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Abstract Heat kernel methods are useful for studying prop-
erties of quantum gravity. We recompute the first three heat
kernel coefficients in perturbative quantum gravity with cos-
mological constant to ascertain which ones are correctly
reported in the literature. They correspond to the countert-
erms needed to renormalize the one-loop effective action in
four dimensions. They may be evaluated at arbitrary dimen-
sions D, in which case they identify only a subset of the diver-
gences appearing in the effective action for D ≥ 6. Gener-
ically, these coefficients depend on the gauge-fixing choice
adopted in quantizing the Einstein–Hilbert action. However,
they become gauge-invariant once evaluated on-shell, i.e.
using Einstein’s equations with cosmological constant. Thus,
we identify these gauge invariant coefficients and use them
as a benchmark for testing alternative approaches to pertur-
bative quantum gravity. One of these approaches describes
the graviton in first-quantization through theN = 4 spinning
particle, characterized by four supersymmetries on the world-
line and a set of worldline gauge invariances. This description
has been used for computing the gauge-invariant coefficients
as well. We verify their correctness at D = 4, but find a
mismatch at arbitrary D when comparing with the bench-
mark fixed previously. We interpret this result as signaling
that the path integral quantization of the N = 4 spinning
particle should be amended. We perform this task by fixing
the correct counterterm that must be used in the worldline
path integral quantization of the N = 4 spinning particle to
make it consistent in arbitrary dimensions.

1 Introduction

A well-known approach to studying perturbative quantum
gravity is to apply covariant quantization schemes and the

a e-mail: bastianelli@bo.infn.it (corresponding author)

background field method to the Einstein–Hilbert action, and
then use heat kernel techniques for calculations, as pioneered
by DeWitt [1,2]. An alternative approach is to treat the gravi-
ton in first quantization, as in string theory. A model recently
proposed for the graviton makes use of the N = 4 spinning
particle and related BRST structure [3]. It has been used in a
path integral approach in [4] to study certain gauge-invariant
coefficients corresponding to the on-shell, one-loop diver-
gences of the effective action of quantum gravity with cos-
mological constant. These coefficients have been checked to
be correct in D = 4 dimensions. Here, we wish to study the
general case of arbitrary D.

The most straightforward way to obtain these coefficients
is to use the heat kernels of the differential operators appear-
ing in the gauge-fixed Einstein–Hilbert action, and compute
the total heat kernel coefficients of quantum gravity out of
them.

We are interested in the first three coefficients, which we
denote by a0, a1, a2. They are associated with the divergences
of the one-loop effective action and should be renormalized
away (additional divergences are present for D ≥ 6). The
first one is universal and measures the number of physical
degrees of freedom of the graviton. As for the remaining
ones, we have found different, inequivalent expressions in the
literature. Most likely the different versions signal misprints.
In any case, to ascertain which ones are correctly reported
in the literature, we have decided to recompute them, veri-
fying that the ones given in [1,2] which also differ between
themselves are incorrect, while we find agreement with the
ones computed more recently in [5]. This issue is discussed
in detail in Sect. 3.

The coefficients computed for a generic background met-
ric depend on the gauge-fixing procedure adopted. They are
expected to become gauge-invariant once restricted to Ein-
stein spaces. This is particularly evident for a0, which is inde-
pendent of the background metric and measures directly the
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number of physical polarizations of the graviton. We calcu-
late these gauge-invariant coefficients explicitly, to have at
hand a benchmark that any alternative attempt to perturbative
quantum gravity should be able to reproduce.

With these coefficients at hand, we compare them with the
ones obtained in [4] through theN = 4 spinning particle and
discover that there is agreement at D = 4, while a mismatch
appears for D �= 4. We take this result as suggesting that
the path integral quantization of the N = 4 particle should
be reconsidered and improved. We do this by modifying the
counterterm used in the path integral quantization. The coun-
terterm used in [4] was selected by taking into account the
algebra of the four supersymmetries on the worldline that
seemed to indicate a specific form of the hamiltonian con-
straint, and it was found that the chosen counterterm could
reproduce correctly the results at D = 4. However, the found-
ing principle of the N = 4 spinning particle description of
the graviton is the BRST symmetry, which requires a spe-
cific coupling to the curvature to achieve nilpotency and dif-
fers from the one used in [4]. Modifying appropriately the
counterterm, and precisely in the way dictated by the BRST
symmetry, we find that the gauge-invariant coefficients are
correctly reproduced by the path integral of the N = 4 spin-
ning particle at arbitrary D.

