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Abstract
Head pose estimation (HPE) is an active and popular area of research. Over the years, many approaches have constantly been 
developed, leading to a progressive improvement in accuracy; nevertheless, head pose estimation remains an open research 
topic, especially in unconstrained environments. In this paper, we will review the increasing amount of available datasets 
and the modern methodologies used to estimate orientation, with a special attention to deep learning techniques. We will 
discuss the evolution of the field by proposing a classification of head pose estimation methods, explaining their advantages 
and disadvantages, and highlighting the different ways deep learning techniques have been used in the context of HPE. An 
in-depth performance comparison and discussion is presented at the end of the work. We also highlight the most promising 
research directions for future investigations on the topic.
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Introduction

The capacity to estimate the head pose of another person is a 
common human ability that presents a unique challenge for 
computer vision systems. People have the ability to quickly 
and effortlessly interpret the orientation and movement of a 
human head, thereby allowing one to infer the intentions of 
nearby people and to comprehend an important non-verbal 
form of communication.

In a computer vision context, head pose estimation (HPE) 
is the process of inferring the orientation of a human head 
from digital imagery. Like other facial vision tasks, an ideal 
head pose estimator must demonstrate invariance to a variety 
of image-changing factors, such as camera distortion, projec-
tive geometry, multi-source non-Lambertian lighting, as well 
as biological appearance, facial expression, and the presence 
of accessories like glasses and hats [1].

Head pose is an important cue in computer vision when 
using facial information and has a wide variety of uses in 

human-computer interaction, explaining the steadily increas-
ing attention received by the scientific community over the 
last 3 decades.

Although many techniques have been developed over the 
years to address this issue, head pose estimation remains an 
open research topic, particularly in unconstrained environ-
ments [2].

Similarly to other applicative domains, HPE has greatly 
benefited in recent years by the exploitation of deep learn-
ing (DL) techniques, and the extensive use of Deep Neural 
Networks. In this article, we shall do a review of the topic 
from the distinctive perspective of deep learning, discuss-
ing and comparing the many different ways in which Deep 
Neural Networks contributed to the development of the field.

Motivation

HPE systems play an important role in the development of 
different intelligent environments, so that several computer 
vision applications rely on a robust HPE system as a pre-
requisite: for example, applications of gaze estimation [3], 
virtual/augmented reality [4], and human computer interac-
tion [5], strongly benefit from knowing the exact position of 
the head in 3D space. Some application examples are:

• Human Social Behaviour Analysis: People use the 
orientation of their heads to convey rich, inter-personal 
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information. For example, there is important meaning in 
the movement of the head as a form of gesturing in a con-
versation [6] to indicate when to switch roles and begin 
speaking or to indicate who is the intended target subject 
[7, 8]. People nod to indicate that they understand what 
is being said, and they use additional gestures to indicate 
dissent, confusion, consideration, and agreement [9].

  In addition to the information that is implied by delib-
erate head gestures, there is much that can be inferred 
by observing a person’s head. For instance, quick head 
movements may be a sign of surprise or alarm, these 
could also trigger reflexive responses from other observ-
ers [10].

  Therefore, HPE can be used in smart rooms to monitor 
participants in a meeting and to record their activities, in 
particular, their attention can be indirectly related to their 
head pose [11]. Systems exploiting head pose estimation 
to analyse people behaviour and human interaction in 
meeting and workplaces have been proposed in [12–14].

  There are also studies on systems for automatic pain 
monitoring that show how including head pose can 
improve the performance for both person-specific and 
general classifiers [15].

• Driving Safety & Assistance: HPE systems are particu-
larly useful for assisting drivers by providing contextual 
alert signals, for example in the case of pedestrians out-
side the driver’s field of view [16].

  Moreover, the head pose can give clues about the 
intention of the pedestrian e.g. a pedestrian will wait for 
a stopped automobile driver to look at him before step-
ping into a crosswalk (this is an example of pattern rec-
ognition), very important also in the case of autonomous 
vehicles.

  Applications to infer the driver’s pose are very impor-
tant for safety, as they can provide insights about dis-
traction, intention, sleepiness, awareness or detect blind 
spots of the driver [17], for this reason, in recent years 
many datasets that address this specific scenario have 
been published [18–20].

• Surveillance and Safety: Head pose estimation in sur-
veillance video images is an important task in computer 
vision because it tracks the visual attention and provides 
insight on human behavioural intentions [21, 22]. Sys-
tems for direct an automated surveillance network have 
been proposed in [23, 24].

• Targeted Advertisement: Methods to track visual 
attention in wandering people have been proposed in the 
literature [25]. These systems count people looking at 
particular outdoor advertisements (targeted advertise-
ment) and can determine what a person is looking at if 
movement is unconstrained. Systems like these can be 
used for behaviour analysis and cognitive science in real 

world applications also in indoor environments, such as 
TV viewers behaviour analysis [26].

• Interface Design: By perceiving the human attention 
when they look at an interface (e.g. the page of web or 
software), it is possible to evaluate the property and sig-
nificance of the displayed visual elements and further 
guide the design or rearrangement of these elements [27] 
(see Fig. 1).

Therefore, head pose estimation can be used to monitor 
human social activities, to observe the behaviour of specific 
targets, but also to enhance the function of some face-related 
tasks, including expression detection, gaze estimation 
(Fig. 2), full-body pose estimation and identity recognition.

The intrinsic interaction between head pose and other 
face parts is also confirmed in more recent research. Studies 
in [29–32] suggest that the mutual relationship between face 
parts can be exploited not only for HPE, but also for other 
visual tasks such as gender recognition, race classification, 
and age estimation making head pose estimation a useful and 
important task for many applications.

Contribution and Structure

The main contribution of the article are:

Fig. 1  An example of application to driver assistance. Right: Green 
box indicates yaw < ± 45◦ and potential awareness of vehicle. Left: 
Red box indicates possible inattention (image from [7])

Fig. 2  Example of a task strongly linked to head pose estimation: 
Despite the eyes are in the same position in both face images, the per-
ception is that the two gazes are differently oriented. Gaze prediction 
comes from a combination of both eyes and head pose direction [28]
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• a complete and updated review of all the available data-
bases for the head pose estimation task , with a detailed 
comparison of the main characteristics (number of sub-
jects, DoF, acquisition scenario) and the analysis of 
which are the most used and useful in the literature;

• a categorization and explanation of the different 
approaches used in the literature for head pose estima-
tion, with a specific focus on modern deep learning 
approaches;

• report and discussion of modern head pose estimation 
methods and their comparative performance on com-
mon datasets, with a deep analysis of different evaluation 
pipelines and a clear tabular presentation of data;

The remainder of the article is organized as follows: Sec-
tion “Head Pose Estimation” contains an introduction to the 
basic concepts of the head pose estimation field; Section 
“Datasets” presents a detailed list of available datasets and 
their characteristics; Section “Head Pose Rotations Repre-
sentations” explains the main techniques for representing 
rotations used in the HPE field; Section “Methods” describes 
prominent deep learning based approaches for head pose 
estimation; Section “Evaluation Metrics” reports the most 
common evaluation metrics; Section “Evaluation” deline-
ates most used evaluation pipelines; Section “Discussion” 
presents a discussion of datasets, evaluation metrics/pipe-
lines and possible research directions; Section “Conclusion” 
concludes the paper summarizing the contribution of the 
proposed work.

Note: All numerical results reported in the following 
tables are borrowed from the original publications.

Head Pose Estimation

In the computer vision context, head pose estimation is most 
commonly interpreted as the ability to infer the orientation 
of a person’s head relative to the view of a camera. More 
rigorously, head pose estimation is the ability to infer the 
orientation of a head relative to a global coordinate system, 
but this subtle difference requires knowledge of the intrinsic 
camera parameters to undo the perceptual bias from perspec-
tive distortion [1].

At the coarsest level, head pose estimation applies to 
algorithms that identify a head in one of a few discrete ori-
entations, e.g. a frontal versus left/right profile view. At the 
fine (i.e., granular) level, a head pose estimate might be a 
continuous angular measurement across multiple Degrees 
of Freedom (DoF).

In particular, in the head pose estimation task, it is com-
mon to predict relative orientation with Euler angles—
pitch, yaw and roll. They define the object’s rotation in a 
3D environment, if the right prediction about these three 

angles can be made, it can be found in which direction the 
human head will be facing  (see Fig. 3).

Despite head pose estimation is an old and largely 
investigated problem, achieving acceptable quality on it 
has become possible only thanks to the recent advances in 
deep Learning. Challenging conditions like extreme pose, 
bad lighting, occlusions and other faces in the frame make 
it difficult for data scientists to detect and estimate head 
poses.

Nevertheless, SOTA methods for head pose estimation 
satisfy all the following criteria, firstly proposed by Erik 
Murphy-Chutorian in [1], on standard datasets:

• Accurate: the system should provide a reasonable esti-
mate of pose with a mean absolute error of 5 ◦ or less.

• Monocular: the system should be able to estimate head 
pose from a single camera. Although accuracy might be 
improved by stereo or multi-view imagery, this should 
not be a requirement for the system to operate.

• Autonomous: there should be no expectation of man-
ual initialization, detection, or localization, precluding 
the use of pure-tracking approaches that measure the 
relative head pose w.r.t. some initial configuration and 
shape/geometric approaches that assume facial feature 
locations are already known.

• Multi-Person: the system should be able to estimate 
the pose of multiple people in one image.

• Identity & Lighting Invariant: the system must work 
across all identities with the dynamic lighting found in 
many environments.

• Resolution Independent: the system should apply to 
near-field and far-field images with both high and low 
resolution.

• Full Range of Head Motion: the methods should be 
able to provide a smooth, continuous estimate of pitch, 
yaw and roll, even when the face is pointed away from 
the camera.

Fig. 3  Euler angles in Head Pose Estimation (image source [33])
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• Real-Time: the system should be able to estimate a 
continuous range of head orientation with fast (30fps or 
faster) operation.

Datasets

Most of the HPE models are trained and evaluated using 
publicly available datasets. These datasets significantly 
evolved during the last years, especially in terms of com-
plexity of environmental conditions.

Most datasets provide rotation information by means of 
Euler angles, which define the orientation of a rigid body 
with respect to a fixed coordinate system; three rotations are 
always sufficient to express any target position. These rota-
tion angles can be extrinsic or intrinsic, the former express 
the rotations with respect to the xyz axes of an original 
motionless coordinate system, the latter express rotations 
with respect to axes of a rotating XYZ coordinate system, 
rigidly attached to the moving body.

Since various formalisms exist to express a rotation in 
three dimensions beyond Euler angles, e.g. rotation matri-
ces, unit quaternions, Rodrigues’ formula, among others, 
the datasets contain different forms of representation (many 
of these formalisms use more than the minimum number of 
three parameters). More details about some of the represen-
tations exploited by the models to solve the HPE task can 
be found in Section “Head Pose Rotations Representations”.

Head pose datasets can be categorized by different 
aspects, such as imaging characteristics, data diversity, 
acquisition scenario, annotation type, and annotation tech-
nique [18]. These aspects play an important role on whether 
and how the dataset identifies the challenges of the head 
pose estimation task.

• Imaging characteristics: relate to the image resolution, 
number of cameras, bit depth, frame rate, modality 
(RGB, grayscale, depth, infrared), geometric setup and 
field of view.

• Data diversity: incorporates aspects such as the number 
of subjects, the distribution of age, gender, ethnicity, 
facial expressions, occlusions (e.g. glasses, hands, facial 
hair) and head pose angles. Data diversity is essential for 
training and evaluating robust estimation models.

• Acquisition scenario: covers the circumstances under 
which the acquisition of the head pose takes place. The 
most important distinction is between in-laboratory 
vs. in-the-wild acquisition. While the former restricts 
the data by defining a rather well-defined, static envi-
ronment, the latter offers more variety through being 
acquired in unconstrained environments, such as outside, 
thus covering many challenging conditions like differing 
illumination and variable background. Head movement 

can be staged by following a predefined trajectory or can 
be naturalistic by capturing head movement while the 
subject performs a different task, such as driving a car.

• Annotation type: describes what meta-information, such 
as head pose, comes alongside the image data and how 
it is represented. For example, head pose can be defined 
by a full 6 degrees of freedom (DoF) transformation from 
the camera coordinate system to the head coordinate sys-
tem (covering 3 DoF for translation and 3 DoF in rota-
tion) or only a subset of them can be provided. Annota-
tion types can differ also in their granularity of sampling 
the DoF space: there are discrete annotation types that 
classify a finite set of head poses, and there are continu-
ous annotation types that offer head pose annotations on 
a continuous scale for all the DoFs.

• Annotation technique: there are different methods for 
obtaining the head pose annotation (label) accompanying 
each image. The annotation technique has a large impact 
on data quality (see Table 1, 2 and 3).

Available Datasets

There are many available datasets in the literature:

• 300W-LP [53]: The 300W-LP (Large Pose) is a synthetic 
extension of the 300W database [71], generated to aug-
ment the number of challenging samples with extreme 
poses. It includes 122 450 images with yaw angle in range 
±89◦.

• AFLW [45]: Annotated Facial Landmark in the Wild 
is a challenging dataset which was collected from the 
internet, in totally unconstrained conditions. It contains 
a collection of 25, 993 faces with head poses ranging 
between ± 120◦ for yaw and ± 90◦ for pitch and roll. The 
pitch, yaw and roll angles were obtained automatically 
from the labelled landmarks using the POSIT algorithm 
[72], assuming the structure of a mean 3D face, for this 
reason, several annotations errors were found [73].

• AFLW2000-3D [53]: This dataset contains the first 2000 
identities of the in-the-wild AFLW [45] dataset which 
have been re-annotated with 68 3D landmarks using a 
3D model which is fit to each face. Consequently, this 
dataset contains accurate fine-grained pose annotations 
and is a prime candidate to be used as a test in head pose 
estimation task. Yaw varies ±120◦ , while roll and pitch 
±90◦.

