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Abstract— Supported by some of the major revolutionary
technologies, such as Internet of Vehicles (IoVs), Edge Com-
puting, and Machine Learning (ML), the traditional Vehicular
Networks (VNs) are changing drastically and converging rapidly
into one of the most complex, highly intelligent, and advanced
networking systems, mostly known as Intelligent Transportation
System (ITS). Recently, distributed ML techniques, such as
Federated Learning (FL) have gained huge popularity mainly
for their advantages in terms of intelligence sharing and
privacy concerns. VNs are a natural contender for exploiting
FL for solving challenging problems; however, their limited
resources, dynamic nature, high speed, and reduced latency
requirements often become the bottleneck. V2X communication
technologies allow vehicular terminals (VTs) to share their
valuable local environment parameters and become aware of
their surroundings. Such information can be utilized to build
a more sustainable and affordable FL platform for serving VTs.
Gaining from recently introduced 3D architectures, integrating
terrestrial and aerial edge computing layers, we present here a
distributed FL platform able to distribute the FL process on
a 3D fashion while reducing the overall communication cost
for providing vehicular services. The framework is defined as
a constrained optimization problem for reducing the overall FL
process cost through a proper network selection between various
nodes. We have modeled the FL network selection problem as a
sequential decision-making process through a Markov Decision
Process (MDP) with time-dependent state transition probabilities.
A computation-efficient value iteration algorithm is adapted for
solving the MDP. Comparison with various benchmark methods
shows the overall improvement in terms of latency, energy, and
FL performance.

Index Terms— Vehicular edge computing, federated learning,
aerial networks, Markov decision process.

I. INTRODUCTION

IN THE last decade, Multiaccess Edge Computing (MEC),
being one of the most recent revolutionary technology, has

enabled various latency limited and data-intensive services and
applications in the wireless networking scenarios [1]. In the
case of Vehicular Networks (VNs), edge computing can be
enabled through the implementation of Roadside Units (RSUs)
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and integrating them with limited capacity edge servers,
known as Vehicular Edge Computing (VEC) [2]. However,
with growing service requirements, limited RSUs resources
are not sufficient and are becoming a bottleneck for VEC
performance. Recently, different aerial platforms, such as Low
and High Altitude Platforms (LAPs and HAPs), Unmanned
Aerial Vehicles (UAVs), drones, and balloons, are integrated
into the terrestrial networks creating a single Terrestrial/Non-
terrestrial (T/NT) network [3]. These platforms can be further
exploited for their reliable computation and communication
capabilities through the edge computing paradigm. If inte-
grated into the VNs, the aerial platforms can boost the
performance of traditional VEC facilities with additional
resources.

In recent times, the Internet of Vehicles (IoV) paradigm
has been introduced, where VNs, through the integration
of communication and sensing, become a large source of
data [4]. These data can be analyzed through different Machine
Learning (ML) techniques for providing higher Quality of
Service (QoS) and Quality of Experience (QoE) in vehicular
services with reduced costs to the end-users. ML algorithms
can find the hidden patterns and underlying structures
in data collected by Vehicular Terminals (VTs) without
human intervention. Therefore, ML techniques, including
Deep Learning (DL), Reinforcement Learning (RL), and
Federated Learning (FL), have been suggested to be used to
solve challenging research problems on VNs in the recent
years [5], [6], [7]. Compared with the traditional centralized
ML process, FL had enormous success in terms of reduced
latency and energy performance [8], [9]. In general, a FL
process involves several training iterations, also known as FL
iterations, characterizing a training process over distributed
FL-clients (i.e., wireless nodes), transmission of updated
local ML model parameters towards a centralized server,
an averaging operation to be performed over a centralized FL-
server for creating a global model (i.e., Federated averaging
(FedAvg)), and the transmission of new global model
parameters towards FL-clients [10]. Through local training
operations, wireless devices can save energy and reduce
data transmission delay when sending raw data towards
a centralized server. Additionally, through an aggregation
process performed at a centralized FL-server, devices can learn
from each other’s training experience. Though FL has these
advantages, implementing in distributed environments, such
as VNs, can be challenging mainly due to, e.g., the resource
scarceness of individual VTs, involvement of high mobility,
dynamically changing vehicular environments.
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The main challenges, when implementing the FL platform
over a distributed VNs, are:

• The harsh wireless environment due to vehicular mobility
can make it hard to implement the traditional centralized
FL model in VNs.

• VTs’ resource limitations can be a bottleneck for
performing a large number of FL iterations.

• Uncertainty about the participation of a large number of
VTs into the FL process, mainly due to the harsh wireless
environment, can also increase the FL process cost.

• Continuously changing vehicular environment parameters
and corresponding data can impact the FL model
performance over time, and introduce model drift. This
may require frequent evaluation and retraining of the FL
model.

Though FL has enormous potentials, the vehicular
community is hesitant to embrace FL, mainly for these
challenges. Some recent works have however considered
the applications of FL over VNs while doing some
assumptions [11]. A particular attention has been focused
on multi-layered edge computing enabled VNs, capable of
communicating with RSUs, UAVs, and HAPs, able to tackle
the long-distance communication challenge introduced by the
centralized FL models by distributing the learning process over
multiple nodes (i.e., distributed FL) [12]. With limited range
communications, VTs can also save energy/resources during
the FL iterations, allowing to perform more iterations [13].
Failures of communication links between VTs and FL servers
can be reduced, and a large number of VTs can participate
in the FL process [14]. Further, taking into account the VTs’
local environment and the application requirements, through
various scenario-based modelings, the implementation of the
FL process can become more reliable and sustainable over a
dynamic vehicular environment [15].

In this work, we propose a distributed FL process
for vehicular applications. We consider a joint T/NT
network composed of VTs, RSUs, UAVs/LAPs, and HAPs.
A distributed FL platform allowing a distributed and flexible
FedAvg process is proposed exploiting different layers, where
RSUs, UAVs, and HAPs are capable of collecting the FL
model updates from VTs in each FL iteration for generating
the global update vectors/models for the next iterations.

With the possibility of exploiting multiple layers, a proper
selection of the nodes where the FL process should be
performed is required, aiming at enhancing latency, energy,
and FL process performance. However, solving such a
network selection problem over a multi-layered dynamic VN
can be enormously complex, and traditional optimization
techniques are inefficient. In the recent past, various works
have highlighted the importance of RL-based approaches
for solving the network selection problem over VNs [16].
In this work, we resort to the RL method for solving the
FL network selection problem. As a first step, we model the
problem as a sequential decision-making process through a
Markov Decision Process (MDP) framework which requires
a proper design of a state space, action space, reward
function, and environment dynamics [17]. The environment
dynamics are modeled through a set of time-dependent state

transition probability expressions, considering the VTs local
environment for designing the MDP with better performance.

The main contributions of this work can be summarized in
the following points:
• We design a communication efficient distributed FL

model over a joint air-ground network aiming at reducing
FL process latency and energy costs.

• A constrained optimization problem is formulated for
minimizing the overall cost (in terms of joint latency,
energy and the FL training performance) of the process
by a proper assignment of VTs and FL servers.

• A MDP framework is considered for modeling the
problem as a sequential decision-making process, and a
value iteration technique is used to solve it. The MDP
environment is modeled through time-dependent state
transition probabilities that take into account the local
vehicular environment.

• The performance of the proposed scheme is analyzed
by comparing it with different heuristic techniques and
conclusions are drawn.

II. RELATED WORKS

Traditional VNs are converging into a more intelligent and
advanced networking system with the integration of edge
computing, machine learning, and big data applications [2].
Though VEC brings several advantages by enabling innovative
services in the VN, the limited storage and computation
capacity of edge servers is becoming a bottleneck for the
innovative ML-based applications. The joint T/NT approach
can solve the resource scarceness problem of traditional
terrestrial edge computing techniques. Recently several authors
have highlighted the importance of aerial edge computing
facilities for boosting the VNs performance [18], [19].

The recently introduced IoV technology supports the
transmission, storage, and computing of huge amount of
data generated by VTs, which can be used to improve the
VNs performance [20]. Various ML-based approaches can be
adapted for finding useful patterns from VTs data and to enable
the intelligence into VNs. In [21], authors have surveyed
various ML techniques, their applications, and challenges
faced during their implementations over the dynamic vehicular
networks. Recent works highlight the importance of FL for
vehicular cases. In [11], authors have surveyed the various
opportunities and challenges while considering FL over a
federated VN. Though FL brings advantages in terms of
communication efficiency and privacy preservation, additional
optimization is needed in terms of device selection, resource
allocation, distribution of the learning process, etc for adapting
it over wireless environments. In [14], the authors have
considered the FL device selection problem over a resource-
constrained VN. A min-max optimization problem is formed
and solved through a greedy algorithm. In [5], the authors have
considered the joint computation offloading and FL process
optimization over the edge computing enabled VN. Various
cluster-based and distributed approaches are considered for
finding the proper resource sharing between two phases aimed
at minimizing the latency and energy costs. The importance
of using FL in VN scenarios is also enforced by considering
other aspects. Indeed, even if not strictly related to the
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system under consideration, FL is a good candidate when
jointly used with Blockchain for implementing a collaborative
intrusion detection solution for IoV scenarios [22]. Given
the rise of different security threats over edge environments,
e.g., edge device compromise, privacy leaks, denial of
service (DoS), additional security measures are needed while
accessing the services from the edge facilities. In [23],
the authors have proposed a lightweight anonymous mutual
authentication scheme for n-times computation offloading in
IoT environments. The proposed method can provide user
anonymity, conditional message tracing, unlinkability to users’
private data through messages collected from open channels,
resilience to edge compromise and DoS. Similarly, in [24],
the authors have proposed a two-factor lightweight privacy-
preserving authentication scheme for enhancing the security
of vehicular communication systems by using decentralization
of central authorities and biological-password-based two-
factor authentication. For another important IoT use case, the
authors in [25] proposed a cloud-based user authentication
scheme for secure authentication of medical data for wearable
healthcare monitoring systems. The proposed scheme also
allows password change, smart card revocation, and new
wearable sensor addition phases.

