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Quantum information observables, such as entanglement measures, provide a powerful way to
characterize the properties of quantum states. We propose to use them to probe the structure of
fundamental interactions and to search for new physics at high energy. Inspired by recent proposals to
measure entanglement of top quark pairs produced at the LHC, we examine how higher-dimensional
operators in the framework of the Standard Model effective field theory modify the Standard Model
expectations. We explore two regions of interest in the phase space where the Standard Model produces
maximally entangled states: at threshold and in the high-energy limit. We unveil a nontrivial pattern of
effects, which depend on the initial state partons, gg or gg, on whether only linear or up to quadratic
Standard Model effective field theory contributions are included, and on the phase space region. In general,
we find that higher-dimensional effects lower the entanglement predicted in the Standard Model.
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I. INTRODUCTION

In 1989, Wheeler suggested that all physical quantities
have a theoretical information origin, a concept which has
been later popularized as the “it from bit” principle [1,2].
Quantum information (QI) theory provides us with a set of
tools and observables that are designed to unveil the inner
behavior of quantum mechanics. While these phenomena
have been widely tested in applications at the atomic and
even human scales, their study at higher energies has not
been undertaken.

Central to quantum information is entanglement, i.e., the
property of quantum systems to maintain a correlation even
when they are separated. Since the groundbreaking papers
by Einstein, Podolski, and Rosen [3], the series of papers
by Schrodinger [4-6] and Bell’s theorem [7], entanglement
has evolved from a puzzling and uncomfortable phenome-
non to the keystone of quantum computation, as recently
demonstrated by the quantum supremacy [8].
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Vastly studied across the fields, ranging from worm-
holes [9] to bacteria [10], QI based analyses have led to
significant advances not only in computation but also in
fundamental questions, such as the black hole information
paradox [11]. Many of such advances characterize new
approaches in outstanding problems in string theory as
well as in quantum field theory [12]. In the latter case, for
instance, a conjecture linking entanglement suppression
and the presence of symmetries was proposed based on an
observation for nuclear forces [13] and later was also seen
in the context of black hole physics [14,15] (see also
Ref. [16]). Proposals for understanding properties of the
Standard Model (SM) of particle physics based on QI
properties have also appeared [17].

In this work we propose to exploit entanglement through
specific measures, e.g., the concurrence, to constrain new
physics effects on the strength and type of interactions
between SM particles in the context of the SM effective field
theory (SMEFT). As a first application of this idea, we
consider the production of a top quark pair at the LHC and,
in particular, the quantum state of their spins, which, as
shown in Refs. [18-20], can be fully reconstructed from the
decay products of the top and antitop quarks and can be
observed with high statistical significance already with run
IT data. Further studies on the violation of Bell inequalities
in top-quark pair production [19,21] and Higgs decays
to WW [22] highlighted the potential of high-energy
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measurements in establishing the quantum nature of funda-
mental interactions.

Contrary to the other quarks, the top quark decays way
before its spin is affected by hadronization. The spin
information is then imprinted in the decay products, and in
particular in the direction of the charged lepton from the W
decay, which is 100% correlated with the corresponding
top spin [23]. Another advantage of top quark pairs is that
they can be characterized as simple bipartite qubit systems.
References [18,20] outlined an experimental detection
strategy for the concurrence of the top pair, based on
measuring the differential cross section with respect to the
angular separation of the charged leptons from the top
decays as a function of an upper cut on the top pair’s
invariant mass [24]. As the same strategy can also be
applied in the presence of new physics, we here limit
ourselves to studying the influence of new physics on the
entanglement, and neglect detector effects and other
experimental issues.

In Ref. [18], it was further shown that there exist two
regions of the ¢7 phase space where the top quark spins are
maximally entangled: at threshold, when the partonic
center-of-mass energy § = 2m, and for high energies
and 6 = z/2, where the characteristic quantum states are
Bell states, singlet and triplet, respectively.

With the aim of establishing how new physics might
induce a modification of the quantum correlations, we
study the production of a top quark pair system within the
SMEFT framework, which provides a model independent
formulation of new interactions when the energy scale
associated to new physics is well separated from the scale
of the process. In order to gain a detailed understanding, we
compute the analytical linear and quadratic effects gen-
erated by dimension-six operators on the entanglement. We
find it most useful to explore their behavior at phase-space
points where the entanglement in the SM is maximal. In
doing so, two immediate questions arise: Are these SMs
maximally entangled regions affected by the SMEFT? Can
SMEFT induce new maximally entangled regions in the
phase space?

The paper is organized as follows. In Sec. II, we review
the entanglement concepts and measures in bipartite sys-
tems which are then applied to top quark pair production
later. In Sec. III we explore the effects of SMEFT higher-
dimensional operators at linear and quadratic level in the full
phase space as well as for the angular-averaged concur-
rence. Finally, in Sec. IV we explore the quantum state in
different phase space regions. We draw our conclusions
in Sec. V.

II. TOP-PAIR SPIN CORRELATIONS

Central to the analysis of top-pair spin correlations is the
spin production density matrix, also known as the R matrix

1
1 — *
R'ﬁﬂz@(z = N,N, ZMWCZMWICN (1)

colors
a,bspins

with M, = (t(k;.n)1(k2.{)|T |a(py)b(p2)), where T is
the transition matrix element, / = ab denotes the initial
state, N,, is the number of degrees of freedom of the
respective initial state particles a and b, k; (p;) are the
momenta of the final (initial) state particles, and 7 () are
the (anti)top spin indices. Note that this matrix is similar to
the cross section, but with uncontracted final-state spin
indices. The R matrix is commonly expressed in terms of
the Pauli matrices ¢, also known as the Fano decom-
position [27], which reads

R=A1,®1,+B/¢'®@1,+B;1,®0'+C;jc' ®c’, (2)

where a sum over i,j = 1,2,3 is implicit. The spin-
correlations between the subsystems are captured by
the C;; coefficients, while the Bf coefficients describe
the degree of (anti)top polarization, and A is related to the
differential cross section by

do af .
dod ~ 2 A5k, (3)

where k is the top quark direction, § the invariant mass of

the top quark pair and § = /1 — 4m? /5 the velocity of the
top quark in the center-of-mass frame with the top mass

m; = 172.76 GeV [28]. Altogether, there are 15 Fano
coefficients which, once determined, allow us to fully
characterize the quantum state of the two-qubit system.