In this paper, we proceed as follows. In Sect. 2, we describe
the calculation of the heat kernel coefficients in perturbative
quantum gravity at one loop, keeping the background metric
arbitrary. Then, we compare them with the ones present in
the literature and comment on their correctness. In Sect. 3,
we identify the corresponding gauge-invariant coefficients
by using Einstein’s equations with cosmological constant. In
Sect. 4, we reconsider the path integral for the N = 4 spin-
ning particle and fix the correct counterterm that must go
along with the path integral in worldline dimensional regu-
larization. This way the correct gauge-invariant coefficients
are reproduced at arbitrary D by the path integral on the circle
of the N = 4 spinning particle. We present our conclusions
and outlook in Sect. 5, leaving appendix A for collecting use-
ful formulae on one-loop effective actions and heat kernels.

2 Heat kernel coefficients in perturbative
quantum gravity

Let us consider the Einstein–Hilbert action with cosmologi-
cal constant � for the metric Gμν in D euclidean dimensions

S[Gμν] = − 1

κ2

∫
dDx

√
G

[
R(G) − 2�

]
(1)

where κ2 = 16πGN is the gravitational coupling constant.
The effective action can be studied using the background

field method. One splits the metric as

Gμν(x) = gμν(x) + hμν(x) (2)

where gμν is an arbitrary background metric and hμν the
quantum fluctuations. To obtain the one-loop effective action,
it is enough to expand the action at quadratic order in hμν

S[g + h] = 1

κ2

[
S0 + S1 + S2 +

∞∑
n=3

Sn

]
(3)

where one finds

S0 = −
∫

dDx
√
g
[
R − 2�

]
,

S1 =
∫

dDx
√
g

[
hμν

(
Rμν − 1

2
gμνR + gμν�

)]
,

S2 =
∫

dDx
√
g

[
− 1

4
hμν(∇2 + 2� − R)hμν

+ 1

8
h(∇2 + 2� − R)h − 1

2

(
∇νhνμ − 1

2
∂μh

)2

− 1

2

(
hμλhν

λ − hhμν
)
Rμν − 1

2
hμλhνρRμνλρ

]
, (4)

with h ≡ gμνhμν . Indices are raised and lowered with the
background metric gμν and all curvature tensors and covari-
ant derivatives are constructed using gμν .

The gauge symmetries acting on hμν leave the background
metric gμν invariant and must be gauge-fixed. It is useful to
employ BRST methods and maintain the background gauge
symmetry in the gauge-fixing terms as well. This can be done
by choosing a weighted gauge based on the de Donder gauge-
fixing function fμ = ∇νhνμ − 1

2∂μh, which is a tensor under
the background gauge symmetry. It gives rise to a total gauge-
fixed action Stot for the graviton hμν and ghost fields bμ, cμ

that at quadratic order reads

S2,tot [h, c, b] = Sh[h] + Sgh[b, c] (5)

where

Sh =
∫

dDx
√
g

[
−1

4
hμν(∇2 + 2� − R)hμν

+ 1

8
h(∇2 + 2� − R)h

−1

2

(
hμλhν

λ − hhμν
)
Rμν − 1

2
hμλhνρRμνλρ

]
, (6)

Sgh =
∫

dDx
√
g bμ(−δμ

ν ∇2 − Rμ
ν )cν . (7)

The gauge-fixing procedure just described is standard, see for
example [1,2]. Here we have followed [6], where additional
details on the BRST procedure may be found.