In the case of future intelligent networks, various AI-
based services can be enabled through proper collaboration
between different networking environments and cloud/edge
facilities [26]. However, this gives rise to several data privacy
and security challenges [27]. FL, being one of the potential
distributed learning techniques, can be useful for providing
such AI-driven services in vehicular networks. Though FL
has a main advantage in terms of elevated data privacy
compared to the traditional centralized training approaches,
in recent times various new privacy and security-related
issues have risen in the traditional centralized FL models.
Data/model poisoning, data modification, attacks on inference
processes, backdoor attacks, Generative Adversarial Network-
based attacks, malicious servers, free-riding attacks, and
eavesdropping are some of the major security and/or privacy
threats that can be seen while implementing the FL process
over different IoT networks [28]. While considering the FL
process over a vehicular system, this issue can even become
more critical mainly due to dynamicity, presence of a large
number of VTs, multiple server nodes, high sensitivity of
vehicular data, and fatal impacts of a data breach, etc.
Several techniques introduced over different IoT environments
for enabling the secure and trustworthy FL process such
as reputation management, Blockchain-based systems, data
privacy-based perturbation techniques, secure aggregation
techniques, secure multi-party computation, homomorphic
encryption, back-door defenders, etc., need further analysis
for creating a highly reliable FL over VNs [29], [30], [31].

In recent times, the edge intelligence paradigm along with
various distributed learning frameworks have received lots of
attention [32]. In [33], authors have proposed a federated
RL approach for minimizing the communication delay of the
traditional centralized training approach for finding proper
offloading decisions and the resource allocation in a UAV
enabled MEC environment. In another case, [13] highlights
the importance of the distributed FL processing for solving

the long-distance connectivity and energy efficiency challenges
of traditional centralized FL. MEC-enabled aerial access
networks and their benefits for FL are discussed in [34].
In [35], the authors have proposed a communication-efficient
FL framework based on a customized local training strategy,
partial client participation, and flexible aggregation strategies.
The analysis is limited to the terrestrial RSU nodes along with
the cloud facilities.

Though FL has received lots of attention, a proper
communication efficient, and sustainable FL platform for
dynamic VN applications is still not functional. In addition,
while designing the FL models, several authors have restricted
their studies to terrestrial networks. By considering these
shortcomings and various challenges posed by the FL, in this
work, we aim to design the communication efficient, highly
sustainable, distributed FL process for vehicular applications.

III. SYSTEM MODEL AND PROBLEM FORMULATION

In the following, an urban Internet of Vehicles (IoV)
scenario for Intelligent Transportation Systems with connected
and intelligent VTs is considered, allowing to request several
intelligent services from the nearby edge computing facilities.
In recent times, such urban IoV scenarios have gained
a lot of attention from the vehicular research community
[14], [36]. In particular, we consider a multi-layered joint
air-ground network composed of HAPs, UAVs (i.e., LAP
nodes), RSUs, deployed along the road paths, and randomly
distributed VTs traveling on a road in either directions, where
V = {v1, . . . , vm, . . . , vM }, R = {r1, . . . , rn, . . . , rN }, U =
{u1, . . . , ul , . . . , uL}, correspond to the sets denoting M VTs,
N RSUs and L UAVs, respectively. Each HAP node is denoted
through the index h.

The system is modeled in a time-discrete manner, and
the network parameters are constant in each time interval
τ , where τi identifies the i th time interval, i.e., τi =

{∀t |t ∈ [iτ, (i + 1) τ ]}. The generic mth VT is characterized
by a processing capacity equal to cv,m Floating Point
Operations per Second (FLOPS) per CPU cycle, while its
CPU frequency is fv,m [5], [37]. VTs are supposed to be
able to communicate on a bandwidth Brsu

v,m with the RSUs,
in a bandwidth BLAP

v,m with UAVs and on a bandwidth BHAP
v,m

with the HAPs. In addition, the mth VT is supposed to hold
a set Dvm with |Dvm | = Kvm data samples produced during
its operation as a result of the embedded Advanced Driver-
Assistance System (ADAS), and later used during the FL
training process. FL is here exploited for assisting during
vehicle operations, e.g., computation offloading, path planning,
object detection.

The nth RSU, supposed to be in a fixed position with a
coverage radius Rr,n , is characterized by a processing capacity
equal to cr,n FLOPS per CPU cycle, with CPU frequency
fr,n , and communication capabilities, supposed to be identified
through a communication technology, able to cover the VTs on
ground with an overall bandwidth Br→v

r,n . The RSUs are also
able to connect with UAVs and the HAPs with a bandwidth
BUAV

r,n and BHAP
r,n , respectively. The RSUs are connected to the

electrical grid for the energy supply. Each RSU can provide
edge computing services to the VTs in its coverage space.
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Fig. 1. The T/NT Integrated Scenario.

In addition, the area is supposed to be under the coverage
of multiple UAVs with lth UAV at altitude h̄u,l and coverage
radius Ru,l . We assume that UAVs are charged by exploiting
available charging points in the service area. Based on VTs
requests, UAVs can move in different directions with optimal
path planning, whose management is beyond the scope of this
work. While serving VTs, the lth UAV, supposed to move with
a relatively slow speed compared with highly mobile VTs,
is characterized by a processing capability equal to cu,l FLOPS
per CPU cycle, with CPU frequency fu,l . In addition, it is
supposed to be able to communicate on a bandwidth Bl→(v,r)

u,l
and cover an area with radius Ru,l , while the lth UAV has a
bandwidth BHAP

u,l when communicating with the HAP. Each
UAV can serve a set of VTs and RSUs in its coverage space.

The generic hth HAP node is placed at an altitude h̄h above
the ground, and characterized by a processing capability ch
FLOPS per CPU cycle, with CPU frequency fh . Moreover,
we consider multi-beam antenna forming techniques, where
each antenna beam is supposed to cover a geographical area
of radius Rh and has a communication bandwidth Bh→(v,r,l)

h .
In the following, we will refer to a single beam as the
coverage of the HAP. It should be noted that though HAP
coverage is reduced to a single beam for notation simplicity,
our approach can easily be scaled for the overall HAP coverage
with multiple beams. Each RSU, UAV, and HAP provides edge
computing services to the VTs, RSUs and UAVs within its
coverage area. Fig. 1 shows the basic system elements and
various communication links between them.1

A. VT Mobility Model
We suppose that the mth VT moves in a freeway-like

mobility scenario with a speed v⃗m(τi ) bounded by v⃗min and
v⃗max [14], where the instantaneous speed is modeled through
a truncated normal distribution density function:

f (v⃗m(τi )) =


2 · exp

(
−(v⃗m (τi )−µ)

2

2σ 2

)
σ
√

2π
(

erf
(
v⃗max−µ

σ
√

2

)
− erf

(
v⃗min−µ

σ
√

2

)) ,
v⃗min ≤ v⃗m(τi ) ≤ v⃗max

0, else
(1)

1Despite the system model and the analysis is carried out considering the
general case of multiple HAPs, the performance will be later evaluated for
the simple case with only one HAP. The generic case can be seen as a simple
extension of the one HAP scenario.

Fig. 2. Distributed FL Platform.

and µ and σ are the mean and standard deviation of the
vehicle’s speed, and erf(x) is the Gauss error function over
x . The path length within which the mth VT remains under
the coverage of j th node (i.e., any of RSUs, UAVs or HAPs)
is Dvm , j (τi ) and can be given by:

Dvm , j (τi ) =

√
d2

j −
(
y j − yvm (τi )

)2
±

(
x j−xvm (τi )

)
where,

(
xvm (τi ), yvm (τi )

)
is the location of the mth VT at τi

and
(
x j , y j

)
is the projection over the ground of a generic j th

edge computing node, which can be a RSU, UAV or HAP.
The available sojourn time for the mth VT with respect to a
generic j th node can be written as:

T soj
vm , j (τi ) =

Dvm , j (τi )

|v⃗m(τi )|
∀ j

B. Distributed FL Platform for Vehicular Applications

In order to solve the VN management through the proposed
air-ground network architecture, we propose a VTs service-
based distributed FL platform (Fig. 2).

The federated training operation depends on the service
request ν, where ν can be any vehicular service requested
by VTs, such as computation offloading towards edge servers,
path planning, streaming-related services, etc. Each service ν
requires a unique FL model Fν . In the considered FL platform,
VTs (i.e., FL client devices) with local datasets Dvm can
perform the local training for the FL model based upon the
requested service ν. Since different VTs can request different
services over time, a group of VTs randomly located in the
coverage space of the HAP requesting the same service ν will
participate collaboratively to train the FL model corresponding
to the service ν. The number of VTs participating in the
training process of the νth FL model is given by:

MFL
ν = {vm |vm ⇔ ν, vm ∈ M} with MFL

ν ⊆ M

In each i t th FL iteration, after the local training operation,
we assume that a data vector wi t,ν

v,m(τi ) (i.e., model updates
embedded into IP packet) is generated where an information
header is added indicating the VTs service (χν ⇔ ν). Here, χν
can be a unique sequence of bits indicating the νth service.2

2Though it is beyond the scope of this article, χν can easily be modeled
into a more sophisticated vector that can further enhance the security of the
FL platform to tackle the various security/privacy related challenges discussed
in the related works section.
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Fig. 3. Distributed FL Process.

