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An efficient geometric approach 
to quantum‑inspired classifications
Roberto Leporini1,3* & Davide Pastorello2,3

Optimal measurements for the discrimination of quantum states are useful tools for classification 
problems. In order to exploit the potential of quantum computers, feature vectors have to be encoded 
into quantum states represented by density operators. However, quantum‑inspired classifiers based 
on nearest mean and on Helstrom state discrimination are implemented on classical computers. We 
show a geometric approach that improves the efficiency of quantum‑inspired classification in terms 
of space and time acting on quantum encoding and allows one to compare classifiers correctly in 
the presence of multiple preparations of the same quantum state as input. We also introduce the 
nearest mean classification based on Bures distance, Hellinger distance and Jensen–Shannon distance 
comparing the performance with respect to well‑known classifiers applied to benchmark datasets.

The mathematical formulation of quantum mechanics can be used to devise machine learning algorithms that 
do not require any quantum hardware in the sense that the quantum formalism is applied to define data repre-
sentations that are managed by classical computers. The so-called quantum-inspired machine learning is based 
on particular kinds of information storing and processing defined by means of the mathematical objects from 
the quantum theory that do not necessarily relates to physical quantum systems. This work is devoted to study 
some quantum-inspired classification algorithms from a geometric perspective and their comparison with well-
known classical classifiers.

An interesting quantum-inspired binary classification algorithm has been introduced in terms of a near-
est mean classifier based on the trace distance between density operators encoding feature  vectors1. Another 
proposed quantum-inspired classifier is based on the Helstrom quantum state  discrimination2 used for binary 
 classification3. Both algorithms are structured on an encoding of the feature vectors into density operators and 
on techniques for estimating the distinguishability of quantum states like a distance in the space of the quan-
tum states and the Helstrom measurement. Classification accuracy of these quantum-inspired classifiers can be 
improved by increasing, in terms of tensor products, the number of copies of the quantum states that encode the 
feature vectors, at the cost of dramatically increasing the computational space and time. However, in the present 
work, we argue that the geometric approach for representing data into quantum states provides a description of 
the quantum encoding that allows to implement feature maps saving space and time resources.

In this paper, we introduce the quantum encoding in terms of Bloch vectors applied to the execution of 
some quantum-inspired classifiers. In particular we run the Helstrom classifier representing data with differ-
ent quantum encodings (i.e. different feature maps), then we define quantum-inspired nearest mean classifiers 
using Bures, Hellinger and Jensen–Shannon distances. In the experimental part, we present a comparison of the 
performances of the quantum-inspired classifiers against well-known classical algorithms.

The work is structured as follows: In “Quantum encoding” section , we introduce the representation of density 
operators in terms of Bloch vectors in arbitrary dimension and the basics of quantum encoding. “Quantum-
inspired classifiers” section is a short description of the considered quantum-inspired algorithms that are the 
Helstrom classifier and the nearest mean classifiers based on several operator distances. In “Geometric approach 
to quantum-inspired classifications” section, we discuss how the encoding of feature vectors into Bloch vectors 
is useful to obtain a data representation that scales efficiently increasing the dimension of the feature space. In 
this section we define the classifiers based on Bures, Hellinger and Jensen–Shannon distances. In “Method and 
experimental results” section, there are the experimental results obtained running the quantum-inspired classi-
fiers and the comparison with classical algorithms over some benchmark dataset. In “Conclusions” section, we 
draw the conclusion remarking the impact of adopting the geometric viewpoint in devising novel classification 
algorithms based on quantum structures.
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Quantum encoding
A quantum encoding is any procedure to encode classical information (e.g., a list of symbols) into quantum states. 
In this paper, we consider encodings of vectors in ℂn and ℝn into density matrices on a Hilbert space � whose 
dimension depends on n, in particular we use different quantum encodings to implement different feature maps 
for data representation.

The set of density matrices on the (finite-dimensional) Hilbert space � is given by 
�(�) = {� ∈ B

+(�) ∶ tr� = 1} , where B+(�) is the set of positive semidefinite operators on � . The set �(�) is 
convex and its extreme elements, the pure states, are rank-1 orthogonal projectors. A pure state has general form 
� = ��⟩⟨�� , and it can then be directly identified with the unit vector ��⟩ ∈ � up to a phase factor. The bases of 
the real space of Hermitian matrices on ℂd can be used to decompose density matrices associated with states of 
a quantum system described in a d-dimensional Hilbert space. A fundamental basis for qubits ( dim� = 2 ) is 
formed by the three Pauli matrices and the 2 × 2 identity matrix. In this case, any density matrix can be repre-
sented by a three-dimensional vector, the Bloch vector, that lies within the unit ball in ℝ3 whose boundary is the 
Bloch sphere. The points on the spherical surface are in bijective correspondence with the pure states. In higher 
dimensions, the set of quantum states is a convex body with a much more complicated geometry and it is no 
longer simply represented as a unit ball. In general, for any j, k, l such that 1 ≤ j ≤ d2 − 1 , 0 ≤ k < l ≤ d − 1 , the 
generalized Pauli matrices on ℂd can be defined as  follows4:

where 
{|| k

d−1

⟩}
k=0,…,d−1

 denotes the canonical basis of ℂd . The generalized Pauli matrices {�j}j=1,…,d2−1 are the 
standard generators of the special unitary group SU(d). Together with the d × d identity matrix �d , the general-
ized Pauli matrices form an orthogonal (the orthogonality is with respect to the Hilbert–Schmidt product 
(A,B)HS = tr(A†B) ) basis of the real space of d × d Hermitian matrices. Let � be a density operator on ℂd , the 
expansion of � with respect to the orthogonal basis {�d , �j ∶ 1 ≤ j ≤ d2 − 1} is:

where b(�)
j

=
√

d

2(d−1)
tr(� �j) ∈ ℝ . The coordinates �(�) = (b

(�)

1
,… , b

(�)

d2−1
) represent the Bloch vector associated 

to � with respect to the basis {�d , �j ∶ 1 ≤ j ≤ d2 − 1} , which lies within the hypersphere of radius 1. For d > 2 , 
the points contained in the unit hypersphere of ℝd2−1 are not in bijective correspondence with quantum states 
on ℂd such as in the case of a single qubit. However, any vector within the closed ball of radius 2

d
 gives rise to a 

density  operator5.
A complex vector can be encoded into a pure state in the following way:

where {||�
⟩
}�=0,…,n is the computational basis of the (n + 1)-dimensional Hilbert space � , identified as the stand-

ard basis of ℂn+1 . The map defined in (3), called amplitude encoding, encodes � into the density matrix �
�
= ||�

⟩⟨
�|| 

where the additional component of ||�
⟩

 stores the norm of � . Nevertheless the quantum encoding � ↦ �
�
 can be 

realized in terms of the Bloch vectors � ↦ �
(�

�
) . As shown in “Geometric approach to quantum-inspired clas-

sifications” section, encoding data into Bloch vectors is useful for saving space resources. The improvement of 
memory occupation within the Bloch representation is evident when we consider multiple copies of quantum 
states as tensor products to enlarge the dimension of the representation space (kernel trick). For instance, given 
two copies of a density operator 𝜌

�
⊗ 𝜌

�
 on ℂ3 ⊗ ℂ

3 (encoding a real feature vector � ∈ ℝ
2 ), instead of using a 

matrix of 81 real elements one can store a vector of just 20 entries obtained deleting redundant and null com-
ponents from the Bloch vector.

