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Abstract: Background: As the field of sensor-based rehabilitation continues to expand, it is important
to gain a comprehensive understanding of its current research landscape. This study aimed to
conduct a bibliometric analysis to identify the most influential authors, institutions, journals, and
research areas in this field. Methods: A search of the Web of Science Core Collection was performed
using keywords related to sensor-based rehabilitation in neurological diseases. The search results
were analyzed with CiteSpace software using bibliometric techniques, including co-authorship
analysis, citation analysis, and keyword co-occurrence analysis. Results: Between 2002 and 2022,
1103 papers were published on the topic, with slow growth from 2002 to 2017, followed by a
rapid increase from 2018 to 2022. The United States was the most active country, while the Swiss
Federal Institute of Technology had the highest number of publications among institutions. Sensors
published the most papers. The top keywords included rehabilitation, stroke, and recovery. The
clusters of keywords comprised machine learning, specific neurological conditions, and sensor-based
rehabilitation technologies. Conclusions: This study provides a comprehensive overview of the
current state of sensor-based rehabilitation research in neurological diseases, highlighting the most
influential authors, journals, and research themes. The findings can help researchers and practitioners
to identify emerging trends and opportunities for collaboration and can inform the development of
future research directions in this field.

Keywords: sensor-based; neurorehabilitation; bibliometric; CiteSpace

1. Introduction

Neurological diseases, such as stroke, traumatic brain injury, spinal cord injury, Parkin-
son’s disease, and multiple sclerosis, are major public health concerns. Their global burden
is significant, with neurological disorders being the leading cause of disability worldwide
according to the World Health Organization and affecting over one billion people [1,2].

Contributing 11.6% of the global DALYs (disability-adjusted life years) and 16.5% of
the deaths from all causes, neurological disorders remain the leading group cause of DALYs
and the second leading group cause of deaths in the world [3]. In addition to the personal
and emotional impact of these disorders, they also have a significant economic impact,
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with the costs of neurological disorders estimated to be over USD 800 billion annually in
the USA [4].

Governments will have to deal with an increase in the demand for treatment, reha-
bilitation, and support services for neurological illnesses, as populations are aging, and
significantly disabling neurological conditions are more common as people age. Care
for these conditions relies heavily on rehabilitation, which aids patients in regaining lost
function, enhancing their quality of life, and resuming work and other regular activities.

Despite the significant burden of these disorders, there are currently no established
or distinct risk factors to focus on for prevention and treatment, emphasizing the need for
additional studies and comprehension to create effective strategies [5]. In recent years, there
has been a growing interest in using technology, such as sensors, to improve the assessment
and evaluation of patients, as well as the effectiveness and efficiency of rehabilitation [6,7].

Sensors are devices that can detect and respond to physical changes, such as changes
in temperature, pressure, or movement [8]. They can be classified into several categories,
including mechanical, chemical, optical, and biological sensors [9]. The spread of sensors
in medicine has been rapid and widespread, with sensors now being used in a variety of
settings, including hospitals, clinics, and even patients’ homes [10]. The use of sensors
is expected to continue to grow in the coming years with the development of new and
more advanced sensors, as well as the integration of existing sensors into new devices and
systems. The development of new technologies and manufacturing techniques has led
to the production of sensors at a lower cost, making them more accessible to healthcare
providers and patients. This has allowed for the greater implementation of sensor-based
technologies in both clinical and home settings, increasing the opportunities for monitoring,
diagnosis, and rehabilitation.

The use of sensors in medicine has evolved significantly over the last few decades.
Initially, sensors were used primarily to monitor vital signs such as heart rate, blood pres-
sure, and body temperature [11]. However, with the advancement of technology, sensors
have become increasingly sophisticated and are now used for a wide range of applications,
including neurorehabilitation [11]. In the field of neurorehabilitation, sensors can be used to
measure a wide range of physiological and biomechanical parameters, such as movement,
muscle activity, and brain activity, which can provide valuable insight into the functioning
of the nervous system [10]. This information can be used to diagnose neurological disorders,
track the progress of treatment, and monitor the recovery of patients. The use of sensors in
neurorehabilitation also allows for the real-time tracking and monitoring of patients, which
can help clinicians to adjust treatment strategies as needed to optimize outcomes [12,13].
Overall, sensor technology has the potential to revolutionize the field of neurorehabilitation,
providing new tools for diagnosis, treatment, and monitoring that can improve the lives of
patients with neurological disorders [14].

However, the use of sensors can also pose significant challenges in terms of data
processing and analysis. The large amount of data generated by sensors can be difficult
to analyze, especially when dealing with high-dimensional data sets. This can make it
difficult to identify patterns and trends in the data and can also make it difficult to visualize
the data in a meaningful way.

