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Abstract 

Over the past two decades, the global efforts for the early detection and intervention of prostate cancer seem 
to have made significant progresses in the basic researches, but the clinic outcomes have been disappointing: (1) 
prostate cancer is still the most common non-cutaneous cancer in Europe in men, (2) the age-standardized 
prostate cancer rate has increased in nearly all Asian and African countries, (3) the proportion of advanced 
cancers at the diagnosis has increased to 8.2% from 3.9% in the USA, (4) the worldwide use of PSA testing and 
digital rectal examination have failed to reduce the prostate cancer mortality, and (5) there is still no effective 
preventive method to significantly reduce the development, invasion, and metastasis of prostate cancer… 
Together, these facts strongly suggest that the global efforts during the past appear to be not in a correlated 
target with markedly inconsistent basic research and clinic outcomes. The most likely cause for the 
inconsistence appears due to the fact that basic scientific studies are traditionally conducted on the cell lines 
and animal models, where it is impossible to completely reflect or replicate the in vivo status. Thus, we would 
like to propose the human prostate basal cell layer (PBCL) as “the most effective target for the early detection 
and intervention of prostate cancer”. Our proposal is based on the morphologic, immunohistochemical and 
molecular evidence from our recent studies of normal and cancerous human prostate tissues with detailed 
clinic follow-up data. We believe that the human tissue-derived basic research data may provide a more 
realistic roadmap to guide the clinic practice and to avoid the potential misleading from in vitro and animal 
studies.  
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genes or oncogenes, tumor regulatory drivers or 
nominate novel transcription factors, phosphoryla-
tion, glycosylation, ubiquitination, acetylation, lipida-
tion, bacterial or viral infections, dietary compounds, 
or changes in testosterone-estradiol ratio…, have been 
added to the list of risk factors for prostate carcino-
genesis and progression [1-21]. Concurrently, a wide 
variety of detection and intervention methods, 
including artificial intelligence or nanotechnology 
-based devices, MRI-guided biopsy, bispecific 
antibodies, cancer vaccines, cytokine inhibitions, 
chimeric antigen receptor T-cells, immune checkpoint 
inhibition, high-intensity focal ultrasound, focal 
cryotherapy, photodynamic therapy, different sources 
of energy-based focal therapy, focal laser ablation, 
irreversible electroporation, DNA PSA-specific 
aptamers…, have been developed for clinic 
applications [22-32].  

Unfortunately, the outcomes of global efforts for 
the early detection and intervention of prostate cancer 
are disappointing: (1) prostate cancer is still the most 
common cancer in Europe in man, (2) the prostate 
cancer incidence has increased in nearly all African 
and Asian countries, (3) the proportion of advanced 
cancers at diagnosis has increased from 3.9% to 8.2% 
in the US, (4) the worldwide use of PSA testing and 
digital rectal examination has failed to reduce prostate 

cancer mortality, and thus, is no longer recommended 
[33-44], and (5) there is still no effective preventive 
method to reduce the incidence, invasion, and 
metastasis of prostate cancer [22-32].  

Together, these facts suggest that global efforts 
during the past appear to be not in a correlated target. 
The most likely cause appears due to the fact that 
basic scientific studies are traditionally conducted on 
the cell lines and animal models, which are impossible 
to completely reflect or replicate the in vivo status. 
Thus, we propose the prostate basal cell layer (PBCL) 
as “the most effective target for the early detection 
and intervention of prostate cancer” for the following 
reasons.  

The PBCL is an essential component of 
the prostate gland 

The human prostate gland consists of three 
components: the epithelium, capsule, and stroma. The 
epithelium is completely encircled by the capsule (a 
single layer of PBCL) and the basement membrane 
(BM, a thin sheet of extracellular fibers), and the 
stroma. Therefore, prostate cancer cells have to first 
pass through the PBCL and then BM to invade to the 
stroma [45-49] (Figure 1). 

