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Abstract. Recent trends in pervasive computing promote the vision of
Collective Adaptive Systems (CASs): large-scale collections of relatively
simple agents that act and coordinate with no central orchestrator to sup-
port distributed applications. Engineering global behaviour out of local
activity and interaction, however, is a difficult task, typically addressed
by try-and-error approaches in simulation environments. In the context
of Aggregate Computing (AC), a prominent functional programming ap-
proach for CASs based on field-based coordination, this difficulty is re-
flected in the design of versatile algorithms preserving efficiency in a va-
riety of environments. To deal with this complexity, in this work we pro-
pose to apply Machine Learning techniques to automatically devise local
actions to improve over manually-defined AC algorithms specifications.
Most specifically, we adopt a Reinforcement Learning-based approach to
let a collective learn local policies to improve over the standard gradient
algorithm—a cornerstone brick of several higher-level self-organisation
algorithms. Our evaluation shows that the learned policies can speed up
the self-stabilisation of the gradient to external perturbations.

Keywords: Collective Adaptive System · Aggregate Computing · Re-
inforcement Learning · Collective Intelligence.

1 Introduction

The pervasiveness of computing and networking fosters applications backed by
large-scale cyber-physical collectives—cf. edge-fog-cloud infrastructures, robot
swarms, and smart ecosystems. Combined with the autonomic computing vision
[18], which promotes autonomy and self-* capabilities in engineered systems,
there is an increasing trend towards Collective Adaptive Systems (CASs) and
their engineering [31,9]. CASs are characterised by a multitude of agents that can
produce globally coherent results (emergents [43]), and collective-level adaptivity
to environment change via local decision-making and decentralised interaction.
The engineering of CASs is an open research problem [31,19] of significance,
tightly linked with the problems of “steering” self-organisation and “control-
ling” emergence to promote desired while avoiding undesired emergents [29]. In
general, when dealing with CASs, there are two distinct problems: (i) given an
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initial system state and local behavioural rules, predicting what global outcomes
will be produced (forward, prediction, or local-to-global problem); and (ii) what
local behavioural rules must be assigned to the system devices to achieve certain
global outcomes (inverse, control, or global-to-local problem). These two problems
provide corresponding perspectives for designing CASs. In particular, the lat-
ter perspective has promoted research on spatial and macro-programming [7,10]
aiming at expressing programs in terms of the desired global outcome and leaving
the underlying platform to deal with the global-to-local mapping.

In this work, we consider Aggregate Computing (AC) [8], a prominent field-
based coordination approach [41] promoting macro-programming by capturing
CAS behaviours as functions operating on computational fields [41], in a sys-
tem model of neighbour-interacting devices operating in asynchronous sense-
compute-interact rounds. A computational field is a macro-abstraction that maps
a set of devices over time to computational values. AC is based on the Field Cal-
culus (FC) [41], or variants thereof, that define constructs for manipulating and
evolving fields. So, CAS behaviour can be expressed by a single aggregate pro-
gram (global perspective) that also defines what processing and communication
activities must be performed by each individual device (local perspective).

Besides the programming model and its implications, a significant portion of
research on AC [41] has focussed on design and analysis of coordination algo-
rithms expressed in FC for efficiently carrying out self-organising behaviours like,
e.g., computing fields of minimum distances from sources (gradients) [30,24,4],
electing leaders [27], or distributed summarisation [3]. However, devising self-
organising coordination algorithms is not easy; especially difficult is identifying
solutions that are efficient across environment assumptions, configurations, and
perturbations. The difficulty lies in determining, for a current context, the local
decisions of each device, in terms e.g. of processing steps and communication
acts, producing output fields that quickly converge to the correct solution.

In this work, we start what we consider a key future research thread of field-
based coordination, i.e., the study of Machine Learning techniques to improve
existing AC coordination algorithms. Specifically, we adopt a Reinforcement
Learning (RL)-based approach—where an agent learns from experience how to
behave in order to maximise delayed cumulative rewards [38]. We devise a gen-
eral methodology that somewhat resembles the notion of sketching in program
synthesis [36]: a template program is given and holes are filled with actions de-
termined through search. In our case, the program is the AC specification of
a coordination algorithm, and holes are filled with actions of a policy learnt
through Hysteretic Q-Learning [25]. We consider the case of the classic gradient
algorithm, a paradigmatic and key building block of self-organising coordination
[41,7,10]: we show via simulations that the system, after sufficient training, learns
an improved way to compute and adjust gradient fields to network perturbations.