Bibliometrics is a quantitative method for analyzing and measuring the scientific
literature. It provides a systematic approach to evaluating research outputs and impacts,
identifying emerging trends, and mapping the intellectual structure of a specific field [15].
CiteSpace offers a comprehensive suite of clustering and social network analysis methods
that allow researchers to identify knowledge gaps, derive novel ideas for investigation, and
position their intended contributions to the field. Through its unique visualization capabil-
ities, CiteSpace [16] provides a powerful tool for mapping, generating, and interpreting
knowledge maps, allowing users to view the scientific world in new and exciting ways.

In this study, we conducted a bibliometric analysis on sensor-based rehabilitation in
neurological diseases, exploring emerging trends, research collaborations, and the intellec-
tual structure. The aim of this study was to identify the current state of the literature on
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sensor-based neurorehabilitation, explore the trends and patterns in the research, and find
potential areas for future research.

2. Materials and Methods
2.1. Data Collection

This bibliometric study used the Web of Science Core Collection (WoSCC) as the source
database for data retrieval. The complete data retrieval strategy is illustrated in Figure 1.
We did not include some relevant keywords related to sensors, such as “neural electrode”
and “brain probe”, in the search strategy because they did not affect the overall results, and
we wanted to maintain a clear and consistent search for future comparisons.
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Figure 1. Flowchart of study identification and selection.TS: topic search; (*): any group of characters,
including no character.

A total of 1788 original English articles published between 1 January 2002 and
31 December 2022 were screened. The analysis was conducted on 31 December 2022.
In the study, the document types that were analyzed and included in the sample consisted
of two categories, namely, “article” and “review”. The inclusion of both types of documents
allowed for a comprehensive analysis of the current state of knowledge and understanding
in the field. Excluded from the analysis were proceedings papers, book chapters, and
articles available only as early access. To obtain data for the analysis, the complete details
of each article, such as publication outputs, research categories, authors/co-cited authors,
countries/institutions, journals/co-cited journals, co-cited references, and keywords, were
obtained from the WoSCC database. The bibliometric analysis procedure was conducted in
accordance with best practices and guidelines [17] to ensure the quality of the analysis.

2.2. Data Analysis

CiteSpace 6.1.R6 [18] was used to perform bibliometric and visual analyses. This
scientometric software also produces visual networks of authors, research categories,
countries, institutions, cited journals, keywords, co-citation, and co-occurrence [19–22].
Microsoft Excel was used to create tables and for the R2 trend analysis.
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Co-occurrence analysis was used to identify the relationships between words in the
documents and measure the frequency of their occurrence to reveal the underlying themes.
Co-citation analysis was also used to detect the intellectual structure and emerging sensor-
based technology among rehabilitation topics from the selected bibliographic data [23,24].

To evaluate the structural quality of the networks and the clustering organization,
three structural metrics were used: the average silhouette score [25], the modularity Q
index [26], and the betweenness centrality [27] were used to measure the structural quality
of the networks. Burstiness [28] was used to detect sudden and significant changes in the
frequency of certain features over time, allowing a more comprehensive analysis of entities’
behaviors and impacts.

Cluster labeling was conducted automatically using two algorithms, the Log-Likelihood
Ratio (LLR) and the Latent Semantic Indexing (LSI) [29] function, within CiteSpace to com-
pare the occurrences of terms in the citing articles [30].

3. Results
3.1. Publication Outputs and Time Trend

We found 1103 papers on the topic of sensor-based rehabilitation in neurological
diseases. The publications included 1003 articles and 100 reviews. As shown in Figure 2,
the annual publications showed slow growth between 2002 and 2017, with 396 publications
in 15 years representing 35.9% of the total publications. Between 2018 and 2022, the annual
publication output showed a rapid increase, with 707 publications in 5 years, representing
64.1% of the total publications. The number of publications reached a peak in 2021 with
170 publications. The H-index for all publications was 63.
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Figure 2. Annual publication trend from 2002 to 2022.

The linear regression analysis showed that the number of publications increased
significantly in the examined decades (r-squared = 0.9327; p-value < 0.001). Overall, the
exponential growth of publications demonstrated an increasing interest in this field of
sensor-based rehabilitation.

