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Neurogeometry of perception:

isotropic and anisotropic aspects

G. Citti, A. Sarti ∗

1 Introduction

The first attempts to formalize rules of perception go back to the Gestalt psychologists, as for exam-
ple Wertheimer [83], Kohler [50], Koffka [49]. They formulated some geometric laws accounting for
perceptual phenomena, taking into account different features like position but also brightness, orien-
tation and scale. More precisely these laws depend on normalized differences of position, brightness,
orientation or scale between the target image and the background. As an example we recall that
two circles, with equal luminance, (so that they reflect physically the same amount of light) are
perceived of different grey level, if put on different backgrounds: the one with darker background
is perceived as brighter than the one with bright background (see figure 1). This phenomenon,
also called simultaneous contrast, was known by Goethe, and then it has been deeply studied. A
first explanation is that the brightness is related to detection of edges of the region, followed by
a filling-in mechanism ( [39], [68], [75]). In particular the retinex model was inspired by similar
principles [12,44,48,58,60]. These aspects have to be considered as relatively local properties of per-
ception. A number of computational models have been published, taking into account other aspects
of perception as for example distal aspects, or illumination (see for example [5], [11], and [79]).

Figure 1: Left: Two circles with the same intensity of grey. Middle: the same circles are represented
with a non constant background. As a result the circle on the right appears to be brighter than the
other one which has a darker background. Right: The Kanizsa square.

Here we will consider an other aspect of perception: its globality, since emergence of perceptual
units depends on the visual stimulus as a whole. Indeed visual scenes are perceived as constituted
by a finite number of figures. The most salient configuration pops up from the ground and becomes
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a figure (see Merleau-Ponty [59]). Often this happens even in absence of gradients or boundaries
in the visual stimulus (see for example the classical example of the Kanizsa triangle [46]). A long
history of phenomenology of perception, starting from Brentano, to Husserl until Merleau-Ponty has
considered the emergence of foreground and background at the centre of perceptual experience and
resulting as an articulation of a global perceptual field.

A number of researchers studied principles of psychology of form in this perspective not only
qualitatively but also quantitatively. We recall the first results of Grossberg and Mingolla in [38],
the notion of vision field proposed by Parent and Zucker in [63] and the theory of object perception
due to Kellman and Shipley in [47] [77,78]. In the same years Field, Hayes and Hess [34] introduced
the notion of association fields, via the following experiment. figure 2(a) it composed by random
Gabor patches and a perceptual units obtained via aligned patches, which is also visualized in figure
2(b). Through a series of similar experiments, Field, Hayes and Hess constructed an association
field, which describes the complete set of possible subjective boundaries starting from a fixed point.
See figure 2(c).

Figure 2: Left: The image proposed in the experiment of Field, Heyes and Hess [34]. Middle: The
perceptual unit present in the image on the left. Right: The association field.

We take the point of view that the geometry of visual perception is induced by the functional
geometry of the visual cortex. The first results in this direction have been achieved by Hubel and
Wiesel [43] who provided experimental evidence of the presence in the primary cortex of families
of cells sensitive to different orientations organized in the so called hypercolumnar module. After
that, results of Bosking et al. in [13] and Fregnac Shulz in [36] provided experimental evidence for
the organisation of many other features already studied in psychology of perception, like brightness,
curvature and scale. In addition, the structure of horizontal connectivity between cells studied by
Bosking is a good candidate as a neural correlate for perceptual association fields. This allows
to introduce a relation between geometry of the cortex and geometry of vision. Mathematical
models in this direction have been proposed by Hoffman in [41], Mumford in [61], Williams and
Jacobs in [85] and August Zucker in [6]. They modelled the analogous of the association fields
with Fokker-Planck equations. Petitot and Tondut (in [65]) introduced a model of the functional
architecture of V1, and described the propagation by a constrained Lagrangian operator, giving
a possible explanation of Kanizsa subjective boundaries in terms of geodesics. With these results
it became clear the central role of geometry in the description of the organization of the cortex
and of its correlate on the visual plane. Citti and Sarti in [21] proposed a model of the functional
architecture of V1 as a Lie group of symmetry, with a sub-Riemannian geometry, showing the strict
relation between geometric integral curves, association fields, and metric cortical properties. A
large literature has been provided on models in the same subriemannian space both for boundary
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completion [7,14,28–30,67] and for other perceptual phenomena [35,72,74]. This approach has been
called neurogeometry (or neuromathematics). For a more complete bibliography and application
fields of neuromathematics the reader can refer for example to [22].

