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S U M M A R Y
The Every Earthquake a Precursor According to Scale (EEPAS) forecasting model is a space–
time point-process model based on the precursory scale increase (ψ ) phenomenon and
associated predictive scaling relations. It has been previously applied to New Zealand, Cal-
ifornia and Japan earthquakes with target magnitude thresholds varying from about 5–7. In
all previous application, computations were done using the computer code implemented in
Fortran language by the model authors. In this work, we applied it to Italy using a suite of
computing codes completely rewritten in Matlab. We first compared the two software codes to
ensure the convergence and adequate coincidence between the estimated model parameters for
a simple region capable of being analysed by both software codes. Then, using the rewritten
codes, we optimized the parameters for a different and more complex polygon of analysis using
the Homogenized Instrumental Seismic Catalogue data from 1990 to 2011. We then perform
a pseudo-prospective forecasting experiment of Italian earthquakes from 2012 to 2021 with
Mw ≥ 5.0 and compare the forecasting skill of EEPAS with those obtained by other time in-
dependent (Spatially Uniform Poisson, Spatially Variable Poisson and PPE: Proximity to Past
Earthquakes) and time dependent [Epidemic Type Aftershock Sequence (ETAS)] forecasting
models using the information gain per active cell. The preference goes to the ETAS model for
short time intervals (3 months) and to the EEPAS model for longer time intervals (6 months
to 10 yr).

Key words: Computational seismology; Earthquake interaction, forecasting and prediction;
Statistical seismology.

I N T RO D U C T I O N

EEPAS is an earthquake forecasting method based on the statistical
analysis of seismicity (Rhoades & Evison 2004). Its basic assump-
tion is that magnitudes and rates of minor seismicity increase before
a strong shock. This phenomenon (called ψ-phenomenon ) was de-
scribed by Evison & Rhoades (2004) for some regions of the world
in which high quality earthquakes catalogues are available. They
analysed 47 earthquakes with magnitude ranging between 5.8 and
8.2 to derive three empirical scaling relations: for time, magnitude
and area. These relate the magnitude of main shock (Mm) with the
precursor magnitude (MP ) the precursor time (TP ) and the precursor
area (Ap). Such empirical scaling relations show that in general the
magnitude of precursor events is smaller than the magnitude of the
main shock by at least one magnitude unit. The EEPAS model con-
siders each earthquake as an individual precursor according to the
scale indicated by its magnitude, rather than as a possible member
of a ψ-phenomenon.

The details of the EEPAS method are described in a number of
papers (e.g. Rhoades & Evison 2004; Evison & Rhoades 2005;

Rhoades 2007, 2011; Rhoades et al. 2020), some of which contain
typos that make the formulation not perfectly identical in all of
them. For such reason in Appendix A we describe again the method
as well as some assumptions made without explicit mentions in
previous papers.

We implemented such formulations in a suite of Matlab codes
that we first compared with the code EEPSOF (Rhoades 2021) used
in all previous applications of EEPAS methods. The results of this
comparison are described in Appendix B and indicate a tight agree-
ment between parameters estimates from the two codes before the
introduction of spatial parameters in the optimization procedure.
After that, the differences become a little more pronounced for pa-
rameters aT , σA and bT , where the two codes differ by 12.5, 10.2 and
24.0 per cent, respectively. These differences can be explained by
the different numerical algorithm adopted by the two codes for spa-
tial integration. However, the final maximum log-likelihood scores
and the numbers of forecasted earthquakes are very similar (Table
A1).

For comparison purposes we also consider other forecasting
models and in particular the Epidemic Type Aftershock Sequence
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(ETAS) model (Ogata 1989, 1998) and two time-independent fore-
casting models: the Spatially Uniform Poisson (SUP) and the Spa-
tially Variable Poisson (SVP) models (Console et al. 2006). The
description of our implementations of such models is reported in
Appendix C.

The fitting of the free parameters of various models is carried out
by maximizing the log-likelihood function of an inhomogeneous
Poisson point process, which is given by:

ln L =
∑

ti ∈(ta ,tb);mi ≥mT ;(xi ,yi )∈R

ln λ (ti , mi , xi , yi )

−
tb∫
ta

mu∫
mT

∫∫
R

λ (t, m, x, y) dy dx dm dt, (1)

where λ(t, m, x, y) is the rate density function for PPE (eq. A12),
EEPAS (eq. A10), ETAS (eq. C6) and SUP or SVP (eq. C7) models;
(ta, tb) is the time interval of the fitting period; (mT , mu) is the
magnitude range of target earthquakes and R is the spatial region of
analysis.

A P P L I C AT I O N T O I TA LY

We chose mT = 5.0 as the lower magnitude limit for target shocks,
because in Italy such earthquakes potentially cause damage to build-
ings and threaten the health and life of inhabitants. This choice is
also consistent with most of the applications of EEPAS model to
other regions of the World (Rhoades & Evison 2004; Evison &
Rhoades 2005; Rhoades 2007, 2011).

We chose the learning time interval from 1990 to 2011 for fitting
the EEPAS model, because the accuracy and completeness of the
Italian catalogue has improved significantly since 1990 (Gasperini
et al. 2013), We use the independent 10-yr interval from 2012 to
2021 for pseudo-prospective testing of the model.

As application region R, we consider a regular tessellation of the
Italian territory made of square cells with side L = 30

√
2 km

from 7◦E to 19◦E in longitude and from 36◦N to 47◦N in latitude.
The choice of L is made for compatibility with the previous work
by Gasperini et al. (2021), so that each square cell is (almost)
perfectly inscribed in a circular cell with radius of 30 km. Because
the completeness of the earthquake catalogue is poor in offshore
areas, according to Gasperini et al. (2021), we consider only the cells
within which at least one earthquake with M ≥ 4.0 occurred inland
from 1600 to 1959 according to the CPTI15 catalogue (Rovida
et al. 2020) and from 1960 to 2021 according to the Homogenized
instrRUmental Seismic (HORUS) catalogue (Lolli et al. 2020). We
also excluded the cells that are not contiguous to the main analysis
polygon (such as insulated cells on islands). In total, 177 square
cells constitute the region of analysis R (Fig. 1).

For fitting of model parameters, an earthquake catalogue with
a completeness magnitude (mc) at least two units lower than the
target magnitude (mT ) is desirable (Rhoades & Evison 2004). For
Italy an earthquake catalogue with homogeneous magnitudes and
high resolution is the HORUS catalogue (Lolli et al. 2020) report-
ing earthquakes from 1960 to the present. According to Lolli et al.
(2020), HORUS can be considered complete within the Italian main-
land for m ≥ 4.0 since 1960, for m ≥ 3.0 since 1981, for m ≥ 2.5
since 1990, for m ≥ 2.1 since 2003 and for m ≥ 1.8 since 2005. In
the data set for this work, we used only shallow earthquakes with
depth Z ≤ 40 km. To avoid edge effects in the fitting of model pa-
rameters, the contribution of earthquakes in the neighbourhood of
the region R must also be considered (Rhoades & Evison 2004). We

assume as neighbourhood region the area included in the CPTI15
polygon (Fig. 2) according to Rovida et al. (2020).