Quantum‑inspired classifiers
In this section we introduce the quantum-inspired classifiers that we consider in the present work. The classifier 
based on Helstrom state  discrimination3,6 and some nearest mean classifiers based on operator distances among 
density matrices encoding data. Let us focus on the case of binary classification of n-dimensional complex feature 
vectors, the Helstrom classifier (or Helstrom Quantum Centroid) is based on the following three ingredients: (1) 
a quantum encoding of the feature vectors into density operators ℂn ∋ � ↦ �

�
∈ �(𝖧) ; (2) the construction of 

the quantum centroids of the two classes C1 and C2 of training points:
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(3) application of the Helstrom discrimination on the two quantum centroids in order to assign a label to a new 
data instance.

Let us briefly introduce the notion of quantum state discrimination. Given a set of arbitrary quantum states 
with respective a priori probabilities R = {(�1, p1),… , (�N , pN )} , in general there is no a measurement pro-
cess that discriminates the states without errors. More formally, there does not exist a POVM, i.e. a collection 
E = {Ei}i=1,…,N ⊂ B

+(�) such that 
∑N

i=1
Ei = � , satisfying the following property: tr(Ei�j) = 0 when i ≠ j for all 

i, j = 1,… ,N  . The probability of a successful state discrimination of the states in R performing the measure-
ment E is:

An interesting and useful task is finding the optimal measurement that maximizes the probability (5). Helstrom 
provided a complete characterization of the optimal measurement Eopt for R = {(�1, p1), (�2, p2)}

2. Eopt can be 
constructed as follows. Let Λ ∶ = p1�1 − p2�2 be the Helstrom observable whose positive and negative eigenvalues 
are, respectively, collected in the sets D+ and D− . Consider the two orthogonal projectors:

where P� projects onto the eigenspace of � . The measurement Eopt ∶ = {P+, P−} maximizes the probability (5) 
that attains the Helstrom bound hb(�1, �2) = p1tr(P+�1) + p2tr(P−�2).

Helstrom quantum state discrimination can be used to implement a binary  classifier6. Let 
{(�1, y1),… , (�M , yM )} be a training set with yi ∈ {1, 2} ∀i = 1,… ,M  . Once a quantum encoding 
ℂ

n ∋ � ↦ �
�
∈ �(𝖧) has been selected, one can construct the quantum centroids �1 and �2 as in (23) of the two 

classes C1,2 = {�i ∶ yi = 1, 2} . Let {P+, P−} be the Helstrom measurement defined by the set R = {(�1, p1), (�2, p2)} , 
where the probabilities attached to the centroids are p1,2 =

|C1,2|
|C1|+|C2| . The Helstrom classifier applies the optimal 

measurement for the discrimination of the two quantum centroids to assign the label y to a new data instance 
� , encoded into the state �

�
 , as follows:

A strategy to increase the accuracy in classification is given by the construction of the tensor product of k copies 
of the quantum centroids 𝜌⊗k

1,2
 enlarging the Hilbert space where data are encoded. The corresponding Helstrom 

measurement is {P⊗k
+ , P⊗k

−
} , and the Helstrom bound  satisfies6:

Enlarging the Hilbert space of the quantum encoding, one increases the Helstrom bound obtaining a more accu-
rate classifier. Since the Helstrom classifier is similar to a support vector machine with linear  kernel7, considering 
many copies of the encoding quantum states give rise to a kernel trick. The corresponding computational cost 
is evident; however, in the following, we observe that in the case of real input vectors, the space can be enlarged 
saving time and space by means of the encoding into Bloch vectors.

Generally speaking, quantum state discrimination approaches consider global measurements or local meas-
urements with classical feed-forward8. Unambiguous state discrimination requires more measurement outcomes 
than the dimension of the Hilbert space, the measurement takes the form of a POVM and identifies the state with 
certainty or gives an inconclusive outcome. States must have non-overlapping supports (i.e. the space spanned 
by the eigenvectors with non-zero eigenvalues for each state must not overlap with that of any other state in the 
ensemble). Maximum confidence sometimes yields incorrect  answers9. Contrary, the minimum-error meas-
urement strategy is to correctly identify the state as often as possible. For minimum error and unambiguous 
discrimination, optimization can be treated as a semi-definite program and particular instances can be solved 
efficiently numerically .

Helstrom provided an analytic closed-form solution for two states with the minimum probability of error and 
arbitrary prior probabilities. The square-root measurement, also known as Pretty Good measurement, defined by:

where � =
∑

i pi�i , is the optimal minimum-error when states satisfy certain symmetry  properties10. Clearly to 
distinguish between n centroids we need a measurement with at most n outcomes. It is sometimes optimal to 
avoid measurement and simply guess that the state is the a priori most likely state.

The optimal POVM {Ei}i for minimum-error state discrimination over R = {(�1, p1),… , (�N , pN )} satisfies 
the following necessary and sufficient Helstrom  conditions11:

where the Hermitian operator, also known as Lagrange operator, is defined by Γ ∶=
∑

i pi�i Ei . It is also useful 
to consider the following properties which can be obtained from the above conditions:

(5)ℙE(R) =

N∑
i=1

pitr(Ei�i).

(6)P± ∶=
∑
�∈D±

P�,

(7)y(�) =

{
1 if tr(P+��) ≥ tr(P−��)
2 otherwise

(8)hb(𝜌
⊗k
1
, 𝜌⊗k

2
) ≤ hb

(
𝜌
⊗(k+1)
1

, 𝜌
⊗(k+1)
2

)
∀k ∈ ℕ.

(9)Ei = pi�
−

1

2 �i
√
�
−

1

2 ,

(10)Γ − pi�i ≥ 0 ∀i,
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For each i the operator Γ − pi�i can have two, one, or no zero eigenvalues, corresponding to the zero operator, 
a rank-one operator, and a positive-definite operator, respectively. In the first case, we use the measurement 
{Ei = �,Ei≠j = 0} for some i where pi ≥ pj ∀j , i.e. the state belongs to the a priori most likely class. In the second 
case, if Ei ≠ 0 , it is a weighted projector onto the corresponding eigenstate. In the latter case, it follows that Ei = 0 
for every optimal measurement.