These models assume by simplicity that the perception is orientation invariant, allowing a repre-
sentation in the Lie group of rotation and translation. However it is a classical finding that human
subjects perform best on a spatial acuity test when the visual targets are oriented horizontally or
vertically. This phenomenon first described by Mach in [55], has been called the oblique effect by
Appelle [4]. It applies to different phenomena such as orientation selectivity (Andrews [2]; Camp-
bell and Kulikowski [20]; Orban et al. [62]), orientation discrimination (Bouma and Andriessen [15];
Caelli et al. [19], Regan and Price [66]; Westheimer and Beard [84]), grouping (Beck [8–10]), and
geometric illusions (Green and Hoyle [37] Leibowitz and Toffey [53], Wallace [81]). In particular in
Bross et al. [18] the oblique effect is studied on a Kanizsa figure. A Kanizsa square and a Kanizsa
diamond are considered. If no edge misalignment is present both the square and the diamond are
correctly reconstructed. However with a 6-degree misalignment the square is not perceived, while
the diamond is perceived. For higher misalignment neither the square not the diamond are perceived
(see figure 3).

Figure 3: Kanizsa squares and diamonds with progressively more misaligned edges. From left to
right the misalignment is 0, 6 and 12 degrees.

Neural correlates of this phenomenon have been provided by Hubel and Wiesel [42], who proved
that the distribution of oriented cells who respond to lines is not uniform. Nowadays most studies
agree that the oblique effect happens in the visual cortex [57] [56] but the mechanism is not totally
clear. However it seems that there are at least two aspects to be considered: the functionality of the
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visual system (see [54] and [1]), and learning from the environment (e.g. with statistics of natural
scenes - see [32] and [40]).

In this paper we first recall the definition of neurogeometical model for a general set of features,
focusing in particular on the geometrical properties of horizontal cortical connectivity and showing
how they can be considered as a neural correlate of a geometry of the visual plane. In this first
geometrical model the geometry of the cortex is expressed as a sub-Riemannian geometry in the Lie
group of symmetries of the set of features.

Here, using data taken from [69] we recognize that histograms of edges - co-occurrences are not
isotropic distributed, and are strongly biased in horizontal and vertical directions of the stimulus.
Finally we introduce a new model of non isotropic cortical connectivity modeled on the histogram of
edges - co-occurrences. Using this kernel in the geometrical cortical model previously described, we
are able to justify oblique phenomena comparable with the experimental findings of [15] and [18].

2 A General Approach to the Geometry of Perception

Citti and Sarti developed in a few papers [21, 23, 70, 73], a theory of invariant perception in Lie
groups, taking into account different features: brightness orientation, scale, curvature, movement.
Each of these features have been characterized by a different Lie group, but the different techniques
can be presented from an unitary point of view, which we recall here.

2.1 Families of cells and their functionality

The primary visual cortex is the first part of the brain processing the visual signal coming from the
retina. The receptive field (RF) of a cortical neuron is the portion of the retina which the neuron
reacts to, and the receptive profile (RP) ψ(ξ) is the function that models the activation of a cortical
neuron when a stimulus is applied to a point ξ = (ξ1, ξ2) of the retinal plane.

Due to the retinotopic structure, there is an log-polar map between retina and cortical space in
V1, which we will discard in first approximation. In addition the hypercolumnar structure organizes
the cortical cells of V1 in columns corresponding to different features. As a results we will identify
cells in the cortex by means of three parameters (x1, x2, f), where (x1, x2) is the position of the
point, and f a vector of extracted features. We will denote F the set of features, and consequently
the cortical space will be identified with R2 × F . In the presence of a visual stimulus the whole
hypercolumn fires, giving rise to an output

OF (x1, x2, f) =

∫
I(ξ1, ξ2)ψ(x1,x2,f)(ξ1, ξ2)dξ1dξ2. (1)

Note that the output is a high dimensional function, defined on the cortical space. We denoted it
OF to underline the dependence on the family of filters F . It is clear that the same image, filtered
with a different family of cells, produces a different output.

2.2 Cortical Connectivity and the Geometry of the Cortical Space

The output of a family of cells is propagated in the cortical space R2×F via the lateral connectivity.
We will represent connectivity as a geometric kernel KF , acting in the cortical space R2 × F on
OF which is now considered a feedforward input to the overall activity. The shape of this kernel
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will be different in different families of cells and will be compatible with their invariance properties.
We will see that there is a strict relation between the structure of set R2 × F of receptive profiles,
their functionality and the direction of propagation of cortical activity codified in the kernels KF .
This allows to introduce a geometry of the considered family of cells, where the distance is not the
usual Euclidean one, but it is induced by the strength of connectivity: the distance between couple
of points will be considered a decreasing function of the value of the connectivity strength.