3.2. Hot Topics in Literature Research

Subject categories were extracted from the Web of Science and mapped with CiteSpace.
The generated graph showed 90 nodes, which suggests that the field of study involves
90 categories (Figure 3). The most frequent was rehabilitation (273 distributions), fol-
lowed by engineering biomedical (246 distributions) and engineering electrical electronic
(228 distributions). Other frequent categories included “neuroscience” (188 distributions),
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“instruments & instrumentations” (176 distributions), “chemistry analytical” (133 distribu-
tions), and “clinical neurology” (102 distributions).
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3.3. Country Analysis

A total of 74 countries participated in publications on sensor-based rehabilitation
in neurological diseases between 2002 and 2022. The top 10 most active countries are
shown in Table 1. Table 1 shows the top 10 countries/regions by publication, co-occurrence,
and centrality in this field of research. The United States contributed the most papers
(303 publications, 27.47%), followed by Italy (137 publications, 12.42%) and China (133
publications, 12.05%).

Table 1. The top 10 countries stratified by publication, centrality, and co-occurrence.

Rank Country
Region Publications Country

Region Centrality Country
Region Co-Occurrence

1 USA 303 USA 0.40 USA 294
2 Italy 137 Brazil 0.21 Italy 134
3 China 133 England 0.20 China 132
4 England 71 Italy 0.19 England 66
5 Germany 65 Spain 0.18 Switzerland 65
6 Switzerland 65 Belgium 0.18 Germany 64
7 Canada 58 China 0.16 Canada 55
8 South Korea 54 Australia 0.16 South Korea 52
9 Spain 53 Canada 0.15 Spain 50
10 Netherlands 50 Germany 0.14 Netherlands 49

Figure 4 illustrates the visual network map of collaborations, demonstrating a high
level of cooperation. The highest-ranked country by centrality was the USA (centrality
0.40), followed by Brazil (centrality 0.21) and England (centrality 0.20).
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3.4. Institution Analysis

A total of 1625 institutions had published articles on sensor-based rehabilitation
in neurological diseases in the 20 years analyzed. Table 2 lists the top 10 institutions
depending on the number of publications. The three institutions with the highest number
of publications were the Swiss Federal Institute of Technology in Switzerland, Oregon
Health & Science University in the USA, and Universitat Zurich in Switzerland.

Table 2. The top 10 most productive institutions.

Ranking Institution Country Publications Total Link Strength

1 Swiss Federal Institute of Technology Switzerland 29 8076
2 Oregon Health & Science University USA 20 2249
3 Universitat Zurich Switzerland 18 6292
4 Northwestern University USA 16 5618
5 University of Toronto Canada 16 2139
6 Fudan University China 15 2803
7 Washington Univ USA 14 7816
8 University of Twente Netherlands 14 3636
9 Case Western Reserve University USA 14 439
10 Scuola Superiore Sant Anna Italy 10 2151

Figure 5 shows the network cooperation map of institutions obtained by using CiteSpace.

3.5. Journal Analysis

A total of 348 journals published papers related to sensor-based rehabilitation in
neurological diseases between 2002 and 2022. The top 10 most active journals are shown
in Table 3. In total, 391 papers were published by these journals, accounting for 35.45%
of the total publications. Sensors published the most papers (129 papers), accounting for
11.69% of all papers. The highest-ranking journal was the Journal of Neuroengineering and
Rehabilitation with 65 publications and an impact factor of 5.208, the only journal in the top
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10 with an impact factor greater than 5.000. Six journals had an IF between 5.000 and 3.000,
while three journals had an IF < 3.000 (minimum 2.356).
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Table 3. The top 10 journals and cited journals published on sensor-based rehabilitation in neurologi-
cal diseases between 2002 and 2022.

Rank Journal P IF Co-Cited Journal Cit IF

1 Sensors 129 3.847 Archives of Physical Medicine and Rehabilitation 612 4.060
2 Journal of Neuroengineering and Rehabilitation 65 5.208 Journal of Neuroengineering and Rehabilitation 571 5.208

3 IEEE Transactions on Neural Systems and
Rehabilitation Engineering 49 4.528 IEEE Transactions on Neural Systems and

Rehabilitation Engineering 457 4.528

4 Archives of Physical Medicine and Rehabilitation 27 4.060 Neurorehabilitation And Neural Repair 433 4.895
5 Frontiers in Neurology 27 4.086 Stroke 428 10.170
6 IEEE Access 24 3.476 Biosensors—Basel 414 5.743
7 IEEE Sensors Journal 20 4.325 Gait & Posture 412 2.746
8 Applied Sciences Basel 17 2.838 Physical Therapy 495 3.140
9 Gait & Posture 17 2.746 PloS One 358 3.752
10 Medical Engineering & Physics 16 2.356 IEEE Transactions on Biomedical Engineering 311 4.756

IF: impact factor.

The journals Archives of Physical Medicine and Rehabilitation, Journal of Neuroengineering
and Rehabilitation, and IEEE Transactions on Neural Systems and Rehabilitation Engineering are
the three most co-cited journals.