From these quadratic actions, one can extract the invertible
kinetic operators that lead to the one-loop effective action
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through the heat kernel. To this end, one can introduce a
one-parameter family of metrics on the space of symmetric
tensors hμν :

γ
λρμν

(k) = 1

2

(
gλμgρν + gλνgρμ − k gλρgμν

)
, (8)

which allow to write a norm for the graviton fluctuations as

||h||2(k) = 1

4

∫
dDx

√
g hλργ

λρμν

(k) hμν. (9)

The metric (8) has inverse

γ(k)μνστ = 1

2

(
gμσ gντ + gνσ gμτ − 2k

kD − 2
gμνgστ

)
, (10)

which shows that k = 2
D is not allowed, as expected, since

γ
λρμν
2
D

is the projector on the traceless subspace. From now

on we will choose k = 1 following [1] and work with

γ λρμν = 1

2

(
gλμgρν + gλνgρμ − gλρgμν

)
,

γμνστ = 1

2

(
gμσ gντ + gνσ gμτ − 2

D − 2
gμνgστ

)
. (11)

This choice has the advantage of making the derivative
part of the kinetic operator proportional to the identity in the
tensor indices. This is also reflected in the fact that in flat
space γμνστ

p2 is the graviton propagator in the Feynman-de
Donder gauge.

Thus, we rewrite the quadratic actions (6) and (7) in the
form

Sh =
∫

dDx
√
g

1

4
hλρ γ λρμν Fμν

στ hστ (12)

Sgh =
∫

dDx
√
g bμ Fμ

ν c
ν (13)

to identify the differential operators

Fμν
στ = −1

2
(δμ

σ δν
τ + δμ

τ δν
σ )(∇2 + 2� − R)

− 1

D − 2
gμνg

στ R + 2

D − 2
gμνR

στ + gστ Rμν

− 1

2
(δμ

σ Rν
τ + δμ

τ Rν
σ + δν

σ Rμ
τ + δν

τ Rμ
σ )

− Rμ
σ

ν
τ − Rμ

τ
ν
σ , (14)

Fμ
ν = −(δμ

ν∇2 + Rμ
ν) (15)

whose determinants appear in the effective action for quan-
tum gravity.

Thus, let us consider the one-loop effective action. It is
obtained by computing the functional determinants of the
above operators, which we denote simply by F and F. Using
standard formulae, reviewed in appendix A, we find for the

one-loop effective action 


e−
 = Det−
1
2 F Det F (16)

which in a proper-time representation leads to


 = −1

2

∫ ∞

0

dT

T

(
Tr

[
e−FT

]
− 2Tr

[
e−FT ])

(17)

containing the heat kernels of the above operators. Now, we
insert the heat kernel expansions for small T , see Eq. (66)
of appendix A, and identify the total heat kernel coefficients
for quantum gravity

tr[an,tot ] = tr[an] − 2tr[an,gh] (18)

where the first one is due to the graviton fluctuations and
the second one to the ghosts. This expansion is useful to
identify the diverging terms of the effective action, but cannot
be employed to obtain the finite terms because of infrared
divergences that appear from the upper limit of the proper
time integration.

To evaluate the heat kernel coefficients, we specialize the
general formulae of appendix A to the operators F and F.
In appendix A we report the case of a scalar field in an arbi-
trary representation of a Lie group. This is enough to treat
the case of the graviton and ghost fluctuations as well, as one
may reinterpret the internal indices of the scalar field as suit-
able Lorentz indices, identifying the corresponding gauge
curvature with the Riemann curvature. This way we find the
following values. The graviton heat kernel coefficients from
F at arbitrary dimension D are given by

tr[a0] = 1

2
D(D + 1) (19)

tr[a1] = − D(5D − 7)

12
R + D(D + 1)� (20)

tr[a2] = − D(2D − 3)

30
∇2R + 25D3 − 145D2 + 262D + 144

144(D − 2)
R2

− D3 − 181D2 + 1438D − 720

360(D − 2)
Rμν R

μν

+ D2 − 29D + 480

360
Rμνστ R

μνστ

+ D(D + 1)�2 − D(5D2 − 17D + 14)

6(D − 2)
R� (21)

and at D = 4 reduce to

tr[a0] D=4−−→ 10 (22)

tr[a1] D=4−−→ −13

3
R + 20� (23)

tr[a2] D=4−−→ −2

3
∇2R + 59

36
R2 − 55

18
RμνR

μν

+ 19

18
Rμνστ R

μνστ + 20�2 − 26

3
R�. (24)
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One can recognize that Eq. (19) counts the number of degrees
of freedom of a symmetric rank-2 tensor with a non-vanishing
trace. Now, one should add the contribution of the ghosts.
However, as an aside, we notice that these coefficients are
also useful as they stand. They describe the total coefficients
of the system composed of gravity coupled to a complex spin
1 field and 4 real scalars: the determinant of the complex spin
1 field in the Feynman gauge compensates that of the gravity
ghosts, while the 4 scalars compensate the ghosts system for
the complex spin 1 field. As a simple check, one verifies
that the total number of the physical degrees of freedom is
correctly reproduced by tr[a0].

