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1. Introduction. This paper is motivated by the statistical analysis of
binary longitudinal data from an experimental study defined through the
Hawk-and-Dove game initially introduced by Maynard Smith and Parker
(1976) to investigate animals’ behavior, and more recently extended to hu-
mans (Sugden, 1989, 2004; Waldron, 2013; Rose, 2014) in the game-theory
literature. In the standard Hawk-and-Dove game two subjects face a sym-
metric situation in which they can choose between two strategies: to play
hawk, i.e fighting aggressively for an asset; to play dove, i.e retreating the
fight, if faced with major escalation, or sharing the asset, if not faced with
escalation.

We investigate the evolution of an aggressive, fighting behavior, as play-
ing hawk, and test the role of possession, property and further behavioral
characteristics, with respect to such a behavior by introducing an asymmet-
ric situation. Our treatment, possession-related, variation concerns the way
the initial claim to the asset is established. We manipulate the type of in-
formation provided and the process of acquisition, creating an asymmetry
in the game play. We aim at showing the variation in the probability of
hawkish behaviors whenever the information is based on possession but also
meritorious or, without merit or possession, for the presence of a bullying
behavior.

To our knowledge, we are the first to test whether the hawkish behavior
emerges in a lab setting once the possessor-intruder asymmetry is intro-
duced. By having both possessory and non-possessory treatments, we are
able to investigate that possession may be indeed a superior coordinating
asymmetry. Moreover, meritoriousness may also play an important part in
fostering the subjects behavior. At last, the evolution of the hawk behav-
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ior over time is investigated by looking at how the subjects learn to play
from one round to another. With this design, we can address the following
research questions

• Does owning/property induce more aggressive behaviors?
• Is merit important in establishing subjects behavior?
• Does possession trigger the establishment of property, and this favors

a hawkish behavior?
• Is there a dependence over time in the subjects behavior?

In our experiment, subjects interact in groups of six over ten rounds.
In each round, three pairs are randomly matched to interact under the
Hawk-and-Dove setting. The matching is unknown to the players. Hence,
outcomes, i.e. to play hawk or dove, are measured as binary longitudinal hi-
erarchical data: repeated measurements are collected for subjects clustered
into different groups. Thus, an ad-hoc statistical modeling should be consid-
ered to properly account for all data features to provide adequate answers
to research questions defined above. As a general concern, when analyzing
longitudinal hierarchical data, components which need to be described by
a model the dependence of the variables on covariates, serial dependence,
heterogeneity in the individuals/units and at the different levels of the hier-
archy. Of course, the estimation of covariate effects on a response variable is
often of major interest, while longitudinal correlations are typically viewed
as nuisance parameters. However, the association structure could be of in-
terest by itself, as we may be interested in understanding the nature of the
stochastic dependence among the measured outcomes. In this respect, we
introduce an adequate definition of the association structure distinguishing
between true and apparent contagion, also known as state dependence and
heterogeneity, respectively. In the former case, the occurrence of an event
changes the probability of the subsequent occurrence of similar events: in a
longitudinal setting, actual and future outcomes are directly influenced by
past values, which cause a substantial change over time in the corresponding
distribution. The latter case arises when individuals are drawn from hetero-
geneous populations, each population having a different, propensity to a
certain event. In practice, true contagion is modeled by simply including
the lagged outcome as an additional covariate, and the apparent contagion
is accounted for by including, possibly time-varying, random effects in the
model specification (Aitkin and Alfó, 1998; Alfó and Aitkin, 2000; Aitkin and
Alfó, 2003; Fotouhi, 2005; Skrondal and Rabe-Hesketh, 2014; Bianconcini
and Bollen, 2018). Unfortunately, the corresponding maximum likelihood
estimators can be quite severely inconsistent owing to the initial conditions
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problem. The initial response at the start of the observation period is af-
fected by the random intercept and presample responses, and ignoring this
endogeneity leads to inconsistent estimation (Heckman, 1981).

