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Abstract: This paper analyzes various classes of processes associated with
the tempered positive Linnik (TPL) distribution. We provide several subor-
dinated representations of TPL Lévy processes and in particular establish a
stochastic self-similarity property with respect to negative binomial subor-
dination. In finite activity regimes we show that the explicit compound Pois-
son representations give raise to innovations following Mittag-Leffler type
laws which are apparently new. We characterize two time-inhomogeneous
TPL processes, namely the Ornstein-Uhlenbeck (OU) Lévy-driven pro-
cesses with stationary distribution and the additive process determined
by a TPL law. We finally illustrate how the properties studied come to-
gether in a multivariate TPL Lévy framework based on a novel negative
binomial mixing methodology. Some potential applications are outlined in
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1. Introduction

In recent years, a large body of literature has been devoted to the tempering
of heavy-tailed laws – in particular, stable laws – which prove to be extremely
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useful in applications to finance and physics (for a recent introduction to the
topic, see the monograph by Grabchak 2016). Indeed, even if heavy-tailed dis-
tributions are well-motivated models in a probabilistic setting, extremely bold
tails are not realistic for most real-world applications. This drawback has led
to the introduction of models which are morphologically similar to the original
distributions even if they display lighter tails. The initial case for adopting mod-
els that are similar to a stable distribution and with lighter tails is introduced
in physics by Mantegna and Stanley (1994) and Koponen (1995), and subse-
quently in economics and finance by the seminal papers of Boyarchenko and
Levendorskĭi (2000) and Carr et al. (2002). For recent accounts on tempered
distributions, see e.g. Fallahgoul and Loeper (2021) and Grabchak (2019).

From a static distributional standpoint the tempered (or “tilted”) version X
of a random variable (r.v.) Y by a parameter θ > 0 is obtained through the
Laplace transform

LX(s) = LY (θ + s)
LY (θ) . (1.1)

From this expression it is apparent that the original r.v. and its tempered version
have distributions which are practically indistinguishable for real applications
when θ is small, even if their tail behavior is radically different in the sense that
the former may have infinite expectation, while the latter has all the moments
finite.

This methodology is particularly well-adapted to the case in which Y follows
an infinitely-divisible distribution, since in that case X is also infinitely-divisible
and expression (1.1) only involves a simple manipulation of characteristic ex-
ponents. Furthermore, the Lévy measure νX(dt) of X is itself a tilted version
of that of Y , meaning that νX(dt) = e−θtνY (dt). The described tempering
procedure may therefore be easily embedded in the theory of Lévy processes.
The relationship on Lévy measures highlights that a tempered Lévy process is
one whose small jumps occurrence is essentially indistinguishable from that of
the base process, but whose large jumps are much more rare events. Addition-
ally, tempering retains a natural interpretation in terms of equivalent measure
changes in probability spaces. Let a measure Pθ be defined by means of the
following martingale density

dPθ = e−θYt+φY (θ)tdP , (1.2)

where φY is the characteristic (Laplace) exponent of Y , which goes under
the name of Esscher transform. Under Pθ, the Lévy process associated to the
infinitely-divisible r.v. Y coincides with that associated to X. This result is of
great importance in application fields where the analysis of the process dynamics
under equivalent transformation of measures is of relevance, e.g. option pricing
(see Hubalek and Sgarra 2006).

In the context of tempering of probability laws, Barabesi et al. (2016a) intro-
duce the tempered positive Linnik (TPL) distribution as a tilted version of the
positive Linnik (PL) distribution considered in Pakes (1998) and inspired by the
classic paper of Linnik (1963). The PL law has received increasing interest since
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it constitutes a generalization of the gamma law and recovers the positive stable
(PS) law as a limiting case (for details, see Christoph and Schreiber 2001).

Hence, its tempered version is suitable for modelling real data. In addition,
the tempering substantially extends the parameter range of the PL law and
accordingly give raise to two distinct regimes embedding positive absolutely-
continuous distributions, as well as mixtures of positive absolutely-continuous
distributions and the Dirac mass at zero. The latter regime may be useful for
modelling zero-inflated data. Finally, the tempered positive stable (TPS) law (or
“Tweedie distribution”), which is central in many recent statistical applications,
see e.g. Barabesi et al. (2016b), Fontaine et al. (2020), Khalin and Postnikov
(2020), Ma et al. (2018), can also be recovered as a limiting case of the TPL
law. A discrete version of the TPL law is suggested in Barabesi et al. (2018a),
while computational issues dealing with the TPL and TPS laws are discussed
in Barabesi (2020) and Barabesi and Pratelli (2014, 2015, 2019).

The different regimes exhibited by the TPL and TPS laws have proven to
be valid and flexible tools for stochastic modeling of univariate data, especially
in the context of international trade. In that context many peculiar features
– including various degrees of skewness, heavy tails and rounding – are often
observed for the same traded product and need to be dealt with simultaneously,
a task which motivated the development of the TPL law and which is also shared
by the three-parameter TPS law in less complicated situations. One of the goals
of the present work is to extend the flexibility of such laws to the more ambitious
task of modeling the joint distribution of multivariate phenomena.

Regarding the theoretical findings on the TPL law, Barabesi et al. (2016a)
obtain closed formulas of the probability density function and the conditional
probability density function (under the two regimes, respectively) of the TPL
random variable in terms of the Mittag-Leffler function and outline the infinite-
divisible and self-decomposable character of the corresponding Lévy measures
– as well as their representation as a mixture of TPS laws with a gamma mix-
ing density. Kumar et al. (2019b) study the gamma subordinated representa-
tion of the tempered Mittag-Leffler subclass of TPL Lévy process, its moment
and covariance properties and provide alternative derivations of the associated
Lévy densities and supporting equations for the probability density function.
Leonenko et al. (2021) explore in detail the large deviation theory for TPL pro-
cesses. Kumar et al. (2019a) instead analyze Linnik processes – not necessarily
increasing – and their generalizations.

In this paper, we focus on a number of stochastic processes naturally arising
from the TPL distribution and illustrate their representations and properties.
Our findings are structural as well as methodological. First of all we provide
a detailed account of the infinite divisibility property and unify and clarify
the Lévy-Khintchine structure of a TPL law and prove additional properties
of TPL laws, such as geometric infinite divisibility. We then study the subor-
dinated structure of the TPL Lévy process, showing that besides the defining
characterization as a gamma-subordinated distribution, such laws enjoy numer-
ous representations in terms of a negative binomial subordination. This is in
turn connected to the stochastic self-similarity property – as introduced by
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Kozubowski et al. (2006) – of the PL subordinator with respect to the negative
binomial subordinator. We further make clear the role of the tail parameter γ in
determining two distinct regimes for the processes associated to the TPL distri-
bution. We find that whenever γ ∈ (0, 1], the TPL law is absolutely continuous
and an infinite activity process occurs. In contrast, when γ < 0, the TPL has
a mixed absolutely-continuous and point mass expression. We then find that
the corresponding Lévy process is a compound Poisson process which we show
to feature increments of “logarithmic” Mittag-Leffler type, which is seemingly
a new distribution. In this context a connection with the potential measure of
tempered positive stable subordinator is outlined. The absolutely-continuous
case instead corresponds to a self-decomposable family distributions to which
using classic theory (Barndorff-Nielsen 1997, Sato 1991) we are able to associate
an Ornstein-Uhlenbeck (OU) Lévy-driven process with TPL stationary distribu-
tion and an additive TPL process. We characterize such processes. In particular,
the Lévy driving noise of the OU process with TPL stationary distribution is a
compound Poisson process with tempered Mittag-Leffler distribution, a proba-
bility law which as far as the authors are aware, has also not been considered
before.

The study culminates in the introduction of a novel multivariate TPL law/
Lévy process which is constructed making use of the subordinated representation
and the stochastic-self similarity property provided in the prior sections. Such
a construction can be easily generalized to different subordinand processes and
it encompasses as special cases some well-known multivariate distributions of
common use for statistical applications.

The paper is organized as follows. In Section 2 – after reviewing some basic
known properties – we discuss the infinite divisibility and the Lévy-Khintchine
representation, as well as the self-decomposability and geometric infinite divis-
ibility, of the TPL law. Section 3 is devoted to TPL Lévy subordinators and
their various representations. In Section 4, we consider the OU Lévy-driven pro-
cesses with stationary TPL distribution and the additive process generated by a
TPL law. In Section 5, we propose the natural multivariate version of the TPL
law, and the connected Lévy process. In Section 6, applications for statistical
anti-fraud are considered, and we conclude in Section 7.

2. The tempered positive Linnik distribution

If X represents a positive random variable (r.v.) on a probability space (Ω,F , P ),
we denote its Laplace transform LX(s) = E[e−sX ], for all values of s ∈ C for
which such expectation exists.

The PL family of laws PL(γ, λ, δ) was introduced by Pakes (1998), on the
basis of the original suggestion of Linnik (1963). A PL r.v. V is characterized
by the Laplace transform

LV (s) =
(

1
1 + λsγ

)δ

, Re(s) > 0, (2.1)
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(γ, λ, δ) ∈ (0, 1]×R+×R+. For details on Linnik-type laws see e.g. Christoph and
Schreiber (2001), or more recently Korolev et al. (2020) and references therein.