Such processed data will be sent towards an upper layer edge
computing node based upon the network selection strategy
embraced by the VTs, as will be discussed in the following.

After receiving the data from the lower layer entities,
each Edge Node (EN) will perform the FedAvg process
creating the new set of updates w

i t,ν
r,n /w

i t,ν
u,l /w

i t,ν
h , where

w
i t,ν
r,n is the aggregated FL model updates associated with

the νth service generated by the intermediate RSU node
n, and w

i t,ν
u,l and w

i t,ν
h are the FL model updates after the

averaging process (i.e., FedAvg) performed at lth UAV node
and hth HAP, respectively. With post-processing operation, the
header information χν is again inserted into the aggregated
data (wi t,ν

r,n /w
i t,ν
u,l /w

i t,ν
h ) for the next layer processing. In the

end, data vector corresponding to the w
i t,ν
r,n /w

i t,ν
u,l /w

i t,ν
h is

transmitted towards the next platform or VTs based upon the
network selection strategy. Though it is beyond the scope
of this work, insertion/processing of the header information
associated with the specific service request allows the proposed
FL platform to train multiple service-based FL models
simultaneously.

After receiving data from the ENs, VTs use them in the next
iteration of the FL process. The process continues for several
FL iterations until a certain confidence interval is reached.
Fig. 3 shows the steps of each single iteration of the proposed
distributed FL process.

C. Network Selection Parameters
FL performance is a function of the number of participating

VTs to the FL process, the number of FL iterations performed
by VTs, the communication and computing latency, and
the energy cost of each FL iteration. The FL process cost
depends also on the network selection strategy adopted by
different networking layers given their limited computing and
communication resources.

To better clarify this point, if a VT selects the HAP node
direct link for the FL data transmission, it can potentially
save the processing latency and the cost required to perform
the FedAvg process at the intermediate layers; however,
it can increase the VTs data transmission cost in terms
of transmission latency and energy, mainly due to the
limited resources of VTs and the long-distance communication
links between VT and HAP. Also, due to long-distance
communication links, the link failure probability can be higher,
resulting in a possibly high number of dropouts (i.e., VTs not

participating in the FL training process). On the other hand,
if VT decides to select RSU or UAV nodes for distributed FL
data communication, it can potentially save communication
time and energy. However, an additional burden of processing
latency over these intermediate layers needs to be considered.
Similar analysis can be applied to the RSU and UAV nodes
when selecting the possible higher networking layers for
the data communication. Therefore, there is a clear tradeoff
between the different network selection strategies adapted
by the VTs and the intermediate layers. A proper network
selection strategy guaranteeing the optimal training latency and
energy performance is required.

Based on their limited coverage ranges, each VT can be
covered by set of RSUs, UAVs, and one HAP node. Focusing
on the mth VT, 1 ≤ N R

v,m ≤ Rmax , 1 ≤ NU
v,m ≤ Umax , and

1 ≤ N H
v,m ≤ Hmax represent the number of RSUs, UAVs

and HAP nodes available for selection, respectively. Without
loss of generality, we assume that N R

v,m , NU
v,m , and N H

v,m are
lower bounded by 1 (i.e., every VT can be covered by at least
one RSU, UAV and HAP), while Rmax , Umax , and Hmax are
the upper bounds on RSUs, UAVs, and HAP nodes covering
it. Here, we define the following three decision variables
modeling the network selection behavior of VTs, RSUs, and
UAVs.

1) VTs Network Selection Decision: For the case of mth
VT, we define

av,m(τi ) =
[
(0, 1)(1×N R

v,m )
, (0, 1)(1×NU

v,m )
, (0, 1)(1×N H

v,m )

]
with dimension 1 × (N R

v,m + NU
v,m + N H

v,m) modeling the
available nodes for selection. VT can either select RSU, UAV,
or HAP for communicating the FL model parameter updates.
If av,m(τi ) = {0}(1×(N R

v,m+NU
v,m+N H

v,m ))
, the mth VT does not

participate in the FL process. Also, for avoiding the additional
complexity, we consider that each VT can be assigned to only
one EN which can be RSU, UAV, or HAP during the FL
process. Thus, ∑

av,m(τi ) ≤ 1 (2)

2) RSUs Network Selection Decision: For the case of nth
RSU, we define

br,n(τi ) =
[
(0, 1)(1×NU

r,n
), (0, 1)(1×N H

r,n
)]

with dimension 1×(NU
r,n+N H

r,n) modeling the available nodes
for selection. RSU node can either select UAV, or HAP for
communicating the FL model parameter updates. If br,n(τi ) =

{0}(1×(NU
r,n+N H

r,n))
, the nth RSU node does not communicate

with higher layers and broadcasts back the model parameters
towards VT. For avoiding the additional complexity we
consider that each RSU can be assigned to only one EN which
can be UAV, or HAP during the FL process. Thus,∑

br,n(τi ) ≤ 1 (3)

3) UAVs Network Selection Decision: For the case of lth
UAV, we define

cu,l(τi ) =

[
(0, 1)(

1×N H
u,l

)]
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with dimension 1 × N H
u,l modeling the available nodes for

selection. UAV can select HAP for communicating the FL
model parameter updates or broadcast back the results towards
VTs. If cu,l(τi ) = {0}(1×N H

u,l )
, the lth UAV broadcast back

the model parameters towards VT. For avoiding the additional
complexity we consider that each UAV can be assigned to only
one EN during the FL process. Thus,∑

cu,l(τi ) ≤ 1 (4)

D. FL Process Cost Analysis
In general, FL is an iterative learning process where

each FL iteration includes several steps adding latency and
energy costs. Local on-device ML model training, data
communication between VTs and FL servers, pre- and post-
processing of FL model data, FedAvg process performed at
FL servers are the main steps involved during FL iteration.
In the following, we analyze the latency and energy cost of
each of these operations.

1) FL Local Training Model: The FL computation
corresponds to the local training of the ML model based on
the on-device dataset. In local device training, the mth VT
with service request ν has to compute the local parameter set
w

i t,ν
v,m through the dataset having size Kvm data samples; if we

assume that, for every iteration, the total number of FLOPs
required for each data sample d is ψd , the time and energy
consumed during the FL training process by the mth device
is [37]:

T FL,c
vm
=

∑Kvm
d=1 ψd

cv,m fv,m
, EFL,c

vm
= Pc

v,m · T
FL,c
vm

.

where Pc
v,m is the power consumed by the mth VT for the

data processing. We suppose for simplicity that the on-device
FL processing time and energy is the same for every iteration

2) FL Data Pre-/Post-Processing: For each FL iteration,
pre- and post-processing operations are performed for
detecting and adding the header information χν associated
with the service (ν) requested by the vehicular nodes. The
latency and energy of these operations are:

T FL,hp
i = T FL,pre

i + T FL,post
i , EFL,hp

i = Pc
i · T

FL,hp
i .

where, T FL,pre
i =

Ni ·ψpre
ci · fi

is the time required to detect
and remove the header information from FL data at the i th
node, function of its computation resources, the number of
FLOPs required to process the FL data (i.e., model parameters
embedded in the IP packets) from node i given as ψpre and a
number of VTs/servers sending the updates towards the server
i given by Ni . Also, T FL,post

i =
·ψpost
ci · fi

is the post-processing
operation time required to insert the header information on
model update vectors with ψpost being a number of FLOPs
required to process the updated model data after FedAvg.

3) FL FedAvg Process: In the proposed FL infrastructure,
intermediate FL server (i.e., RSUs, UAVs, HAP) perform the
FedAvg process on the data received from any of the lower
layers. The latency and the energy required to perform the
FedAvg process is given by:

T FL,FA
i =

Ni · ψF A

ci · fi
, EFL,FA

i = Pc
i · T

FL,FA
i

where ψF A is the number of FLOPs required to process the
individual nodes parameter vectors over i th server

4) FL Data Communication Model: The data rate between
i th and j th node is a function of the mutual distance, hence:

r it
i, j (Bi , di, j ) = Bi log2

(
1+

P tx
i · h(di, j )

N0

)
(5)

where P tx
i is the transmission power of the generic i th device,

h(di, j ) is the channel gain at a distance di, j between the i th
device and the j th device, and N0 = NT Bi is the noise power,
where NT and Bi are the noise power spectral density and
bandwidth associated to the i th device during communication.

