recall the result proved in [3].

Theorem ([3]). Let P be a sum of squares operator, P =
∑ν

1 Xj, on the torus
TN = Tm × Tn with variables, (x′, x′′), x′ = (x1, . . . , xm), x′′ = (xm+1, . . . , xN )
and

Xj =

n∑
k=1

ajk(x′′)
∂

∂xm+k
+

m∑
k=1

bjk(x′′)
∂

∂xk

are real vector fields with coefficients in Cω (Tn). If the following two conditions
hold:

(i) X1, . . . , Xν and their brackets of length at most r span the tangent space at
every point on TN , i.e. they satisfy the Hörmander condition,

(ii) the vectors
∑n
k=1 ajk(x′′)∂xm+k

span Tx′′(Tn) for every x′′ ∈ Tn,

then the operator P is globally analytic hypoelliptic on TN .

Next we look at the global and semi-global analytic regularity for operators which
are a global version on the four dimensional torus of the operator studied in [2].

Theorem 1.3. Let P2(x,D) =
∑6
j=1X

2
j (x,D) be the operator given by

(1.4) D2
1 + a21(x1)

(
D2

3 +D2
4

)
+ a22(x1)

(
D2

2 + b21(x2)D2
3 + b22(x2)D2

4

)
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on T4, where aj and bj, j = 1, 2, are real valued real analytic functions not identi-
cally zero. We have:

(i) Let x01 be a common zero of a1 and a2 and assume that the zero order at
x01 of a2 is strictly greater than that of a1. Let I1 an open neighborhood of
x01 and I2 a sub-interval of T1

x2
. The condition P2u ∈ Cω(I1 × I2 × T2

x′′),

x′′ = (x3, x4), implies u ∈ Cω(I1 × I2 × T2
x′′).

(ii) Let (x01, x
0
2) be a zero of ai and bi, i = 1, 2, and assume that the zero order

at x01 of a1 is strictly greater than that of a2 and that the zero order at x02 of
b2 is strictly greater than that of b1. Let I an open neighborhood of (x01, x

0
2)

and U a sub-interval of T1
x4

. The condition P2u ∈ Cω(I×T1
x3
×U), implies

u ∈ Cω(I × T1
x3
× U).

Moreover, with the aid of the partition of unity we have:

Corollary 1.1. Let P2(x,D) be as in (1.4). Then the operator P2(x,D) is globally
analytic hypoelliptic on T4.

Some remarks are in order.

(a) If we take a1(x1) = (sinx1)r+`−1, a2(x1) = (sinx1)` b1(x2) = (sinx2)p−1

and b2(x2) = (sinx2)q−1, with r, p, q and ` positive integers such that
1 < r < p < q, the operator P2(x,D) is the global version on the torus of
the operator P

BM
, (1.2), which is not local analytic hypoelliptic.

(b) The operator P2, (1.4), does not belong to the class studied by Cordaro
and Himonas, [3].

(c) Theorem 1.3-(ii): if the zero order at x02 of b2 is equal than that of b1 then
the operator P2(x,D) is microlocally anlytic hypoelliptic as showed in [2],
hence also global analytic hypoelliptic. Otherwise if the zero order at x02
of b2 is smaller than that of b1 then the role of the directions x3 and x4 is
exchanged, i.e. the operator P2(x,D) is locally analytic with respect to the
variables x1, x2 and x3 and globally analytic with respect to the variable
x4.

Remark. The results obtained are “consistent” with the global version of the Treves
conjecture, [9]. In both case the (semi-)global analytic hypoellipticity is due to
the fact that the bicharacteristic leaf of the missing stratum, see Remark 2.1[2],

Σ̃ = {(0, 0, x3, x4; 0, 0, 0, ξ4)|ξ4 6= 0} is compact.

The interest in this work was inspired by the seminal works of Cordaro and Hi-
monas, [3] and [4], and Tartakoff, [8]. To obtain the results we will follows the ideas
in [3], proof of the Theorem 1.1, and the ideas in [8], proof of the Theorems 1.2 and
1.3.