In the following, we consider top quark pair production at
the LHC in proton-proton collisions, where the top pairs are
at leading order (LO) created through noninterfering chan-
nels. The relevant contributing initial states are the scatter-
ing of two gluons and of a quark antiquark pair. As a result,
the quantum state of the system is mixed, with the total
density matrix given by the weighted sum of the channel-
specific matrices. The weights depend on the structure of the
proton described by the parton distribution functions. The
full R matrix is hence given by the sum over the partonic
channels, each weighted by the corresponding luminosity
functions L!(3)

R(3.k) =) LI(3)R!(3.k). (4)

The gg-initiated channel dominates up to TeV top quark
energies, when the gg channel becomes comparable.

The density matrix describing the quantum state is given
by the normalized R matrix, i.e., p = R/tr(R), which we
expand in terms of the coefficients Bf = Bf /A and C;; =

C”/A as
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(5)

In order to obtain explicit values for the entanglement,
we calculate the coefficients in the so-called helicity basis,
which consists of an orthonormal basis in the center-of-
mass frame

{k,n,r}:r—(pl_zk), n=kxr. (6

where p and k are the unit vectors along the beam axis and
top quark direction, and we define z =k - p = cosé. For
convenience, we switch to the variables z and f for the
remainder of the presentation. In this basis, the spin density
matrix for top quark pair production in the SM at LO in
QCD simplifies significantly [29]: invariance under CP
renders C;; symmetric and B = B;, and nonzero Cy,,, C,,,
and B are then only generated at the one-loop level by
absorptive parts. Furthermore, B and B vanish as they
require P-odd interactions. As we will focus only on CP
even operators, the first two statements also hold true when
adding the SMEFT contributions.

A. Entanglement

The most general bipartite quantum state is described by
a normalized density matrix p € D(H,,), where the space
D(H,,) is formed by the positive-semidefinite operators
acting on the full system’s Hilbert space H,, = H, ® H,.
Whenever the state can be written as a convex combination
of product states [3]

P = D _Pipk ® ph (7)
k

the state is said to be separable. A state that cannot be
written is such form is said to be entangled. This notion
was introduced by Schrodinger [5] under the name of
Verschriankung to describe that the best knowledge of the
whole system H,, does not imply the best possible
knowledge of its parts, H, and H,. These formal defi-
nitions are more transparent when a quantitative measure
of entanglement is given.

Several entanglement measures and criteria are available,
cf., e.g., Refs. [30,31] for a detailed discussion. In the
following, we quantify the degree of entanglement by
defining a physical quantity called concurrence [32]

Clp] = max (0,4 — 4, — 43 — Ay), (8)

where 4; are the increasingly ordered eigenvalues of the
matrix o = +/v/ppy/p with p = (0, ® 62)p" (02 ® 02)
and p* denoting the complex conjugate of p, or, equiv-
alently, the square roots of the eigenvalues of the matrix pp.
When Cl[p] > 0, the system is said to be entangled and the

case of C[p] = 1 corresponds to quantum configurations of
maximal entanglement.

As a simpler criterion for entanglement, we further
employ the Peres-Horodecki criterion (PHC) [33,34],
which states that p is entangled, if the partial-transpose state

psep - (T ® 1] psep Zpk )T ® Pk >0 (9)

is non-negative with unit trace. This is a necessary condition
for entanglement for 2 @ 2 bipartite systems.

For the density matrix in Eq. (5), in the helicity basis, the
PHC implies [18]

:_Cnn+|ckk+crr|_ 1>0 (10)

as a sufficient condition for entanglement. For the SM at LO
in QCD, A > 0 is a necessary condition and the concur-
rence can be written in terms of A as C[p] = max(A/2,0).
The corresponding expression including SMEFT correc-
tions is obtained by expanding @ in 1/A? to quadratic order,
where A is the new physics scale, and can be found in
Appendix C.

The correlation matrix further simplifies when averaging
over the solid angle. Switching to the beam basis and
defining the angular averaged R matrix following Ref. [18],

= (4n)""! /dQR(s,k), (11)

as well as the corresponding density matrix p = R/tr(R),
the correlation matrix becomes diagonal with two degen-
erate eigenvalues, C;; = = diag(C,,C,,C,), and the only
nonvanishing entry in BljE is in the z component. The PHC
then implies the sufficient condition [18]

§=—-C,+2C,|-1>0 (12)

for entanglement, which becomes a necessary condition for
BE = 0 with the concurrence given by C[p] = max(5/2, 0).
The expression for the concurrence in the SMEFT with
BE # 0 is presented in Appendix C.

B. Quantum states

The SM contribution to the concurrence in terms of 5
and z = cos @ is shown in Fig. 1. In the gg channel, the top
quark pair is produced in a maximally entangled state at
production threshold, i.e., for # = 0 at any value of z, as
well as at high transverse momentum, i.e., when = 1 and
cos@ = 0. As noted in [18], the gluon-induced quantum
state p M(p, z) becomes a Bell state in these regions: at
threshold it corresponds to a singlet state, while at high
energy it is a triplet state along the n axis
W) (¥

Pa (1,0) =[¥F), (¥

Py (0.2) = w (13)
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FIG. 1. SM contribution for the concurrence in the gluon-

(bottom left) and quark-initiated (bottom right) channels, as well
as in the full pp collision (top). The black lines indicate the
boundaries of the entangled regions based on Eq. (10).

where the density matrices are defined in terms of the Bell
basis (or Einstein-Podolsky-Rosen pairs) along the n axis

:|TT>ni|\L\L>n’ |1Pi>n:|T~L>ni|\LT>n (14)
V2 V2

and similarly along the p axis. In the gg initiated channel,

the top pair is entangled across all phase space except at

threshold, where we have a mixed but separable state. At

high energies, the same maximally entangled state as in the

gg channel is produced

|2%),,

Pag (1,0) = [W5), (¥F,. (15)

Simulation-based analyses of the top-pair entanglement
in the SM have been performed in Refs. [18,19], where
evidence was shown for such effects to be detected at the
LHC with high statistical significance. We assume that the
same strategies used to reconstruct the quantum states from
the decay products of the top quarks remain valid when
adding SMEFT operators, since these operators do not
affect the correlations between the top spin and the charged
lepton decay product [35].

III. ENTANGLEMENT IN THE SMEFT

To study the impact of higher-dimensional operators on
the entanglement in top quark pair production within the
SMEFT, we use a slightly modified version of the Warsaw
basis [36], detailed in [37]

1
Lsmerr = Lsw + cmioi’ (16)

where we restrict ourselves to CP-even operators at
dimension six. Working at LO in QCD, the relevant
operators to 7 production are the zero- and two-fermion
operators Og, O, and O,g, as well as the two-light-two-
heavy four-fermion octets and singlets [29,35,37,38],
whose definitions are collected in Appendix A. In order
to have a tractable amount of four-fermion operators, we
have imposed a U(2), ® U(2), ® U(3), flavor symmetry
[39]. For the purpose of illustration, we chose values of the
Wilson coefficients that may exceed the current limits from
the SMEFit collaboration [40] in most of our plots. The
conclusions however remain true also for values within
these bounds.

