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Abstract: Equipment, sound sources, operators, microphone placement, calculation techniques, and
thermal–humidity measurement conditions all have an impact on the measurement of impulse
responses when several channels are present. However, the thermal–humidity variable, which is
a significant component of these factors impacting the assessment of acoustic characteristics, is
commonly overlooked in research. The effects of altering temperature, relative humidity, and air
velocity on acoustic parameters are investigated in this paper through experimental activities carried
out in an experimental room. The patterns of fluctuation of a range of room acoustic characteristics
are examined, data are acquired, and statistical analyses based on R (language and environment
for statistical computing and graphics) are generated in order to ascertain the relationship between
the variation of acoustic parameters and the variation of thermo-hygrometric parameters. Finally,
a statistical analysis reveals relationships between thermal and hygrometric variables and interior
acoustic characteristics.

Keywords: room acoustic measurements; thermo-hygrometric conditions; uncertainty of room
acoustic parameters; R; statistical analysis

1. Introduction

The acoustic characteristics of an indoor environment can have a significant impact
on a user’s stress levels. Thus, the design of acoustic parameters within the indoor envi-
ronment must be carefully considered and implemented in order to ensure a healthy and
comfortable living space. Studies have shown that the acoustic environment can affect the
stress levels of users, thus making this a vital factor in the design of indoor environments [1].
Furthermore, acoustic parameters must be designed with the aim of optimising the user’s
experience and ensuring a pleasant atmosphere [2]. Variation in the measurement of
acoustic parameters depends on a variety of factors, including the equipment’s properties,
the operator’s skill, the location and quantity of sources and receivers, post-processing
techniques, the measuring method, thermo-hygrometric circumstances, etc. [3]. These
factors are frequently regarded as measurement uncertainty.

In the field of acoustics, the accuracy and assessment of experimental values are of
the utmost importance. This is because the experimental values must be in line with the
set regulations and standards. This is especially important in the areas of architecture
and environmental science, where a precise understanding of the acoustic environment
is essential. To ensure compliance with legal requirements and standards, it is necessary
to ensure that experimental values and their evaluation are both correct and reliable.
The accuracy of acoustic measurements has an impact on the determination of correct
experimental values. In acoustic measurements, uncertainty is defined as “a characteristic
associated with a measurement result that characterises the dispersion of the result and can
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plausibly be assigned to the observed value” [4]. This assertion implies that the uncertainty
estimate corresponds to a close approximation of the experimental defect [3]. In other
words, there are a number of factors associated with the measurement itself that contribute
to uncertainty in acoustic measurements or mistakes in the experimental value.

In building acoustics, several important influences affecting the determination of the
correct values of acoustic parameters have been shown in the following studies: Öqvis
et al. presented uncertainty in the measurement of air and impact insulation in industrial
prefabricated cross-laminated timber structures [5]. Researchers such as Scrosati et al. [6]
have determined that a link between the repeatability and reproducibility of uncertainty
in building acoustic measurements is possible. In addition, Mahn et al. [7] discussed the
assessment of flanking transmission in structures according to the EN ISO 12354-1 standard.

Other significant work on the topic of uncertainty in building acoustics for the twenty-
first century includes publications by Wittstock, Hongisto, Kylliäinen, Ljunggren, and
Qvist [8–11]. The position and number of sources and receivers, the operator’s skill,
post-processing techniques, and measurement method-related variables are all taken into
account in these papers. Still, the thermal and hygroscopic measurement conditions
that arise during the measurement process have been more or less ignored. Wszołek and
Engel [4] analyse the assessment of uncertainty in the noise measuring process in the context
of noise management. Uncertainty in indoor acoustics has rarely been considered in the
existing research papers, perhaps because, in this field, compliance with legally prescribed
values is lax, and the results of experimental measurements are seen as more important.
Valuable work was presented in the papers by Pelorson et al. [12], De Vries et al. [13],
San Martìn et al. [14] and Witew et al. [15]. They discussed uncertainty in the acoustic
parameters of rooms and the uncertainty arising from changes in equipment arrangement.