2. Proof of the theorem 1.1

Without loss of generality we assume that x′ = (0, 0) is a zero for the functions
a, b1 and b2, I .

= I1×I2 = ]− δ1, δ1[×]− δ2, δ2[, δi > 0, a(x1) 6= 0 for x1 ∈ I1 \ {0}
and bj(x2) 6= 0 for x2 ∈ I2 \ {0}, j = 1, 2. By Hörmander theorem, [5], P1

is hypoelliptic, therefore we can assume u ∈ C∞(I × T2
x′′). Taking the Fourier
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transform with respect to x′′ we have

P̂2u(x′, ξ′′)=D̂2
1u(x′, ξ′′)+D̂2

2u(x′, ξ′′)+
[
a2(x1)|ξ′′|2+ b21(x2)ξ23 + b22(x2)ξ24

]
û(x′, ξ′′).

We multiply by ¯̂u and integrate in I:∫
I
P̂1u(x′, ξ′′)¯̂u(x′, ξ′′)dx′ =

∫
I

(
(∂̂21u)(x′, ξ′′) + (∂̂22u)(x′, ξ′′)

)
¯̂u(x′, ξ′′)dx′

+

∫
I

[
a2(x1)|ξ′′|2 + b21(x2)ξ23 + b22(x2)ξ24

]
|û(x′, ξ′′)|2dx′.

We have∫
I

[
a2(x1)|ξ′′|2 + b21(x2)ξ23 + b22(x2)ξ24

]
|û(x′, ξ′′)|2dx′ +

∫
I
|ûx1

(x′, ξ′′)|2dx′(2.1)

+

∫
I
|ûx2(x′, ξ′′)|2dx′ =

∫
I1
ûx2(x′, ξ′′)¯̂u(x′, ξ′′)

∣∣∣x2=δ2

x2=−δ2
dx2

+

∫
I2
ûx1

(x′, ξ′′)¯̂u(x′, ξ′′)
∣∣∣x1=δ1

x1=−δ1
dx2

∫
I
P̂2u(x′, ξ′′)¯̂u(x′, ξ′′)dx′,

where ûxi

.
= ∂̂iu, i = 1, 2. Since Pu ∈ Cω(I × T2

x′′) and P is elliptic away from

(0, 0) we can estimate the left hand side of the above equality by Ce−ε|ξ
′′|, with C

and ε suitable positive constants.
In order to complete the proof we need of an analogous, in two variable, of the
Lemma 4.1 in [3].

Lemma 2.1. For f ∈ C∞(I) let

‖f‖2g =

∫
I
g2(x′)|f(x′)|2dx′ +

∫
I
|(∂1f)(x′)|2 + |(∂2f)(x′)|2 dx′,

where g is a real analytic function on I not identically zero such that g(0) = 0 and
g(x′) 6= 0 for every x′ ∈ I \ {0}. Then there is a positive constant depending on g
such that

‖f‖20 ≤ C‖f‖2g.(2.2)

Proof. We have

f(x1, x2) = f(y1, y2) +

∫ x2

y1

(∂2f)(y1, t2) dt2 +

∫ x1

y1

(∂1f)(t1, x2) dt1.

Since g(y′) 6= 0 for every y′ ∈ I \ {0}, there exists α > 0 on ] δ12 , δ1×] δ12 , δ2[ such

that g2(y′) > α2, we have

|f(x1, x2)|2≤C

(∫
I
g2(y′)|f(y′)|2 dy′+

∫
I
(∂2f)(y1, t2) dt2 dy1+

∫ δ1

−δ1
(∂1f)(t1, x2) dt1

)
,

where C depends on α, δ1 and δ2. By integrating the above inequality on I with
respect to x′ we obtain (2.2). �

Applying the above Lemma with f(x′) = û(x′, ξ′′) and g2(x′) = a2(x1)|ξ′′|2 +
b21(x2)ξ23 + b22(x2)ξ24 , ξ′′ 6= 0, we can estimate from below the right hand side of
(2.1), equal to ‖û(·, ξ′′)‖2g, with ‖û(·, ξ′′)‖2 . We have