Given the following Bloch representations:

in order to determine the Lagrange operator in ℂd we need d2 independent linear constraints:

A measurement with more than d2 outcomes can always be decomposed as a probabilistic mixture of measure-
ments with at most d2 outcomes. Therefore, if the number of classes is greater than or equal to d2 and we get d2 
linearly independent equations, we construct the Lagrange operator and derive the optimal measurements. From 
the geometric point of view, we obtain the unit vectors corresponding to the rank-1 projectors 
Ei =

1

d

�
�d +

�
d(d−1)

2

∑d2−1

j=1
n
(i)
j
�j

�
:

It is also possible to further partition the classes in order to increase the number of centroids and of the corre-
sponding equations. An unlabelled point �̂ is associated with the first label y such that �(�̂) ⋅ �(y) = maxi �

(�̂)
⋅ �

(i) , 
where d = ⌈√length(�) + 2⌉ . Such a geometric construction of the minimum-error state discrimination will be 
tested over a case-study of medical relevance as reported in “Method and experimental results” section.

The quantum-inspired nearest mean classifiers that we consider in this paper are essentially based on the fol-
lowing general observation: once encoded data into density matrices one can use an operator distance, suitable 
for quantum state distinguishability, to perform nearest mean classification.  In1, the authors consider the trace 
distance that can be computed in terms of Euclidean distance among Bloch vectors. Here we focus on the Bures 
distance, the Hellinger distance and the Jensen–Shannon distance respectively defined as:

In the next section we explicitly define the nearest mean classifiers, based on the distances (15), (16), (17), within 
the data encoding into Bloch vectors of density operators in order to take advantage of the geometric approach.

Geometric approach to quantum‑inspired classifications
In this section we discuss the encoding of real feature vectors into Bloch vectors of density operators in order to 
perform quantum-inspired classification. In particular we observe how the Bloch representation turns out to be 
a useful tool to reduce memory consumption in defining feature maps into higher dimensional spaces.

Within the quantum encoding (3), a real vector � ∈ ℝ
d−1 is encoded in a projector operator �

�
= ||�

⟩⟨
�|| , 

on a d-dimensional Hilbert space where d ≥ 2 . For simplicity, we consider an input vector [x1, x2] ∈ ℝ
2 and the 

corresponding projector operator �[x1,x2] on ℂ3 . By easy computations, one can see that the Bloch vector of �[x1,x2] 
has null components:

Instead of using a matrix with nine real elements to represent �[x1,x2] , memory occupation can be improved by 
considering only the non-zero components of the Bloch vector. In general, the technique of removing the com-
ponents that are zero or repeated several times allows reducing the space and the calculation time considering 
only the significant values that allow to carry out the classification.

Generally speaking, defining a quantum encoding is equivalent to select a feature map to represent feature 
vectors into a space of higher dimension. In this sense data representation into quantum states can be considered 
a way to perform kernel tricks. In the case of the considered quantum encoding ℝ2 ∋ [x1, x2] ↦ �[x1,x2] ∈ �(ℂ3) , 
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in view of (18) the nonlinear explicit injective function � ∶ ℝ
2
→ ℝ

5 to encode data into Bloch vectors can be 
defined as follows:

From a geometric point of view, the mapped feature vectors are indeed points on the surface of a hyper-hemi-
sphere. Within this representation, the centroids for classification can be calculated as:

In general, such centroids are points inside the hypersphere that do not have an inverse image in terms of density 
operators, however they can be rescaled to a Bloch vector as discussed below.

Data points can also be encoded in a smaller space using the following encoding from ℝ2 to density opera-
tors of ℂ2:

where the Bloch vector � = �([x1, x2]) ∈ ℝ
3 and �([x1, x2]) ∶=

1√
x2
1
+x2

2
+1
[x1, x2, 1] . In this case, if the quantum 

centroids are calculated as in (20), they are points inside the Bloch sphere of a qubit then correspond to density 
operators. As shown below, considering Helstrom classifier, within this quantum encoding it is less accurate than 
the encoding into ℂ3 as expected by any representation of data in a space of lower dimension.

In order to improve the accuracy of the classification, one can increase the dimension of the representa-
tion space providing k copies of the quantum states, in terms of a tensor product, encoding data instances and 
centroids. According to the quantum formalism, multiple copies of the states are described in a tensor product 
Hilbert space with a strong impact in terms of computational space (from dimension d − 1 to d2k ) and time. 
Following the geometric approach, considering the significant values that allow to carry out the classification, 
the explicit function � ∶ ℝ

2
→ ℝ

20 for two copies of the density operators on ℂ3 can be defined as follows:

In particular, removing null and multiple entries, we consider only 20 values instead of 81 for two copies, 51 val-
ues instead of 729 for three copies and so on. However, one must also take into account high-precision numbers 
and track the propagation of the numerical error.

Consider the quantum amplitude encoding of d-dimensional real feature vectors into pure states as introduced 
in “Quantum encoding” section:

where {||�
⟩
}�=0,…,d is the computational basis of the considered (d + 1)-dimensional Hilbert space. The quantum 

centroids of the classes C1,… ,CM of training points are defined by the mixed states:

Since any density operator �
�
 can be represented in terms of its Bloch vector �(�) , we can adopt the Bloch repre-

sentation of data � ↦ �
(�) so the centroids can be calculated in terms of Bloch vectors:

noting that �(i) does not correspond to the Bloch vector of the quantum centroid �i calculated in (23). In fact, 
�
(i) lies inside the hypersphere in ℝd2+2d then it is not necessarily the Bloch vector of a density operator for 
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the quantum centroid �i however it represents a valid density operator, say �̂i , on ℂd+1 that can be adopted as an 
alternative definition of centroid.

Given the class Ci of data points, let us list different notions of centroid of Ci that we can define within a fixed 
quantum encoding � ↦ �

�
 : 

(1) Quantum centroid �i ∶=
1

�Ci�
∑

�∈Ci
�
�
;

(2) Quantum encoding �
�i

 of the classical centroid �i ∶=
1

�Ci�
∑

�∈Ci
�;

(3) Mean of the Bloch vectors �(i) ∶= 1

�Ci�
∑

�∈Ci
�
(�);

(4) Contracted centroid �̂(i) ∶= 2

d+1
�
(i) that is a Bloch vector itself.

In general, we have that �i ≠ �
�i

 and �̂(i) is not the Bloch vector of �i or �
�i

 . In the construction of the nearest mean 
classifiers with operator distances we choose �̂(i) as definition of centroid in order to select the encoding that is 
less memory consuming and to represent centroids by quantum states so that the calculation of the considered 
operator distances is meaningful in terms of distinguishability of quantum states.