This paper presents a model for the analysis of longitudinal hierarchical
binary outcomes which extends standard random effects models to simul-
taneously account for serial dependence and heterogeneity at the different
levels of the hierarchy. In detail, we develop a multilevel approach in which
the unobserved heterogeneity at the different level of the hierarchy, i.e. un-
observed subjects’ and groups’ behaviors, is assumed discrete and modeled
through the inclusion of random effects (Aitkin, 1999; Bartolucci and Far-
comeni, 2009). This involves an additional step in the model selection, be-
cause the support of these distributions is not known in advance; it must
be selected by evaluating the goodness of fit that different supports obtain.
There are, however, several advantages that compensate such complication.
First, the random-effect model reduces to a finite mixture model with a
computationally tractable likelihood function. Second, the possibly inap-
propriate and unverifiable parametric assumptions about the distribution
of the random effects are avoided. Third, the outcomes are clustered in a
finite number of latent classes that can be interpreted as typical behaviors.
A conditional (to the initial conditions) model is introduced and proper in-
ference is conducted. A shape change in the random effects distribution is
considered by directly modeling the effect of the initial conditions on the
evolution of behaviors. The observed measurements are modeled through
a generalized hierarchical linear mixed model. For the maximum likelihood
estimation of the proposed model, we use an EM–based algorithm deriving,
and slightly modifying, recursions from the Baum–Welch algorithm (Baum
et al., 1970), widely adopted in the hidden Markov models literature (Bar-
tolucci et al., 2013). However, different methods can be used to provide
parameter estimates (Bulla and Berzel, 2008).

Several models are fitted and compared to properly infer the observed and
latent structures driving the data. Starting from a simple model without co-
variates to more complex multilevel models, allowing for true and spurious
contagion. The rest of the paper is as follow. Section 2 describes the Hawk-
and-Dove experiment, along with the considered treatments. An initial de-
scription and assessment of the data is provided to guide the reader into
the collected data. In Section 3, we introduce a novel methodology, that can
be cast in the literature on multilevel modelling and mixed hidden Markov
models. The initial condition problem is also briefly sketched and solutions
proposed. Section 4 is devoted to likelihood inference, and some operational
aspects are further discussed.
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Subject 2
Hawk Dove

Subject 1 Hawk −25 50
Dove 0 15
Table 1

The Hawk-and-Dove game: payoffs

2. The Hawk-and-Dove experiment.

2.1. Data collection and treatment definition. In our experiment, sub-
jects interact in groups of six over ten rounds. In each round, three pairs
are randomly matched to interact in two distinct activities. In the first part
of the round, asymmetry is introduced, while in the second part the two
subjects of each pair play the Hawk-and-Dove game and contend an amount
of experimental monetary units (see Table 1 for the resulting payoffs). This
second part is always the same across rounds and treatments.

It is in the first part that our manipulation takes place. Our treatment
variation concerns the way the initial claim is established, that is to say,
the nature of the asymmetry we provide. We have a total of five treatments
organized along two main dimensions. The first dimension concerns the type
of information provided (the asymmetry is either possessory or colored), and
the other dimension concerns the process of acquisition (the asymmetry is
either arbitrary or meritorious). In designing our possessory treatments, we
have mimicked some well-known mechanisms of property acquisition that are
also almost universally enforced in property law. Among all the possible ways
property can be acquired, we have focused on reproducing three benchmarks:
Gift, Treasure Trove, and Labor.

In the Gift treatment, the computer randomly assigns 50 tokens to one of
the two subjects (as a manna from heaven), who becomes the possessor. The
other subject (the intruder) does not receive any tokens. The asymmetry is
therefore possessory and arbitrary.

In the Labor treatment, participants have to perform an individual ef-
fort task following Gill and Prowse (2012). Each participant has one minute
to move the cursors of as many 0–100 scale sliders as possible to the posi-
tion indicated by the computer. For each matched pair of subjects, the one
that correctly positions the highest number of cursors gains possession of
50 tokens. The asymmetry is therefore possessory and meritorious. Because
this activity does not require any particular ability or knowledge to com-
plete, it is likely that participants perceive the endowment gained through
individual performance to be correlated with individual effort. By using a
meritorious mechanism of acquisition based on effort, this treatment inten-



MULTIVELEVEL HMMS FOR BEHAVIORAL DATA 5

tionally mimics labour as an almost universal mechanism for legitimizing
property (Locke, 1980; Henry, 1999).

In the Treasure Trove treatment, at the beginning of each round sub-
jects participate in a treasure trove contest. Each pair sees the same 25
squares on the computer screen and can uncover their content by pressing
on each of them. Hidden behind one of the squares is a 50-token treasure in
the form of a code composed of numbers and letters. Whoever registers its
trove in the dedicated filling area at the bottom of the screen takes posses-
sion of the 50-token treasure that will then be contested in the second part
of each round. The asymmetry is therefore possesory and meritorious.