Different equations associated to these kernels have been used to describe the propagation of
neural activity in the cortical space R2 × F . In particular, following an approach first proposed
by Ermentraut-Cowan in [31] and Bressloff and Cowan in [17], we consider a mean field equation
representing the cortical activity a(x1, x2, f). In the stationary case the equation becomes

a(x1, x2, f) = σ

(∫
KF ((x1, x2, f, x̄1, x̄2, f̄)

(a(x̄1, x̄2, f̄) +OF (x̄1, x̄2, f̄)

2

)
dx̄1dx̄2df̄

)
, (2)

where σ is a sigmoidal functional. Our intent in the following is to show that the RP functions ψ as
well as the connectivity kernels KF can be derived from theoretical geometrical considerations.

2.3 Spectral analysis and perceptual units

Bressloff, Cowan, Golubitsky and Thomas in [16], showed that in absence of a visual input OF but
in presence of drugs excitation, the eigenvectors of this functional on the whole cortical space can
describe visual hallucination phenomena.

In presence of a visual input, the propagation of the signal through horizontal connectivity and
its eigenvectors have been studied by Sarti and Citti in [73]. Since eigenvectors are the emergent
states of the cortical activity, they individuate the coherent perceptual units in the scene and allow
to segment it. Every eigenvector corresponds to a different perceptual unit. Let ΩF be the set where
the feedforward input is bigger than a fixed threshold h:

ΩF = {(x1, x2, f) : |OF (x1, x2, f)| ≥ h}.

Calling KF ∗ v the restriction to ΩF of the linearization of the operator defined in (2) we get up to
a change of variable the operator:

(KF ∗ vi)(x1, x2, f) =

∫
KF ((x1, x2, f), (x̄1, x̄2, f̄))vi(x̄1, x̄2, f̄)dx̄1dx̄2df̄

The associated eigenvectors satisfy the equation:

KF ∗ vi = λivi (3)

and correspond to visual units (see [73] for details). This result shows that perceptual units cor-
respond to visual hallucination modulated by the stimulus. Eigenvectors of these operators are
functions defined on ΩF with real values. We will assign the meaning of a saliency index of the
objects to the associated eigenvalues. The first eigenvalue will correspond to the most salient object
in the image. In addition, the associated eigenvalue allows comparison between different scenes and
images. This approach also extends on neural basis the model proposed for image processing by
Perona Freeman, [64], Shi Malik, [76], Weiss [82], Coifman Lafon [25].
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2.4 Projected geometry on the visual plane

The geometry of visual perception is simply the projection of the active cortical geometry on the
visual plane. Even though it is not clear where this phenomenon is codified we will project on the
retinal plane the geometry previously introduced in order to describe geometry of vision.

For every cortical point, the cortical activity, suitably normalized can be considered a probability
density. Hence its maximum over the fibre F can be considered the most probable value of f , and
can be considered the feature identified by the system:

|OF (x1, x2, fI(x1, x2))| = max
f
|OF (x1, x2, f)|. (4)

Note that the function fI detect at every point the most salient value of the feature, and clearly
depends on the properties of the visual stimulus I. This feature selection mechanism induces a
geometry on the perceptual plane. The projection of the kernel KF on the perceptual plane will be
a kernel KΠ defined as

KΠ((ξ1, ξ2), (x1, x2)) = KF ((ξ1, ξ2, fI(ξ1, ξ2)), (x1, x2, fI(x1, x2))). (5)

Note that the kernel KΠ is now depending on the function I. Hence it carries the metric induced
on the retinal plane by the image I.

If we propagate the function I with this kernel, we obtain an activity function on the retinal
plane

u(ξ1, ξ2) = σ

(∫
KΠ((ξ1, ξ2), (x1, x2))OF (x1, x2, fI(x1, x2))dx1dx2

)
. (6)

In the following we will discard the sigmoid σ when the solution remains bounded from above
and below.

2.5 The modular structure of the cortex

We can assume that different families of cells depending on different features act in sequence on the
same visual stimulus. A family of cells will process the stimulus in a space R2×F1. Then its output
will become the input for the second family of cells, (depending for example on orientation) which
will process the stimulus in a new space of features R2 × F2. In this way interaction between the
two families of cells can be described with our model, even if they are selective for different features.