However, only very few have considered the importance of thermal and humidity
measurement conditions in acoustic measurements. Among the important research works
are the following: In the context of voice alarm systems, the role of temperature and
humidity in sound reproduction systems was discussed by Gomez-Agustina et al. [16],
who showed that high-frequency reverberation time was positively correlated with changes
in temperature and humidity and was negatively correlated with speech-related parameters
(e.g., STI). Air absorption effects in outdoor noise transmission were analysed in the ISO
9613-1 [17] standard, where direct correlations with temperature, relative humidity, and
static pressure were assessed. However, this did not provide a method by which these
effects can be evaluated.

This article explores the effects of varying temperature, relative humidity, and air
velocity on acoustic parameters through an experimental activity carried out in a practice
room. A statistical analysis was carried out using R to obtain relationships between changes
in acoustic parameters and changes in thermal and humidity variables.

2. Materials and Methods

The measurements were carried out in the “Roberto Alessi” laboratory at the Depart-
ment of Industrial Engineering in Bologna over a period of more than 25 consecutive hours
between 31 July and 1 August.

The room chosen for the measurements, a laboratory of approximately 650 square
metres (see the yellow area of the plan in Figure 1) used as a technical physics laboratory,
certainly does not have the acoustic quality of a theatre. However, for the purposes of the
analysis, the acoustic quality of the room was not relevant.

On the other hand, the range of variability attainable with regard to thermo-hygrometric
parameters is more significant. It guarantees a reasonably wide temperature range, espe-
cially during the summer, because the building is exposed to the sun on nearly the whole
outside surface (around 80%). Additionally, it has an intensity-adjustable ceiling ventilation
system that allows the wind speed to change from zero to a maximum of around 0.5 m/s, a
value that is evidently not high but is more than adequate for a study of enclosed situations.
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was used: 
• Digitally pre-equalized dodecahedron (Look Line); 
• B-format microphone (Soundfield MK V); 
• Dummy head (Neumann KU 100). 

The computer that creates an exponential sweep signal with a frequency range of 40 
Hz to 20 kHz and records input signals from the microphones is the main technological 
component of the measuring system. The outputs were recorded using a Motu Traveler 
MK3 FireWire sound card and saved as a 96 kHz sample rate and 32-bit waveform [18]. 
Figure 2 contains a report on the measurement method’s scheme. 

In addition, the signal thus generated was appropriately equalised according to the 
speaker used. This involved the use of a signal that makes the strength of the diffused 
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2.1. Measurements of Acoustic Parameters

To measure the acoustic parameters and record the results, the following equipment
was used:

• Digitally pre-equalized dodecahedron (Look Line);
• B-format microphone (Soundfield MK V);
• Dummy head (Neumann KU 100).

The computer that creates an exponential sweep signal with a frequency range of
40 Hz to 20 kHz and records input signals from the microphones is the main technological
component of the measuring system. The outputs were recorded using a Motu Traveler
MK3 FireWire sound card and saved as a 96 kHz sample rate and 32-bit waveform [18].
Figure 2 contains a report on the measurement method’s scheme.
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In addition, the signal thus generated was appropriately equalised according to the
speaker used. This involved the use of a signal that makes the strength of the diffused sound
as homogenous as possible over all the frequencies to make up for the non-linearity in the
frequency response of the dodecahedron’s response (as for any other loudspeaker) [19].

The monaural (W-channel) and spatial (LE and LF) characteristics derived from the
B-format microphone were retrieved following the processing of the B-format-type impulse
response. The IACF and IACC values, on the other hand, were derived from the dummy
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head’s measurement of the binaural impulse response (BIR). Additionally, psychoacoustic
examinations can make use of the data gathered through B-format and binaural impulse
response. In order to evaluate changes in the subjective perception of various musical
themes under various thermal humidity conditions, future research initiatives with this
focus are required [20].

2.2. Measurement Method

The measurement method used in this study was that of the impulse response derived
by deconvolution from the recording of an exponential sweep, which makes it possible to
obtain all the necessary parameters from a single measurement and ensures the elimination
of background noise [21].

Keeping the position of both the microphones and the sound source fixed, a dodec-
ahedron was placed at a distance of approximately 10 metres from the microphones in
accordance with ISO 3328-2, 2008 [22] and a measurement was taken every 5 min of storing
in addition to the recorded audio files and the readings of the anemometric (see next
paragraph) and thermo-hygrometric probes.

In order to have a sufficiently large number of data to enable statistical tools to be
used later on, we decided to repeat the measurement 300 times, once every five minutes.