(2.3) ‖û(·, ξ′′)‖0 ≤ Ce−ε|ξ
′′|, ξ′′ ∈ Z2,
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where C and ε are suitable positive constants.
Let φ ∈ C∞0 (I) with φ ≡ 1 in I1, I1 neighborhood of the origin compactly contained
in I. Let u1(x′, x′′) = φ(x′)u(x′, x′′), we have

|û1(ξ′, ξ′′)| =
∣∣∣ ∫

T2
x′

e−i〈x
′,ξ′〉û1(x′, ξ′′) dt

∣∣∣C1 ≤ ‖û(·, ξ′′)‖0 ≤ C2e
−ε1|ξ|,

for every (ξ′, ξ′′) ∈ Z4 with |ξ′′| 6= 0 and |ξ′| < c|ξ′′|, c > 0. This shows that the
points of the form (x′, x′′, ξ′, ξ′′) ∈ T ∗(I × T2

x′′) \ {0} with ξ′′ 6= 0 and |ξ′| < c|ξ′′|
do not belong to WFa(u), the analytic wave front set of u. Therefore there is no
points in Char(P1), the characteristic variety of P1, which belong to WFa(u). By
the Theorem 8.6.1 in [6] we conclude that the analytic wave front set of u is empty.

3. Proof of the theorem 1.2

Since the vector fields X1, . . . , X6 satisfy the Hörmander condition, [5], P1 is hy-
poelliptic. Furthermore with the aid of the partition of unity the operator P1

satisfies the following subelliptic a priori estimate:

(3.1) ‖u‖21
r

+

6∑
j=1

‖Xju‖2 ≤ C|〈P1u, u〉|+ CN+1‖u‖2
−N
,

for every N ∈ Z+. Here u is a smooth function on I × Tx3
× U with compact

support with respect to x1, x2 and x4. ‖ · ‖s denotes the Sobolev norm of order
s and r the length of the iterated commutator such that the vector fields, their
commutators, their triple commutators etcetera up to the commutators of length
r generate a Lie algebra of dimension equal to that of the ambient space. More
precisely r − 1 is the minimum between the zero order at 0 of a and that at 0 of
b1. The above estimate was proved first by Hörmander in [5] for a Sobolev norm of
order r−1 + ε and up to order r−1 subsequently by Rothschild and Stein [7].
To achieve the result, we want show the analytic growth of high order derivatives
of the solutions in L2-norm. As a matter of fact we estimate a suitable localization
of a high derivative of the solutions using (3.1).
Let φN (x1, x2, x4) be a cutoff function of Ehrenpreis-Hörmander type: φN in
C∞0 (I × U) non negative such that φN ≡ 1 on U0, U0 neighborhood of the ori-
gin compactly contained in I × U , and exist a constant C such that for every
|α| ≤ 2N we have |DαφN (x)| ≤ Cα+1Nα, α ∈ Z3.
We may assume that φN is independent of the x1 and x2-variable: every x1, x2-
derivative landing on φN would leave a cut off function supported where x1 or x2
is bounded away from zero, where the operator is elliptic. As in [8], to gain the
result we have to show the analytic growth of φND

N
j u, j = 1, 2, 3, 4, via (3.1). It

will be sufficient analyze the direction D4. As matter of fact D3 commutes with P1

and, moreover, following the same strategy employed to analyze the case D4, we
can transform powers of D1 and D2 in powers of D3 and D4.
We replace u in (3.1) by φND

N
4 u. We have

‖φNDN
4 u‖21/r +

6∑
j=1

‖XjφND
N
4 u‖2 ≤ C |〈P1φND

N
4 u, φND

N
4 u〉|(3.2)

+ CN+1‖φNDN
4 u‖−N

.
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The last term on the right hand side gives analytic growth. The scalar product:

〈φNDN
4 P1u, φND

N
4 u〉+

6∑
j=1

〈[X2
j , φND

N
4 ]u, φND

N
4 u〉

= 2

6∑
j=1

〈[Xj , φND
N
4 ]u,XjφND

N
4 u〉+

6∑
j=1

〈[Xj , [Xj , φND
N
4 ]]u, φND

N
4 u〉

+ 〈φNDN
4 P2u, φND

N
4 u〉.