To account for the limited accuracy of magnitude data, we binned
all magnitudes to the nearest tenth of a unit:

mbinned = int (mraw × 10 + 0.5)

10
. (2)

This also means that a magnitude lower threshold rounded to the
nearest tenth of a unit (e.g. mT = 5.0) implies an effective threshold
0.05 units smaller (e.g. mT = 4.95).

The HORUS catalogue reports 27 target shocks with Mw ≥ 5.0
from 1990 to 2011 and 27 from 2012 to 2021. Thus, the rate of
target shocks in the testing period is about twice that in the learning
period. Hence, the forecasting of the correct number of earthquakes
in the testing period by any forecasting method will be difficult.

After the first target shock (‘main shock’) of a seismic sequence,
the forecasting of successive target shock (‘aftershocks’) is easier,
owing to the presence of small aftershocks. Hence, we also fit and
test the models against a set of target earthquakes only including
the first target shock of each sequence. According to Gasperini
et al. (2021), we eliminate the target shocks, occurring within a
spatial window of 50 km and a time window of 1 yr after any
other target shock. In order to prevent various models from trying
to forecast removed target earthquakes, we also remove all other
(minor) shocks belonging to such spatial and time windows. The
numbers of considered target shocks for the main shock only set
then reduce to 12 and 9 for the learning and testing time intervals,
respectively.

E S T I M AT I O N O F PA R A M E T E R S O F
E E PA S A N D O T H E R F O R E C A S T I N G
M O D E L S U S I N G T H E L E A R N I N G DATA
S E T

Considering the high number of free parameters to be determined
for the EEPAS model (in principle about 20), the maximization of
the log-likelihood function (eq. 1) would be very time consuming
and subject to numerical instability. However, according to Rhoades
& Evison (2004), simultaneous optimization of all parameters is not
necessary because some of them, such as the b-value of the Guten-
berg & Richter (1944) relation and the parameters of the aftershock
epidemic decay model (p, k, c, ν), can be, in fact, separately fitted
or even be simply assigned based on previous works in the same
area.

The b-value of the Gutenberg & Richter (1944) relation is chosen
to be representative of the behaviour of the frequency magnitude
distribution of target events in the fitting time interval. For the main
shocks + aftershocks and main shocks only target earthquake sets,
the values b = 1.084 and b = 1.176, respectively, are computed
so that the number of predicted target events by the spatial uniform
Poisson model (SUP, see below and Appendix C) exactly match the
number of observed events (27 and 12 respectively) in the learning
set. This also makes the numbers of shocks predicted by the other
models implemented for comparison consistent with observed ones.
The parameters of the aftershock model are not particularly critical
for the EEPAS model; however, they are necessary to determine
the weight w (eq. A21) of the contribution of each earthquake
(M ≥ mc), by defining the probability of an earthquake being an
aftershock of a previous seismic event. The parameters p = 1.2
and c = 0.03 of eq. (A18) were chosen as typical parameters of
Omori’s law (Ogata 1983). The two parameters ν and k in eq.
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Figure 1. Tessellation of the Italian territory region used for the fitting of parameters and for the pseudo-prospective experiment. The thick black line delimits
the analysis region R. The cells that R comprises are only those within which at least one earthquake with M ≥ 4.0 from 1600 to 2021 occurred according to
CPTI15 catalogue (Rovida et al. 2020) and have 30

√
2 km of side.

(A16) were fitted by maximizing the likelihood of earthquakes with
m ≥ mT occurring within R in the period 1990–2011.

Finally, the parameter σU = 0.006 of eq. (A20) is chosen to be
consistent with the mean value of the cluster diffusion parameter for
Italy (Musmeci & Vere-Jones 1992). The parameter δ = 0.7 of eq.
(A19) is taken from previous works for New Zealand, California and
Japan (Rhoades & Evison 2004; Evison & Rhoades 2005; Rhoades
2007, 2011). The parameters of the PPE model (eq. A12) a, d and
s are fitted simultaneously using the maximum likelihood method.

Regarding EEPAS parameters, the fit is made in three successive
iterations. The parameter bM is fixed to 1 for all three iterations;
that means there is perfect scaling between precursor and target
magnitudes (Rhoades & Evison 2004).

In the first iteration, the parameters bT and bA are fixed to 0.40
and 0.35, respectively, based on analyses conducted on scaling rela-
tionships obtained from the analysis of individual earthquakes. The
parameters σM and σT are also fixed to 0.32 and 0.23, respectively.
Such values correspond to the residual standard deviation for the
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Figure 2. Epicentres of earthquakes with magnitude ≥2.5 that occurred within the CPTI15 polygon (outer thick polygon) between 1990 and 2021. The inner
thick polygon represents the forecasting area R.

magnitude and time scaling relations (Rhoades & Evison 2004).
Finally, parameters aT , aM , σA and μ are computed by maximum
likelihood estimation.

In the second iteration, the previously fitted parameters aT , aM ,
σA are kept fixed at the obtained values and the parameters bT , bA,
σM , σT and μ are computed instead by the maximum likelihood.

In the third and last iteration a final computation is made of all
parameters (aT , aM , σA, bT , bA, σM , σT and μ) simultaneously, by
providing the optimizer with starting values of the parameters as
obtained in previous optimizations. The parameter μ, responsible
for mixing the two models PPE and EEPAS, is the only parameter
fitted in all three iterations of optimization.

Short descriptions of the parameters of the PPE and EEPAS
models are listed in Table 2. The parameter values obtained by
maximizing the likelihood are reported in Tables 3 and 4 for the
main shocks + aftershocks and the main shocks only target sets
respectively. In the same tables we also report the parameters of the
other forecasting models (SUP, SVP, ETAS-SUP and ETAS-SVP)
computed for comparison. A short description of all implemented
models is reported in Table 1.

In Tables 5 and 6, we report the information gain per event (IGPE)
and the Akaike information criterion (AIC, Akaike 1974) goodness
of fit estimators of various models for the main shocks + after-
shocks and the aftershocks only target sets, respectively. The IGPE
is defined as

IGPE = L − L̂

N
, (3)

where L and L̂ are the likelihoods obtained by a model and reference
model, respectively. The AIC defined as

AIC = − 2 log (L) + 2n, (4)

where L and n are the maximum likelihood and the number of fitted
parameters for the model involved, respectively. The lower the AIC
statistic, the better the fit to the data. We can note how both the
ETAS models have better scores (higher loglikelihood, information
gain per event and lower AIC) than EEPAS and other models. Both
EEPAS models also have lower loglikelihoods than SVP and higher
AIC (worse) than SUP for the main shock only set. Such scores are
not particularly significant because they only represent the goodness
of the fit of the models to learning data set and might include some
degree of data overfitting.

P S E U D O - P RO S P E C T I V E C O M PA R I S O N
O F F O R E C A S T I N G M O D E L S O N T H E
I N D E P E N D E N T T E S T I N G DATA S E T

We apply the suite of tests defined by the Collaboratory for the
Study of Earthquake Predictability (CSEP, Jordan 2006; Zechar
et al. 2010b) and particularly the new ones described by Bayona
et al. (2022).