• AFW [47]: Annotated Faces in the Wild represents a 
small database (it’s a subset of AFLW [45]), which is 
normally used for testing purposes only. AFW has 250 
images and inside these images 468 faces in a very chal-
lenging environment are included. The yaw angles vary 
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between ± 90◦ with a step size of 15◦ . The ground-truth 
is manually annotated, so it may contain errors.

• AISL [54]: The Aisl head orientation database is a col-
lection of small scale head images with various back-
grounds of an indoor scene. This dataset contains 6480 

images of 20 subjects under 36 yaw angles, 3 pitch angles 
and 3 different backgrounds. The orientation is deter-
mined by two categories: yaw angle in 360◦ with an 
interval of 10◦ , and pitch angle in the range ±45◦ with 
an interval of 45◦.

Table 1  Available datasets for 
Head Pose Estimation

The most used in the literature are in bold
The legenda fot this table is in Table 2

Database Year People Images Yaw Pitch Roll DB type GT method Pose type

BU [34] 2000 5 200 ✓ ✓ ✓ C MS C
PIE [35] 2000 68 40.000 ✓ C CA D
IDIAP-HP [36] 2003 16 66.295 ✓ ✓ ✓ C MS C
CAS-PEAL [37] 2004 1.040 99.594 ✓ ✓ C CA D
Pointing’04 [38] 2004 15 2.790 ✓ ✓ C DS D
FacePix [39] 2005 30 5.430 ✓ C CR D
Bosphorus [40] 2008 105 4.652 ✓ ✓ C DS D
ETH [41] 2008 26 10.000 ✓ ✓ C ICP C
BJUT-3D [42] 2009 500 46.500 ✓ ✓ C
Taiwan Rob.Lab [43] 2009 90 6.660 ✓ C CA D
Multi-Pie [44] 2010 337 75.000 ✓ C CA D
AFLW [45] 2011 25.993 ✓ ✓ ✓ W E C
BIWI Kinect [46] 2011 20 15.000 ✓ ✓ ✓ C ICP C
AFW [47] 2012 205 468 ✓ ✓ ✓ W M D
ICT-3DHP [48] 2012 10 1.400 ✓ ✓ ✓ C IS C
BioVid Heat Pain [15] 2013 90 9.000 ✓ ✓ ✓ C ICP C
CAVE [49] 2013 56 5.880 ✓ C CA D
McGill [50] 2013 60 18.000 ✓ W M D
Dali3DHP [51] 2014 33 60.000 ✓ ✓ ✓ C IS C
MTFL [52] 2014 12.995 ✓ W M D
300W-LP [53] 2015 122.450 ✓ ✓ ✓ H(W+S) S C
AFLW2000-3D [53] 2015 2.000 ✓ ✓ ✓ W E C
AISL [54] 2015 20 6.480 ✓ ✓ C CR† D
CMU Panoptic⋄ [55] 2015 1.342.018 ✓ ✓ ✓ C P C
CCNU [56] 2016 58 4.350 ✓ ✓ C IS C
GI4E-HP [57] 2016 10 36.000 ✓ ✓ ✓ C MS C
Synthetic [58] 2016 37 74.000 ✓ ✓ ✓ S S C
UMDFace [59] 2016 8.277 367.888 ✓ ✓ ✓ W E C
DriveAHead [20] 2017 20 ∼ 1 M ✓ ✓ ✓ W∗ O C
Pandora [60] 2017 22 250.000 ✓ ✓ ✓ C∗ IS C
SASE [61] 2017 50 30.000 ✓ ✓ ✓ C ICP C
SyLaHP [62] 2017 30 ∼ 101 K ✓ ✓ ✓ S S C
SynHead [63] 2017 10 510.960 ✓ ✓ ✓ S S C
UbiPose [64] 2018 22 10.400 ✓ ✓ ✓ C ICP C
VGGFace2 [65] 2018 9.131 ∼ 3,31 M ✓ ✓ ✓ W E C
DD-Pose [18] 2019 27 ∼ 330 K ✓ ✓ ✓ W∗ O C
GOTCHA-I [66] 2019 62 137.826 ✓ ✓ ✓ W E D
M2FPA [67] 2019 229 397.544 ✓ ✓ C CA D
AutoPOSE [19] 2020 20 1.018.885 ✓ ✓ ✓ C∗ O C
MDM corpus [68] 2021 59 ∼ 10,5 M ✓ ✓ ✓ W∗ ICP C
UET-Headpose [69] 2021 9 12.848 ✓ ✓ ✓ C IS C
DAD-3DHeads [70] 2022 44.898 ✓ ✓ ✓ W E C
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• AutoPOSE [19]: It’s a large-scale dataset that provides 
1.1 million images taken from a car’s dashboard view. 
AutoPOSE’s ground-truth head orientation was acquired 
with a sub-millimetre accurate motion capturing system 
placed in a car simulator. The rotations are limited to the 
range [– 90◦ , + 90◦ ], the average pitch angle is shifted in 
the negative values of the rotation angles, this is due to 
the placement of the camera in the dashboard.

• BioVid Heat Pain [15]: It contains videos and physi-
ological data of 90 persons subjected to well-defined pain 
stimuli of 4 intensities, built for the development of auto-
matic pain monitoring systems. It includes information 
about head pose of the recorded subjects for all 3 angles 
pitch, yaw, roll, all in the range ±50◦.

• BIWI Kinect [46]: It’s gathered in a laboratory setting 
by recording RGB-D video of different subjects across 
different head poses, using a Kinect v2 device. It contains 
roughly 15, 000 frames and the rotations are ±75◦ for 
yaw, ±60◦ for pitch and ±50◦ for roll. A 3D model was 
fit to each individual’s point cloud and the head rotations 
were tracked to produce the pose annotations. This data-
set is commonly used as a benchmark for pose estimation 
using depth methods that attests to the precision of its 
labels.

• BJUT-3D [42]: The database consists of 46 500 images 
collected from the 3D faces of 250 male and 250 
female participants. The total number of poses in the 
database is 93. The pitch rotation is quantized into 9 
angles [– 40◦ , +40◦ ], where the difference between two 
consecutive poses is 10◦ . Similarly, the yaw rotation 
is divided into 13 angles [-60◦ , +60◦ ], with the same 
angular step size as for the pitch.

• Bosphorus [40]: It contains 5 thousand high resolution 
face scans from 105 different subjects. The 3D scans 
are obtained by a commercial structured-light based 
3D digitizer. It offers 13 discrete head pose annota-
tions (seven yaw angles, four pitch angles, and two roll 
angles), with different facial expressions and occlu-
sions.

• BU [34]: The Boston University Head Tracking dataset 
includes only 200 images and 5 subjects, which is the 
main drawback of this database. The acquisition pro-
cess is repeated in two sessions: initially illumination 
conditions are uniform; then subject faces are exposed 
to rather complex scenarios with changing illumina-
tion. All three rotation angles were recorded thanks to 
a magnetic tracker attached to each participant’s head. 
Pose variation is mainly less than 30◦ . Since the pres-

Table 2  Legenda for Table 1

Database:
 ⋄ = Processing operations needed to extract head pose information from original data [7]

DB Type:
 C = Constraint, faces of real people taken in a constraint environment (a lab, an office, etc.)
 W = In-the-Wild, images of real people captured under any kind of conditions
 S = Synthetic, synthetic generated images
 H = Hybrid, a mixture of previous types
 ∗ = Dataset build for the driving context

Pose Type:
 C = Continuous, pose estimate in continuous range
 D = Discrete, few discrete orientations are acquired

GT Method: Ground Truth Acquisition Method
 CA = Camera array
 CR = Camera ring
 CR† = It’s not the camera that rotates around the person, but the seat that rotates on itself
 DS = Directional suggestion
 E = Estimation with neural networks or other algorithms
 ICP = ICP algorithm
 IS = Inertial sensor
 L = Laser pointer directional suggestion
 M = Manual annotation
 MS = Magnetic sensor
 O = Optical motion capture system
 P = Panoptic studio
 S = Synthetic images generation
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ence of facial occlusions (e.g., eyeglasses, facial hair, 
etc.) is very limited, most methods perform very well.

• CAS-PEAL [37]: The CAS-PEAL is a large dataset 
having 99 594 images, with a total number of 1040 
participants, with 595 males and 445 female subjects. 
The CAS-PEAL dataset contains a total of 21 poses 
combining different yaw and pitch angles: the yaw ori-
entation varies between – 45◦ and + 45◦ with an inter-
val of 15◦ between two consecutive poses; the pitch 
orientation has only three poses – 30◦ , 0 ◦ , and + 30◦ . 
Although the dataset has sufficient data for evaluation 
and training, its complexity is low, as the number of 
poses is quite limited.

• CAVE [49]: The Columbia Gaze dataset contains a 
total of 5880 images of 56 different subjects (32 male, 
24 female) of different ethnic groups and ages. The 
dataset is mainly created to solve the gaze estimation 
task, but contains also information about head pose of 
the participants, therefore it can be used to solve the 
discrete head pose estimation task. For each subject a 
combination of five horizontal head poses (0◦ , ± 15◦ , ± 
30◦ ), seven horizontal gaze directions (0◦ , ± 5 ◦ , ± 10◦ , 
± 15◦ ), and three vertical gaze directions (0◦ , ±10◦ ) are 
available.

• CCNU [56]: All images in CCNU are low-resolution 
images collected in a classroom. The database consists 
of 58 participants, captured in 75 different poses, for a 
total number of 4 350 images. The face images are col-
lected so that illumination conditions and facial expres-
sions are changing, thus adding more complexity to the 
images. For obtaining the ground-truth data, SensoMo-
toric Instruments (SMI) eye tracking glasses are used. 
The head orientation changes from – 90◦ to + 90◦ in the 
horizontal direction, while the vertical direction spans in 
the range – 45◦ to + 90◦.

• CMU Multi-Pie [44]: This is a database collected from 
subjects exhibiting multiple expressions under different 
illumination conditions in a constraint environment. All 
high-resolution images are captured using a system of 15 
cameras for a total of 75 thousand images. The only angle 
of rotation available is the yaw with an incrementation 
step of 15◦.

• CMU Panoptic Dataset [55]: It’s a large scale data-
set providing 3D pose annotations for multiple people 
engaging social activities. It contains 65 videos with 
multi-view annotations captured inside a dome from 
approximately 30 HD cameras. The panoptic dataset 
includes 3D facial landmarks and calibrated camera 
extrinsics and intrinsics, but does not include head pose 
information. Using landmarks and camera calibrations it 
is possible to locate and crop images of subjects’ heads 
and compute the corresponding camera-relative Euler 
angles.

  After processing the dataset to address the head pose 
problem [7], it contains 1,342,018 images. The yaw angle 
distribution is almost uniform and ranges in ±179◦ , but 
at angles near 90◦ and – 90◦ there are fewer images due 
to the effect of Gimbal lock. For the two angles pitch and 
roll the magnitudes are in the range ± 89◦.

• CMU-PIE [35]: The CMU Pose, Illumination, and 
Expression (PIE) dataset contains over 40,000 facial 
images of 68 people. Using the CMU 3D Room each 
person is imaged across 13 different poses, under 43 
different illumination conditions and with 4 different 
expressions. The pose ground-truth was obtained with 
a 13 cameras array, each positioned to provide a spe-
cific relative pose angle. This consisted of 9 cameras at 
approximately 22.5◦ intervals across yaw, one camera 
above the centre, one camera below the centre, and one 
in each corner of the room.

• DAD-3DHeads [70]: This is an in-the-wild database that 
contains a variety of extreme poses, facial expressions, 
challenging illuminations, and severe occlusions cases. 
It consists of 44 thousand images annotated using a 3D 
head model, a non-linear optimization algorithm and a 
final manual adjustment. To validate head pose annota-
tions the rotation matrices were compared to the ground-
truth matrices from the BIWI dataset [46].

• Dali3DHP [51]: This database is an extreme head pose 
database collected from a camera mounted on a tread-
mill. The dataset was collected in two different sessions 
from 33 individuals. Ground-truth data is collected using 
Shimmer sensor 2 which was attached to each person’s 
head. The database is large since it contains more than 
60,000 depth and colour images. All the three rotation 
angles pitch, yaw and roll were defined at the time the 
acquisition took place, covering the following head 
angles: pitch [ − 65.76◦ , + 52.60◦ ], roll [ −29.85◦ , + 
27.09◦ ], and yaw [ − 89.29◦ , + 75.57◦].

• DD-Pose [18]: It contains 330 thousand measurements 
from multiple cameras acquired by an in-car setup dur-
ing naturalistic drives by 27 subjects. Large out-of-plane 
head rotations and occlusions are induced by complex 
driving scenarios, such as parking and driver-pedestrian 
interactions. Precise continuous 6 DoF head pose anno-
tations are obtained by a motion capture sensor and a 
novel calibration device. The angles vary in the following 
ranges, ignoring outliers with less than 10 measurements 
in a 3 ◦ neighbourhood: pitch ∈ [– 69◦ , + 57◦ ], yaw ∈ 
[– 138◦ , + 126◦ ], roll ∈ [– 63◦ , + 60◦].

• DriveAHead [20]: It’s another driver head pose dataset, 
it contains frame-by-frame head pose labels obtained 
from a motion-capture system for 20 subjects (about 1 
million of frames). It includes parking manoeuvres, driv-
ing on the highway and through a small town, different 
occlusions and illuminations, thus providing distributions 
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of head orientation angles and head positions which are 
typical for naturalistic drives. Images were collected 
with a resolution of 512×424 pixels, 6 DoF, the range of 
angles is [– 45◦ , + 45◦ ] for pitch, [– 40◦ , + 40◦ ] for roll 
and mainly [– 90◦ , + 90◦ ] for yaw.

• ETH [41]: The ETH Face Pose Range Image Dataset 
contains more than 10 thousand images of 20 persons (3 
of them being female) at a resolution of 640 × 480 pixels. 
Each person freely turned her head while the scanner 
captured range images at 28 fps. Yaw varies between -90◦ 
to + 90◦ , pitch between – 45◦ to +45◦ , whereas roll is not 
considered.