Barabesi et al. (2016a) propose a new family of distributions which is a
tempered version of the PL family. By slightly modifying the parametrization
thereby proposed, the TPL r.v. X is defined as a member of the four-parameter
family TPL(γ, λ, δ, θ) with Laplace transform given by

LX(s) =
(

1
1 + sgn(γ)λ((θ + s)γ − θγ)

)δ

, Re(s) > 0, (2.2)

with parameter space for (γ, λ, δ, θ) given by

S = {(−∞, 1] \ {0} × R+ × R+ × R+} ∪ {(0, 1] × R+ × R+ × {0}}. (2.3)

The terminology is motivated by the fact that the genesis of this distribution
for γ ∈ (0, 1) is that of tempering PL random variables in a way analogous to
the classic tempering of stable laws. If V is PL(γ, λ, δ) and θ > 0 then

LX(s) = LV (θ + s)
LV (θ) =

(
1

1 + λ′((θ + s)γ − θγ)

)δ

(2.4)

with λ′ = λ/(1 + λθγ). See Subsection 2.2 further on for more on this analogy.
The TPL family encompasses the PL law for θ = 0, the Mittag-Leffler law

proposed by Pillai (1990) for δ = 1 and θ = 0, and the gamma law for γ = 1,
or – alternatively – for γ ∈ (0, 1] and λθγ = 1. Furthermore, a TPS(γ, λ, θ)
can be obtained as a limit in distribution of a TPL(γ, δλ, δ, θ) as δ → ∞. In
addition from (2.2) we see that the TPL family is closed under convolution. More
precisely let (Xk)k∈N be a sequence of independent r.v.s with TPL(γ, λ, δk, θ)
distribution; then

∑n
k=1 Xk has TPL(γ, λ,

∑n
k=1 δk, θ) distribution.

The fact that in (2.2) the parameter γ is allowed to be negative has many
implications and is one of the central aspects of this paper. To begin with, the
two parameters subsets (−∞, 0) and (0, 1] for γ determine distinct regimes in
the Lebesgue decomposition of the law of a TPL variable.

Denote with Ec
a,b(z), z ∈ C, the Prabhakar (1971) three-parameter Mittag-

Leffler function

Ec
a,b(z) =

∞∑
k=0

(c)kzk

k!Γ(ak + b) , Re(a) > 0, Re(b) > 0, c ∈ C, (2.5)

where (c)k = c(c+ 1) . . . (c+ k− 1) is the Pochhammer symbol. The classic one
and two-parameter Mittag-Leffler functions Ea and Ea,b coincide with E1

a,1 and
E1

a,b respectively. In Barabesi et al. (2016a) it is shown that for γ ∈ (0, 1) a TPL
random variable X has probability density function (p.d.f.) fX given by

fX(x; γ, λ, δ, θ) = e−θxxγδ−1

λδ
Eδ

γ,γδ

(
λθγ − 1

λ
xγ

)
1{x>0}. (2.6)
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In the case θ = 0, which forces γ ∈ (0, 1], this collapses to the p.d.f. of a PL law,
known since Linnik (1963). However, the authors observe that when instead
γ ∈ (−∞, 0) the distribution is not absolutely continuous. Nevertheless, the
conditional p.d.f. on the event {X > 0} is available. For more details on PL and
TPL families of laws see Barabesi et al. (2016a) and Barabesi et al. (2016b).

2.1. Infinite divisibility and Lévy-Khintchine representation

We recall that a positive random variable X is said to be infinitely-divisible if
for all n = 1, 2 . . ., there exist n i.i.d. random variables Xk,n, k = 1, . . . , n, such
that X =d X1,n+. . .+Xn,n. Infinite divisibility of a positive r.v. X is equivalent
to require that the logarithm of LX is a Bernstein function (Schilling et al. 2012,
Lemma 5.8). This means that there exists a positive measure ν supported on
R+ such that

∫∞
0 (1 ∧ x)ν(dx) < ∞ and constants a, b ≥ 0 such that

φX(s) := − log(LX(s)) = a + bs +
∫

(0,∞)
(1 − e−st)ν(dt). (2.7)

Equation (2.7) above is called the Lévy-Khintchine decomposition of X and
(a, b, ν) is referred to as the triplet of Lévy characteristics with Lévy measure
ν, and the Bernstein function φX as the characteristic (Laplace) exponent (see
e.g. Sato 1999).

If f and g are Bernstein functions so is f◦g (Schilling et al. 2012, Corollary 3.8,
iii). Therefore, if Y and Z are independent positive infinitely-divisible r.v.s then
φZ◦φY is the characteristic exponent of some positive infinitely-divisible random
variable X. Moreover, if (a, b, μ) and (α, β, ρ) are the Lévy characteristics triplets
respectively of Y and Z the Lévy triplet of X is given by (φZ(a), bβ, η), where
for all Borel sets B not containing zero

η(B) =
∫

(0,∞)
μY
t (B)ρ(dt) + bμ(B), (2.8)

where μY
t is law of Yt (Schilling et al. 2012, Theorem 5.27). Equation (2.8)

has the statistical interpretation of X being a mixture of Y over the mixing
density Z, and the dynamic interpretation of a subordination of increasing Lévy
processes (Sato 1999, Chapter 30).

A real valued, real-supported infinitely-divisible random variable X with
characteristic function ΨX : R → C is characterized instead by its Lévy ex-
ponent ψX(z) = log ΨX(z). It is a classic result that there exists a character-
istic triplet (c, σ, ν) where c ∈ R, σ ≥ 0, and ν is a measure on R satisfying
ν({0}) = 0,

∫
R
(x2 ∧ 1)dx < ∞, such that ψX has the following Lévy-Khintchine

representation

ψX(z) = izc− z2 σ/2 +
∫
R

(
eizx − 1 − izx1|x|<1

)
ν(dx). (2.9)

The function ψX(z) possesses a number of analytical properties which equiva-
lently characterize the notion of Lévy exponent.
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We recall that for (λ, δ) ∈ R
2
+ the characteristic exponent φZ and Lévy

density uZ of a gamma G(λ, δ) r.v. Z, whose p.d.f. is given by

fZ(x;λ, δ) = xδ−1

Γ(δ)λδ
e−x/λ1{x>0}, (2.10)

are respectively

φZ(s) = δ log(1 + λs), Re(s) > −1/λ, (2.11)

uZ(x) = δ
e−x/λ

x
1{x>0}. (2.12)

The characteristic exponent and Lévy density of a TPS(γ, λ, θ) r.v. Y for
(γ, λ, θ) ∈ πδ(S), where πδ is the projection on the δ = 0 subspace of R4, is:

φY (s) = sgn(γ)λ((θ + s)γ − θγ), Re(s) > 0, (2.13)

uY (x) = |γ|λ
Γ(1 − γ)

e−θx

xγ+11{x>0} (2.14)

and for γ ∈ (0, 1), the r.v. Y has a density that admits a series representation

fY (x; γ, λ, θ) = e−θx+λθγ

x

∞∑
k=1

1
k!Γ(−kγ)

(
−xγ

λ

)−k

1{x>0}, (2.15)

which can be obtained by exponentially tilting with parameter θ > 0 the ex-
pression given in Sato (1999, p.88) of the density of the PS (γ, λ) law.

The following result has been established in Barabesi et al. (2016a) by con-
sidering limits of the probability measures as t tends to zero. For γ ∈ (0, 1) a
proof using (2.8) is offered in Kumar et al. (2019b). In the proposition below,
we summarize these results and extend them to the case γ < 0.
Proposition 2.1. Let Y and Z be independent r.v.s distributed respectively
according to a TPS(γ, λ, θ) and a G(1, δ) law. Then the r.v. X whose charac-
teristic exponent φX is given by

φX(s) = φZ(φY (s)) (2.16)

has a TPL(γ, λ, δ, θ) distribution. As a consequence any TPL r.v. X is infinitely-
divisible with triplet (0, 0, ν), where ν is an absolutely-continuous measure. Fur-
thermore if

(γ, λ, δ, θ) ∈ {γ < 0} ∪ {0 < γ < 1, λθγ < 1} ⊂ S (2.17)

then ν has density uX given by

uX(x) = |γ|δ e
−θx

x

(
E|γ|

(
cγ,λ,θ x

|γ|
)
− 1{sgn(γ)=−1}

)
1{x>0} (2.18)

with

cγ,λ,θ :=
(
λθγ − sgn(γ)

λ

)sgn(γ)

. (2.19)
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Proof. Equation (2.16) is straightforward from (2.2), (2.11) and (2.13), and X
is infinitely-divisible because both Z and Y are.

