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Experimental Procedures

General methods and materials

'"H-NMR spectra were recorded on Varian Mercury 400 spectrometer. Chemical shifts are reported in ppm from TMS
with the solvent resonance as the internal standard (CHCls: 6 = 7.27 ppm). Data are reported as follows: chemical shift,
multiplicity (s = singlet, d = duplet, t = triplet, q = quartet, dd = double duplet, m = multiplet), coupling constants (Hz).
BC-NMR spectra were recorded on Varian Mercury 400 spectrometer. Chemical shifts are reported in ppm from TMS
with the solvent as the internal standard (CDCls: 6 = 77.0 ppm). Chromatographic purifications were done with 240-400
mesh silica gel. All reactions were set up under an argon atmosphere in oven-dried glassware using standard Schlenk
techniques.

Anhydrous solvents were supplied by Aldrich in Sureseal® bottles. Anhydrous THF and DME were freshly distilled over
sodium and benzophenone under argon atmosphere, before the use in order to remove the radical inhibitor BHT present
as stabilizer. Unless specified, other anhydrous solvents were used without further purifications. All the reagents were
purchased from commercial sources (Sigma-Aldrich, Alfa Aesar, Fluorochem, Strem Chemicals, TCI) and used without
further purification unless specified. Reaction mixture was irradiated with Kessil® PR160L@456 nm.[!!

Figure S1. Emission profile of the Kessil® PR160L@456 nm used to irradiate the solutions (form Kessil® website:
https://www .kessil.com/science/PR160L.php).
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Figure S2. Reaction set-up.




Synthesis and characterization of the photocatalysts

Synthesis of 2,4,6-Tri(9H-carbazol-9-yl)-5-chloroisophthalonitrile (3CzCIIPN)

C,
- o g

3CzCIIPN

A 50 mL round-bottom-flask was charged with diphenylamine (5.0 equiv., 10 mmol, 1.69 g) and dry THF (20 mL). The
solution was cooled to 0 °C and NaH (60% in mineral oil, 7.5 equiv., 15 mmol, 600 mg) was slowly added under vigorous
stirring. After 2 hours tetrachloroisophtalonitrile (1.0 equiv., 2 mmol, 530 mg) was added and the mixture was stirred at
room temperature. The solution slowly turned from yellow to dark brown. When the TLC showed a complete consumption
of the starting material (usually 2 days are needed), water (1 mL) was added to neutralize the excess of NaH and the
mixture was evaporated to give a yellow solid. The residue was purified by flash chromatography (Hex/Et,O 2/1) to
obtain 3DPACIIPN as bright yellow solid 35% yield (0.7 mmol, 460 mg). Spectroscopic data were according to the
literature.[?)

Synthesis of 2,4,6-Tris(diphenylamino)-5-fluoroisophthalonitrile (3DPAFIPN)
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A 50 mL round-bottom-flask, equipped with a magnetic stirring bar, was charged with diphenylamine (5.0 equiv., 10
mmol, 1.69 g) and dry THF (20 mL). The solution was cooled down to 0 °C and NaH (60% in mineral oil, 7.5 equiv., 15
mmol, 600 mg) was slowly added under vigorous stirring. After 2 hours, tetrafluoroisophthalonitrile (1.0 equiv., 2 mmol,
400 mg) was added, and the mixture was stirred at room temperature. The solution slowly turned from colorless to dark
brown. When the TLC showed a complete consumption of the starting material (usually 2 days are needed), water (1 mL)
was added dropwise under vigorous stirring to neutralize the excess of NaH, and the mixture was evaporated to give a
yellow solid. The residue was purified by flash chromatography (cyHex/AcOEt 2/1) to obtain 3DPAFIPN as bright
yellow solid (1.04 g, 1.6 mmol, 80% yield). Spectroscopic data are in agreement with those reported in literature.!?’

Synthesis of 2,4,5,6-tetrakis(carbazol-9-yl)-4,6-dicyanobenzene (4CzIPN)

|
F

A 50 mL round-bottom-flask, equipped with a magnetic stirring bar, was charged with carbazole (5.0 equiv., 10 mmol,
1.67 g) and dry THF (20 mL). The solution was cooled down to 0 °C and NaH (60% in mineral oil, 7.5 equiv., 15 mmol,
600 mg) was slowly added under vigorous stirring. After 2 hours, tetrafluoroisophthalonitrile (1.0 equiv., 2 mmol, 400
mg) was added and the mixture was stirred at room temperature overnight. A yellow precipitate progressively appeared.

5



When the TLC showed a complete consumption of the starting material, water (1 mL) was added dropwise under vigorous
stirring to neutralize the excess of NaH, and the mixture was evaporated to give a yellow solid. The solid was successively
washed with water and ethanol to afford 1.09 g (1.38 mmol, 69% yield) of spectroscopically pure 4CzIPN. Spectroscopic
data are in agreement with those reported in literature.!