• FacePix [39]: The FacePix database is built depicting 30 
individuals, for a total number of 5 430 images. It is an 
imbalanced dataset with 25 males and 5 females. Yaw 
rotation varies from – 90◦ (extreme left profile) to + 90◦ 
(extreme right profile), with a step size of 2 ◦ ; no other 
rotation angles were considered.

• GI4E-HP [57]: It contains 36 thousand images from 10 
subjects recorded with a web-cam in an in-laboratory 
environment. Head pose annotations are given in 6 DoF 
using a magnetic reference sensor. All transformations 
and camera intrinsics are provided. Head pose annota-
tions are given relative to an initial subjective frontal 
pose of the subject.

• GOTCHA-I [66]: This dataset is a collection of 682 
videos of 62 subjects in 11 different indoor and outdoor 
environments to address both security and surveillance 
problems. To obtain ground-truth a 3D head model is 
reconstructed and elaborated using Blender software. 
There are 137, 826 labelled frames with 2223 head pose 
per subject in the range of [– 40◦ , + 40◦ ] in yaw, [-30◦ , 
+30◦ ] in pitch and [– 20◦ , + 20◦ ] in roll, with a step of 
5 ◦.

• ICT-3DHP [48]: It’s a large dataset which was collected 
in-the-wild, i.e. captured in an unconstrained environ-
ment. All images were acquired through the Polhemus 
Fastrack1 flock of birds tracker attached to a cap the 
participants that contains a magnetic sensor, so that the 
dataset contains both RGB and depth data. The database 
is evaluated for all three rotation angles including pitch, 
yaw and roll. No accurate information about the angle 
ranges is provided.

• IDIAP Head Pose [36]: It contains 66, 295 head images 
stemmed from a 8 video meeting recording, each approx-
imately one minute in duration, of a few people in a 
meeting room. In each sequence, two subjects, which 
are always visible, were continuously annotated using a 
magnetic sensor. Therefore, each image has a complete 
annotation of a head pose orientation from pitch (range 

[– 60◦ , + 15◦]), yaw (range ± 60◦ ) and roll (range ± 30◦ ) 
angles.

• M2FPA [67]: This dataset totally involves 397, 544 
images of 229 subjects with 62 poses (including 13 yaw 
angles, 6 pitch angles and 44 yaw-pitch angles), 4 attrib-
utes and 7 illuminations. There are 6 classes for pitch in 
the range of [– 30◦ , +45◦ ] with a step increment of 15◦ 
and 13 measurements for yaw in the range ±90◦ with a 
step increment of 15◦.

• McGill [50]: The database consists of 60 videos of 60 
different participants, in total it contains 18, 000 video 
frames. The videos were recorded in both indoor and out-
door environments. The participants were free to behave 
as they want during the video collection process, there-
fore arbitrary illumination conditions and background 
clutter are present, especially outdoor. Only yaw angles 
are estimated using a semi-automatic procedure, with 
variation in the range [– 90◦ , + 90◦].

• MDM corpus [68]: The Multimodal Driver Monitor-
ing database was collected with 59 subjects recorded 
while were diving a car and performing various tasks. 
To record the head pose the Fi-Cap device was used, 
this continuously tracks the head movement of the driver 
using fiducial markers, providing frame-based annota-
tions to train head pose algorithms in naturalistic driv-
ing conditions. This set consists of 48.9 h of recordings 
(10, 541, 166 frames), it covers a large range of head 
poses along all three rotation axes due to the large num-
ber of subjects included, and the variety of primary and 
secondary driving activities considered during the data 
acquisition. Yaw angles range around the origin spanning 
between – 80◦ to 80◦ , pitch angles have an asymmetric 
range spanning from – 50◦ to 100◦.

• MTFL [52]: The Multi-Task Facial Landmark dataset 
contains 12, 995 outdoor face images from the web. 
These images are from CUHK Face Alignment data-
base and AFLW dataset. Each image is annotated with 
a bounding box and five facial landmarks. There are 
ground-truth annotations for gender, age, smiling, wear-
ing glasses and head pose. For the latter, the images are 
manually categorized in 5 discrete classes: Left-profile, 
Left, Frontal, Right, Right-profile.

• Pandora [60]: It has been specifically created for head 
centre localization, head pose and shoulder pose estima-
tion and is inspired by the automotive context. A frontal 
fixed device acquires the upper body part of the sub-
jects, simulating the point of view of the camera placed 
inside the dashboard. Subjects also perform driving-like 
actions, such as grasping the steering wheel, looking to 
the rear-view or lateral mirrors, shifting gears and so on. 
Pandora contains more than 250 thousand full resolu-
tion RGB (1920× 1080 pixels) and depth images (512 × 
424) acquired with a Microsoft Kinect 1 device. Subjects 1 https:// polhe mus. com/ motion- track ing/ all- track ers/ fastr ak.

https://polhemus.com/motion-tracking/all-trackers/fastrak
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perform wide head movements: ± 70◦ roll, ± 100◦ pitch 
and ± 125◦ yaw. Garments as well as various objects are 
worn or used by the subjects to create head occlusions. 
The ground-truth annotations have been collected using 
a wearable Inertial Measurement Unit (IMU) sensor.

• Pointing’04 [38]: It is one of the oldest databases, 
released in 2004, which was considered as the classi-
cal benchmark for HPE (in some studies is also called 
PRIMA database [74]). Despite its age, it’s still used for 
research purposes, due to its challenging nature and a 
large variety in consecutive poses [29–32]. A total num-
ber of 15 participants (between 15 and 40 years) were 
involved for image acquisitions. Some of them wear 
eyeglasses or show facial hairs, thus increasing the task 
complexity. Images were collected in an indoor lab envi-
ronment, with very low illumination conditions. Each 
participant is asked to look at some markers on the wall, 
and two rotation angles (yaw and pitch) are annotated 
through a subsequent manual labelling process (thus 
introducing some errors). The head orientation var-
ies between ± 90◦ both in the horizontal and vertical 
directions, while the difference between two consecutive 
poses in horizontal and vertical orientation is kept at 15◦ 
and 30◦ , respectively.

• SASE [61]: This is a 3D database collected through 
Kinect 2 camera. It consists of both RGB and depth 
images of 32 male and 18 female subjects. The total 
number of frames is 30, 000. All subjects have different 
ethnicity and hairstyles, with an age range of 7–35 years. 
All three rotation angles pitch, yaw, and roll are consid-
ered. All participants have different facial expressions 
during image acquisition, so that, along with head pose 
estimation, the database may also be used for emotion 
recognition. For each person a large sample of head poses 
are included, within the bounds of yaw from – 45◦ to 45◦ , 
pitch – 75◦ to 75◦ and roll – 45◦ to 45◦ of rotation around 
each axis.

• SyLaHP [62]: The Synthetic dataset for Landmark based 
Head Pose estimation was proposed by Werner et al. [62] 
along with a benchmark protocol to learn head pose on 
top of any landmark detector (called HPFL). It contains 
about 101 thousand synthetic images from 30 subjects, 
with varying ethnicity, age and gender. The angles are in 
the ranges: ± 70◦ for pitch, ± 90◦ for yaw and ±55◦ for 
roll.

• SynHead [63]: This is a large-scale synthetic dataset for 
head pose estimation in videos containing 10 head mod-
els (5 female and 5 male), 70 motion tracks and 510 960 
frames. Such synthetic dataset, which considers all Euler 
angles, generates 100% reliable ground-truth to compen-
sate for errors existing in manually annotated datasets. 
The Euler angles are in the range of [– 100◦ , +100◦].

• Synthetic [58]: The Synthetic image database is a large 
database of 74, 000 high quality images taken from 
head models. A total of 37 sequences have been con-
sidered, where each sequence includes 2000 frames. 
The head pose in face images covers ± 50◦ of roll, ± 
75◦ for yaw, and ± 60◦ for pitch. The database is quite 
challenging as different ages, races, and facial expres-
sions are included.

• Taiwan RoboticsLab [43]: It contains 6660 images of 
90 subjects. For each subject there are 74 images, where 
37 images were taken every 5 degrees from right profile 
(defined as + 90◦ ) to left profile (defined as – 90◦ ) in the 
yaw rotation using camera array and the remaining 37 
images were generated (synthesized) by the existing 37 
images using commercial image processing software in 
the way of flipping them horizontally.

• UbiPose [64]: This dataset relies on videos from the 
UBImpressed dataset, which has been captured to study 
the performance of students from the hospitality indus-
try at their workplace. The data are recorded using a 
Kinect 2 sensor, however the ground-truth head pose is 
indirectly inferred from facial landmarks. The validated 
inferred head poses are 10.4 thousand, most frames fall 
within a [20◦ , 40◦ ] interval.

• UET-Headpose [69]: The UET-Headpose dataset was 
created to capture the head pose of annotated people in 
many conditions, it includes 12, 848 images obtained 
from 9 people. The dataset has a uniform yaw angle dis-
tribution for all directions in the range [– 179◦ , 179◦ ]. 
The dataset is obtained by having the annotated people 
rotated all yaw directions when collecting the dataset. 
Therefore, it is possible to learn all yaw angles within a 
360◦ range.

• UMD Faces [59]: This dataset has 367, 888 annotated 
faces of 8277 subjects. It contains information about 
bounding boxes (verified by humans), twenty-one key-
point locations, Euler angles and the gender of the sub-
ject. These annotations have been generated using the 
All-in-one CNN model [75], therefore the dataset may 
contain erroneous annotations, especially for the pitch, 
yaw and roll angles.

• VGGFace2 [65]: This is a very large HPE database 
which has been released in 2018. It contains 3.31 mil-
lion images. The total number of participants to create 
this content are 9131, whereas the average number of 
images per subject is 362. The database is constructed 
with images downloaded from Google Image Search and 
shows large variations in pose, illumination, age, profes-
sion, and ethnicity. However, pose (pitch, yaw and roll) 
is estimated using pre-trained pose classifiers defining 
5 classes for angles in ranges [– 100◦ , – 40◦ ), [– 40◦ , 
– 10◦ ), [– 10◦ , + 10◦ ), [+ 10◦ , +40◦ ) and [+ 40◦ , + 100◦

).
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Head Pose Rotations Representations

Many possible representations can be used to express rota-
tions of rigid bodies. The widely used in the field of head 
pose estimation is that based on Euler angles, but other 
methods are exploited in the literature due to some problems 
of this specific representation.

Furthermore, it has been shown that any rotation represen-
tation in 3D with less than five dimensions is discontinuous, 
making the learning process harder [76]. We will further briefly 
review different rotation parametrizations, their pros and cons 
to see how they might affect the regression performance.

Euler Angles

The Euler angles were introduced by Leonhard Euler in rigid 
body dynamics to describe the orientation of a reference 
system attached to a rigid solid in motion. Three parameters 
are needed to describe an orientation in a 3 dimensional 
Euclidean Space ℝ3.

Thus, the Euler angles are a set of three angular coor-
dinates which specify the orientation of a reference sys-
tem with orthogonal axes, usually mobile, with respect to 
another reference with known orthogonal axis called stand-
ard orientation. This standard initial orientation is normally 
represented by a motionless (fixed) coordinate system.

Euler angles can represent any rotation by means of three 
successive elemental rotations around three independent axes.

Rx(�) =

⎡
⎢⎢⎣

1 0 0

0 cos(�) − sin(�)

0 sin(�) cos(�)

⎤
⎥⎥⎦

Ry(�) =

⎡⎢⎢⎣

cos(�) 0 sin(�)

0 1 0

− sin(�) 0 cos(�)

⎤⎥⎥⎦

Rz(�) =

⎡⎢⎢⎣

cos(�) − sin(�) 0

sin(�) cos(�) 0

0 0 1

⎤⎥⎥⎦
.

These three elemental rotations around distinct axes can be 
composed to obtain a single rotation matrix using matrix 
multiplication:

Matrix multiplication is not commutative and the same thing 
applies to rotations, therefore the order of application of the 
three successive elemental rotation is important.

However, the definition of Euler angles is not unique, in 
the literature many different conventions are used, where 
varies the sequences of rotations and the axes about which 
the rotations are carried out (see Fig. 4).

Following the Trait–Bryan convention we can define as 
x, y and z the original axes and X, Y, and Z the axes after 
rotation. The line that represents the intersection between 
plane xy and YZ is called the line of nodes N, see Fig. 5. 
The Euler angles with this convention are: � the rotation 
angle between x and N, covering a range of 2� ; � the rota-
tion angle between z and Z, covering a range of � ; � the 
rotation angle between N and X, covering a range of 2�.

Many datasets have annotations of pitch, yaw and roll 
angles, but not all of them explicitly mention the order; the 
process of determining it become tedious and error-prone.

The main limitation of the Euler angles remains the 
Gimbal lock: when the second elemental rotation reaches 
90 (or – 90) degrees, then first and third axes become par-
allel (i.e. linearly dependent), which gives an infinite num-
ber of solutions for the same rotation and the other axis 
can not be determined. This is a great limitation when 
wide ranges of rotations [– 180◦ , +180◦ ] are considered 
(see FIg. 5).

Rotation Matrix

Each rotation can be uniquely described with a rotation matrix. 
The rotation matrix R is a special orthogonal 3 × 3 matrix, 
with a determinant equal to one, that represents a rotation in 
Euclidean space.

R = RxRyRz.

Fig. 4  Different processes from 
the same initial pose to the same 
final pose in different rotation 
order (image from [77])
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Rotations can be composed using multiplication, and the 
resulting matrix will remain a rotation matrix. A rotation is 
represented using nine parameters.

To regress the parameters with back-propagation an orthog-
onality constraint must be enforced, otherwise something dif-
ferent from rotation matrix will be obtained during inference 
[79].

A complaint of rotation matrices is that they’re less intui-
tive. In general, it’s not easy to understand what the matrix 
is doing by simply looking at the matrix. This is why Euler 
angles sometimes are more favourable.