Let us consider a binary classification problem (the multi-class generalization is straightforward). As sug-
gested  in7, we can define a classification algorithm that evaluates the Bures distance between the pure state 
encoding a test point and the centroids that correspond to mixed states. The fidelity between density operators, 

defined as F(�1, �2) =
�
tr
�√

�1�2
√
�1

�2

 , reduces to F(�1, �2) = ⟨�1��2��1⟩ when �1 = ||�1

⟩⟨
�1

|| . Therefore 
the Bures distance between the pure state �1 and the generic state �2 can be expressed in term of the Bloch rep-
resentation as follows:

where �(1) and �(2) are the Bloch vectors of �1 and �2 respectively and n is the dimension of the Hilbert space of 
the quantum encoding. The formula (25) can be directly derived from

that is an immediate consequence of the fact that the generalized Pauli matrices are traceless and satisfy 
tr(�i�j) = 2�ij . Thus a quantum-inspired nearest mean classifier based on Bures distance for binary classifica-
tion can be defined by Algorithm 1.

Algorithm 1: Quantum-inspired nearest mean classifier based on Bures distance.
Now let us consider the Hellinger distance (16). Assuming that �1 is a pure state in a n-dimensional Hilbert 

space, so 
√
�1 = �1 , then the distance can be written as:

where �(1) is the Bloch vector of the state �1 and �(2) is the Bloch vector of the operator 
√
�2 . Therefore a nearest 

mean classifier based on Hellinger distance, within the Bloch representation, can be defined by Algorithm 2 which 
provides the square roots of the density operators corresponding to the centroids. A standard calculation is done 
solving the corresponding eigenvalue problem. Given a density operator, let Diag be the function returning a 
unitary matrix U and a diagonal matrix Λ such that � = UΛU−1 . Obviously 

√
� = U

√
ΛU−1 where 

√
Λ is the 

diagonal matrix given by the square roots of the eigenvalues of �.
In Algorithm  2, the function BlochVector returns the Bloch vector of a given density operator and 

BlochVector−1 is its inverse. On the one hand, the centroids are computed in terms of Bloch vectors but they are 
translated into operators to compute the Hellinger distance. On the other hand the training points are processed 
directly in terms of their Bloch representation.

(25)dB(�1, �2) =

√
2 − 2

√
1

n

(
1 + (n − 1)�(1) ⋅ �(2)

)
≡ DB

(
�
(1), �(2)

)
,

(26)tr(�1�2) =
1

n
(1 + (n − 1)�(1) ⋅ �(2)),

(27)dHe(�1, �2) =

�
2 − 2Tr(�1

√
�
2
) =

�
2 −

2

n
(1 + (n − 1)�(1) ⋅ �(2)) ≡ DHe(�

(1), �(2)),
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In the case of feature vectors in ℝ2 , quantum-inspired classification can also be applied in a smaller space than 
ℂ

3 using the encoding (21). In other words, data points are encoded into Bloch vectors of pure states of a single 
qubit, so a centroid calculated as in (24) is a vector inside the Bloch sphere then always represents a quantum 
state �i . In this low-dimensional case, Hellinger distance and Jensen–Shannon distance between dataset elements 
and the centroids can be calculated with the following simplified formulas:

where r = |�(i)| and s = |�(�) + �
(i)| . Thus the corresponding near mean classifiers can be defined by Algorithm 1 

with (28) and (29) in place of the Bures distance.

Algorithm 2: Quantum-inspired nearest mean classifier based on Hellinger distance.

Method and experimental results
In this section, we present some numerical results obtained by the implementation of the Helstrom classifier and 
the considered quantum-inspired nearest mean classifiers compared to classical algorithms. We run the Helstrom 
classifier and the nearest mean classifiers with several distances (Euclidean, Bures, Hellinger, Jensen–Shannon) 
compared to the following well-known classifiers that we list with respective parameters, settings and main 
characteristics:

• K-Nearest Neighbors: number of neighbors K = 3 , Euclidean distance as distance measure, uniform weights 
in each neighborhood;

• Gaussian Process: kernel 1.0 ∗ RBF(1.0) , maximum number of iterations in Newton’s method = 100;
• Linear SVM: regularization parameter = 0.025 , no limit on iterations within solver;
• RBF SVM: regularization parameter = 1.0 , kernel coefficient for RBF � = 2 , no limit on iterations within 

solver;
• Neural Network (multi-layer perceptron classifier): number of hidden layers = 1 , number of neurons in the 

hidden layer = 100 , activation function f (x) = max(0, x) , L2 penalty parameter = 1 , learning rate = 0.001 , 
maximum number of epochs in weight optimization = 1000 , weight optimization performed by stochastic 
gradient;

• Quadratic Discriminant Analysis: tolerance for a singular value to be considered significant = 0.0001.
• Decision Tree: maximum depth of the tree = 5 , minimum number of samples required to split an internal 

node = 2 , Gini impurity for evaluating the quality of a split.
• Random Forest: maximum depth = 5 , number of trees in the forest = 10 , minimum number of samples 

required to split an internal node = 2 , Gini impurity for evaluating the quality of a split.
• AdaBoost12: Decision Tree as base classifier, maximum number of estimators = 50 , learning rate = 1.0,
• Naive Bayes: Portion of the largest variance of all features that is added to variances for calculation stability 

= 10−9;

In order to compare the results with previous papers, we consider the following toy data and benchmark datasets 
from PMLB public  repository13: moons, cicles, linearly separable, analcatdata aids, analcatdata asbestos, analcat-
data boxing2, Hill Valley with noise, Hill Valley without noise, lupus, prnn synth. For each dataset we randomly 
select 80% of the data to create a training set and use the residual 20% for the evaluation.

For simplicity, we only consider the first two features of the datasets, i.e., an input vector [x1, x2] ∈ ℝ
2 and 

quantum-inspired classifiers in ℂ2 within the encoding (21). We repeated the same procedure 100 times and 

(28)dHe(�� , �i) =

����2 −
√
2
1 +

√
1 − r2 + �(�) ⋅ �(i)√
1 − r +

√
1 + r

,

(29)dJS(�� , �i) =
1 − r

4
log

1 − r

2
+

1 + r

4
log

1 + r

2
+

2 − s

4
log

2 − s

4
+

2 + s

4
log

2 + s

4
,
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calculated the average accuracy in Table 1. The results w.r.t. the F1-score are reported in Table 2. Since the Jensen 
and Hellinger distances generally do not provide better results than the Euclidean and Bures distances, even in 
the presence of more preparations of the same state, we will consider only the latter (Tables 3, 4, 5, 6, 7).