General procedure for the synthesis of internal alkynes

Internal alkynes 2b-g were synthetized according to the classical Sonogashira procedure. A flame-dried two-necked round
bottom flask connected to a Schlenk line through a gas inlet, under inert atmosphere, was charged with the corresponding
aryl iodide (1 equiv., 2.0 mmol), Pd(Ph3P),Cl, (0.05 equiv, 0.1 mmol, 70 mg), Cul (0.1 equiv., 0.2 mmol, 38 mg). Then,
Et;N (5 mL) and the alkyne substrate (1.2 equiv., 2.4 mmol) were added and N, was bubbled for thirty second in the
reaction mixture. The mixture was stirred at room temperature until all the aryl iodide was consumed. The solvent was
evaporated, and the residue was dissolved in diethyl ether (ca. 10 ml) and filtered over a small plug of Celite®. The filtrate
was concentrated under vacuum and the desired product was purified through silica gel flash chromatography.
Spectroscopic data matches with those reported in literature.!

General procedure: dual photoredox and nickel catalysed reductive coupling of alkynes and aromatic aldehydes

All the reactions were performed on 0.2 mmol scale of aldehyde. A dry 10 mL Schlenk tube, equipped with a Rotaflo® stopcock,
magnetic stirring bar and an argon supply tube, was first charged under argon with Ni(nBusP)2Clz (10 mol%, 0.01 mmol, 5.4 mg).
Then, the substrate 1 (0.2 mmol), the organic photocatalyst 3CzCIIPN (5 mol%, 0.01 mmol, 6.6 mg), diethyl 1,4-dihydro-2,6-diethyl-
3,5-pyridinedicarboxylate Hantzsch’s ester (3 equivalents, 0.6 mmol, 152 mg) were added. Freshly distilled inhibitor-free DME (2 mL
in order to obtain a [1] = 0.1 M substrate solution) was then added. The orange reaction mixture was allowed to stir for 5 min. and the
alkyne 2a-g was added dropwise to the solution. The reaction mixture was further subjected to a freeze-pump-thaw procedure (three
cycles, two minutes each) and the vessel was refilled with argon. The reaction mixture was irradiated under vigorous stirring for 14 h
and was quenched with water (approx. 4 mL) and extracted with AcOEt (4 x 3 mL). The combined organic layers were dried over
anhydrous Na>SOs and the solvent was removed under reduced pressure. The 'H NMR of the reaction crude to evaluate the
regioisomeric ratio, was recorded previous filtration over a small plug of celite with DCM. The crude was purified by flash column
chromatography (SiOz) to afford products 3 in the stated yields.

General procedure: dual photoredox and nickel catalysed reductive coupling of alkynes and aliphatic aldehydes

All the reactions were performed on 0.2 mmol scale of aldehyde. A dry 10 mL Schlenk tube, equipped with a Rotaflo® stopcock,
magnetic stirring bar and an argon supply tube, was first charged under argon with Ni(nBusP)2Cl2 (10 mol%, 0.01 mmol, 5.4 mg).
Then, the substrate 1 (0.2 mmol), the organic photocatalyst 3CzCIIPN (5 mol%, 0.01 mmol, 6.6 mg), diethyl 1,4-dihydro-2,6-diethyl-
3,5-pyridinedicarboxylate Hantzsch’s ester (3 equivalents, 0.6 mmol, 152 mg) and MgBr2¢Et2O (2 equivalents, 0.4 mmol, 103 mg)
were added. Freshly distilled inhibitor-free DME (2 mL in order to obtain a [1] = 0.1 M substrate solution) was then added. The orange
reaction mixture was allowed to stir for 5 min. and the alkyne 2a-g was added dropwise to the solution. The reaction mixture was
further subjected to a freeze-pump-thaw procedure (three cycles, two minutes each) and the vessel was refilled with argon. The reaction
mixture was irradiated under vigorous stirring for 14 h and was quenched with water (approx. 4 mL) and extracted with AcOEt (4 x 3
mL). The combined organic layers were dried over anhydrous Na2SO4 and the solvent was removed under reduced pressure. The 'H
NMR of the reaction crude to evaluate the regioisomeric ratio, was recorded previous filtration over a small plug of celite with DCM.
The crude was purified by flash column chromatography (SiO2) to afford products 3 in the stated yields.