Such tests assess the consistency of observed earthquakes with a
forecast model by (i) the conditional loglikelihood (cL-test), (ii) the
observed number of earthquakes (N-test), (iii) their spatial distribu-
tion (S-test) and (iv) their magnitude distribution (M-test). However,
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Table 1. Summary of applied forecasting models.

Model Main features Reference

SUP Stationary uniform Poisson model based on the
observed seismicity rate M ≥ mT .

Console & Murru (2001)

SVP Space variable Poisson model based on the smoothed
seismicity rate M ≥ mT observed in each cell.

Console & Murru (2001)

PPE Quasi time-dependent model based on the hypothesis
that future earthquakes tend to occur near the place of
the recent ones. The rate-density of future earthquakes
is modelled as proportional to a smoothed version of
past seismicity

Jackson & Kagan (1999),
Rhoades & Evison (2004)

EEPAS Space/time-dependent model based on the hypothesis
that each earthquake (M ≥ mc) contributes to the
transient increment of the future rate of M ≥ mT in its
vicinity according to ψpredictive relations.

Rhoades & Evison (2004)

EEPAS-W As above but the contribution of aftershocks and
triggered events are downweighted

Rhoades & Evison (2004)

ETAS-SUP Epidemic-type aftershock model based on the
hypothesis that each earthquake can perturb the rate of
earthquakes and generate its own Omori-like decay
sequence. The SUP is used as background model.

Ogata (1988, 1989), Ogata &
Zhuang (2006)

ETAS-SVP As above but with SVP as background model. Ogata (1988, 1989), Ogata &
Zhuang (2006)

Table 2. Summary of PPE and EEPAS parameters.

Model Parameter Description Restriction

PPE a Normalizing constant. ≥ 0
d Smoothing kernel kilometric distance. ≥ 1
s Small value to account for earthquakes far from past

epicentres.
≥ 0

EEPAS aM Intercept of scaling relation between precursor
magnitude and target magnitude (eq. A1).

1.0 − 2.0

bM Slope of scaling relation between precursor magnitude
and target magnitude (eq. A1).

1 (fixed)

σM Standard deviation of scaling relation between precursor
magnitude and target magnitude (see Fig.1, Rhoades
2011 )

0.2 − 0.65

aT Intercept of scaling relation between precursor time and
target magnitude (eq. A2)

1 − 3

bT Slope of scaling relation between precursor time and
target magnitude (eq. A2)

0.3 − 0.65

σT Standard deviation of the scaling relation between
precursor magnitude and target magnitude (see Fig.1,
Rhoades & Evison 2011).

0.15 − 0.6

bA Slope of scaling relation between precursory area and
target magnitude (eq. A3).

0.2 − 0.6

σA Related to Aa of scaling relation between precursory
area and magnitude (see Fig.1, Rhoades & Evison
2011).

1 − 30

μ Proportion of target shocks that occurs without an
appreciable sequence of precursory shocks.

0 − 1

Aftershocks
(EEPAS)

c c-parameter of Omori–Utsu law 0 − 0.5

p p-parameter of Omori–Utsu law 1 − 1.6
k Normalizing constant. ≥ 0
ν Proportion of earthquake that are not aftershocks 0 − 1
δ Average magnitude difference between the main shock

and the largest aftershock
0.7 (Fixed)

σU Cluster diffusion parameter 0.006 (Fixed)
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Table 5. Performance estimators of various models in the learning time interval (1990–2011) (main shock + aftershocks).

SUP SVP PPE EEPAS-NW EEPAS-W ETAS-SVP ETAS-SUP

E 27 27.22 27 27.67 27.73 27.49 27.52
lnL −524.63 −465.47 −514.11 −500.39 −496.06 −363.87 −363.58
IGPE 0.00 2.19 0.39 0.90 1.06 5.95 5.97
AIC 1051.3 934.9 1036.2 1026.8 1018.1 727.7 727.1
	AIC 0.00 2.15 0.28 0.45 0.61 5.99 6.00

E, number of predicted events; lnL, loglikelihood score; IGPE, information gain per event with respect to model SUP; AIC,
Akaike Information Criteria; 	AIC, Akaike Information Criteria difference with respect to model SUP per event.

Table 6. Performance estimators of various models in the learning time interval (1990–2011) (main shocks only).

SUP SVP PPE EEPAS-NW EEPAS-W ETAS-SVP ETAS-SUP

E 12.00 12.19 11.99 14.26 14.75 12.01 11.97
lnL −246.15 −237.68 −243.52 −239.92 −239.79 −215.57 −212.91
IGPE 0.00 0.75 0.22 0.52 0.54 3.03 3.16
AIC 494.30 479.37 495.04 505.84 505.40 435.49 432.57
	AIC 0.00 0.62 −0.03 −0.48 −0.46 1.88 2.10

E, number of predicted events; lnL, loglikelihood score; IGPE, information gain per event with respect to model SUP; AIC,
Akaike Information Criteria and 	AIC, Akaike Information Criteria difference with respect to model SUP.

we do not report the results for the latter, because all forecasting
models assume a Gutenberg–Richter frequency–magnitude distri-
bution and all pass the M-test.

Traditional CSEP tests are based on a likelihood function that
regards earthquakes in individual cells or bins as independent and
Poisson distributed (Schorlemmer et al. 2007, 2010; Zechar et al.
2010b). However, the Poisson distribution insufficiently captures the
spatiotemporal variability of earthquakes, especially in the presence
of clusters of seismicity (Werner & Sornette 2008; Lombardi &
Marzocchi 2010; Nandan et al. 2019). The new CSEP tests are
characterized by a lower sensitivity to clustering of target events
rather than the traditional ones.

The new CSEP N-test compares the number of predicted earth-
quakes in all (time–space–magnitude) bins with the number of tar-
get earthquakes observed and is based on the negative binomial
distribution (NBD)

p [(ω|τ, ν)] = � (τ + ω)

� (τ ) ω!
νω(1 − ν)ω, (5)

where ω = 1, 2, . . . is the number of events, τ > 0 and 0 ≤ ν ≤ 1
are parameters and � is the Gamma function. The mean and the
variance of NBD are given by

μ = τ
1 − ν

ν
; σ 2 = 1 − ν

ν2
(6)

According to Werner et al. (2010) and Bayona et al. (2022) we
used the number of expected earthquakes as the mean value μ of
the NBD. The variances are determined considering the numbers of
events with Mw ≥ 5.0 within 10 yr non overlapping intervals from
1882 to 2011 (Fig. 3) from the Italian historical catalogue CPTI15
(Rovida et al. 2020). The computed variances are σ 2

N D = 67.76
and σ 2

D = 35.94 for the main shocks + aftershocks and the main
shocks only data sets, respectively.

The numbers of earthquakes corresponding to 95 per cent
(p = 0.025÷0.975) and 97.5 per cent (p = 0.0125÷0.9875) predic-
tive limits, based on the NBD cumulative distribution function, are
computed. If the observed number of earthquakes falls within such
limits, the model satisfactorily describe the observed data.

The new binary cL-test compares the joint binary log-likelihood
(JBLL) of the forecasted events by a model with the observed seis-
micity, with the distribution of joint binary log-likelihoods obtained
by the simulation of random catalogues.