In the rest of the paper: Section 2 offers background on AC and RL; Section 3
discusses the integration of RL and AC, and the use of the approach to improve
the basic gradient algorithm; Section 4 provides an experimental evaluation of
the proposed approach; Section 5 summarises results and future research.
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2 Background

In this work, we contribute to field-based coordination [45,24,40,23,41], a well-
known nature-inspired approach [32] to coordination that exploits computational
mechanisms inspired by the force fields of physics. Use of artificial force fields
for navigation and obstacle avoidance has been explored since the 90s [45]. In
co-fields [24], fields produced by agents or the environment are used to drive the
activities of agent swarms. In TOTA (Tuples on the air) [23], tuples spread over
the network to model dynamic distributed data. In Aggregate Computing [8,41],
the field-based coordination approach we consider in this work, fields are used
as an abstraction for functionally expressing CAS behaviour.

We recap Aggregate Computing in Section 2.1. Then, we review RL in Sec-
tion 2.3, to prepare the ground for our contribution, Reinforcement Learning-
based Aggregate Computing (Section 3).

2.1 Aggregate Computing

Aggregate Computing [8,41] is a paradigm for CAS programming. The approach
generally assumes a system model of neighbour-interacting devices that work at
asynchronous rounds of sense-compute-act steps. On such an execution model,
self-organising collective behaviour is expressed in terms of functional manip-
ulations of computational fields [41]: maps from devices to values. A field can
denote, e.g., what different devices sense from the environment, or the outputs
of their computations. The Field Calculus (FC) [41] is a core functional language
that captures the key constructs needed to properly manipulate fields in order
to express collective adaptive computations; they cover state evolution, commu-
nication, and computation branching. The main benefit of AC/FC is its com-
positionality : the ability to abstract collective adaptive behaviours into reusable
functions that can be composed together to build more complex behaviours.

The FC is implemented by aggregate programming languages such as ScaFi
(Scala Fields) [14]. So, in practice, developing a CAS using this paradigm
amounts to: (i) writing an aggregate program using e.g. ScaFi; (ii) setting up
an AC middleware (for simulation or concrete distributed systems) to handle
the scheduling of computations and communications; (iii) deploying and config-
uring the middleware and the program on a network of nodes. The approach
has proven effective to implement various kinds of coordination services [15] and
self-* applications in domains like crowd management [8], swarm robotics [11],
and smart cities [12]—see [41] for a recent review.

In the following, we summarise the computation model and the FC/ScaFi
language, which are essential to understand the contribution and case study.

System Model For an aggregate program to yield collective adaptive be-
haviour, ongoing computation and communication are needed. An individual
atomic step of a device is called a round and consists of the following:
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1. context acquisition: the device collects information from the sensors, and the
most recent messages received from each neighbour (including the device
itself—to model state);

2. program evaluation: the aggregate program is evaluated against the acquired
context, yielding an export, namely a message to be sent to neighbours for
coordination purposes and that is implied by the use of communication con-
structs in the aggregate program;

3. export sharing : the export is sent to the neighbours;
4. actuations: the export also includes information that can be used to drive

actuators in the local node.

Rounds execution is completely asynchronous: there is no global clock or barrier
to coordinate the aggregate. Scheduling of rounds might be periodic or reac-
tive [34], and messages from neighbours are assumed to be retained for some
configurable amount time. Such asynchrony, combined with local interaction,
promotes scalability. The combination of the aggregate program logic and such
a collective and periodical execution promotes the emergence of globally coherent
results.

Field Calculus The main constructs that capture the essential aspects for
programming self-organising systems with FC are:

– Stateful field evolution — expression rep(e1) {(x) => e2} describes a field
evolving in time. e1 is the initial field value and the function (x) => e2
defines how the field changes round by round substituting (x) with the value
of the previous computed field (at the beginning (x) = e1).

– Neighbour interaction — expression nbr{e} involves evaluation of e, sharing
of the corresponding local value with neighbours, and observation of the
neighbours’ evaluations of e. Then, *hood operators can be used to locally
reduce such neighbouring fields to values. For instance, for a device, minHood
returns the minimum value of e found in its neighbourhood.