OH OH
Z “Ph Z “Me
Me Ph
3a:3a’
(3a-3a”): pale yellow oil, 71% (0.14 mmol, 32 mg) as mixture regioisomers 3a:3a’ of 92:8. The general procedure was applied using freshly
distilled 1a (0.2 mmol, 20.4 pL) and 2a (0.6 mmol, 70 mg, 76 pl). The regioisomeric ratio was calculated considering the *H NMR spectrum

of the reaction crude considering the singlet (1H) at 5.30 ppm related to the product 3a. The title compound was isolated by flash column
chromatography (1:1 Hex:DCM). Spectroscopic data were according to the literature.[

OH OH
Z>ph Z>Me
Me Ph

3b:3b’
(3b-3b’): pale yellow oil, 68% (0.14 mmol, 37 mg) as mixture regioisomers 3b:3b’ of 84:16. The general procedure was applied using 1b (0.2
mmol, 31.2 mg) and 2a (0.6 mmol, 70 mg, 76 pl). The regioisomeric ratio was calculated considering the tHNMR spectrum of the reaction
crude considering the singlet (1H) at 5.64 ppm related to the product 3b. The title compound was isolated by flash column chromatography
(1:1 Hex:DCM).
'H NMR (401 MHz, CDCls) 8 7.94 (s, 1H), 7.90 — 7.81 (m, 3H), 7.55 — 7.46 (m, 3H), 7.39 — 7.32 (m, 4H), 7.28 — 7.21 (m, 1H), 6.87 (s, 1H),
5.46 (s, 1H), 1.78 (d, J = 1.0 Hz, 3H).
13C NMR (101 MHz, CDCls) § 139.6, 137.6, 133.4, 133.1, 129.5, 129.2 (2C), 128.34, 128.30 (20C), 128.2, 127.8, 126.8, 126.5, 126.3, 126.1,
125.3,124.7,79.8, 14.2.
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3c:3¢’
(3c-3¢”): pale yellow oil, 96% (0.19 mmol, 57 mg) as mixture regioisomers 3c:3¢’ of 90:10. The general procedure was applied using 1c (0.2
mmol, 36 mg) and 2a (0.6 mmol, 70 mg, 76 pl). The regioisomeric ratio was calculated considering the *H NMR spectrum of the reaction
crude considering the singlet (1H) at 5.35 ppm related to the product 3c. The title compound was isolated by flash column chromatography
(1:1 Hex:DCM). Spectroscopic data were according to the literature.[

OH OH
Me = Ph
Bu Bu

3d:3d’
(3d-3d°): pale yellow oil, 86% (0.17 mmol, 48 mg) as mixture regioisomers 3d:3d’ of 97:3. The general procedure was applied using freshly
distilled 1d (0.2 mmol, 32 pl) and 2a (0.6 mmol, 70 mg, 76 pl). The regioisomeric ratio was calculated considering the *H NMR spectrum of
the reaction crude considering the singlet (1H) at 5.26 ppm related to the product 3d. The title compound was isolated by flash column
chromatography (1:1 Hex:DCM).
'H NMR (401 MHz, CDCls) § 7.42 — 7.19 (m, 9H), 6.80 (s, 1H), 5.26 (s, 1H), 1.76 (s, 3H), 1.33 (s, 9H).
13C NMR (101 MHz, CDCl3) 6 150.7, 139.8, 139.2, 137.7, 129.2 (2C), 128.2 (2C), 126.6, 126.4 (2C), 125.7, 125.5 (2C), 79.4, 34.7, 31.5 (3C),
14.4.
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3e:3e’
(3e-3¢’): pale yellow oil, 50% (0.1 mmol, 24 mg) as mixture regioisomers 3e:3e’ of 84:16. The general procedure was applied using freshly
distilled 1e (0.2 mmol, 24 pl) and 2a (0.6 mmol, 70 mg, 76 pl). The regioisomeric ratio was calculated considering the *H NMR spectrum of
the reaction crude considering the singlet (1H) at 5.25 ppm related to the product 3e. The title compound was isolated by flash column
chromatography (1:1 Hex:DCM). Spectroscopic data were according to the literature. 1
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(3f-3f°): pale yellow oil, 38% (0.07 mmol, 19 mg) as mixture regioisomers 3e:3e’ of 91:9. The general procedure was applied using freshly
distilled 1f (0.2 mmol, 24 pl) and 2a (0.6 mmol, 70 mg, 76 ul). The regioisomeric ratio was calculated considering the *H NMR spectrum of
the reaction crude considering the singlet (1H) at 5.23 ppm related to the product 3f. The title compound was isolated by flash column
chromatography (1:1 Hex:DCM). Spectroscopic data were according to the literature. [
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390:39’
(3g-3g”): pale yellow oil, 64% (0.13 mmol, 32 mg) as mixture regioisomers 3g:3g’ of 86:14. The general procedure was applied using freshly
distilled 1g (0.2 mmol, 24 pl) and 2a (0.6 mmol, 70 mg, 76 pl). The regioisomeric ratio was calculated considering the *H NMR spectrum of
the reaction crude considering the singlet (1H) at 5.26 ppm related to the product 3g.
!H NMR (401 MHz, CDCls) 8 7.37 — 7.24 (m, 6H), 7.04 — 6.99 (m, 2H), 6.86 — 6.82 (m, 1H), 6.78 (s, 1H), 5.26 (s, 1H), 3.82 (s, 3H), 1.75 (d,
J=1.1 Hz, 3H).
13C NMR (101 MHz, CDCls) § 159.9, 143.9, 139.6, 137.6, 129.6, 129.2 (2C), 128.3 (2C), 126.7, 126.3, 119.0, 113.2, 112.2, 79.6, 55.4, 14.1.
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3h:3h’
(3h-3h’): pale yellow oil, 53% (0.11 mmol, 30 mg) as mixture regioisomers 3h:3h’ of 90:10. The general procedure was applied using 1h (0.2
mmol, 33 mg) and 2a (0.6 mmol, 70 mg, 76 pl). The regioisomeric ratio was calculated considering the *H NMR spectrum of the reaction
crude considering the singlet (1H) at 5.22 ppm related to the product 3h.
IH NMR (401 MHz, CDCl3) ) § 7.38 — 7.28 (m, 5H), 6.76 (s, 1H), 6.61 (d, J = 2.0 Hz, 2H), 6.40 (t, J = 2.1 Hz, 1H), 5.22 (5, 1H), 3.80 (s, 6H),
1.76 (s, 3H).
13C NMR (101 MHz, CDCls) § 161.0 (2C), 144.8, 139.5, 137.6, 129.2 (2C), 128.3 (2C), 126.7, 126.4, 104.6 (2C), 99.6, 79.7, 55.5 (2C), 14.1.

