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Abstract—The recognition of the activity of texting while
driving is an open problem in literature and it is crucial for
the security within the scope of automotive. This can bring to
life new insurance policies and increase the overall safety on the
roads. Many works in literature leverage smartphone sensors
for this purpose, however it is shown that these methods take
a considerable amount of time to perform a recognition with
sufficient confidence. In this paper we propose to leverage the
smartphone front camera to perform an image classification and
recognize whether the subject is seated in the driver position or in
the passenger position. We first applied standalone Convolutional
Neural Networks with poor results, then we focused on object
detection-based algorithms to detect the presence and the position
of discriminant objects (i.e. the security belts and the car win-
dow). We then applied the model over short videos by classifying
frame by frame until reaching a satisfactory confidence. Results
show that we are able to reach around 90% accuracy in only
few seconds of the video, demonstrating the applicability of our
method in the real world.

Index Terms—image recognition, object detection, internet of
things

I. INTRODUCTION

Recognizing actions inside a car allows a computing system
to reconfigure itself according to the different needs and
status of the passenger. Specifically, it is possible to recognize
statuses like driving fatigue, seats occupancy and driving inat-
tention. By recognizing these behaviors a computing system
can then act accordingly, for instance suggesting the driver
to have some rest in case an excessive fatigue is recognized,
or to avoid distracting elements for a safer driving. This field
of research is named Context Aware Computing, in which a
computing system anticipates possible scenarios according to
the feedback from a number of sensors, and acts accordingly
in order to improve the context itself. This involves (i) a first
phase in which we need to recognize a set of behaviors, actions
and statuses relevant to the scenario taken into account, (ii) a
possible fusion of these information into an enhanced context,
and (iii) a system which reacts according to the context by
performing specific actions. In this paper we focus on the
first stage of this process, more in detail we concentrate
our efforts in the so-called Activity Recognition task, which
refers to the possibility to classify behaviors performed by
an individual or a group of users. More in detail, we study
how to recognize a human being driving a car or being a
passenger in it, by leveraging the front camera of an off-the-

shelf smartphone. Enabling this recognition would then allow
a Context Aware System to deny the use of a smartphone
whilst driving, to improve the attention of drivers on roads. In
fact the bad habit of texting and driving is commonly referred
to as one of the major issues in modern driving scenarios,
since drivers using the smartphone have less attention for the
surroundings, leading to an increased number of accidents
worldwide [1]. Using a smartphone whilst driving is forbidden
in many countries, but it is reported that many individuals still
do it regularly. This leads to alarming numbers, with more
than 400,000 injuries related to distracted driving in 2012,
which led to 3,328 people killed, and similar numbers in more
recent years, despite the increase of automated safety measures
employed by modern cars.

There have been several proposals to improve road safety
by making drivers more conscious of the dangers of texting
and driving, such as EverDrive1 and DriverMode2, which are
applications that can be installed on the smartphone and block
it in case the texting and driving action is recognized. All these
applications rely on a voluntary installation by the user, hence
they are rarely used, thus less effective. This requires solutions
at the operating system level, which needs to be reliable and do
not require external applications to work. In fact, the European
Union mandated that starting from July 2022 all new cars must
have a black box to record the vehicles parameters, hence a
similar path could also be taken for smartphones used whilst
driving. To achieve this, several solutions are possible, which
may involve a different set of sensors and how those are
placed. In this work, we leverage the front camera available in
the majority of the smartphones to recognize the position of the
individual using the smartphone. Any system can then easily
leverage such classification to perform the needed actions in
case the driver is using the smartphone, or simply ignore it if
he/she is the passenger. We compare our system against other
proposals from literature, and we show that our contribution
achieves better and faster recognition of the driving individual,
compared to similar solutions.

1EverDrive - Available Online:
https://play.google.com/store/apps/details?id=com.
everquote.everdrive

2DriverMode - Available Online:
https://play.google.com/store/apps/details?id=com.
drivemode.android



The rest of this paper is structured as follows: Section II
describes related work from literature; Section III describes
the scenario and the issues; Section IV describes the binary
instantaneous classification while Section V takes into account
object detection. Finally, Section VI extends our approach to
continuous classification. Section VII concludes the paper and
discusses future works on this topic.