3.6. Author Analysis

A total of 4777 authors published papers on sensor-based rehabilitation in neurological
diseases. Table 4 shows the top 10 active authors and their related information. They
published 100 papers, which accounted for 0.9% of the total number of papers. The top
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three ranked authors by publication count, with 11 publications each, were Catteneo Davide
from Italy, Curt Amin from England, and Horak Fay B from the USA. Of the 10 top authors,
50% were from the USA, while 30% were from Italy.

Table 4. The top 10 most productive authors.

Rank Authors Country Institution P H-Index

1 Cattaneo Davide Italy IRCCS Fondazione Don Carlo Gnocchi Onlus 11 27
2 Curt Armin England University of Cambridge 11 62
3 Horak Fay B. USA Oregon Health & Science University 11 93
4 Ferrarin Murizio Italy IRCCS Fondazione Don Carlo Gnocchi, ONLUS 10 160
5 King Laurie A. USA Oregon Health & Science University 10 23
6 Lang Catherine E. USA Washington University (WUSTL) 10 47
7 Luft Andreas Switzerland University Zurich Hospital 10 36
8 Audu Musa L USA Case Western Reserve University 9 18
9 Carpinella Ilaria Italy IRCCS Fondazione Don Carlo Gnocchi, ONLUS 9 18

10 Dobkin Bruce H USA David Geffen School of Medicine at UCLA
University of California System 9 57

Figure 6 shows the collaboration network of authors who published on this topic
between 2002 and 2022. A visual exploration of authors who published articles on sensor-
based rehabilitation in neurological diseases between 2002 and 2022 is shown in Figure S1.
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3.7. Analysis of References

A total of 822 references were cited during the 20 years between 2002 and 2022. The 10
top references with the most citations are presented in Table 5.
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Table 5. The top 10 most cited references.

Rank Title Cit First Author Journal Publication Year

1 Soft robotic glove for combined assistance and
at-home rehabilitation 803 Polygerinos, P. Robotics And Autonomous

Systems 2015

2 Spatio-temporal parameters of gait measured by an
ambulatory system using miniature gyroscopes 534 Aminian, K. Journal Of Biomechanics 2002

3 Human motion tracking for rehabilitation-A survey 484 Zhou, H. Biomedical Signal Processing And
Control 2008

4 Current Hand Exoskeleton Technologies for
Rehabilitation and Assistive Engineering 312 Heo, P. International Journal of Precision

Engineering And Manufacturing 2012

5 ARMin: a robot for patient-cooperative arm therapy 263 Nef, T. Medical & Biological Engineering
& Computing 2007

6 Methods for gait event detection and analysis in
ambulatory systems 228 Rueterbories, J. Medical Engineering & Physics 2010

7
Automating arm movement training following

severe stroke: Functional exercises with quantitative
feedback in a gravity-reduced environment

208 Sanchez, R.
IEEE Transactions On Neural
Systems And Rehabilitation

Engineering
2006

8
Body-worn motion sensors detect balance and gait
deficits in people with multiple sclerosis who have

normal walking speed
190 Spain, R. I. Gait & Posture 2012

9 The Promise of mHealth: Daily Activity Monitoring
and Outcome Assessments by Wearable Sensors 183 Dobkin, B. Neurorehabilitation And Neural

Repair 2011

10 Patient-centered activity monitoring in the
self-management of chronic health conditions 181 Chiauzzi, E. Bmc Medicine 2015

The top 20 co-cited references with the strongest citation burst can be observed in
Figure 7b. Of these, the article with the strongest burst is “A review of wearable sensors and
systems with application in rehabilitation” in the Journal of Neuroengineering and Rehabilita-
tion published by Patel et al. [9] in 2012. This paper is an important contribution to the field
of rehabilitation technology, as it provides a comprehensive review of the developments in
wearable technology and its applications in rehabilitation.

The co-citation cluster map (Figure 7a) revealed 16 clusters with a q value of 0.891 and
a silhouette value greater than 0.9. The largest clusters are #0 propulsion, #1 exoskeleton,
#2 assessment, and #3 machine learning. The timeline of all co-citation references between
2002 and 2022 is shown in Figure S2.

3.8. Keywords Analysis

Keywords may reflect current topics and anticipate forthcoming research boundaries
that are more engaging. As shown in Figure 8a, the top three keywords with the highest
occurrence were rehabilitation, stroke, and recovery. The top 25 keywords with the strongest
burst are indicated in Figure 8b. The timeline of all keywords is shown in Figure S3. Among
these keywords, induced movement therapy, accelerometry, multiple sclerosis, and subacute
stroke have the strongest burst strength. Moreover, task analysis, stroke, machine learning,
and robot sensing system are the most recent burst keywords, indicating that these areas are
rapidly evolving and generating significant interest in the scientific community.