OH
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3i:3i’
(3i-3i%): pale yellow oil, 88% (0.18 mmol, 45 mg) as mixture regioisomers 3i:3i’ of 86:14. The general procedure was applied using 1i (0.2
mmol, 28 mg) and 2a (0.6 mmol, 70 mg, 76 pl). The regioisomeric ratio was calculated considering the *H NMR spectrum of the reaction
crude considering the singlet (1H) at 5.27 ppm related to the product 3i. The title compound was isolated by flash column chromatography (1:1
Hex:DCM). Spectroscopic data were according to the literature. (4
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3j:3§°
(3j-3j°): pale yellow oil, 63% (0.13 mmol, 30.5 mg) as mixture regioisomers 3j:3j’ of 86:14. The general procedure was applied using freshly
distilled 1j (0.2 mmol, 22 pl) and 2a (0.6 mmol, 70 mg, 76 pl). The regioisomeric ratio was calculated considering the *H NMR spectrum of
the reaction crude considering the singlet (1H) at 5.28 ppm related to the product 3j. The title compound was isolated by flash column
chromatography (1:1 Hex:DCM). Spectroscopic data were according to the literature. [

Pegadons:

3k:3k’
(3k-3Kk*): pale yellow oil, 66% (0.13 mmol, 38 mg) as mixture regioisomers 3k:3k’ of 76:24. The general procedure was applied using freshly
distilled 1k (0.2 mmol, 28 pl) and 2a (0.6 mmol, 70 mg, 76 pl). The regioisomeric ratio was calculated considering the *H NMR spectrum of
the reaction crude considering the singlet (1H) at 5.37 ppm related to the product 3I. The title compound was isolated by flash column
chromatography (1:1 Hex:DCM). Spectroscopic data were according to the literature. [
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(31-31°): pale yellow oil, 40% (0.08 mmol, 24 mg) as mixture regioisomers 31:3I> > 95:5. The general procedure for aliphatic aldehydes was
applied using freshly distilled 11 (0.2 mmol, 44 pl) and 2a (0.6 mmol, 70 mg, 76 ul). The regioisomeric ratio was calculated considering the
'H NMR spectrum of the reaction crude considering the triplet (LH) at 4.17 ppm related to the product 3.
IH NMR (401 MHz, CDCls) & 7.36 — 7.27 (m, 5H), 6.49 (s, 1H), 4.17 (t, J = 6.6 Hz, 1H), 1.87 (d, J = 1.3 Hz, 3H), 1.27 (s, 20H), 0.88 (t, J =
6.8 Hz, 3H).
13C NMR (101 MHz, CDCls) § 140.6, 137.8, 129.1 (2C), 128.2 (2C), 126.5, 125.9, 78.4, 35.3, 32.1, 29.8 (5C), 29.5, 26.0, 22.8, 14.3, 13.3.