Let us now assume γ ∈ (0, 1). We can apply (2.8) with μY
t being the absolutely-

continuous measures given by the densities fY (x; γ, tλ, θ) in (2.15) and the Lévy
triplet (0, 0, δ e−t

t 1{t>0}dt) characterizing Z. Whenever λθγ < 1 this gives for
x > 0 a uniformly-integrable series, which we can integrate term by term to get
the following Lévy density for X

uX(x) = δ
e−θx

x

∞∑
k=1

1
k!Γ(−kγ)

(
−xγ

λ

)−k ∫ ∞

0
tk−1e(λθγ−1)tdt

= δ
e−θx

x

∞∑
k=1

1
kΓ(−kγ)

(
λθγ − 1

λ
xγ

)−k

= −γδ
e−θx

x

∞∑
k=1

1
Γ(1 − kγ) (cγ,λ,θ xγ)−k

= γδ
e−θx

x
Eγ (cγ,λ,θ xγ) (2.20)

after having applied Haubold et al. (2011), Equation (9.2), in the third line.
If instead γ < 0 we observe that we can rewrite

φY (s) = λθγ

(
1 −

(
1

1 + s/θ

)−γ
)

= λθγ(1 − e−φZ(s)), (2.21)

where Z has law G(−γ, 1/θ). Therefore Y is in distribution a compound Poisson
process with Lévy density λθγfZ where fZ is the p.d.f. of Z given in (2.10), and
the measures μY

t are the laws of Y with intensity λθγ and i.i.d. excursions Z.
It is well-known (e.g. Sato 1999) that μY

t have the Lebesgue decomposition, for
any Borel set B

μY
t (B) = e−λθγtδ0(B) +

∞∑
k=1

e−λθγt

k! (λθγt)k
∫
B

f∗k
Z (x)dx

= e−λθγtδ0(B) +
∞∑
k=1

e−λθγt

k! (tλ)k
∫
B

x−γk−1

Γ(−γk)e
−θxdx (2.22)

with the gamma convolution f∗k
Z (x) = x−γk−1e−θxθ−kγ/Γ(−γk) and where δ0

is the Dirac distribution concentrated in 0. According to (2.8) we have the
uniformly integrable series

uX(x) = δ
e−θx

x

∞∑
k=1

x−γk

k!Γ(−γk)λ
k

∫ ∞

0
tk−1e−(λθγ+1)tdt
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= δ
e−θx

x

∞∑
k=1

1
kΓ(−γk)

(
λ

λθγ + 1x
−γ

)k

= −γδ
e−θx

x

(
E−γ

(
cγ,λ,θ x

−γ
)
− 1

)
. (2.23)

Combining (2.20) and (2.23) yields (2.18).

The case θ = 0 recovers the Lévy measure of the PL distribution as given in
e.g. Barndorff-Nielsen (2000).

Equation (2.18) serves as a starting point for the analysis of the processes
based on a TPL a law. Furthermore, it provides the structure of the cumulants
of a TPL distribution. The following result is new.

Proposition 2.2. Under the restrictions on the parameters and in the notation
of Proposition 2.1 and assuming additionally θ �= 0, for n ∈ N let κ+

n and κ−
n

be the cumulants of the TPL distribution respectively in the regimes γ ∈ (0, 1)
and γ ∈ (−∞, 0). We have

κ±
n = |γ|δ

θn
g±n−1

(cγ,λ,θ
θ|γ|

)
(2.24)

where g±n (x) satisfy the recursion

g±n (x) = x|γ| d
dx

g±n−1(x) + ng±n−1(x) (2.25)

with, for |x| < 1,
g+
0 (x) = 1

1 − x
, g−0 (x) = x

1 − x
. (2.26)

Proof. By differentiating the characteristic function, the cumulants of a positive
infinitely-divisible distribution can be seen to be given by the n-th moment
integral (modulo adding the linear characteristic when n = 1) of the Lévy
measure. In our case, recalling (2.8), we have when γ ∈ (0, 1)

κ+
n =

∫ ∞

0
xnuX(x)dx = γδ

∫ ∞

0
e−θx

∞∑
k=0

1
Γ(kγ + 1) c

k
γ,λ,θx

γk+n−1dx

= γδ

∞∑
k=0

1
Γ(kγ + 1) c

k
γ,λ,θ

∫ ∞

0
xγk+n−1e−θxdx

= γδ

θn

∞∑
k=0

Γ(kγ + n)
Γ(kγ + 1)

(cγ,λ,θ
θγ

)k

= γδ

θn

∞∑
k=0

(cγ,λ,θ
θγ

)k

(kγ + 1)n−1 (2.27)

which is a convergent series. Here (a)n = a(a + 1) . . . (a + n − 1), a ∈ R, is
the Pochhammer symbol (rising factorial). The generating function of g+

n (x) =∑∞
k=0(kγ+1)nxk of the sequence ak = (γk+1)n when n is fixed can be treated

as follows
∞∑
k=0

(kγ + 1)nxk =
∞∑
k=0

kγ(kγ + 1)n−1x
k + n

∞∑
k=0

(kγ + 1)n−1x
k
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= γx
d

dx

( ∞∑
k=0

(kγ + 1)n−1x
k

)
+ n

∞∑
k=0

(kγ + 1)n−1x
k (2.28)

Since g+
0 (x) = 1/(1 − x), (2.25) follows in the positive γ regime.

If instead γ < 0 we have

κ−
n =

∫ ∞

0
xnuX(x)dx = −γδ

∫ ∞

0
e−θx

∞∑
k=1

1
Γ(−kγ + 1) c

k
γ,λ,θx

−γk+n−1dx

= −γδ

∞∑
k=1

1
Γ(kγ + 1) c

k
γ,λ,θ

∫ ∞

0
x−γk+n−1e−θxdx

= −γδ

θn

∞∑
k=1

Γ(−kγ + n)
Γ(−kγ + 1) (cγ,λ,θ θγ)k = (−γ)δ

θn

∞∑
k=1

(cγ,λ,θ θγ)k (−kγ + 1)n−1

(2.29)

and the series again converges for all the admissible parameters values. Setting
g−n (x) =

∑∞
k=1(−kγ + 1)nxk applying (2.28) and observing g−0 (x) = x/(1 − x)

completes the proof.

From (2.24) we find the mean and variance of a TPL r.v. X to be

E[X] = |γ|δλθγ−1, Var[X] = E[X]
δ

(
1 − γ

θ
+ E[X]

)
(2.30)

which correspond to those calculated in Barabesi et al. (2016a) (albeit in a
different parametrization).

2.2. Self-decomposability and geometric infinite divisibility

A property stronger than infinite divisibility and highly consequential for the
study of stochastic processes associated to probability distributions is the so
called self-decomposability. A random variable X is said to be self-decomposable
if for all α ∈ (0, 1) there exists a r.v. Xα independent from X such that
X =d αX + Xα. A self-decomposable distribution is known to be infinitely-
divisible, and absolutely continuous with an absolutely continuous Lévy density
(Steutel and Van Harn, 2004). Several stochastic processes can be canonically
constructed starting from a self-decomposable law, something that we shall ex-
ploit in Section 4 once the self-decomposable nature of a TPL r.v. is established.

Another property stronger than infinite divisibility is geometric infinite di-
visibility introduced by Klebanov et al. (1985). A random variable X is said to
be geometrically infinitely-divisible (g.i.d.) if for any p ∈ (0, 1), there exists a
geometric random variable Gp with probability mass function (p.m.f.)

P (Gp = k) = pk−1(1 − p), k = 1, 2, . . . , (2.31)
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and i.i.d. r.v.s Zn,p, n = 1, 2, . . ., such that

X =d

Gp∑
n=1

Zn,p. (2.32)

For example a Mittag-Leffler random variable is g.i.d., as shown in Lin (1998)
Remark 2. For other properties of the g.i.d. random variables see Klebanov et al.
(1985), Kalashnikov (1997) and Kozubowski and Rachev (1999).

Proposition 2.3. A TPL(γ, λ, δ, θ) r.v. with γ ∈ (0, 1] is self-decomposable. A
TPL(γ, λ, 1, θ) random variable is g.i.d. for all admissible values of γ.

Proof. Regarding self-decomposability, according to Steutel and Van Harn (2004)
Proposition V.2.14, it is sufficient to check the case θ = 0, i.e. to show self-
decomposability of a PL law. This is well-known (see e.g. Christoph and Schreiber
2001, Section 1.2).

As observed by Klebanov et al. (1985), Theorem 2, a distribution is g.i.d.
if and only if its characteristic function ψX(z) is such that 1 − 1/ψX(z) is
a characteristic Fourier exponent φR(−iz) = − log(LR(−iz)), z ∈ C, of an
infinitely-divisible r.v. R. In particular, when X has TPL(γ, λ, 1, θ) distribution
we have

1 − 1
LX(−iz) = sgn(γ)λ((θ − iz)γ − θγ) (2.33)

which is the Fourier characteristic exponent of a TPS(γ, λ, θ) law.

If γ < 0 then a TPL r.v. is not self-decomposable since it is not absolutely
continuous. The proposition above together with (2.4) clarifies the interpretation
of TPL laws as “geometric” analogues of TPS laws, or their “geometric versions”,
in the terminology of Sandhya and Pillai (1999).

In analogy with stable laws one may wish to investigate the stability condition
for p ∈ (0, 1) and some α > 0

X =d p1/α
Gp∑
n=1

Zn,p (2.34)

(see Kalashnikov 1997) where X has Z1,p distribution. A r.v. satisfying (2.34)
for all p is said to be geometrically strictly stable (g.s.s., Klebanov et al. 1985,
Definition 2). Applying Lin (1998) Remark 2 shows that PL(γ, λ, 1) (i.e. Mittag-
Leffler) r.v.s satisfy (2.34). However, a TPL(γ, λ, 1, θ) r.v. with θ > 0 does not.
Indeed (2.34) is very close to characterizing Linnik distributions, as it can be
shown that the only symmetric (resp. positive) g.s.s. laws are Linnik (resp.
Mittag-Leffler) (Lin 1994, 1998).