– Domain partitioning — expression branch(e0){e1}{e2} splits the compu-
tational field into two non-communicating domains hosting isolated sub-
computations: e1 where e0 is true, and e2 where e0 is false.

Full coverage of FC/ScaFi is beyond the scope of this paper. A more comprehen-
sive presentation is given in [41]. As a key example, we introduce the gradient
algorithm, which will be considered Sections 3 and 4.

2.2 The gradient building block

A gradient [30,24,4] is a field mapping each device in the system with its mini-
mum distance from the closest source device. A (self-healing) gradient algorithm
is one that computes a gradient field and automatically adjusts it after changes
in the source set and the connectivity network. This algorithm is important as it
often recurs as part of higher-level self-organising algorithms, such as information
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flows [44], distributed data collection [3], and regional network partitioning [13].
A simple implementation, which we call classic gradient, can be expressed in FC
as follows:

def gradient(source, metric) { // source is a Boolean field

rep(infinity) {

g => mux(source) { 0 } { minHoodPlus(nbr(g) + metric())}

}

}

where metric is 0-ary function that evaluates the distance between two neigh-
bours; mux(c){e1}{e2} is a conditional expression selector which evaluates all
its arguments and selects e1 if c is true or e2 otherwise; and minHoodPlus selects
the minimum of its argument across the neighbourhood without considering the
contribution of the device itself. A repeated evaluation of this program will self-
stabilise to the field of minimum distances from the sources, i.e., it will eventually
converge to the ideal gradient field once the inputs and topology stop changing.

Though working and self-stabilising, this algorithm suffers some problems [4].
One is the rising value problem (also known as count to infinity): due to the
repeated minimisation of all the contributions, the system handles well the situ-
ations when the output needs to drop (e.g. a new source enters the system) but
it instead reacts slowly when the output needs to rise (e.g. a source node turns
off). In literature, several heuristics are proposed to tackle the problems of the
classical gradient [4]. One of them is CRF (Constraint and Restoring Force) [6].
Its goal is to deal with the problem by enforcing a constant rising speed when
nodes recognise a local slow rising of the gradient field. To this end, each node
is affected by a set of constraints (i.e. nodes that have a lower gradient value).
If a node finds that it is slowly rising (i.e. there are no more constraints) then it
increases its output at a fixed velocity, ignoring its neighbours. Otherwise, the
output of the gradient follows the classical formula.

2.3 Reinforcement Learning

Reinforcement Learning [38] is a generic framework used to structure control
problems. The focus is on sequential interactions between agents (i.e. entity able
to act) and an environment (i.e. anything outside the control of agents). At each
discrete time step t, an agent observes the current environment state st (i.e. the
information perceivable by an agent) and selects an action at through a policy π
(i.e. a probabilistic mapping between state and action). Partly as a consequence
of its action, at the next time step t + 1 the agent finds itself in state st+1 and
receives a reward rt+1, i.e. a scalar signal quantifying how good the action was
against the given environment configuration. The goal of RL is to learn a policy
π∗ that maximises the long-term return G (i.e. the cumulative reward) through
a trial-and-error process. Different problems can be devised in these settings,
like video games [2], robotics [20], routing [22], etc.
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This general framework is supported by Markov Decision Process (MDP),
a mathematical model that describes the environment evolution in sequential
decision problems. A MDP consists of a tuple < S,A,P,R > in which:

– S denotes the set of states;
– A is the set of actions;
– P(st+1|st, at) define the probability to reach some state st+1 starting from
st and performing at (i.e. transition probability function);

– R(st, at, st+1) devise a probabilistic reward function.

In MDP, R is memory-less, namely the next environment state depends only
on the current state. Typically, in RL problems, agents do not have access to
R or P but they can rely only on the experience (st, at, rt) sampled at a time
step. Therefore, G is defined as the discounted sum of reward a possible future
trajectory τ (i.e. a sequence of time steps):

Gt = rt + γrt+1 + γ2rt+2 + · · ·+ γT rt+T =

T∑
k=t

γk−trk (1)

Where 0 ≤ γ ≤ 1 is the discount factor, that is how much the future reward
impacts the long-term return. Finally, the RL goal can be expressed as the
maximisation of the expected long-term return following a policy π:

J = Eπ
[
Gt

]
= Eπ

[ T∑
k=t

γt−krk

]
(2)