During the FL processing, at each iteration i t , the i th FL-
device sends the parameters set wi t

i to the higher layers.
Supposing that |wi t

i | represents the data size of the parameters
set expressed in bits [10], the uplink transmission time and
energy for the FL parameters in the i t th iteration is:

T FL,tx
i j,i t =

|wi t
i |

r i t
i, j (B

j
i , di, j )

, EFL,tx
i j,i t = P tx

i · T
FL,tx

i j,i t ,

where, r i t
i, j is the uplink transmission rate between i th and the

j th FL node, during the i t th iteration, which is a function of
the bandwidth (B j

i,m), and the distance (di, j ) between the two
nodes, modeled through the Shannon capacity formula in (5).
Since FL-servers are accessed by multiple VTs/lower layer
nodes, we assume for simplicity that the j th node bandwidth
is equally shared among the connected VTs and lower layer
nodes, i.e., if u j = ul ∈ U , the bandwidth resources of ul ,
Bl→(v,r)

u,l is shared among all VTs and RSUs connected to it.
Also, P tx

i is the i th device transmission power. Similarly, the
reception time required to receive data from the j th node by
the i th node is given by,

T FL,rx
i j,i t =

|wi t
j |

r i t
i, j (B

j
i , di, j )

, EFL,rx
i j,i t = P rx

i · T
FL,rx

i j,i t ,

Each FL server needs to wait for receiving the data from all
the connected VTs and lower layer nodes before performing
the FedAvg process. The data reception latency and energy at
the j th FL server are given by:

T FL,rx
j,i t = max

i

{
T FL,tx

i,i t

}
, EFL,rx

j,i t =
∑

i

P rx
j · T

FL,rx
j i,i t ,

With these basic latency and energy elements in hand, we can
now define the FL iteration cost in terms of total latency and
energy requirements.

E. FL Iteration Cost

The mth VT FL process cost includes the local computation
cost, header processing operation cost at VT and the additional
cost depending on the network selection strategy. Thus, for
the mth VT, the total FL process cost (in terms of latency and
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energy consumed) for a single iteration is:

T FL
v,m,i t (av,m(τi ),br,n(τi ), cu,l(τi ))

= T FL,c
vm
+ T FL,hp

vm + av,m(τi )

×


[
T FL,tx
vm ,rn ,i t + T FL

r,n,i t (br,n(τi ), cu,l(τi ))
]
(N R

v,m×1)[
T FL,tx
vm ,ul ,i t + T FL

u,l,i t (cu,l(τi ))
]
(NU

v,m×1)[
T FL,tx
vm ,h,i t + T FL

h,i t

]
(N H

v,m×1)


EFL
v,m,i t (av,m(τi ),br,n(τi ), cu,l(τi ))

= EFL,c
vm
+ EFL,hp

vm + av,m(τi )

×


[

EFL,tx
vm ,rn ,i t + EFL

r,n,i t (br,n(τi ), cu,l(τi ))
]
(N R

v,m×1)[
EFL,tx
vm ,ul ,i t + EFL

u,l,i t (cu,l(τi ))
]
(NU

v,m×1)[
EFL,tx
vm ,h,i t + EFL

h,i t

]
(N H

v,m×1)


where, for the n-th RSU, the FL process cost for a single
iteration is a function of the time/energy required to receive
model updates from VTs, the header processing cost, the
FedAvg process cost, and the additional cost based upon the
network selection strategy adopted by it. Thus, for the case of
nth RSU,

T FL
r,n,i t (br,n(τi ), cu,l(τi ))

= T FL,rx
rn ,i t + T FL,hp

rn + T FL,FA
rn

+ br,n(τi )

×


[
T FL,tx

rn ,ul ,i t + T FL
u,l,i t (cu,l(τi ))

]
(NU

r,n×1)[
T FL,tx

rn ,h,i t + T FL
h,i t

]
(N H

r,n×1)


+

(
1−

∑
br,n(τi )

)
T FL,tx

r,v,i t

EFL
r,n,i t (br,n(τi ), cu,l(τi ))

= EFL,rx
rn ,i t + EFL,hp

rn + EFL,FA
rn

+ br,n(τi )

×


[

EFL,tx
rn ,ul ,i t + EFL

u,l,i t (cu,l(τi ))
]
(NU

r,n×1)[
EFL,tx

rn ,h,i t + EFL
h,i t

]
(N H

r,n×1)


+

(
1−

∑
br,n(τi )

)
EFL,tx

r,v,i t

Similarly, for the l-th UAV, the FL process cost is based upon
data reception, header processing, FedAvg process, and the
additional cost due to the network selection strategy. Thus,
for the case of lth UAV, a single iteration cost is,

T FL
u,l,i t (cu,l(τi )) = T FL,rx

ul ,i t + T FL,hp
ul + T FL,FA

ul

+ cu,l(τi )×

[(
T FL,tx

ul ,h,i t + T FL
h,i t

)
(N H

u,l×1)

]
+

(
1−

∑
cu,l(τi )

)
· T FL,tx

l,v,i t

EFL
u,l,i t (cu,l(τi )) = EFL,rx

ul ,i t + EFL,hp
ul + EFL,FA

ul

+ cu,l(τi ) ·

[(
EFL,tx

ul ,h,i t + EFL
h,i t

)
(N H

u,l×1)

]
+

(
1−

∑
cu,l(τi )

)
· EFL,tx

l,v,i t .

Fig. 4. Distributed FL Process Latency Analysis.

Finally, for the HAP node, the FL process cost for a single
iteration is:

T FL
h,i t = T FL,rx

h,i t + T FL,hp
h + T FL,FA

h + T FL,tx
h,vm ,i t

EFL
h,i t = EFL,rx

h,i t + EFL,hp
h + EFL,FA

h + EFL,tx
h,vm ,i t .

Fig. 4, presents the different latency components considered
during the modeling of the FL latency over different nodes.
We have avoided including the energy elements for simplicity.

In the end, for each FL iteration the required latency and
energy cost for the mth VT is given by3:

T FL
i t (d(vm, rn, ul , τi )) = max

m

{
T FL
v,m,i t (d(vm, rn, ul , τi ))

}
EFL

i t (d(vm, rn, ul , τi )) = EFL
v,m,i t (d(vm, rn, ul , τi ))

F. Number of FL Iterations Performed
Each FL iteration adds cost in terms of required latency

and energy consumed over different platforms. However, it is
important to perform a sufficient number of FL iterations for
generating the FL model with sufficient accuracy over the real
world data. The number of FL iterations performed by VTs
depends on the adopted network selection strategy and the
sojourn time within each EN coverage area. It is supposed
that each VT can participate in the FL process till it belongs
to the considered ENs coverage area. Thus,

ρ (d(vm, rn, ul , τi )) ≤
T soj
vm , j (τi )

T FL
i t (d(vm, rn, ul , τi ))

(6)

where, ρ(d(vm, rn, ul , τi )) is the number of FL iterations
performed by the mth VT whose value is upper bounded by
the ratio between the j th ENs sojourn time, T soj

vm ,rn (τi ), and
the FL iteration time. Here, the j th node corresponds to any
RSU, UAV or HAP based upon the network selection strategy
adapted by the mth VT. It should be noted that the j th node
corresponds to the FL server node that transmit back the global
model parameters towards the VT.

In general the FL process can be stopped if it achieves
some predefined stopping criteria, such as the number of
FL iterations performed, predefined loss function value,

3For notational simplicity hereafter, we use d(vm , rn , ul , τi ) as a decision
vector notation indicating the three decision vectors av,m (τi ), br,n(τi ),and
cu,l (τi ) together.
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etc. [5], [38]. Therefore, without loss of generality, we intro-
duce ϵν as a convergence parameter in terms of FL global
model loss function value, for the FL model corresponding to
the service ν. In the past, it has been shown that, in certain
environments, it is possible to limit the number of FL
iterations required to be performed to achieve the predefined
loss function value [5], [39], [40]. However, the maximum
number of FL iterations required to be performed can depend
upon several parameters such as local environment scenarios,
number of VTs participating in the training process, quality
of VTs data, etc. Here, we assume that the number of FL
iterations required to achieve the FL performance is

ρmax
ν =

C√
M F L
ν

(7)

function of the number of VTs participating in the training
process of the FL model of the νth service, where the square-
root models the reduced impact when a higher number of VTs
participate to the FL training process. Here, C is a constant
representing the maximum number of iterations required for a
single VT to achieve the FL model convergence. If VTs have
participated to a reduced number of FL iterations when using
the FL model for their applications, the performance can be
sub-optimal. In such cases VTs might need to pay additional
penalty in terms of performance degradation or reduced quality
of service.

Here, we introduce a stochastic penalty function
PFL
ν (ρ (d(vm, rn, ul , τi ))) for measuring the impact of

the number of FL iterations performed over an FL model
performance. This analysis is motivated by the work done
in [5], for the joint computation offloading and the FL process
optimization over VN. If the mth VT requesting the service
ν is using the FL process to estimate the parameter xν with
xmin,ν ≤ xν ≤ xmax,ν , and the estimated value is given by
x̂ν(ρ (d(vm, rn, ul , τi ))), the FL penalty is:

PFL
ν (ρ (d(vm, rn, ul , τi )))

=

√(
xν − x̂ν (ρ (d(vm, rn, ul , τi )))

)2 (8)

where x̂ν is estimated by using a stochastic function with
truncated normal distribution with probability density function
f x̂ν (·) of x̂ν as,

f x̂ν (x̂ν; µ̄, σ̄ ) =


1
σ̄

ξ
(

x̂ν−µ̄
σ̄

)
1̄

(
xmax,ν−µ̄

σ̄

)
− 1̄

(
xmin,ν−µ̄

σ̄

)
if xmin,ν ≤ x̂ν ≤ xmax,ν

0 otherwise

and ξ(·) and 1̄(·) are, respectively, the probability density
function of the related standard normal distribution and its
cumulative distribution function, i.e.,

ξ(ω) =
1
√

2π
e
(
−
ω2
2

)
, 1̄(κ) =

1
2

[
1+ erf

(
κ
√

2

)]
.