II. RELATED WORKS

Human Activity Recognition (HAR) is a set of techniques
aimed at recognizing human activities, and it is a wide and
actively researched topic. It is a key aspect of Context Aware
Computing, given that it serves as the perception of the
computing system towards a human behavior [2]. There have
been a number of different proposals for HAR, which focus
on different scenarios and behaviors of human life, such as
Transportation Mode Detection (TMD) [3], which focuses on
determining how users move, or home activities [4]. Apart
from the specific scenario envisioned, we can broadly classify
these proposals into inertial sensor based, vision based or
a mix of the two techniques. Moreover, they could also be
further classified upon using wearable devices or external ones,
depending on where the sensing device is placed. When using
inertial sensors, typically subjects have a wearable device that
records their movements, which are eventually classified using
Machine Learning or Deep Learning techniques. This is the
case for instance of [5], in which the authors leverage inertial
sensors and utilize them to classify human actions related
to the transportation mode. Still for TMD it is also worth
to cite [6], which uses GPS to recognize different vehicle
speeds and classify them. Concerning the primary topic of
this work, we note the work done by [7], which is focused
on determining the attention of the driver. Specifically, they
analyze the human head movements, and classify them into
focused or non focused classes, to eventually determine the
driver attitude. Other proposals include [8] and [9], which
focus on the same task using different techniques. For a
general overview of these techniques, we refer the interested
reader to [10]. Closer to the work presented in this paper we
mention [11], where the authors use external cameras to detect
distracted driving, which happens for instance when drivers are
drinking, looking at the back seats, or lower their head. In this
case several photos of users are collected with a camera placed
close to the rear view mirror in the center of the car, and used
to train a Convolutional Neural Network (CNN). A similar
approach is also studied in [12], where authors placed a camera
in the car, which monitors the actions of the users, including
reading a book or looking at their smartphone. This is also the
approach undertaken in [13], where the study focuses more on
CNN to classify non-driving activities.

In general, approaches based on inertial sensors struggle
whenever the driver performs more complex actions, or simply
purposely tricks the system, such as [14]. Here, the driver
can simply leave the smartphone on the passenger seat, and
the system would believe that the device is actually used by
the passenger herself. This happens similarly to [8], since

a significant number of curves, hence a longer recognition
time, are needed in order to correctly classify the position of
the smartphone. Moreover, all proposals based on intra-body
devices suffer from users that can deliberately de-activate or
make them unable to classify their behavior, by simply re-
moving them from their body. Hence, mainly external sensing
devices, such as cameras, are envisioned, as they monitor the
environment without granting the user the ability to deactivate
them. We note that these can be darkened, however this could
be easily recognized and notified appropriately.

III. SCENARIO DESCRIPTION

Texting and driving is certainly a serious problem, which
affects also many new generations. Contrary to previous
works [8] [14] we do not use inertial sensors to perform our
classification, as they are prone to potential errors as already
discussed. Instead, in this work we explore the possibility to
use directly smartphones, as the texting activity is performed
necessarily using them. Moreover, in contrast with external
solutions, our solution does not require any additional hard-
ware that needs to be installed in the car. Specifically, we
leverage the front camera of the smartphone, which points
directly at the user that is using the smartphone. Smartphone
front cameras are generally wide enough in their field of view
to have the user in the frame, along with other key distinctive
elements which we leverage to determine the user position
inside the car. Our primary task is hence to recognize whether
users are on the left or on the right seat of the car. This
inherently translates into knowing whether the user is actually
driving the car or being a simple passenger.

At first, we explore the possibility of tackling this problem
as a binary classification problem, with the two classes being
“driver” and “passenger”. We will discuss this in Section IV,
where we will also explain why it does not achieve satisfactory
performances. To improve the system, we will then transform
the task into object detection, able to recognize the belt and
the windows of the car. These two elements, although present
both for the passenger and for the driver, are in different
positions within the frame, also the belt is bent in a different
angle. We will show how this improves the overall accuracy
of the system. Finally, we will present our final system, which
is composed by object detection and correlating subsequent
images. More in detail, we will reduce the uncertainty in the
classification task shown in Section IV by classifying objects
in subsequent images. Numerical results confirm that this
technique provide superior results both in terms of accuracy
as well as recall, and is also much faster compared to existing
works such as [8] and [14].

IV. INSTANTANEOUS CLASSIFICATION

In this section we outline the steps taken towards solving
the image classification problem in a traditional way. This
means leveraging well-known and established techniques for
accomplishing a binary classification task over images.