 

 
Figure 1: Structural relationships of prostate gland tissue components. Formalin-fixed and paraffin-embedded human prostate gland tissue sections were double immune-stained, 
1A and 1B with antibodies to smooth muscle actin (SMA) that is reactive to the basement membrane (BM), smooth muscle, and endothelial cells, and CK34βE12, which is reactive to PBCL; 
1C and 1D with SMA plus p63, which is reactive to PBCL. EP = Epithelium.  
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The PBCL is the source of several tumor 
suppressors 

The PBCL produces several tumor suppressors, 
including Maspin and p63 [50-54] that exert 
significant regulatory functions on adjacent epithelial 
cells (Figure 2).  

The focal PBCL degeneration is a 
triggering factor for tumor progression 

The detailed dynamic cellular kinetics of the 
human prostate basal cell population remains elusive 
[55-61]. However, distinct senescence or degenerative 

changes of PBCL are frequently seen in some of 
normal and malignant prostate tissues. These changes 
include: focal disruptions (defined as the absence of 
basal cells resulting in a gap larger than the combined 
size of at least three basal cells in at least two or more 
consecutive sections), the loss of nuclear p63 
expression, nuclear swelling, cell debris, and large 
clusters of cell debris. Luminal cells overlying focally 
disrupted PBCL often show markedly higher cellular 
density, proliferation rate, and morphology compared 
to those from their counterparts overlying non- 
disrupted PBCL (Figure 3).  

 
Figure 2. Expression of tumor suppressors p63 and Maspin in PBCL. Formalin-fixed and paraffin-embedded human prostate gland sections were double immune-stained, 2A with 
CK34βE12 (red) and p63 (black); 2B with Maspin (red) and p63 (black). Please note that the normal PBCL is continuous and the basal cells express a high level of Maspin and p63. PBCL = 
Prostate basal cell layer. EP = Epithelium. 

 
Figure 3. Focal PBCL senescence or degenerative changes. Formalin-fixed and paraffin-embedded human prostate gland tissue sections were double immune-stained (see the detailed 
labeling within individual figures). Circles identify focal PBCL disruptions; Squares identify large clusters of basal cell debris; Thick arrows in A and B identify basal cells with the loss of nuclear 
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p63 expression; Thin arrows identify the residual PBCL; Red stars identify invasive lesions. Please note that the size of the focal disruptions in PBCL varies substantially, and that the epithelial 
cells overlying focally disrupted PBCL are morphologically more similar to the adjacent invasive cancer cells with a higher proliferation rate than their adjacent counterparts still enclosed by 
the residual PBCL.  

 
 

The focal PBCL disruption is absolutely 
needed for tumor invasion 

Our previous studies have consistently 
demonstrated that a focal disruption in a given PBCL 
is absolutely needed for the initiation of cancer 
invasion [62-68]. If the surrounding FBCL is intact, 
such tumors can grow to a very large size, but may 
remain at non-invasive state for many years (Figure 
4A and 4B). In a sharp contrast, if the surrounding 
FBCL is focally disrupted, the cancer invasion could 

commence at a very early stage, despite a very small 
size (Figure 4C-4F). Double immunochemical staining 
with the cell proliferation specific marker Ki-67 and 
the PBCL specific marker CK34βE12 reveals that all 
invasion starts at the site of focal PBCL disruptions 
and a vast majority of proliferating cells are located at 
or near the site of focal PBCL disruptions. The 
“budding cells” from focally disrupted PBCL are 
often immediately adjacent to or in a direct continuity 
with the invasive cancer cells (Figure 4C-4F). 

 
 

 
Figure 4. Focal PBCL disruptions and cancer invasion. Formalin-fixed and paraffin-embedded human prostate gland tissue sections were double immune-stained with several 
antibodies (see labeling within each individual picture). Circles identify focal disruptions in PBCL and the overlying epithelial cells. Thick arrows identify the normal or residual PBCL Thin 
arrows identify proliferating cells. Red starts identify invasive lesions. Please note that the budding cells overlying focally disrupted PBCL have a significantly higher proliferation rate than their 
counterparts enclosed by the residual PBCL, and that budding cells are immediately adjacent to or in a direct continuity with invasive lesions.  
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Selective gene expression profiling of micro- 
dissected human prostate gland tissue samples has 
consistently shown that cell clusters overlying focally 
disrupted PBCL have a significantly higher 
expression level of cell growth- and invasion-related 
molecules, including growth factors, stem cell lineage 
markers, anti-apoptosis-related genes, and endo-
thelial cell makers than their morphologically similar 
counterparts enclosed by the residual PBCL [66] 
(Figure 5).  