3. TPL Lévy subordinators and their representation

Since the TPL distribution class is infinitely-divisible, by general theory, for any
given TPL(γ, λ, δ, θ) law on (Ω,F , P ) there exists a unique in law increasing
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Lévy process (Lévy subordinator) X = (Xt)t≥0 supported on some filtered
probability space (Ω,F ,Ft, P ) such that X1 has one such law. Furthermore

LXt(s) = E[e−sXt ] = e−tφX(s) (3.1)

and therefore the r.v.s Xt have TPL(γ, λ, tδ, θ) distribution.
The Laplace exponent of the Lévy subordinator is by definition the Laplace

exponent of its unit time marginal. Henceforth, when we refer to a Lévy process
using a distribution, we mean the Lévy process having such a marginal distribu-
tion at time 1. The Lévy measure of a process is the Lévy measure of its time-1
marginal. Unless otherwise stated, when we write equality of processes we mean
equality of the finite-dimensional distributions.

The TPL process X enjoys a plethora of different representations. The main
one is provided directly by Proposition 2.1 and is given by Lévy subordination.
Since the characteristic exponent of X is the composition of the characteristic
exponents of a gamma law and a TPS law then for all t

LXt(s) = e−tφZ(φY (s)) (3.2)

and therefore by a familiar conditioning argument

Xt =d YZt . (3.3)

In other words X can be represented as a TPS(γ, λ, θ) process Y = (Yt)t≥0 (a
tempered stable subordinator) subordinated to an independent G(1, δ) subordi-
nator Z = (Zt)t≥0. We indicate subordination of a process Y to a subordinator
Z with X = YZ .

Remark 3.1. Associating differently the scale parameter, a fully equivalent
representation in distribution for the TPL process is of the form X = Y ′

Z′ where
Y ′ is a TPS(γ, 1, θ) process and Z ′ a G(λ, δ) independent subordinator.

From (2.13) we have that
∫∞
0 νY (dx) = ∞ or

∫∞
0 νY (dx) < ∞ depending on

whether γ < 0 or γ ∈ (0, 1]. By (2.14) in the former case the process Y is of
finite activity, that is, Y is a compound Poisson process (CPP). Furthermore,
as already observed:

φY (s) = λθγ(1 − e−φZ(s)) (3.4)
where Z is a G(−γ, 1/θ) r.v.. Thus Y is a CPP that can be written explicitly as

Yt =
Nt∑
n=0

Zn, (3.5)

where Zn, n ≥ 0 are i.i.d. with same distribution as Z and (Nt)t≥0 is a Poisson
process of rate λθγ independent of the Zns.

The case γ < 0 is of particular interest for data modelling (see e.g. Barabesi
et al. 2016b). In such a case Y is of finite activity and the representation above
holds we shall write Y−, and Y+ when instead γ ∈ (0, 1]. Correspondingly we
define X− and X+. Although these Lévy process have different path properties
representation (3.3) holds in both cases.
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3.1. Compound Poisson representation and the logarithmic
Mittag-Leffler distribution

Since Y− is a driftless CPP process, then equation (2.8) and Fubini’s Theorem
imply that X− must be a CPP too. In the following we explicitly identify its
structure.

In applications the following class of functions is of interest

p(x; a, b, c, α, β) = xa−1Eα,β(cxb), x, a, b > 0, c ∈ R, Re(α),Re(β) > 0,
(3.6)

which are often seen to appear in connection with the solution of fractional
differential problems. We can express the Laplace transform L(·;x, s), Re(s) >
0, of (3.6) in terms of the Fox-Wright function (e.g. Wright 1935) as follows
(Mathai and Haubold 2008, equation 2.2.22)

L(p(x; a, b, c, α, β);x, s) =
∫ ∞

0
e−sxxa−1Eα,β(cxb)dx =

∞∑
k=0

Γ(bk + a)
Γ(αk + β)

ck

sak+b

= 1
sb

2Ψ1

[
(1, 1) (a, b)
(β, α) ; c

sa

]
, |c| < |sa|. (3.7)

This latter expression is not always the transform of a probability density func-
tion. For example in

L(p(x; a, b,−1, a, b);x, s) = sa−b

sa + 1 , (3.8)

a function which is pivotal to fractional calculus and its applications (e.g.
Haubold et al. 2011), we have that as s → 0, then L(p(x; a, b,−1, a, b), x, s) → 1
if and only if a = b, in which case the associated distribution is the Mittag-Leffler
distribution.

However we can exponentially temper (3.6) by θ > 0 obtaining, with slight
notation abuse,

p(x; a, b, c, α, β, θ)=e−θxxa−1Eα,β(cxb), x, a, b, θ>0, c∈R, Re(α), Re(β)>0,
(3.9)

which in turn after applying the shifting rule determines the Laplace transform

L(p(x; a, b, c, α,β, θ);x, s) =
1

(s + θ)b 2Ψ1

[
(1, 1) (a, b)
(β, α) ; c

(s + θ)a

]
, |c| < |(s + θ)a|.

(3.10)

As s → 0 the limit of the expression of the above is always finite, so after appro-
priate normalization, p(x; a, b, c, α, β, θ) determines a probability distribution.
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In particular if we let a = b = α, β = a + 1, |c| < θa we have:

L(p(x; a, a, c, a, a + 1, θ), x, s) = 1
ac

∞∑
k=0

1
k + 1

(
c

(θ + s)a

)k+1

= − 1
ac

log
(
1 − c(s + θ)−a

)
. (3.11)

Therefore, defining the normalizing constant

n(a, c, θ) = − ac

log (1 − cθ−a) , (3.12)

we conclude that n(a, c, θ)p(x; a, a, c, a, a + 1, θ) is a p.d.f. of known Laplace
transform. Calculating this product explicitly we can introduce the following
probability distribution.

Definition 3.1. A logarithmic Mittag-Leffler (LML) distribution LML(a, c, θ)
a, θ > 0, |c| < θa, is defined such that an LML r.v. W has p.d.f.

fW (x; a, c, θ) = − ac

log (1 − cθ−a)e
−θxxa−1Ea,a+1(cxa)1{x>0} (3.13)

and Laplace transform

LW (s) = log (1 − c(s + θ)−a)
log (1 − cθ−a) , Re(s) > 0. (3.14)

The terminology is motivated by the similitude of the Laplace transform
of this distribution with that of the discrete logarithmic probability law. This
distribution is not a generalization of the Mittag-Leffler law as it does not admit
it as a particular case, nor does it admit the degenerate case θ = 0. Hence it
is structurally different from a TPL law. As it turns out, the LML law arises
naturally in the CPP structure of X−.

Proposition 3.2. The process X− admits the CPP representation

X− t =
Nt∑
n=0

Jn (3.15)

where (Nt)t≥0 is a Poisson process of rate δ log(1 + λθγ) and (Jn)n≥0, is an
i.i.d. sequence of random variables having LML(−γ, cγ,λ,θ, θ) distribution, where
cγ,λ,θ is given by (2.19).

Proof. Because of (2.8) X− is driftless, being the gamma subordination of the
driftless CPP in (3.5). Using Haubold et al. (2011) Theorem 5.1 in the negative
determination of (2.18), we have the equivalent expression for the Lévy density
of X−

uX−(x) = −γδcγ,λ,θe
−θxx−γ−1E−γ,−γ+1(cγ,λ,θx−γ)1{x>0}. (3.16)
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But cγ,λ,θθ
γ < 1 so that from (3.16) and (3.13) we have

uX−(x) = δ log(1 + λθγ)fW (x;−γ, cγ,λ,θ, θ)1{x>0} (3.17)

which proves the proposition.

Another type of tilted Mittag-Leffler distribution following the construction
outlined in this section will appear in Section 4.

3.2. Stochastic self-similarity and negative binomial subordination

The TPL processes subordinated structure is extremely rich and, for reasons
which we shall shortly explore, mostly revolves around the negative binomial
subordinator. We introduce a lattice-valued version of the Lévy subordinator
B = (Bt)t≥0 with unit time distribution in the family of laws NB(p, κ, α, μ)
given by the Laplace transform

LB(s) =
(

p

1 − (1 − p)e−αs

)κ

e−μs, p ∈ (0, 1), κ, α > 0, μ ∈ R,Re(s) > 0.

(3.18)
The above law is a scale-location modification of the negative binomial law, and
it thus give raise to an infinitely-divisible distribution. Taking the logarithm of
LB and considering the corresponding characteristic exponent we see that B is
such that Bt has NB(p, κt, α, μ) distribution and it can be represented as a CPP
with drift as follows

Bt =
Nt∑
n=0

Jn + μt (3.19)

with the Jn being i.i.d distributed r.v.s with lattice-valued logarithmic proba-
bility mass function

P (Jn = αk) = (1 − p)k

−k log p , k = 1, 2, . . . (3.20)

and N = (Nt)t≥0 is an independent Poisson process of intensity −1/κ log p. For
these and other properties of the negative binomial subordinator see Kozubowski
and Podgórski (2009).