Let be the column vector v, the position of each point in the 
standard initial orientation and R the rotation matrix. Then, a 
rotated vector u is obtained by multiplying the rotation matrix 
with the vector.

The ease by which vectors can be rotated using a rotation 
matrix, as well as the ease of combining successive rota-
tions, make the rotation matrix a useful and popular way to 
represent rotations, even though it is less concise than other 
representations [28].

R =

⎛
⎜⎜⎝

r11 r12 r13
r21 r22 r23
r31 r32 r33

⎞
⎟⎟⎠
,RTR = RRT = I, det(R) = 1.

u = R ⋅ v.

Quaternions

Quaternions are a compact way to represent rotations, they 
have four parameters, which can be interpreted as a scalar 
component plus a three-dimensional vector component:

Quaternions are quite popular because are more compact 
than matrix representation and it’s simple to combine two 
individual rotations represented as quaternions using qua-
ternion product.

Unlike Euler angles, quaternions are free from the Gim-
bal lock problem, but still they have an ambiguity caused 
by their anti-podal symmetry: q and −q correspond to the 
same rotation.

Furthermore, it has been recently demonstrated that for 
3D rotations, all representations are discontinuous in the real 
Euclidean spaces of four or fewer dimensions and empirical 
results suggest that continuous representation outperform 
discontinuous ones [76]. This means that Euler angles and 
quaternions representations might not be well suited for 
regression task.

Methods

The approaches used in the literature to solve the task of 
head pose estimation are quite different between them: they 
have different degrees of automation, different prerequisites 
and are based on different assumptions.

We try to arrange each system by the approach that under-
lies its implementation (taking as reference classifications 
proposed in previous works [1, 28]), by giving a descrip-
tion and evaluating advantages and disadvantages of each 
approach. Our taxonomy is briefly summarized in Fig. 6.

Since head pose estimation has been investigated for a 
long time, many methods have emerged during this period; 
however, starting from 2015, methods based on convolu-
tional neural networks have been used more and more, high-
lighting a shift in methodology, from traditional machine 
learning (ML) methods towards deep learning (DL) 
approaches.

In the following sections, we first shortly review “clas-
sical methods” (Section “Classical Methods”), including 
all approaches that are little, or no longer, considered in 

q =
(
s0, �⃗v

)
=

(
s0, v1, v2, v3

)
.

Fig. 5  Euler angles, image from Wikipedia [78]
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the most recent research, then shifting the focus on deep 
learning based models:

• Segmentation based models (Section “Segmentation 
Based Models”):

  compute head pose using probability maps produced 
by a face segmentation algorithm [29–32, 80];

• Model based methods (Section “Model Based Meth-
ods”):

  exploit facial keypoints, either for regressing head 
pose [62, 81–83] or for reconstructing 3DMM and 
learn its rotation parameters [84–87].

• Non-linear regression methods (Section “Non-linear 
Regression Methods”):

  use deep convolutional neural network to develop 
a mapping from the image to the head pose measure-
ments [7, 8, 60, 63, 76, 88–91];

• Multi-task methods (Section “Multi-task methods”):
  jointly solve head pose with other correlated tasks 

(e.g. face detection or face alignment) to improve the 
overall performance [75, 92–103];

Additional details about classical methods can be found in 
[1, 104]. More recent surveys are [2, 28]; with respect to 
them, we will cover the parts relating to the state-of-the-
art models in more detail, with a special focus on multi-
task learning, 3DMM based and CNN based models.

Classical Methods

Here we briefly recall a short list of methods that played 
an important role for HPE but have been either outdated 
by most recent techniques, or are difficult to integrate with 
deep learning technology, that is the main focus of this 
survey:

• Appearance template methods: compare a face image to 
a set of exemplars template to find the most similar view 
[105, 106];

• Detector array: use a series of head detectors, each 
trained for a specific pose and assign the pose relative to 
the detector with the greatest support [107–109];

• Manifold embedding: embed an image into low-dimen-
sional manifolds that model the continuous variation in 
head pose and use these for pose regression [110–119];

• Tracking methods: use temporal constraint to recover 
the pose from observed movements in video frames [51, 
120–124];

• Hybrid classical approaches: combine one or more of the 
afromentioned methods in a single model [1, 104];

Segmentation Based Methods

These methods address the problem of head pose estimation 
by exploiting the strong relationship between the head pose 
and the position of various face parts. The idea is that the 
performance of the face pose predictor can be improved if 
a prior efficiently parsed image, having information about 
various facial features, is provided as input [29–32].

The first step is to perform semantic segmentation over 
the input image either by training a single segmentation 
model or multiple (discrete) pose specific models. Each 
model parses the face into different parts (e.g. nose, mouth, 
eyes, hair) and produces probability maps. Given a new 
image, the probabilities associated to face parts by the sin-
gle model or the different pose-specific models are used as 
the only information for estimating the head pose by using 
specifically designed algorithms or by training a classifier 
(e.g. Random Forest, SVMs, etc...).

Huang et  al. [125] were the first to exploit the rela-
tion between face segmentation and head pose estima-
tion. In their method, initially, the face is segmented into 
three face parts (skin, hair, background) using traditional 

Fig. 6  Our taxonomy of deep 
learning approaches for head 
pose estimation problem
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textural-based techniques, and then in a second stage, they 
estimate basic discrete head poses using a simple regressor: 
“frontal”, “right-profile” and “left-profile”.

More modern works address segmentation by means of 
Deep Neural Networks, that typically allow to consider a 
larger number of segmentation classes, and discrete poses 
(e.g. 13 poses [29, 31] or 93 poses [30, 32, 80]).

Khan et al. [29] proposed a simple algorithm to exploit 
probabilities associated to face parts to predict head pose: 
first, they run segmentation models for all different poses, 
obtaining probability maps; then, they consider the maxi-
mum of such probabilities to assign a pose to each pixel; 
finally, they count the total number of pixels associated to 
each discrete pose and assign to the face image that with the 
highest number. A similar approach was taken in [30], but 
relying on the concept of super-pixel, i.e. small meaningful 
patches belonging to the same object.

The estimation of the head pose after performing seg-
mentation can be done by many traditional ML techniques, 
comprising multi-class linear SVM [31], Random Forest 
[32] and Soft-Max classifiers [80].

The main advantage of these methods is that are able 
to exploit the strong relationship between head pose and 
position of various face parts, which is useful for accurate 
pose estimation. Moreover, these methods do not require any 
landmark detection process or face alignment step. Finally, 
these systems are typically multi-task, they combine HPE, 
facial expression detection, gender recognition and age clas-
sification in a single framework (see Fig. 7).

A drawback of this technique is that manually segmented 
face images are needed for training, and creating supervised 
segmentation datasets is a notoriously onerous operation. 
On the other side, face segmentation has a lot of different 
applications, e.g. for editing [126, 127], so we may expect a 
steady improvement on this aspect of the task.

Surprisingly, only the coarse head pose classification task 
has been addressed so far. Testing these techniques on the more 
challenging continuous regression problem is an open issue, 
that could definitely help to assess the quality of the technique.

Model Based Methods

Model based methods require either a 3D head model or the 
localization of facial keypoints (landmarks), such as eyes, 
eyebrows, nose, lips, etc. (or both of them in some cases) 
and from these estimate the head pose. It is proven that these 
factors, such as the location of the face in relation to the 
contour of the head, strongly influence the human perception 
of the head [1]. For this reason, model based methods are 
particularly interesting, they can directly exploit properties 
which are known to influence human head pose estimation. 
Moreover, in recent years, with the development of deep 
learning and due to high availability of data, methods which 
directly extract facial landmarks have improved enormously 
their performance and have become the dominant approach 
in facial analysis tasks [8].

A by-product of face alignment is the ability to recover 
the 3D pose of the head in two different ways: (I) the Land-
mark-to-Pose approach and (II) by exploiting deformable 
methods.

In the landmark-to-pose approach the keypoints are given 
as input to a ML, or DL, algorithm that regress the head 
rotation angles.

Werner et al. [62] proposed a benchmark protocol to 
learn pose estimator on top of any landmark detector, called 
HPFL, that trains a Support Vector Regression (SVR) model 
using landmarks as features. To exploit the power of Deep 
Neural Networks not only to compute landmarks but also 
to obtain Euler angles Gupta et al. [81] proposed to use a 
deep learning architecture to regress head-pose giving as 
input uncertainty maps computed from 5 facial keypoints. 
Even Xia et al. [82] used a CNN, but they give as input a 
heatmap of 68 landmarks stacked with a transformed version 
of the input image, so that the neural network can focus on 
the area around facial landmarks while extracting features 
from the image, reducing interference from wild environ-
ment. Dapogny et al. [83] proposed an attentional cascade 
model that iteratively refines head pose and landmark esti-
mates. The advantage is that using head pose information to 
refine landmark alignment provides more precise landmark 
estimates (as also stated in [128]), which in turn helps refine 
the head pose prediction, further advocating for an entwined 
landmark alignment and head pose prediction scheme. The 
disadvantage is that the network is bigger and requires a 
longer training time.

For this reason, recently, other researchers have tried to 
define methods that do not need training for estimating head 
pose once facial landmarks are detected. Abate et al. [129] 
used a quad-tree, i.e. a particular kind of unbalanced tree, 
that divides the image into smaller and smaller quadrants, 
to measure the distance between the representation of the 
input face with a reference model. Barra et al. [130] (2020) 
exploit a spider-web shaped model that uses the landmark 

Fig. 7  Segmentation based method: perform face segmentation and 
from probability maps infer head pose (image from [29])
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locations to build a feature vector, which in turn is compared 
to a set of prototypical vectors to determine the closest one 
and establish the pose. Unfortunately with these two meth-
ods only discrete pose can be obtained (with 5 ◦ of angular 
step), they are computationally efficient but less effective 
than other methods.

Deformable methods, instead, use a non-rigid face model 
and fit it to the image such that it conforms to the facial 
structure of each individual and estimate the head poses 
from the correspondence between feature points on a 2D 
face image and those on a 3D facial model.

The 3D pose information of the head can be inferred 
by solving the Perspective-n-Point (PnP) problem, i.e. the 
problem of estimating the pose of an object by finding the 
rotation matrix R and the translation vector t given intrinsic 
camera parameters, known locations of n 3D points and their 
corresponding 2D projection in the image. Indeed, by look-
ing for the projection relation between a 3D facial model and 
a 2D face image, head pose angles can be calculated from 
the elements in the rotation matrix directly.

The most simple and commonly used pipeline involves 
a number of steps [8]: (1) face alignment; (2) definition of 
3D human mean face model; (3) approximation of camera 
intrinsic parameters; (4) solving 2D-3D correspondence 
problem using one of the available PnP algorithms, such as 
POSIT [72] or DLS [131]. In their basic form, these methods 
do not need to include and train a pose estimation model; 
moreover, any method for face alignment can be used, such 
as Dlib [132] or FAN [133] (see [134] for a survey on face 
alignment methods). The drawback of PnP approach is 

that typically camera parameters are not known so they are 
approximated leading to errors in the final prediction.

Modern deformable approaches rely on a 3D face mor-
phable model and learn to deform it to adapt to the person’s 
head, then solve the 2D-3D correspondence more effectively.

Wu et al. [84] assumed to have a 3D deformable facial 
model and followed a cascade iterative procedure that 
iteratively updates the facial landmark locations, the head 
pose angles and non-rigid deformations. There is no learn-
ing involved for head pose that is estimated from the 3D 
deformable model by minimizing the projection error for 
all landmark points. Liu et al. [85] trained a CNN to recon-
struct a personalized 3D face model from the input head 
image and through an iterative 3D-2D keypoints matching 
algorithm estimate head pose under constraint perspective 
transformation (see Fig. 8). Diaz Barros et al. [135] pro-
posed a hybrid method that incorporates two strategies: 
(1) a temporal tracking scheme, which uses optical flow to 
compute the correspondences of a set of keypoints in every 
pair of frames; (2) a head pose estimation scheme which 
estimates pose independently in each frame by aligning 
2D facial landmarks to every image; the head pose in each 
scheme is estimated by minimizing the reprojection error 
from the 3D-2D correspondences.

Unfortunately, these methods use deep learning only for 
face alignment and use some projection method to com-
pute head pose, not exploiting its full potential. Instead, 
the state-of-the-art networks for head pose estimation fol-
low a different approach, also based on 3DMM. In this 
case, the focus is on the 3DMM-based 3D dense alignment 
3D dense reconstruction task. The network can be directly 

Fig. 8  An example of deformable model: A personalized 3D face is reconstructed from the input head image using a CNN, then keypoints 
matching is used to obtain the pose [85]
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used for pose estimation, indeed, 3DMM regression con-
tains pose, shape and expression parameters. There is no 
keypoints matching involved.

Zhu et  al. [53] proposed an alignment framework 
termed 3D Dense Face Alignment (3DDFA), which 
directly fits a 3D face model to RGB images via convolu-
tional neural networks. The primary task of 3DDFA is to 
align facial landmarks, even for the occluded ones, using 
a dense 3D model. As a result of their 3D fitting process, 
the 3D head pose is produced. SynergyNet [86] is a novel 
network designed to predict complete 3D facial geometry, 
including 3D alignment, face orientation and 3D face 
modelling. The network defines a synergy process that 
utilizes the relation between 3D landmarks and 3DMM 
parameters to improve the overall performance. Despite 
the large amount of work on 3DMM-based 3D dense align-
ment and the fact that many of the proposed approaches 
directly estimate rotation matrices, Wu et al. were the first 
to propose a discussion on the head pose estimation task, 
previous works only focus on the evaluation of landmarks 
and 3D faces. The authors, as well as evaluate Synergy-
Net, conducted extensive and detailed benchmarking on 
other 3DMM-based methods, such as 3DDFA-TAPAMI 
[136], 2DASL [137] and 3DDFA-V2 [138], highlighting 
the better performance of the proposed network due to the 
innovative synergy process introduced (see Fig. 9).