The PBCL itself is the target of a variety 
of pathologic alterations 

It has been consistently documented that 
prostate basal cell carcinoma is very rare, accounting 
for only about 0.01% of the total prostate malignancies 
[69-73], which strongly suggests that the prostate 
basal cell population is very unlikely to be a major 
target of the prostate carcinogenesis. However, it has 
also been consistently demonstrated that the PBCL 
belongs to a self-renewal cell population [74-80]. For 
this and other reasons, the PBCL population itself also 
frequently suffers from a variety of degeneration- and 
regeneration-related pathologic alterations that 
includes, but is not limited to the following:  

The loss or significant reduction of nuclear p63 
expression in normal appearing PBCL 

In autopsy, biopsy, and surgically resected 

human prostate gland tissues, a vast majority of the 
basal cells in normal or hyperplastic tissues are not 
only morphologically distinct, but also express a high 
level of p63 and Maspin, two well-documented tumor 
suppressors (Figure 6A-6B). However, about 6% to 8% 
of the cases harbor variable numbers of morpholo-
gically normal appearing basal cell clusters that are 
completely devoid of, or have a significantly reduced 
cells with p63 nuclear expression (Figure 6C-6D). 
Prostate cancer patients with such atypical basal cell 
clusters have a significantly more aggressive clinical 
courses and worse prognosis [81].  

The loss of the expression of all PBCL specific 
markers 

About 6% to 8% of the autopsy, biopsy, and 
surgically resected human prostate tissues also harbor 
a variable number of atypical pre-invasive cancer cell 
clusters, in which all the basal cell layers are largely 
non-disrupted and morphologically distinct, whereas 
they completely lack the expression of CK34βE12, 
p63, and Maspin. They are even completely devoid of 
the expression of the proliferating cell nuclear antigen 
(PCNA). These pre-invasive cancer cells enclosed by 
such PBCL are morphologically and immunohisto-
chemically similar to adjacent invasive cancer cells, 
and have a significantly higher proliferation rate than 
their adjacent counterparts at the same stage [81] 
(Figure 7).  

 

 
Figure 5. Gene expression profiling of cells overlying focally disrupted and enclosed by residual PBCL. Formalin-fixed and paraffin-embedded human prostate gland 
tissue sections were double immune-stained with antibodies for SMA and Ki-67. Thick arrows identify residual PBCL. Thin arrows identify proliferating epithelial cells. The square 
identifies epithelial cells overlying focally disrupted FBCL, and the circle identifies epithelial cells enclosed by the residual FBCL micro-dissected for gene expression profiling. Please note that 
morphologically comparable epithelial cells overlying focally disrupted PBCL and enclosed by the residual PBCL have different profiles of the gene expression.  
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Figure 6. Significantly reduced basal cell numbers of p63 expression in normal appearing PBCL. Formalin-fixed and paraffin-embedded human prostate gland tissue sections 
from two different biopsies with morphologically normal appearing basal cell layers associated with a morphologically normal appearing epithelial cell population were double immune-stained 
with p63 and Maspin. In the cases one, a vast majority of the normal appearing basal cells display the distinct expression of p63 within the cell nuclei. However, in a sharp contrast in the case 
two, only around 1-3% of the normal appearing basal cells show the normal localization of p63 expression within the cell nuclei. Circles identify normal appearing basal cells in the case 2, which 
display a high level of Maspin expression within the cell cytoplasm, whereas they are completely devoid of p63 expression within the cell nuclei despite the fact that the nuclei of these basal 
cells are clearly visible. 6B and 6D are the higher magnification of 6A and 6C, respectively. 