We now turn to investigating the effects of dimension-six
SMEFT operators on the entanglement. Such operators will
lead to an EFT contribution to the R matrix as well as the
density matrix,

RSM +REFT
P = (R + w(RFTY

(17)

The contributions of each SMEFT operator considered
here to the Fano coefficients are given in Appendix A. The
concurrence and the entanglement markers in Eqs. (10)
and (12) are then obtained expanding in the Wilson
coefficients. The corresponding expressions can be found
in Appendix C. In the following, we will study the
entanglement taking into account both linear, O(A™2),
and quadratic effects [41], O(A™*), to these quantities.
Then, averaging over the solid angle, we further present
the entanglement as a function solely of the top-quark
velocity f.

A. Linear interference and quadratic effects

To examine the impact of the linear and quadratic
SMEFT corrections on the entanglement, we consider the
PHC and the entanglement marker Eq. (10) in SMEFT and
compare it to the marker A, in the SM. Since the absolute
value in Eq. (10) does not allow to factor out the Wilson
coefficients, we define at linear order A; = A — A, where
A is calculated from the density matrix Eq. (17) including
the SM and linear corrections. Equivalently, at the quadratic
order, we define A, = A — (Ay + A;), where we now also
include the dimension-six squared contributions to p in A.

Figure 2 depicts the new physics contributions of the
operator O,; to A relative to the SM value for
¢, = 0.1 TeV~2, which lies within the limits from current
fits [40]. Note that A becomes negative in the absence of
entanglement, whereas the concurrence vanishes in the
entire unentangled region. Hence, we can still take the
ratios A, ,/A, in this region. However, at the boundary of
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FIG. 2. Relative contributions of the linear (left) and quadratic
(right) effects of the chromomagnetic operator for c,;/A> =
0.1 TeV~2 to the PHC entanglement marker A.

the entangled phase space (along the black lines in Fig. 2), A
vanishes and the ratios diverge.

Let us start our discussion with the gg channel, where
only O, Og, and O, contribute. At leading order, we
notice that the SM’s point of maximal entanglement at
threshold is unchanged by linear interference effects, as can
be seen in the middle left panel of Fig. 2, where the
concurrence is zero for f — 0. This is also apparent from
the  dependence of the Fano coefficients, explicitly given
in Appendix A2. As both ¢ and c,; always come
accompanied by a factor of 42, it is evident that their
contributions vanish at threshold to order O(A~2). While
the contributions of O, to the individual Fano coefficients
survive for f — 0, they cancel at the concurrence level,
giving zero contribution to the entanglement. Hence,
including linear effects, top quark pairs produced in the
gg-channel remain maximally entangled at threshold.

At quadratic order O(A~*), on the other hand, a different
behavior emerges. Although the contribution from O,
vanishes at threshold, the other operators O; and O,;

decrease the concurrence at the point of maximal entan-
glement of the SM and induce a triplet state on top of the
SM’s singlet state. This effect will be discussed in further
detail in Sec. IV.

The other point of maximal entanglement in the SM,
f — 1 and z = 0, where the SM produces a triplet state, is
more delicate. As f — 1 corresponds to § — oo, the EFT is
not valid at this point. We can however consider a region
where f# ~ 1 but m? < § < A?, such that top quarks can be
considered massless, yet within the regime of validity of the
EFT. Then, for all of the zero- and two-fermion operators
we consider, the amount of entanglement produced in the
SM is decreased by the squared SMEFT correction, while
the behavior of the linear interference terms depends on the
sign of the corresponding Wilson coefficient. For suffi-
ciently large negative values of the coefficient, this point of
maximal entanglement can extend to a larger region.

Moving on to the gg-initiated channel, contributions
arise from O,; as well as from the four-fermion operators.
The latter can be classified based on their behavior upon
top-quark charge conjugation, see Appendix A2 and
Ref. [42]. At linear order, we observe that AZL. and
Clegr are only affected by the combination of operators
corresponding to two vector or two axial-vector currents,
whereas the combinations consisting of one vector and
one axial-vector current only enter in the Bi coefficients.
The SMEFT corrections at quadratic order are more
involved, and in particular also include contributions from
the singlet operators. The analytical results can be found
in Appendix A 3.

The linear and squared corrections from the SMEFT in
the gg channel are shown for the example of O,; in the
lower panel of Fig. 2. There are no contributions to A at
threshold, even at the quadratic level, whereas at high
energies, the linear and quadratic effects may modify the
level of entanglement around the SM point of maximal
entanglement, where the contribution of the latter always
decreases the concurrence at high pr (the former of course
depend on the sign of the respective Wilson coefficient).

In order to explore these effects in detail, in the following
section we study the angular-averaged concurrence and the
explicit quantum states.

B. Angular averaged concurrence

To study the threshold region, we switch from the
helicity basis Eq. (6) to the beam basis (with the z axis
along the beam direction), and perform the angular inte-
gration as suggested in [18]. The analytical expressions for
the Fano coefficients derived from the averaged density
matrix in Eq. (11) can be found in Appendix B.

The new physics effects on the corresponding concur-
rence as a function of f are depicted in Fig. 3 on the

example of O, (bottom) and (’)52) (top), setting the Wilson
coefficients to ¢;/A> = £0.7 TeV~2, where the blue

055007-5



AOUDE, MADGE, MALTONI, and MANTANI

PHYS. REV. D 106, 055007 (2022)

®

— SM

--- linear

""" quadratic

— /A2 =0.7/TeV?
— ¢i/A? = —0.7/TeV?

§0.6 "=l

0 02 04 06 08 10 02 04 06 08 1
B B

FIG. 3. Concurrence averaged over solid angle as a function of
the top quark velocity S for cg) (top) and ¢,; (bottom).

(orange) lines correspond to the positive (negative) sign.
The black solid line indicates the value in the SM, whereas
the dashed and dotted lines show the concurrence including
linear and quadratic contributions.

Let us first consider the effects of O,; on gg-initiated
production. In the SM, the angular-averaged concurrence
decreases from C[p] = 1 at threshold towards high energies
as a function of . This behavior is not modified by the
EFT. However, the critical point where the entanglement
marker crosses zero changes depending on the value of the
Wilson coefficient due to the linear contribution, and is
further modified by the squared corrections. Furthermore,
as already seen in Fig. 2, the linear EFT contributions do
not affect at all the concurrence at threshold. However, the
effects from the squared operators O,; and O can lead to a
decrease of the level of entanglement, as can be seen in the
lower right panel of Fig. 3. We delay a detailed discussion
to this effect to Sec. IV. The operator O, does not induce
any of such changes.