The ventilation system was also turned on for the first 200 measurements, increasing
the intensity by an interval as evenly as possible until the maximum was reached; in a
similar manner, the ventilation was turned on from maximum power until it was turned
off. Each cycle lasted 2 h from wind speed VMIN = 0 m/s to VMAX = 0.55 m/s and
returned for a total of 24 measurements. Thus, every 2 h (24 measurements), starting from
stopped ventilation (or at maximum power), halted ventilation was returned (or reached
maximum capacity).

The next 100 tests took place with stationary ventilation (V = 0 m/s).

2.3. Measurement Equipment

A personal computer equipped with a Motu Traveler MK3 FireWire sound card with
8 input channels (6 of which were used for recording from the microphones) and sufficient
memory to store a considerable amount of data (approximately 16 gigabytes) was used for
the acoustic measurements.

With the software Adobe Audition, it is possible to output the sweep signal to the
dodecahedron and simultaneously acquire as input the six audio tracks coming from the
microphones. Thanks to AutoSweep, an application specifically developed for the experi-
ment that allows a certain number of acoustic measurements to be taken automatically at
regular time intervals, it was possible to have Audition automatically perform the acoustic
measurements and save the related data to the hard disk [23].

A dodecahedron is a type of loudspeaker with 12 faces, each of which has a diffuser
cone as shown in Figure 3a. This configuration allows the dodecahedron to diffuse the
signal in an omnidirectional manner [24]. A Look Line power amplifier amplified the signal
before reaching the dodecahedron.

A Soundfield MK V (Figure 3b) and a Sennheiser dummy head (Figure 3c) with a
binaural microphone mounted on the artificial head were used as microphones.

The Soundfield MK V is equipped with four cardioid microphones arranged in a
tetrahedron pattern which, as described in the previous sections, makes it possible to assess
the contributions of the sound phenomenon on the various reference axes (X, Y, Z, and W,
which are obtained after transforming the original A-format signal to B-format).

The binaural microphone together with the artificial head allowed the simulation of
the perception of human ears.

The Soundfield microphone then sent four signals (X, Y, Z, and W) to the computer’s
sound card and the binaural 2 (left and right) for a total of 6 audio tracks.

Through the Adobe Audition application Aurora, one can derive the desired impulse
responses and acoustic parameters.
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2.4. Instruments for Thermo-Hygrometric Measurements

For the measurement of temperature and relative humidity, an electronic instru-
ment, the BABUC, was used, as shown in Figure 4. It was equipped with a probe on
which a thermometric sensor, a resistance thermometer, and a hygrocapacitive sensor were
mounted [25]. The device can be programmed in such a way that it takes temperature and
hygrometric measurements at regular intervals and stores the data thus obtained.
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2.5. Development of the Measurements

Theoretically, the measurement of acoustic parameters requires the linearity and time
invariance of the system. However, these conditions are virtually impossible in a normal
enclosed space. Thus, the experiments in this paper aimed to test this hypothesis and
attempt to quantify the changes in acoustic parameters for changes in room temperature,
relative humidity, and air velocity. The measurements of the room acoustic parameters
were carried out using a pre-equalised ESS (exponential sine sweep) signal [19]. All the
recorded tracks were then post-processed using the inverse filter of the ESS and finally the
acoustic parameters were calculated.

Furthermore, there was only one operator for this investigation, and the same instru-
mentation was employed. The sound source and microphone were always in the same
location and orientation throughout the experiment. In utilising this method, uncertainty
in temperature and humidity variables was reduced [26]. The strength of the ventilation
system was likewise periodically increased, reaching a maximum value as frequently as
possible and then reducing in the same way until it was shut off completely.

The impulse response was extrapolated using the Aurora plugin after a total of
1806 recordings were recorded in this experiment, with 6 tracks for each measurement,
2 binaural tracks, and 4 sound field tracks pertaining to 301 measurements. The following
acoustic parameters were determined from the impulse responses:

• Reverberation time, T20 (s) and T30 (s);
• Early-decay time, EDT (s);
• Strength, G (dB);
• Clarity, C50 (dB) and C80(dB);
• Definiton, D50 (%);
• Interaural cross-correlation, IACC;
• Lateral efficiency, LE;
• Lateral fraction, LF.

3. Data Analysis and Results

In this section, the variations in temperature, relative humidity, and wind speed are
analysed, and the main room acoustic parameters are analysed. Finally, the relationship
between the measured values of the acoustic parameters and changes in temperature,
relative humidity, and wind speed, which have not been mentioned in previous research
papers, are analysed based on R.