Let us now turn to the coefficients due to the ghosts oper-
ator F. They are given by

tr[a0,gh] = D (25)

tr[a1,gh] = D + 6

6
R (26)

tr[a2,gh] = D + 5

30
∇2R + D + 12

72
R2 − D − 90

180
RμνR

μν

+ D − 15

180
Rμνστ R

μνστ (27)

that in D = 4 dimensions reduce to

tr[a0,gh] D=4−−→ 4 (28)

tr[a1,gh] D=4−−→ 5

3
R (29)

tr[a2,gh] D=4−−→ 3

10
∇2R + 2

9
R2 + 43

90
RμνR

μν

− 11

180
Rμνστ R

μνστ . (30)

Finally, the total coefficients for quantum gravity are
obtained by evaluating (18) and read

tr[a0,tot ] = D(D − 3)

2
(31)

tr[a1,tot ] = −5D2 − 3D + 24

12
R + D(D + 1)� (32)

tr[a2,tot ] = −2D2 − D + 10

30
∇2R

+ 25D3 − 149D2 + 222D + 240

144(D − 2)
R2

− D3 − 185D2 + 1806D − 1440

360(D − 2)
RμνR

μν

+ D2 − 33D + 540

360
Rμνστ R

μνστ

+ D(D + 1)�2 − 5D3 − 17D2 + 14D

6(D − 2)
R�

(33)

reducing at D = 4 to

tr[a0,tot ] D=4−−→ 2 (34)

tr[a1,tot ] D=4−−→ −23

3
R + 20� (35)

tr[a2,tot ] D=4−−→ −19

15
∇2R + 43

36
R2 − 361

90
RμνR

μν

+ 53

45
Rμνστ R

μνστ + 20�2 − 26

3
R�. (36)

Einstein’s equations have not been used at any step in our cal-
culations and the results are valid for any background. How-
ever, they depend on the choice of the gauge-fixing terms,
i.e. they are not BRST invariant.

Let us compare them with the ones that we have found
in the literature. One may check that, at arbitrary dimension
D and vanishing cosmological constant, some of them differ
from the ones reported in eqs. (16.80)–(16.82) of [1], that
for commodity we reproduce here in our conventions and
normalization

tr[a1,tot ] = D2 + 9D − 12

12
R (37)

tr[a2,tot ] = D2 + 7D − 10

60
∇2R

+ D4 + 17D3 − 392D2 + 180D − 1536

144(D − 2)2 R2

− D3 − 185D2 + 1806D − 1440

360(D − 2)
RμνR

μν

+ D2 − 33D + 600

360
Rμνστ R

μνστ . (38)

They also differ from the one reported in eq. (35.168) of the
second volume of [2], where only a2,tot is given and reads in
our conventions as

tr[a2,tot ] = −2D2 − D − 10

30
∇2R

− 23D3 + 149D2 − 222D − 240

144(D − 2)
R2

− D(D2 + 5D + 350)

360(D − 2)
RμνR

μν

+ D2 − 33D + 540

360
Rμνστ R

μνστ . (39)

On the other hand, they are identical with the ones computed
more recently in [5], which we thus consider as the correct
ones. To summarize, the correct coefficients are the ones
written in Eqs. (31)–(33).

We stress again that these terms are expected to depend
on the gauge-fixing procedure adopted, which is exactly the
same in all the references just discussed. In that regard, the
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issue on gauge dependence has been recently discussed in [7],
where a class of different gauges parametrized by a constant
ξ has been used to compute the one-loop logarithmic diver-
gences for vanishing cosmological constant. In that reference
it is verified that the off-shell effective action depends explic-
itly on the value of ξ . To obtain truly gauge-independent
coefficients one should evaluate them on-shell, i.e. using a
background that satisfies Einstein’s equations. We do this in
the next section.