In addition, the keywords could be divided in 11 clusters; a list of the clusters with
the main keywords are reported in Table 6. The largest identified cluster is #0 machine
learning, which is an important tool for interpreting and analyzing data collected by sensors.
Clusters #2, #3, and #8 focused on specific neurological conditions, such as Parkinson’s
disease, spinal cord injury, and stroke, and clusters #1, #6, and #7 are related to sensor-based
rehabilitation technologies aimed at monitoring movement and improving outcomes.
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Table 6. Keyword clusters.

Cluster Label Main Keywords Mean Year

0 machine learning gesture recognition; human-computer interaction; learning
algorithms; gait recognition 2017

1 wearable sensors gait analysis; inertial measurement units; six-minute walk;
simulator sickness 2014

2 Parkinson’s disease monitoring technologies; exercise intensity; ambulatory
systems; gait recognition 2011

3 spinal cord injury physical activity; brain–computer interfaces; gait
rehabilitation; Hammerstein model 2007

4 virtual reality deep learning; human-computer interaction; biomechanical
modeling; optimal control 2015

5 post-stroke rehabilitation serious games; Microsoft Kinect; electrodermal activity 2014
6 gait analysis movement; inertial sensor; accelerometry; balance 2011

7 rehabilitation robotics virtual reality; sensorimotor interaction; movement analysis;
human-machine interface 2008

8 stroke rehabilitation wearable sensors; physical therapy; motor learning; hand
rehabilitation 2010

9 upper extremity machine learning; outcome measures; body-worn sensors 2009

10 clinical trials stroke rehabilitation; brain tissue regeneration; physical
therapy; virtual reality 2016

11 legged locomotion haptic interfaces; rehabilitation robotics; sensing systems;
motion analysis 2017

4. Discussion

The present study aimed to conduct a bibliometric analysis of the research on sensor-
based rehabilitation in neurological diseases published over the past 20 years. The results
showed a steady increase in the number of publications over the years, with a significant
increase in the last five years, indicating a growing interest in this field. The exponen-
tial growth of publications suggests the potential of this area of research to address the
challenges of neurological diseases.

The subject categories extracted from the Web of Science and mapped with CiteS-
pace showed that the field of study involves 90 categories. Rehabilitation, biomedical
engineering, and electrical engineering were the most frequent categories, indicating the
interdisciplinary nature of this field. Other categories, such as neuroscience, clinical neurol-
ogy, and analytical chemistry, also made significant contributions. This diversity in subject
categories suggests that research in this area is not only complex but also requires collabo-
ration and interdisciplinary efforts from experts with a wide range of knowledge and skills,
highlighting the interdisciplinary nature of the field. It is crucial for researchers to recognize
the importance of collaboration and the exchange of knowledge across different fields to
address the challenges and improve the outcomes of sensor-based rehabilitation interventions.

The analysis of the countries with the highest number of publications showed that
the United States, Italy, and China were the most active countries. This indicates that
research on sensor-based rehabilitation in neurological diseases is a global concern, with
active participation from multiple countries. The visual network map of collaborations
demonstrated a moderate degree of cooperation among the countries.

The institutions with the highest number of publications included the Swiss Federal
Institute of Technology in Switzerland, Oregon Health & Science University in the USA, and
Universitat Zurich in Switzerland. It is noteworthy that the number of institutions involved
in sensor-based rehabilitation research in neurological diseases is growing, indicating
the increasing interest in and recognition of this field. The inclusion of new institutions
in this research area can contribute to the development of new ideas and approaches,
as well as promote the dissemination of knowledge and collaboration between different
research groups. Thus, it is important to continue tracking the trends and changes in the
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institutional landscape of this field in order to better understand its evolution and potential
future directions.

The main active authors identified in this study were from the United States and Italy.
This suggests the significant contributions made by these authors to the field of sensor-
based rehabilitation in neurological diseases. The fact that the number of publications per
author in this discipline was very modest is also significant to notice because it suggests that
there are not any dominant or extraordinarily prolific authors in this field. This highlights
the need for continued collaboration and interdisciplinary research efforts to advance the
field of sensor-based rehabilitation in neurological diseases. The lack of a few standout
authors also suggests that progress in this field is the result of the collective efforts of
numerous researchers, rather than the work of a small group of individuals. Moreover, the
analysis of author and institutional collaborations in this study has revealed a notable lack
of strong research groups within the network. According to this result, there is a lot that
can be done to create more coherent research groups that span several disciplines. It may
be required to prioritize multidisciplinary collaboration and bring together academics with
various backgrounds and skill sets in order to form more productive research groups. This
can entail dismantling conventional disciplinary boundaries, encouraging interdisciplinary
cooperation, and establishing a climate of open communication and knowledge sharing.
Additionally, it could be crucial to set up specific research goals and objectives as well as
to make sure that everyone in the group is on the same page with regard to the research’s
approach and overall vision.