The first step towards this goal is creating a consistent
dataset for the experiments. In our case, the Instantaneous



Fig. 1: Example of an image belonging to the Instantaneous
dataset, with the security belt and the car window visible. In
this case, the person is a driver. The face was anonymized for
privacy.

dataset, used within this section, is solely composed by stan-
dalone images, very much like the example image reported
in Figure 1. More in detail, the dataset was created by one
of the authors by taking 50 photos of himself while sitting
in one of the front seats of the car. In 50% of the cases the
subject is sitting on the left seat, in the remainder in the right
seat. Note that we did not consider a subject sitting in the
back seat for the purpose of the present paper, as it would
make the problem very complex and a solution would require
additional sensory data in the loop. The photos were taken
from different angles, both at day time and night time; the
subject in the dataset is the same person, wearing different
clothes and always wearing the security belt, which is visible
in every picture. We then performed a data augmentation step
that increased the number of images in the dataset from 50 to
4700 and homogenized their size to 360 × 360. We used the
ImageDataGeneration function, setting its parameters as
follows: rotation range = 45, shear range = 0.2, zoom range
= 0.4, brightness range = (0.1, 0.5), horizontal flip = False,
fill mode = “nearest”, cval = 125. All images were manually
labeled before augmentation as belonging to one of “driver”
or “passenger” – the horizontal flip was set to False as it
would invert also the image class. For the sake of simplicity,
we hereafter consider the driver to be the one on the left seat,
therefore for countries where people drive on the right. The

Model Accuracy
Custom CNN 56.7%
ResNet50 52.3%
COCOv6n 68.7%

TABLE I: Accuracy of instantaneous classification using dif-
ferent models and approaches.

dataset was then divided into training and validation sets, with
a percentage of 80% and 20%, respectively, and split into
batches of 18 images, in order to be able to train a model safely
with Google Colab3 without incurring into RAM overflows.

A. Custom Convolutional Neural Network

On top of the created Instantaneous dataset, we then pro-
ceeded to create a Convolutional Neural Network (CNN) for
the classification task. In this first experiment the CNN is
fairly simple and standard, with a first level of rescaling, then
three convolutional layers, each of them using a 3× 3 kernel
and followed by its respective MaxPooling layer. Afterwards,
a single flatten layer was applied, which was then given in
input to a dense layer with a ReLu activation function and a
second dense layer that outputs two classes. The model was
written using Tensorflow via the Keras library and run through
an Adam optimizer instead of a classic gradient descent [15].
The CNN is evaluated along 15 epochs using the accuracy as
a driving parameter.

B. Transfer Learning

Using the Instantaneous dataset as a basis, we also explored
the utilization of Transfer Learning techniques for our prob-
lem. This basically means exploiting existing models already
trained on extensive generalist datasets [16]. An example of
such datasets is ImageNet, one of the most popular and com-
plete, which comprises millions of images and more than 1000
classes. The idea is then to leverage prior knowledge instead
of training a model from scratch, in order to extract useful
information for a more specific task, like ours. Technically, a
Transfer Learning process consists in adapting the preexisting
model to our problem, by adding a few layers that fit our
dimensional needs. In particular, we chose to use ResNet50,
trained over ImageNet, by flattening its output and adding
the same dense layers that we added in our custom CNN in
Section IV-A. We then performed an similar learning process,
in order to obtain coherent results.

C. Preliminary Evaluation

We performed extensive performance tests over the vali-
dation set, however the average accuracy obtained through
the presented models was a quite disappointing result. The
percentages are shown in Table I, from which it is evident
that, for a binary classification task, the plain application
of a Neural Network is almost equivalent to a stab in the
dark. This result might have been driven by a number of

3https://colab.research.google.com/



factors, for instance the small size of the dataset and the
differences between images, given by the day/night contrast
and the different clothes. We thus repeated the experiments by
only keeping the daytime pictures and only one set of clothes,
however this did not improve significantly the accuracy, which
led us to completely change our approach. The intuition,
explained in more detail in the subsequent section, is that there
are very few elements in the photos that characterize the two
classes, while the others are just noise. Since it is difficult to
instruct generic models to concentrate only on few details, we
thought that an object detection step could greatly improve the
performance of the system.