To correctly compare quantum-inspired classifiers in ℂ3 with the well-known classifiers it is useful to map 
two features into a higher dimensional feature space ℝ5 with the following explicit function � ∶ ℝ

2
→ ℝ

5:

�1([x1, x2]) ∶=
2

x2
1
+ x2

2
+ 1

�
x1x2, x1, x2,

x2
1
− x2

2

2
,
x2
1
+ x2

2
− 2

2
√
3

�
.

Table 1.  Average accuracy with the first 2 features. The best result for each dataset is marked in bold.

Dataset Helstrom Euclide Bures Hellinger Jensen
Nearest 
neighbors

Gaussian 
process

Linear 
SVM

RBF 
SVM

Neural 
net QDA

Decision 
tree

Random 
Forest AdaBoost

Naive 
Bayes

Moons 0.529 0.842 0.8445 0.8425 0.842 0.952 0.9365 0.8325 0.944 0.844 0.834 0.894 0.9035 0.9135 0.8385

Cicles 0.4855 0.631 0.509 0.5555 0.6525 0.854 0.8895 0.4065 0.8905 0.8765 0.853 0.835 0.8375 0.8285 0.86

Linearly 
separa-
ble

0.929 0.933 0.936 0.935 0.933 0.9425 0.93 0.9285 0.942 0.939 0.93 0.9065 0.9125 0.896 0.936

Analcat-
data 
aids

0.382 0.31 0.312 0.306 0.308 0.262 0.103 0.386 0.095 0.261 0.252 0.093 0.105 0.205 0.279

Analcat-
data 
asbestos

0.606471 0.714706 0.725882 0.720588 0.714118 0.722941 0.744706 0.695294 0.721176 0.748235 0.728824 0.748235 0.755294 0.695882 0.713529

Analcat-
data 
boxing2

0.548889 0.524815 0.547778 0.536667 0.531111 0.450741 0.521111 0.532222 0.494444 0.522593 0.528519 0.434815 0.44037 0.455926 0.539259

Hill val-
ley with 
noise

0.481317 0.499835 0.502634 0.504938 0.50465 0.497531 0.516872 0.478189 0.517654 0.488971 0.499383 0.51535 0.509012 0.51465 0.489547

Hill 
valley 
without 
noise

0.489712 0.514486 0.516049 0.508066 0.509259 0.503909 0.49679 0.492222 0.493868 0.501193 0.513827 0.503292 0.505391 0.518189 0.507942

Lupus 0.773333 0.735 0.733333 0.733333 0.734444 0.706111 0.757222 0.756667 0.722222 0.753333 0.742778 0.707778 0.721667 0.665556 0.717778

Prnn 
synth 0.455 0.8566 0.832 0.8506 0.8558 0.854 0.8622 0.8362 0.868 0.8516 0.8424 0.8232 0.8468 0.8298 0.8362

Table 2.  F1-score with the first 2 features.

Dataset Helstrom Euclide Bures Hellinger Jensen
Nearest 
neighbors

Gaussian 
process

Linear 
SVM

RBF 
SVM

Neural 
net QDA

Decision 
tree

Random 
forest AdaBoost

Naive 
Bayes

Moons 0.464922 0.840323 0.841519 0.84047 0.840323 0.953685 0.936021 0.829191 0.946382 0.841357 0.83168 0.892442 0.901073 0.91238 0.837082

Cicles 0.629838 0.646017 0.667201 0.680357 0.700705 0.855677 0.886392 0.30833 0.887022 0.873499 0.843021 0.829894 0.833722 0.82728 0.850513

Linearly 
separa-
ble

0.925752 0.927311 0.930675 0.929727 0.927311 0.94043 0.928188 0.92364 0.939444 0.935823 0.92697 0.904343 0.908898 0.894871 0.931908

Analcat-
data 
aids

0.312119 0.290014 0.290706 0.286587 0.28699 0.230239 0.111767 0.360506 0.101949 0.25471 0.252926 0.039859 0.093086 0.191513 0.263386

Analcat-
data 
asbestos

0.423265 0.678411 0.703593 0.689334 0.678303 0.653684 0.686772 0.652546 0.644262 0.696681 0.686944 0.689379 0.696547 0.635218 0.67861

Analcat-
data 
boxing2

0.683352 0.597178 0.637601 0.617339 0.606975 0.491697 0.607008 0.649924 0.568273 0.60897 0.615534 0.474085 0.507492 0.530448 0.630684

Hill val-
ley with 
noise

0.348074 0.337724 0.291553 0.317597 0.327122 0.498334 0.393383 0.306991 0.372891 0.366183 0.380321 0.453604 0.47774 0.444733 0.430896

Hill 
valley 
without 
noise

0.555846 0.617317 0.636632 0.624886 0.621875 0.512918 0.531402 0.585316 0.604029 0.591217 0.660424 0.506052 0.526377 0.525226 0.642497

Lupus 0.602344 0.669221 0.666688 0.666656 0.667856 0.579922 0.656767 0.582944 0.547894 0.647052 0.630765 0.562144 0.591334 0.546564 0.600368

Prnn 
synth 0.458623 0.858884 0.840259 0.855394 0.858714 0.851627 0.862972 0.841066 0.868374 0.852702 0.845555 0.819956 0.845004 0.829847 0.838924



9

Vol.:(0123456789)

Scientific Reports |         (2022) 12:8781  | https://doi.org/10.1038/s41598-022-12392-1

www.nature.com/scientificreports/

For quantum-inspired classifiers in ℂ3 ⊗ ℂ
3 with two preparations of the same quantum state it is useful the 

following explicit function �2 ∶ ℝ
2
→ ℝ

20:

�2([x1, x2]) ∶=
2

(x2
1
+ x2

2
+ 1)2

�
x3
1
x2, x

3
1
, x2

1
x2
2
, x2

1
x2, x

2
1
, x1x

3
2
, x1x

2
2
, x1x2, x1, x

3
2
, x2

2
, x2,

x4
1
− x2

1
x2
2

2
,
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1
+ x2

1
x2
2
− 2x2

1

2
√
3

,
x4
1
+ x2

1
x2
2
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1
− 3x2

1
x2
2

2
√
6

,
x4
1
+ x2

1
− 4x4

2
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1
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2

2
√
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,

x4
1
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1
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1
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1
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Table 3.  Average accuracy with 2 features mapped into high-dimensional feature space ℝ5.