The RL algorithms classification depends on how we derive the π∗ (i.e. the
optimal policy) according to J . In particular, value-based methods learn one
further function (Qπ or V π) to derive π∗. V π is the value function that evaluates
how good (or bad) a state is according to the long-term return following the
policy π (expected value). It is defined as:

V (s)π = Eπ
[
Gt|st = s

]
(3)

Qπ is the corresponding value fuction that evaluates state-action pairs:

Q(s, a)π = Eπ
[
Gt|st = s, at = a

]
(4)

Policies could be defined through value functions. In particular, a greedy policy
based on Q function is the one that always chooses the action with the highest
value in a certain state: π(s) = arg maxa(Q(s, a)).

Q-Learning [42] is one of the most famous value-based algorithms. It aims at
finding the Q∗ (i.e. the Q function associated with π∗) by incrementally refining
a Q table directly sampling from an unknown environment. Particularly, this is
done through a temporal difference update performed at each time step:

Q(st, at) = Q(st, at) + α ∗ [rt + γ ∗ arg max
a

(Q(st+1, a))−Q(st, at)] (5)
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Where α is the learning rate (i.e. how much new information will influence
the learned Q at each update). The agent typically follows a ε-greedy policy
(behavioural policy, the function chooses a random action with a ε probability)
to balance the exploitation and exploration trade-off. Using Q∗ we could extract
the π∗ greedy policy (target policy).

Nowadays, Q-Learning is applied in various fields, ranging from robotics to
wireless sensor networks and smart grids [17]. However, one of the most challeng-
ing settings in which Q-Learning could be applied is when the learning process
has to deal with multiple concurrent learners, namely a multi-agent system.

Multi-Agent Reinforcement Learning RL was originally proposed as a
framework to control a single agent. However, in CASs we are interested in
many agents that interact in a common environment. The study of learning in
these settings is known as Multi-Agent Reinforcement Learning (MARL) [39].

A straightforward way to apply RL algorithms to multi-agent settings, called
independent learning (IL) approach [39], consists in deploying a learning process
for each agent and considering other agents as part of the environment. How-
ever, applying single-agent algorithms as-is would probably lead to bad results,
due to the non-stationarity of the environment induced by concurrent learning,
and stochasticity [26]. Therefore, different algorithms are proposed to handle
those issues in IL settings, such as Hysteretic Q-Learning [25] and Distributed
Q-Learning (DQL) [21]. Hysteretic Q-Learning (HQL) aims at managing the
stochasticity problems exploiting an optimistic heuristic. The idea is to give
more importance to good actions than bad actions – more frequent due to the
concurrent learning – reducing the policies oscillation during the learning. To
this aim, HQL introduces two learning rates (α and β) to weigh the increase and
decrease of Q values. The update equation becomes:

δ(t) = rt + γ arg max
a

(Q(st+1, a))−Q(st, at) (6)

Q(st, at) =

{
Q(st, at) + α δ(t) if δ ≥ 0

Q(st, at) + β δ(t) else
(7)

In this study (cf. Section 4), we use HQL as reference RL algorithm since it has
a strong empirical track for cooperative multi-agent systems [26,46,5]. More-
over, although structurally similar to DQL, it can be used in non-deterministic
MDPs—a typical setting for CASs. Indeed, DQL is a particular case of HQL
where β = 0. However, in doing so, the agents tend to overestimate the Q value
due to the optimistic settings because they do not consider the environment
noise.

RL could also be used in multi-agent settings through a central controller
that learns exploiting system-wide information. The learning problem thus be-
comes a single agent one in which the agent consists of the Cartesian product
of all the system nodes. However, this solution cannot be applied to CASs,
due to the many-agent settings, openness, and the lack of a central entity.
Novel approaches are structured in between independent learners and centralised
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learners techniques—the so-called Centralised Training Decentralised Execu-
tion (CTDE) [16]. In CTDE, a central agent performs the learning process and
generates distributed controllers, one for each agent. CTDE is typically applied in
offline learning through the use of simulations. This way, it is possible to leverage
global information at simulation time, but then the controllers are completely
independent of this central authority. So, when the learner finds a good policy,
it can be removed from the system.