3 Isotropic models inherited by the geometry of the visual
cortex

3.1 Brightness perception

We refer to the introduction and to [79] and the references therein for a review on the state of
the art. In our model the visual signal is convolved with the RF of the retinal cells, which are
modeled as a Laplacian of a Gaussian. After that we apply a distal mechanism induced by the non
classical components of RF. Indeed in Lateral Geniculate Nucleus (LGN) e in V1 there is a strong
near surround suppression mechanism due to the lateral connection and a far surround suppression
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Figure 4: Left: Measured LGN cell RP from De Angelis [27].Right: A model with a Laplacian of a
Gaussian.

mechanism due to feedback connectivity from higher cortices [3]. We postulate that the far surround
suppression mechanism is able to generates brightness contextual effects and that it is at the origin
of filling in. Indeed the simplest surround function with positive values at the origin and negative
at infinity is a negative logaritmic fuction, which coincides with the fundamental solution of the
Laplace operator. As a result the output of the mexical hat RPs is convolved with a logaritmic
functioin, and provides the reconstruction of the signal up to an harmonic function, which takes into
account a global light contrast effect.

3.1.1 The set of receptive profiles

Retinal ganglion cells and LGN cells, have a radially symmetric shape (see [27]), and are ubbsually
modeled by Laplacians of Gaussians:

ψ0,LGN (ξ1, ξ2) = ∆G(ξ1, ξ2)

where G(ξ1, ξ2) = e−(ξ21+ξ22) is the Gaussian bell. We will consider by simplicity filters at a fixed
scale (see figure 4). As a result there is a single receptive field over each retinal point (ξ1, ξ2). In
other words all filters of this family of cells can be obtained from a fixed one by translation:

ψx1,x2,LGN (ξ1, ξ2) = ψ0,LGN (x1 − ξ1, x2 − ξ2).

Formally the set of filters will be identified with a copy of the group R2, with the standard sum.
In presence of a visual stimulus I, the retinotopic map performs a logarithmic deformation, which

will be discarded here for simplicity. Then the output defined in (1) reduces to

OLGN (x1, x2) =

∫
I(ξ1, ξ2)ψx1,x2,LGN (ξ1, ξ2)dξ1dξ2 =∫

I(ξ1, ξ2)ψ0,LGN (x1 − ξ1, x2 − ξ2)dξ1dξ2 = (∆G ∗ I)(x1, x2) ≈ ∆I(x1, x2).

3.1.2 Connectivity patterns and the Euclidean geometry of the space

The output of LGN cells is propagated via the lateral connectivity. Experimentally it has been
showed that connectivity is isotropic. As a result both the filters and the connectivity has the same
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radial symmetry. This is typical of isotropic kernels of the Euclidean geometry, and it is compatible
with the fact that the set of cells is simply defined on the R2 plane. Hence we can choose as model
of connectivity the fundamental solution of the Laplace operator in the isotropic Euclidean metric:

KLGN (x1, x2) = log(x2
1 + x2

2).

According to (6) total activity contribution will be modelled as

u(ξ1, ξ2) =

∫
KLGN (ξ1 − x1, ξ2 − x2)OLGN (x1, x2)dx1dx2

Note that we are identifying the set of filters with R2, the geometry is the Euclidean one and the
propagation is performed with the standard Laplacian on it. This does not means that the perceived
image coincide in general with the visual input. Indeed OLGN (x1, x2) = ∆I, which implies that
u− I is an harmonic function. If we impose Neumann boundary conditions, the same harmonicity
condition can be expressed as minimum of the functional

L1(u) =

∫
|∇(I − u)|2dx1dx2. (7)

Finally we propose to obtain the brightness of the perceived targets as a mean between the initial
image and the activity u:

b = (I + u)/2. (8)

Also note that the perception of the background is unchanged.
We apply this algorithm to the image in figure 1 left and the results are shown in figure 5. On the

left it is represented the output OLGN , which is a convolution with a Laplacian of a Gaussian. Then
we compute the activity: due to the Neumann boundary condition the background has a constant
color, and the circle on the right has gray level brighter than the one on the left. Finally, applying
equation (8), we obtain the perceived gray level of the two target circles as a mean of the stimulus
and the activity (figure 5 right).