3 Gauge-invariant coefficients in perturbative
quantum gravity

To derive gauge independent coefficients, we use background
metrics that correspond to Einstein spaces, that by definition
satisfy Einstein’s equations with cosmological constant �

Rμν − 1

2
gμνR + gμν� = 0 (40)

allowing to relate the cosmological constant and the Ricci
tensor to the Ricci scalar

� = D − 2

2D
R, Rμν = 1

D
gμνR. (41)

Using these relations, we find that the coefficients an,tot in
Eqs. (31)–(33) reduce to

tr[a0,tot ] = D(D − 3)

2
(42)

tr[a1,tot ] = 1

12
(D2 − 3D − 36)R (43)

tr[a2,tot ] = (D + 5)(5D2 − 42D − 144)

720D
R2

+ D2 − 33D + 540

360
Rμνστ R

μνστ (44)

with values at D = 4 given by

tr[a0,tot ] D=4−−→ 2 (45)

tr[a1,tot ] D=4−−→ −8

3
R (46)

tr[a2,tot ] D=4−−→ −29

40
R2 + 53

45
Rμνστ R

μνστ . (47)

As these terms are evaluated on-shell, they should not
depend on the gauge chosen. They identify gauge-invariant
coefficients. They sit on the divergences of the effective
action and must be renormalized away. Let us briefly com-
ment on this point, reviewing some old literature. In D = 4
and setting the cosmological constant to zero, also the Ricci
scalar vanishes, and from (46) one finds that tr[a2,tot ] ∼
R2

μνστ , which becomes a total derivative proportional to the
Euler density on Einstein spaces. Being a total derivative,

it can be dropped from the effective action. This makes the
logarithmic divergences due to (47) absent from the one-
loop effective action, thus reproducing the famous result of
t’ Hooft and Veltman [8], according to which quantum gravity
is finite at one-loop (more precisely, it is free of logarithmic
divergences, as the quartic divergence from a0,tot contributes
to the cosmological constant; in any case, quantum gravity
remains renormalizable at one loop). This result does not hold
anymore at two loops and pure quantum gravity becomes
non-renormalizable, as shown by Goroff and Sagnotti [9] and
checked by van de Ven [10]. Adding a cosmological constant,
the logarithmic divergence at D = 4 does not vanish on-shell
anymore, even dropping the total derivative corresponding to
the Euler density. The precise coefficient from (47) coincides
with the one obtained long ago by Christensen and Duff [11].
Similarly, the term tr[a1,tot ] coincides with the one calculated
in [6] at D = 4 and in [12] at arbitrary D, up to an overall
normalization .

At arbitrary D, and with D ≥ 6, the above gauge-invariant
coefficients form only a subset of the possible divergences
of perturbative quantum gravity. As they are gauge-invariant,
any formulation of quantum gravity should be able to repro-
duce them, independently of the scheme chosen in the cal-
culation.

An alternative formulation treats the graviton in first quan-
tization. A mechanical action useful for describing the gravi-
ton is the N = 4 spinning particle. When supplemented with
a set of gauge symmetries, the N = 4 spinning particle has
only the graviton in the physical spectrum at arbitrary D. It
has been used in [4] to compute the gauge-invariant coeffi-
cients discussed above. A direct comparison shows that the
results are correctly reproduced in 4 dimensions, but differ at
arbitrary D in the terms proportional to R and R2. We take
this fact as suggesting that the path integral quantization of
the N = 4 spinning particle developed in [4] is correct only
at D = 4, but needs an improvement for arbitrary D. We
discuss this issue next.

4 Worldline path integral for the graviton

In flat space, a relativistic particle with N -extended local
supersymmetry on the worldline describes a particle of spin
s = N

2 in four dimensions, as suggested in [13] and demon-
strated explicitely in [14,15]. One obtains spin 2, the gravi-
ton, by setting N = 4, but couplings to nontrivial back-
grounds have been proven difficult to achieve for sufficiently
large N , including the case of the graviton, see Refs. [16,17]
for earlier attempts. The worldline path integral performed
on the circle in [18] could just reproduce the physical degrees
of freedom of the graviton. At that time it was also realized
that the gauging of the full R-symmetry group of the N -
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extended supersymmetry, the group SO(N ) that rotates the
N real supercharges, could have been relaxed to a subgroup
without destroying the unitarity of the model, a fact used in
[19,20] to describe multiplets of particles of different spins.