 
Figure 7. The lack of all basal cell markers in the PBCL of pre-invasive prostate cancer clusters. Formalin-fixed and paraffin-embedded consecutive human prostate gland tissue 
sections from one case were subjected to H&E staining (7A-7B) and IHC staining (7C-7F) for different biomarkers (see detailed labeling within each individual picture). Red starts identify 
invasive lesions. Thin arrows identify atypical basal cells. Thick arrows identify normal basal cells. Please note that the PBCL overlying a walnut-like tumor nest is morphologically distinct in both 
H&E and IHC stained sections, but all basal cells are completely devoid of the expression of CK34βE12, p63, and Maspin. In addition, these morphologically distinct basal cells are also 
completely devoid of the expression of proliferating cell nuclear antigen (PCNA), in a sharp contrast to the enclosed epithelial cells, which are all strongly immunoreactive to PCNA.  
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Frequent apoptosis-related alterations 
 Distinct apoptosis-related alterations of basal 

cells are frequently seen in focally disrupted PBCL. 
Immunohistochemistry-based apoptotic assays 
clearly demonstrate that a vast majority of focally 
degenerated basal cells show high levels of 
apoptosis-related molecules. All apoptotic basal cells 
are physically located at or near focally disrupted 
PBCL. Epithelial cells adjacent to apoptotic basal cells 

have a much higher cell density than their adjacent 
counterparts (Figure 8). 

The significant infiltration of immune cells 
Degenerated basal cell products appear to act as 

cytokines to attract infiltration of immune-reactive 
cells to the physical sites of focally disrupted PBCL, 
and infiltrated lymphocytes are generally associated 
with cell debris or morphologically degenerated basal 
cells (Figure 9).  

 
Figure 8. Apoptosis-related alterations in degenerated basal cells. Formalin-fixed and paraffin-embedded human prostate gland tissue sections were subjected to the apoptotic assays 
with a commercially available detection kit, and then, were immune-stained for CK34βE12 to elucidate PBCL. Arrows identify PBCL. Squares identify apoptotic basal cells. Circles identify 
epithelial cells overlying or near the focally disrupted PBCL.  

 
Figure 9. Physical association of infiltrating immune cells with degenerated basal cells. Formalin-fixed and paraffin-embedded human prostate tissue sections from four different 
cases were subjected to double IHC staining with the basal specific marker CK34βE12 and infiltrating immune cell marker (leukocyte common antigen, LCA). Thick arrows identify residual 
basal cells. Thin arrows identify infiltrating immune cells. Please note that a vast majority of infiltrating immune cells are physically associated with or immediately adjacent to degenerative basal 
cells. The epithelial component or the acinar and ductal lumen in focally disrupted PBCL often harbor infiltrating immune cells. It is interesting to note that nearly all the normal, benign, and 
malignant epithelial cells show no distinct sign of degeneration-related alterations.  
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The high level of Tenascin C expression in 
focally disrupted PBCL 

Tenascin C is an extracellular matrix glyco-
protein, which paves the paths and facilitates the 
migration and metastasis of prostate cancer cells 
[82-86]. Our previous studies have shown that 
Tenascin C is highly expressed at the site of distinct 
degenerative basal cells, and epithelial cells in the 
vicinity of areas with elevated Tenascin C often lose 
the cohesion [66] (Figure 10). 

Based on above findings, it is apparent that 
PBCL is not only an essential constitute of the prostate 
gland, but also an active producer of tumor 
suppressors, which exert significant decisive 
influence on adjacent epithelial and stromal cells. In 
addition, as the PBCL population belongs to a 
self-renewal population, it has to consistently 
undergo normal self-replenishment processes to 
replace aged and injured cells. Consequently, the 
PBCL population itself also suffers from a wide 
variety of degeneration- and regeneration-related 
normal and pathological alterations. 

The detailed cellular and molecular mechanisms 
of focal disruptions or a total loss of the PBCL remains 
elusive. Furthermore, there is no solid evidence to 

determine whether the loss of basal cells is a direct 
trigger for the development of prostate adeno-
carcinoma, or the loss of basal cells is directly resulted 
from prostate cancer cells. However, it has been 
consistently concluded that focal disruptions or a total 
loss of the PBCL is statistically correlated with the 
invasion and metastasis of almost all types of prostate 
cancer (except prostate basal cell carcinoma) [62-73]. 