Figure 5: We apply our model to the image of figure 1. Left: the output OLGN computed as
convolution with Laplacian of a Gaussian. Middle: after applying our algorithm to figure 1, we
depict here the processed circles. Right: the reconstruction operated by our algorithm: the circle
on the right appears brighter than the other, since it surrounded by a darker background.
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Figure 6: Left and Middle: two Gabor filters with different orientation. Right: the connectivity
pattern, measured by Bosking [13]

3.2 Geometry of Orientation space

3.2.1 The family of simple cells as the Lie group of rotation and translation

Receptive profiles of simple cells sensitive to orientation have been modeled as Gabor filters by
Daugman [26], Jones and Palmer [45]. A suitable choice of the mother function is

ψ0,V 1(ξ1, ξ2) = e−iξ2−(ξ21+ξ22).

The previously mentioned authors also showed that every simple cell is obtained from the mother
one via rotation, translation. If we denote Tx1,x2 a translation of a vector (x1, x2) and Rθ a rotation
of an angle θ, their expression becomes:

ψx1,x2,θ,V 1(ξ1, ξ2) = ψ0,V 1(Tx1,x2Rθ)(ξ1, ξ2)) =

= e
−i
(

(ξ1−x1) sin(θ)−(ξ2−x2) cos(θ)

)
−((ξ1−x1)2+(ξ2−x2)2)

. (9)

In this way any simple cell receptive profile is identified by an element of the Lie group of rotation
and translation R2 × S1 (see fig. 6 left and middle).

The output of this family of cells receptive profiles can be expressed by linear filtering of the
stimulus I according to equation (1):

OV 1(x1, x2, θ) =

∫
I(ξ1, ξ2)ψx1,x2,θ,V 1(ξ1, ξ2)dξ1dξ2

3.2.2 The subriemannian neurogeometry

It is not surprising that there is a strong relation between the set of cell RPs and their connectivity.
Connectivity kernels have been measured by Bosking, who proved that they have an elongated shape
( [13], see also figure 6 right), and that the strength of connectivity is maxima between cells with
the same orientation. Due to this strong relation, we will define the metric on the space R2 × S1,
starting from properties of the filters. We introduce 1- form modeled on the expression of the filters
(9):

ω = sin(θ)dx1 − cos(θ)dx2
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and choose left invariant vector fields, which lie in its kernel:

X1 = cos(θ)∂x + sin(θ)∂y, X2 = ∂θ.

The plane generated by these vector fields will be called Horizontal tangent bundle HT . Note that we
have introduced only two vector fields in a 3D space, but the orthogonal direction can be recovered
as a commutator:

X3 = [X1, X2] = − sin(θ)∂x + cos(θ)∂y.

This condition, called the Hörmander condition, allows to define a subriemannian structure, if we
also choose a metric on HT . The metric is not unique and the simplest choice is the metric which
makes the vector fields orthonormal. In other words for every vector

v = a1X1 + a2X2 we will define norm of v the quantity ||v|| =
√
a2

1 + a2
2.

We will see in the next section that this choice can justify many perceptual phenomena, but other
choices could be considered.

3.2.3 Grouping and emergence of shapes

Differential operators can be defined in terms of the vector fields X1 and X2, which play the same
role of a derivative in the Euclidean setting. In particular when studying grouping we can consider
the Fokker-Planck operator

FPu = X1u+X2
2u.

Due to the Hörmander condition, it is known that this operator has a fundamental solution ΓV 1,
which is strictly positive. However it is not symmetric in general, and in order to model horizontal
connectivity we need to symmetrize it

KV 1(x1, x2, θ, ξ1, ξ2, η) = ΓV 1(x1, x2, θ, ξ1, ξ2, η) + ΓV 1(ξ1, ξ2, η, x1, x2, θ).

An isosurface of this kernel is depicted in figure 7.
To segment a stimulus into perceptual units we use then this kernel with the spectral technique

introduced in (3). We can apply the eigenvalue equation to the operator associated to KV 1:

KV 1 ∗ u = λu

A few results have been depicted in figure 8. The first image on the left is the Kanizsa square. Due
to the strong orientation properties of the kernel, collinear elements tend to be grouped. Hence
the L-junctions pops up as the first eigenvector (highlighted in red). This can be considered the
key element at the basis of perception of the square (the second eigenvector, that is not visualized,
corresponds to the 4 arcs of circle). Note that the technique is invariant with respect to rotation,
and the a L-junctions in Kanizsa diamond are detected with the same accuracy (second image in
figure 8). In the last image we show that not only inducers of classical geometrical object such as
squares or diamonds are correctly detected, but also inducers of completely arbitrary shapes can
emerge (third image in figure 8). Indeed the geometric process of grouping is based on the internal
and global coherence of the elements in the image, not on a pre-existing list of possible shapes. As
such it introduces a geometric intrinsic notion of shape based on the property of the cortex.
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Figure 7: A level set of the kernel KV 1.