Negative binomial processes appear naturally in connection to the concept
of stochastic self-similarity introduced in Kozubowski et al. (2006), Definition
4.1. Let X = (Xt)t≥0 be any stochastic process and assume that there exists a
family of processes T c = {(T c

t )t≥0, c > 1} almost surely increasing and diverging
as t → ∞ such that

XT c
t

=d cHXt (3.21)
for some H > 0. Then X is said to be stochastically self-similar of index H with
respect to T c.

Stochastic self-similarity is intimately related to geometric infinite-divisibility
and in particular to the stability property. Based on this relationship we estab-
lish a general invariance property of the PL processes which extends Kozubowski
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et al. (2006), Proposition 4.2, and which in particular implies that Linnik pro-
cesses are stochastically self-similar with respect to families of negative binomial
processes (see also Barndorff-Nielsen et al. 2001, Example 2.2).

Proposition 3.3. Let H > 0 and X = (Xt)t≥0 be a PL(γ, λ, δ) Lévy process.
Denote with Bc = {(Bc

t )t≥0, c > 1} the family of NB(c−H , κ, 1/δ, κ/δ) subor-
dinators independent of X. Then Y = XBc is a PL(γ, λcH , κ) process for all
c > 1. In particular, X is stochastically self-similar of index H with respect to
Bc.

Proof. The first claim is equivalent to φBc(φX(s)) = φY (scH) for all Re(s) > 0
and c > 1. Composing the exponents and using (2.1) and (3.18) we obtain

φBc(φX(s)) = −κ log
(

c−He−φX(s)/δ

1 − (1 − c−H)e−φX(s)/δ

)

= −κ log
(

c−H(1 + λsγ)−1

1 − (1 − c−H)(1 + λsγ)−1

)
= κ log

(
1 − cH + cH(1 + λsγ)

)
= κ log

(
1 + cHλsγ

)
. (3.22)

Stochastic self-similarity follows setting κ = δ.

Using the subordinated structure of the TPL Lévy process, the distribu-
tional invariance part of the proposition above can be extended to X+, although
stochastic self-similarity does not hold because PL and TPL processes scale dif-
ferently.

Corollary 3.4. Let X be a TPL(γ, λ, δ, θ) Lévy process and Bp = {(Bp
t )t≥0, p ∈

(0, 1)} be a family of NB(p, κ, 1/δ, κ/δ) subordinators independent of X. Then
Xp = XBp is a TPL(γ, λp−1, κ, θ) Lévy process for all p ∈ (0, 1).

Proof. Using Remark 3.1 we recall X = YZ where Y is a TPS(γ, 1, θ) sub-
ordinator and Z is a gamma G(λ, δ) process. Applying Proposition 3.3 with
γ = H = 1, c = p−1 we have that Zp := ZBp is a G(λp−1, κ) gamma process.
Using independence we have the equalities

Xp
t =d (YZ)Bp

t
=d YZp

t
(3.23)

and the conclusion follows using again Remark 3.1.

Unit scale negative binomial subordinators provide an additional representa-
tion for non degenerate (θ > 0) TPL Lévy processes X+ and X− as subordinated
gamma processes seemingly unrelated to the results above.

Proposition 3.5. For γ ∈ (−∞, 0) ∪ (0, 1), θ > 0, let Z be a gamma G(θ, |γ|)
Lévy process and Bp

+ and Bp
− to be two negative binomial processes independent

of Z respectively of unit marginals NB(p, δ, 1, δ) and NB(p, δ, 1, 0). Then if γ ∈
(0, 1)

Xp
+ := ZBp

+
(3.24)
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is a TPL (γ, θγp−1, δ, θ−1) Lévy process. If γ < 0

Xp
− := ZBp

−
(3.25)

is a TPL(γ, θγ(p−1 − 1), δ, θ−1) Lévy process.

Proof. For Xp
+ we have

φBp
+
(φZ(s)) = −δ log

(
pe−φZ(s)

1 − (1 − p)e−φZ(s)

)
= −δ log

(
p(1 + θs)−γ

1 − (1 − p)(1 + θs)−γ

)

= δ log
(

1 − 1
p

+ 1
p
(1 + θs)γ

)
= δ log

(
1 + θγ

p
((θ−1 + s)γ − θ−γ)

)
(3.26)

whereas for Xp
−

φBp
−
(φZ(s))=−δ log

(
p

1 − (1 − p)e−φZ(s))

)
=δ log

(
1 + 1 − p

p
(1 − (1 + θs)γ)

)

= δ log
(

1 − θγ
1 − p

p

(
(θ−1 + s)γ − θ−γ

))
. (3.27)

Notice that the negative binomial representation of X− is obtained applying a
driftless CPP to the infinite activity process Z which correctly determines finite
activity. In contrast, the one for X+ features a CPP with drift which maintains
the infinite activity of the subordinand process Y+.

3.3. A connection with potential theory

There exists an interesting connection between gamma-subordinated Lévy pro-
cesses and the potential measure. Following Sato (1999), Chapter 6, define for
any Borel set B ⊂ R the q-potential measure of a process X = (Xt)t≥0 with
probability laws μX

t as

V q(B) =
∫ ∞

0
e−quμX

u (B)du. (3.28)

Now, by (2.8) for q > 0 the laws μY,q
t of Y q := XZq , where Zq is a G(1/q, 1)

gamma process independent of X, write as

μY,q
t (B) = qt

Γ(t)

∫ ∞

0
μX
u (B)ut−1e−qudu. (3.29)

Clearly the law of Y q
1 coincides with qV q, q > 0. Therefore, the knowledge of

the unit time law of Y q completely determines the q-potential measure of X.
But according to Proposition 2.1, TPL processes are TPS processes subject to
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gamma-subordination, and moreover their probability laws are known by (2.6).
According to the discussion above, this means that the whole q-potential struc-
ture, q > 0, of a TPS(γ, λ, θ) law can be made explicit. Simply setting λ = 1/q
and δ = 1 in (2.6) then shows the following:

Proposition 3.6. Let Y be a TPS(γ, λ, θ) subordinator. The q > 0 potential
measures of Y are absolutely continuous, and the potential densities vq(x) are
given by

vq(x) = e−θxxγ−1Eγ,γ ((θγ − q)xγ) . (3.30)
The 0-potential measure (the potential measure tout court) of tempered sta-

ble subordinators has been calculated using contour integration methods by
Kumar and Verma (2020).

4. Inhomogeneous TPL processes

We discuss two non-homogeneous (non-Lévy) Markovian TPL processes: the
Lévy-driven OU process with TPL stationary distribution and the self-similar
process with independent increments (Sato process) with unit time TPL
marginal. The existence of these processes essentially stem from the self-de-
composability property of the TPL distribution whenever γ ∈ (0, 1].

4.1. The OU process with stationary TPL distribution

A Lévy-driven OU process is the solution X = (Xt)t≥0 on (Ω,F ,Ft, P ) of the
stochastic differential equation (SDE)

Xt = X0 − α

∫ t

0
Xudu +

∫ t

0
dZα

u (4.1)

given by

Xt = e−αtX0 +
∫ t

0
e−α(t−u)dZα

u (4.2)

for some adapted Lévy process Zα = (Zα
t )t≥0, α > 0. The theory of OU Lévy-

driven SDEs and their applications is fully detailed in Barndorff-Nielsen (1997),
Barndorff-Nielsen et al. (2002) and Barndorff-Nielsen and Shephard (2001) using
prior results of Jurek and Vervaat (1983) and Wolfe (1982).

The law of X is clearly determined by that of Zα. Conversely, under some
conditions, for any self-decomposable distribution D there exists a Lévy process
Zα of known Lévy triplet, such that (4.1) admits a stationary solution X (i.e.
a solution with time-independent distribution) with law D (see the aforemen-
tioned references).

In order to study the process Zα determining a TPL stationary solution X
to (4.1), we begin by introducing the tempered Mittag-Leffler (TML) distribu-
tion. A TML distribution is obtained by exponentially tempering with θ > 0
the survival function of Pillai (1990) Mittag-Leffler distribution. We illustrate
such a family in the following result.
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Proposition 4.1. A TML r.v. U with TML(a, c, θ) distribution where (a, c, θ) ∈
(0, 1]×R×R+, is a positive r.v. defined by the cumulative distribution function
(c.d.f.)

FU (x; a, c, θ) =
(
1 − e−θxEa(−cxa)

)
1{x≥0}, (4.3)

with p.d.f.

fU (x; a, c, θ) = e−θx(θEa(−cxa) + c xa−1Ea,a(−c xa))1{x≥0} (4.4)

and Laplace transform

LU (s) = θ(s + θ)a−1 + c

(s + θ)a + c
, Re(s) > 0. (4.5)

Furthermore, U is infinitely-divisible.