The analysis of journals publishing papers related to sensor-based rehabilitation in
neurological diseases showed that Sensors published the most papers, while the Journal of
Neuroengineering and Rehabilitation had the highest impact factor. The analysis also identified
the three most co-cited journals, namely, Archives of Physical Medicine and Rehabilitation,
Journal of Neuroengineering and Rehabilitation, and IEEE Transactions on Neural Systems and
Rehabilitation Engineering.

A stronger knowledge of the trends in a particular study discipline is provided through
references with citation bursts. We chose to analyze the references with the strongest ci-
tation bursts because they are indicative of publications that have garnered significant
attention within the scientific community. These publications are likely to contain ground-
breaking research or ideas that have had a significant impact on the field of sensor-based
rehabilitation in neurological diseases.

The paper by Patel et al. revealed the strongest burst, lasting 4 years: the paper
A review of wearable sensors and systems with application in rehabilitation, published in the
Journal of Neuroengineering Rehabilitation in 2012 [9], is a review that summarizes recent
developments in wearable sensors and systems relevant to rehabilitation. It highlights the
growing use of wearable technology to monitor older adults and individuals with chronic
conditions in home and community settings. The paper describes enabling technologies,
such as sensor and communication technologies and data analysis techniques, that allow
for the implementation of wearable systems. The review focuses on the clinical applications
of wearable technologies, including health and wellness, safety, home rehabilitation, the
evaluation of treatment efficacy, and the early detection of disorders. It also discusses the
integration of wearable and ambient sensors for home monitoring and outlines future work
needed for the clinical deployment of wearable sensors and systems.

Baily et al. revealed the second-strongest citation burst with the paper Quantifying Real-
World Upper-Limb Activity in Nondisabled Adults and Adults with Chronic Stroke, published in
Neurorehabilitation and Neural Repair in 2015 [36]. The study aimed to quantify real-world
bilateral upper-limb activity in nondisabled adults and adults with chronic stroke using
an accelerometry-based methodology. Nondisabled adults demonstrated the equivalent
use of dominant and nondominant upper limbs, whereas adults with stroke showed lower
bilateral upper-limb activity intensity and more lateralized activity. The study concluded
that the novel accelerometry-based methodology can complement clinical tests of function
when assessing the recovery of upper-limb activity following neurological injury.
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On the other hand, we also chose to examine the references with the most recent bursts
because they are indicative of emerging trends or current areas of active research in the field.
By analyzing these references, we can gain insights into the most recent advancements and
directions of research within sensor-based rehabilitation for neurological diseases. Wearable
Movement Sensors for Rehabilitation: A Focused Review of Technological and Clinical Advances
by Porciuncula et al. [50] is a review of the applications of wearable movement sensors in
rehabilitation. The article presents state-of-the-art and next-generation wearable movement
sensors, as well as clinical applications in various conditions, including stroke, movement
disorders, knee osteoarthritis, and running injuries. The potential for remote monitoring,
telerehabilitation, and robotics is also discussed, along with complementary applications
enabled by next-generation sensors. Overall, the review highlights the tremendous potential
of wearable sensors to change clinical practice and enable personalized and precision medicine.

The other two papers focus on the use of wearable sensor networks for stroke patients.
The first paper, A remote quantitative Fugl-Meyer assessment framework for stroke patients
based on wearable sensor networks by Yu et al. [44], proposes a remote quantitative Fugl-
Meyer assessment framework for stroke patients that uses wearable sensors to monitor
the movement function of the upper limb, wrist, and fingers. The second paper, Exploring
the Role of Accelerometers in the Measurement of Real World Upper-Limb Use After Stroke by
Hayward et al. [51], explores the feasibility of using accelerometers as a tool to measure
real-world upper-limb use after stroke and discusses the potential for widespread uptake in
research and clinical environments. Both papers highlight the potential of wearable sensor
networks to enhance stroke rehabilitation and evaluation, as well as the need for consistent
protocols, applications, and data interpretation to facilitate greater uptake.