Dataset Helstrom Euclide Bures
Nearest 
neighbors

Gaussian 
process

Linear 
SVM RBF SVM Neural net QDA

Decision 
tree

Random 
Forest AdaBoost

Naive 
Bayes

Moons 0.761 0.8355 0.838 0.9365 0.928 0.7995 0.931 0.907 0.9235 0.8055 0.8385 0.788 0.819

Cicles 0.757 0.805 0.7805 0.8315 0.8805 0.4635 0.855 0.886 0.872 0.845 0.8685 0.8565 0.8945

Linearly 
separable 0.831 0.9325 0.7525 0.948 0.9275 0.921 0.938 0.9355 0.938 0.92 0.9155 0.9055 0.941

Analcat-
data aids 0.25 0.236 0.232 0.172 0.089 0.335 0.099 0.217 0.153 0.09 0.11 0.085 0.214

Analcat-
data 
asbestos

0.761765 0.732941 0.708824 0.724118 0.738235 0.612941 0.732941 0.747647 0.6 0.741176 0.753529 0.751176 0.73

Analcat-
data box-
ing2

0.541111 0.518148 0.537037 0.45963 0.507778 0.536667 0.487407 0.516296 0.479259 0.433333 0.445185 0.435926 0.516296

Hill valley 
with noise 0.483128 0.495226 0.490535 0.494938 0.511852 0.477325 0.527407 0.48856 0.492593 0.512428 0.505926 0.503169 0.487449

Hill valley 
without 
noise

0.501852 0.509547 0.138148 0.505761 0.496132 0.486049 0.516749 0.500905 0.54284 0.607078 0.591975 0.58214 0.511646

Lupus 0.737778 0.715 0.720556 0.73 0.745556 0.619444 0.749444 0.746667 0.747222 0.681667 0.704444 0.657222 0.696111

Prnn synth 0.8084 0.8438 0.8386 0.8588 0.8678 0.8466 0.8576 0.857 0.8576 0.8182 0.8346 0.8042 0.8404

Table 4.  Average accuracy with 2 features mapped into high-dimensional feature space ℝ20.

Dataset Helstrom Euclide Bures
Nearest 
neighbors

Gaussian 
process

Linear 
SVM RBF SVM Neural net QDA

Decision 
tree

Random 
Forest AdaBoost

Naive 
Bayes

Moons 0.8395 0.882 0.8835 0.9495 0.928 0.479 0.933 0.932 0.9175 0.889 0.7975 0.8915 0.8025

Cicles 0.628 0.841 0.846 0.847 0.878 0.4585 0.872 0.8785 0.857 0.832 0.8565 0.845 0.8675

Linearly 
separable 0.9045 0.9095 0.9165 0.935 0.9375 0.489 0.9415 0.9205 0.9435 0.91 0.87 0.9145 0.918

Analcat-
data aids 0.172 0.191 0.187 0.173 0.181 0.327 0.093 0.198 0.318 0.093 0.105 0.084 0.189

Analcat-
data 
asbestos

0.725882 0.724706 0.715882 0.722941 0.732353 0.561176 0.731176 0.738824 0.665294 0.728824 0.743529 0.698235 0.682941

Analcat-
data box-
ing2

0.515926 0.50037 0.522963 0.467407 0.488148 0.536667 0.486667 0.506667 0.492963 0.429259 0.435556 0.445556 0.497407

Hill valley 
with noise 0.483333 0.488807 0.495556 0.496008 0.51786 0.479053 0.529383 0.492016 0.500165 0.510206 0.504198 0.499671 0.493333

Hill valley 
without 
noise

0.496626 0.508148 0.506461 0.505226 0.49284 0.481728 0.518025 0.500247 0.551564 0.561687 0.531399 0.58037 0.505432

Lupus 0.773333 0.715 0.71 0.720556 0.747778 0.622222 0.747778 0.745 0.699444 0.693333 0.68 0.68 0.693889

Prnn synth 0.8466 0.8564 0.8594 0.8622 0.8674 0.7806 0.863 0.873 0.8478 0.8342 0.816 0.833 0.7902
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The dimension of the feature space can be further increased considering multiple copies of the encoding quantum 
states as density operators in (ℂ3)⊗3 and (ℂ3)⊗4 implementing corresponding feature maps that are respectively 
given by explicit functions �3 ∶ ℝ

2
→ ℝ

81 and �4 ∶ ℝ
2
→ ℝ

122.
In the presented experiments we consider the average accuracy and the F1-score (Tables 2 and 7) as figures 

of merit to test and compare the performances of the quantum-inspired classifiers. However F-measures do not 
take true negative into account then average accuracy is considered better for the performance comparison of 
the classifier. Certainly, it is possible to compare the performances based on different statistic indices including 
balanced accuracy, sensitivity, specificity, precision, F-measure, Cohen’s k  parameter3.

Helstrom classifier has been applied and compared with classical algorithms over the following datasets 
provided by the Wolfram data repository: 

(1) Death times of male laryngeal cancer patients: https:// doi. org/ 10. 24097/ wolfr am. 61527. data.
(2) Locations of cancer cases in North Liverpool, UK, annotated with subject type (case or control) marks: 

https:// datar eposi tory. wolfr amclo ud. com/ resou rces/ Sample- Data- Liver pool- Cancer.
  State discrimination using the Pretty Good measurement and the geometric Helstrom state discrimina-

tion introduced in “Quantum-inspired classifiers” section have been tested over the dataset:

Table 5.  Average accuracy with 2 features mapped into high-dimensional feature space ℝ81.

Dataset Helstrom Euclide Bures
Nearest 
neighbors

Gaussian 
process

Linear 
SVM RBF SVM Neural net QDA

Decision 
tree

Random 
Forest AdaBoost

Naive 
Bayes

Moons 0.9165 0.903 0.9105 0.945 0.93 0.4805 0.9345 0.9355 0.9 0.871 0.728 0.8985 0.7675

Cicles 0.7605 0.855 0.8785 0.851 0.881 0.453 0.8745 0.8805 0.853 0.822 0.8545 0.829 0.88

Linearly 
separable 0.9325 0.8765 0.8875 0.938 0.949 0.483 0.9295 0.9195 0.9375 0.935 0.8425 0.9405 0.8315

Analcat-
data aids 0.121 0.176 0.173 0.183 0.284 0.341 0.148 0.29 0.084 0.095 0.117 0.084 0.195

Analcat-
data 
asbestos

0.731765 0.715294 0.714118 0.723529 0.72 0.557647 0.732941 0.733529 0.6 0.742353 0.745882 0.747647 0.661176

Analcat-
data box-
ing2

0.51 0.49 0.508889 0.467037 0.49963 0.536667 0.494074 0.507037 0.495185 0.427037 0.442222 0.436667 0.496667

Hill valley 
with noise 0.483251 0.487984 0.493457 0.500206 0.510905 0.479053 0.529218 0.485885 0.506502 0.508642 0.500206 0.493169 0.498025

Hill valley 
without 
noise

0.498477 0.507984 0.509342 0.504609 0.493992 0.483621 0.520082 0.497119 0.562593 0.520082 0.508601 0.546132 0.50963

Lupus 0.773333 0.703333 0.695556 0.701667 0.746667 0.622222 0.748333 0.745556 0.636111 0.678889 0.659444 0.668889 0.639444

Prnn synth 0.8538 0.8546 0.8628 0.857 0.8668 0.488 0.8708 0.8756 0.8552 0.8372 0.7952 0.8344 0.7462

Table 6.  Average accuracy with 2 features mapped into high-dimensional feature space ℝ122.