Based on above facts, the PBCL appears to be the 
most effective but largely ignored target for the early 
detection and intervention of prostate cancer. As the 
morphologic, pathological, and immuno-histo-
chemical profiles of the basal cell population is far 
more easily recognizable and definable than its 
epithelial counterpart, the PBCL appears to be a more 
easily readable roadmap with the following specific 
scientific and clinic implications and applications:  
• To use Maspin and PSA as independent risk 

factors for cancer screening. As Maspin is 
consistently expressed in basal cells [87-90], 
while the PSA is elevated in virtually all prostate 
malignancies [91-94], Maspin- and PSA-related 
signatures in the serum can be utilized for a 
population-based screening for the early 
detection of prostate cancer.  

 

 
Figure 10. Tenascin expression at the site of focally disrupted PBCL. Formalin-fixed and paraffin-embedded human prostate gland tissue sections from two different cases were 
double immune-stained for CK34βE12 (red) and Tenascin C (brown). Arrows identify residual basal cells. Squares enclose Tenascin C overlying focally disrupted PBCL. Please note that strong 
Tenascin C positivity is seen only at or adjacent to the site of focally disrupted PBCL. Non-disrupted PBCLs are largely devoid of Tenascin C expression.  
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• To use p63 as a risk factor for a population-based 
screening to detect the predisposition of cancer 
susceptibility or tumor suppressing genes. Since 
p63 belongs to the p53 tumor suppressor family, 
and is normally expressed in the nucleus of the 
basal cells [95,96], an aberrant expression level or 
subcellular localization of p63 accompanying by 
an elevated PSA level may signify the predis-
position of cancer susceptibility or mutated 
suppressing genes. Previous studies have clearly 
demonstrated that loss or cytoplasmic expres-
sion of p63 is associated with elevated cancer 
stem cells, enhanced cell migration and 
metastasis, and increased mortality in prostate 
cancer [97-99].  

• To use p63, Maspin, and different RNA signa-
tures as biomarkers for the non-invasive 
detection of early prostate cancer. Previous 
studies have revealed that p63, Maspin, RNA 
signatures, and PSA are detectable in the urine 
samples of prostate cancer patients [100-106]. 
Thus, a statistical comparison of the expression 
levels of p63, Maspin, and PSA in the urine 
samples may be used as a non-invasive clinic test 
for the detection of early prostate cancer.  

• To use exfoliated basal cells combined with other 
urinary markers for early detection of prostate 
cancer progression and invasion. Previous 
studies have consistently shown that a variable 
number of exfoliated cancer cells are detectable 
in a majority of prostate cancer patients [107-110]. 
As the basal cells are localized at the base of the 
epithelial cell layer, the detection of exfoliated 
basal cells in the urine is likely to signify the 
disruptions of the PBCL and the stromal 
invasion of the prostate cancer.  

• To use the PBCL physical integrity (disrupted vs 
non-disrupted) combined with PSA test results 
as a clinic marker for the differentiation 
diagnosis. As the disruption of the PBCL is a 
prerequisite for prostate cancer invasion and 
metastasis, while an elevated PSA level is 
detectable in both non-invasive and invasive 
prostate cancer, the physical integrity of the 
PBCL in patients with an elevated PSA could 
effectively differentiate between non-invasive 
and invasive prostate cancer.  

• To use the expression of Tenascin in PBCL as a 
routine clinic test of the prostate biopsy or urine 
sample. Previous studies have consistently 
demonstrated that aberrant Tenascin expression 
is exclusively seen at or near focally disrupted 
PBCL and is also significantly correlated with 
prostate cancer invasion and metastasis [66, 

82-86]. Thus, the assessment of the 
PBCL-associated Tenascin expression may lead 
to the identification of the specific cases at 
increased risk for prostate cancer progression. 