Proof. Using the properties of the Mittag-Leffler function, that FU is a positively-
supported c.d.f. is clear. By differentiating in x we have

fU (x; a, c, θ) = e−θx

(
θEa (−cxa) − xa−1

∞∑
k=0

a(k + 1)(−c)k+1 xak

Γ(ak + a + 1)

)

= e−θx

(
θEa(−cxa) + c xa−1

∞∑
k=0

(−c xa)k

Γ(ak + a)

)
(4.6)

which yields (4.4). Using (3.10) with the appropriate parameters on both terms
in (4.4) (see also Haubold et al. (2011), equation (7.1)) we have

LU (s) = θ
(s + θ)a−1

(s + θ)a + c
+ c

(s + θ)a + c
(4.7)

and (4.5) follows. To show that the TML distribution is infinitely-divisible is
necessary and sufficient to show that the logarithmic derivative of −LU is a
completely monotone function (e.g. Gorenflo et al. 2020, Chapter 9). But for
s > 0

− d

ds
log(LU (s)) = (s + θ)a−1

(
θ(1 − a)

c(s + θ) + θ(s + θ)a + a

c + (s + θ)a

)
(4.8)

which is a product of positive linear combinations of completely monotone func-
tions, and hence is itself completely monotone (Schilling et al. 2012, Corollary
1.6).

The TML distribution dictates the activity of the CPP process Zα when X
is a stationary solution to (4.1). The next proposition closely mirrors Proposi-
tion 3.2.

Proposition 4.2. Let X have TPL(γ, λ, δ, θ) distribution with γ ∈ (0, 1], and
λθγ < 1. Then X is the law of the stationary solution to (4.1) with

Zα
t =

Nα
t∑

n=0
Un (4.9)
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where Nα = (Nα
t )t≥0 is a Poisson process of intensity αδγ while (Un)n≥0 is

an i.i.d. sequence of r.v.s independent of Nα all with common distribution
TML(γ,−cγ,λ,θ, θ) and cγ,λ,θ is given by (2.19). Moreover

φα(s) := φZα(s) = αδγ
λs(θ + s)γ−1

1 + λ((θ + s)γ − θγ) . (4.10)

Proof. According to Proposition 2.3 whenever γ ∈ (0, 1], the r.v. X is self-
decomposable. According to e.g. Barndorff-Nielsen (1997) Theorem 2.3, it holds
φα(s) = αsφ′

X(s) so long as this latter expressions is continuous at 0. Such a
calculation produces (4.10) and the continuity is easily checked. Moreover, it is
easy to show that

φα(s) = αδγ

(
1 − θ(θ + s)γ−1 − cγ,λ,θ

(θ + s)γ − cγ,λ,θ

)
(4.11)

and from the second term inside the parentheses we recognize the Laplace trans-
form (4.5) with the required parameters. This characterizes the law of Zα as
that of the CPP in (4.9).

The CPP structure of the Lévy driving noise is typical for a large class of
self-decomposable distributions D. It is known (Steutel and Van Harn 2004, The-
orem V.6.12) that uD(x) must be such that k(x) := xuD(x) is non-increasing.
On the other hand, as observed in e.g. Barndorff-Nielsen and Shephard (2001),
equations (16)–(17), we have∫ ∞

x

uZα(u)du = αxuD(x) = αk(x). (4.12)

Assume now that k(x) is differentiable and finite in zero. From (4.12) it follows

uZα(x) = −αk′(x). (4.13)

and setting x = 0 in (4.12) shows that Zα is a CPP and the p.d.f. of the
increments equals −k′(x)/αk(0+). This argument does provide an alternative
proof of Proposition (4.2): from (2.18) specifying

k(x) = γδe−θxEγ (cγ,λ,θ xγ)1{x>0}, (4.14)

differentiating and substituting in (4.13) recovers the Lévy density of the CPP
in (4.9).

In the case γ = 1 or λθγ = 1 we fall back to two instances of the popular
gamma OU Lévy-driven model discussed in Barndorff-Nielsen and Shephard
(2001), Barndorff-Nielsen et al. (2001) with respectively G(λ, δ) and G(1/θ, δγ)
stationary solution. Accordingly, in such a case the TML increments reduce
to exponential variables of parameter λ (resp. 1/θ). Furthermore, we have the
notable particular case θ = 0 in which the stationary OU solution with PL
distribution has Mittag-Leffler driving noise. The PL stationary OU Lévy-driven
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Fig 1. In blue a trajectory of the OU gamma stationary model and in red a trajectory of
its TPL extension from the same random drawing. The parameters are α = 25, δ = 20,
λ = θ = 0.5, γ = 0.7.

process can be thus seen as the natural modification of a gamma stationary OU
process upon introduction of the γ tail parameter.

The OU representation of a stationary TPL process is very well-suited for
numerical schemes of Euler type, where the innovation Ui can be treated by
inverse-CDF sampling using equation (4.3). We exemplify this in Figure 1 where
we simulate both the stationary gamma OU Lévy-driven model and its TPL
counterpart with same random variate drawings. The former is attained from
the latter by using same parameters but changing γ to 1. In the TPL model
γ and θ govern the tail of the TML jumps: the smaller such parameters the
biggest the incidence of large upward jumps in the OU process, a feature which
is particularly appealing for modeling financial returns volatility.

Another classic application of Lévy driven SDEs is the explicit construction of
a stationary process with (quasi) long-range dependence, which can be attained
using a superposition of the SDEs (4.1) as explained in Barndorff-Nielsen (1997),
Theorem 4.1.

4.2. Self-similar TPL processes with independent increments

As shown by Sato (1991), for all H > 0 to any self-decomposable distribution
D we can associate a self-similar process with Hurst exponent H with indepen-
dent increments (s.s.i.i.) having D as unit time marginal. Unless D is a stable
distribution, such process will not be the same one as the Lévy process with
unit time law D. As it turns out, when D is TPL all the marginals of the TPL
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s.s.i.i. process remain TPL and we thus have an explicit representation for its
law and Lévy measure.

Proposition 4.3. Let H > 0 and X be a TPL(γ, λ, δ, θ) r.v. with γ ∈ (0, 1).
There exists a stochastically-continuous s.s.i.i. process XH = (XH

t )t≥0 of Hurst
index H with independent increments such that XH

1 has the same distribu-
tion as X, and whose triplet of the integrated semimartingale characteristics
is (0, 0, UH(dt, dx)) with UH(dt, dx) having density

uH
X(t, x) = γδ

e−θt−Hx

x
Eγ

(
cγ,λ,θ(t−Hx)γ

)
. (4.15)

In particular XH
t has TPL(γ, δ, λtHγ , θt−H) distribution. Furthermore we have

the subordinated representation

XH = Y H
Z (4.16)

where Y H is the s.s.i.i. process associated to a TPS(γ, λ, θ) law which is such
that Y H

t has TPS(γ, λtHγ , θt−H) distribution, and Z is a G(1, δ) independent
gamma Lévy process.

Proof. The existence of XH for a given unit time self-decomposable marginal X,
and its characterization in terms of the integrated semimartingale characteristic
triplet is provided in Sato (1991). In particular the integrated Lévy measure of
XH is absolutely continuous and its density is given by

uH
X(t, x) = t−HuX(t−Hx). (4.17)

Remembering (2.18) and the density (4.15) follows.
To prove the second statement consider the s.s.i.i. process with indepen-

dent increments Y H
t and combine the substitution in (4.17) with the Lévy den-

sity (2.13) which determines the integrated Lévy density uH
Y (t, x) of Y H

t as

uH
Y (t, x) = γλt−H

Γ(1 − γ)
e−θt−Hx

(xt−H)γ+11{x>0}dx = γλtγH

Γ(1 − γ)
e−θt−Hx

xγ+1 1{x>0}dx (4.18)

showing that Y H
t has TPS(γ, λtHγ , θt−H) law. Now using (4.17) in (2.16) implies

φXH (s) = φX(stH) = φZ(φY (stH)) = φZ(φY H (s)) (4.19)

which terminates the proof.

We observe that as t → ∞ tempering tends to zero and XH
t approaches a

large scale PL variable.
Self-similarity is a property which is often observed in financial returns time

series. Using additive processes in place of Lévy ones in finance has also benefits
for valuation of derivative securities. It is recognized that normalized cumulants
of risk-neutral distributions implicit in option prices do not decrease with time
to expiration of contracts, or at least not as rapidly as the linear rate of decay
predicted by Lévy process, a behaviour which is corrected by removing the
assumption of returns stationarity.
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5. Multivariate TPL processes

Stochastic self-similarity with respect to the negative binomial subordinator of
the gamma process can be exploited for generating multivariate TPL Lévy pro-
cesses in a natural way, which we illustrate in the following. Multivariate g.i.d.
laws are studied in Mittnik and Rachev (1991): recently, multivariate Mittag-
Leffler distributions have been explored in Albrecher et al. (2021) and Khokhlov
et al. (2020).

Let d ∈ N and X = (Xt)t≥0 with Xt = (X1
t , . . . , X

d
t ) be some independent

multivariate TPL Lévy process i.e. X is such that for all i = 1, . . . , d, Xi is
a TPL(γi, λi, 1, θi) Lévy process independent from Xj , j = 1, . . . , d whenever
i �= j. Let Bp be a negative binomial process NB(p, δ, 1, δ) independent of X.
According to Corollary 3.4 the subordinate multivariate Lévy process Xp =
(Xp

t )t≥0 with
Xp

t = (Xp,1
t , . . . , Xp,d

t ) := (X1
Bp

t
, . . . , Xd

Bp
t
) (5.1)

is such that Xp,i = (Xp,i)t≥0 has TPL(γi, λip
−1, δ, θi) unit time law. Therefore

Xp is a multivariate Lévy process with correlated TPL marginals, conditionally
independent given Bp, and the success probability p plays the role of a depen-
dence parameter with the degenerate case p = 1 amounting to the independent
case (Bp being pure drift in such a case). According to the general properties
of TPL laws illustrated in Section 2, depending on whether γi ∈ (0, 1] or γi < 0
the marginal processes can be either infinite activity with nonintegrable Lévy
marginal measure and absolutely-continuous law, or CPPs, whose law has a
point mass in zero.