Dataset Helstrom Euclide Bures
Nearest 
neighbors

Gaussian 
process

Linear 
SVM RBF SVM Neural net QDA

Decision 
tree

Random 
Forest AdaBoost

Naive 
Bayes

Moons 0.92 0.8915 0.909 0.9375 0.931 0.4665 0.9265 0.9375 0.88 0.859 0.682 0.896 0.6465

Cicles 0.807 0.8445 0.887 0.8525 0.882 0.445 0.871 0.8855 0.7695 0.823 0.857 0.8555 0.892

Linearly 
separable 0.9365 0.8375 0.856 0.9005 0.9505 0.4735 0.8925 0.908 0.9135 0.9295 0.7665 0.9225 0.713

Analcat-
data aids 0.099 0.205 0.211 0.201 0.257 0.37 0.284 0.348 0.084 0.093 0.121 0.084 0.205

Analcat-
data 
asbestos

0.732353 0.698235 0.708235 0.723529 0.729412 0.553529 0.732353 0.731176 0.737647 0.711176 0.742353 0.727647 0.642353

Analcat-
data box-
ing2

0.502593 0.486296 0.502222 0.467778 0.500741 0.536667 0.495556 0.507037 0.538148 0.43 0.45 0.447778 0.498889

Hill valley 
with noise 0.484362 0.480988 0.494774 0.499012 0.504979 0.479053 0.531193 0.480082 0.50642 0.515885 0.504321 0.518642 0.495103

Hill valley 
without 
noise

0.500494 0.504321 0.503251 0.50428 0.49749 0.483621 0.521029 0.490453 0.569218 0.52572 0.501852 0.53214 0.508889

Lupus 0.772778 0.684444 0.685 0.686667 0.726111 0.622222 0.748333 0.74 0.652222 0.651667 0.578333 0.642778 0.582778

Prnn synth 0.8556 0.8174 0.8602 0.8582 0.8616 0.4834 0.874 0.8772 0.8392 0.8286 0.7712 0.824 0.6968

https://doi.org/10.24097/wolfram.61527.data
https://datarepository.wolframcloud.com/resources/Sample-Data-Liverpool-Cancer
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(3) Case-control study of esophageal cancer https:// doi. org/ 10. 24097/ wolfr am. 41634. data.

The obtained results are reported in Tables 8 and 9 and discussed in the next section.

Discussion
The low-dimensional experiments, whose results are reported in Table 1, are performed encoding feature vectors 
of ℝ2 into quantum states on ℂ2 by means of (21). In this case, we observe that the performances of the Helstrom 
classifier are comparable to those of the linear SVM as  expected7, except for the datasets moons and prnn_synth 
where the SVM turns out to be definitely more accuarate. However, for the linearly_separable dataset, Helstrom 
reaches a high average accuracy and for the datasets analcatdata_boxing2 and lupus it is the most accurate classi-
fier, with a tiny margin, over the classical and the quantum-inspired ones. In particular, for analcatdata_boxing2, 
Helstrom presents an average accuracy that is only 0.1% higher than the Bures’. The considered quantum-inspired 
nearest mean classifiers present comparable accuracies between them and w.r.t. Helstrom, except for moons and 
prnn_synth datasets where they definitely outperform Helstrom and for circles and analcatdata_asbestos datasets 
where the nearest mean classifiers present an average accuracy that is over 10% higher than Helstrom’s. Over the 
considered datasets, the nearest mean classifier based on the Bures distance turns out to be the quantum-inspired 
algorithm with the highest average accuracy for five datasets: moons, linearly_separable, analcatdata_asbestos, 
Hill_Valley_with_noise, Hill_Valley_without_noise.

Within the encoding of real data points into density matrices on ℂ3 , the performance of the Helstrom classi-
fier gets better and approaches the average accuracy of the linear SVM over the moons and prnn_synth datasets 
(Table 3) and outperforms the linear SVM over the cicles dataset. Thus, within this encoding, the performance 
of Helstrom classifier over the considered datasets is comparable to that of the quantum-inspired nearest mean 
classifiers. The Euclidean and the Bures classifiers improve their accuracy for the cicles dataset. The considered 

Table 7.  F1-score with 2 features mapped into high-dimensional feature space ℝ122.

Dataset Helstrom Euclide Bures
Nearest 
neighbors

Gaussian 
process

Linear 
SVM RBF SVM Neural net QDA

Decision 
tree

Random 
Forest AdaBoost

Naive 
Bayes

Moons 0.919654 0.888403 0.90364 0.940338 0.931047 0.355928 0.927139 0.940196 0.874958 0.856571 0.679505 0.893739 0.637247

Cicles 0.78895 0.814057 0.884429 0.848254 0.876753 0.286566 0.856554 0.877363 0.743484 0.816633 0.849931 0.849835 0.884564

Linearly 
separable 0.9331 0.811657 0.840846 0.898957 0.949107 0.352685 0.887571 0.90338 0.908466 0.928714 0.764568 0.920865 0.681532

Analcat-
data aids 0.094768 0.191961 0.197471 0.197468 0.218508 0.291432 0.241194 0.292872 0.072162 0.048727 0.09554 0.083706 0.184656

Analcat-
data 
asbestos

0.646487 0.664024 0.685391 0.648116 0.667969 0.03001 0.678992 0.667294 0.653541 0.643194 0.686401 0.674249 0.589861

Analcat-
data box-
ing2

0.607337 0.508385 0.559737 0.507701 0.612686 0.652648 0.574432 0.612221 0.657725 0.465764 0.525866 0.518559 0.549566

Hill valley 
with noise 0.385468 0.415765 0.410437 0.504632 0.4108 0.338354 0.385776 0.396176 0.335648 0.292807 0.465071 0.451033 0.326622

Hill valley 
without 
noise

0.590686 0.590196 0.622812 0.513252 0.547225 0.545744 0.60283 0.564534 0.666941 0.467788 0.521789 0.524884 0.638644

Lupus 0.632978 0.581279 0.585018 0.54156 0.584137 0 0.582675 0.593176 0.534378 0.527788 0.390944 0.523898 0.460007

Prnn synth 0.856229 0.795313 0.860908 0.856145 0.861114 0.366932 0.87431 0.877672 0.839585 0.823271 0.77101 0.819984 0.70899

Table 8.  Death/alive laryngeal cancer patients and case-control marks of cancer cases in North Liverpool.