For the non-possessory treatments, we have followed some previous de-
signs that based the asymmetry on an assigned color: one subject enters the
Hawk-and-Dove game being red and the other enters being blue. We thus
have an arbitrary colored treatment (Lucky Red) and a meritorious colored
treatment (Master Red) In the Lucky Red treatment, each subject is ran-
domly labeled either Red or Blue at the beginning of each round so that a
asymmetry is introduced along the lines of Hargreaves-Heap and Varoufakis
(2002). However, this color label is not related to the initial possession of
the 50 tokens; in fact nobody possesses the tokens before the contest.

In the Master Red treatment, subjects participate in a treasure hunt at
the beginning of each round as in the Treasure Trove treatment. Whoever
registers their trove in the dedicated filling area at the bottom of the screen
is assigned color Red (Blue). Notice that the assignment of this color label
is not related to the initial possession of the 50 tokens; in fact, nobody
possesses the tokens before the contest.

2.2. Data description. We conducted laboratory sessions with 12 or 18
subjects each, for a total of 474 participants clustered into 79 groups. Each
subject participated one session only. The experiment was conducted using
computer interfaces, and, to program the experiment, we used the software
Z-tree (Fischbacher, 2007). The vast majority of participants were graduate
and undergraduate students at the University and were recruited using the
online system ORSEE (Greiner, 2015). At the beginning of each session,
instructions were read aloud by the experimenter to ensure common knowl-
edge. Before the experiment started, all the participants had to correctly
answer some control questions. Throughout the reading of the instructions
and the control questions stage, participants had the opportunity to ask the
experimenter questions in private. After the experiment ended, each subject
was asked to fill in a questionnaire reporting socio-demographic characteris-
tics and measuring individual risk preferences, logical abilities, and the level
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of impulsivity. Communication among participants was not allowed during
the experiment.

A preliminary assessment of the behavior of the groups in being hawkish
may be depicted by looking at Figure 1. We collapse the number of hawks
into three categories to simplify data visualization. At the beginning of the
experiment, only players into few groups are clearly in favour of a hawkish
behavior, as almost all are playing hawk. In the majority of groups, players
are equally divided by those who play hawk and those who play dove. How-
ever, after few periods, the situation is more complex. On the one side, it
is possible to identify groups which find their equilibrium, i.e. the number
of hawk and dove players remain constant over time; on the other hand,
heterogeneity in groups’ behaviors can be inferred, with a small increase in
hawkish behaviors over time, and clear paths cannot be identified. However,
something can be said about the dynamics of groups’ behaviors, by looking
at the empirical transition matrix, i.e. at the frequencies of moving between
the three categories [0 − 2], [3 − 4], [5 − 6]. Persistence is not the norm for
two of the three categories. If a small number of players ([0-2]) played hawk
at time t, at time t + 1 such a number would likely increase to [3-4] with
probability 0.61 and, rarely, to [5-6] (only in the 8% of the cases). Similarly,
if a large number of subjects played hawk at time t, it is likely that this
number decreases at time t+ 1 passing to [3-4] or, rarely, to [0-2]. The mid
category is the persistent one with the 61% of cases that the same number
of hawkish is observed at two consecutive times. What is also rather clear
is that if a group is incline to play hawk, it does not transit toward a dove
behavior between two consecutive times, but passes from being very aggres-
sive to be less aggressive first, i.e. from category [5-6] to [3-4], the viceversa
happens for groups more likely to play dove.0.31 0.61 0.08

0.19 0.61 0.20
0.09 0.65 0.26


Hawkish behaviors may depend on several factors and, by a preliminary

assessment, slightly increase over time. This is also depicted by looking at
Figure 2. A small increase in the overall hawkish behavior is observed, but
significant differences are observed between owner and non-owner subjects.
Subjects owning the experimental tokens are more likely to defend them
and, accordingly, they are more likely to play hawk. More than 60% of the
owners tend to play hawk, with peaks close to the 70%. Interestingly, for
non-owner subjects the percentage of subject playing hawk is also rather
high, and above 50%, suggesting that, on average, the hawk behavior is
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Fig 1. Number of subjects playing hawk over time per group
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Fig 2. Percentage of subjects playing hawk over time, owner vs. non-owner subjects
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preferred to the dove one.
We further expect that the asymmetry introduced by the treatments

would also play a role in subjects’ behavior. Figure 3 shows the percent-
age of hawks by treatment. Differences can be observed among treatments,
though the observed variability, quite high at the beginning of the experi-
ment, tends to decrease over time, as players learned to play, and get info
from previous rounds.