3.1. Thermo-Hygrometric Parameters Analysis

The temperature, relative humidity, and air velocity values are shown in Figure 5.
Figure 5 clearly illustrates how the relative humidity changed in response to changes

in temperature and vice versa. This is consistent with the basic principle that there is a
negative association between temperature and humidity. In order to capture the greatest
amount of temperature variance, the experimental parameters were monitored throughout
a 25 h period that included the whole day. Table 1 shows that during the experiment, the
difference in room temperature between the maximum and minimum values was close to
5 ◦C, the difference in maximum and minimum relative humidity values was roughly 17%,
and the change in air velocity was 0.55 m/s.

Table 1. Temperature, humidity, and airflow within the room.

Temperature
[◦C]

Relative Humidity
[%]

Air Velocity
[m/s]

Average 30.25 45.15 0.15
Max 31.74 54.30 0.55
Min 26.78 37.50 0.00

Range 4.96 16.80 0.55
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Although the relationship between changes in acoustic characteristics may be un-
derstood by fluctuations in air temperature and relative humidity in the current inquiry,
further trials in winter to examine the effects of varied temperatures, relative humidity, and
more complicated environmental elements arising from human interaction on the primary
acoustic parameters of the space are also required.

The only independent characteristic that could be artificially changed by the ventilation
system was the wind speed. Figure 5 makes it abundantly evident that the most prominent
peaks and lowest values of temperature and humidity occurred when the air velocity was
close to its lowest value. This was due to the laboratory’s extremely high ceilings, which
forced hot air to ascend and generate uneven room temperatures. Thus, a more uniform
distribution of temperature was achieved throughout the lab when the ventilation system
was turned on. When the fans were turned off, the lower levels of air were closer to the
measurement equipment, resulting in lower temperatures and higher relative humidity.

3.2. Acoustic Parameters Analysis

The graphs below show the variations of the room acoustic parameters at different
frequencies. The graphs report the reverberation time (T30), early decay time (EDT),
strength (G), definition (D50), clarity (C50 and C80), lateral fraction (LF), lateral efficiency
(LE), and interaural cross correlation coefficient (IACC).

The statistical findings of the data may be divided into four different curve types
according to the significant auditory characteristics reported:

• The frequency bands show similar parametric trends, although with more or less
distinctly different amplitudes (EDT and G, as shown in Figure 6a,b);

• The various frequency bands show different and distinct trends, sometimes inverted.
However, the overall trend is still clearly discernible similar to the temperature and
humidity parameter curves due to changes in air velocity (C50, C80, and D50, the overall
variation is still discernible despite the insignificant change in the lower frequency
range, as shown in Figure 7a–c);
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• The frequency bands show that they are not sensitive to variations in temperature and
humidity despite some fluctuations in the mid and high frequencies (IACC, as shown
in Figure 8);

• Lateral fraction (LF, as shown in Figure 9a) and lateral efficiency (LE, as shown in
Figure 9b) show similar parametric trends. It can be clearly seen that the higher the
frequency, the more sensitive it is to variations in temperature and humidity;

• Unpredictable patterns and seemingly indistinguishable effects (T30, as shown
in Figure 10).
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3.3. Regression Analysis Using R

After determining the variations of the acoustic and thermo-hygrometric parameters,
a regression analysis was performed on both data sets using R, a programming language, to
investigate the relationship between the acoustic parameters and the
thermo-hygrometric parameters.

K-fold cross-validation was used, which is an effective method for validating machine
learning models by dividing the training set into K subsets and then validating the data for
each subset, ultimately averaging the K validation results to evaluate the fit of the model.
In this study, five-fold cross-validation method to conduct a regression analysis on the
acoustic and thermal humidity parameters has been used. k = 5 was determined from the
empirical data, which is a relatively acceptable parameter value as it can effectively divide
the data in order to more accurately assess the generalisation performance and prediction
performance of the model [27].

The univariate regression analysis produced the best results after testing. Temperature
and humidity were independently regressed for the acoustic parameters, and the results are
displayed in Appendix A. The coefficient is the regression coefficient, p is the p-value, RMSE
is the root mean square error, R2 is the R-squared, and MAE is the mean absolute error.