With regard to the last scalar product on the right hand side we have

|〈φNDN
4 P1u, φND

N
4 u〉| ≤

(
1

2C

)
‖φNDN

4 u‖21
r

+ (2C)
rN ‖ϕiφNDN

4 u‖2−N

+ ‖φNDN
4 P2u‖2.

The last two terms give analytic growth, P1u ∈ Cω; the first one can be absorbed
on the left hand side of (3.2).
Since φN depend only by x4 we have to analyze the commutators with, X3, and
X6. Since the same strategy can be used to handle the case involving X3 and X6,
we will give the details only of the case X3. We have

2|〈[X3, φND
N
4 ]u,X3φND

N
4 u〉|+ |〈[X3, [X3, φND

N
4 ]]u, φND

N
4 u〉|(3.3)

= 2|〈a1φ(1)N DN
4 u,X3φND

N
4 u〉|+ |〈a21φ

(2)
N DN

4 u, φND
N
4 u〉|.

The first term can be estimate by

|〈a1φ(1)N DN
4 u,X3ϕND

N
4 u〉| ≤

N∑
j=1

Cj‖X3φ
(j)
N DN−j

4 u‖2 +

N+1∑
j=1

1

Cj
‖X3φND

N
4 u‖2

+ CN+1‖φ(N+1)
N u‖2,

The constants Cj are arbitrary, we make the choice Cj = ε−12j , ε suitable small

positive constant. The terms of the form C−1j ‖X3φND
N
4 u‖2 can be absorbed on the

right hand side of (3.2). The last term gives analytic growth. Finally we observe
that the terms in the first sum have the same form as ‖X3φND

N
4 u‖2 where one or

more x4-derivatives have been shifted from u to φN ; on these terms we can take
maximal advantage from the sub-elliptic estimate restarting the process.
With regard to the second term on the right hand side of (3.3) we have

|〈a21φ
(2)
N DN

4 u, φND
N
4 u〉| ≤

1

2N2
‖X3φ

(2)
N DN−1

4 u‖2 +
N2

2
‖X3φND

N−1
4 u‖2

+ |〈a1φ(2)N DN−1
3 u,X3φ

(1)
N DN−1

4 u〉|

+ |〈N−1a1φ(3)N DN−1
4 u,NX3φND

N−1
4 u〉|

+ |〈a21φ
(3)
N DN−1

4 u, φ
(1)
N DN−1

4 u〉|.
On the first two terms we can take maximal advantage from the sub-elliptic estimate
restarting the process. The “ weight” N introduced above helps to balance the
number of x4-derivatives on u with the number of derivatives on φN , we take the

factor N as a derivative on φN and N−1φ
(2)
N as φ

(1)
N . The second and the third

terms have the same form of the first term on the right hand side of (3.3), the third
one with the help of the weight N ; we can handled both in the same way. The last
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term is the same of the left hand side in which one x4-derivative has been shifted
from u to φN on both side. Restarting the process we can estimate the left hand
side of the above inequality by

1

2N2

N∑
j=1

‖X3φ
(j+1)
N DN−j

4 u‖2 +
N2

2

N∑
j=1

‖X3φ
(j−1)
N DN−j

4 u‖2

+

N∑
j=1

N∑
`=j

‖X3φ
(N−`+j+1)
N D`−j

4 u‖2 +

N∑
j=1

2j+1‖X3φ
(N−j+1)
N Dj−1

4 u‖2

+
1

N2

N∑
j=1

N∑
`=j

‖X3φ
(N−`+j+2)
N D`−j

4 u‖2 +N2
N∑
j=1

Cj+1‖X3φ
(N−j)
N Dj−1

4 u‖2

+ 2N+1
(
‖a1φ(N+1)

N u‖2 + ‖a1φ(N+2)
N u‖2

)
+ ‖a1φ(N)

N u‖2.

The last terms give analytic growth, the others, in the sums, have the same form
as ‖X3φND

N
4 u‖2, we can restart the process without the help of the sub-ellipticity.