Me Me
OH OH
X A ph N A Me
Ph

Me 3m:3m’
(3m-3m?): pale yellow oil, 45% (0.09 mmol, 23 mg) as mixture regioisomers 3m:3m’ > 95:5. The general procedure for aliphatic aldehydes
was applied using freshly distilled 1m (0.2 mmol, 33 pl) and 2a (0.6 mmol, 70 mg, 76 ul). The regioisomeric ratio was calculated considering
the *H NMR spectrum of the reaction crude considering the triplet (1H) at 4.17 ppm related to the product 3m.
'H NMR (401 MHz, CDCls) § 7.36 — 7.27 (m, 5H), 6.49 (s, 1H), 5.41 — 5.29 (m, 2H), 4.17 (t, J = 6.6 Hz, 1H), 2.08 — 2.01 (m, 6H), 1.87 (d, J
=1.2 Hz, 3H), 1.68 — 1.62 (m, 2H), 1.45 - 1.36 (m, 2H), 0.95 (t, J = 7.5 Hz, 3H).
13C NMR (101 MHz, CDCls) § 131.9, 129.1 (2C), 128.3 (2C), 126.6, 125.9, 78.3, 35.1, 29.8, 27.2, 25.6, 22.0 (3C), 20.7, 14.5, 13.3.
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(3n-3n°): pale yellow oil, 60% (0.12 mmol, 30 mg) as mixture regioisomers 3n:3n’ > 95:5. The general procedure for aliphatic aldehydes was
applied using freshly distilled 1n (0.2 mmol, 26 pl) and 2a (0.6 mmol, 70 mg, 76 ul). The regioisomeric ratio was calculated considering the
'H NMR spectrum of the reaction crude considering the triplet (1H) at 4.21 ppm related to the product 3n.

!H NMR (401 MHz, CDCls) & 7.34 — 7.21 (m, 10H), 6.51 (s, 1H), 4.21 (t, J = 6.5 Hz, 1H), 2.79 — 2.66 (m, 2H), 2.03 — 1.95 (m, 2H), 1.89 (s,
3H).

13C NMR (101 MHz, CDCls) § 142.0, 140.2, 137.6, 129.1 (2C), 128.6 (2C), 128.5 (2C), 128.3 (2C), 126.7, 126.2, 126.0, 77.6, 36.8, 32.2, 13.4.

OH OH
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30:30’
(30-30”): pale yellow oil, 30% (0.06 mmol, 18 mg) as mixture regioisomers 30:30” > 95:5. The general procedure for aliphatic aldehydes was
applied using freshly distilled 1o (0.2 mmol, 37 mg) and 2a (0.6 mmol, 70 mg, 76 pl). The regioisomeric ratio was calculated considering the
'H NMR spectrum of the reaction crude considering the triplet (1H) at 4.24 ppm related to the product 3o.
'H NMR (401 MHz, CDCls) § 7.83 — 7.76 (m, 3H), 7.67 (s, 1H), 7.50 — 7.19 (m, 8H), 6.52 (s, 1H), 4.24 (td, J = 6.5, 2.6 Hz, 1H), 2.97 - 2.84
(m, 2H), 2.12 - 2.03 (m, 2H), 1.90 (d, J = 1.3 Hz, 3H).
13C NMR (101 MHz, CDCls) & 140.2, 139.5, 137.6, 133.8, 132.2, 129.1 (2C), 128.3 (2C), 128.1, 127.8, 127.6, 127.5, 126.7, 126.6, 126.3,
126.1,125.3,77.6, 36.6, 32.4, 13.4.
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3p:3p’
(3p-3p’): pale yellow oil, 54% (0.11 mmol, 37 mg) as mixture regioisomers 3p:3p’ of 90:10. The general procedure was applied using 1i (0.2
mmol, 28 mg) and 2b (0.6 mmol, 144 mg). The regioisomeric ratio was calculated considering the *H NMR spectrum of the reaction crude
considering the singlet (1H) at 5.29 ppm related to the product 3p. The title compound was isolated by flash column chromatography. Two
consecutive purification were required for the isolation of the product. The first one, 1:1 Hex:DCM to remove the excess of pyridine deriving
from the oxidation of the Hantzsch’ester; the second, 9:1 Hex: AcOEt to remove the traces of photocatalyst.
1H NMR (401 MHz, CDCls) § 7.42 — 7.32 (m, 8H), 7.30 — 7.20 (m, 4H), 7.03 (d, J = 7.1 Hz, 2H), 6.81 (s, 1H), 5.29 (s, 1H), 2.69 — 2.61 (m,
1H), 2.60 — 2.53 (m, 2H), 2.38 (t, J = 9.5 Hz, 1H).
13C NMR (101 MHz, CDCls) § 143.1, 141.8, 140.7, 137.3, 133.6, 128.7 (4C), 128.5 (4C), 128.30 (2C), 128.26 (2C), 127.7, 127.1, 126.1, 77.9,
35.0, 30.4.
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(39-3g°): pale yellow oil, 80% (0.16 mmol, 50 mg) as mixture regioisomers 3g:3q° of 90:10. The general procedure was applied using 1i (0.2

mmol, 28 mg) and 2¢ (0.6 mmol, 103 mg). The regioisomeric ratio was calculated considering the *H NMR spectrum of the reaction crude

considering the singlet (1H) at 5.31 ppm related to the product 3q. The title compound was isolated by flash column chromatography. Two

consecutive purification were required for the isolation of the product. The first one, 1:1 Hex:DCM to remove the excess of pyridine deriving

from the oxidation of the Hantzsch’ester; the second, 9:1 Hex:DCM to remove the traces of photocatalyst.