3. Modelling.

3.1. The multilevel hidden Markov model. The data considered in this
paper are in the form of panels of subjects behaviors, assigned/clustered
within playing groups. A clear hierarchy can be easily detected in the data
structure and different sources of heterogeneity should be tackled at the
different levels of the hierarchy.

Formally, the response variable, i.e. behave hawkish, Yntg assumes two
values only, {0,1}, and is observed on N (n = 1, 2, . . . , Ng) individuals clus-
tered into G (g = 1, 2, . . . , G) groups at Tn (t = 1, 2, . . . , Tn) occasions. Since
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Fig 3. Percentage of subjects playing hawk over time by treatment
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repeated measurements belonging to the same subject assigned to a specific
group are likely to be correlated, a modelling framework accounting such de-
pendence structure should be specified, for valid inferences. A natural way to
account for correlated measurements is via multilevel random effects mod-
els, as they provide a flexible way to deal with complex data structures. We
assume that, conditionally on a set of available exogenous subject-specific
covariates xntg = {xntg1, . . . , xntgP }, the responses are generated by com-
bining individual- and group-specific random components. The individual-
specific random component is specified by an array b = {b1, . . . ,bN} of
N time-dependent trajectories, with bn = {bn1, . . . , bnTn}, following a dis-
tribution p(b). The group-specific random component is, instead, specified
by a time-constant random effect vg, independent of bn, following a certain
distribution p(v) = p(v1, . . . , vG).

We further assume that the responses are conditionally independent given
the individual- and the group-specific random effects, or, in other words,
that the conditional distribution of all the responses yntg is a product of
univariate conditional distributions, say

p(y | b,v) =
G∏

g=1

Ng∏
n=1

Tn∏
t=1

p(yntg | b,v).

Under these assumptions, we have that

(3.1) p(y,b,v) =
G∏

g=1

p(vg)

Ng∏
n=1

p(bn)

Tn∏
t=1

p(yntg | bn, vg)

is fully specified by defining

(a) the conditional distribution of the response variable given covariates
and random effects,

(b) the distribution of the group-specific random effects and
(c) the distribution of the individual-specific trajectories of random effects.

We assume that
Yntg ∼ Bernoulli(λntg)

where

(3.2) log

(
λntg

1− λntg

)
= x′

ntgβ + αyn(t−1)g + vg + bnt

where β is a vector of regression coefficients and α is the regression coefficient
associated to the lagged response, introduced to account for true contagion.
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To specify the distributions of the random terms, we assume that the
random effects are drawn from discrete distributions with a finite number of
mass points. At the group-level, we assume that the random effects vg are
independently drawn for each group from a discrete distribution, say

(3.3) vg ∼ pM (v;π)

where pM (v;π) depends on a vector of M support points v = (v1, . . . , vM )
with mass probabilities π = (π1, . . . , πM ). We further assume that the
individual-specific process follows a first-order finite-state Markov chain with
state-space B = (b1, . . . , bK). The chain is fully known up to an initial distri-
bution δ = (δ1, . . . , δK), δk = Pr(bn1 = bk), and a K×K transition probabil-
ity matrix Q whose elements are given by qnthk = Pr(bnt = bk | bn(t−1) = bh),
t > 1;h, k = 1, 2, . . . ,K;

∑K
h=1 qnthk = 1. In its basic specification, we will

consider a homogenous transition probability matrix, i.e. qnthk = qhk. Ac-
cordingly, for each individual, the sequence bn is drawn from a discrete
distribution, say

(3.4) bn ∼ pK(b; δ,Q).

Bearing in mind that this model can be also cast in the literature on
the mixed hidden Markov models (Maruotti, 2011) and is related to the
approaches introduced by Bartolucci et al. (2014); Bartolucci and Luppar-
elli (2016); Leos-Barajas et al. (2017); DeRuiter et al. (2017); Früwirth-
Schnatter et al. (2018); Montanari et al. (2018); Adam et al. (2019); Zhang
and Chang (2019) and Lagona et al. (2015), this model includes some popu-
lar approaches to longitudinal data analysis as particular cases. For example,
when the number of the hidden states K is equal to 1, the model reduces to
a finite mixture model, in which data are clustered within G classes. On the
other side, when the distribution p(v) concentrates the whole probability
mass on the origin, p(v = 0) = 1, the model reduces to a hidden Markov
model.