Therefore at any step of the process we obtain or terms which give analytic growth
or terms from which we can take maximum advantage from the sub-elliptic estimate.
We can conclude

‖φNDN
4 u‖21/r +

6∑
j=1

‖XjφND
N
4 u‖2 ≤ CN+1(N)2N ,

where C is independent by N but depends on u and a1. This conclude the proof.

4. Proof of the theorem 1.3

Part (i), Theorem 1.3. Without loss of generality we assume that x01 = 0 and
I1×I2 is a neighborhood of the point x′ = (0, 0). Since the vector fields X1, . . . , X6

satisfy the Hörmander condition P2 is hypoelliptic, it has the following sub-elliptic
estimate:

‖u‖21/r +

6∑
j=1

‖Xju‖2 ≤ C
(
|〈P2u, u〉|+ ‖u‖20

)
,(4.1)

where u is a smooth function on I1 ×I2 ×T2
x′′ with compact support with respect

to x′. Here r − 1 is the zero order at 0 of a2.
As in the proof of the Theorem 1.2 the result will be achieved via the L2 estimate
of suitable localizations of high derivatives of the solutions. Even if not strictly
necessary in this situation we will follow a little bit different strategy which will
involve the partition of unity, as done in [8]. This more general approach would al-
low us, without particular technical efforts, to extend the results to a more general
setting in which the two-dimensional torus is replaced by a compact real analytic
manifold, M , without boundary and the vector fields D3 and D4 are replaced by a
couple of real analytic vector fields X3 and X4 on M such that they span TM at
each point.
Let φN (x2) be a cutoff function of Ehrenpreis-Hörmander type. φN is taken inde-
pendent of the x1-variable since every x1-derivative landing on φN would leave a
cut off function supported where x1 is bounded away from zero, where the operator
is elliptic.
Let {Vj} be a finite covering of T2

x′′ , j = 1, . . . , k, and {ϕj} a partition of unity
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subordinate to to such a cover, ϕj ∈ C∞0 (Vj), ϕj ≥ 0 and
∑
ϕj = 1.

We replace u in (4.1) by ϕj(x3, x4)φN (x2)DN
2 u. We have

‖ϕjφNDN
2 u‖21

r
+

6∑
i=1

‖XiϕjφND
N
2 u‖20 ≤ C|〈P2ϕjφND

N
2 u, ϕjφND

N
2 u〉|(4.2)

+ CN+1‖ϕjφNDN
2 u‖2−N .

The last term on the right hand side gives analytic growth. As done in the proof
of the Theorem 1.2 we have to handle the scalar product on the right hand side,
more precisely we have to study terms of type

〈[Xi, ϕjφND
N
2 ]u,XiϕjφND

N
2 u〉, 〈[Xi, [Xi, ϕjφND

N
2 ]]u, ϕjφND

N
2 u〉,

i = 2, . . . , 6. The case X4 = a2(x1)D2 can handled following the same strategy used
in the proof of Theorem 1.2, see (3.3), in this case we can take maximal advantage
from the sub-elliptic estimate, therefore it gives analytic growth. Concerning the
other cases it is sufficient study the case X2 = a1(x1)D3, the remaining cases can
be handled following the same strategy 1. We have to estimate

2|〈a1ϕ(1)
j φND

N
2 u,X2ϕjφND

N
2 u〉|+ |〈a21ϕ

(2)
j φND

N
2 u, ϕjφND

N
2 u〉|

.
= I1 + I2,(4.3)

where ϕ
(`)
j = ∂

`

3ϕj . Here we can not take maximum advantage from the sub-elliptic
estimate. In the local case would be this term which would give Gevrey growth.
The argument that we will use to handle these two terms is the reason because the
results is global and not local with respect to the x3-variable. We have

I1 ≤ 4C‖a1ϕ(1)
j φND

N
2 u‖2 +

1

4C
‖X2ϕjφND

N
2 u‖2(4.4)