The understanding of allowed couplings to background
fields was improved by using BRST methods. As discussed
in [21], BRST techniques give a way of introducing the Yang-
Mills couplings for the N = 2 spinning particle, which
describes the propagation of a particle of spin 1. Following
similar strategies, it was found in [3] how the graviton can
be coupled to a curved background that satisfies Einstein’s
field equations with or without cosmological constant, see
also [22] for further extensions.

The same BRST construction was used in [4] to define a
worldline path integral for the graviton by using the N = 4
spinning particle. The path integral takes into account the
gauging of worldline translations, supersymmetries, and a
parabolic subgroup of the SO(N ) R-symmetry group. Gaug-
ing of translations and supersymmetries guarantees the uni-
tarity of the model, while the gauging of a maximal parabolic
subgroup of SO(N ) leaves only irreducible spin 2 states in
the physical Hilbert space. The model includes two additional
Chern–Simons couplings fixed in such a way to describe the
graviton in arbitrary dimensions D. Performing the path inte-
gral on a circle, one finds a worldline representation of the
one-loop effective action of the graviton 
[gμν] with the
schematic form


[gμν] =
∫
S1

DGDXμ

Vol(Gauge)
e−S[Xμ,G;gμν ]. (48)

where the particle action S[Xμ,G; gμν] depends on the
worldline gauge fields G = (e, χi , ai j ), and on the coor-
dinates Xμ = (xμ,ψ

μ
i ) that contain the true worldline

coordinates xμ plus their supersymmetric partners ψ
μ
i with

i = 1, . . . , 4, while gμν is the background metric. The BRST
symmetry underlying the model makes sure that the path inte-
gral is correct when the background metric gμν is on-shell,
meaning that it must correspond to a metric of an Einstein
space. Upon gauge fixing, and using complex combinations
of the real fermions, that we still denote by ψ

μ
i but with a

redefined internal index i taking only two values (i = 1, 2),
the path integral takes the following concrete form


[gμν] = −1

2

∫ ∞

0

dT

T

∫ 2π

0

dθ

2π

∫ 2π

0

dφ

2π
μ(θ, φ)

×
∫
P
Dx

∫
A
Dψ̄Dψ e−Sg (49)

where the gauge-fixed, nonlinear sigma model action for the
graviton is

Sg =
∫ 1

0
dτ

[ 1

4T
gμν ẋ

μ ẋν + ψ̄ ia(δ
j
i Dτ − â j

i )ψ ja

−T Rabcd ψ̄a · ψb ψ̄c · ψd + 2T V0

]
(50)

where

â j
i =

(
θ 0
0 φ

)
(51)

contains the two moduli θ and φ. We have used flat indices
on the worldline complex fermions ψa

i , so that Dτ is the
covariant derivative with the spin connection, while a dot
denotes contraction on the internal indices. The scalar poten-
tial V0 ∼ R is an order h̄2 improvement term to be discussed
shortly. The measure μ(θ, φ) on the moduli space (θ, φ)

coming from the Faddeev–Popov determinants is given by

μ(θ, φ) = 1

2

(
2 cos

θ

2

)−2 (
2 cos

φ

2

)−2

×2i sin θ+φ
2

(
2i sin θ−φ

2

)2
e−iq(θ+φ) (52)

and includes the Chern–Simons coupling q = 3−D
2 , needed

to select the graviton for arbitrary spacetime dimensions D.
We refer to [4] for further details on the particle action and
its gauge fixing on the circle.