In the ¢g channel, where the concurrence of the angular-
averaged state vanishes in the SM, the corrections induced
by the dimension-six operators are too small to induce
entanglement. The new physics contribution in this chan-
nel may, however, still affect the concurrence when
considering the total spin density matrix Eq. (4) in pp
collisions. The effect here comes mostly from the correc-
tions to A, as these determine the balance between the gg
and gg contributions to the total density matrix. Hence, in
the case of pp collisions displayed in the left panel of
Fig. 3, we can observe an effect of the EFT already at
threshold, even at the linear level. This also holds true for

four-fermion operators, such as for instance (’)E? shown in
the upper panel.

IV. QUANTUM STATES IN THE SMEFT

In this section we consider the effects of new physics on
the quantum state of the ¢7 pair in different regions of the
phase space. Observables directly related to the quantum
state probe different and complementary directions in the
parameter space compared to the scattering amplitude. In
the following, we discuss in particular two phase space
regions of interest, i.e., the production of top quarks at
threshold, characterized by high statistics, and the produc-
tion at high pr in the central region, where top-quark mass
effects become negligible.

A. Threshold region

In the SM, the gg initiated channel at threshold is
characterized by a pure maximally entangled state as in
Eq. (13), with the top quark spins forming a singlet state of
spin 0. The presence of new physics effects can potentially
change the picture. In particular, we find that the chromo-
magnetic operator O,; and the triple-gluon operator O
change the quantum state, which is then not a pure state
anymore. As a matter of fact, these operators induce the
presence of a triplet state of spin 1, and the density matrix is
therefore described by a mixed state:

Py (0.2) = pyg|®T), (BT, + (1= pgg) ), (¥, (18)

Note that here the spins are defined with respect to the
beam direction p. The probability of being in a triplet state
is given by p,, = 72m?(3v2m,c; + ve,)?/TAY, which
shows that no linear effects are present and only the squares
contribute. In particular, we find a flat direction for a
specific combination of ¢ and ¢, while the operator O,
does not affect the quantum state at threshold.

For the gg channel, in the SM the spin density matrix is
characterized by a mixed separable state:

pN0.2) = I, (M 5 1L, (L (19

Specifically, the probability of having both top and antitop
quark, with spin up (down), is 1/2 in the SM. The EFT
effects in this case do not change the structure of the state,
but the eigenvalues of the density matrix are affected and a
preference for one spin direction is in general observed:

Pag (0.2) = pag 1) (Pl + (1= pag) L4 )p (WL . (20)

(8).u
where p,; =4 —4%4-+ O(1/A*), which also includes
corrections at linear order in the Wilson coefficients [43].

Here, c@‘” = (—c(Qgt’il) - cgé3> +c® - cg) + cgi)/4. The

spoiling of the symmetry is due to P-violating interactions
induced by dimension-six operators but is also present if
electroweak corrections are taken into account.

055007-6



QUANTUM SMEFT TOMOGRAPHY: TOP QUARK PAIR ...

PHYS. REV. D 106, 055007 (2022)

Pyg [Vooo] pyq (%]
0 1 2 3 4 5 46 48 50 52 54

.02 L - 1 .
01 -005 0 005 01 -1 —05 0 05 1
/N [TeV?) e /A2 [Tev—2)

FIG. 4. Probability to produce a triplet (left) or both-spin-up
(right) state at threshold (f =0) in the gg or gg channel,
respectively. The contour lines indicate the relative corrections
of the EFT to the scattering amplitude.

In Fig. 4 we show contour plots of the probabilities p,,
and p,;. In the case of the quark initiated channel, we

choose OS? and (’)(5[’13) as a pair of representative four-
fermion operators. In addition to the probabilities, we also
plot contours of the relative EFT effects on the scattering
amplitude, in order to highlight the complementarity of the
two observables, which are clearly probing different
directions in the parameter space.

B. Central high-p; region

The other interesting region to consider is the one
characterized by high p7. In the following, we set 8 =
7/2 (z = 0) and look at the probability for the top quark
pair to be in a triplet state

Py = (YT ]p[¥7),, (21)

which, in particular, is the quantum state for the SM in the
limit of # — 1, both in the gg and the ¢g initiated channels.
However, as already discussed above, the limit f — 1 is ill
defined in the presence of higher dimensional operators.
We therefore study the probability as a function of the
invariant mass § of the top quark pair (or partonic center-of-
mass energy), where the EFT can be considered valid
if § < A2,

In Fig. 5, we plot the probability of the quantum state to
be in a triplet configuration for the gg channel, depicting
the linear (dashed) and quadratic (dotted) effects of O,;
(blue) and O, (orange) for a Wilson coefficient of
c;/A*> = 0.1 TeV™2. As we can observe, the probability
in the SM converges towards 1, while the EFT effects
become particularly manifest at high energy where we start
to see deviations in the probability. Similar effects are
observed in the quark/antiquark initiated channel. Once
again, the interesting aspect is that the observables related
to the quantum state are probing a different direction in the
parameter space with respect to the scattering amplitude,

1.0 ————T————

— ¢g/A? =0.1TeV2 ]

0.8 F
I - C¢G/A2 =0.1 TeV2 1

0.6 ]
N
=
&‘ -
0.4
S 0.90
0.2 SM
b --- linear :
[ quadratic (.85
0.0 n n n n 1 n n n n " " " " 1 " " " 1 " " " "
0.5 1.0 1.5 2.0 2.5 3.0
§ [TeV]
FIG. 5. Probability for a triplet configuration in the gg channel

at cos @ = 0, including linear and quadratic SMEFT contribu-
tions. The inlay enlarges the high energies.

offering new and promising ways to disentangle the
various higher-dimensional effects.

V. CONCLUSIONS

We have proposed to use quantum observables, such as
entanglement, to assess the impact of new physics effects
in high-energy interactions. Using two measures, we have
explored how linear and quadratic effects from SMEFT
dimension-six operators affect entanglement in top quark
pairs at the LHC. In particular, we have focused on two
phase-space regions, at threshold and at high energies,
where the SM produces maximally entangled states.

With entanglement being at the core of quantum mechan-
ics, one might hope that it will provide fundamental
information on the structure of the effective field theory
as much as unitarity, analyticity, and positivity do on general
properties of the scattering amplitudes. At a more practical
level quantum observables probe different directions in the
SMEFT parameter space with respect to the usual differ-
ential observables and therefore can provide new constraints
to be used in global fits.