Although CTDE allows RL to be used in environments with many agents,
the learner must consider a large population of agents at simulation time, lead-
ing to sample inefficient algorithms. A solution to this problem in similar CASs
(e.g. swarm robotics [37]) is to add another constraint, namely the agents’ ho-
mogeneous and cooperative behaviour [33]. With this assumption, the learner
only has to find a single strategy that applies to the whole system.

3 Reinforcement Learning-based Aggregate Computing

3.1 On Integrating Machine Learning and Aggregate Computing

As anticipated in Section 2.1, the behaviour of an aggregate system depends
on the interplay of three main ingredients: (i) the aggregate program, express-
ing conceptually the global behaviour of the entire system, and concretely the
local behaviour of each individual node in terms of local processing and data
exchange with neighbours; and (ii) the aggregate execution model, promoting a
certain dynamics of the system in terms of topology management (e.g., via neigh-
bour discovery), execution of rounds, scheduling of communications; and (iii) the
environment dynamics. While the latter cannot be controlled, the importance
of the first element is reflected by research on the design of novel algorithms
(cf. [41,4]), while the second element is studied w.r.t. the possibility of tuning
and adaptivity according to available technology and infrastructure or the dy-
namics of the environment. Since tuning programs or execution details to specific
environments or adapting those to changing environments can be burdensome, it
makes sense to consider the use of Machine Learning techniques to let a system
learn effective strategies for unfolding collective adaptive behaviour.

3.2 Aggregate Programs Improvement through RL

In this work, we focus on improving aggregate programs by learning effective local
actions within a given algorithmic schema—an approach similar to the sketching
technique for program synthesis [36]. As a learning framework, we use RL as we
deal with systems of agents performing ongoing activities by interacting with one
another and the environment. From a local viewpoint, an AC device is an agent
acting based on the local context it perceives (sensor readings, device state, and
messages from neighbours), and this matches the RL execution model very well.

So, our long-term goal is to integrate RL into the AC “stack” (i.e., across
the platform, language, and library levels) to improve the collective behaviour
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Fig. 1: Integration of RL within the AC control architecture [11]. The RL state
and reward concepts build upon the context, given by environment and neigh-
bour data. The designer configures action points where learning can improve the
aggregate computation. The actions selected by the learned policies will then
affect the environment (via actuators) and neighbours (via outbound messages).

defined by ScaFi aggregate programs in terms of efficiency (i.e., reducing the
resource usage maintaining the same functional interface), efficacy (i.e., synthe-
sising more stable and faster converging behaviours) and adaptability (i.e., the
same program works against different environments).

As a first contribution, summarised in Figure 1, in this work we integrate
RL within the AC control architecture in order to support learning of good
collective behaviour sketched by a given aggregate program. Specifically, we
focus on improving AC building blocks (such as the gradient algorithm cov-
ered in Section 2.2) through learning, leading toward a so-called Reinforcement
Learning-based Aggregate Computing. Learning, thus, does not replace the AC
methodology for defining the programs but it is best understood as a technique
that supports and improves the AC algorithm design process.

3.3 Building blocks Refinement

A major advantage of AC as a programming model is its compositionality : com-
plex collective behaviours (e.g., the maintenance of a multi-hop connectivity
channel) can be expressed through a combination of building blocks capturing
simpler collective behaviours (e.g., gradients). Since building blocks are funda-
mental bricks of behaviour that often recur in programs, their bad and good
qualities (cf., convergence speed, stability, etc.) tend to amplify and affect be-
haviours that depend on them. Therefore, research tends to investigate refined
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Simulation
Learn process

i-th episode

Fig. 2: Reinforcement Learning schema used in our simulations. The learning
algorithm is applied at simulation time (for T episodes) improving a shared Q
table. At the deployment time then, the agents exploit a local copy of the optimal
Q∗ table found by learning.

variants of building blocks that provide the same functionality but are more
effective or efficient under specific assumptions or contexts (e.g., high mobility,
situations where stability is more important than precision, etc.) [4,3]. With a
library of algorithms, the designer can choose the best combination of building
blocks that are well-fitted for a given environment, and even substitute a building
block with a variant implementation without substantially affecting the applica-
tion logic. In general, a building block can be seen as a black box (function) that
takes a set of input fields (e.g. metric, perception fields, constant fields, etc.) and
yields an output field. To increase its flexibility, such a function could leverage a
refinement policy able to affect the behaviour of the building block over time or
in a certain situation. This policy could be a feedback loop, hysteresis, or custom
logic to solve a specific problem. We aim at structuring the learning of refine-
ment policies through RL [1]. Our idea is that it should not be the designer who
codes a particular block to be used, but that it is the learning algorithm that
understands, given a global policy to be optimised following a utility function,
what actions need to be activated.