IH NMR (401 MHz, CDCl3) 5 7.41 — 7.24 (m, 9H), 6.74 (s, 1H), 5.31 (s, 1H), 2.27 (ddd, J = 13.8, 10.6, 5.7 Hz, 1H), 2.00 (ddd, J = 13.9, 10.7,

5.2 Hz, 1H), 1.42 - 1.29 (m, 2H), 1.28 — 1.20 (m, 2H), 0.82 (t, J = 7.2 Hz, 3H).

13C NMR (101 MHz, CDCls) ) & 144.2, 141.0, 137.5, 133.6, 128.8 (2C), 128.7 (2C), 128.4 (2C), 128.3 (2C), 126.8, 126.5, 77.5, 31.2, 28.4,

23.1,13.9.

OH OH
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Me 3r:3r’
(3r-3r’): pale yellow oil, 41% (0.08 mmol, 27 mg) as mixture regioisomers 3r:3r’ > 95:5. The general procedure was applied using 1i (0.2
mmol, 28 mg) and 2d (0.6 mmol, 111 mg). The regioisomeric ratio was calculated considering the *H NMR spectrum of the reaction crude
considering the singlet (1H) at 5.30 ppm related to the product 3r. The title compound was isolated by flash column chromatography. Two
consecutive purification were required for the isolation of the product. The first one, 1:1 Hex:DCM to remove the excess of pyridine deriving
from the oxidation of the Hantzsch’ester; the second, 9:1 Hex:DCM to remove the traces of photocatalyst.
!H NMR (401 MHz, CDCls) & 7.41 — 7.29 (m, 4H), 7.22 — 7.11 (m, 4H), 6.68 (s, 1H), 5.30 (s, 1H), 2.35 (s, 3H), 2.23 (ddd, J = 13.6, 10.9, 5.5
Hz, 1H), 1.99 (ddd, J = 13.8, 11.0, 5.3 Hz, 1H), 1.38 — 1.30 (m, 2H), 1.24 — 1.17 (m, 4H), 0.82 (t, ] = 6.8 Hz, 3H).
13C NMR (101 MHz, CDCls) § 143.5, 141.0, 136.6, 134.5, 133.5, 129.1 (2C), 128.74 (2C), 128.66 (2C), 128.3 (2C), 126.5, 77.8, 32.3, 28.71,
28.66, 22.4, 21.3, 14.1.

OH OH

(J O T
cl OMe ClI O
Me OMe

3s:38’
(3s-3s”): pale yellow oil, 75% (0.15 mmol, 52 mg) as mixture regioisomers 3s:3s” of 87:13. The general procedure was applied using 1i (0.2
mmol, 28 mg) and 2e (0.6 mmol, 121 mg). The regioisomeric ratio was calculated considering the *H NMR spectrum of the reaction crude
considering the singlet (1H) at 5.29 ppm related to the product 3s. The title compound was isolated by flash column chromatography. Two
consecutive purification were required for the isolation of the product. The first one, 1:1 Hex:DCM to remove the excess of pyridine deriving
from the oxidation of the Hantzsch’ester; the second, 9:1 Hex:DCM to remove the traces of photocatalyst.
'H NMR (401 MHz, CDCls) § 7.40 — 7.29 (m, 4H), 7.25 — 7.21 (m, 2H), 6.92 — 6.84 (m, 2H), 6.65 (s, 1H), 5.29 (s, 1H), 3.82 (s, 3H), 2.23
(ddd, J =13.8,10.9, 5.5 Hz, 1H), 2.01 (ddd, J = 13.6, 10.9, 5.2 Hz, 1H), 1.42 — 1.31 (m, 2H), 1.24 — 1.17 (m, 4H), 0.83 (t, J = 6.5 Hz, 3H).
13C NMR (101 MHz, CDCls) § 158.5, 142.7, 141.1, 133.4, 130.03 (2C), 129.97, 128.6 (2C), 128.3 (2C), 126.2, 113.9 (2C), 77.9, 55.4, 32.3,
28.7,28.6,22.4,14.1.

OH OH
ocQ, o
cl CFy ClI7 7
3tat
CF3

Me

(3t-3t°): pale yellow oil, 38% (0.08 mmol, 29 mg) as mixture regioisomers 3t:3t> > 95:5. The general procedure was applied using 1i (0.2
mmol, 28 mg) and 2e (0.6 mmol, 144 mg). The regioisomeric ratio was calculated considering the *H NMR spectrum of the reaction crude
considering the singlet (1H) at 5.31 ppm related to the product 3t. The title compound was isolated by flash column chromatography. Two
consecutive purification were required for the isolation of the product. The first one, 1:1 Hex:DCM to remove the excess of pyridine deriving
from the oxidation of the Hantzsch’ester; the second, 9:1 Hex:DCM to remove the traces of photocatalyst.