In this first quantum SMEFT tomography study, we have
found that the linear interference effects of the dimension-
six operators studied here (0,5, Og, O,, four-fermion
operators) vanish at threshold. Hence, no contribution to
entanglement is present in this case. This is obviously
different across the phase-space where whether the degree
of entanglement is increased or decreased depends on the
sign of the Wilson coefficients. This can be seen by the
change of the boundaries of the entangled phase-space
regions for the different contributions.

We have also observed that the dimension-six squared
contribution to the concurrence is always negative,
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regardless of the phase-space point. This includes the
threshold and high-energy limit, where it can also be zero.
Therefore, this contribution always goes in the direction of
decreasing the entanglement between the top quark pair,
which is most relevant when the SM produces a maximally
entangled state.

We are therefore able to answer the questions posed in
the introduction as follows. The line of maximal entangle-
ment in the SM at threshold is unchanged by linear
interference effects, while squared effects decrease the
entanglement by inducing a triplet state. In this case, no
new regions of maximal entanglement are induced by the
SMEFT. However, for large values of the Wilson coef-
ficients, the linear contributions expand the point at high
energy to a wider region of phase space.

While these statements hold true when investigating the
individual gg and ¢g production channels, the picture is
more involved when considering full pp collisions. In this
case, new physics can modify the entanglement even at the
linear level, predominantly by altering the balance between
the two channels.

Being exploratory, our study opens a number of questions
worth being investigated. The most natural one is how much
these new observables will help in better constraining top-
quark SMEFT operators in the global fits, also in comparison
with usual spin correlation measurements [25,26]. Another
one is whether a quantum SMEFT analysis could be used for
other processes relevant for constraining new physics at
present and future colliders. A promising one is the
production of a pair of massive bosons that, being a bipartite
qutrit system [22], offers a richer quantum structure. Finally,
it will be interesting to explore whether the nontrivial
quantum behavior that we have identified in the SMEFT
is the result of the employed approximations (such as tree-
level computations and considering contributions up to
dimension six) or is deeply rooted and maintained at higher
orders both in the gauge couplings and in the EFT expansion.

|

0%V = (017, T*01)(@Lr"Tqy),

Ogg) = (Tgy, Ttg) gy Tug), @

8 ? a By La
O = (017, T0,) (Agy* Touy),
OF = (fry, Tt) (317" T*q1),

with the corresponding singlet operators given by the same
expressions but without the SU(3) generators 7. Here, Q.
and ¢; denote heavy and light left-handed quark doublets,
respectively, and up and dy are the right-handed light
quarks.

The Fano coefficients of the expansion in Eq. (2) are
obtained from
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APPENDIX A: SPIN-DENSITY MATRIX
COEFFICIENTS

We calculate the spin density matrix Eq. (1) at LO
analytically, including both linear and squared contributions
from the SMEFT operators, using FeynCalc 9.3.1 [44—46] and
generating the contributing diagrams with FeynArts 3.11 [47].
We use the SMEFT@NLO [37] FeynRules model [48]. The
relevant operators for our analysis are [37]

Og = g, PG GGy (Ala)
v\ s

Osz = <(PT(/7 - 2) Gﬁ G,w, (Alb)

O = 9,(Qo" T*1)pGy, + Hee., (Alc)

where ¢ is the Higgs doublet, as well as the color-octet and -
singlet four-fermion operators

O(ng) = (017, T%c* Q1) (G r"Tc"qy). (A2a)
i = (rr, T ) (dgy Ty, (A2b)
O(Q831 = (QLyﬂTaQL)(aRyﬂTadR)v (A2¢)

(A24)

- 1 ~ 1 )
A:Ztr(ﬂ2®1]2R), szztr(01®‘l]2R),
1

- 1 . ~ . .
Bl_ = Ztr(ﬂz ® O'ZR), Ci,j = Ztr(o" ® O'JR). (A3)

We then expand the coefficients X = A, C
new physics scale A as

S
ij» and B in the
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—x0 ¢ L xo 1y

X A? A?

(A4)
where X© corresponds to the pure SM, X( is the
interference between the dimension-six operators and the
SM, and X ) is the dimension-six squared contribution.

In order to obtain the density matrix for the full pp
collision, we use the luminosity functions [49]

i \[ v ‘iffg< :)fg@

where & =3/s, ¢ =u, d, s, ¢, b, and the f,(x) are the
parton distribution functions (PDFs). The additional factor
of two in the quark luminosity function enters as the (anti)
quark can come from either proton. We use the NNPDF4.0
next-to-next-leading-order (NNLO) PDF set [50] with
ay(mz) = 0.118 provided by the LHAPDF6 [51] interface,
and evaluate the PDFs at the factorization scale Q%> = §. We
assume a top quark mass of m, = 172.76 GeV [28].

1. SM coefficients

For completeness, we here first present the Fano coef-
ficients for the SM [52]. In the gg channel, we obtain

A99:(0) —

Foo(1+202(1 = 22) = p*(z* = 222 + 2)). (A6a)

Cir — —F, (1 =282 + p*(z* = 222 + 2)), (A6b)
Cl Y =—Fy,(1-222(1=2)p = (2-222 +2)Y), (A6c)
CH'Y = —F,(1 - 2=22 + 292~ 4)).  (A6d)
U = Fo2a(1 = 20251 - 2, (A6e)
and in the gg channel

A4a0) =F,q(2+p*(22=1)), Cit = Fyf*(2=1).
CiO = F (B +22(2- ),

CHO =F g 2= =22 (2-)).

CIO =22F .\ [(1=2)(1-p2), (A7)

where F TP 7 and F,; = L

99 = 192(1-p222)° 18

2. Leading-order coefficients

We here list the linear contributions to the Fano
coefficients induced by the SMEFT operators in terms of
p and z = cos 6. The gg-initiated ones are given by

N 1 2 2,2 7 2 .4 2 2
A'qg’( ) gs — |:gsvmt(9/)] 7+ )CtG _ - ﬁ my; - B C(pc 9gsﬁ th CG:| , (ASa)
- Bz 122 4m; — (1= p*)m;, 8
- 21 —Tq2vm pPm? 9gsp*miz*
coo(l) _ Is sV . _ ! sE , A8b
NT=FZ [12v2 “O 7 dmi = (1= pym; 7" R (A
gon() _ G5 | [gfvmt(%zzz +DNPEE -2 -+ 1)
Kk A1- 7 12V2(8222 - 1) 1G
prmy 9gspmiz?
_ 29 A8
+ 4m? — (1 —ﬂQ)m,% oG 8 G (A8c)
coo) _ %1 [g%vm,(—9ﬁ4(z — )P -T2+ ) +T)
T N- 2 12V2(f22% - 1) ¢
prmy 9g;p*miz*
_ 29sP iz | A8d
= (- T (A4S
gont) _ g\ ! {g%vmfﬂzza —2)OF + (B -2ZOF(E-1)+7)-2) |
g -3 242/ - DE - D2 - 1) ?
9¢2m?z [1-72
+ ) 1 —ﬂsz . (A8e)
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Note that at threshold (# = 0) only c¢,; contributes. For
¢, and cg, we have that Ave-(1) — c99:(1),