V. OBJECT DETECTION

By using the same Instantaneous dataset, we applied a
completely different approach based on object detection. The
rationale behind this choice is that we realized generic methods
are not working, because they may take into account many
aspects that are not directly correlated with the classes. In our
case, instead, we observe that there are very few distinctive
elements in the photos that can discriminate the class with
certainty: the security belt and the car window. In particular,
the direction of the security belt is a very determinant feature,
as it is opposite for the two classes. Similarly, the car window
on the right of the picture suggests that the subject is seated on
the left and vice versa. If we restrict our classification task by
finding those objects, we expect a much higher performance.
On top of these premises we proceeded once again to train
the object detection model using a part of the training set. We
identified namely four different objects: the driver’s window
(DW), the passenger’s window (PW), the driver’s security belt
(DB) and the passenger’s security belt (PB). We then used the
tool LabelImg4 to locate the objects manually in the training
set. In practice, through such a tool we identify the elements
by manually drawing bounding boxes around them and giving
them a label – as shown in Figure 2 – this generates an
XML file with the coordinates of the bounding boxes and
their label. The training phase has been performed through
the tool Roboflow5, which is commonly used for this type
of tasks. The user uploads images together with their XML
label file and sets the percentage of training and test sets.
Subsequently the pre-trained model should be selected, in our
case we chose COCOv6n, based on the COCO (Common
Object Context) dataset [17]. Roboflow allows also to test the
model interactively, by uploading a new image, where objects
are recognized graphically. We then evaluated the model over
the test set with the following criterion:

• If the model recognizes more elements related to the
driver (DB and DW) than the ones related to the passen-
ger (PB and PW) in the test example, then its predicted
class will be “driver”.

• If the model recognizes more elements related to the
passenger than the ones related to the driver in the test
example, then its predicted class will be “passenger”.

4https://github.com/heartexlabs/labelImg
5https://roboflow.com/

Fig. 2: Example of a training image after its labeling through
LabelImg. The purple bounding box has been labeled with
PW, whereas the yellow one has been labeled with PB. The
face was anonymized for privacy.

• If the model recognizes an equal number of elements
related to the driver and the passenger in a test example,
then its associated class will be “uncertain” and it is
treated differently depending on the type of classification.

We then performed extensive tests much like the ones taken in
Section IV-C. Since in this case the classification is standalone
and stateless, we treated the text examples that are “uncertain”
just like a coin flip (i.e. we assign randomly a predicted class
between driver and passenger). The classification yields an
average result of 68.7% – also reported in Table I. This val-
idates our hypothesis that focusing on specific discriminating
elements yields a much better result. Furthermore, we also
observed that a fair number of test examples were uncertain
– around 47.5% – and the actual false positives were very
few – circa 7.5%. This suggested us to focus on the uncertain
examples in order to classify them correctly. Our proposed
solution is to leverage images in sequence belonging to the
same drive until one of them gets a correct classification. This
is explained in detail in the next section.

VI. CONTINUOUS CLASSIFICATION

Standalone or – as we called it – instantaneous classification
through object detection suffers from the presence of many
uncertain predictions. This observation led us to consider once
again a real scenario: if the smartphone of a person in a car
is able to take a picture of him/her, then it is certainly able



to take multiple ones in a sequence, related to the same car
trip. We obviously assume that the subject does not change
seat within the – reasonably short – time span in which such
photos are taken. This opens up new possibilities as ideally
we might consider to classify a set of photos instead of one
and apply a simple ensemble policy, like majority voting. This
would considerably limit the issue of uncertain samples, as,
the bigger the set of pictures, the more likely is that a sufficient
number of them are not uncertain.

In order to pursue this path, we need to consider a different
dataset though, as the pictures in the Instantaneous dataset
are not shot in sequence. For this reason, we created the
Continuous dataset, used for performance evaluation within
this section. The dataset was created as follows: one of
the authors recorded 8 videos (half of them as a driver,
half of them as a passenger) each one lasting 10 seconds,
reproducing natural motion of the head and the wrist. Each of
the video was then divided into frames with a rate of 15fps,
resulting therefore in 150 frames each. This way we obtained
a dataset of 1200 photos, each of them labeled with a class
and organized in 8 sequences. In order to be coherent with
the results shown in Section V, we used the same model
without retraining it, nor adding more labels. A standalone
test, analogous to the one in Section V by using the entire
Continuous dataset as a test set, yields an accuracy of 80%.