A useful alternative representation of Xp can also be provided. By virtue of
Remark 3.1 for all i = 1, . . . , d, we can interpret the marginal processes Xi as
Xi = Y i

Zi , for two independent multivariate Lévy processes Y i and Zi, where
Y i is a TPS(γi, 1, θi) process and Zi is a gamma G(λi, 1) process independent
of Y i and therefore

Xt =d
(
Y 1
Z1

t
, . . . , Y d

Zd
t

)
. (5.2)

Choosing further Y j , Y i and Zi, Zj to be independent whenever i �= j, we
can introduce two independent multivariate Lévy processes Y = (Y 1

t , . . . , Y
d
t )

and Z = (Z1
t , . . . , Z

d
t ) with independent marginals and (5.2) has the interpreta-

tion of a multivariate subordination of Y to Z, as detailed in Barndorff-Nielsen
et al. (2001). We shall denote multivariate subordination in the same way as the
standard one, and therefore (5.2) implicates X = YZ . Furthermore, by Propo-
sition 3.3 it holds

Xp
t =d

((
Y 1
Z1

)
Bp

t

, . . . ,
(
Y d
Zd

)
Bp

t

)
=d

(
Y 1
Zp,1

t

, . . . , Y d
Zp,d

t

)
, (5.3)

where Zp,i = Zi
Bp are G(λip

−1, δ) processes, making Zp = (Zp
t )t≥0 given by

Zp
t = (Zp,1

t , . . . , Zp,d
t ) (5.4)
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into a multivariate gamma subordinator with dependent marginals. Therefore,
Xp enjoys the multivariate subordinated representation

Xp = YZp . (5.5)

In order to investigate the Lévy structure of Xp we hence first compute the Lévy
density of Zp, which is of independent interest. Notice that unlike Xp, Zp is a
multivariate process attained by ordinary subordination. We have the following
lemma

Lemma 5.1. The process Zp is a multivariate Lévy subordinator with zero drift
and Lévy measure

ζp(dt1 . . . dtd) = δ

d∏
i=1

e−tip/λi − e−ti/λi

ti
1{ti>0}dt1 . . . dtd + δμZ(dt1 . . . dtd)

(5.6)
where the Lévy measure μZ of Z is given by

μZ(A) =
d∑

i=1

∫
πi(A)

e−ti/λi

ti
1{ti>0}dti (5.7)

for each Borel set A in R
d, with πi the projection onto the i-th coordinate axis.

Proof. By using the p.m.f. (3.20) one can show that the Lévy measure rp of Bp

is (e.g. Kozubowski and Podgórski 2009)

rp = δ

∞∑
k=1

(1 − p)k

k
δk, (5.8)

where δk is the Dirac measure concentrated in k. That the multivariate Lévy
density of Z is given by (5.7) follows from the fact that by independence the
Laplace exponent is additive i.e. φZ(z1, . . . , zd) =

∑d
i=1 φZi(zi), so that we can

use the Lévy-Khintchine representation component-wise. Moreover the multi-
variate independent gamma law μZ

t writes as

μZ
t =

d∏
i=1

fZi(ti;λi, t)dt1 . . . dtd =
d∏

i=1

tt−1
i

Γ(t)λt
i

e−ti/λi1{ti>0}dt1 . . . dtd. (5.9)

We can then apply the multivariate version of the (ordinary) subordination
integral (2.8) (Sato 1999, Theorem 30.1) to the process Z with triplet (0, 0, uZ)
and probability law μZ

t , and the process Bp with triplet (0, δ, rp). We thus have,
applying monotone convergence, interchanging the series with the integral sign,
and performing the integration in du with respect to the Dirac measure

ζp(dt1 . . . dtd)=δ

∞∑
k=1

(1 − p)k

k

∫ ∞

0

(
d∏

i=1

tu−1
i

Γ(u)λu
i

e−ti/λi1{ti>0}dt1 . . . dtd

)
δk(du)
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+ δμZ(dt1 · · · dtd)

= δ

d∏
i=1

e−ti/λi

ti
1{ti>0}

∞∑
k=1

(
ti(1 − p)

λi

)k 1
k!dt1 . . . dtd + δμZ(dt1 . . . dtd)

=δ

d∏
i=1

e−ti/λi

ti
1{ti>0}

(
eti(1−p)/λi − 1

)
dt1 . . . dtd + δμZ(dt1 . . . dtd) (5.10)

which proves (5.6).

Together with the foregoing discussion, Lemma 5.1 allows the identification
of the Lévy structure of Xp.

Theorem 5.2. The process Xp is a multidimensional Lévy subordinator with
multivariate characteristic exponent, for Re(si) > 0, i = 1, . . . , d given by

φXp(s1, . . . , sd) = δ log
(

1 − 1
p

+ 1
p

d∏
i=1

(1 + sgn(γi)λi((θi + si)γi − θγi

i ))
)
.

(5.11)
Furthermore Xp has zero drift, and Lévy density

up
X(x1, . . . , xd) =

δ
∑

A⊆{1,...,d}
(−1)|A|

∏
i∈A

|γi|
e−θixi

xi

(
E|γi|

(
cγi,λi,θix

|γi|
i

)
− 1{sgn(γi)=−1}

)

×
∏
i∈Ac

|γi|
e−θixi

xi

(
E|γi|

(
cγi,pλi,θix

|γi|
i

)
− 1{sgn(γi)=−1}

)

+ δ
d∑

i=1
|γi|

e−θixi

xi

(
E|γi|

(
cγi,λi,θix

|γi|
i

)
− 1{sgn(γi)=−1}

)
(5.12)

whenever xi > 0 for all i, and zero otherwise, with (γi, λi, δi, θi) ∈ S for all
i = 1, . . . , d, and where the constants cγi,λi,θi and cγi,pλi,θi are given by (2.19).

Proof. By definition of Xp and independence

φXp(s1, . . . , sd) = φBp(φX(s1, . . . , sd)) = φBp(φX1(s1) . . . φXd
(sd)) (5.13)

(5.11) is then clear from (2.2) and (3.18).
We indicate with μY

t1,...,td
the probability law of the random vector (Y 1

t1 , . . . Y
d
td

)
and by ζp the Lévy measure of Zp given in Lemma 5.1. By virtue of (5.5) we
can apply Barndorff-Nielsen et al. (2001) Theorem 3.3, and we see that Xp has
Lévy triplet (0, 0, ηp) with

ηp(B) =
∫
Rd

+

μY
t1,...,td

(B)ζp(dt1 . . . dtd) (5.14)
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for all Borel sets B ⊆ R
d
+ not containing zero. Now by independence we have

the product measure

μY
t1,...,td

=
d∏

i=1
μY i

ti (5.15)

where μY i

t indicates the law of Y i
t . Substituting (5.6) and (5.15) in (5.14) and

using Proposition 2.1 term by term in (5.7), we obtain the density for xi > 0,

up
X(x1, . . . , xd) = δ

∫
Rd

+

d∏
i=1

fY i(xi; γi, θi, ti)
e−tip/λi − e−ti/λi

ti
dt1 . . . dtd

+ δ

d∑
i=1

|γi|
e−θixi

xi

(
E|γi|

(
cγi,λi,θix

|γi|
i

)
1{sgn(γi)=−1}

)
(5.16)

where fY i(xi; γi, θi, ti) is given by (2.15) if γi ∈ (0, 1), or the absolutely con-
tinuous part of (2.22) if γi < 0 (the point mass at zero is irrelevant, it being
excluded from the Bochner integral). Now observe the additive expansion

d∏
i=1

e−tip/λi − e−ti/λi

ti
=

∑
A⊆{1,...,d}

(−1)|A| exp
(
−
∑
i∈A

ti
λi

− p
∑
i∈Ac

ti
λi

)
d∏

i=1
t−1
i

(5.17)
where |A| denotes the cardinality of the subset A. In view of (5.17) we can
rewrite the first term in (5.16) as

∫
Rd

+

d∏
i=1

fY i(xi; γi, θi, ti)
e−tip/λi − e−ti/λi

ti
dt1 . . . dtd

=
∑

A⊆{1,...,d}
(−1)|A|

(∏
i∈A

∫
R+

fY i(xi; γi, θi, ti)
e−ti/λi

ti
dti

∏
i∈Ac

∫
R+

fY i(xi; γi, θi, ti)
e−pti/λi

ti
dti

)

(5.18)

with the product term corresponding to the empty set being 1. Replicating the
integrations in Proposition 2.1 we finally arrive at (5.12).