For the gg channel, we organize the 7 four-fermion octet
operators defined in Eq. (A2) in terms of their behavior
under top charge conjugation [29,38,42]. The combinations
of Wilson coefficients contributing in the uiz or cc initiated
channels are given by

c%“ (C(Qq> + C(Qq) +c® 4 ng) + c(Ql)l)/4

0 (e 8 1 ) D~

cgg&’" = (—cg(’;) - C<Qé) + cgu) + cgq) - cQu)/4

vy = ey — gy el el +eg)/d (A9)

where the (axial) vector current is odd (even) under charge
conjugation. The corresponding combinations for the dd

and s5 initial state are obtained by replacing u — d in the

(8.3)

Wilson coefficients and flipping the sign of ¢, whereas

the color-singlet coefficients are obtained by simply
replacing (8) — (1). In terms of these combinations, we
obtain the following simple expressions for the spin-matrix
coefficients for the uii- and cc-initiated channel

4gsm
Aqq (l) Wt) \/_gs ( )CtG
(1 2\32) 8 (8).u
+ 2= (1=22)p)cyy +22pcyy" |, (AlOa)
~qq.(1 gsm 4:52(1_2 ) 8).u
gaa () _ A;ch; . (A10D)
o _ 2gim;
=g )[2fgy (1=P)eG+ 2+
9 B2V — 952 B)u (8).u
2-p)(1=22%)cyy +4Pzcu, | (AlOc)
Jip 4g’m (1 -7?) v
C;];](l) _ sy D) 2_ 1= 2
+(2- ﬁz)c(vs&’”] , (A10d)

mé 1

qa() __2gsm; 127
et = - onz 1 —p Vg (2 Pzci
e 2l (a10¢)
2
<t (1 m 8).u 8).u
B q4.(1) _ =4q 9/\12 7 (ﬂ(z2 + 1)c2‘), + ZZC% )
(A10f)
praa(l) _ ﬁ Ny Vs "). (Al0g)
9A2 AV VA

The corresponding coefficients for the dd and s5 channel
are again simply obtained by replacing u — d.

We note that, at linear order, the Fano coefficients do not
receive any contributions from color-singlet operators. As
one might expect, the Fano coefficient A9%() which is
proportional to the cross section, depends only on ¢, c%”,

and CE‘SA)’" at linear order. The same is true for the C"Z"(l),

970 and qu ) while ¢92:(1) only depends on ci,‘), . The

coefficients BjE on the other hand, depend on the other two

linear combinations, c&,g /i'” and Cfxe/ , and only contribute to

the concurrence at quadratic order, cf. Appendix C.

It should further be noted that the expressions above
assume that the quark is traveling in the positive z direction.
If instead the antiquark is traveling in the positive z
direction, then we need to flip z —» —z (where now z =
cos @ instead of the coordinate z). In addition, we pick up an
overall sign in C,; and B, as the unit vectors n and r of the
helicity basis, Eq. (6), change sign [26]. As a result, when
adding the different initial-state contributions according to
Eq. (4), the contributions of the operators proportional to
the c44 and cy, coefficients vanish.

3. Quadratic coefficients

The dimension-six squared contributions to the gg-
induced coefficients are

A99:(2) = L

(9B + 457 (322 +4) - 37) , 2452 m} 2
- 24mi(p*z* - 1 (8 = 1ym3 + 4m?)> "¢
27{(1 = p*2%) , 2V2B2 2om, (2 — 1) 9giv

A1 -p?) (P -

P — 1+ 80 90 2,700

(Alla)
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20s2) oomi 1 [gi* 9B (22 = 2) +26°(82° — 13) + 19C2 N 2432 m? 2
e p 24(p2* - 1) GO (B = )m3 + 4m?)E ¢
27g5(p** - 1) 2V2p2g2om, (2% — 1) 9gtv
e T it , Allb
4(,32—1) CG+(,3222—1)((ﬁ2—1)mi+4m%) CtGCwG+2\/-2—mtchCG ( )
N 41 [gh? 1
e =2 . 9FOZ2(2* = 2) + fH(—182° + 2524 — 1222 — 14
W S AT a1 = P S D) A I8 25— 122 - 1)
2482 m*
2(—28z% + 8122 + 12) — 1822 — 19)c3. — ! 2
HPEBE A S )= I8 = 0~ G (1= R
276:(1=2=p)2) , _ 2V2g2om (1 - 22) o
A1 - ) O (1= P2 (4m} —mi (1= p2)) OO
4 1=(2 = 2\ 2
L 99501 = (2= )z )c,GcG], (Allc)
2¢/2m,(1 = ?7?)
4 4,2
~g0.2) _m; 1 gsv 1 6,2(,4 _ 0.2 19 41826 — 5754 2
99.2) — Tt - - 5774 15222~ 14
C 4]_ﬁ2{24m[2(1_ﬁ222)2(9ﬂz(z 27 +2)+p (182 '+ 52z )
242m*
2(28z* — 5772 4 58) + 1822 — 37)c2 ! c2
+ p°(28z -+ 58) + 18z )C’G+(4m2—mh( — ) CoG
279?(1 _(2_ﬂ2)z2) 2 2\/_g§1jm,ﬁ2(1 _Z)
- %) gt o) 7 C1GCoG
4(1-p°) (1 =p22%)(4mi — mj(1 = %))
9 4 1=(2—= 2\ 2
_9gsv(1 - (2-p)z )CtGCG:|7 (Al1d)
2v2m,(1 - f°2)
4 1 gt 1
e T g — 14483 (1 = 232 4 16822\/1 — (1422 - 23
r A4m192m(—ﬁ2z2)2( Fell 2P+ 1652V (140 - 23)
27 1-22 2232 vm, PV 1 — 22
+ 1442\/1—22)6,2G+79§Z .y cé—( — a4 m’ g [7’2))C’GC"’G
9gtvzV1 — 22 }
IRV T el Alle
V2m,(1 - p22) 19 (Alle)
while for gg we have
_ 4m gsv gv u “
AT S TR [ m (- P) - B + D)y + ~V2(1 = )" + Bl e
8),u
+ RO (2 +1>+2<c£,2 >2<z2+1>+z2<9<c2& )+ 2(eip" ) +9(chy ) + 2(chy)?
s 8).u 1),u 8),u )u u 1),u 8),u
+9(chy ) + 2(chy >2>+9< v >2+2< W = 9(ehr")? = 2(ey")? = 9(ehy™)? = 2(chy)?)
1),u u 8 8),u
+4Bz(9ciy ey + 2e et + 9y 2 + 2" (v/i )
I8 + 42 + 18(c)2 + 4<c‘é‘&’“>2] , (A12)
~q3.(2 4m4ﬁ2(1—z ) gs 1).u
Y = SN —( = P)el + 9y + 2" + 9l + 2" = 9(eyy")?
(8).0y2 (D.aiy2 (8).0y2
= 22— 9l = 2 ] (A12b)
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i = <1f’Z§)2A4 o <1—ﬂ2><z2<2—ﬁ2>—ﬂ2>cﬁc+ﬁf4ﬁ<1—ﬁ2>z<ﬁcﬂ'“+zc<f&"’>c@

+ PO )@ + 1)+ 2(c5") (@ + 1) + 22(9(chy™) +2(ciy™) = 9(ehn™)? = 2(eiy")?