3.2. The initial conditions problem and the conditional approach. The
joint distribution of the observed responses for subject n, given the group-
specific random effect vg is given by

p(yn1g, . . . , ynTng | vg) =
∑
bn

pK(bn; δ,Q)p(yn1g | bn1, vg)(3.5)

Tn∏
t=2

p(yntg | yn(t−1)g, bnt, vg)
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where
∑

bn
extended to all the possible configurations of bn.

Nevertheless, equation (3.5) is not determined from the model assump-
tions since the distribution p(yn1g | bn1, vg) is not specified from the model
and the full likelihood is not available. Inference can be highly sensitive to
misspecifcation of p(yn1g | bn1, vg). An alternative is to estimate regression
parameters by maximizing the likelihood conditional on the first outcome
Yn1g, i.e. considering the distribution of p(yn2g, . . . , ynTg | yn1g):
(3.6)

p(yn2g, . . . , ynTng | yn1g, vg) =
∑
b

pK(bn, δ,Q)

Tn∏
t=2

p(yntg | yn(t−1)g, bnt, vg).

Bearing in mind that bn is a subject-specific effect shared by all subject n’s
outcomes, and as well by Yn1g, bn and Yn1g cannot be assumed independent.
If independence is assumed, the resulting estimator is inconsistent because
the initial response at time t = 1 is treated as exogenous, while it is clearly
endogenous, giving rise to the initial conditions problem.

The basic idea is to re-express the conditional model we are dealing with
by allowing for the dependence between Yn1g and bn. The underlying hy-
pothesis is that the influence of Yn1g on bn can be fully modelled as a change
in the location and shape of bn. Following Wooldridge (2005) and Aitkin
and Alfó (2003), let us assume that

(3.7) bn = b∗
n + E[bn | yn1g]

where

E[bn | Yn1g] = α̃yn1g.

Then, equation (3.2) can be rewritten as

(3.8) log

(
λntg

1− λntg

)
= x′

ntgβ + αyn(t−1)g + α̃yn1g + vg + bnt.

In the following, without loss of generality, we will drop the superscript ∗

and refer to b∗
n as bn.

Furthermore, we allow for a more general change in the shape of the
subject-specific random effects bn, i.e. we assume that Yn1g affects the
Markov chain parameters as well. Accordingly, we rewrite expression (3.6):

p(yn2g, . . . , ynTng | yn1g, vg) =
∑
b

pK(bn | yn1g, δyn1g ,Qyn1g)(3.9)

T∏
t=2

p(yntg | yn(t−1)g, yn1g, bnt, vg).
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where the conditional distribution pK(bn | yn1g; δyn1g ,Qyn1g) is different
from pK(bn; δ,Q). In detail, such a dependence on Yn1g leads to

(3.10) δnk = Pr(bn2 = bk | yn1g) =
exp(γ0k + γ1kyn1g)∑K
h=1 exp(γ0h + γ1hyn1g)

and similarly we link the initial outcome and the entries of the transition
probability matrix
(3.11)

qnhk = Pr(bnt = bk | bn(t−1) = bh, yn1g) =
exp(ϕ0hk + ϕ1hkyn1g)∑K
k=1 exp(ϕ0hk + ϕ1hkyn1g)

Subjects do not share the same latent structure, except if the have the
same value of yn1g . Indeed, different homogeneous (over time) Markov chain
have been defined conditionally on yn1g.

4. Maximum likelihood estimation. The multilevel logistic model
illustrated in Section 3.1 depends on a vector θ of parameters that includes
four components:

(a) the fixed effects β and α = {α, α̃};
(b) the support points (v1, . . . , vm) and the related probabilities πM of the

random effects distribution at the group level;
(c) the support points (b1, . . . , bK) of the time-varying random effects;
(d) the fixed effects γ and ϕ related to the initial probabilities collected in

δyn1g and the transition probabilities collected in Qyn1g , respectively.