In this work we assume that the mean value of the
distribution of x , i.e., µ̄, and its variance, σ̄ 2, are equal to

µ̄ = xν, σ̄ 2
=

[
γ̄ ·

ρmax
ν − ρ (d(vm, rn, ul , τi ))

ρmax
ν

]2

where γ̄ is a numerical constant, used for controlling the
variance of the model. The interested reader can have a
look to [5] where the same authors considered the above
model for estimating the FL iterations vs performance for the
computation offloading application over VN.

In the end the total FL latency and energy cost is:

T FL(d(vm, rn, ul , τi )) = ρT FL
i t (d(vm, rn, ul , τi ))

EFL(d(vm, rn, ul , τi )) = ρEFL
i t (d(vm, rn, ul , τi ))

G. Problem Formulation

In this work, we aim to perform a communication-efficient
FL process over a joint air-ground network. By adopting
a proper network selection strategy over different platforms
(A = {d(vm, rn, ul , τi )},∀m, n, l), the aim is to maximize the
FL process performance. Thus the main aim is to minimize
the joint cost of latency, energy, and the penalty function value
measuring the FL process performance:

P1 : A∗ = argmin
A

{
1

M F L
ν

M F L
ν∑

m=1

(
η1T FL (d (vm, rn, ul , τi ))

+ η2 EFL (d (vm, rn, ul , τi ))

+ w1PFL
ν (ρ (d (vm, rn, ul , τi )))

)}
(9)

subject to the following constraints,

C1 : Eq. (2), (3), (4) (10a)
C2 : Eq. (6) (10b)

C3 : Eq.
∑

B j
i ≤ B j

∀ j ∈ R,U, h (10c)

C4 : 0 ≤ η1, η2 ≤ 1; η1 + η2 = 1, w1 ≥ 0 (10d)

where A = {d(vm, rn, ul , τi )} is the combined set of network
selection decisions of all nodes involved during the FL process,
η1 and η2 are weighting coefficients for balancing latency and
energy consumption, and w1 is a weighting coefficient for the
penalty function. According to (10a), each VT, RSU and UAV
can communicate with only one EN from the upper layers.
Eq. (10b) limits the number of iterations performed by each
VT depending on the available sojourn time considering the
limited HAP coverage. Eq. (10c) shows the upper limit on the
bandwidth resources of any j th EN, among any RSU, UAV
or HAP. The total bandwidth available for the VTs and other
nodes connected to any j th EN will be upper bounded by
the bandwidth of the j th node, i.e., B j . According to (10d),
weighting coefficients η1 and η2 can have any value between
zero and one with their sum equal to one. Also w1 can have
any positive value.

IV. PROPOSED SOLUTIONS

For solving (9), we aim at finding a proper EN selection
strategy for creating a highly reliable FL model with reduced
latency and energy costs. With multiple edge computing
layers and a large number of VTs along the road, the
considered problem can be hard to solve. Here, we propose
a MDP-based RL approach for finding proper assignment
strategies for different nodes. The basic elements of the MDP
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model include the state space (S), the action space (A), the
reward function (R), the discount factor (γ ), and the proper
environment dynamics, or state transition, probability model
(P). Thus, the MDP process can be defined as a tuple given
by {S,A,R,P, γ }. In order to analyze the performance of
the proposed MDP model, we present two multi-dimensional
MDP approaches based on the VTs’ local environment, as well
three benchmark methods for comparison purposes.

A. MDP Based Approach
1) Local Environment Based Multi-Dimensional MDP

Model: In the considered network architecture, each VT
can be covered by one or more RSUs, UAVs, and one
HAP. Thus, different VTs/ENs can have different number of
nodes available for communicating the FL updates. In order
to properly select the EN for performing the FL, and
setting up the MDP parameters, we assume that each VT
is able to acquire the local environment parameters through
V2X communication links, allowing more personalized MDP
models with better accuracy. In particular, we classify the VTs
into different groups, based on their local environments, where
each group can have a separate state space and action space.

For the mth VT, the main parameters include the number
of RSUs (N R

v,m), UAVs (NU
v,m), and HAP (N H

v,m) nodes
available for the FL process. In addition, we define three

vectors V R
vm
=

{
V R
vm ,r1

, · · · , V R
vm ,r(N R

v,m)

}
with V R

vm ,rn
≤

V R
max , V U

vm
=

{
V U
vm ,l1 , · · · , V U

vm ,l(NU
v,m

)
}

with V U
vm ,ul

≤ V U
max ,

and V H
vm
=

{
V H
vm ,h1

, · · · , V H
vm ,h(N H

v,m)

}
with V H

vm ,h ≤ V H
max ,

corresponding to the number of nodes (i.e., VTs, RSUs, and
UAVs) already connected to the each RSU, UAV and HAP
node, respectively, covering the mth VT. Here, V R

max , V U
max

and V H
max stand for the maximum number of devices that can

be served by each RSU, UAV and HAP nodes. Thus, a tuple
κ = {N R

v,m, NU
v,m, N H

v,m, V R
vm
, V U

vm
, V H

vm
} can represent the mth

VT local environment. The number of possible κ values,
i.e., K̄ , can depend upon V R

max , V U
max and V H

max . Through
V2X communication links, VTs can determine the number
of nodes around them. However, since all VTs participate in
the FL process simultaneously, their assignment parameters
in advance is unknown. Therefore, some assumptions are
required. Here, we consider the following two approaches for
generating V R

vm
, V U

vm
, and V H

vm
vectors that can be used to

improve the MDP models accuracy.
a) Minimum distance based assignment approach: In the

case of a minimum distance-based approach, each node is
assigned to the upper layer node with the minimum possible
distance. For example, mth VT is assigned to the nearest RSU,
nth RSU is assigned to the nearest UAV, and lth UAV is
assigned to the nearest HAP. Thus in general,

av,m(τi ) = 1⇐⇒ n = argmin
n∈N R

v,m

{dvm ,rn (τi )} (11a)

br,n(τi ) = 1⇐⇒ l = argmin
l∈NU

v,m

{drn ,ul (τi )} (11b)

cu,l(τi ) = 1⇐⇒ h = argmin
h∈N H

v,m

{dul ,h(τi )} (11c)

b) Random assignment approach: In this approach, each
node is assigned to any of the higher layer nodes with a
probabilistic rule. We have considered the uniform assignment
approach where the probability of assigning the i th node
towards the j th upper layer node is given by

p(i → j) =
1

U max
i

(12)

where U max
i indicate the total number of upper layer nodes

covering the i th node which can be VT, RSU or UAV.
With these two approaches in hand, different sets of V R

vm
,

V U
vm

, and V H
vm

can be generated, helping to select proper
ENs. The two different MDP approaches resulting from these
methods are denoted as MDP with minimum distance based
assignment approach (MDP-MD), and MDP with random
assignment approach (MDP-RA). Later, the performance of
these two schemes is compared in the simulation results
section.

2) State Space (S): In general, MDP state space is
constituted by all possible states in which MDP agents can find
themselves during the exploration of the environment. Finding
an appropriate network of ENs, i.e., vehicle to HAP (vm → h),
vehicle to nth RSU to HAP (vm → rn → h), vehicle to lth
UAV to HAP (vm → ul → h), vehicle to nth RSU to lth UAV
to HAP (vm → rn → ul → h) can potentially save the FL
iteration latency and energy cost and allow VTs to participate
to a large number of FL iterations resulting into a better FL
model generation. In this work, S is constituted by multiple
number of binary variables corresponding to all n ∈ N R

v,m ,
l ∈ NU

v,m and h. In particular, we define

Srn
R (d(vm, rn, ul , τi )) =


1 if vm → rn

and
ρ (d(vm, rn, ul , τi ))

ρmax
ν

> ζ R
ρ

0 otherwise

as a binary variable related to rn ∈ N R
m , which takes value 1 if

the mth VT is assigned to the nth RSU and able to perform
a sufficient number of FL iterations, where 0 < ζ R

ρ ≤ 1 is a
parameter indicating the FL accuracy level that can be based
on the service type requested by the users. For example, in case
of a critical safety-related service, the FL model accuracy
should be high for avoiding possible fatal car crashes due
to the failure of the FL models. In this case, ζ R

ρ should be
closer to 1 or even 1. On the other hand, if it is not a high
priority/safety-related service, a moderate FL accuracy can be
sufficient to serve the user. In such cases ζ R

ρ can be smaller.
Similarly,

Sul
U (d(vm, rn, ul , τi ))

=


1 if (vm → ul or vm → rn → ul)

and
ρ (d(vm, rn, ul , τi ))

ρmax
ν

> ζU
ρ

0 otherwise

is a binary variable related to ul ∈ NU
m , which takes 1 if the

mth VT is assigned to the lth UAV and able to perform a
sufficient number of FL iterations. Here, 0 < ζU

ρ ≤ 1 is the
parameter indicating the FL accuracy level as a function of
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the service type requested by the users. Finally,

Sh
H (d(vm, rn, ul , τi ))

=



1 if (vm → h or vm → rn → h or vm→ ul → h,

or vm → rn → ul → h) and
ρ (d(vm, rn, ul , τi ))

ρmax
ν

>ζ H
ρ

0 otherwise

is a binary variable related to h, which takes value 1 if the mth
VT is assigned to the HAP h and able to perform a sufficient
number of FL iterations. Here, 0 < ζ H

ρ ≤ 1 is the parameter
indicating the FL accuracy level based upon the service type
requested by the users.