The rates forecasted by the model within each active bin (i.e.
time–space–magnitude bins containing observed events) are first
normalized to the total number of observed active bins (so that their
sum is 1). The active bins are then sorted according to the increasing
value of the normalized rate and a vector of cumulated normalized
rates is computed (ranging from 0 and 1). The number Nsim of bins
to simulate is fixed to the number of observed active bin. For each
simulated bin, a uniformly distributed random number is extracted
in the interval]0,1]. An earthquake is then placed in the first bin for
which the cumulated normalized rate exceeds the random sampled
value (Zechar et al. 2010).

For each simulated catalogue the JBLL is estimated and, after
N = 10 000 simulated catalogues, the simulated JBLL distribution
is obtained. If the JBLL obtained by a model lies in the lower tail
of the simulated JBLL distribution, the forecasting model does not
reproduce well the real seismicity pattern and then the test fails.

The new binary log-likelihood is obtained by calculating the
probability of an earthquake in a forecast bin. Assuming the Pois-
sonian distribution, the probability of observing ω = 0 events,
given an expected rate λ, is P0 = exp(−λ), while the probability
of observing more than zero events is P1 = 1 − P0 (Bayona et al.
2022). The binary log-likelihood for each bin is thus given by

BLL = Xi ln (1 − exp (−λ)) + (1 − Xi ) ln (exp(−λ)) , (7)

where Xi = 1 if the ith bin contains at least one event and Xi = 0
otherwise. The observed binomial joint log-likelihood is given by
the summation of the BLL over all space–magnitude–time bins:

JBLL =
s∑

l=1

m∑
j=1

t∑
k=1

X (l, j, k) ln [1 − exp (−λ (l, j, k))]

+ [1 − X (l, j, k) ln(exp (−λ (l, j, k)] . (8)

The S-test evaluates the consistency of the spatial occurrence
of target earthquakes regardless of their magnitudes. For the new
S-test the joint binary log-likelihood of the forecasted catalogue
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Figure 3. Number of target events (M ≥ 5.0) reported in the CPTI15 earthquake catalogue (from 1880 to 1959) and in the HORUS seismic catalogue (from
1960 to 2021) in non-overlapped 10-yr intervals for main shocks + aftershocks (left-hand panel) and main shocks only (right-hand panel) used to estimate the
variance of the catalogues. The green bars represent the number of target events occurred during the testing period (from 2012 to 2021) not used to estimate
the variances.

is calculated considering only the spatial distribution of forecasted
events. To isolate the spatial distribution, the forecasted events are
summed over the magnitude and time bins. In addition, to assess
the JBLL, the forecasted catalogue is normalized to the number of
active spatial cells. The simulation procedure to obtain the spatial
simulated JBLL is similar to that described above for the binary
cL-test, but Nsim is fixed to the number of active spatial cells. For
the cL, N and S test, the computed statistic is the quantile score: that
is, the fraction of simulated likelihoods that are less than or equal to
the likelihood observed by the model. A small value, lower than the
usual significance level α = 0.05 or than the Bonferroni-adjusted
significance level αB f = 0.05/2 = 0.025 means that the model
inadequately describes the seismicity pattern.

To evaluate the relative skill of the forecasting models, we use the
information gain per active bin (IGPA, Bayona et al. 2022), which
is based on the likelihood difference with respect to a reference
(baseline) forecasting model divided by the number of earthquakes
or by the number of active bins (the bins in which the likelihood
contribution is not zero) respectively. The IGPA is thus given by

I G P A = Nbase − Nmod

M
+ 1

M

M∑
m = 1

[Xmod (m) − Xbase (m)] , (9)

where Nbase and Nmod are the total number of earthquakes expected
by the baseline and the model respectively, M is the number of
active bins, and Xmod(m) and Xbase(m) are the joint log-likelihood
score obtained in the bin with the m − th target earthquake by the
model and the reference baseline model respectively. According to
Rhoades et al. (2011) the variance of Xmod(m) − Xbase(m) is given
by

s2 = 1

M − 1

M∑
m = 1

(Xmod (m) − Xbase (m))2 − 1

M2 − M[
M∑

m = 1

Xmod (m) − Xbase (m)

]2

. (10)

The IGPA error is estimated as ±ts
√

M , where t is the 95th\
(or 97.5th) percentile of the Student’s t distribution with M − 1
degrees of freedom.

As baseline model we take the SUP, which is the simpler one.
We do not need a correction for the number of free parameters, as
proposed by Rhoades et al. (2014), because the fitting of models is
independent of the testing set targets, being made using the learning
set. In addition, we do not use the parimutuel gambling score (PGS)
by Zhuang (2010) and Zechar & Zhuang (2014), because Serafini
et al. (2022) recently demonstrated that PGS is improper when the
number of forecasting methods being tested is greater than two.

R E S U LT S

In Fig. 4 and Table 7, we report the numbers of main shocks + af-
tershocks targets predicted by various models using different time
intervals (3 months, 6 months, 1 yr, 5 yr and 10 yr) of prediction.
All models definitely underestimate the total number of target earth-
quakes (27) that actually occurred. The reason is that the average rate
of targets in the testing set (about 2.7 per yr) is more than twice than
that in learning set (about 1.2 per yr). However, according to Werner
et al. (2010) , the negative binomial N-test is characterized by wider
confidence intervals than the traditional Poissonian N-test and then
the forecast models are found to be consistent as the observed num-
ber earthquakes is within both the 95 and 97.5 per cent confidence
intervals (Fig. 5 and Table S1). The binary cL-tests show that all
forecasted models adequately describe the observed seismicity as
the quantile scores exceed the 0.025 and 0.05 significance levels
(Fig. 6 and Table S2). The S-test (Fig. 7 and Table S3) confirm the
spatial consistency between the forecasts and the observed data set.
The results of the IGPA (T-test) for main shocks + aftershocks tar-
gets in Fig. 8 and Table S4 indicate that for the shortest prediction
interval of 3 months the best performing models are the ETAS-SVP
and ETAS-SUP. For longer prediction intervals, the best performing
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Figure 4. Numbers of targets (main shocks + aftershocks) in the testing set (2012–2021) predicted by various models using different prediction intervals. The
effective total number of targets is 27.

Table 7. Numbers of earthquakes predicted by various models in the testing time interval (2012–2021) (main shocks + aftershocks).

Time interval SUP SVP PPE EEPAS-NW EEPAS-W ETAS-SUP ETAS-SVP

3 months 12.27 13.11 14.03 14.41 13.70 8.36 8.00
6 months 12.27 13.11 13.98 14.40 13.69 7.43 7.73
1 yr 12.27 13.11 13.87 14.38 13.67 6.94 7.42
5 yr 12.27 13.11 12.94 14.21 13.53 5.90 6.79
10 yr 12.27 13.11 11.25 13.86 13.25 4.66 6.05

Figure 5. Results of number consistency test (N-test) in the testing set (2012–2021) for various models using different prediction intervals (main shocks + af-
tershocks). Coloured circles indicate the number of observed events in the testing set. Black and grey bars indicate the 95 and 97.5 per cent predictive intervals,
respectively. Green coloured circles indicates that all models passed the test.
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Figure 6. Results of conditional likelihood consistency test (cL-test) in the testing set (2012–2021) for various models using different prediction intervals
(main shocks + aftershocks). Black and grey bars indicate the 95 and 97.5 per cent confidence limits, respectively. Green coloured circles indicates that all
models passed the test.