—9(ehp™ ) = 2(eW™)?) + 9y + 2(efh )2 + 9(eha™)? + 2(ehy )P + 9(e ) + 2(chy)?)

+ 4By U + 2e e + 9k eyt + 2e ey

+22209(c)2 4+ 2(eB)2 + 9(e )2 + 2B ))}, (Al2¢)
C(r{?.(z) :312(]_;2> [941}2 (2 =382+ pY)ck; + 92 2(1 ﬁ2>cvv CiG

\u s s s s U 8),u
— RO+ 2(e 2 + 9yt +2<c2& )2+ 2(e™ ) + 9(ehu™ ) + 2(chn™)?)

1),u 8).u 1),u 8).u
98— 2 + 42 1 18(e 2 1 4l ﬂ , (A124)

- 8m?
¢ _ !
rk (1 _ ﬂZ

?
Du (1)u 8).u (8),u
+B(9ciy"c (V& +2 iﬁ ey +9chy ey + 2y ey

202 1 2y +9<c$&“>2+z<c%“>2>], (Al2e)

(1= )t + E0a(2(2 = ) 4 e

m;

where, again, the contributions above are for up-type quarks, whereas the down-type contribution is obtained replacing
u — d. At the quadratic order, all the combinations c\s", !5, ¢\, and ¢ as well as their singlet counterparts

contribute.

APPENDIX B: ANGULAR-AVERAGED COEFFICIENTS

We now execute the integration over the solid angle according to Eq. (11), switching from the (top-direction dependent)
helicity basis Eq. (6) to the beam basis. Averaging over the azimuthal angle, the correlation matrix C;; becomes diagonal
with two identical entries, C|, = C,, = ny, and the only nonvanishing component of the polarization vectors is BZ. We are
then left with the integrals

Rop) = [ AP o) = [ delBi(pn) V1= 2B (.2)
Coalh) = [ el Cualp.2) + (1= 218, (5.2) + 22V1 = 2C(5.2)
Cralp) =5 [ delCun(p.2) + (1= 2)Culp2) + 2C,(p.2) = 221 = 2Cn(p.2)) (B1)

In the SM, we have [18]

i 1 rtanh
Ay = [ 59+ 314 +2(33 — 182 + ) y} : (B2a)
i 1
e — R [879ﬂ6 34134 + 44507 — 2940 + 4(T2* — 7457 + 135)1/1 — B
rtanh
1 30(88 — 5345 + 1515 — 18142 + 98 — 2(178* — 6642 +49)1/1 — )2 a; ﬁ] , (B2b)
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. 1
CUW — —— 122075 + 10244 — 2225 + 1470 — 2(72* — T454% 4 735)4/ 1 — 2
N Tl P+ (726 = 745> + 35)\/1 =
rtanh
+15(334° — 116p* + 1818> — 98 + 2(178* — 66 +49)@) : a; ﬂ]

in the gg channel and in the ¢g channel we obtain

a0 2= =21-p

jaa0) _3=F rar0) _ =37 +4/1-F
Ag = Cz.,sz =

27 135 Cra” = 135
The SMEFT contributions at linear order are given by
< 9p — 16artanh m?Bartanh f3 p — artanh f3
A‘M’(l) _ gsmt QS'U 92
Q A? | m, 12728 €6 + dm? —m3 (1 - p?) €06 295 8 Gl
Fao() _ _m_,2 V2gtv (1470 — 18654% + 5298* — 72/3° n 1470 — 11308* + 2644
w0 360m, p1-p2 B
9p% — 684* + 157p% — 98 + (B° — 278* + 108> — 98)+/1 — f* artanh
+ 15 CtG
PN1-F p

gm?2f3 — (2 — p?)artanh 3
B d4mi—mi(1-p?)
3gE4p — 6B+ (P —6p)\/1 = % + (6 — 68> +3(2 — p?)/1 — ?)artanh }
8ﬂ3 \/1——,82 ¢G>

oG

+

- 2 V24t
coe) M| VAU (41966 1 101944 — 260042 4 1470
L& A2 | 720m,54(1 - ) o 4 s

— (728 — 529p* + 18654 — 1470)4/1 — 2 — 15(1 — p2)(f° + 23/* — 1088 + 98)

3/2 artanh ﬂ) g2m?( — artanh )
G 7 5 5 C(/)G
p pam; —mj (1 - %))

L3026 =3 = (B +3)V1-F +3(1 =+ V/1-Flaranh

artanh f

—15(9p* = 594> + 98)(1 — )

G|»
8 V1=
A"I‘_I»(l) _ 49?””; \/_gs 3- ;Bz (8)~u
Q - 27A2 ﬂ VV ’
gty _ G [GU2R =44 V1= 11=32 -4V1-F .,
35N [ m, V2-2p° Cia [y vy
a1 8gsm? [g3v2 — ﬁ2+2\/1—ﬂ2 2 ﬂ2+2\/1—ﬁ2
1.Q 135/\2 H_ 2ﬁ2 CiG 1 _ﬂz V B