SADRNet is another network proposed very recently by 
Ruan et al. [87] that is one of the state-of-the-art models on 
AFLW2000 [53] dataset. This is an encoder-decoder-based 
architecture that regresses the deformation D and infers the 
pose parameters f, R and t to reconstruct the 3D face geome-
try from a single 2D face image. The most important novelty 
introduced in the network is the attention mechanism used 
to enhance the visible facial information and estimate the 
transformation matrix only with visible landmarks, giving 
robustness to occlusions and large pose variations.

Finally, with the development of consumer-level depth-
image sensors, many studies have tried to exploit 3D-face 
model-based approaches using RGB-D data. These studies 
have developed in parallel with the others presented before 
and mainly use optimization techniques, such as the ICP 
algorithm [139], which aim to minimize the discrepancy 
between depth data and a parametrized 3D model. Mar-
tin et al. [140] proposed a real-time head pose estimation 
method that first creates a point-cloud based 3D head model 
from the input depth image and then registers the 3D head 
model with the iterative closest point (ICP) algorithm [139] 
for head pose estimation. Mayer et al. [141] proposed esti-
mating head poses by registering a 3D morphable model 
(3DMM) to the input depth data through a combination of 
particle swarm optimization (PSO) and the ICP algorithm 
[139]. Higher pose estimation accuracy is achieved at the 
expense of a much higher computational cost. A 3D mor-
phable model and online 3D reconstruction are used by 
Yu et al. [64] for full head pose estimation, thus also han-
dling extreme poses. Although estimating the head poses 
on the depth image can avoid suffering from the cluttered 
background and illumination changes, that are common in 
RGB images, the main disadvantage is that depth image 
sensors are not available in most of the current real-world 
applications.

Summing up, we saw that there is a huge literature of 
approaches based on the facial keypoints, that are used as 
key elements of deformable methods, or given as input to 
neural networks (so used as features), or even are the only 
information needed in the PnP approach. It is evident that 
there is a close relationship between head pose and the dis-
tribution of the landmarks, so these are a valuable informa-
tion to estimate head pose [82]. Moreover, there is a growing 
number of landmark detectors/trackers that can be used for 
research purposes for free and there is a rapid progress in 
improving the landmark quality, including unconstrained 

Fig. 9  In SynergyNet a backbone network learns to regress 3DMM parameters (pose, shape, expression) [86]
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scenarios with difficult lighting, out-of-plane head poses, 
and occlusions [62].

PnP approach is one of the most used in the literature, 
but has a disadvantage: many parameters (such as camera 
pose) typically are approximated and this can lead to inac-
curacies in the results. Moreover, when a mean face model 
is used, even with perfect registration, the images of two 
different people will not line up exactly, since the location 
of facial features varies between people, leading to errors 
in the final result [82]. For this reason, recently developed 
approaches rely on face reconstruction as previous step to 
2D-3D keypoints matching [85]. These methods typically 
require high-resolution images and the position of landmarks 
must be initialized before the pose estimation.

Recent research has been focused on landmark-to-pose 
approaches that regress the head pose from landmark 
configuration using deep networks, and on 3DMM based 
approaches that reconstruct and align a 3D dense face model 
with the images. Less research has been devoted to the lat-
ter case, but this seems a very promising direction, able to 
achieve remarkable results, even if the head pose is only 
obtained as a by-product. The main drawbacks of 3DDFA 
approaches are that the networks are quite complex, and 
their training depend on costly face mesh annotations. Nev-
ertheless, SADRNet [87] reconstructs the 3D model of the 
face (starting from a cropped image) in 13.5 ms. However, 
it is is not clear how these results could generalize in low 
resolution far-field imagery due to the difficulty in achiev-
ing good fitting and precise image feature location in those 
conditions.

Non‑linear regression methods

The non-linear regression methods do not require keypoints 
detection, but directly predict the head pose angles through 
images. A model is trained in a supervised manner and 
learns a functional mapping from the image space to dis-
crete/continuous pose directions. The main challenge is to 

train a model in a way to ensure that the regression tool will 
learn a proper mapping.

Early approaches used classical machine learning models 
such as Support Vector Regressor (SVR) [105], Localized 
Gradient Histograms (LCH) [142] or Random Forest (RF) 
[46, 56].

In the last decades, there was a drastical shift towards the 
deep learning paradigm, with an increasing use of convo-
lutional neural networks to estimate the three-dimensional 
head pose with higher accuracy.

First attempts with deep models exploited simple archi-
tectures [143, 144] and common networks [73], such as 
AlexNet [145], VGG [146], ResNet [147]. Patacchiola et al. 
[148] improved the results by introducing dropout and adap-
tive gradient methods during the training of the network, and 
by training a different specialized network for each rotation 
angle (pitch, yaw, roll), that permits fine-tuning for a spe-
cific degree of freedom without loosing predictive power on 
another one. Work from Gu et al. [63] uses a recurrent neural 
network to regress the head pose Euler angles by exploiting 
the time dimension in video sequences. RNN has the ability 
to learn motion information implicitly, gaining robustness 
to large head pose variations and occlusions.

Ruiz et al. [8] proposed to use a three-branch convolu-
tional neural network structure, that they called Hopenet, 
where each branch is responsible for one of the Euler angles. 
All branches share a backbone network that can be of arbi-
trary structure, e.g. ResNet50 [147], AlexNet [145], VGG 
[146]. This backbone network is augmented with a branch-
specific fully-connected layer that predicts a specific angle. 
By having three cross-entropy losses, one for each Euler 
angle, three signals are backpropagated into the network, 
which improves learning (see Fig. 10).

The overall framework of Hopenet is adopted also by 
Zhou et al. [7] for their network WHENet. WHENet adopted 
a lighter backbone w.r.t. previous work, EfficientNet-B0 
[149] was used (it incorporates Inverted Residual Blocks, 
from MobileNetV2, to reduce the number of parameters 

Fig. 10  Hopenet architecture 
[8]: ResNet50 with combined 
Mean Squared Error and Cross 
Entropy Losses (image from 
https:// indat alabs. com/ blog/ 
head- pose- estim ation- with- cv)

https://indatalabs.com/blog/head-pose-estimation-with-cv
https://indatalabs.com/blog/head-pose-estimation-with-cv
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while adding skip connections). This network is optimized 
for the full range Euler angles (360◦ ), not only for narrow 
range as the previous works (180◦ ). This is achieved by care-
ful choice of the wrapped loss function as well as by devel-
oping an automated labelling method for the CMU Panoptic 
dataset [55], that is used during the training of the network.

FSA-Net [88] introduced a feature aggregation method 
to improve pose estimation. QuatNet [89] proposed a Qua-
ternion-based face pose regression framework which claims 
to be more effective than Euler angle-based methods. The 
quaternion representation is used also by Zeng et al. in their 
SRNet [150] where a specific Structural Relation-aware 
module is introduced, this module improved the prediction 
quality because discriminative pose features are learned 
from a global perspective (by capturing the valuable facial 
structure information) rather than low-level local details. 
TriNet [76] used a three vector-based representation that 
replaces Euler-based and Quaternion-based representations 
for increasing efficacy. RankPose [90] is another CNN that 
explored Siamese architecture and ranking loss to distin-
guish pose-related from a mixture of pose-related and irrel-
evant features, such as age, lighting and identity. Hempel 
et al. for 6DRepNet [151] efficiently regress a compressed 
6D form of the rotation matrix. This representation has 
been reported to introduce smaller errors for direct regres-
sion then vector-based one and made 6DRepNet one of the 
SOTA models on popular datasets.

Given the fact that the bounding box significantly affects 
the quality of the trained NN for the HPE problem [152, 
153], Sheka et al. [91] (2021) proposed to average the results 
of predictions of the same neural network, but with various 
bbox offsets, in what they call offset ensemble.

Not only bounding box affect the final result but also 
illumination and occlusion, for this reason Wang et al. in 
their FSEN [154] included low light enhancement, strong 
light suppression and face occlusion detection modules. This 
united with a four-branch CNN, in which three branches are 
used to extract three independent discriminative features of 
pose angles, and one branch is used to extract composite 

features corresponding to multiple pose angles, improved 
the results on benchmark datasets.

Recently, some attempts to propose lightweight net-
works that obtain good results at lower costs have been 
made, Berral-Soler et al. [155] and Dhingra [156] proposed 
respectively RealHePoNet and LwPosr networks. However, 
the results are less accurate than those obtained with more 
complex models.

Other researchers, to overcome the limitations of publicly 
available datasets, that are limited in size, resolution, anno-
tation accuracy and diversity, used synthetic generated data 
from high-quality 3D facial models to train their networks 
[58, 63]. Wang et al. [157] proposed a coarse-to-fine network 
to predict head pose trained on synthetically rendered faces. 
However, they noticed that the difference (domain gap) 
between rendered (source domain) and real-world (target 
domain) images negatively affects the performance. For this 
reason in [158, 159] Domain Adaptation (DA) techniques 
are applied to reduce the influence of domain differences.

Recently, Liu et al. propose ARHPE model [160], a novel 
asymmetric relation-aware network albe to learn the dis-
criminative representations of adjacent head pose images. 
Different weights are assigned to the yaw and pitch direc-
tions by introducing the half at half maximum of the Lorentz 
distribution. This has proven effective in extracting more 
discriminative features, even if it has been tested only with 
two DoF (see Fig. 11).

Finally, some researches leveraged depth data [46, 60, 
161]. Among them the best performing is POSEidon [60], 
which is a network composed of three independent convolu-
tional nets followed by a fusion layer, specially conceived for 
understanding the pose by depth. This is the state-of-the-art 
model on the BIWI database [46] (see Table 4).

The main advantage of head pose estimation derived from 
CNNs is the strong learning ability, especially for image 
processing, which make it possible to achieve the desired 
effects. These algorithms work properly with high and low 
resolution images, and they have demonstrated their repre-
sentational ability in tolerating some errors in the training 

Fig. 11  POSEidon architecture 
[60]: depth images are provided 
to a head localization CNN, 
then the head region is given in 
input to the POSEidon network 
to obtain pitch, yaw and roll 
estimations (image from [60])
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set data. They are not dependent on the head model chosen, 
the landmark detection method, the subset of points used 
for alignment of the head model or the optimization method 
used for aligning 2D to 3D points. Moreover, they can be 
computationally efficient, straightforward to implement and 
easily updated with the addition of new data (data-driven 
approach, the upper limit is high).

However, the performance of these methods drops drasti-
cally if the labelled face images are not properly annotated. 
There can be difficulties in obtaining sufficient data with 
head annotations for head pose estimation training, espe-
cially data with changes in appearance (such as sex, age 
group, and race attribute) or environmental interference 
(such as lighting conditions, shooting angle). Many data-
sets don’t have a uniform distribution of data (many images 
contain frontal or near-frontal faces) causing difficulties in 
learning large pose variations. Moreover, powerful CNNs 
are complex, and can require a long training time. It is also 
worth to stress that all these methods rely on a face detec-
tion step, prior to pose estimation, that can heavily influence 
the result.

Multi‑task Methods

The idea behind multi-task methods is to relate head pose 
estimation to other face image analysis problems, such as 
gender recognition, landmark detection, face expression rec-
ognition, race classification, etc. because it is proven that 
jointly solving multiple tasks can lead to better performance 
[52, 75, 92–96, 162–164].

The multi-task learning (MLT) paradigm encompasses a 
set of learning techniques that provide effective mechanisms 
for sharing information among multiple tasks. It enables the 
use of larger and more diverse datasets, improving the sta-
bility of training and the generalization of the final model.

Among multi-task methods adopting traditional machine 
learning frameworks there are [162, 163]. The former adopts 
the graph guided FEGA-MTL framework for head pose 
classification of mobile targets based on multi-view image 
source. The physical space is divided into a discrete number 
of planar regions and the model try to learn the pose appear-
ance relationship in each region. The latter tried to do the 
same, but evaluating the SVM-MTL framework.

Multi-task methods have become particularly popular 
with the advent of deep learning because of the unique 
ability of neural networks to transfer and share knowledge 
among various tasks. MTL has been widely used to simul-
taneously learn related tasks, such as: face detection + head 
pose estimation [97, 102, 103, 165, 166], face alignment + 
head pose estimation [93, 94, 98–100], face detection + face 
alignment + head pose estimation [95, 96, 101], face detec-
tion + face alignment + head pose estimation + gender rec-
ognition [92, 167], or also in combination with other tasks 

such as face recognition and appearance attributes estima-
tion (age, smile, etc.) [52, 75] and finally there is head pose 
estimation + gaze estimation [168].

Zhang et al. [52] were the first to investigate the possibil-
ity of optimizing multiple tasks using a Task-Constrained 
Deep Convolutional Neural Network (TCDCN) to jointly 
optimize facial landmark detection with a set of related 
tasks, such as head pose estimation. The proposed network 
learns a shared feature space that is optimized to solve all the 
tasks at the same time. The network does not perform face 
detection, therefore it requires an image of a face as input 
or an additional preprocessing step. A similar network was 
proposed also by Ahn et al. [165], but their focus was on 
real-time driving face detection and head pose estimation.

Ranjan et al. [92] proposed a new model called Hyperface 
that performs face detection, face alignment, pose estimation 
and gender recognition. The network is designed to exploit 
the fact that information contained in features is hierarchi-
cally distributed throughout the network, therefore lower lay-
ers respond to edges and corners, and hence contain better 
localization properties (are more suitable for face alignment 
and pose estimation tasks); on the other hand, higher layers 
are class-specific and suitable for learning complex tasks 
such as face detection and gender recognition. They make 
use of all intermediate layer features (called hyperfeatures) 
through a technique named feature fusion, which allows to 
transform features to a common subspace where these can 
be combined linearly or non-linearly. They show that fusing 
intermediate layers improves the performance for structure 
dependent tasks of pose estimation and landmarks localiza-
tion, as the features become invariant to geometry in deeper 
layers of CNN.