Figure 7. Results of spatial consistency test (S-test) in the testing set (2012–2021) for various models using different prediction intervals (main shocks + af-
tershocks). Black and grey bars indicate the 95 and 97.5 per cent confidence limits, respectively. Green coloured circles indicates that all models passed the
test.
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Figure 8. Comparison between various models in different time intervals (main shocks + aftershocks) in the testing set (2012–2021) by the IGPA (T-test).
Black and grey bars indicate the 95 and 97.5 per cent confidence limits, respectively. Coloured circles are green if the IGPA of a model is larger than the
reference value 0 corresponding to the SUP model, yellow if IGPA of a model is lower than the reference model, but not significantly and red if a model IGPA
is significantly lower than the reference model.

Figure 9. Numbers of targets (main shocks only) in the testing set (2012–2021) predicted by various models and prediction intervals. The effective total
number of targets is 9.

Table 8. Numbers of earthquakes predicted by various models in the testing time interval (2012–2021) (main shocks only).

Time interval SUP SVP PPE EEPAS-NW EEPAS-W ETAS-SUP ETAS-SVP

3 months 5.46 5.86 5.41 6.02 6.06 4.23 4.17
6 months 5.46 5.86 5.40 6.02 6.06 4.02 4.06
1 yr 5.46 5.86 5.38 6.01 6.05 3.82 3.96
5 yr 5.46 5.86 5.18 5.92 5.96 3.19 3.67
10 yr 5.46 5.86 4.82 5.51 5.57 2.97 2.57

models are the EEPAS-NW and EEPAS-W but such superior perfor-
mance appears to be statistically significant only for time intervals
of 5 and 10 yr.

In Fig. 9 and Table 8, we report the numbers of main shocks only
targets predicted by various models using different time intervals of
prediction. All models still underestimate the total number of targets
(eq. 9) that actually occurred, as even in this case the average rate of
targets in the testing set (0.9 per yr) is greater than in the learning set
(0.5 per yr). All models pass the negative binomial N-test (Fig. 10
and Table S5), and the binary cL-test (Fig. 11 and Table S6) and
S-test (Fig. 12 and Table S7) for all time intervals of prediction.
The results of the IGPA (T-test) main shock only targets in Fig. 13
and Table S8 confirm that, based on the IGPA, the best performing
models are ETAS-SVP and ETAS-SUP for the shortest prediction

interval of 3 months and the EEPAS-NW and EEPAS-W for longer
prediction intervals. However, such superior performance is not
significant for any time interval.

C O N C LU S I O N S

We applied the EEPAS earthquake forecasting model to Italy, sim-
ilarly to previous application in other seismic regions of the world
(e.g. Rhoades & Evison 2004; Evison & Rhoades 2005; Rhoades
2007, 2011; Rhoades et al. 2020), using a suite of computing codes
completely rewritten in Matlab and implementing both EEPAS for-
mulations with the input earthquakes not weighted (EEPAS-NW)
and weighted (EEPAS-W). We calibrated and fitted the model pa-
rameters using earthquakes of the HORUS seismic catalogue of
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Figure 10. Results of number consistency test (N-test) in the testing set (2012–2021) for various models using different prediction intervals (main shocks
only). Black and grey bars indicate the 95 and 97.5 per cent confidence limits, respectively. Coloured circles indicate the number of observed events in the
testing set. Green coloured circles indicates that all model passed the test.

Figure 11. Results of conditional likelihood consistency test (cL-test) in the testing set (2012–2021) for various models using different time intervals (main
shocks only). Black and grey bars indicate the 95 and 97.5 per cent confidence limits, respectively. Green coloured circles indicates that all model passed the
test.
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Figure 12. Results of spatial consistency test (S-test) in the testing set (2012–2021) for various models using different prediction intervals (main shocks only).
Black and grey bars indicate the 95 and 97.5 per cent confidence limits, respectively. Green coloured circles indicates that all model passed the test.

Figure 13. Comparison between various models in different time intervals (main shocks only) in the testing set (2012–2021) by the IGPA (T-test). Black and
grey bars indicate the 95 and 97.5 per cent confidence limits, respectively. Coloured circles are green if the IGPA of a model is larger than the reference value
0 corresponding to the SUP model, yellow if IGPA of a model is lower than the reference model, but not significantly and red if a model IGPA is significantly
lower than the reference model.

Italy (Lolli et al. 2020) for the learning period 1990–2011. The
EEPAS model was then applied to forecast all earthquakes (main
shocks + aftershocks) of the same seismic catalogue with M ≥ 5.0
and only the main shocks that occurred within the polygon of anal-
ysis for the test period 2012–2021. We compared the forecasting
skill of EEPAS with the ones obtained by other time dependent
(ETAS-SUP and ETAS-SVP) and time independent (SUP, SVP and
PPE) models implemented on the same data set. We used a set of
new CSEP consistency tests based on a binary likelihood function

as described in Bayona et al. (2022). This latter likelihood function
reduces the sensitivity of spatial log-likelihood scores to the occur-
rence of seismic events (Bayona et al. 2022) compared to previous
versions of the tests based on a Poisson distribution assumption. The
number of expected target earthquakes forecasted by each model
tends to decrease as the forecasting interval increases. The highest
expected number of earthquakes is for a window of 3 months. How-
ever, all models tend to underestimate the total numbers of expected



EEPAS forecasting method in Italy 1695

events that actually occurred, 27 and 9 for the main shocks + after-
shocks and main shocks only data sets, respectively. This is due to
the different average rate of target events in the learning and testing
period. This difference does not affect the performance of consis-
tency tests, which are passed by all models. In particular, the cL and
S-test showed an adequate consistency between the forecasted and
the observed events distribution as the quantile scores exceed the
significance values of 0.025 and 0.05.