Bl _ 8gim; 1 —2+/1— ).
z.Q 27/\2 1 _ﬁ2 VA

and the dimension-six squared corrections are
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o) _mi 1 [gi?36(7 + ) +16(1 — f*)artanh f 2 24m 2
NI m] 245 (4m? = m3 (1= )7 70
943 — p? —(1=p> h 94}
+ Zé . _ﬁz ck + Zﬁggmtvﬂﬁ(‘miz = ih)(aﬂanﬂzf) 1GCpG T 2\}(]_ cthG} (B6a)
o i 1 [ﬂ (429ﬂ6 —2773f* + 710082 — 4800 — (288* — 47004 + 4800)1/1 — 2
AL = B2 [360m2p°
rtanh
+30(8° — 128° + 1415 — 2904 + 160 + 10(54* — 2152 + 16), /1 — p2) ol a; ﬁ)c,G
8m?p? . 9gpE - 7+8\/1—ﬂ2 2V2¢2mw (455 — 1083 4 6p
e =R T 20 1 RN <4mg Gy
6B — 7 1—p)?+ 367 +2)\/1 - p*
+4m,2 —(1=p*)m3 L=p - ( )4 m? — (1 —/}z)mh) artanh ﬁ) €i1GCoG
3v2gt
+W 1__ﬂ2(8ﬂ5 =20 + 128+ (B° — 145 + 128)\/1 - p*
~6(1 = )21 = 7) + (2= )1 = Pharant Proc]. (B6b)
99-(2) m_j‘ 1 giv’® ( 6 4 2 4 2 )
s =i 5 [360’%%/34 4885 + 10944* — 355082 + 2400 + (144f* — 23504 + 2400)4/1 — f
rtanh
F15(8° + 2885 — 1598* + 29042 — 160 — 10(54* — 2152 + 16)y/1 — p2) e 2 a; ﬁ)c,G
8m?p? 2 94 3% — 11 +44/1 —ﬁ2
T om0 1

2V2g2mv / artanh S
_3ﬂ2(4mt2_m%l(1_ﬂ2)) <1+ 1_ﬂ2)<2ﬁ2_3+3(1_ﬂ2) ,B >CtGC(/)G

3;5%3:” <ﬁ4 +TP =6+ (47 —6)\/1 = +3(2 =347 + p* +2(1 - p2)3?) ma;llﬁ) CtGCG:| . (Boc)

+

~ 7.2 8m? v? 3 2ﬁ2 gv 1 8)
Age = 27/\;4 s cic + 6\/_ Rl cvy
3_:62 1),u 1).u 8),u 8).u
+ (11— (9(05/3/ )+ 9(C£/2 )2+ 2(0&,3, )2+ 2(0&,2 )?)
2ﬂ2 1),u 1),u 8),u 8),u
T2 o7 Oen" ) + 9y + 20 + 24y | (B7a)
qz2) _ Smi 1

e L IR LRt
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o 8 ;1 1 4 2
o :13?/\4( — )2 [g (1=-p)2-p+ ZM)C%G
+2v2% g0 C2(1 =)+ =P 1= Peely”

+562(9 (CAA ? +9(CAV )2+2(C£€2’u)2+2(c;8‘),'“)2)

(2= 201 =B Oy )+ 9(cha™)? +2(cpy) + 2(ch ™)) | (B7c)

APPENDIX C: CONCURRENCE (1)2
_ 1 1 B;
Let us now take the SM plus dimension-six operators  C; = CSO) + FC,O) + e C,('z) - F"«))v (C2b)
and, for simplicity, work in the basis where C;; is diagonal. 1+C;

The eigenvalues of C;; and the elements BjE can be o B _

expanded as Y the eigenvalues of w are then given by I — C3 & (C; + C»)
and I + C; £ (C, — C,), and the concurrence simply reads

1

1 1 1
C;=CV+—cV+—c? and B,=—B" +—B?,

2 i 4 A2 4 +C3+|C, F G| =1
A A A A CM:maX@’ 3 +1C1LF G ) (C3)
(Cla) 2
where we used that Bf =0 in the SM and that, in the ~ Further using that, in this case, the 7 direction is
absence of CP-odd operators, B = B;. Defining uncorrelated with the other two directions, i.e.,
Cu=0C,=C, =C,, =0, as well as that the polariza-
~ 1 B(1>2 B( 1)2 tion in this direction vanishes, i.e., B> = 0, we see that also
I=1- G ! © 2 ol (C2a)  B; = 0 in the diagonal basis. Including the dimension-six-
1+, 1+G squared contributions, we obtain
|
c® _Lic0  ~0 \/ O _ c02 | 40002 ca
1.2—5[ e+ G (Cr' = Cpy)” +4C, 7], (C4a)
W) _ L, o (CF - - ) +acy'cl)
V(€9 = Oy + 4c?
2 2 0 0 2) (0
c_Llco ooy (¢ - cghiew’ - c) +4cicy
122 "" ) _ ~0\2 402
(Crr = G )" +4C,
(i’ =)y =l (C - cgr
+ 0 _ O\ 4 0232 (Cde)
[(CH — Cl)” +4C,)7]
Pt =t (C4d)
as well as
( )5 (0) (1 ) (0)2
2Cr =+ B - + rr - + 4Cr
B\ = ‘ \/ ) (Cde)
2
0)2
\/4C5k) cy - kk - \/ Cr' = +4C£k) )
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By =

B<r> ¥ - kk +\/ ' -c +4Crk) B 2C5k)

(C4f)

\/ acl? +

rr_ kk+\/ rr_

2
Tracy”)

APPENDIX D: PROBABILITIES

In Sec. IV, we have defined the probabilities to find the top quark pair in a triplet state. As a function of the Wilson

coefficients, these are

72

Pgg = szz@\/imtcc + ve) (D1)
(8).u 4
1 c 8m?* (vV2 u u (1).u e (8).u
pqE] ==-—4 VAQ 4t Ci?,z ¢ — 9C$/l/i’ Ci/l\)/ + 2C§§f)\ CS;\)/ ’ (D2)
2 A A ‘
at threshold, while for the high-energy central region (z = 0) we have
B 4ﬁ2mz 487 m; (1 +26° = 2f3*)
= TV20(1 —4p4(1 = p?
Poe T o — 2 T N1 =2 — 25) Vau(l—4pH (1= ) e + 2 —ﬁ2)mh +am? "6
—8ﬁ2m, ST66(f> = 1)(68* — 65° = T)m§
T =P =2 2 G (B> = )mj, +4m)>
336V2/% (% — 1)(48° — 65 + 85> — T)vm]
+ 2((32 2 2 CiGCpG
gv((ﬁ - 1)mh +4mt)
—7(162(2f* = 2> — 1)ckm? — 54v/2(2p° — 4p* + [ + Dvmcge,g
+ (28812 — 112510 + 28488 + 5064° + 5074+ — 2317 + 26)v° c,G> (D3)
1 4m,v\2? 84°m? 6
pli = - ¢ O+ 3p% — 8% +4) gt c?
¥ 2 _/32 (2 —ﬁ2)2A2 ¢+ (2 [32) ( —ﬂ2)2 4A4 (( ) tG
+2V2(8* = 38 + 2)@mvegeyy” — (2= mAO(ciy ") + 9(ely™)? + 2((cht P + 9(ely)).  (D4)

where we note that the quadratic contribution has a pole at f = 1.
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