Then, Ranjan et al. [75] proposed another model called 
All-in-One. It differs from Hyperface because (I) simultane-
ously performs a higher number of tasks and (II) domain-
based regularization is adopted by training on multiple data-
sets, each one specific to a subset of the tasks.

Xu et al. [93] have brought into the field a new type of 
network, i.e. a cascaded architecture that is designed in a 
hierarchical way based on coarse-to-fine principles, which 
refines the shape and pose sequentially. Other cascaded 
architectures have been presented in the literature, the main 
difference among them is the number of stages, the type 
and the number of tasks addressed in each stage [96, 97] 
(see Fig. 12).

Kumar et al. [94] transformed the cascaded regression for-
mulation into an iterative scheme, by proposing the KEPLER 
model. In each iteration, a regressor predicts visibility, pose 
and the corrections for the next stage, and a rendering mod-
ule uses these corrections to prepare new rendered data 
employed in the next iteration. The network is trained on 
three tasks namely, pose, visibilities and the bounded error 
using ground-truth annotations. The joint training is helpful 
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since it models the inherent relationship between the vis-
ible number of points, the pose and the amount of correction 
needed for a keypoint in a particular pose.

Many other researchers focused on improving the time 
needed for the network to resolve the tasks, indeed this is the 
main drawback of some of the presented models (e.g. Hyper-
face [92] or All-in-One [75]) that limits real-world appli-
cations. Cheng et al. [95] proposed a model that exploits 
single-shot object detection module (SSD) to perform multi-
scale face detection, face alignment and head pose estima-
tion at the same time at much higher speed. ASMNet [100] 
is a lightweight CNN assisted by an Active Shape Model 
(ASM) [169], used to guide the network towards learning, 
that achieves an acceptable performance for face alignment 
and pose estimation while having a significantly smaller 
number of parameters and floating point-operations. ATPN 
[99] and MOS [101] focused on defining a network struc-
ture with an even smaller number of parameters to augment 
efficiency. Other architectures, such as Multitask-net [102] 
and TRFH [103], leveraged the feature pyramid network to 
detect faces on different scales (see Fig. 13).

Valle et al. [98] proposed another type of architecture, 
an encoder-decoder CNN (see Fig. 13). They locate the 
head pose estimation task at the end of the encoder net-
work, in this way the network bottleneck acts as embedding 

representing face pose. Instead, visibility and face alignment 
tasks are located at the end of the decoder, since they require 
information about the spatial location of landmarks in the 
image. This is the only paper to propose an encoder-decoder 
architecture. The presented model, called MNN, achieves 
results comparable to the state-of-the-art methods for the 
head pose estimation task; this is due to the network archi-
tecture and to a new training strategy that uses reannotated 
datasets.

Recently, Malakshan et al. [170] presented a completely 
different novel approach that jointly solves Face Super-
Resolution (FSR) and HPE problems. To this end, a Multi-
Stage Generative Adversarial Network (MSGAN) has been 
proposed: it benefits from the pose-aware adversarial loss 
and the head pose estimation feedback to generate super-
resolved images that are properly aligned for HPE. Even if 
the network has not improved the results of SOTA methods 
on standard datasets, it significantly increased the pose esti-
mation accuracy for the low resolution face images, obtain-
ing at the same time very accurate results for original high-
resolution images (on BIWI dataset MAE = 4.11).

The main advantage of the multi-task approach is that 
many tasks can be solved with a single model. Furthermore, 
all these tasks are strictly related, therefore the overall per-
formance is improved due to the network’s ability to learn 

Fig. 12  A convolutional neural 
network with feature fusion, 
examples are Hyperface [92] 
and All-in-One [75] (image 
from [97])

Fig. 13  Encoder-decoder 
network, called MNN, adopted 
in [98]
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correlations between data from different distributions in an 
effective way, so more discriminative features are learned. 
Also, some methods perform face detection with head pose 
estimation, reducing the time needed to perform preprocess-
ing of the image. Another advantage is that multiple datasets 
can be used for training, increasing the amount of available 
data.

The main disadvantage of multi-task approach is the lack 
of public benchmark datasets with all the annotations for all 
the tasks. It’s difficult to compare multi-task models among 
them and to other head pose estimation methods because 
they use a different combination of datasets for training and 
testing, therefore the better performance of a model could 
be due mainly to the training strategy rather than to the 
architecture of the proposed network. Moreover, some of 
the older models were not suited for real-world usage, e.g. 
Hyperface and All-in-One architectures took 3.5 s to process 
a single image [75]. Although newer models have managed 
to limit this problem, making it possible to obtain real-time 
systems.

Evaluation Metrics

A common informative metric used for evaluating HPE 
frameworks is the Mean Absolute Error (MAE) for all the 
three angles, i.e., pitch, yaw, and roll. MAE is quite popular 
(most of the papers discussed in this paper use it as main 
evaluation metric) since it provides a single statistics that 
gives a quick insight into the performance, for both fine or 
coarse pose estimations.

However, in scenarios with large-range pose variations 
(360◦ ), this evaluation method will not be reasonable. For 
example, when the actual angle is 170◦ and the predicted 
angle is – 170◦ , then the two angles are only 20◦ apart, but 
the MAE value calculated is 340◦ , making it bigger than its 
actual value [69].

For this reason, another measure has been proposed in the 
literature, called Mean Absolute Wrapped Error (MAWE) 
[7, 69]. The difference is clear by its definition:

Another measure, mainly used for coarse head pose esti-
mation, is the so-called Pose Estimation Accuracy (PEA). 
Being an accuracy measure, this metric depends on the num-
ber of poses, and therefore gives little information about the 
actual system performance. No recent work use it.
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In recent studies on head pose estimation in the driv-
ing context, new evaluation metrics have been proposed 
[18–20]; however, no work on general head pose estimation 
use them.

The first metric is the Balanced Mean Angular Error, 
introduced to address the problem of the higher number of 
frontal pose images during evaluation, which leads to an 
unbalanced amount of different head orientations. The idea 
is to split the dataset in bins based on the angular difference 
from the frontal pose and average the MAE of each of the 
bins [18]

where �i,i+d is the MAE of all hypotheses, the angular differ-
ence between the ground-truth and frontal pose is between 
i and i + d , d is the bin size and k is the maximum angle 
degree considered.

Other two metrics employed are the Standard Deviation 
(Std), that provides insights to the error distribution around 
the ground-truth, and finally the Root Mean Squared 
Error, to weight larger errors higher.

RMSE takes the squared difference of the predicted value 
and the ground-truth value, weighing larger errors higher. 
Thus, high variation in predictions of an algorithm results in 
a higher overall error compared to the mean without squar-
ing the values [19].    

Evaluation

Comparing different methods is a complex and delicate 
problem, due to large number of different datasets that can 
be used for training and testing, and the different features 
that can be exploited by the models, such as depth informa-
tion. The community is pushing for the adoption of well 
defined evaluation pipelines, discussed in the following 
section, that allows for a fair comparison between models; 
results relative to this group are given in Table 4 (no depth) 
and Table 5 (depth). In Table 6 we report figures relative to 
evaluation on the AFLW dataset [45], although the precise 
pipeline may be different or unknown. Finally, many sys-
tems uses ad-hoc datasets either for training, testing, or both 
tasks, as it is for instance the case for thematic scenarios 
like driving or video surveillance. Results relative this latter 
groups are provided in Tables 7 and 8, splitted in two parts 
for typographical reasons.
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Evaluation Pipelines

Currently, in the state-of-the-art works [7, 8, 76, 82, 86, 87, 
90, 91, 166, 187], there are two primary datasets for training: 
300W-LP [53] and BIWI [46], corresponding two main data-
sets for testing AFLW2000-3D [53] and a part of BIWI [46].

The two most used evaluation protocols are [88]:

• P1: Training performed on a single dataset (300W-LP 
[53]), while BIWI [46] and AFLW2000-3D [53] are used 
as test sets. Only images with head rotation angles in 
range [– 99◦ , + 99◦ ] are typically considered (in the case 
of AFLW2000 31 images are discarded);

• P2: Training and test sets are derived from the BIWI 
dataset [46], in some cases random split is applied (typi-
cally, 80% and 20% images), in others split by subject 
(18 and 2 subjects), recently the most common is the 
split by sequence (16-8 sequences for training and test 
respectively), but also n-fold cross-validation and leave-
one-out cross-validation are used in the literature.

However, a major drawback of the considered evaluation 
pipelines is that the head pose angles (including pitch, yaw 
and roll) are all in the range [– 99◦ , + 99◦ ], limiting the pre-
diction of the models to a “narrow range” that makes them 
less effective on large-angle data, such as those acquired 
from security cameras [69].

For this reason, researchers frequently use additional head 
pose datasets. Zhou et al. for training the WHENet model 
[7] use the CMU Panoptic dataset [55] both to increase the 
amount of data and to get comprehensive yaw angles in 
range [– 179◦ , + 179◦ ]. This is necessary to obtain a model 
optimized for the full range (360◦ ) of face orientations, out-
performing on such a task models exclusively trained with 
300W-LP [53]. Albiero et al. [166] instead annotated the 
WIDER face database [189] using a deep learning regressor, 
and used it during training to increase the robustness of the 
model. Recently, Viet et al. [69] released the UET-Headpose 
dataset, also with uniform yaw angle in the range ±179◦ , 
that can be used as a new benchmark dataset for full range 
models.

Moreover, the semi-automatic pipeline used to label 
300W-LP [53] and AFLW2000-3D [53] has been criticised 
for not producing accurate annotations for extreme poses 
and occluded faces [133]. Valle et al. [98] re-annotated 
AFLW2000-3D with poses estimated from the correct land-
marks; this led to an improvement in model performance.

Other researchers employ synthetic datasets for training 
and tested on real ones [58, 63, 157–159]. Kuhnke et al. 
[158] propose novel benchmark datasets that are derived 
from BIWI [46] and SynHead [63], namely Biwi+, Syn-
Biwi+, SynHead++. They propose these new datasets 
because SynHead was rendered using the Euler angles 

provided by BIWI, but with a different sequence of rota-
tion axes. This rotation order, dissimilar to the BIWI one, 
causes that several SynHead images and BIWI images with 
the same label show different head rotations. For this rea-
son, the reannotated SynHead+ contains SynHead images 
with correct angles. For every image in the BIWI dataset, 
SynBiwi+ has 10 corresponding images containing the 10 
synthetic head models of SynHead. SynHead++ is the union 
of SynHead+ and SynBiwi+. To further improve the repro-
ducibility manually collected bboxes for BIWI are provided 
in Biwi+ dataset.

Another dataset often used in the literature both for train-
ing and testing is the AFLW [45], however, there isn’t a com-
mon evaluation protocol used in the many studies published. 
The most common is:

• P3: Train and test set are defined by a random split, 
23.386 images are used for training the model (of which 
typically 2.000 are employed as validation set) and 1.000 
images for testing. More details about other evaluation 
pipelines for AFLW are in Table 6.

Discussion

Head pose estimation is an active research field of computer 
vision. It remains a challenging task due to several intrinsic 
and extrinsic problems, and the growing number of special-
ized contexts of application [2]. We organize this discussion 
in for parts: datasets, methodologies, open problems, and 
research directions.

Datasets

New databases are released every year because deep learning 
models require a huge quantity of data for training, but espe-
cially to overcome limitations of previous released datasets, 
such as limited head rotation angle ranges, non uniform dis-
tribution of angles, data captured in constraint environment, 
limited quality of ground-truth annotations, etc. (see FIg. 14)

Almost all most recent databases have annotations for all 
three rotation angles (pitch, yaw and roll), mainly acquired 
using depth cameras or optical motion capture systems. This 
is a major improvement with respect to earlier datasets that 
were acquired using direct suggestion or camera array meth-
ods, resulting in a discrete number of poses and annotations 
limited to one or two DoF.

The complexity of images has grown from simple faces 
on a flat background, to more complex scenarios with 
images acquired in-the-wild. However, a major drawback 
of the latter type is that pose is typically annotated manually 
or estimated with neural networks trained on other datasets, 
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Table 3  Head pose estimation publications most cited in recent literature

Year Paper Approach DoF Dataset

2011 Fanelli et al. [46] Random Forest 3 BIWI
2012 Baltrusaitis et al. [48] CLM-Z Model based 3 BIWI, BU, ICT-3DHP
2014 Ahn et al. [143] DCNN 3 BIWI
2014 Martin et al. [140] Model based 3 BIWI
2014 Peng et al. [117] Manifold embedding 3 Multi-Pie
2014 Tulyakov et al. [51] ML + Tracking 2 Dali3DHP
2014 Zhang et al. [52] Multi-task DCNN 3 AFLWa,c,d , AFWa,c,d

2015 Drouard et al. [171] Gaussian locally-linear mapping 3 BIWI, Pointing’04
2015 Meyer et al. [141] 3DMM Model based 3 BIWI, ETH
2015 Papazov et al. [172] 3DMM Model based 3 BIWI, Synthetic data
2015 Saeed et al. [161] ML: HoG + SVR 3 BIWI, ICT-3DHP
2015 Sundararajan et al. [115] Manifold embedding 3 AFLW, AFW, McGill
2016 Gu et al. [63] RNN 3 BIWI, ETH, SynHead
2016 Liu et al. [58] DCNN 3 BIWI, Synthetic
2016 Xingyu et al. [144] DCNN (VGG) 3 IDIAP-HP
2017 Amador et al. [73] DCNN 3 300W, AFLW, AFW
2017 Barros et al. [173] PnP Model based 3 BU
2017 Borghi et al. [60] DCNN 3 BIWI, ICT-3DHP, Pandora
2017 Bulat et al. [133] PnP Model based 3 300-VWc , 300W-LPc , AFLW2000c , Menpoc

2017 Diaz-Chito et al. [118] Manifold embedding 3 CAS-PEAL, CMU-Pie, DrivFace, Pointing’04, Taiwan 
RoboticsLab

2017 Gao et al. [174] Deep label distribution learning 3 AFLW, BJUT-3D, Pointing’04
2017 Gou et al. [175] Model based 3 300W⋄ , BUa