In the end, if the mth VTs local environment is modeled
through the tuple κ , the complete state vector is given as,

Sκ =
{

S1
R, · · · , S

N R
v,m

R , S1
U , · · · , SNU

m
U , Sh

H

}
3) Action Space (A): If the mth VT local environment is

modeled through the tuple κ , the action space (Aκ = {aκ(τi )})

includes all possible actions aκ that can be taken by the
MDP agent corresponding to the κ . In the considered FL
network selection problem, agents can select ENs belonging to
the different networking layers. Therefore, the generic action
space is defined as,

Aκ =
{
(vm → rn), (vm → ul), (vm → h),

(vm → rn → ul), (vm → ul → h), (vm → rn → h, ),

(vm → rn → ul → h)
}
∀m, l (13)

4) Reward Function (R): MDP agents can receive a
positive or negative reward based upon the current state and the
action taken. Here, we consider the weighted sum of latency,
energy and penalty functions cost required to complete a single
FL iteration as a reward received by the agent based upon its
state and action. Thus,

Rv,κ(s, a) = η1T FL(sκ , aκ)+ η2 EFL(sκ , aκ)

+ w1PFL
ν (ρ (sκ , aκ))

5) MDP Environment Dynamics (P): MDP environment
dynamics model the behavior of the MDP environment in
terms of state transition probabilities based upon the agents’
current state and the actions performed. The probability of
MDP agent finding itself into state s′ when it performs
the action a from state s is given as P(s′|s, a). Modeling
such state transition probability over dynamic vehicular
environments can be challenging. We propose a time-
dependent state transition probability equation based upon the
MDP agent’s local environment. In general, for scenario κ , the
state transition probability at τi is given by

P (sκ(τ + δ)|sκ(τ ), aκ(τ ))

= P
( {

Srn
R (τ + δ), Sul

U (τ + δ), Sh
H (τ + δ)

}
× |

{
Srn

R (τ ), Sul
U (τ ), Sh

H (τ )
}
, aκ(τ )

)
which represents the state transition probability for state sκ(τ+
δ) for the MDP agent from current state sκ(τ ) taking action
aκ(τ ). Here, δ is the MDP time step. Since VT can connect to

only one node in a given time interval, the events Srn
R , Sul

U and
Sh

H can be considered as an independent events, which results
into,

P(sκ(τ + δ)|sκ(τ ), aκ(τ ))

= P
(

Srn
R (τ + δ)|

{
Srn

R (τ ), Sul
U (τ ), Sh

H (τ )
}
, aκ(τ )

)
· P

(
Sul

U (τ + δ)|
{

Srn
R (τ ), Sul

U (τ ), Sh
H (τ )

}
, aκ(τ )

)
· P

(
Sh

H (τ + δ)}|
{

Srn
R (τ ), Sul

U (τ ), Sh
H (τ )

}
, aκ(τ )

)
(14)

In particular, with various communication links, e.g., V2V,
V2R, V2I, vehicular-based MDP agents can acquire useful
information about the surrounding environment (i.e., tuple κ),
which can be used to model the state transition probabilities.
The transition probability expressions are modeled as
exponential functions based upon various local environment
parameters. The state transition probability expressions for Srn

R
for the κth MDP agent with current state sκ(τ ) and performing
action aκ(τ ) is defined as,

P
({

Srn
R (τ + δ) = 1

}
|sκ(τ ), aκ(τ )

)
=

{
exp(−λR

n (τi )) if aκ(τ ) ∈ vm → rn

0 else
(15)

P
({

Srn
R (τ + δ) = 0

}
|sκ(τ ), aκ(τ )

)
= 1− P

({
Srn

R (τ + δ) = 1
}
|sκ(τ ), aκ(τ )

)
(16)

corresponding, respectively, to the probability that the MDP
agent will be in state with Srn

R (τ+δ) = 1 and Srn
R (τ+δ) = 0 by

taking action aκ(τ ) from current state sκ(τ ). Also, λn(τi ) =

δR
1 ·V

R
vm ,rn

(τi )+δ
R
2 ·dvm ,rn (τi )+δ

R
3 /T soj

vm ,rn (τi )models the impact
of VTs local environment over the state transition probability
values. According to λn(τi ), if the mth VT through action
aκ(τ ) selects the RSU n with high V R

vm ,rn
and dvm ,rn (τi ), the

VTs might not be able to perform the required number of
FL iterations. Also if VT selects the RSU with a high sojourn
time value, it can perform a sufficient number of FL iterations,
resulting in a higher probability that occurs Srn

R (τ + δ) = 1;
δR

1 , δR
2 and δR

3 are the weighing coefficients used to associate
proper weights towards each parameters. Next, for Sul

U ,

P
({

Sul
U (τ + δ) = 1

}
|sκ(τ ), aκ(τ )

)
=


exp(−λU

l,1(τi )) if aκ(τ ) ∈ vm → ul

exp(−λU
l,2(τi )) if aκ(τ ) ∈ vm → rn → ul

0 else

P
({

Sul
U (τ + δ) = 0

}
|sκ(τ ), aκ(τ )

)
= 1− P

({
Sul

U (τ + δ) = 1
}
|sκ(τ ), aκ(τ )

)
)

corresponding to the probabilities that MDP agent in state
sκ(τ ) by taking action aκ(τ ) will find itself in state with
Sul

U (τ + δ) = 1 and Sul
U (τ + δ) = 0, respectively.

Since VT can be connected to the UAV directly, or through
RSU as a intermediate node, two separated cases are provided
for increasing the accuracy of the MDP framework. Here,
λU

l,1(τi ) = δU
1 V U

vm ,ul
(τi ) + δ

U
2 dvm ,ul (τi ) + δ

U
3 /T soj

vm ,ul (τi ) and
λU

l,2(τi ) = δU
4 V R

vm ,rn
(τi ) + δU

1 V U
vm ,ul

(τi ) + δU
5 (dvm ,rn (τi ) +

drn ,ul (τi )) + δ3/T soj
vm ,ul (τi ) are the two parameters measuring

the impact of surrounding environment over the transition
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probabilities, while δU
1 , · · · , δ

U
5 correspond to the weighting

coefficients for properly balancing the impact of various
environment parameters. In the end, for Sh

H :

P
({

Sh
H (τ + δ) = 1

}
|sκ(τ ), aκ(τ )

)

=



exp(−λH
h,1(τi )) if aκ(τ ) ∈ vm → h

exp(−λH
h,2(τi )) if aκ(τ ) ∈ vm → rn → h

exp(−λH
h,3(τi )) if aκ(τ ) ∈ vm → ul → h

exp(−λH
h,4(τi )) if aκ(τ ) ∈ vm → rn → ul → h

0 else
(17)

P
({

Sh
H (τ + δ) = 0

}
|sκ(τ ), aκ(τ )

)
= 1− P

({
Sh

H (τ + δ) = 1
}
|sκ(τ ), aκ(τ )

)
(18)

are the state transition probabilities corresponding to
Sh

H (τ + δ) = 1 and Sh
H (τ + δ) = 0, respectively. Since

VTs can communicate with the HAP node through various
links, different cases are presented based upon the action taken.
In (17),

λH
h,1(τi ) = δ

H
1 V H

vm ,h(τi )+ δ
H
2 dvm ,h(τi )+ δ

H
3 /T soj

vm ,h(τi )

λH
h,2(τi ) = δ

H
4 V R

vm ,rn
(τi )+ δ

H
1 V H

vm ,h(τi )

+ δH
5 (dvm ,rn (τi )+ drn ,h(τi ))+ δ

H
3 /T soj

vm ,h(τi )

λH
h,3(τi ) = δ

H
6 V U

vm ,ul
(τi )+ δ

H
1 V H

vm ,h(τi )

+ δH
7 (dvm ,ul (τi )+ dul ,h(τi ))+ δ

H
3 /T soj

vm ,h(τi )

λH
h,4(τi ) = δ

H
4 V R

vm ,rn
(τi )+ δ

H
6 V U

vm ,ul
(τi )+ δ

H
1 V H

vm ,h(τi )

+ δH
8 (dvm ,rn (τi )+ drn ,ul (τi )

+ dul ,h(τi ))+ δ
H
3 /T soj

vm ,h(τi )

are the parameters modeling the surrounding environments
impact over the state transitions. In the end, by using (14),
(18) can be used to find the state transition probability in any
interval τ .

B. MDP-Based FL Network Selection Strategy

For the MDP model corresponding to the κth agent, the
solutions’ set can be defined as a policy function πκ =

{πκ(sκ(τi + δ)),∀δ} that maps every state sκ ∈ S to action
aκ ∈ A. Selecting different actions can result in different
policy functions, where the aim is to find an optimal policy
that corresponds to the minimum cost in terms of delay, energy
and FL process penalty value. For every policy πκ , a value
function Vπκ (sκ(τi )), corresponding to a state sκ(τi ) can be
defined for analyzing its performance. In general, Vπκ (sκ(τi ))

corresponds to an expected value of a discounted sum of total
reward received by following the policy πκ from state sκ(τi ),
and can be defined as:

Vπκ (sκ(τi )) = E

{
1∑
δ=0

γ δR (sκ(τi + δ), πκ(sκ(τi + δ)))

}
where γ ∈ [0, 1] is the discount factor, R(sκ(τi+δ), πκ(sκ(τi+

δ))) is the immediate reward received for following a policy
πκ at time τi + δ from the state sκ(τi + δ), 1 is the maximum

number of steps considered during the MDP evaluation, i.e.,
episode length, and E(·) corresponds to the expected value.
Thus, the value function analyzes the particular policy function
by assigning a numeric value to each state and can be utilized
to compare the performance of different policies. In the end,
the following optimization problem can be formulated in order
to be able to find the best possible policy function associated
with state sκ(τi ):

V (sκ(τi )) = min
πκ∈5κ

Vπκ (sκ(τi )) (19)

where 5κ corresponds to the set of policy functions that can
be explored.