The Lévy measure of Xp thus decomposes in an independent multivariate
TPL measure plus a combinatorial expression of one-dimensional TPL Lévy
measures depending on p accounting for the dependence across the marginals,
which increasingly gains weight as p decreases from one to zero. In the case
γi = 1 for all i we notice from (5.11) that Xp

t follows the multivariate gamma
law discussed in Gaver (1970) and generalizing Kibble (1941), which is widely
popular for applications.
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6. Statistical anti-fraud applications

One major motivation for our interest in the univariate TPS and TPL laws is
their ability to model international trade data, with particular reference to im-
ports into (and exports from) the Member States of the European Union (EU).
Due to the combination of economic activities and normative constraints, the
empirical distribution of traded quantities and traded values in imports and
exports is often markedly skewed with heavy tails, featuring a large number of
rounding errors in small-scale transactions due to data registration problems,
and structural zeros arising because of confidentiality issues related to national
regulations within the EU. While such features are not easy to be combined into
a single statistical model, Barabesi et al. (2016b) and Barabesi et al. (2016a)
show that in the univariate case both the TPS and TPL distributions do pro-
vide reliable models for the monthly aggregates of import quantities of several
products of interest.

The potential number of fraud-sensitive products of interest for law-enforce-
ment agents is typically very large. It spans over numerous chapters of the
Combined Nomenclature (CN) of Eurostat (2021), which classifies the traded
products by their material, function and degree of processing with more than
10,000 sub-headings. Many different categories of goods were seized in the last
years by customs operations; see, e.g., the official EU press releases available
at the database http://europa.eu/rapid of the European Commission. The
surveyed products may be classified according to the main fraud area to which
they were associated by the press releases. Two important examples of these cat-
egories are counterfeiting (including products such as alcohol, textiles, footwear,
electrical and electronic apparatus, etc.) and mis-declaration of product or ori-
gin. Barabesi et al. (2016a) demonstrate that several major products of interest
within the cited areas exhibit empirical distributions with very different shapes,
in terms of skewness, tail heaviness and rounding. For instance, in the case of
a traded product within the CN chapter of Beverages, Spirits and Vinegar for
which both skewness and kurtosis are impressively high due to the presence of
a small number of transactions involving more than 5,000 liters, they show that
the TPL law with γ ∈ (0, 1] can provide a very sensible fit with a substantial
improvement over the simpler Tweedie distribution, especially in terms of ac-
curacy in the right-hand tail of the distribution. By assuming a TPL law with
γ ∈ (−∞, 0], a similar good fit is instead obtained to the traded quantities of
a product belonging to the CN chapter of Fish and Crustaceans, Molluscs and
other Aquatic Invertebrates, for which both a non-negligible mass of null values
and a rather heavy tail are present.

These examples emphasize the importance of developing statistical models
that are both flexible enough to capture such different shapes in the same data
set and sound enough to allow for almost automatic implementation without
substantial tuning intervention, given the large number of goods of potential in-
terest. The univariate TPS and TPL models are very natural candidates for this
task, as they share both desired features. Instead, Barabesi et al. (2016b) show
that a naive mixture approach enlarging classical models for skewed distribu-
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tions with a spike at the origin, in order to allow for the existence of null values,
does not yield the same satisfactory properties. In fact the fit of these mixtures
often exhibits numerical instability and less-than-optimal results, even if the
models take advantage of the a priori information that rounding occurs exactly
at zero. The results obtained in Section 5 further extend the flexible approach
provided by the TPL law (and by the TPS one in less extreme situations) to
multivariate stochastic modeling. A simple, but prominent, example is shown in
Figure 2 below, where a bivariate TPL process is adopted to develop a model
which has a very good qualitative fit to both traded quantities and traded values
for a relevant fraud-sensitive product. Another active research path with poten-
tial impact on anti-fraud analysis is the adoption of (bivariate) TPL laws as
the components of a mixture distribution that could model heterogeneous trade
data. Underlying unknown heterogeneity may hamper the validity of standard
diagnostic tools by boosting the proportion of false alarms and a model-based
clustering approach can help to alleviate it (Cerioli and Perrotta 2014, Torti
et al. 2019). A further improvement will then be obtained by replacing ellip-
tical distributional assumptions in such mixtures with the much more realistic
data-generating process provided by the TPL law.

The main operational target of the research line on international trade data
sketched above is the construction of sound statistical methods for the detec-
tion of customs frauds, such as the under-valuation of import duties, and the
investigation of other trade-related infringements, such as money laundering
and circumvention of regulatory measures. In this framework flexible statistical
models that can accurately describe the distribution of traded quantities and
values for a very large number of products is of paramount importance for sev-
eral reasons. Firstly, such models could provide direct support to policy makers,
e.g. in the form of tools for monitoring the effect of policy measures and for
providing factual background for the official communications on trade policy.
Another goal, which is perhaps even more prominent from a statistical stand-
point, is their use in model-based assessments of the performance of methods
used for finding relevant signals of potential fraud.

Most of the fraud detection tools adopted in the context of international trade
look for anomalies in the data. Therefore, they typically make use of outlier de-
tection methods for multivariate and regression data, such as those described
in Cerioli (2010) and Perrotta et al. (2020a), as well as of robust clustering
techniques, see e.g. Cerioli and Perrotta (2014). All of these techniques assume
that the available data have been generated by an appropriate contamination
model, which in the context of international trade typically involves at least
two variables, in view of the basic economic relationship that yields the value of
an individual import (export) transaction as the product of the traded amount
and the unit price. Any parameter of the distribution that models the “genuine”
part of the data must then be estimated in a robust way, in order to avoid the
well-known masking and swamping effects due to the anomalies themselves. Re-
lying on the theory of robust high-breakdown estimation, that typically assumes
elliptical symmetry of the uncontaminated data-generation process, it is very
difficult to derive analytical results for such methods when skewed distributions
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should be used for realistic modeling of economic processes. The available meth-
ods need thus to be compared, evaluated and eventually tuned on a large number
of data sets artificially generated with known statistical properties, which must
reflect the distributions observed in real-world trade data. Cerioli and Perrotta
(2014) show a first attempt in this direction under a rather specialized ad-hoc
model. The class of multivariate TPL processes described in Section 5 provides
instead a very natural and general reference model, extending the framework
suggested by Barabesi et al. (2016a) to the simultaneous description of (at least)
traded quantities and traded values. Reliable inferential results for anti-fraud
diagnostics computed on trade data could then be obtained by simulation from
this class of processes following a model-based Monte Carlo scheme, in the spirit
e.g. of Besag and Diggle (1977).

A similar requirement holds for an alternative approach to fraud detection
which has recently attracted considerable attention also in international trade
and which rests on the development of powerful and accurate conformance tests
of Benford’s law Barabesi et al. (2018b), Cerioli et al. (2019), Barabesi et al.
(2021). This approach aims at unveiling serial fraudsters and has proven to
be especially effective for the analysis of individual customs declarations, in-
stead of monthly aggregates of them. A variety of statistical procedures are
compared by Cerioli et al. (2019) and in Section 7.2 of Barabesi et al. (2021)
through a bootstrap algorithm that generates pseudo-observations mimicking
a national database of one calendar-year customs declarations, after appropri-
ate anonymization that makes it impossible to infer the features of individual
operators. The class of multivariate TPL processes can again provide a suit-
able reference framework for such comparisons when a model-based approach
replicating international trade conditions is deemed desirable.

Figure 2 displays one sample of 5,000 observations from a bivariate TPL
process simulated using representation (5.3). The parameters of the marginal
processes are γ1 = γ2 = −2.2, λ1 = λ2 = 10, θ1 = θ2 = 0.5, while δ = 1 and
p = 0.01 is the success probability relating Xp,1 and Xp,2. The visual similarity
between the simulated scatter and the scatter shown in Section 4, p. 10, of Per-
rotta et al. (2020b) for a homogeneous sample from a fraud-sensitive commodity
is striking and confirms the potential of multivariate TPL processes for describ-
ing the joint distribution of relevant variables arising in international trade.
Therefore, we argue that suitably tuned versions of Xp could lead to reliable
simulation inference for outlier labeling rules and other anti-fraud diagnostics
in trade data structures, when the distributional assumption of symmetry for
individual uncontaminated observations, typically implied by such methods, is
not met. This is an important research goal for anti-fraud applications and in-
ternational trade analysis, also foreseen in Section 7.2 of Barabesi et al. (2021).

7. Conclusion

In this paper we have detailed the nature of a number of stochastic processes
with TPL marginals. The TPL distribution appears naturally in the context



6342 L. Torricelli et al.

Fig 2. Simulated sample from a multivariate TPL process with d = 2, δ = 1, p = 0.01 and
marginal parameters given in the text.

of subordinated Lévy modelling and it can be associated to both finite and
infinite activity Lévy processes. For some parameters sets, the TPL distribu-
tion naturally determines finite activity Lévy processes whose jumps follow new
probability laws of generalized Mittag-Leffler type. It also enjoys a number of
desirable properties such as geometric infinite divisibility and stochastic self-
similarity with respect to the negative binomial law. In particular, the latter
can be fruitfully exploited to construct a multivariate TPL process in which
the success probability plays the role of a correlation parameter. It is envisaged
that this mixing procedure can be also applied outside a strict TPL context.
Furthermore, we have provided initial evidence that the multivariate process we
introduced could lead to improvements in the statistical analysis of real data
in settings in which the TPL and TPS distributions find application, such as
international trade and fraud detection.
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