However, using Machine Learning to improve AC programs exposes several
non-trivial challenges:

– scale-free behaviours: the learned policy should work in small networks as
well as in large networks as fostered by the AC abstractions;

– the state typically depends on continuous value as computational fields are
often associated with continuous data (e.g. temperature or distance fields);

– multi-agent credit assignment problem: it is not easy to adequately reward
and credit local actions for their contribution to the eventual convergence to
the “target” field denoting the desired, emergent, collective result.

The AC system model is based on cooperative and homogeneous behaviour.
Indeed, when a node participates in an aggregate system, it has to execute
an aggregate program shared within the whole system, which yields different
outcomes according to the contexts on which it gets evaluated. This leads to
handling homogeneous MARL, hence our goal will be to find one policy for the
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entire ensemble, partially solving the scale-free behaviour problem, since the
learned policy will not depend on the system’s size.

The continuous and variable state problems are typically tackled using Deep
Learning to learn the right state representation for a given problem [28]. In this
case, instead, we used a handcraft feature engineering process since we are more
interested in devising a general design process.

Concerning the multi-agent credit assignment problem, we decided to use
offline learning in a typical CTDE setting (Figure 2). This way, we assess the
influence of an individual in comparison to the entire system, which cannot be
done in online learning due to the difficulty of achieving global snapshots of the
system in a reasonable time.

Learning Schema The learning algorithm is seen as a state (st) evolution
function in which the nodes try to apply a correction factor (update) following

a policy (πQtarget or πQbehavioral) refined by learning. The state is built from a
neighbourhood field of the building block generic output (ot) passed as input.
Listing 1.1 exemplifies the general program structure used to combine RL with
AC for improving building blocks. The branching operator (branch) on learn

condition makes it possible to use the CTDE schema since when the learn is
false there is no need for a central entity (simulation). The Q table is gathered
using sense, a ScaFi operator used to query sensors and collect data from them.
At simulation time, Q is a shared object, but at runtime each agent owns a local
table.

def optBlock(ot−1) { // learning as a field that evolves in time

rep((s0, a0, o0)) { // s0, a0 context dependent

case (st−1, at−1, _) => {

val Q = sense("Q") // global during training, local during execution

val ot = update(ot−1, at−1) // local action

// state from the neighbourhood field program output

val st = state(nbr(ot))
val at = branch(learn) { // actions depends on learn condition

val rt−1 = reward(ot, simulation) // simulation is a global object

simulation.updateQ(Q, st−1, at−1, rt−1, st) // Q update

∼ πQ
behavioural(st) // sample from a probabilistic distribution

} {

πQ
target(st) // greedy policy, no sampling is needed

}

}

(st, at, ot)
}._3 // select the output from the tuple

}

Listing 1.1: ScaFi-like pseudocode description (implemented in the simulation)
for value-based RL algorithm applied AC. state, update, reward are block
specific.

Finally, the produced ot is returned to the caller.
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In this case, we encoded the learning process with AC itself. Though we could
have extracted the learning process from the AC program, we took this decision
because: (i) it allows us to extend learning by exploiting neighbourhood Q table
fields – so we can think of doing non-homogeneous learning in different areas of
the system; (ii) the scheme for taking state and choosing actions is the same as
the one we would need for learning, so the only difference is in the branch; and
(iii) it can simply be extended to online learning.