2017 Khan et al. [29] Segmentation based 2 Pointing’04
2017 Kumar et al. [94] Multi-task DCNN 3 AFLWa,c , AFWa,c

2017 Lathuliere et al. [152] DCNN 3 BIWI
2017 Patacchiola et al. [148] DCNN 3 AFLW, AFW, Pointing’04
2017 Ranjan et al. [92] Multi-task DCNN 3 AFLWa,b , AFWa,b,c , CelebAd , FDDBb , LFWAd , Pascalb

2017 Ranjan et al. [75] Multi-task DCNN 3 Adiencef  , AFLWa,b,c , AFWa,b , CASIAe , Chalern 
LAP2015f  , CelebAd , FDDBb , FG-NETf  , IJB-Ae , 
Morphf  , Pascalb

2017 Wu et al. [84] Model based 3 BU4D-FEg , BUa , COFWc , Multi-Piea,c

2017 Xu et al. [93] Multi-task DCNN 3 300Wa,c

2017 Yu et al. [176] Model based 3 BIWI, UbiPose
2018 Ahn et al. [165] Multi-task DCNN 3 AFLWa,b , BIWIa,b , RCVFacea,b , NDSb

2018 Barros et al. [135] Model based + Tracking 3 BU
2018 Cai et al. [96] Multi-task DCNN 3 300Wa,b,c

2018 Chen et al. [95] Multi-task DCNN 3 AFLWa,b,c , AFWa,c , FDDBb , Pascalb , WIDERb

2018 Gupta et al. [81] Model based MLP 3 AFLW, BIWI
2018 Hong et al. [164] Multi-task Multi-view + Manifold learning 3 BIWI, Pointing’04
2018 Ruiz et al. [8] DCNN 3 300W-LP, AFLW, AFLW2000, BIWI
2018 Yu et al. [64] Model based 3DMM 3 BIWI, UbiPose
2018 Zhang et al. [177] Multi-task DCNN 3 AFLWa,c

2019 Abate et al. [129] Model based Quad Tree 3 AFLW, BIWI
2019 Benini et al. [31] Segmentation based SVM 2 Pointing’04
2019 Derkach et al. [119] Manifold embedding 3 BIWI, SASE
2019 Hsu et al. [89] DCNN 3 300W-LP, AFLW, AFLW2000, AFW, BIWI
2019 Khan et al. [30] Segmentation based 3 AFLW, BU, ICT-3DHP, Pointing’04
2019 Khan et al. [32] Segmentation based Random Forest 3 AFLW, BU, ICT-3DHP, Pointing’04
2019 Kuhnke et al. [158] DCNN 3 Biwi+, SynBIWI+, SynHead++
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leading to inaccuracies in the ground-truth annotations (see 
for example Fig. 15).

Another drawback of almost all the datasets is the data 
imbalance issue: the distribution between easy frontal faces 

and more challenging orientations is heavily unbalanced. 
Techniques to increase the number of hard faces [195] or to 
enhance the contribution of hard examples (such as HEM 
[150]) can be used to alter the data distribution space and 

Table 3  (continued)

Year Paper Approach DoF Dataset

2019 Liu et al. [178] DCNN 3 300W-LP, AFLW, AFLW2000, AFW, BIWI
2019 Shao et al. [179] DCNN 3 300W-LP, AFLW2000, BIWI
2019 Wang et al. [157] DCNN 3 BIWI, BU, Pointing’04, Synthetic data
2019 Wang et al. [180] DCNN 3 300W-LP, AFLW, AFLW2000, BIWI
2019 Xu et al. [181] DCNN 3 CAS-PEAL, Multi-Pie, Pointing’04
2019 Xia et al. [82] Model based DCNN 3 300W-LP, AFLW2000, BIWI, CAS-PEAL, DriveFace
2019 Yang et al. [88] DCNN 3 300W-LP, AFLW2000, BIWI
2020 Barra et al. [130] Model based 3 AFLW, BIWI, Pointing’04
2020 Cao et al. [76] DCNN 3 300W-LP, AFLW2000, BIWI
2020 Dai et al. [90] DCNN 3 300W-LP, AFLW2000, BIWI
2020 Dapongy et al. [83] Model based 3 300W, 300W-LP, AFLW2000, CelebA, WFLW
2020 Ewaisha et al. [168] Multi-task DCNN 3 CAVE
2020 Valle et al. [98] Multi-task DCNN 3 300W-LPa,c , AFLWa,c , AFLW2000a , BIWIa , COFWc , 

WFLWa,c

2020 Wang et al. [182] PnP Model based 3 300W, AFLW2000
2020 Zhang et al. [183] DCNN 3 300W-LP, AFLW2000, BIWI
2020 Zhang et al. [167] Multi-task DCNN 3 AFLWa,b,c

2020 Zhou et al. [7] DCNN 3 300W-LP, AFLW2000, BIWI, CMU Panoptic
2021 Albiero et al. [166] Multi-task DCNN 3 300W-LPa , AFLW2000a , BIWIa , WIDERa,b

2021 Basak et al. [159] DCNN 3 BIWI, SASE, Synthetic data
2021 Berg et al. [184] DCNN 3 BIWI
2021 Berral-Soler et al. [155] DCNN 3 AFLW, Pointing’04
2021 Fard et al. [100] Multi-task DCNN + ASM 3 300Wa,b , WFLWa,b

2021 Hu et al. [185] DCNN 3 300W-LP, AFLW2000, BIWI
2021 Khan et al. [80] Segmentation based Soft-max classifier 3 AFLW, BU, ICT-3DHP, Pointing’04
2021 Liu et al. [85] Multi-task DCNN 3 AFLWc , AFLW2000a , WIDER∗

2021 Naina Dhingra [186] DCNN 3 300W-LP, AFLW2000, BIWI
2021 Ruan et al. [87] Model based 3DMM + DCNN 3 300W-LPa,c,g , AFLW2000⋄◦∗ , Florenceg

2021 Sheka et al. [91] DCNN 3 300W-LP, AFLW, AFLW2000, BIWI
2021 Viet et al. [102] Multi-task DCNN 3 300W-LPa,b , BIWIa,b , CMU Panoptica,b

2021 Viet et al. [69] DCNN 3 300W-LP, AFLW2000, CMU Panoptic, UET-Headpose
2021 Xia et al. [99] Multi-task DCNN 3 300W-LPa , 300VWc , WFLWc , WIDERb

2021 Xin et al. [187] Model based Graph CNN 3 300W-LP, AFLW2000, BIWI
2021 Wu et al. [86] Model based 3DMM + DCNN 3 300W-LPa,c,g , 300VWg , AFLWc , AFLW2000a,c , Florenceg

2022 Cantarini et al. [188] Model based DCNN 3 300W-LP, AFLW2000, BIWI
2022 Hempel et al. [151] DCNN 3 300W-LP, AFLW2000, BIWI
2022 Liu et al. [160] DCNN 2 AFLW2000, Pointing’04, HRIHP
2022 Martyniuk et al. [154] Model based DCNN 3 300W-LP, AFLW2000, BIWI
2022 Naina Dhingra [156] DCNN 3 300W-LP, AFLW2000, BIWI
2022 Wang et al. [154] DCNN 3 300W-LP, AFLW2000, BIWI
2022 Zeng et al. [150] DCNN 3 300W-LP, AFLW2000, BIWI
2023 Malakshan et al. [170] Multi-task GAN 3 300W-LP, AFLW2000, BIWI, CelebA, WIDER

For multi-task models we annotated the specific tasks for which each dataset is used as follows: ahead pose estimation, bface detection, cface 
alignment, dgender classification, eface recognition, fage estimation, gface reconstruction
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overcome this issue, making trained models more robust and 
with better a generalization capability (Fig. 14).

Among all the databases, Boston University [34] is still 
used to evaluate head pose estimation methods even if it is 
one of the oldest; some model-based and segmentation based 
methods obtain very accurate performance on it, as can be 
seen in Table 7. Also Pointing’04 [38] is still employed for 
research purposes, even if it was introduced back in 2004, 
due to its challenging nature and high image diversity.

BIWI Kinect [46] has become the de-facto benchmark 
dataset with a high number of publications that evaluate their 
models on it. However, this dataset has two main disadvan-
tages: it’s a narrow range dataset, head rotation angles go 
from – 75◦ to + 75◦ , making it not suitable to evaluate mod-
els optimized for full range (360◦ ) head rotations; further-
more, it’s a dataset with images acquired in a constraint envi-
ronment, therefore less challenging than other captured with 
different lighting conditions, backgrounds or occlusions.

Nowadays synthetic databases [58, 62, 63] enable more 
precise evaluation and comparison of HPE methods because 
they contain nearly perfect ground-truth data. However, 
training solely on synthetic data can cause poor performance 
when testing on real-world data due to mismatch or shift of 
underlying data distribution (domain gap). For this reason, 
training on a combination of synthetic data and real ones can 
lead to an improvement of the final result, see for example 
FSA-Net [88] model tested on BIWI dataset [46] in Table 7.

Recently, the most active sub-field seems to be “driver 
head pose estimation”, in the last five years five public data-
sets that address this specific scenario have been released, 
each with thousands or millions of images. This is mainly 
due to the increasing interest in driving assistance systems 
that aim to monitor the driver attention, behaviour and inten-
tion, and the fact that head pose is a key element to obtain 
accurate results [18, 19].

Methodologies

In parallel with the growing number and quality of avail-
able datasets, the number of head pose publications has 
constantly increased in the past few years. More and more 
people are interested in this area, leading to the development 
of many different and innovative approaches. Nowadays, 
deep learning and methods based on convolutional neural 
networks are the most pervasive: these are used to estimate 
head pose from monocular images, from a set of detected 
facial landmarks, from a combination of both in a multi-task 
approach, or even are used to perform 3D dense face align-
ment/reconstruction, from which the head pose information 
is obtained as by-product.

Segmentation based methods are the only recently devel-
oped methods that mainly rely on classical machine learning 
models. They proved the existence of a strong correlation Ta
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between face segments and the corresponding pose, and that 
a precise face segmentation may lead to very accurate pose 
estimations [30]. However, a severe drop in performance 
is often registered when segmentation is applied in uncon-
strained environments [32], that hence remains a challenge 
for future research.

What emerges most from the literature is the strong cor-
relation between face alignment and head pose estimation. 
This correlation is exploited in different ways in the litera-
ture. Among the best performing methods there are:

• Xia et al. [82] perform face alignment and then create a 
landmark heatmap that is given as input (along with the 
facial image) to a CNN. They obtain the best result on 
AFLW2000 dataset [53] because the heatmap generator 
improves the generalization ability by making the CNN 
focus on the area around facial landmarks and reducing 
the interference from background significantly. However, 
this method does not remarkably improve the perfor-
mance on datasets taken under controllable conditions, 
such as BIWI [46].

• Valle et al. [98] combine face alignment and head pose 
estimation in a multi-task model improving the overall 
performance, obtaining the best result on AFLW dataset 
[45].

• Xin et al. [187] construct a landmark-connection graph 
to model the complex non-linear mapping between graph 
topologies and head pose angles. Their model has the 

lowest MAE when trained and tested on BIWI dataset 
[46] among the models that use only RGB data.

• Wu et al. [86] exploit facial landmarks to guide 3D facial 
geometry learning. Pose in this case is a by-product that 
a backbone network learns during 3DMM parameter 
regression. SynergyNet outperform all deep learning 
regressors on AFLW2000 dataset [53].

A different class of models that look particularly promising 
are those based on 3DMM. They focus on face reconstruc-
tion and incorporate occlusion aware mechanisms very use-
ful in complex scenarios. Moreover, because these methods 
do not use any ground-truth head pose label during training, 
they do not suffer from the inaccuracy of head pose labels 
that exist in most publicly available training datasets. Room-
of-improvement might exist by designing specialized loss 
function and addressing specifically the head pose estima-
tion task.

From Table 3 we can see that almost all the models can 
estimate 3 DoF; actually, some of them (such as 3DMM 
based) can estimate 6 DoF, but databases are mainly 
equipped with 3 DoF or less. This highlights a great evolu-
tion, indeed until a few years ago, researchers focused more 
on yaw estimation, because of its importance in applications 
such as human attention, gaze estimation, etc. Deep learn-
ing changed the trend, all three rotation angles are currently 
being addressed in most works.