• To use Maspin or CK34βE12 as biomarkers to 
discriminate prostate from non-prostate cancers. 
Previous studies have shown that (a) high levels 
of PSA is seen in patients with breast, lung, 
ovary, liver, kidney, adrenal, skin, salivary, and 
colorectal cancer [111-113], (b) smoking, 
asymptomatic inflammation, metformin use, 
chronic prostatitis can elevate the PSA 
expression level [114-117], and (c) age, ethnicity, 
triglyceride level, and BMI can also significantly 
impact the expression of PSA [118, 119]. In 
contrast, above factors have little impact on 
PBCL. Thus, normal expression status of Maspin 
or CK34βE12 in individuals with high levels of 
PSA may signify non-prostate lesions.  

• To use focal PBCL disruptions as a localizer to 
identify cancer-stem cell clusters/specific 
precursors of invasive cancer. Our previous 
studies of multiple cancers have consistently 
shown that a focal disruptions of tumor capsules 
selectively facilitate clonal proliferation of 
overlying cancer stem cells to form distinct cell 
clusters. These newly formed clusters have 
significantly higher levels of cancer stem cell 
markers and invasion and metastasis-related 
genes than their morphologically comparable 
counters still enclosed by the non-disrupted 
tumor capsules [62-66, 120-123] (Figure 4 & 5). It 
is very likely that these cell clusters may 
represent the direct precursors of invasive 
lesions. Thus, micro-dissecting these clusters for 
further evaluation can potentially lead to the 
dentification of triggering molecules for the basal 
cell degenerations, tumor progression, and 
invasion.  

• To use PBCL-associated immune-cell infiltration 
to monitor the tumor progression and treatment 
responses. Our previous studies have consis-
tently revealed that the immune-cell infiltration 
is significantly associated with prostate tumor 
capsule disruptions which lead to the 
subsequent invasion and metastasis [62-68]. A 
great number of recent studies have not only 
confirmed our previous reports and conclusions, 
but have also consistently shown that 
immune-cell infiltration is also significantly 
correlated with the treatment responses in 
multiple cancer types [62-68, 124-131]. 

• To use anti-inflammatory drug aspirin or statin 
to repair the PBCL degeneration-related tumor 
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capsule disruptions. Previous studies have 
consistently shown that aspirin or statin could 
significantly alter the immune milieu of prostate 
and to prevent cancer progression [132-134]. 
Therefore, the administration of aspirin or statin 
to individuals with focally disrupted PBCL 
associated with significant infiltration of the 
immune cells (as shown in Figure 9) and chronic 
prostatitis could potentially reduce the extent of 
associated immune cells and facilitate the 
repairing of focally disrupted tumor capsules.  

• To administer stem cell specific molecules, 
inducers, or stimulators to burst the normal 
replenishment and the physical integrity of 
PBCL. Previous studies have suggested that 
BMP5, Zeb1, CD24, CD44, NANOG, and Nestin 
are prostate stem cell-specific markers that are 
essential for the maintenance of the normal 
replenishment and physical integrity of the 
PBCL [135-137]. Thus, the administration of 
these molecules or stem cell specific inducers or 
stimulators to patients at a high risk of prostate 
cancer progression may offer the promise of 
more effective approaches for prostate cancer 
early intervention.  

• To use basal cells lacking the phenotypic and 
proliferation markers as targets to identify novel 
cell proliferation pathways or cell cycle regula-
tors. As a subset of morphologically distinct and 
non-disrupted PBCL completely lack the expres-
sion of tumor suppressors, phenotypic markers, 
and cell proliferation specific markers (Figure 7), 
it is likely that the growth and expansion of these 
cells are regulated by previously undescribed 
mechanisms or pathways [138,139]. Therefore, 
microdissection of these PBCL for gene expres-
sion profiling may lead to the identification of 
novel cell proliferation pathways and novel cell 
cycle regulators.  
In summary, above findings and analyses 

strongly suggest that the PBCL is the most effective 
but largely ignored target for the early detection and 
intervention of human prostate cancer. It is apparent 
that the human tissue-derived basic research data 
may provide a more realistic roadmap that allows to 
observe the direct interactions among different cell 
types and to avoid the potential misleading from in 
vitro and animal studies. 
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