Helstrom Linear RadialBasisFunction Polynomial Sigmoid RandomForest NaiveBayes NearestNeighbors LogisticRegression

LarynxCancer 0.52 0.965 0.928333 0.93 0.888333 0.791111 0.712222 0.747778 0.946667

LiverpoolCancer 0.637017 0.799501 0.799501 0.799501 0.790197 0.769658 0.799001 0.799606 0.799501

Table 9.  Case-control study of esophageal cancer.

PrettyGood GeometricHelstrom Linear RadialBasisFunction Polynomial Sigmoid RandomForest NaiveBayes NearestNeighbors LogisticRegression

Esoph-
ageal-
Cancer

0.336111 0.4 0.293333 0.238333 0.236667 0.218333 0.493889 0.457222 0.241667 0.347222

https://doi.org/10.24097/wolfram.41634.data
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three quantum-inspired classifiers worsen the already poor performance over the analcatdata_aids w.r.t. the 
lower-dimensional encoding. As shown in Table 4, increasing the dimension of the feature space, from 5 to 20, 
by the preparation of two copies of the quantum states in ℂ3 ⊗ ℂ

3 , the Helstrom classifier outperforms the linear 
SVM over moons, cicles, linearly separable, lupus, prnn_synth datasets presenting a comparable average accuracy 
to the SVM’s over the other datasets except for analcatdata_aids where the performances of the quantum-inspired 
classifiers remain poor. Considering higher dimensional feature spaces (Tables 5 and 6) the performances of 
the quantum-inspired classifiers improve except for the analcatdata_aids dataset where there is a worsening of 
average accuracy increasing the dimension. In particular, the Helstrom classifier improves its performance w.r.t. 
the linear SVM becoming a definitely more accurate classifier.

In Table 9, we observe that all the classifiers presents low values of average accuracy over the data set iii). 
However the geometric Helstrom, that is the classifier based on the minimum-error measurement determined by 
(13), performs better than the classical competitors, except Random Forest and Naive Bayes, and the classifier 
based on state discrimination by means of the Pretty Good measurement defined in (9). In particular, geometric 
Helstrom outperforms the Nearest neighbor classifier.

Conclusions
The present paper is focused on some methods of quantum-inspired machine learning, in particular classifica-
tion algorithms based on quantum state discrimination. We adopted a geometric approach in defining quantum 
encodings of classical data in terms of Bloch vectors of density operators. The geometry of quantum encoding 
has been analyzed in relation to the construction of feature maps and to the execution of the quantum-inspired 
classifiers. We considered algorithms based on the construction of an optimal measurement for state discrimina-
tion: the Helstrom classifier based on the well-known Helstrom’s theory of quantum  discrimination2, a classifier 
based on the so-called Pretty Good measurement10 and a classifier based on the geometric construction of the 
minimum-error  measurement11. Moreover we considered quantum-inspired nearest mean classifiers based on 
the encoding of data into density operators and the calculation of distances which quantify the distinguishability 
of quantum states in the spirit of other works on this  subject1,7. The considered operator distances were: trace 
distance, Bures distance, Hellinger distance, Jensen–Shannon distance. The first two are particularly convenient 
in terms of the execution of a classifier within the Bloch encoding because the trace distance can be computed 
as the Euclidean distance among the Bloch vectors and the Bures distance allows the definition of a simple 
algorithm, reported in Algorithm 1, that perform the classification task entirely within the Bloch representation 
of the quantum states taking a full advantage by the geometric description. On the other hand, we do not find 
a satisfactory formulations of classification algorithms based on Hellinger and Jensen–Shannon distances that 
can executed entirely within the geometric description of the quantum states. Nevertheless, the experiments 
performed in the low-dimensional case (data encoding into qubit states) show that the classification done with 
the Hellinger and the Jensen–Shannon distances do not provide an average accuracy that is significantly different 
from that of the classifiers with trace and Bures distances, so we focused only on the latter for the experiments 
in higher dimension.

In “Geometric approach to quantum-inspired classifications” section, we clarified the adopted geometric 
approach. Within the encoding of real feature vectors into the amplitudes of pure quantum states w.r.t. a compu-
tational basis, the density operators are expressed as Bloch vectors and the centroids of data classes are directly 
calculated in terms of Bloch vectors. However, the mean of a set of Bloch vectors is not a Bloch vector in gen-
eral (except in the case of qubit states). In order to identify the centroid as a proper density operator on ℂd the 
obtained Bloch vector is re-scaled into the real sphere with radius 2

d+1
 . The advantage in considering such a Bloch 

representation is given by data compression allowed suppressing null and repeated components in Bloch vectors 
removing redundancy in the representation. This simple property is useful when many copies of the considered 
quantum state � are processed in order to increase the dimension of the feature space (kernel trick). In fact, the 
saving of spatial resources in representing 𝜌 ⊗⋯⊗ 𝜌 by means of the Bloch vectors balances the exponential 
cost due to processing the tensor product. Thus the Bloch representation turns out to be a useful tool to efficiently 
increase the dimension of the feature space in quantum-inspired machine learning.

In the experiments over different datasets, described in “Method and experimental results” section, the 
effects of the kernel tricks on the accuracy of the Helstrom classifier are evident. Moreover, the obtained results 
show that the performances of the quantum-inspired classifiers are comparable, and sometimes better, to those 
of well-known classical algorithms. We observed that the classification based on the minimum-error measure-
ment for state discrimination can be carried on by the Pretty Good measurement or by the so-called geometric 
Helstrom. A comparison over the dataset case-control study of esophageal cancer show that the geometric Hel-
strom is definitely more accurate w.r.t. the classifier based on Pretty Good measurement. Moreover, in Table 9 
the results show that geometric Helstrom outperforms also the classical support vectors machines, the KNN, 
and the logistic regression.

Description and characterization of the quantum-inspired classifiers considered in the present work suggest 
that quantum structures can be a valuable resource in classical machine learning, in particular the geometric 
approach considering the Bloch representation of density matrices is suitable to efficiently implement feature 
maps in quantum-inspired classification. The adopted geometric approach and the obtained experimental results 
reveal that quantum encoding of data into density operators and quantum state discrimination allow the defini-
tion of new efficient classification algorithms that can be run on classical computers.

Code availability
The code is also at the following repository: https:// github. com/ lepor ini/ class ifica tion (accessed on: December 
9, 2021).

https://github.com/leporini/classification
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