Table 5  Evaluation results of head pose estimation on AFLW2000 [53] and BIWI [46] for methods exploiting depth data

Evaluation protocols are typically based on variants of P2. Model type: (D) Deep learning regressor; (MB) Model based; (ME) Manifold embed-
ding; (ML) Machine learning regressor; (MT) Multi-task. In pre-processing fd means face detector, kd means keypoints (landmarks) detector. VJ 
is Viola-Jones face detector implemented in openCV [109]; Dlib [132]. Other training/testing strategies used for BIWI dataset are presented in 
Table 7

Name Type Eval pipeline P2 MB Param
10

6

Extra 
training
data

Data Full
range

Pre-process.
step

Pitch Yaw Roll MAE Split

Fanelli et al. [46] ML 8.50 7.90 8.90 8.43 Sbj Depth N VJ fd

Baltrusaitis et al. [48] MB 5.10 11.30 6.30 7.60 Sbj RGB+D N VJ fd

Saeed et al. [161] ML 5.00 4.30 3.90 4.40 Sbj RGB+D N VJ fd

LMK [119] ME 3.80 3.60 5.20 4.20 L1O Depth N
DESC [119] ME 3.40 3.30 3.30 3.33 L1O Depth N
Papazov et al. [172] MB 2.50 3.80 3.00 3.20 Depth N VJ fd

Martin et al. [140] MB 2.50 2.60 3.60 2.90 Sbj Depth Y▿ Videmo fd

Meyer et al. [141] MB 2.40 2.10 2.10 2.20 Sbj Depth N Custom fd

Yu et al. [176] MB 1.53 2.49 2.18 2.073 RGB+D Y Dlib fd,kd

HeadFusion [64] MB 1.45 2.54 2.10 2.032 RGB+D Y Dlib fd,kd

POSEidon [60] D 1.60 1.70 1.80 1.701 Sbj 3.4 Depth Y CustomNN fd
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From Table 5 we observe that methods that use depth 
data, alone or in conjunction with RGB information, can 
usually achieve better results. In particular, the use of depth 
data enhances the efficacy under challenging illumination 
conditions and occlusions, making the models suitable for 
particularly complex scenarios, such as automotive. From 

Table 7 we can see that, recently, also thermal infrared 
images (IR) are used as input for HPE algorithms, in some 
cases obtaining better results than with depth information. 
However, depth or infrared data are not always available in 
real-world contexts, and are also quite expensive; therefore, 

Table 6  Evaluation results of head pose estimation on AFLW [45] (ordered by training pipeline)

a Results taken from [28]. Evaluation pipeline: (1) Random split—15.561 images for training, 7.848 for testing; (2) Random split–−14.000 
images for training, 7.041 for testing; (3) Test on all AFLW; (4) First 2.000 images for testing other for training; (5) Train on other dataset, test 
on 1.000 random sample from AFLW; (6) Random split - 20.000 images for training other for testing; (n-FCV) n-fold cross-validation. Model 
type: (D) Deep learning regressor; (MB) Model based; (ME) Manifold embedding; (ML) Machine learning regressor; (MT) Multi-task; (RNN) 
Recurrent neural network; (SB) Segmentation based model. In preprocessing fd means face detector, kd means keypoints (landmarks) detector. 
Not all papers specify the preprocessing applied, some are direct methods that incorporate a detection phase, other use face crop from gt bbox

Name Type Train Test Evaluation pipeline Pitch Yaw Roll MAE Data type Pre-process. step

DLDL (KL) [174] D AFLW AFLW 1 5.75 6.60 RGB
AVM [115] ME AFLW AFLW 2 17.48 RGB VJ fd

Dliba [132] MB Not req. AFLW Unknown 13.6 23.1 10.5 15.7 RGB
TRFH [103] MT AFLW AFLW Unknown 23.81 5.49 17.26 15.52 RGB Direct
FANa [133] MB Not req. AFLW Unknown 12.3 6.4 8.7 9.13 RGB
3DDFAa [53] MB Not req. AFLW Unknown 8.2 5.4 8.7 7.43 RGB
GLDL [178] D AFLW AFLW Unknown 5.31 6.00 3.75 5.02 RGB FR fd

LeNet-5 [148] D AFLW AFLW 5-FCV 7.15 11.04 4.40 7.53 RGB
MLP+Locations (5pnt.) [81] MB AFLW AFLW 5-FCV 6.64 9.56 4.68 6.96 RGB OpenPosekd

CNN+Heatmaps (5pnt.) [81] MB AFLW AFLW 5-FCV 5.58 6.19 3.76 5.18 RGB OpenPosekd

Segm+CNN [80] SB AFLW AFLW 10-FCV 3.2 4.9 RGB SSD fd

HPE-MSF-CRFs [30] SB AFLW AFLW 10-FCV 4.89 4.25 3.20 4.11 RGB SSD fd

HAG-MSF-CRFs [32] SB AFLW AFLW 10-FCV 4.89 4.25 3.20 4.11 RGB SSD fd

QT_PYR [129] MB Not req. AFLW 3 7.60 7.60 7.17 7.45 RGB VJ fd , Dlibkd

Hybrid Coarse-fine [180] D 300W-LP AFLW 3 5.38 6.18 5.09 5.55 RGB
4D_4S [130] MB Not req. AFLW 3 4.82 3.11 2.25 3.39 RGB Dlibkd

KD-ResNet18 [91] D AFLW AFLW 4 6.02 5.45 4.16 5.21 RGB Yolo-v5 fd

KD-ResNet152 [91] D AFLW AFLW 4 5.93 5.41 4.07 5.14 RGB Yolo-v5 fd

QuatNet [89] D 300W-LP AFLW 5 4.32 3.93 2.59 3.61 RGB Gt bbox
CCR [177] MT AFLW AFLW 6 5.85 5.22 2.51 4.53 RGB
KEPLER [14] MB AFLW AFLW P3 5.85 6.45 8.75 6.45 RGB
Hyperface [92] MT AFLW AFLW P3 6.13 7.61 3.92 5.88 RGB SSO fd

Hopenet ( � = 1) [8] D AFLW AFLW P3 5.89 6.26 3.82 5.32 RGB FR fd

MLP+Locations (5pnt.) [81] MB AFLW AFLW P3 5.84 6.02 3.56 5.14 RGB OpenPosekd

VGG-16 [73] D AFLW AFLW P3 5.24 6.45 3.61 5.10 RGB
AlexNet [73] D AFLW AFLW P3 5.21 6.40 3.47 5.02 RGB
MOS [101] MT AFLW AFLW P3 4.89 RGB Direct
ResNet-50 [73] D AFLW AFLW P3 5.02 6.03 3.22 4.75 RGB
VGG-19 [73] D AFLW AFLW P3 4.93 5.99 3.15 4.69 RGB
ResNet-101 [73] D AFLW AFLW P3 4.98 5.69 3.07 4.59 RGB
ResNet-152 [73] D AFLW AFLW P3 4.88 5.92 2.98 4.58 RGB
CNN+Heatmaps (5pnt.) [81] MB AFLW AFLW P3 4.43 5.22 2.53 4.06 RGB OpenPosekd

MNN [98] MT AFLW AFLW P3 3.07 4.16 2.43 3.22 RGB
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methods based only on monocular images have more gener-
alization abilities and simpler deployment.

Issues and Problems

The main problem that emerges from this analysis is that dif-
ferent experimental set-ups and different validation protocols 
are adopted for HPE algorithms, and this strongly influences 
the evaluation, making comparison difficult. Another source 
of noise comes from the preprocessing phase, that may eas-
ily result in the detection of different bounding boxes/facial 
keypoints eventually influencing further elaboration steps.

Coming to more technical problems, Shao et al. [179] 
discovered in their experiments that bounding box margin 
has a large impact on the final accuracy of the model; head 
pose estimators are vulnerable to changes in the background 
scene around the target face, as shown in image 16.

To solve this problem Xue et al. [153] propose a convo-
lutional cropping module (CCM) that can learn to crop the 
input image to an attentional area for head pose regression, 
and a background augmentation technique that can make 
the network more robust to the background noise. In their 
experiment SSR-Net-MD [88] MAE error fell from 6.01 to 
5.38 and FSA-Net [88] goes from 5.25 to 5.13 thanks to 
CCM and background augmentation. If on one hand, this 
shows how there are techniques that allow to improve the 
results obtained, on the other, hand differences in the ways 
of getting the bounding boxes do not allow for a valid com-
parison of the methods for HPE.

The same problem emerged for face landmark detectors, 
as shown by Xin et al. [187] in their experiments, as reported 
in Table 9.

Also, the impact of image quality is little studied in the 
literature. When few low-quality images are present in 
training data, networks can easily fail to cope with these 
under-represented cases. Using synthesized LR samples 
and data augmentation during training is a delicate trade-
off between the positive gain deriving from more diverse 
training instances, and the additional difficulty related to 
the higher problem complexity. It is proven that when the 
resolution variation increases, the performance on the origi-
nal High-Resolution (HR) samples drops [8]. Little studies 
have been conducted on establish a resolution-agnostic HPE 
framework [170].

The last question that arises is about the evaluation met-
rics used. MAE is the standard evaluation metric employed, 
but is optimal only for narrow range models, as explained 
in section “Evaluation Metrics”. It’s worth noting that also 
Cao et al. [76] criticise the use of MAE of Euler angles as 
evaluation metric, as according to them it cannot correctly 
measure the performance on profile images. They propose to 
use the Mean Absolute Error of Vectors (MAEV) to assess a   S
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the performance. They use three vectors, extracted from the 
rotation matrix, to describe head poses and compute the dif-
ference between the ground-truth vectors and the predicted 
ones. They showed how this representation is more con-
sistent and how MAEV is a more reliable indicator for the 
evaluation of pose estimation results (see Fig. 17).

The MAWE metric (details in Section “Evaluation Met-
rics”) could be a better choice: first, it can be used with Euler 
angles representation; second, if used to evaluate narrow 
range methods gives the same result as MAE; third, at this 
point narrow range methods have reached very high accu-
racy and it seems the time has come for a switch to full range 
methods with MAWE as main evaluation metric.

Research Directions

Due to the growing specialization of the field on ad-hoc 
contexts and tasks, it is natural to expect more and more 
investigation on topics like domain adaption, partial domain 
adaption, inaccurate semi-supervised learning, and knowl-
edge transfer.

For similar reasons, we expect an increasing application 
of multi-task learning, which has seen a steady and strong 
development from 2017 to today. Head pose can be used as 
principal task to enhance other face-related subtasks, includ-
ing gender classification, expression detection and identity 
recognition.

Fig. 14  Example of e distribu-
tion of the head rotation angles 
for the AFLW2000 dataset [53] 
(image from [195])

Fig. 15  Example of inaccura-
cies in ground-truth annotations 
on AFLW2000 dataset [53]. 
In some cases results from 
SADRNet [87] model are more 
accurate that the ground-truth. 
From the top row to the bottom 
row there are: the AFLW2000 
[53] images, the sparse align-
ment results of SADRNet [87] 
and the corresponding ground-
truth (blue for the former and 
red the latter), the reconstructed 
face models of SADRNet 
[87], and the ground-truth face 
models [87]. Vall et al. [98] 
reannotated AFLW2000 with 
poses estimated from correct 
landmarks and evaluated their 
MNN model, the MAE fell from 
3.83 to 1.71 after the reannota-
tion (image from [87])
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For deformable models, an important improvement would 
be the ability to selectively ignore parts of the model that 
are self-occluded, overcoming a fundamental limitation in 
an otherwise very promising category, especially in uncon-
strained conditions.

Another interesting direction, not explored yet, is the use 
of deep learning in segmentation based methods. A possibil-
ity is to use convolutional neural networks to regress pose 
angles from segmented faces, or alternatively, segmentation 
based methods can be extended through geometric/deform-
able methods, where the feature extraction and classification 
could exploit specific deep learning architectures.

Finally, only Malakshan et al. [170] explored the use of 
generative models, showing that HPE can be effectively 
solved in conjunction with other face-related tasks typically 
associated with the generative field. This seems a very inter-
esting possibility that showed promising result in another 
partially unexplored area of HPE task the extreme low-res-
olution images. We expect the development of a specific 
sub-filed that studies these techniques.

Although general head pose estimation will continue to 
be an exciting field with a lot of room for improvement, we 
expect an even stronger development of specific sub-fields 
that address thematic areas of application, such as the “secu-
rity and surveillance” problem, recently addressed with the 
release of GOTCHA-I [66] database, or the “driver head 
pose estimation” which is already a very active field [16–20, 
68]. Indeed, the role of head pose estimation in driving sys-
tems is becoming more and more important. By monitor-
ing the head pose of the driver in real-time and analysing 
the behaviour of the driver, it will be possible to determine 
whether the driving status of the driver is good, having a 
profound impact on the future of automotive safety.

We expect new datasets will continue to be released with 
an increasing focus on 6 degrees of freedom and full range 
head angles, thanks to the development of new cheap and 
powerful RGB-D cameras (such as Microsoft Kinect), and 
other acquisition techniques.

Conclusion

Head pose estimation is a very important task for human-
computer interaction, since it provides rich information 
about the intent, motivation and visual attention of people.

Despite the extensive research in this field, especially 
during the last years, HPE still remains challenging when 
images are collected under unconstrained conditions.

In this article, we presented a detailed list of publicly 
available databases, and gave an in-depth survey of head 
pose estimation methods, briefly mentioning oldest and 
no more used classical approaches, and then providing an 

Fig. 16  Influence of bbox margin and background on head pose 
estimation: (a) Influence of bbox margin on head pose estimation. 
The values predicted by FSA-Net [88] change significantly with the 
change of bounding box size on all three axes. The network is not 
robust to the change of bbox margin; (b) Influence of background on 
head pose estimation. The values predicted by SSR-Net-MD [88] are 
not robust in different background, e.g. the offset of pitch and yaw 
between A1 and A2 is about 5 ◦ (images from [153])

Table 9  Influence of different landmark detectors for EVA-GCN per-
formance

GT∗ means ground-truth data (Table from [187])

Landmark detector Pitch Yaw Roll MAE

EVA-GCN+OpenPose 5.52 7.25 4.78 5.85
EVA-GCN+Dlib 5.76 6.39 3.63 5.26
EVA-GCN+RetinaFace 5.33 5.02 4.26 4.87
EVA-GCN+FAN 5.34 4.96 4.11 4.64
EVA-GCN + GT∗ 4.15 3.23 3.05 3.48
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extensive analysis of modern techniques, mainly based on 
deep learning. Indeed, most current heads pose estimation 
methods exploit convolutional neural networks, from direct 
regressors to deformable based approaches passing through 
multi-task learning. We have also presented a comparative 
analysis of the state-of-the-art performance obtained so far 
in the field by providing organized and informative tables.

The article also discusses and suggests possible direc-
tions for future work. In particular, we expect the introduc-
tion of new light DL architectures that can perform well on 
challenging datasets, i.e., those collected in unconstrained 
environments.

We also expect the development of new sub-fields with 
dedicated databases and evaluation pipelines, such as the 
“driver head pose estimation” that is already very active.

An important trend observed is that the number of head 
pose publications has constantly increased in the past few 
years. This is a sign that more and more people are interested 
in this area, which means that the development cycle of new 
methods will be faster. A constant and periodic updating of 
the literature is therefore important.

We hope that this survey may help to clarify the evolu-
tion of the field, its evaluation methodologies and techniques 
thanks to the provided comprehensive list of datasets, meth-
ods and algorithms.
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