The p-value is the probability of occurrence, given that there is no linear relationship
between the two variables. As a result, when the p-value is minimal, i.e., p-value < 0.05, a
linear relationship between the two variables can be considered to exist. With the exception
of IACC at 125 Hz; T30, LE, and LF at 250 Hz; T30 and IACC at 500 Hz; and C50, C80,
and D50 at 2000 Hz and 4000 Hz, there is a linear relationship between parameters and
temperature, and the smaller the p-value, the more pronounced this linear relationship, as
shown in Table A1. From Table A2, it can be concluded that there is a linear relationship
between parameters and humidity with the exception of T30, LE, and LF at 250 Hz; T30
and IACC at 500 Hz; and C50, C80, and D50 at 2000 Hz and 4000 Hz. A positive regression
coefficient indicates a positive association, whereas a negative value indicates a negative
correlation. The absolute value of the coefficient indicates the magnitude of the change in
the dependent variable due to a unit change in the independent variable.

A visualisation with commands, Figure 11 displays examples of linear and non-linear,
positive, and negative correlation scatterplots out of a total of 114 produced.

The R-squared value measures the explanatory power of the model and indicates
the percentage of variance in the dependent variables (acoustic parameters) explained by
the independent variables (temperature and humidity). R-squared values range from 0
to 1, with larger values indicating better regression equations. Temperature serves as the
independent variable (same as humidity).

• T30: The model’s goodness of fit (R-squared values) ranged from 0.02 to 0.45 at
different frequencies, implying that the model’s ability to explain the variance of the
dependent variable varied considerably across frequencies and was more explanatory
at higher frequencies;

• EDT: With the exception of 0.08 at 2000 Hz, there was a slight variation in the models’
goodness of fit;

• G: The model’s capacity to account for the dependent variable’s variation did not
differ significantly among frequencies;

• C50 and C80: For low and mid frequencies, there was not much of a difference in the
model’s goodness of fit, and it decreased noticeably at high frequencies;

• D50: The goodness of fit of the model ranged from 0.004 to 0.47, with the model’s
capacity to explain the variance of the dependent variable shifting dramatically across
frequencies and being more explanatory at low and medium frequencies;

• IACC: It can be clearly concluded that the ability of the model to explain the variance
of the dependent variable was stronger when the frequency was high;

• LE and LF: Variable across frequency bands with no discernible trend.
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The predict command can be used to make a prediction after the independent variable
values have been determined. The lower the RMSE (root mean square error) and MAE
(mean absolute error) values, the greater the model’s predictive capability.

RMSE is defined as:

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2 (1)

where n is the number of samples, yi is the true value of the i sample, and ŷi is the predicted
value of the i sample.

MAE is denoted as:
MAE =

1
n ∑n

i=1|yi − ŷi| (2)

The number of samples is n, the actual value of the i sample is yi, and the predicted
value of the i sample is ŷi.

4. Discussion

This section discusses the results of the acoustic parameter measurements and statisti-
cal analysis of the data.

The sole independent parameter was air velocity, which was purposely manipulated.
The airflow rate had a significant impact on the room’s air temperature and humidity. The
room acoustic characteristics were also susceptible to variations in air velocity, and as was
already indicated, D50 in particular exhibited more significant fluctuations than did the
other major acoustic parameters. When the ventilation system was turned off, it was clear
that the fluctuations in acoustic characteristics were reduced or even became constant.
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Fluctuation in air velocity was the most important environmental component affecting how
the room’s acoustic characteristics varied within the boundaries of this study.

EDT and G exhibited the strongest linear relationships with temperature out of the nine
acoustic parameters. At low and mid frequencies, D50 was most affected by temperature
compared with the other parameters, followed by C80 and C50. Temperature had the
greatest impact on G at high frequencies, followed by D50. The remaining seven parameters
were all affected to a lesser extent.

All the acoustic parameters with the exception of T30 had a distinct linear relationship
with humidity. Similar to temperature, variations in humidity had a greater impact on D50
at low and mid frequencies than they did on other parameters. Among the higher bands,
D50 was still the most impacted by humidity fluctuations, followed by G. Across the entire
frequency range, variations in humidity had a negligible impact on LE and LF.