3.4 Reinforcement Learning-based gradient block

The gradient block (cf. Section 2.2) could be generalised as follows:

def gradientOpt(source, metric, opt) {

rep(infinity) { g => mux(source) { 0 } { opt(g, metric)) } }

}

where opt is a function that determines how to evolve the gradient based on the
field of current gradient values g and current metric (estimation of distances
to neighbours). In this article, we consider opt as a hole that a RL algorithm
will fill through raw experience with actions aiming at incrementally construct-
ing a gradient field, hopefully mitigating the rising-value issue (cf. Section 2.2).
To frame our learning problem, we adopt the above-described general schema
(Figure 2). The state and action functions are inspired by the CRF algorithm.
The state function must hold enough information to know when agents should
speed up the local rising of values. In this case, we encode the state as the differ-
ence between the output perceived by a node and the minimum and maximum
gradient received by its neighbours: st = (|mint − ot|, |maxt − ot|). These data
have to be discretised; otherwise, the search space would be too big and the
solution could suffer from overfitting. The discretisation is ruled by two vari-
ables, maxBound and buckets. The former constrains the output to be between
−radius ∗maxBound and radius ∗maxBound (where radius is the maximum
communication range of the nodes). The values outside that range will be con-
sidered as the same state. The buckets variable rules the division count of the
given range. Finally, we stack two time steps in order to encode history inside
the agent state: ht = [(st−1, st)]. ht is used as the state function for our RL
algorithm. Hence, the cardinality of the state space of |st| ∗ |st| = buckets4. The
action space is divided into two action types: ConsiderNeighborhood is the ac-
tion that will produce the classic gradient evaluation, while Ignore(velocity)

ignores the neighbour data and increases the gradient at a given velocity. So,
the update function is defined as:

def update(ot−1, at−1, metric) { // ot−1 is the previous gradient output

val gclassic = minHoodPlus(nbr(ot−1) + metric())

match at−1 { // scala-like pattern matching

case ConsiderNeighborhood => gclassic
case Ignore(velocity) => ot + velocity * deltaTime()

}

}
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Name Values

(γ) [0.4 – 0.7 – 0.9]

(ε0, θ) [(0.5,200) – (0.01,1000) – (0.05,400) – (0.02,500)]

(β, α) [(0.5,0.01) – (0.5,0.1) – (0.3,0.05) – (0.2,0.03) – (0.1,0.01)]

(buckets, maxBound) [(16,4) – (32,4) – (64,4)]

Table 1: Summary of the simulation variables. A simulation is identified by a
quadruple (i, j, k, l) of indexes for each variable.

Finally, the reward function is described as follows:

def reward(ot, simulation) {

if(ot - simulation.rightValueFor(mid()) ∼= 0) { 0 } { -1 }

}

where mid returns the field of node identifiers. The idea is to push the nodes
to produce an output that is very close to the ideal, correct gradient value as
provided by an oracle (simulation.rightValuefor()). When this is the case,
we provide a value equals to 0; instead, when the value is different from the
expected one, we provide a small negative reward, −1, in order to push the
nodes to quickly seek the situation where the actual and ideal value match.

4 Evaluation

To evaluate our approach, we run a set of simulated experiments and verify
that an aggregate system can successfully learn an improved way to compute a
gradient field (cf. the gradient block described in Section 2.2). To this purpose,
we adopt Alchemist [35], a flexible simulator for pervasive and networked systems
that comes with a support for aggregate systems programmed with ScaFi [14].
The source code, data, and instructions for running the experiments have been
made fully available at a public repository1, to promote reproducibility of results.

4.1 Simulation setup

The simulated system consists of N devices deployed in a grid. We use two kinds
of grid-like environments. They both have the same width (200 m) and distance
between nodes (5 m), but they differ in the row count. In one case, only one row
exists (so the nodes are placed in a line). In the other case, there are five rows.
The total number (N) of agents is then defined as 200/5 ∗ rows. So in the first
case, we have a total of 40 agents, in the second case we have 200 agents. Each
node asynchronously fires the round evaluation at 1 Hz. The leftmost and the
rightmost agents are marked as source nodes. Each simulated episode lasts 85 s
(T ). For simulating the slow rising problem, we drop the left source at 35 s (Cs),
and so the left part of the system starts to rise until eventually stabilising to the

1 https://github.com/cric96/experiment-2022-coordination

https://github.com/cric96/experiment-2022-coordination
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correct computational field. An entire simulation lasts NE = 1200 episodes, in
which in the first NL = 1000 the system uses RL to improve a shared Q table,
and then in the last NT = 200, the system deploys the Q table found in each
agent. In these last runs, the agents act following the greedy policy.

As learning algorithm, we used Hysteretic Q-Learning (cf. Section 2.3). As
behavioural policy, we use an ε-greedy with an exponential decay to balance the
exploration-exploitation. We make this choice because without using the decay
the policy found tends to be not optimised (i.e. the exploration is preferred w.r.t
exploitation). At each episode i, the ε value is updated as εi = ε0 · ei/θ.