In [4] the scalar potential V0 in Eq. (50) was taken to be
given by V0 = − D+2

8(D−1)
R upon consideration of the N = 4

supersymmetry algebra. In addition, the path integral for the
nonlinear sigma model must be regularized, see [23] for a
review on this issue. The counterterms needed in models
with extended supersymmetries can be found in [24]. From
the latter reference, one extracts the counterterm VCT = 1

8 R
needed in the worldline dimensional regularization for the
N = 4 model. Once added to V0, it gives a total potential

V = VCT + V0 =
(

1

8
− D + 2

8(D − 1)

)
R = − 3

8(D − 1)

R =: ωR (53)

that must be used in (50) instead of V0 when using worldline
dimensional regularization. This was done in [4], where a
perturbative calculation for small T delivered the divergences
of the effective action in the form


[gμν] = −1

2

∫ ∞

0

dT

T

∫
dDx

√
g

(4πT )
D
2

〈〈
e−Sint

〉〉
(54)

where 〈〈. . . 〉〉 denotes the perturbative corrections of the path
integral and subsequent modular integration, giving for Ein-
stein spaces the answer

〈〈
e−Sint

〉〉
= a0 + a1T + a2T

2 + O(T 3) (55)

123
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with

a0 = D(D − 3)

2
(56)

a1 =
[
D2

24
(5 − 24ω) + D

(
3ω − 39

24

)]
R (57)

a2 =
[
D2

576
(5 − 24ω)2 − D

(
3ω2 − 13

4
ω + 1583

2880

)
+ 121

120
+ 2

D

]
R2

+ D2 − 33D + 540

360
Rμνστ R

μνστ . (58)

From these results, one verifies that the value of ω defined
by Eq. (53) reproduces only the coefficients at D = 4 but not
those at arbitrary D, just compare with Eqs. (42)–(44).

One may guess that the mismatch is due to an incorrect
identification of the potential V in Eq. (53) used in [4] for
getting the above result, as for the rest the construction of
the path integral stands on solid principles. This conjecture
is correct. One may fix ω by requiring that it reproduces the
expected coefficient a1 in Eq. (43), finding

ω = 1

8
− 1

D
. (59)

Then, one verifies that with this value of ω also a2 comes out
correctly. This is a nontrivial check, as there is no left-over
freedom in defining the path integral.

The correct value of ω could have been deduced also from
first principles. The BRST analysis of Ref. [3] requires a
value of V0 in the hamiltonian constraint to be given by
V0 = − 1

D R to achieve nilpotency of the BRST charge on the
relevant physical subspace of the full BRST Hilbert space,
see eq. (5.12) of [3]. Adding the counterterm VCT = 1

8 R
required by the worldline dimensional regularization of the
N = 4 model gives a total potential

V =
(

1

8
− 1

D

)
R (60)

with the correct value of ω used above. This modification
makes the worldline path integral for the graviton correct in
any spacetime dimension.

It is perhaps surprising that both values of the potential V
coincide at D = 4. This is probably due to the fact that the
potential V0 = − D+2

8(D−1)
R was found in [17] upon demand-

ing closure of the supersymmetry algebra on maximally sym-
metric spaces. Since the model analyzed in [17] does prop-
agate a graviton in D = 4 (but not in arbitrary dimensions),
one may understand why the above value for V0 coincides
with the correct one − 1

D R in this case.

5 Conclusions

Heat kernel methods have proved to be useful to study prop-
erties of QFT, like one-loop effective actions, anomalies,

dressed propagators, etc., see for example the recent appli-
cations aimed at finding the correct trace anomalies of chiral
fermions [25,26]. We have used them again here to recom-
pute the full set of divergences of the one-loop effective
action of quantum gravity in D = 4, but keeping the space-
time dimension arbitrary (for D ≥ 6 there are additional
divergences). Evaluating them on-shell allowed us to identify
gauge-invariant coefficients, that may be used as a benchmark
for testing alternative formulations of quantum gravity. We
have used them straight away to check the path integral con-
struction of the graviton in first-quantization, which employs
the N = 4 spinning particle. A mismatch of the coefficients
at D �= 4 has prompted us to improve on the path integral
construction to make it consistent in arbitrary dimensions.