Subsequently, we analyzed the 20 references exhibiting the highest citation bursts.
Based on our analysis, we found that the majority of references with the strongest citation
bursts (13 out of 20) were related to stroke rehabilitation. This suggests that sensor-based
rehabilitation is a highly researched area in stroke rehabilitation, with a significant amount
of literature available on the topic. Furthermore, 50% (10 out of 20) of the references
specifically focused on upper-limb rehabilitation, indicating a strong emphasis on upper-
limb rehabilitation after stroke. Finally, we found that 7 out of 20 were review or systematic
review papers, highlighting the importance of synthesizing and summarizing the existing
literature in this area.

An important theme that emerged from the analysis of the references with the strongest
citation bursts is the use of Kinect technology in sensor-based rehabilitation [33,40,42]. The
Kinect system, developed by Microsoft for gaming, has been explored for its potential
to monitor and improve motor function in various patient populations. Its advantages
include its low cost, ease of use, and ability to capture three-dimensional motion data
without the need for cumbersome sensor placement. Additionally, the Kinect system
allows for an objective and quantitative assessment of movement, which can be particularly
useful in tracking progress during rehabilitation [52,53]. However, some studies have also
highlighted limitations of the Kinect system, such as its sensitivity to environmental factors
and potential accuracy issues in capturing complex movements [54].

The analysis of keywords in the bibliometric study of sensor-based technology in
rehabilitation for neurological diseases revealed several themes and trends in this field.
The most commonly used terms were related to the core concept of rehabilitation, stroke,
and recovery, indicating the strong focus on the use of technology to aid in the recovery
process of individuals with neurological conditions. Other terms, such as Parkinson’s
disease, spinal cord injury, cerebral palsy, multiple sclerosis, and traumatic brain injury,
demonstrated the wide scope of neurological diseases being investigated in this field. The
importance of walking and gait analysis was also highly prioritized, reflecting the need for
accurate and precise measurements in this area of research. The presence of keywords such
as “wearable sensors,” “virtual reality,” and “exoskeleton” indicates a growing interest in
using technology to monitor and improve mobility and physical activity.
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The top burst keywords showed emerging topics such as “machine learning”, “deep
learning”, “task analysis”, “robot sensing system”, and “brain computer interface”, sug-
gesting that these areas are rapidly evolving and likely to drive new advances in the field
and may lead to improved rehabilitation strategies and outcomes for patients and respond
to changes in the environment. In particular:

1. Machine learning: Machine learning techniques have become increasingly essential in
the analysis and interpretation of data acquired through sensors. These techniques
enable the identification of patterns and relationships within the data, which may be
difficult or impossible for humans to discern. As a result, machine learning has become
a crucial tool in many areas of research, including wearable sensor technology, virtual
reality, rehabilitation robotics, and clinical trials, among others [55]. The application
of machine learning algorithms allows for the development of more accurate and
efficient methods for data processing, which can lead to improved diagnostic and
therapeutic approaches [56,57]. Deep learning analysis is a type of machine learning
that involves training artificial neural networks to recognize patterns in data. It is a
subset of artificial intelligence that uses algorithms to learn from large amounts of
data and make predictions or decisions without being explicitly programmed [14].
There are several deep learning models that can be used in rehabilitation, depending
on the specific task and type of data being analyzed [58].

2. Task analysis: Task analysis is a critical aspect of rehabilitation that involves breaking
down a specific activity or task into its individual components to understand the phys-
ical requirements and limitations of the patient. This analysis helps therapists design
personalized therapy programs that target the patient’s specific needs and goals [59].
The application of sensors in task analysis can significantly enhance the accuracy and
effectiveness of the rehabilitation process. Sensors can provide real-time data on the
patient’s movements, muscle activity, and other physical parameters, allowing therapists
to identify areas of weakness and adjust the therapy program accordingly.

3. Robot sensing system: A robot sensing system is a set of sensors integrated into
a robot to collect data about the robot’s environment and the physical parameters
related to its operation. These sensors can include cameras, microphones, force
sensors, accelerometers, and others, depending on the specific application of the
robot. The data collected by the sensors is used to control the robot’s movements,
adjust its behavior, and make decisions based on the information gathered. A well-
designed robot sensing system can significantly improve the robot’s functionality,
safety, and performance in various applications, such as manufacturing, healthcare,
and exploration [60–63].

4. Brain–computer interface (BCI): BCI is a technology that allows direct communication
between the brain’s electrical activity and an external device, most commonly a
computer [64]. BCIs can be used in stroke rehabilitation [65,66], as well as in a
completely locked-in state to enable volitional communication, allowing patients
to select letters, to form words and phrases, and to communicate their needs and
experiences via auditory neurofeedback training [67]. BCIs can also be used to control
prosthetic devices, such as robotic arms or legs, by translating neural signals into
motor commands [68]. Sensors play a crucial role in brain–computer interface (BCI)
technology, as they are used to detect changes in brain activity associated with specific
mental states or movements. There are different types of sensors that can be used in
BCIs, including invasive and non-invasive approaches. Non-invasive sensors include
electroencephalography (EEG), magnetoencephalography (MEG), and functional
near-infrared spectroscopy (fNIRS). Invasive sensors include microelectrode arrays
and penetrating electrodes [69].