!H NMR (401 MHz, CDCls) § 7.59 (d, J = 8.2 Hz, 2H), 7.40 — 7.32 (m, 6H), 6.78 (s, 1H), 5.31 (s, 1H), 2.24 (ddd, J = 13.8, 9.7, 6.9 Hz, 1H),
1.95 (ddd, J = 13.8, 9.3, 6.9 Hz, 2H), 1.40 — 1.31 (m, 2H), 1.24 — 1.15 (m, 4H), 0.81 (t, J = 6.7 Hz, 3H).
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13C NMR (101 MHz, CDCls) § 146.3, 141.3, 140.6, 133.9, 129.8 (q, J = 32.3 Hz), 129.0 (2C), 128.9 (2C), 128.4 (2C), 125.3 (q, J = 3.7 Hz,
2C), 124.8 124.4 (q, J = 271.8 Hz), 77.1, 32.1, 28.7, 28.6, 22.4, 14.0.
19F NMR (377 MHz, CDCls) & -62.49.

OH OH
(JyrC. o r e
cl F a2

3u:3u’

Me
(3u-3u’): pale yellow oil, 36% (0.07 mmol, 24 mg) as mixture regioisomers 3u:3u’:80:20. The general procedure was applied using 1i (0.2
mmol, 28 mg) and 2g (0.6 mmol, 114 mg). The regioisomeric ratio was calculated considering the *H NMR spectrum of the reaction crude
considering the singlet (1H) at 5.27 ppm related to the product 3u. The title compound was isolated by flash column chromatography. Two
consecutive purification were required for the isolation of the product. The first one, 1:1 Hex:DCM to remove the excess of pyridine deriving
from the oxidation of the Hantzsch’s ester; the second, 9:1 Hex:DCM to remove the traces of photocatalyst.
IH NMR (401 MHz, CDCl3) 6 7.36-7.29 (m, J = 5.9 Hz), 7.25 — 7.19 (m, 3H), 7.16-11 (m, 1H), 7.06-6.99 (m, 2H), 6.95 — 6.79 (m, 2H), 6.67
(s, 1H), 5.29-5.27 (m, 1H), 2.19 (ddd, J = 13.8, 10.6, 5.9 Hz, 1H), 2.04 — 1.82 (m, 3H), 1.28 — 1.11 (m, 8H), 0.85 — 0.79 (m, 4H).
13C NMR (101 MHz, CDCls) § 160.4 (d, J = 246 Hz, 1C), 144.04 (d, J = 1.4 Hz, 1C), 140.73, 133.48, 130.49, 130.15 (d, J = 8 Hz, 1C), 128.57,
128.15, 125.17, 115.01 (d, J = 21 Hz, 1C), 77.26, 31.99, 28.41, 28.35, 22.18, 13.88.
F NMR (377 MHz, CDCls) § -115.54 (ddd, J = 14.2, 8.7, 5.3 Hz).
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Table S1. Optimization for coupling of aliphatic aldehydes.

ADDITIVE, X equiv.

Ni(nBuzP),Cl,, 5 mol%

? 3CzCIIPN, 5 mol % OH
©/\) HE, 3 equiv. Ty
DME ([10] = 0.1 M) Me
10 Blue light (456 nm) 30:30°
60 h
Entry Additive Yield %
1 none Traces
2 MgBr2Et,0, 2 equiv. 66
3 Sc(OTf)3, 20 mol% 39
4 TesCl, 1.5 equiv. 49
5 LiBr, 2 equiv. 52
6 Nal, 2 equiv. Traces
7 Mg(OAC)2, 2 equiv. Traces
8 Mg(OAC),, 2 equiv. Traces
Unreactive substrates

(IJ OH IO OH (I) OH

Me M

NC NC Me EtOOC EtOOC , Br Br ©
unreactive unreactive dehalogenation

observed

(I) OH IO OH (IJ OH
Z>Ph \H \R\(\Ph >H th

Me Me Me

unreactive unreactive unreactive

unreactive

OH
¢
o OMe
N

OH
=z
cl o~

unreactive

AC
i

unreactive
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Photophysical analyses

All the photophysical analyses were carried out in freshly distilled 1,2-dimethoxyethane or CHsCN at 298 K, unless otherwise specified. UV—
vis absorption spectra were recorded with a PerkinElmer A40 spectrophotometer using quartz cells with path length of 1.0 cm. Luminescence
spectra were performed with a PerkinElmer LS-50 or an Edinburgh FS5 spectrofluorometer equipped with a Hamamatsu Photomultiplier
R928P and are not corrected by the instrument response unless otherwise indicated. Lifetimes shorter than 10 ps were measured by an
Edinburgh FLS920 spectrofluorometer by time-correlated single-photon counting (TCSPC) technique. Quantum yields are determined with
the method of Demas and Crosby® using quinine sulfate in air-equilibrated aqueous H2SOa (0.5 M) as a standard (®= 0.55). Experiments in
absence of oxygen were carried out in custom-made sealed quartz cuvettes, upon degassing with repeated pump-freeze-thaw cycles in high
vacuum. The estimated experimental errors are 2 nm on the band maximum, 5% on the molar absorption coefficient and luminescence lifetime,
10% on emission quantum yields.