As shown by many works (e.g., [41], [42]), the problem
defined in (19), can converge into a Bellman optimality
equation given by:

V (sκ(τi ))

= min
aκ (τi )∈Aκ (τi )

{
R(sκ(τi ), aκ(τi ))

+ γ
∑

sκ (τi+δ)∈ST
Pr {sκ(τi + δ) | sκ(τi ), aκ(τi )} V (sκ(τi + δ))

}
(20)

Different approaches can be used to solve the problem
in (20); however, the value iteration approach is widely known
for its fast convergence and easy implementation. Therefore,
below we present a value iteration approach aimed at solving
the MDP designed in the previous section for finding an
optimal policy that corresponds to the minimization of a FL
process time and energy over VN.

The value iteration method allows finding an optimal policy
and value function for the MDP models. The Algorithm 1
describes the steps involved during the value iteration process.
For every agent κ , the process begins by initializing the
values of each state to ∞ and iteration count (i t) to
0 (Line 2). For each state-action pair, the state value is
determined by using (21) (Line 5). The state value and a
corresponding optimal policy (π∗κ (sκ(τi ))) associated with
state sκ is determined by using (22) and (23) (Lines 7-8).
The iterative process continues till the change in the all
states values becomes less than the predefined convergence
parameter ϵ (Lines 10-13). In the end, the algorithm returns
the set of optimal policy functions

{
π∗κ

}
associated with all

possible scenarios in which VTs can find themselves over the
road (Line 15).

The time complexity of the traditional value iteration
process can be analyzed as O(1|S| · |A|) with 1 being the
maximum number of time steps considered, |S| state space
dimension, and |A| representing the action space. With the
involvement of K̄ scenarios, the time complexity expression
becomes O(K̄1|S| · |A|). The scenario-based modeling can
reduce the state and action space dimensions significantly.
Additionally, time-dependent state transition probabilities can
reduce the overall uncertainty in the MDP process.

C. Benchmark Methods
For analyzing the performance of the proposed MDP model,

we have considered the following benchmark methods.
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Algorithm 1 MDP Value Iteration

Input: ϵ, γ, Sκ , Aκ , Pr, K̄ ,1
Output:

{
π∗κ

}
1: for κ ∈ K̄ do
2: Initialize i t = 0, V 0(sκ(τi )) = ∞,∀sκ(τi )

3: for sκ(τi ) ∈ Sκ do
4: for aκ(τi ) ∈ Aκ do
5:

V i t+1(sκ(τi ), aκ(τi ))

← R(sκ(τi ), aκ(τi ))

+ γ
∑

sκ (τi+δ)∈sκ

Pr(sκ(τi + δ) | sκ(τi ), aκ(τi ))v
i t (sκ(τi + δ))

(21)

6: end for
7:

V i t+1(sκ(τi )) = min
aκ (τi )

V i t+1(sκ(τi ), aκ(τi )) (22)

8:

π∗κ (sκ(τi )) = argmin
aκ (τi )

V i t+1(sκ(τi ), aκ(τi )) (23)

9: end for
10: if any |vi t+1(sκ(τi ))− v

i t (sκ(τi ))| > ϵ then
11: i t = i t + 1
12: else
13: π∗κ =

{
π∗κ (sκ(τi ))

}
14: end if
15: end for
16: return

{
π∗κ

}

1) Conventional Centralized FL Process (C-FL): In the
case of a conventional centralized FL process, each VT
transmits its model updates to the centralized HAP server.
Thus, vm → h, ∀v ∈ V . This approach can reduce the overall
processing costs in terms of intermediate layer processing
and averaging operations performed over RSUs and UAVs.
However, possible long-distance communication links between
VTs and HAP can limit the performance in terms of link
failures, high energy costs, limited users participating in the
FL process, etc.

2) Minimum Distance Based FL Process (MD-FL): In this
case, the FL process assumes that each node communicates
with the nearest nodes from the upper layer. Thus, each
participating VT can select the shortest distance RSU node
for transmitting its update, which then process and transmit
the aggregated update vectors towards the nearest UAV for
further processing. In the end, HAP collects data from all the
participating UAV terminals for generating the global model,
which it then broadcasts back towards VTs. Eqs. (11a)-(11c)
can be used to determine the minimum distance assignment
vectors for different nodes.

3) Random Assignment Based FL Process (RA-FL): In this
approach, nodes involved in the FL process (i.e., VTs, RSUs,
UAVs, and HAP) follow the random assignment strategy

in (12). Thus, each VT selects the one EN from a set of RSUs,
UAVs, and HAP covering it. Similarly, RSUs can either be
connected to the UAV/HAP or can also communicate back the
results to VTs. UAVs also followed the same strategy, where
they can either send their data to HAP or return it to the VTs
for the next round of the FL process.

4) FedCPF Inspired RSU-Based Benchmark Solution for
the Considered Scenario (FedR-FL): In [35], authors have
proposed a FedCPF approach based upon a customized
local training strategy, partial client participation, and flexible
aggregation strategies. Here we considered a FedCPF-
inspired, RSU-based benchmark approach where VTs are
performing the local training process and transmitting the
model parameters to the nearest RSU node. The client
selection strategy of the FedCPF approach is considered where
participation of each VT in the FL process is based upon
a probability Psel (i.e., Psel is the probability of the client
being a part of FL training, while (1− Psel) is the probability
that the client will opt out from the LF training). The other
two strategies of customized local training strategy and the
deadline-based server aggregation strategy are based upon the
RSU sojourn time constraint. In particular, VTs’ participation
in the FL process is limited by its dynamicity and the RSU
coverage range.

V. PERFORMANCE EVALUATION

The value iteration algorithm for solving the MDP
model and the benchmark methods previously described are
simulated over a Python-based simulator, using ML-related
libraries such as NumPy, Pandas, Matplotlib. In Table I, the
main simulation parameters are shown for the considered
network architecture. The service area is under the coverage of
one HAP, 20 UAVs and 40 RSUs. A variable number of VTs
between 200 and 700 are considered, assuming that each one
is requesting service ν with a probability equal to 0.2. Each
VT is traveling with a variable speed as modeled in (1) with
µ=10 m/s and σ=1. The maximum number of FL iterations
required to achieve the proper performance, as defined in (7),
consider that C = 1000. Also Psel = 0.7 is used for the
FedCPF-inspired RSU-based benchmark solution approach.
Each VT has a FL dataset of size |Dvm | = 5, 000 samples.
During the FL training process, ψd = 1500 and T FA

i,ν = 1 ms.
The maximum number of nodes covering any VT is given by
Rmax = 3, Umax = 2 and Hmax = 1. Additionally a maximum
number of nodes served by each RSU vR

max = 8, each UAV
vU

max = 16, and HAP vH
max = 32 are considered. With the

multi-core processing hardware of ENs, these users can be
grouped into different levels based on the number of cores.

The weighting coefficients used for modeling the transition
probabilities are defined as, [δR

1 , δ
R
2 , δ

R
3 ] = [0.025, 0.004, 0.5],

[δU
1 , δ

U
2 , δ

U
3 , δ

U
4 , δ

U
5 ] = [0.2, 0.0125, 0.1, 0.2, 0.005], [δH

1 ,

δH
2 , δ

H
3 , δ

H
4 , δ

H
5 , δ

H
6 , δ

H
7 , δ

H
8 ] = [100, 0.4, 100, 200, 1.25,

100, 0.4, 1.25] · 10−3. The weighting coefficients have been
defined so that different local environment parameters, defined
in the transition probability equations (16)-(18), have a value
range consistent among them during the MDP state evaluation.
For the case of FL penalty function x = 0.5 with 0 ≤ x ≤ 1 is
used along with λ̄ = 0.3. Additionally, ζ R

ρ , ζU
ρ , and ζ H

ρ are

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 



SHINDE AND TARCHI: JOINT AIR-GROUND DISTRIBUTED FL FOR INTELLIGENT TRANSPORTATION SYSTEMS 13

TABLE I
SIMULATION PARAMETERS

set to 0.7. During value iteration process γ = 0.9, ϵ = 0.01,
λ = 0.1 and episode length 1 = 200 are used.

A. Numerical Results

In the following, we present the main performance results
including the FL cost, latency, energy, FL penalty, and the
average number of FL iterations performed by VTs for
different methods.

1) FL Process Cost: The main objective of this work
is to jointly reduce the overall latency, energy, and FL
penalty. Fig. 5 shows the performance in terms of FL overall
cost for the MDP schemes and the benchmark methods
previously presented. It can be observed that both MDP
methods outperform the benchmark approaches as the number
of VTs increases.