Several variables are used, summarised in Table 1, so we perform a grid
search to find the optimal combination. To evaluate a particular configuration,
we verified the total error performed in the last NT episodes. This is calculated
from the error performed by each node i at each time step t:

errorti = |gradientti − simulatedti| (8)

Then for each time step t, we evaluate the average system error as:

errort =
1

n

N∑
i=0

errorti (9)

And finally, the error of each episode is evaluated as:

errorepisode =

T∑
t=0

errort (10)

We choose the configuration by observing the box plots (Figure 3a) and taking
the lowest average error in the last NT episodes.

4.2 Results and Discussion

Figure 3 shows the performance of our Reinforcement Learning-based gradient
algorithm. Figure 3a was used to choose which configuration was the best. Fig-
ure 3b shows the error trend as the episodes change. The second row shows the
trend of the mean error over the last NT episodes. The coloured area under
the curve defines the standard deviation. The dashed vertical line is the time at
which the source change occurs. Finally, the last row shows the average output
of the various algorithms. In the following we discuss the result reached with the
best configuration, that has γ = 0.9, ε0 = 0.5, θ = 200), α = 0.3 and β = 0.05.

Our goal was to create a solution that outperforms the classic gradient against
the rising-value problem. In fact, the system eventually learns how to speed up
the gradient rising: observing the Figure 3b the errorepisode of the new algo-
rithm is lower than the error produced by the standard solution. In particular,
this means that the agents learn the moment when they should ignore their
neighbourhood and increase the output with a certain velocity (i.e. using the
Ignore action).
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(c) Error evolution with 40 agents
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(d) Error evolution with 200 agents
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(e) Output evolution with 40 agents
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(f) Output evolution with 200 agents

Fig. 3: Performance of our RL-based gradient algorithm with velocity = 20.

This intuition is enforced by Figures 3c to 3f. In particular, in Figures 3c
and 3e the behaviour is more evident due to the reduced number of agents:
when the error is maximised (due to the source that disappears), the error de-
creased faster than the naive gradient (and, consequently, the output is faster
growing). Furthermore, we can also observe that the overall algorithm behaviour
is comparable with the CRF handcrafted solution for the rising problem. Indeed,
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both have a phase of speed up followed by another phase of overestimation (i.e.
the system-wide output is greater than the true gradient field output) that even-
tually brings the system to slowly reaches the correct value. Moreover, not only
the RL-based solution has similar behaviour to CRF, but also it has comparable
performance – it means that the aggregate reaches a near-optimal policy with
these state-action-reward settings.

We want also to underline that the policy learned is one and shared with
the whole system. Thereby, the policy can be easily scaled in deployments with
different node counts. In this case, the same function outperforms our baseline
in a system with different nodes and deployment configurations.

Finally, we want to stress that the nodes do not fire synchronously, and thus
there is not any kind of global and shared clock: any node round evaluation
order reaches the same behaviour in our test deployments. This, again, makes it
possible to use the same policy in different scenarios due to the unknown local
aggregate programs evaluation order.

5 Conclusion

This paper discusses the integration of Aggregate Computing – a programming
approach for Collective Adaptive Systems – and Reinforcement Learning, with
the goal of fostering the design of collective adaptive behaviour. In particular,
we propose to use RL as a means to improve building block AC algorithms.
Our approach is applied to improving the gradient algorithm, one of the key
AC algorithms, where learning is performed through Hysteretic Q-Learning. We
evaluate the approach through synthetic experiments comparing the reactivity
of different gradient algorithms in dealing with the rising value problem.

This work is the first effort towards Reinforcement Learning-based Aggre-
gate Computing. In fact, there are still many aspects that need to be analysed
in detail both at the conceptual and practical levels. First of all, the approach
could be tuned to learn gradient strategies for smoothness or maximal reactiv-
ity in highly variable scenarios, and compared with state-of-the-art algorithms
like BIS and ULT [4]. Secondly, the approach could be systematically applied
to other building blocks as well [41]. Very interesting would also be the appli-
cation of Machine Learning at the aggregate execution platform level, e.g. to
improve the round frequency to reduce power consumption, reduce the amount
of data exchanged between neighbours, or support opportunistic re-configuration
of aggregate system deployments.
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