The maximum likelihood estimate of θ is the maximum point of the con-
ditional likelihood function

(4.1)

L(θ | y1) =
G∏

g=1

∑
v

pM (v;π)

Ng∏
n=1

∑
b

pK(b; δyn1g ,Qyn1g)

Tn∏
t=2

p(yntg | yn(t−1)g, yn1g, bnt, vg;β,α)

Expression (4.1) can be efficiently computed by an extension of the for-
ward recursion, which is very well-known in the HMM literature (Welch,
2003). To maximize the likelihood, we implement a version of the expectation-
maximization (EM) algorithm, which is facilitated by the independence as-
sumption between the time-varying subject-specific and the group-specific
random effects.

The algorithm is based on the definition of the so-called complete-data
log-likelihood function, obtained by considering the sampling distribution of
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both the observed and the unobserved quantities, i.e. the unknown states and
groups memberships. Treating these quantities as missing values, reflecting
different sources of incomplete information, we define the complete-data log-
likelihood function as

ℓc(θ | y1) =

=
G∑

g=1

M∑
m=1

ηgm log(πm)(4.2)

+
N∑

n=1

K∑
k=1

ξn2k log(δnk)(4.3)

+

N∑
n=1

K∑
k=1

K∑
h=1

Tn∑
t=3

ζnthk log(qnhk)(4.4)

+

G∑
g=1

M∑
m=1

K∑
k=1

N∑
n=1

Tn∑
t=2

ηgmξntk log(p(yntg | yn(t−1)g, yn1gbnt, vg;β,α)(4.5)

where the variable ηgm = I(vg = vm) is an indicator variable equalt to 1
if group g is clustered in cluster m, ζnthk = I(bnt = bk, bn(t−1) = bh) is an
indicator variable equal to 1 if subject n belongs to state h at time t−1 and
to state k at time t, and ξntk = I(bnt = bk) equals 1 if subject n at time t
belongs to state k and 0 otherwise.

In the E-step, the conditional expected value of terms (4.2)–(4.5) is simply
computed by a plug-in of the expected values of ηgm, ξntk and ζnthk given
the observed data and the current value of the parameters. Such quantities
can be computed by means of an appropriate forward-backward recursion
adapted from the mixed hidden Markov model literature (Maruotti, 2011).
In the M-step, the conditional expected values of terms (4.2)–(4.5) are maxi-
mized separately. In particular, at iteration r+1, the maximum with respect
to πm has a closed form solution

π(r+1)
m =

∑G
g=1 E(ηgm | y,θ(r))

G
.

The maximum with respect to δnk and qnhk is obtained as solutions of the
following M-step equations, respectively,

(4.6)
N∑

n=1

K∑
k=1

E(ξn2k | y,θ(r))
∂ log(δnk)

∂γk

= 0
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and

(4.7)
N∑

n=1

Tn∑
t=3

K∑
k=1

E(ζnthk | y,θ(r))
∂ log(qnhk)

∂ϕh

= 0

which are weighted sums of K equations with weights E(ξn2k | y,θ(r)) and
E(ζnthk | y,θ(r)), see also Maruotti and Rocci (2012). Similarly, denoting
with θ∗ = β, α,b,v the parameters of the state-dependent distribution, we
obtain the updated estimates of θ∗, solving the following equation

G∑
g=1

M∑
m=1

K∑
k=1

Ng∑
n=1

Tg∑
t=1

E(ηgm | y,θ(r))E(ξntk | y,θ(r)) log p(yntg | yn(t−1)g, yn1g, bnt, vg;β,α) = 0.

We alternate the E and M steps repeatedly until the increment in the
likelihood is less than a fixed, small amount.

4.1. Initialization of the algorithm, computational strategies and model
selection. The algorithm may be trapped at a local maximum and, conse-
quently, may fail to reach global maximum (because the maximization prob-
lem is likely to be non-convex). One simple way to alleviate the problem is
to run the EM algorithm from multiple random starting points for a number
of steps, then pick the one with the highest likelihood, and continue the EM
from the picked point until convergence. Furthermore, the EM algorithm
outlined above does not produce standard errors of the estimates, because
approximations based on observed information matrix often requires a very
large sample size. Thus, to obtain standard errors, we consider a parametric
bootstrap approach, refitting 200 bootstrap samples simulated from the es-
timated model parameters. The approximate standard error of each model
parameter is then computed.

In the proposed multilevel framework, model selection is essentially con-
cerned with the choice of the order, that is, the number of hidden states K
and mixture components M . This decision entails a preliminary exploration
of a range of different values of K and M and a final choice requires typi-
cally a compromise between several different factors including model fitting,
formal selection criteria, computational complexity, and the overall inter-
pretability of results Pohle et al. (2017). In this application, we fit models
with K = {2, 3, 4} and M = 2, as we have noticed overfitting for greater val-
ues of M . Classical information criteria based on log-likelihood penalizations
are adopted for order selection, like the AIC and BIC criteria.