In contrast to the ISO 9613-1 [17] standard, the experimental results show that sound
attenuation is not sensitive to variations in humidity. The boundaries of the enclosed
indoor environment and the more complicated external air medium may be accountable
for this. Additionally, the current findings contradict those of Gomez-Agustina et al. [16].
The reverberation time showed a negative linear correlation with temperature in the higher
frequency bands. Moreover, it was discovered during testing that when the binary regres-
sion analysis was carried out, the results remained consistent with the one-dimensional
regression analysis. The explanation for this contrary outcome could be that the study by
Gomez-Agustina et al. concentrated on underground spaces such as metro stations, which
are quite vast and can be associated with strong wind speeds due to trains passing them.
Furthermore, the parameter chosen was T40, which differed from the normal selection (T60,
T30, and T20), and the frequency analysed exceeded 8000 Hz.

Cross-validated RMSE and MAE were used to evaluate the model’s predictability.
When temperature was used as the independent variable, the model’s predictions for T30
and EDT were more accurate at high frequencies. The model provided higher prediction
accuracy at lower frequencies for G, C50, C80, D50, and IACC. For LE and LF, the predictions
of the model were closer to the true values at mid frequencies. The results were similar
when humidity was considered as an independent variable.

It should also be noted that when rooms are too high, differences in room air tempera-
ture distribution can readily occur, which can be worsened if their ventilation system is not
appropriately constructed. The resulting temperature gradient and the ensuing convective
airflow have a significant impact on acoustic characteristics. This impact should be consid-
ered in the acoustic design of concert halls and theatres, where temperature fluctuations
can result in distinct seating regions for the listening experience as well as the thermal
expansion of metal instruments, which can cause them to become out of tune.

5. Conclusions

The main acoustic parameters in a room were examined in this research in relation
to how temperature, humidity, and air velocity variations affect them. The statistics and
analysis of the data from the reverberation time (T30), the early decay time (EDT), strength
(G), definition (D50), clarity (C50 and C80), interaural cross correlation coefficient (IACC),
lateral fraction (LF), and lateral efficiency (LE) were the key points of attention.

The experimental work reported in this research demonstrated that the variation of
acoustic parameters and the variation of temperature and humidity variables are correlated
linearly. Data collection and R-based statistical analysis were used to determine the sensi-
tivity of each parameter to temperature and humidity variables at different frequencies.

A further research campaign should be undertaken in the winter to confirm the
predictive model’s accuracy and enable further calibration. Furthermore, while it is possible
to deduce that the reliance of acoustic parameters on humidity and temperature should
be perceived by people in a room based on JND (just-noticeable difference), the extent
to which such observable humidity–temperature changes are perceptible may also be
examined further.
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Appendix A

Table A1. Regression results of temperature on acoustic parameters.

Parameters Coefficient P RMSE R2 MAE

T30 125 Hz 0.0623 0.0126 0.4191 0.0228 0.2192
T30 250 Hz 0.0018 0.8669 0.1839 0.0024 0.1101
T30 500 Hz 0.0136 0.3878 0.2714 0.0088 0.1175
T30 1 kHz −0.0038 0.0465 0.0362 0.0212 0.0295
T30 2 kHz −0.0042 5.57 × 10−5 0.0197 0.0591 0.0156
T30 4 kHz −0.0127 1.89 × 10−40 0.0155 0.4546 0.0122

EDT 125 Hz −0.0297 4.73 × 10−72 0.0234 0.6587 0.0181
EDT 250 Hz −0.0287 2.95 × 10−28 0.0444 0.3502 0.0369
EDT 500 Hz −0.0199 3.86 × 10−26 0.0320 0.3075 0.0254
EDT 1 kHz −0.0261 8.44 × 10−25 0.0438 0.3010 0.0359
EDT 2 kHz −0.0112 3.83 × 10−6 0.0453 0.8230 0.0383
EDT 4 kHz −0.0081 1.73 × 10−5 0.0353 0.1397 0.0291
G 125 Hz −0.0333 2.13 × 10−32 0.0470 0.3829 0.0362
G 250 Hz −0.0426 1.85 × 10−43 0.0495 0.4721 0.0396
G 500 Hz −0.0659 1.76 × 10−82 0.0467 0.7069 0.0368
G 1 kHz −0.0488 8.24 × 10−21 0.0919 0.2573 0.0754
G 2 kHz −0.0892 3.37 × 10−75 0.0680 0.6640 0.0557
G 4 kHz −0.1082 1.11 × 10−73 0.0839 0.6674 0.0688