With a reduced number of VTs, with a fully distributed
FL process, the MD-FL approach requires higher cost mainly
due to several processing operations performed at different
layers. On the other hand, a fully centralized C-FL method
has reduced costs due to the presence of a limited number
of VTs requesting the resources from the centralized HAP
node. However, if the number of VTs is higher, the overall
cost of the C-FL approach grows fast mainly due to the
higher communication distances and the limited resources
of a HAP node. With this, the C-FL cost becomes higher
than the other benchmark methods with the increasing density
of VTs. Similar effects can be seen later in the latency
and energy plots shown in Figs. 6 and 7. The other two
benchmark approaches (RA-FL and FedCPF-inspired method)
have a slightly better performance mainly due to the reduced
communication distances and reduced processing operations
compared to the fully distributed MD-FL and a fully
centralized C-FL approaches. However, the imperfect/static
edge node selection without considering the local environment
parameters and the available resources, the performance of
the benchmark approaches compared to the proposed MDP
solutions.

Fig. 5. Performance results in terms of overall cost function with variable
number of active vehicles.

On the other hand, the proposed MDP solutions, with
network selection based upon the VTs local environments
and the available resources of ENs, are able to keep the
FL process cost under the limit. In particular, the MDP-RA
method outperforms all other approaches. For the case of the
MDP-MD, the VTs local environment is modeled through
the assignments of the FL devices to the nearest nodes with
less flexibility, i.e., VTs can be assigned to the RSUs, RSUs
can be assigned to the UAVs, and UAVs are assigned to the
HAP node. On the other hand, the MDP-RA approach is
more flexible, where each node can select any higher layer
entities, i.e., VTs can be assigned to the RSU, UAVs, or HAP.
Therefore, MDP-RA method outperforms the MDP-MD in
terms of overall cost, as well FL latency, and energy, as later
shown in Figs. 6 and 7.

With the upcoming latency-constrained vehicular applica-
tions and services demanding ML models with high accuracy,
it is important to perform the distributed learning process, such
as FL, in a limited time and with reduced energy consumption.
Thus, the proposed distributed learning framework with
efficient network selection strategies allows a large number
of VTs to participate in the training process with reduced cost
and a huge advantage over the traditional methods.

2) FL Latency Performance: For each FL iteration, the
FL process is impacted by communication, training, and
processing latency. In Fig. 6, we present the average FL
iteration latency for various MDP and benchmark methods.
In particular, MDP-MD and MDP-RA methods, with proper
node selections can perform the FL process with reduced
latency compared with other methods. As for the previous
case, with fewer nodes requesting resources, the C-FL method
performs better compared to the MD-FL and RA-FL methods.
However, when VTs are more, C-FL performance in terms of
latency requirements degrades drastically. On the other hand
with a distributed FL process, the MD-FL approach induces
higher latency with lower VTs. However, with higher VTs its
performance is better than the C-FL method mainly due to the
distribution of the FL process over the multiple edge nodes.
The fedCPF-inspired approach selects the RSU nodes for the
averaging operation limiting the latency costs in the beginning.
However, with the limited sojourn time, VTs are unable to
perform a sufficient number of iterations resulting in the higher
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Fig. 6. FL latency with variable number of active vehicles.

FL penalty as shown later in Fig. 8. With a higher number
of VTs, the performance of the FedCPF-inspired approach
degrees mainly due to the limited RSU resources and the
imperfect node selection.

The MDP approaches, especially the MDP-RA method,
jointly reduce both communication and processing latency by
distributing the FedAvg process over a sufficient number of
edge nodes. Therefore, the proposed methods can efficiently
train the FL model over the distributed multi-layered VN
environments.

3) FL Energy Performance: It is important to reduce the
FL process energy cost given the involvement of different
T/NT networking platforms (i.e., VTs, UAVs) with scarce
energy resources. The FL process consumes energy for the
local training operations, data communication, and FL data
processing over servers. In Fig. 7, we present the performance
in terms of energy spent by the different methods. Similar to
the latency performance, the C-FL process energy performance
is better for a reduced number of VTs, due to the involvement
of a limited number of VTs and reduced FedAvg process cost.
However, when VTs are more, the VTs energy requirements
become high mainly due to long-distance communication
over limited bandwidth resources. Compared with the C-
FL method, MD-FL has an advantage in terms of reduced
communication distances/costs. However, with the repetition
of the FedAvg process over each layer, the energy cost
increases. On the other hand, the proposed MDP methods
can reduce both communication and computation process
energy requirements simultaneously by properly distributing
the FL process over multi-layered VN. By utilizing the local
environment knowledge, MDP methods can select proper ENs
with sufficient resources and, as a result, are able to perform
the FL process with reduced energy requirements.

It should also be noted that the energy performance of
the C-FL method degrades quickly compared to its latency
performance. This is mainly because every VTs involved in the
FL process of the C-FL approach requires communication with
the centralized HAP node. Due to this, the energy cost induced
by the individual VTs can be higher compared to the other
benchmark methods. This trend can also be seen in the overall
cost performance in Fig. 5. The results from Figs. 6 and 7 can
also highlight the issues of the well-known straggler effect in
the FL framework with the traditional benchmark methods and

Fig. 7. Performance results in terms of energy consumption for the FL
process with variable number of active vehicles.

the necessity to counter such effects with the new solutions.
The proposed MDP-based methods can mitigate such effects
as highlighted by the performance in Figs. 5-7.

4) FL Penalty Performance: With the adopted network
selection strategy, if VTs fail to perform a sufficient number of
FL iterations, the FL model performance may not be adequate.
We have modeled the impact of the number of FL iterations
performed by VTs in terms of a stochastic penalty function
presented in (8). In Fig. 8, we show the average FL penalty
value for different sets of VTs for the proposed methods. The
benchmarks, with inadequate FL process, fail to perform the
required number of FL iterations resulting in the higher FL
penalties. The FedCPF-inspired approach selects the nearby
RSU node for limiting the FL communication cost, which
as result limits the number of FL iterations performed by
VTs, inducing the heavy FL penalty. The other two benchmark
methods, MD-FL and RA-FL also suffer from a large penalty
due to the reduced number of FL iterations performed mainly
due to the high latency per FL iteration with constrained
sojourn times. Although the C-FL method gains from a higher
coverage range of the HAP node and with reduced FL latency,
for a reduced number of VTs it is able to perform a large
number of FL iterations with a reduced penalty, while, as the
number of VTs increases, its performance decreases. For a
reduced number of VTs, the penalty value for the MDP-RA
process is high, mainly because of the low number of VTs
participating in the FL process and its decisions to select the
nearby edge nodes for reducing the overall FL cost. However,
with a growing number of VTs, its performance increases with
proper network selection strategies and an adequate number of
VTs participating in the FL process. On the other hand, the
MDP-MD method which suffers slightly in terms of latency
and energy costs in the beginning can perform a high number
of FL iterations reducing the LF penalty. Notice that these
behaviors of MDP methods can also be impacted by the
assumptions made over the competing VTs decisions and can
have different impacts in terms of individual costs. However,
both the MDP methods are able to reduce the joint costs
of latency, energy and penalties significantly compare to the
traditional benchmark methods. Therefore, the proposed FL
process with proper network selections can create reliable FL
models with better performance.
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Fig. 8. Performance results in terms of FL Penalty value with variable
number of active vehicles.

Fig. 9. Performance results in terms of average number of FL iterations with
variable number of active vehicles.

5) Average Number of FL Iterations: For having adequate
performance FL nodes, VTs should be able to perform a
sufficient number of FL iterations (ρ (d(vm, rn, ul , τi ))). The
number of FL iterations performed by each VT is based upon
the network selection strategy and the available sojourn time of
the selected ENs, as given in (6). A proper network selection
strategy can reduce the FL iteration time. Also selecting proper
ENs with a higher number of communication/computation
resources allows VTs to participate in a larger number of
iterations. To shade more light on the results presented in the
previous figures, here we present the average number of FL
iterations performed by different methods (Fig. 9). It can be
seen that with a lower number of VTs, C-FL is able to perform
a higher number of FL iterations, however, its performance
reduces as more and more VTs participate in the process
mainly due to the longer FL iteration time. It should also
be noticed that though in the beginning, the C-FL approach
can outperform one of the MDP solutions (MDP-RA), its
joint performance is still not optimized due to the static FL
process (Fig. 5). On the other hand, as described before in
Fig. 8 the node selection strategies for the MDP-RA and
MDP-MD methods are based upon a joint cost optimization
and can be influenced by the competing VTs decisions. With
FedCPF-inspired RSU-based benchmark solution, VTs can
only perform a limited number of iterations only, mainly due
to the limited coverage range of the RSU nodes. This also

highlights the importance of considering the distributed NTN
layers of networking platforms for supporting the FL process.
With imperfect edge node selection strategies, the other two
benchmark solutions (MD-FL and RA-FL), also suffer from
limited FL iterations resulting in imperfect FL models with
higher performance penalties (i.e., Fig. 8).

VI. CONCLUSION

In this work, we have presented the communication-
efficient, distributed FL platform over a joint T/NT-based
VN. The proposed approach can be useful for creating cost-
efficient, sustainable, and more reliable FL models for serving
VTs applications. With proper analysis of the FL process
cost, we formed the constrained optimization problem for
finding the optimal FL network selection strategy over multi-
layered VNs. We further modeled the FL network selection
problem as a sequential decision-making RL problem by
adapting the MDP framework. A time-dependent environment
dynamic model is created by utilizing the VTs environment
parameters acquired through the V2X technology. In the end,
the value iteration approach is used to solve the MDP model
for finding suitable policies. The numerical results acquired
over the Python-based simulation show the major advantages
of the proposed FL approach over several other benchmark
methods including the conventional centralized FL process.
In the future, we expect to extend this work by analyzing
the performance of proposed methods on realistic vehicular
systems for enabling intelligent solutions at the edge.
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