This first-quantized approach to gravity extends the scope
of worldline methods [27] to include gravity as a quan-
tum theory. Recent developments on worldline approaches
to QFT have addressed the study of dressed propagators and
more general properties in QED [28–31]. We hope that addi-
tional gravitational applications may extend the usefulness of
the method further. In that regard, it might be useful to con-
sider the extension of quantum gravity to complex spaces,
which may be studied by using the simpler U (N ) particles
considered in [32–35]. Finally, it might be useful to extend
the calculation of the gauge-invariant coefficients to include
a3, generalizing the results of Ref. [36] to arbitrary dimen-
sions and with a nonvanishing cosmological constant.
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Appendix A: Effective action and heat kernel

We recapitulate here standard formulae for the one-loop
effective action and heat kernel.

The one-loop effective action is linked to the determinant
of a differential operator H that may depend on various back-
ground fields. For our purposes, it is enough to consider the
sufficiently general case of a real scalar field φ of mass m in
curved space, coupled to a non-abelian gauge field and a Lie
algebra valued scalar potential. The euclidean action is taken
to be quadratic in the scalar field and of the general form

S[φ] =
∫

dDx
√
g

1

2
φT (H + m2)φ (61)

with H the second order differential operator mentioned
above. The corresponding one-loop effective action 


depends on the background fields contained in H . It is
obtained by a Gaussian path integral

e−
 =
∫

Dφ e−S[φ] = Det−
1
2 (H + m2) = e− 1

2 Tr ln(H+m2)

(62)

which leads, using a proper-time representation and dropping
a constant term, to


 = 1

2
Tr ln(H + m2) = −1

2

∫ ∞

0

dT

T
e−m2T Tr e−HT (63)

where Tr e−HT is the functional trace of the heat kernel of
H .

For H we consider an operator of the form

H = −∇2 + V (64)

with V a Lie algebra valued potential. The Laplacian ∇2 =
∇μ∇μ is constructed with the gravitational and gauge covari-
ant derivative ∇μ = Dμ + Wμ, where Dμ is the covariant
derivative containing the usual metric connection while Wμ

is the Lie algebra valued gauge field. The covariant derivative
∇μ satisfies

[∇μ,∇ν]φ = Fμνφ, [∇μ,∇ν]Aλ = Rμν
λ
ρ A

ρ (65)

where φ is the scalar field in a real representation of the gauge
group and Aμ a vector field invariant under the gauge group.
From these commutators one reads off the definition of the
various curvatures. In our conventions, Rμν = Rλμ

λ
ν and

R = Rμ
μ > 0 on a sphere.

The trace of the heat kernel corresponding to H is given
in perturbation theory for small T

Tr
[
e−HT

]
=

∫
dDx

√
g(x)

(4πT )
D
2

tr (a0(x)

+a1(x)T + a2(x)T
2 + · · · ) (66)

where the symbol “tr” denotes the trace on the remaining
discrete matrix indices corresponding to the chosen repre-
sentation of the gauge group and

a0(x) = 1

a1(x) = 1

6
R1 − V

a2(x) = 1

180
(R2

μνλρ − R2
μν)1 + 1

72
(R1 − 6V )2

+ 1

30
∇2 (R1 − 5V ) + 1

12
F2

μν (67)

are the heat kernel coefficients (also known as Seeley-DeWitt
coefficients). As V is matrix valued, ∇μV = ∂μV+[Wμ, V ].

After inserting (66) into (63), one finds the following
derivative expansion of the effective action


 = −1

2

∫
dDx

√
g(x)

∫ ∞

0

dT

T

e−m2T

(4πT )
D
2

tr (a0(x)

+a1(x)T + a2(x)T
2 + · · · ). (68)

The mass term guarantees convergence at the upper limit
of the proper-time integral. Infrared divergences arise in
the massless limit and invalidate in that case this deriva-
tive expansion. Ultraviolet divergences arise instead from the
lower limit of the proper-time integration, i.e. at T → 0. For
example, in D = 4 one may verify that a0, a1, and a2 all lead
to UV divergences, namely quartic, quadratic, and logarith-
mic divergences, respectively. These UV divergences must
be renormalized away. As already mentioned, in the mass-
less limit the above expansion is not valid for getting finite
terms of the effective action, but it is still useful to recognize
the explicit form of the UV divergences, as in the application
to quantum gravity described in the main text. In particular,
tr a0 counts the number of degrees of freedom, is normal-
ized to 1 for a single real scalar field, and contributes to the
divergence of the cosmological constant.
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