C50 125 Hz −0.0303 7.04 × 10−21 0.0565 0.2603 0.0475
C50 250 Hz 0.0865 1.08 × 10−44 0.0986 0.4773 0.0793
C50 500 Hz −0.0277 0.0007 0.1531 0.0414 0.1267
C50 1 kHz 0.0709 7.04 × 10−24 0.1227 0.2945 0.1003
C50 2 kHz −0.0039 0.6847 0.1801 0.0080 0.1521
C50 4 kHz −0.0202 0.1161 0.2387 0.0117 0.1919
C80 125 Hz −0.0289 5.08 × 10−10 0.0852 0.1294 0.0694
C80 250 Hz 0.0900 8.37 × 10−55 0.0880 0.5562 0.0694
C80 500 Hz −0.0952 3.63 × 10−20 0.1834 0.2432 0.1461
C80 1 kHz 0.0704 2.31 × 10−35 0.0939 0.3880 0.7556
C80 2 kHz 0.0043 0.5023 0.1206 0.0129 0.0967
C80 4 kHz −0.0026 0.8262 0.2196 0.0267 0.1791

D50 125 Hz −0.1672 1.33 × 10−20 0.3144 0.2572 0.2645
D50 250 Hz 0.3426 2.53 × 10−44 0.3950 0.4750 0.3167
D50 500 Hz −0.1379 0.0007 0.7705 0.0451 0.6365
D50 1 kHz 0.3615 9.67 × 10−24 0.6287 0.2723 0.5128
D50 2 kHz −0.0162 0.7201 0.8590 0.0045 0.7209
D50 4 kHz −0.1034 0.1217 1.2467 0.0239 1.0005
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Table A1. Cont.

Parameters Coefficient P RMSE R2 MAE

IACC 125 Hz - 0.9711 0.0047 0.0034 0.0023
IACC 250 Hz 0.0030 2.04 × 10−48 0.0033 0.5107 0.0024
IACC 500 Hz - 0.9711 0.0082 0.0212 0.0070
IACC 1 kHz −0.0020 1.82 × 10−9 0.0062 0.1183 0.0049
IACC 2 kHz 0.0036 3.82 × 10−15 0.0082 0.2077 0.0066
IACC 4 kHz 0.0077 2.85 × 10−29 0.0116 0.3233 0.0091
LE 125 Hz 0.0033 1.66 × 10−52 0.0034 0.5462 0.0028
LE 250 Hz −0.0001 0.3817 0.0023 0.0107 0.0009
LE 500 Hz 0.0020 6.24 × 10−18 0.0042 0.2199 0.0039
LE 1 kHz −0.0010 0.0026 0.0061 0.0501 0.0042
LE 2 kHz 0.0022 7.96 × 10−9 0.0071 0.1039 0.0055
LE 4 kHz 0.0023 0.0088 0.0165 0.0332 0.0138
LF 125 Hz 0.0031 4.38 × 10−30 0.0046 0.3569 0.0036
LF 250 Hz - 0.3947 0.0013 0.0040 0.0004
LF 500 Hz 0.0022 2.12 × 10−19 0.0043 0.2356 0.0040
LF 1 kHz −0.0019 6.22 × 10−7 0.0073 0.0936 0.0061
LF 2 kHz 0.0027 2.37 × 10−11 0.0075 0.1390 0.0063
LF 4 kHz 0.0016 0.0479 0.0157 0.0270 0.0128

Table A2. Regression results of humidity on acoustic parameters.

Parameters Coefficient P RMSE R2 MAE

T30 125 Hz −0.0184 0.0076 0.4196 0.0273 0.2190
T30 250 Hz −0.0010 0.7312 0.1839 0.0056 0.1099
T30 500 Hz −0.0065 0.1322 0.2729 0.0175 0.1204
T30 1 kHz −0.0003 0.5315 0.0365 0.0095 0.0294
T30 2 kHz 0.0009 0.0020 0.0200 0.0348 0.0158
T30 4 kHz 0.0036 1.10 × 10−41 0.0154 0.4618 0.0125