Figure S3. Comparison between absorption and corrected emission spectra of solutions of 3CzCIIPN in DME at r.t. Aex
=360 nm.
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Figure S4. Emission decays recorded on air-equilibrated (blue dots) and deoxygenated (green dots) solutions of
3CzCIIPN in DME at r.t. The corresponding double exponential fitting are displayed as the red and orange lines,
respectively (only the short decay component is reported). The instrument response function (IRF) is also shown (black
dots). Aex = 405 nm.
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Figure S5. Comparison between emission spectra of solutions of 3CzCIIPN in CH,>Cl,:CH30H (1:1 v/v) rigid matrix at
77 K: fluorescence (blue line); phosphorescence (green line: gate = 1 ms, delay = 50 ps; red line: gate 1 ms, delay 0 ps).
The absorption spectrum in DME is also shown for comparison as the black dashed line. Aex = 350-390 nm.
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Figure S6. A: delayed fluorescence decays of 3CzCIIPN in degassed DME at r.t., obtained upon addition of HE (up to
0.52 mM). Aew= 545 nm; Aex= 405 nm; B: Stern-Volmer diagram relative to the fluorescence lifetimes shown in A.
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Figure S7. A: absorption spectra of solutions of 3CzCIIPN in degassed DME at r.t. (ca. 41 uM, blue line) obtained upon
addition of HE (0.52 mM, red line); B: fluorescence intensities of 3CzCIIPN obtained from the same solutions at A=
440 nm; C: Stern-Volmer diagram relative to the fluorescence intensities shown in B. Note: kq has been estimated
calculated from emission intensities changes, without taking into account the contribution of the prompt fluorescence to
the total emission intensity detected.
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Figure S8. Comparison between prompt fluorescence decays of pure 3CzCIIPN in degassed DME at r.t. (blue dots) and
that obtained upon addition of HE (0.52 mM, red dots). Aem= 545 nm; Aex= 405 nm. Lifetimes for [HE] = 0.52 mM are
obtained with a triexponential function (y*> = 1.171; 72 = 0.15 ns, 73 = 24.7 ns).
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Figure S9 A: delayed fluorescence decays of 3CzCIIPN in degassed CH3;CN at r.t., obtained upon addition of
[NiClx(nBusP),] (up to 0.52 mM). Aem= 545 nm; A= 405 nm; B: Stern-Volmer diagram relative to the fluorescence

lifetimes shown in A.
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Figure S10 A: absorption spectra of solutions of 3CzCIIPN in air-equilibrated CH3CN at r.t. (ca. 37 pM, blue line)
obtained upon addition of [NiCly(nBusP),] (up to 0.52 mM, red line); B: delayed fluorescence decays of 3CzCIIPN
obtained from the same solutions at Aex= 440 nm. C: Stern-Volmer diagram relative to the fluorescence lifetimes shown

in B.
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Figure S11. Comparison between prompt fluorescence decays of pure 3CzCIIPN in degassed CH3CN at r.t. (blue dots)
and that obtained upon addition of [NiCly(nBusP),] (0.52 mM, red dots). Aem = 545 nm; Aex= 405 nm. Lifetimes are
obtained with biexponential functions (y% = 1.194; ¥* = 1.663).
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Figure S12. A: absorption spectra of solutions of 3CzCIIPN in degassed DME at r.t. (ca. 41 uM, blue line) obtained upon
addition of benzaldehyde (1a) (10 mM, red line); B: fluorescence intensities of 3CzCIIPN obtained from the same
solutions at Aex= 440 nm; C: Stern-Volmer diagram relative to the fluorescence intensities shown in B; estimated kq = 10°
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Figure S13. A: absorption spectra of solutions of 3CzCIIPN in degassed DME at r.t. (ca. 44 uM, blue line) obtained upon
addition of alkyne 2a (48 mM, red line); B: fluorescence intensities of 3CzCIIPN obtained from the same solutions at
Aex= 456 nm. C: Stern-Volmer diagram relative to the fluorescence intensities shown in B; estimated kq = 106 M!s..
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Figure S14. Absorption spectrum of [NiCly(nBusP);] in CH3CN at r.t..
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Table S2. Quenching efficiencies of the reactants in the reaction mixture.

Quencher kg / M-1cm? [quencher] / mM 79! %
HE 5.9x10° 300 ca. 99
[NiCl2(nBusP)2] 3.5x10° 5 <1
la =~ 10° 100 negligible
2a =~ 10° 300 negligible
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