The difference in the seismicity rate between the learning and the
testing period is less pronounced for the main shocks only data set
and the consistency tests show similar results. We also assess the
relative forecasting skill of various models using the IGPA (Rhoades
et al. 2011; Bayona et al. 2022) considering as baseline reference
model the SUP. For both main shocks + aftershocks and main
shocks only data sets, the best performing model is the ETAS-SUP
and ETAS-SVP for the shortest prediction interval of 3 months and
the EEPAS-NW and EEPAS-W for the longer prediction intervals.
These results confirm the different characteristics of the models
ETAS and EEPAS. The latter model seems more appropriate than
the ETAS model for making forecasts of the long-term seismicity,
even if the small number of target shocks suggest some caution.
The reason of such different behaviours can be that ETAS model is
focused on short time clustering while EEPAS model to long time
clustering. In particular, the weighted version of EPAS is designed
so that to weigh less earthquakes that are likely to be aftershocks of
a previous one (see Appendix A). These results also suggests that
EEPAS could be a valid candidate for hybrid forecasting models in
combination to EPAS.
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A P P E N D I X A : F O R M U L AT I O N O F P P E
A N D E E PA S F O R E C A S T I N G M O D E L S

The EEPAS model is based on the increase in rate and in magnitude
of the minor seismicity observed before the occurrence of major
earthquakes (ψ-phenomenon, Rhoades & Evison 2004). Evison &
Rhoades (2004) analysed the ψ-phenomenon that evolved before 47
major earthquakes in well catalogued regions (such as California,
New Zealand, northern Mexico, Japan and Greece) developing three
empirical scaling relations that relate the precursor magnitude (Mp)
with the main shock magnitude (Mm), precursor time (Tp) and
precursory area (Ap). Where Mp is assumed as the mean of the three
largest precursor shocks, Tp is the time interval between the onset of
the ψ-phenomenon and main shock and Ap (expressed in km) is the
smallest rectangular spatial box containing the precursory events,
main shock and aftershocks (for details see Evison & Rhoades
2004). The predictive scale relations are thus defined as

Mm = am + bm Mp, (A1)

log
(
Tp

) = at + bt Mp, (A2)

and

log(Ap) = aa + ba Mp. (A3)

In the EEPAS model each ith earthquake, occurring at time ti

with magnitude mi and located at (xi , yi ), is assumed to contribute
to the transient increment of the rate density λi (t, m, x, y) of fu-
ture seismicity (defined as the derivative of the expected number of
earthquakes with respect to time, magnitude and location coordi-
nates) by the term

λi (t, m, x, y) = wi f1i (t) g1i (m) h1i (x, y) , (A4)

where wi is a weighting factor which depends on other earthquakes
in its proximity (see below). f1i (t), g1i (m) and h1i (x, y) are the
probability density functions of time, magnitude and location, re-
spectively. The assumed forms for these distributions are defined
consistently with the ψ scaling relations by Rhoades & Evison
(2004) . The time distribution is assumed to be Lognormal with the
form

f1i (t) = H (t − ti )

(t − ti ) ln (10) σT

√
2π

exp

[
− 1

2

(
log (t − ti ) − aT − bT mi

σT

)2
]

,

(A5)

where H (t − ti ) is the Heaviside step function, which takes the
value 1 if t − ti > 0, and 0 otherwise. This means that at the time
t, the rate density function is contributed only by earthquakes oc-
curring before t. Here aT , bT and σT are free parameters to be
determined.

The magnitude distribution g1i (m) is assumed to be normal with
the form:

g1i (m) = 1

σM

√
2π

exp

[
−1

2

(
m − aM − bM mi

σM

)2
]

(A6)

where aM , bM and σM are free parameters.
The space distribution is assumed to be bivariate Normal with

circular symmetry with the form

h1i (x, y) = 1

2πσ 2
A10bAmi

exp

[
− (x − xi )

2 + (y − yi )
2

2σ 2
A10bAmi

]
, (A7)

where σA and bA are free parameters.
An adjustment is necessary because of the missing contribution

of earthquakes below the minimum completeness magnitude mc

http://www.corssa.org
http://dx.doi.org/doi: 10.4401/ag-4840
https://academic.oup.com/gji/article-lookup/doi/10.1093/gji/ggad123#supplementary-data
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which causes the rate density at magnitude m to be underestimated
on average by a fraction 	(m) of its real value given by

	 (m) = φ

(
m − aM − bM mc − σ 2

Mβ

σM

)
, (A8)

where φ is the Normal distribution integral. Then 	(m) can also
be written as

	 (m) = 1

2
erf

[(
m − aM − bM mc − σ 2

Mβ

σM

√
2

)
+ 1

]
, (A9)

where erf is the Error function.
Hence, to compensate for the lack of earthquakes with magnitude

lower than the completeness magnitude mc, λi (t, m, x, y) is inflated
by a factor 1

	(m) .
The total rate density is obtained by summing the contribution

of all past earthquakes and also adding a background term that
allows for the possibility that an earthquake can occur without an
appreciable scale increase of precursory shocks:

λ (t, m, x, y) = μλ0 (t, m, x, y) +
t−delay∑

ti ≥t0;mi ≥mc

η (mi ) λi (t, m, x, y) , (A10)

where λ0(t, m, x, y) is the background rate density, t0 is the time of
the beginning of the catalogue, μ is the mixing parameter and can
be interpreted as the proportion of earthquakes that occur without
precursory shocks. The normalizing function η is defined by

η (mi ) = bM (1 − μ)

E (w)
exp

[
−β

(
aM + (bM − 1) mi + σ 2

Mβ

2

)]
,

(A11)

where E(w) is the mean weight of earthquakes in the catalogue;
aM , bM and σM are free parameters; and β = b ln 10, with b be-
ing the slope of the frequency–magnitude distribution of Gutenberg
& Richter (1944). The normalizing function η(mi ) ensures that
the number of earthquakes expected by the model approximatively
matches the actual number of target earthquakes. The delay term
in eq. (A10) is to prevent the fit of the parameters being influenced
by the short-term clustering of earthquakes (such as aftershocks
and swarms). The EEPAS model is focused on the long-term clus-
tering detected by the precursory scale increase phenomenon and
its associated scaling relations. For this reason, the delay (usually
assumed to be 50 d) after the time of occurrence of each earthquake
is applied and no earthquake from the input catalogue is considered
before such time interval elapsed after its occurrence.

The background rate density λ0(t, m, x, y) depends on the prox-
imity of the location (x, y) with respect to previous seismicity. It
is described by a quasi-time-invariant smoothed seismicity model,
described by Rhoades & Evison (2004), which is similar to the fore-
casting model proposed by Jackson & Kagan (1999) and is called
proximity to past earthquakes (PPE). It takes the form

λ0i (t, m, x, y) = f0i (t) g0i (m) h0i (x, y) , (A12)

where f0i (t) is the time density function, g0i (m) is the magnitude
density function and h0i (x, y) is the spatial density function. The
time density function takes the form

f0i (t) = 1

ti − t0
. (A13)

This ensures that at any time the estimated rate of earthquakes
with m ≥ mT within the region R is similar to the past rate.

The magnitude density function is that implied by the frequency
magnitude law of Gutenberg & Richter (1944):

g0i (m) = β exp [−β (mi − mc)] . (A14)

Finally, h0i (x, y) is the sum over all earthquakes with mi ≥ mT

from time t0 up to, but not including time t of smoothing kernels
with the form

h0i (xi , yi ) =
t-delay∑

ti >t0;mi >mT

a (mi − mT )
1

π

(
1

d2 + r 2
i

)
+ s, (A15)

where ri is the distance in km between (x, y) and the epicentre
(xi , yi ); a is a normalizing parameter, d is a smoothing distance and
s is a small term that includes the contribution from earthquakes
that occur far from past epicentres.

The rate density λ0(t, m, x, y) of the PPE model decreases gradu-
ally with time elapsed after an earthquake occurrence and increases
when a new earthquake occurs. The function h0i (x, y) considers the
earthquake location and the function f0i (t) the passage of time.