EDT 125 Hz 0.0086 1.11 × 10−83 0.0216 0.7141 0.0171
EDT 250 Hz 0.0075 2.59 × 10−24 0.0460 0.3003 0.0371
EDT 500 Hz 0.0064 1.27 × 10−37 0.0295 0.4190 0.0232
EDT 1 kHz 0.0095 9.79 × 10−50 0.0364 0.5214 0.0300
EDT 2 kHz 0.0040 1.14 × 10−9 0.0441 0.1361 0.0369
EDT 4 kHz 0.0025 1.92 × 10−6 0.0348 0.1098 0.0288
G 125 Hz 0.0093 1.83 × 10−33 0.0467 0.3930 0.0358
G 250 Hz 0.0095 2.28 × 10−25 0.0568 0.3045 0.0458
G 500 Hz 0.0168 1.02 × 10−61 0.0545 0.5975 0.0428
G 1 kHz 0.0109 2.37 × 10−13 0.0972 0.1725 0.0803
G 2 kHz 0.0221 1.06 × 10−52 0.0806 0.5313 0.0669
G 4 kHz 0.0317 2.47 × 10−91 0.0736 0.7470 0.0575

C50 125 Hz 0.0064 3.91 × 10−12 0.0601 0.1461 0.0509
C50 250 Hz −0.0214 1.25 × 10−33 0.1077 0.3760 0.0883
C50 500 Hz 0.0151 3.79 × 10−12 0.1441 0.1573 0.1221
C50 1 kHz −0.0215 1.44 × 10−29 0.1169 0.3572 0.0953
C50 2 kHz 0.0083 0.0016 0.1782 0.0321 0.1491
C50 4 kHz 0.0104 0.0032 0.2358 0.0378 0.1857
C80 125 Hz 0.0040 0.0027 0.0898 0.0310 0.0730
C80 250 Hz −0.0244 5.96 × 10−52 0.0911 0.5289 0.0751
C80 500 Hz 0.0359 8.50 × 10−42 0.1558 0.4561 0.1296
C80 1 kHz −0.0181 1.08 × 10−29 0.0974 0.3419 0.0800
C80 2 kHz 0.0006 0.7205 0.1208 0.0144 0.0970
C80 4 kHz 0.0101 0.0016 0.2158 0.0706 0.1766
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Table A2. Cont.

Parameters Coefficient P RMSE R2 MAE

D50 125 Hz 0.0351 7.03 × 10−12 0.3379 0.1437 0.2834
D50 250 Hz −0.0848 2.48 × 10−33 0.4310 0.3754 0.3530
D50 500 Hz 0.0759 4.31 × 10−12 0.7235 0.1551 0.6127
D50 1 kHz −0.1099 1.93 × 10−29 0.5998 0.3386 0.4876
D50 2 kHz 0.0388 0.0018 0.8478 0.0349 0.7095
D50 4 kHz 0.0532 0.0038 1.2314 0.0492 0.9677

IACC 125 Hz 0.0002 0.0032 0.0047 0.0333 0.0024
IACC 250 Hz −0.0008 3.45 × 10−46 0.0033 0.4862 0.0026
IACC 500 Hz −0.0003 0.0232 0.0082 0.0338 0.0069
IACC 1 kHz −0.0006 5.43 × 10−9 0.0061 0.1540 0.0048
IACC 2 kHz −0.0012 1.56 × 10−20 0.0079 0.2636 0.0061
IACC 4 kHz −0.0019 1.62 × 10−23 0.0121 0.2676 0.0093
LE 125 Hz −0.0009 1.31 × 10−49 0.0035 0.5151 0.0028
LE 250 Hz 5.37 × 10−5 0.1028 0.0023 0.0119 0.0009
LE 500 Hz −0.0007 7.95 × 10−33 0.0037 0.3847 0.0033
LE 1 kHz 0.0003 0.0005 0.0060 0.0526 0.0042
LE 2 kHz −0.0003 0.0044 0.0073 0.0282 0.0055
LE 4 kHz −0.0012 1.44 × 10−6 0.0160 0.0897 0.0134
LF 125 Hz −0.0028 3.54 × 10−25 0.0048 0.3026 0.0036
LF 250 Hz 2.28 × 10−5 0.2604 0.0013 0.0079 0.0004
LF 500 Hz −0.0008 4.22 × 10−34 0.0039 0.3970 0.0033
LF 1 kHz −0.0006 4.15 × 10−9 0.0071 0.1193 0.0059
LF 2 kHz −0.0005 1.80 × 10−5 0.0078 0.0720 0.0064
LF 4 kHz −0.0010 6.70 × 10−6 0.0153 0.0820 0.0123
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