To avoid the multinomial regressions defined by (4.6) and (4.7), we could
exploit the binary nature of the initial conditions. Let N0 = {n : Yn1g =
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0;n = 1, . . . , N} and N1 = {n : Yn1g = 1;n = 1, . . . , N} be the subsets of the
N individuals having respectively Yn1g = 0 and Yn1g = 1, with |N0|+ |N1| =
n0 + n1 = N .

The likelihood then can be written as

L(θ | y1) =
G∏

g=1

∑
v

pM (v;π) ∏
n∈N0

∑
b

pK(b; δyn1g=0,Qyn1g=0)

Tn∏
t=2

p(yntg | yn(t−1)g, yn1g, bnt, vg;β,α)

∏
n∈N1

∑
b

pK(b; δyn1g=1,Qyn1g=1)

Tn∏
t=2

p(yntg | yn(t−1)g, yn1g, bnt, vg;β,α)

 .

Differentiating the previous equation with respect to hidden chain param-
eters under the constraints and equating to zero the corresponding deriva-
tives, the M-step reduces to

δ
(m+1)
nk;yn1g=i =

∑
n∈Ni

ξn2k;yn1g=i

ni
; i = 0; 1

and
q
(m+1)
nthk,yn1g=i =

∑
n∈Ni

ζnthk,yn1g=i∑
k ζnthk,yn1g=i

; i = 0; 1.

5. Results. In this Section, we illustrate the results obtained from the
proposed approach to the dataset about subjects behavior in a hawk and
dove game described in Section 2. We fitted, and compared, several models
in terms of penalized likelihood criteria, namely:

• M1: a simple HMM, with no covariates;
• M2: an HMM with treatments, gender and age as covariates;
• M3: an HMM with the lagged outcome, treatments, gender and age as

covariates;
• M4: an HMM with the lagged outcome, treatments, gender and age as

covariates, and initial conditions included in the model as described in
Section 3.2;

• M5: a multilevel HMM with the lagged outcome, treatments, gender
and age as covariates, initial conditions included in the model as de-
scribed in Section 3.2 and group-specific random effects.
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All models are fitted for K = {2, 3, 4}, Table 2 displays the log-likelihoods
with the number of parameters and the values attained by the AIC and
BIC criteria. According to both criteria, the multilevel model is chosen,
confirming the adequacy of the proposed approach for the data at hand.

Table 2
Results from fitting different hidden Markov models with different values of K. The

maximum log-likelihood of each model is denoted by ℓ.
M1

ℓ K M # parameters AIC BIC
-2753.576 2 5 5517.153 5537.959
-2706.514 3 10 5433.641 5474.641
-2706.388 4 17 5447.776 5517.517

M2
ℓ K M # parameters AIC BIC
-2713.548 2 12 5451.096 5501.03
-2664.858 3 17 5363.716 5434.457
-2664.849 4 24 5377.698 5477.567

M3
ℓ K M # parameters AIC BIC
-2709.726 2 13 5445.453 5499.549
-2662.456 3 18 5362.912 5435.814
-2659.805 4 27 5373.610 5482.962

M4
ℓ K M # parameters AIC BIC
-2618.314 2 17 5270.627 5341.368
-2607.647 3 28 5271.295 5387.809
-2604.554 4 43 5295.108 5474.040

M5
ℓ K M # parameters AIC BIC
-2289.710 2 2 20 4619.420 4702.644
-2279.557 3 2 32 4623.114 4756.272
-2279.546 4 2 49 4657.092 4869.991

The estimates of the parameters under the selected models are reported
in Table 3.