In order to implement the continuous classification, we
proceeded to group the video frames – aka the images – in
time windows of length l using the sliding window approach.
This means that a video with L frames will be divided into
L− l+ 1 windows. Clearly each window belongs to a single
class and can be classified as a single instance. In this case, we
follow the same approach as in Section V, however we sum
all objects recognized in each of the photos in the window.
This way, the longer the time window is, the less probable is
to end up with an uncertain classification. Figure 3 shows the
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Fig. 3: Bar chart showing the accuracy of the object detection
model over the Continuous dataset for different window sizes
– i.e. different values of l.

accuracy of the trained model for different values of l, namely
3, 5, and 10. We also show the previously mentioned result for
l = 1, which corresponds to the standalone classification. The
plot shows a monotone increase of the accuracy as l grows,
which is expected for two reasons: first, the uncertain frames
that end up in a window with at least a true positive lose their
uncertainty, second, the wrong classifications, as their number
is tiny, might be easily dominated by correct classifications
within the same window, as they are likely to be more.

This encouraging result led us to think about how to apply
such a system in a real scenario. If we take into account the
scenario described in Section III, we have that the smartphone
can record a number of pictures of the subject. The question is:
how many pictures must we consider in order for the system to
be certain about its classification result? In other words, how
long should the smartphone record images before reaching
confidently a verdict? To answer these questions we performed
an additional evaluation step. Taking as an example a single
video, then we considered the first γ windows of length l. We
then perform the classification on each of them, obtaining γ
predictions. We then introduce the confidence value k as the
maximum number of predictions of the same class, expressed
as a percentage over the total number of predictions. For
instance, if γ = 10 and the classification step predicts 7
windows as driver, 2 windows as passenger and 1 window
as uncertain, then k = 70%. If k is satisfactory, we consider
the verdict as final, otherwise we add a subsequent time
window, considering then γ + 1 windows and recalculating
k. We consider k to be satisfactory if k ≥ K, where K is a
fixed predetermined confidence threshold. We assume that the
application manufacturer uniquely sets K once the application
is in production, after a thorough evaluation step. We then
performed the above evaluation over the videos, halting the
execution as the threshold K was reached. Figure 4 shows
the evaluation performed for five different values of K and
seven different values of l, by setting γ = 10. The y-axis
shows the time takes until K is reached. Note that this is
not the actual execution time of the algorithm; the time was
calculated statically on top of the number of frames that were
taken into account; let us call it “video time”. Since the videos
were recorded at 15fps, each considered frame accounts for
roughly 0.067s. First of all we notice that, as expected, for a
fixed value of l, the video time increases as K increases, as
the confidence demanded is higher, then more classification
steps need to be performed in order to be K-sure of a certain
verdict. What is really interesting though, is that, for a fixed
value of K, the video time does not always have a monotone
behavior as l increases. In particular for really high values of
K – i.e. K ≥ 90% – the video time shows a local minimum,
which seems to correspond to an optimal value of l, given
the problem and its requirements. In this case, for instance,
we can say that for the problem presented in this paper and
a required confidence level of 99%, the optimal value of l
among the ones considered is l = 15; bigger time windows
are probably a waste of resources. Another takeaway message
is that very high levels of confidence are obtained with very
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Fig. 4: Bar chart showing the video time taken to reach a confidence threshold K for different values of l and with γ = 10.

short videos (1-2 seconds) making this approach very solid and
applicable to a real scenario. Finally, for the limited amounts
of videos considered in this paper, we obtained 100% accuracy
for any value of K, which further strengthens the confidence
in our proposed method and suggests that, even for K small,
results can be satisfactory. Future works aim at evaluating it
over larger and all-encompassing datasets.

VII. CONCLUSION

In this paper we have provided an image classification
solution to solve the problem of texting and driving. Ideally,
an application hosting this system would stop the driver
of a vehicle from using the smartphone if he or she is
driving. In our case we classified the position of a subject
seated in a car into “driver” or “passenger” by means of the
smartphone front camera. We first approached the problem
with classic algorithms, using CNNs to classify one image at
a time (instantaneous classification). The poor results led us
to approach the problem from an different angle, therefore
we first shifted to an object detection-based approach, by
identifying the direction of the security belt and the position of
the car window. Then, we applied a continuous classification
approach, by predicting the class of video frames in sequence,
until the algorithm reaches a certain confidence. Results shown
the applicability of the algorithm in a real world scenario.
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