The purpose of the weighting factor wi in eq. (A10) is to give
more weight to earthquakes that are more likely to be part of a long-
term clustering, thus giving less weight to events that are aftershocks
of previous earthquakes. Two different weighting strategies were
applied in the past application of EEPAS. The simplest one is giving
the same weight wi = 1 to each earthquake in the catalogue. With
this strategy aftershocks triggered by previous earthquakes have the
same weight of any other shock. The other strategy is to assign a
lower weight to any earthquake which is likely to be an aftershock
of a previous earthquake. Therefore, the total rate density is mostly
given by earthquakes that are part of long-term clustering.

This latter strategy requires estimating the rate density λ′ for
aftershock occurrence, incorporating epidemic-type aftershock be-
haviour (Ogata 1988, 1998; Console & Murru 2001). The aftershock
model adopted for EEPAS takes the form:

λ′ (t, m, x, y) = νλ0 (t, m, x, u) + k
∑
ti ≥t0

λ
′
i (t, m, x, y) , (A16)

where λ0 is the rate density given by PPE model, ν is the proportion
of earthquake that are not aftershocks, k is a normalization constant
and λ′(t, m, x, y) describes the aftershocks occurrence with the
form:

λ
′
i (t, m, x, y) = f2i (t) g2i (m) h2i (x, y) , (A17)

where f2i (t), g2i (m) and h2i (x, y) are, respectively, the density func-
tions for time, magnitude, and locations of the aftershocks of the ith
earthquake. The time distribution is given by the modified Omori
law (Utsu 1961; Ogata 1983):

f2i (t) = H (t − ti )
p − 1

(t − ti + c)p , (A18)

where ti is the time of the ith earthquake, and c and p are the Omori
law parameters.

The magnitude distribution follows the Gutenberg & Richter
(1944) law, and it is assumed that the magnitude of an aftershock is
smaller than its main shock by at least δ units

g2i (m) = H (mi − δ − m) β exp [−β (m − mi )] . (A19)

The addition of the parameter δ is based on the so-called Bath’s
law (Båth 1965), according to which the largest aftershock typically
has a magnitude about 1.2 units smaller than the main shock. Fi-
nally, the spatial distribution is assumed to be bivariate Normal with
circular symmetry:

h2i (x, y) = 1

2πσ 2
U 10mi

exp

[
− (x − xi )

2 + (y − yi )
2

2σ 2
U 10mi

]
, (A20)
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where σU is a free parameter. The weighting factor is then computed
as

wi = νλ0 (ti , mi , xi , yi )

λ′ (ti , mi , xi , yi )
, (A21)

In this way, if an earthquake has the characteristics of an af-
tershock, it will have a weight close to 0; on the contrary, if an
earthquake that in no way resembles an aftershock it will have a
weight close to 1.

A P P E N D I X B : I M P L E M E N TAT I O N O F
M AT L A B A N D P Y T H O N C O D E S A N D
C O M PA R I S O N W I T H E E P S O F V E R S I O N
2 . 3 W

We developed a suite of codes in Matlab language reproducing the
formulation described in the Appendix A. We tested them against
the EEPSOF code (Version 2.3 w) developed by D. A. Rhoades
(2021) and provided as a binary Linux executable file compiled by
Fortran77. To make the comparison, we adopted a simplified spatial
geometry as EEPSOF hardly manages the complex shape made by
a tessellation of the Italian area as described in the main text. The
purpose of the comparison is to ensure that the optimized parameter
values and the relative maximum log-likelihoods are satisfactorily
similar.

One difference between the Matlab implementation and EEP-
SOF is the treatment of spatial data. While the EEPSOF code itself
computes the kilometric distances directly from geographical co-
ordinates, for the Matlab implementation we have chosen to first
convert all coordinates from the WGS84 geographic reference to
kilometric coordinates in the RDN2008 Italy Zone (E-N) EPSG:
7794 by the QGIS software.

We applied both codes to the data set of target earthquakes with
magnitude M ≥ 5.0 that occurred from 1990 to 2020 within the
analysis polygon. The latter is a rectangle with sides of 576 km
eastward and of 745 km northward (Fig. A1). The vertices of the
polygon for EEPSOF were converted from kilometric coordinates
in the RDN2008 Italy Zone (E–N) system to the WGS84 coordinate
reference system. For fitting the EEPAS model, we used the earth-
quakes from the HORUS catalogue with M ≥ 2.5 and Z ≤ 50 km
occurring inside the polygon from 1960 to 2020. To avoid edge
effects in the fitting of model parameters, the contribution of earth-
quakes in the neighbourhood up to 200 km from the polygon were
also considered ( Fig. A1). The used data set contains 38 086 events,
of which 24 816 are within the analysis polygon. For both software
codes, the log-likelihood optimization is carried out using the down-
hill simplex method (Nelder & Mead 1965) as described in Rhoades
& Evison (2004).

For the comparison, the fit of the EEPAS parameters is made
in five iterations, one for the parameters aT , aM and ϑA and the
others adding one at a time the parameters (ϑT , ϑM , bA, bT ) to note
the onset of possible deviations. In the first iteration the parameters
ϑT , ϑM , bA, bT were set to 0.23, 0.32, 0.35 and 0.40, respectively,
based on analyses conducted on scaling relationships obtained from
the analysis of individual earthquakes (Rhoades & Evison 2004).
With these parameters set, aT , aM and σA were fit by the maximum
likelihood estimation using as starting values 1.5, 1.4 and 3.3, re-
spectively. The fit procedure continued by adding one parameter
at a time and considering the previously obtained values as initial
values. The parameters, log-likelihoods values and the expected
numbers of earthquakes are reported in Table A1.

The optimized parameter values for the first iteration are un-
equivocally similar for the two codes, because the differences are
less than 0.9 per cent. In the second and third step, the estimates of
parameters aM and ϑT begin to slightly deviate, with maximum per-
centage differences up to about 3.0 per cent. With the introduction
in the fit of the spatial parameters, the differences of the other pa-
rameters also increase. In the fifth and final iteration, the differences
are more pronounced, particularly for the parameters aT , σA and bT ,
where the codes differ by 12.5, 10.2 and 24.0 per cent, respectively.
However, the differences in log-likelihoods and expected numbers
of earthquakes remain small. Such differences mainly concern spa-
tial parameters and may be related to the different way in which
distances are handled by the two software codes and to the different
method used to integrate over space.

A P P E N D I X C : I M P L E M E N TAT I O N O F
T H E E TA S , S U P A N D S V P M O D E L S

In the literature we can find several implementations of the Epidemic
Type Aftershock Sequence (ETAS) model to earthquake forecasting
in Italy (e.g. Console et al. 2006; Lombardi & Marzocchi 2010). In
all of them the time dependence is formulated as a sum of Omori
decays starting at the times of occurrence of each earthquake

f (t) =
n∑

i=1

H (t − ti ) K

(t − ti + c)p , (C1)

where K, p and c are free parameters and H (t − ti ) is the Heaviside
step function which is 1 if t − ti > 0 and is 0 otherwise.

The productivity of each earthquake of magnitude Mi is described
by

r = eα(Mi −Mc), (C2)

where α is a free parameter and Mc is the minimum magnitude of
completeness.