Regression parameters associated to the considered covariates are rather
consistent across the models and allow to draw some conclusions. Firstly, the
Gift and Treasure Trove treatments do not differ from Labor , that is taken
as reference treatment. So, players behavior does not change over differ-
ent possessory treatments. The Lucky Red and Master Red treatments,
instead, increase the probability of playing hawk. This is a clear indica-
tion that introducing asymmetry, i.e. establishing the possess of the tokens,
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Table 3
Regression estimates from fitting different hidden Markov models (standard errors in

brackets).
Variable/Parameter M1 M2 M3 M4 M5
Fixed effects
Intercept (β0) 0.604 0.322 (0.326) 0.297 (0.332) -1.683 -1.912
Lucky Red (β1) - 0.346 (0.170) 0.356 (0.173) 0.357 (0.121) 0.393 (0.121)
Gift (β2) - -0.204 (0.191) -0.211 (0.192) -0.205 (0.114) -0.184 (0.114)
Treasure Trove (β3) - 0.037 (0.167) 0.044 (0.170) 0.020 (0.114) 0.015 (0.114)
Master Red (β4) - 0.329 (0.171) 0.339 (0.173) 0.341 (0.118) 0.356 (0.118)
Owner (β5) - 0.916(0.103) 0.928 (0.106) 0.863 (0.093) 0.856 (0.093)
Male (β6) - 0.039 (0.109) 0.035 (0.110) -0.014 (0.070) 0.036 (0.070)
Age (β7) - -0.007 (0.023) -0.007 (0.024) 0.017 (0.016) 0.021 (0.016)
Lag-outcome (α) - - -0.050 (0.100) 0.083 (0.072) 0.079 (0.041)
Initial conditions (α̃) - - - 2.609 (0.131) 2.769 (0.141)
Subject-specific random effects
bnt = b1 -2.390 -2.677 -2.755 -1.340 -1.259
bnt = b2 -0.272 -0.251 -0.256 1.232 1.390
bnt = b3 3.345 3.031 3.035 -
Group-specific random effects
vg = v1 - - - - 0.080
vg = v2 - - - - -0.182

clearly affects behaviors. In particular, being Lucky Red and Master Red
both non-possessory treatments, we conclude that aggressive behaviors arise
when none of the players possess the tokens. At the same time, owning the
tokens is one of the main driving variables for playing hawk, i.e. property
makes the difference in players’ behavior. Accordingly, we notice that if a
resource (i.e. the tokens) is freely available players are more incline to fight,
i.e. playing hawk, but this is also true that if the property is clearly defined,
the owner would likely defend it.

The probability of playing hawk is smaller if players are aware that the
tokens are assigned to any of the players, as a form of respect between
players. In some sense, possesion-related treatments indicate a coordinating
system. This is in line with the so-called bourgeois strategy (Maynard Smith
and Parker, 1976): respect others’ belongings and expect others to respect
theirs. At the same time it possible to estimate a significant difference be-
tween merit and non-merit treatments. In the Treasure Trove treatment the
probability of playing hawk is higher than in the Gift treatment, where the
possession is a manna from heaven and no merit causes the possession. In
practice, if a player does nothing to merit the possession, then he/she less
likely would play hawk.

Looking at players’ behavior over time, true contagion plays a minor role.
Previous choices have only a small effect on current ones, in particular with
respect to the role played by treatments and property variables. Neverthe-
less, the choice at the baseline has a great impact on all future choices. A
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hawk behavior at t = 1 very likely leads to a hawk behavior at subsequent
times, indicating persistence of behaviors, not due to the way subjects play
over time, but rather on an initial attitude.

Heterogeneity arises at both levels of the hierarchy. In the following, we
comment only on the multilevel model M5. For the multilevel model, M5, es-
timates of the hidden Markov chain and mixture parameters are reported in
Table 4. Two states and two components are estimated at the subject and
group levels, respectively. States represent two different subjects, more or
less aggressive, behaviors, and mixture component different ways of coordi-
nating inside the groups. In State 1 (bn = 1) subjects with a dove propensity
are clustered, while State 2 (bn = 2) clusters bullying attitudes. The two
states are well separated, and as expected they communicate rarely (see the
transition matrices in Table 4). So the behaviors at the subject level are
well identified and characterized by strong persistence over time. The group
effects have lower impacts on the probability of playing hawk. It deserves to
be mentioned that around 31% of the groups (i.e. those clustered in the sec-
ond mixture component) show a propensity of sharing, further reducing the
probability of playing hawk and converge to more likely peaceful behavior.
For the other groups, a small, rather marginal, effect is estimated; and this
does not deserve to be further discussed.

At last, it is rather interesting to notice that the initial conditions affects
only the probability of being clustered in one of the two states at t = 2, but
not the transition probability matrix. A more parsimonious model could be
then considered (see e.g. Bartolucci and Farcomeni, 2009), by allowing the
initial conditions to change the location and the initial probabilities of the
random effects only.
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