The clustering of keywords in this analysis also suggests that there are specific areas
of focus within the field, such as Parkinson’s disease, spinal cord injury, and stroke. The
largest cluster is focused on machine learning, which is a promising area of research in
rehabilitation, as it can be used to identify patterns and trends in patient data and provide
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personalized feedback to improve outcomes. The continued growth and advancement of
machine learning techniques are expected to contribute significantly to the development of
new and innovative solutions in the field of biomedical engineering. Human–computer
interaction and learning algorithms suggest that researchers are exploring ways to improve
the interaction between users and sensor-based systems. These clusters are important
because they emphasize the need to design systems that are intuitive and user-friendly for
patients affected by neurological disorders.

This study has certain limitations that are inherent to bibliometric analysis. First, the
data were collected only from the WoSCC database, which may have missed some relevant
studies that are present in other databases. Second, only studies in English were included.
Third, some recent high-quality works may not have received enough citations, which
could lead to an underestimation of their influence. Although the WoSCC database is
regularly updated and citation-specific parameters are subject to temporal changes, the
influence of time on citation trends is limited.

Moreover, the data presented in this paper have limitations that preclude their use for
some purposes. The metrics we employed only measure the frequency and performance,
not their quality or impact. For example, articles may receive numerous citations for
negative reasons, such as being refuted or criticized. Additionally, metrics may distort
research by incentivizing researchers to produce papers that are more likely to be cited,
rather than those that advance knowledge.

Finally, we acknowledge that a bibliometric analysis has its limitations and cannot
account for all the nuances and emerging areas of a scientific field. Therefore, our results
should be interpreted with caution and not as a definitive representation of the state of the
art in the field. Rather, we suggest that our results provide a useful overview of the main
trends and topics in the literature, as well as some insights into the gaps and challenges that
need further investigation. To overcome some of the limitations of bibliometric analysis, we
recommend that future studies complement our approach with other methods, such as the
qualitative analysis of the content and context of selected publications, expert interviews to
elicit opinions, and perspectives from key stakeholders.

5. Conclusions

The present study provides a comprehensive overview of the research on sensor-
based rehabilitation in neurological diseases in the last 20 years. The analysis of journals
publishing related papers and references with citation bursts provided insights into the
most impactful and groundbreaking research in the field. Overall, this study sheds light
on the evolution and potential future directions of the field of sensor-based rehabilitation
in neurological diseases. This article contributes to advancing the field of sensor-based
rehabilitation and helps to pave the way for future research in this area.

Sensor-based rehabilitation is not only a promising research area but also a rapidly
growing market that attracts many established and emerging technologies. According to
a recent report by Grand View Research, the global wearable medical device (including
sensors) market size was valued at USD 21.3 billion in 2021 and is expected to grow at a
compound annual growth rate (CAGR) of 28.1% from 2022 to 2030 [70]. Some of the key
factors driving this growth are the increasing prevalence of neurological disorders such as
stroke, Parkinson’s disease, multiple sclerosis, and traumatic brain injury; the rising demand
for home-based and personalized rehabilitation solutions; and technological advancements in
sensor devices, wearable systems, robotics, virtual reality, and artificial intelligence.

In the context of targeted neural rehabilitation [71], we can expect to see continued
advancements in sensor technology that will enable even more detailed and accurate
data collection on patient movements, brain activity, and vital signs. These data will be
analyzed using machine learning and deep learning algorithms to identify patterns and
trends that can inform personalized treatment plans for patients. BCIs are also expected to
become more prevalent in sensor-based rehabilitation, allowing for direct communication
between a patient’s brain activity and an external device, such as a computer or robotic arm.
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Looking ahead, virtual reality and gamification are expected to become more prevalent
in sensor-based rehabilitation, providing patients with a more engaging and immersive
therapy experience. The integration of sensors with other technologies, such as robotics
and exoskeletons, is also expected to drive further innovation in this field, leading to
the development of more advanced rehabilitation devices that can provide patients with
greater levels of assistance and support during therapy sessions. By exploring these
emerging technologies and advancements in sensor-based rehabilitation, we can identify
new opportunities for innovation and collaboration that will help advance the field and
pave the way for future research in this area.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/brainsci13050724/s1, Figure S1: Timeline view of all authors that
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Figure S2: Timeline view of all co-citation references between 2002 and 2022; Figure S3: Timeline
view of all keywords.
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