≤ 4C‖a1‖2∞ sup
j
‖ϕ(1)

j ‖
2
∞‖φNDN

2 u‖2 +
1

4C
‖X2ϕjφND

N
2 u‖2

≤ 4C‖a1‖2∞ sup
j
‖ϕ(1)

j ‖
2
∞C1

k∑
j=1

‖ϕjφNDN
2 u‖21/r +

1

4C
‖X2ϕjφND

N
2 u‖2

+ 4C‖a1‖2∞ sup
j
‖ϕ(1)

j ‖
2
∞C

−rN
1

k∑
j=1

‖ϕjφNDN
2 u‖2−N ,

where the constant C1 is arbitrary. The second term on the right hand side can
be absorbed on the left hand side of (4.2), the last one gives analytic growth. The
term I2 in (4.3) can be estimate by

‖a21‖2∞ sup
i
‖ϕ(2)

i ‖
2
∞

C2

k∑
j=1

‖ϕjφNDN
2 u‖21/r + C−rN2

k∑
i=1

‖ϕjφNDN
2 u‖2−N


(4.5)

+
1

2C
‖ϕjφNDN

2 u‖21/r + (2C)rN‖ϕjφNDN
2 u‖2−N ,

where the constant C2 is arbitrary. The last term gives analytic growth and the
second to last can be absorbed on the left hand side of (4.2). Summing (4.2) over

1We remark that the terms involving the fields X5 and X6 could be handled taking maxi-

mum advantage from the sub-elliptic estimate, this could be done choosing a partition of unity
subordinate to the cover, whose elements are cutoff functions of Ehrenpreis-Hörmander type.
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j and choosing C1 and C2 small enough so that the first term in (4.4) and the first
one in (4.5) can be absorbed on the left, we can conclude

‖φNDN
2 u‖21/r +

6∑
j=1

‖XjφND
N
2 u‖2 ≤ CN+1(N)2N ,

where C is independent by N but depends on u. This conclude the proof.
Part (ii), Theorem 1.3. We can assume that (x01, x

0
2) = (0, 0) and U is an open

neighborhood of the zero. Since the vector fields satisfy the Hörmander condition
at the step r, for some r ∈ Z+, the following a priori estimate holds:

(4.6) ‖u‖21
r

+

6∑
j=1

‖Xju‖20 ≤ C
(
|〈P2u, u〉|+ CN‖u‖2−N

)
, ∀N ∈ Z+.

Here u is a smooth function on I × Tx3
× U with compact support with respect

to x1, x2 and x4. The result is obtained via estimate of suitable localization of
high derivatives, that is estimating φN (x4)DN

4 u through (4.6). We will not give the
details since the proof can be easily archived following the same strategies used in
the proofs of the Theorem 1.2 and Theorem 1.3-(i). We only remark that the cutoff
function of Ehrenpreis-Hörmander type, φN , can be assumed independent of the x1
and x2-variable: every x1-derivative landing on φN would leave a cut off function
supported where x1 is bounded away from zero, where the operator is elliptic; every
x2-derivative landing on φN would leave a cut off function supported where x2 is
bounded away from zero, in this region the operator P2 behaves like the operator
D2

1 + a22(x1)
(
D2

2 +D2
3 +D2

4

)
+ a21(x1)

(
D2

3 +D2
4

)
, which is (micro-)locally analytic

hypoelliptic, therefore (semi-)globally analytic hypoelliptic.
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6. L. Hörmander, The analysis of linear partial differential operators. I. Distribution theory and
Fourier analysis. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles

of Mathematical Sciences], 256. Springer-Verlag, Berlin, 1983. ix+391 pp.

7. L. Preiss Rothschild and E. M. Stein, Hypoelliptic differential operators and nilpotent
groups, Acta Math. 137 (1976), 247-320.

8. D.S. Tartakoff, Global (and local) analyticity for second order operators constructed from
rigid vector felds on products of tori, Trans. Amer. Math. Soc., 348 (1996), 2577–2583.

9. F. Treves, On the analyticity of solutions of sums of squares of vector fields, Phase space

analysis of partial differential equations, 315-329, Progr. Nonlinear Differential Equations
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