The decay of the productivity with the distance from the epicentre
(xi , yi ) of each earthquake can be described by many probability
density functions (e.g. Ogata 1998; Console et al. 2003; Zhuang
et al. 2004; Lombardi & Marzocchi 2010; Zhuang et al. 2011). In
this work, we considered the spatial PDF as described in Ogata &
Zhuang (2006) where the smoothing term is an exponential function
of the magnitude:

g (x, y) = (q − 1)
[
D2eγ (mi −mc)

]q−1

π
[
(x − xi )

2 + (y − yi )
2 + D2eγ (mi −mc)

]q , (C3)

where q, D and γ are free parameters.
Finally, the frequency magnitude distribution of shocks is given

by the Gutenberg & Richter (1944) law

h (m) = βe−β(m−Mc), (C4)

where β = b ln 10 is a free parameter.
Combining all the previous terms together, and adding a time

invariant background seismicity term λ0(x, y, m), the rate density
of ETAS models is given by

λ (t, x, y, m) = νλ0 (x, y, m) + [ f (t) rg (x, y) h (m)] . (C5)

That is

λ (t, x, y, m) = νλ0 (x, y, m)

+

⎧⎪⎨
⎪⎩

n∑
i = 1

H (t − ti ) K

(t − ti + c)p eα(Mi −Mc)
(q − 1)

[
D2eγ (mi −mc )

]q−1

π
[
(x − xi )2 + (y − yi )2 + D2eγ (mi −mc )

]q βe−β(m−Mc )

⎫⎪⎬
⎪⎭ .

(C6)



EEPAS forecasting method in Italy 1699

Figure A1. Map of epicentres of earthquakes with M ≥ 2.5 and Z ≤ 50 km that occurred from 1990 to 2020 within the region adopted for the software codes
comparison. The interior rectangular area represents the analysis polygon for which the EEPAS model is applied. The black point represents the epicentres
of earthquake occurred within the analysis polygon. The external rectangle represents the influence area for which earthquake indicated by the grey points
are also considered for the parameters estimation to avoid edge effects. The white squares represent target earthquakes with M ≥ 5.0 that occurred within the
analysis polygon in the period 1990–2020.

The parameter ν represents the ratio between the expected num-
ber of independent events of the background seismicity λ0(x, y, m)
and the total number of events.

The time invariant models of seismicity consist of stationary Pois-
son processes, in which the average earthquake occurrence rate may
be spatially uniform (Spatially Uniform Poisson, SUP) or variable
(Spatially Variable Poisson, SVP). SUP and SVP can also be seen
as independent models of seismicity occurrence to compare with
other forecasting models (Console et al. 2006).

Their rate density is given by:

λ0 (x, y, m) = μ0 (x, y) β exp [−β (m − Mc)] (C7)

where μ0(x, y) is the spatial rate density of earthquakes with mag-
nitudes equal or larger than Mc. In the SUP model the space-density
is assumed to be uniform and independent of the location (x, y). μ0

is obtained by dividing the number of earthquakes with magnitude
above Mc over the whole analysis region R by the total surface area
considered.

In the SVP model, the spatial density μ0(x, y) is considered as
a continuous smooth function of the geographical location (x, y).
To estimate it as a spatially varying function, it is necessary to
divide the polygon into squared cells of suitable size. The number
of earthquakes Nk with magnitude equal to or larger than Mc in each
cell is estimated. Each Nk value, representative of a single cell is
then smoothed by a Gaussian filter with correlation distance dc and

normalized so as to preserve the total number of events as described
in Frankel (1995). For each cell, the smoothed Nk is given by

Ñk = �l Nk exp
(−	2

kl/d2
c

)
�l exp

(−	2
kl/d2

c

) , (C8)

where 	kl is the distance between the centre of the kth and the lth
cells. To obtain Ñk in terms of number of events per unit of time
and area, it must be divided by the total duration of the earthquake
catalogue and by the area of the cell. The value of μ0(x, y) in each
point of the space is computed by the weighted mean of the four
nearest cells that surround the point. To determine dc we follow the
procedure suggested by Console & Murru (2001): the catalogue is
divided into two subcatalogues of about the same temporal length
and dc is chosen as the value that maximizes the log-likelihood
of a subcatalogue using the smoothed seismicity obtained from
the other subcatalogue (Fig. A2). The analysis for the optimal dc is
conducted for both subcatalogues and the obtained values for dc are,
respectively, dc1 = 16.0 and dc2 = 13.0. The optimal correlation
distance dc = 14.5 is given by the mean of these two estimates.
Once the value dc is optimized, the spatial density of earthquakes
μ0(x, y) of the SVP background model can be assessed for each cell
and for each point in space (Fig. 1). The b-value of the Gutenberg &
Richter (1944) distribution is taken to be the same as that computed
for the EEPAS model, as described in the main text.
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Table A1. Estimated parameters, expected number of target earthquake and log-likelihood values for each iteration step.

EEPSOF code
1st step 2nd step (σT ) 3rd step (σM ) 4th step (bA) 5th step (bT )

aT 2.2264 aT 2.2109 aT 2.2204 aT 2.2187 aT 2.2173
aM 1.2295 aM 1.2289 aM 1.0165 aM 1.0339 aM 1.0141
σA 2.3893 σA 2.3739 σA 2.3360 σA 1.2387 σA 1.1125

σT 0.2757 σT 0.2696 σT 0.2686 σT 0.2683
σM 0.4845 σM 0.4820 σM 0.4918

ba 0.4899 ba 0.5181
bT 0.4021

L −961.64 L −961.491 L −960.876 L −960.632 L −960.594
Ē 40.8569 Ē 40.0899 Ē 39.7087 Ē 39.8445 Ē 39.5826

MATLAB code
1st step 2nd step (σT ) 3rd step (σM ) 4th step (bA) 5th step (bT )

aT 2.2190 aT 2.2074 aT 2.2118 aT 2.2075 aT 2.4950
aM 1.2188 aM 1.2208 aM 1.0477 aM 1.0049 aM 1.0025
σA 2.3929 σA 2.3769 σA 2.3456 σA 1.0015 σA 1.0097

σT 0.2670 σT 0.2603 σT 0.2607 σT 0.2652
σM 0.4493 σM 0.4771 σM 0.4642

ba 0.5413 ba 0.5399
bT 0.3236

L −961.791 L −961.719 L −961.264 L −960.945 L −960.755
Ē 41.222 Ē 40.6459 Ē 40.5468 Ē 40.6171 Ē 40.9646

Figure A2. Upper frame: log-likelihood of the subcatalogue of earthquakes
that occurred in the period 1990 to April 2009 under the time-independent
SVP model obtained by the seismicity from April 2009 to 2021. Lower
frame: log-likelihood of the subcatalogue of earthquakes that occurred in the
period April 2009 to 2021 under the time-independent SVP model obtained
by the seismicity from 1990 to April 2009.

The parameter q is set to 1.5, according to physical investigation
showing that the static stress changes decrease with epicentral dis-
tance as r−3 (Lombardi & Marzocchi 2010). The other parameters
(k, p, c, α, d, ν) are fitted by the maximization of the likelihood
function (eq. 1) of main text) using the interior point method.