Figure 8: The result of the grouping process applied from left to right to the Kanizsa square (as
in [33]) , to the Kanizsa diamond and to an other image.
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Figure 9: The 2D projection KΠ of the kernel. KV 1.

3.2.4 Completion in the orientation geometry

In order to project on the image plane, we first apply the equation (4) restricted to this setting:

|OI(x1, x2, θI(x1, x2))| = max
θ
|OI(x1, x2, θ)|.

The cells are selective to the orientation since it can be proved that θI(x1, x2) is the direction of
the level line of I at the point (x1, x2). As a consequence the gradient of I can be approximated as
follows

A = ∇I ≈ |OI(x1, x2, θI(x1, x2))|(− sin(θI(x1, x2)), cos(θI(x1, x2))).

Dividing by the norm of A we obtain

A1√
A2

1 +A2
2

= − sin(θI)
A2√

A2
1 +A2

2

= cos(θI)

and the 2D projection of the vector field X1 is expressed in terms of A as

X1,A =
A2√

A2
1 +A2

2

∂x −
A1√

A2
1 +A2

2

∂y.

The 2D projection of the Kernel defined in (5), becomes in this case

KΠ((ξ1, ξ2), (x1, x2)) = KV 1((ξ1, ξ2, θI(ξ1, ξ2), (x1, x2, θI(x1, x2)).

This kernel, depicted in figure 9, can be considered a good model of the association fields intro-
duced by Field Hayes, Hess, in [34].

Since the KV 1 expresses propagation in the direction X1 and X2, convolution with its projection
KΠ expresses propagation in the direction of the vector field X1,A. Propagation along the kernel
can be expressed as minimizer of the functional

L2(A) =

∫
|X1,AA|2. (11)

3.3 Combined contrast - orientation geometry

In this section we will study the join action of LGN cells and cells in V1, taking into account
feedforward, horizontal, and feedback connectivity. We propose a complete Lagrangian, sum of

12



three terms. The first two have already been introduced: the functional L1 defined in (7) expresses
the contrast variable considered as the analogous of a particle term in a gauge field functional and
the functional L2 defined in (11) which describes a strongly anisotropic process and it is performed
with respect to a subriemannian metric. Finally we will introduce an interaction term coupling the
two terms as in the usual Lagrangian field theories.

The last term describes the interaction between the particle u(x, y) and the field A(x, y).

L3 =

∫
|∇u(x, y)−A(x, y)|2dxdy.

The resulting functional is then

L =

∫
|∇u−∇I|2dxdy +

∫
|∇u−A|2dxdy +

∫
|X1AA|2dxdy. (12)

The Euler Lagrange equations of the functional (12) are obtained by variational calculus:{
∆u = 1

2 (∆I + div(A))
∆AA = −∇u+A.

In order to solve the system we first solve the particle equation, assuming that A = 0. Then, a first
estimate u1 of u is obtained as a solution of the first equation

∆u1 =
1

2
(∆I)

The function u1 select boundaries (see figure 10(a)) Then we apply the grouping algorithm and find
the inducers of the square (see figure 10(b)). With this estimated second member and the condition
A0 = 0 we find the solution of the equation for the vector A:

∆AA = −∇u1

The diverge of the vector solution is depicted in fig 10(c). Finally we recover the value of u using as
forcing term ∆I + div(A),

∆u =
1

2
(∆I + div(A))

applying to the function u the mean as in (8) we obtain

b = (I + u)/2,

which is the last image represented in figure 10.
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Figure 10: From left to right: a) The laplacian u1 of the Kanizsa square, b) the inducers found
with the grouping algorithm, c) the vector A, which completes the square d) the final value of the
function b

The same combined algorithm is also applied to the a Kanizsa diamond and to a non symmetric
shape in figure 11.

Figure 11: The combined contrast/orientation algorithm is applied to the Kanisza diamond and to
an other image.

Due to the fact that the model is invariant by rotation symmetry the completion of the Kanizsa
square is completely equivalent to the completion of the Kanizsa diamond up to a global rotation.
We will question in the following this rotation invariance based both on perceptual evidence and
image statistics results.

3.4 The model applied to other features

The previous model can be extended to the description of families of cell sensitive to other features,
as for example movement. This has been studied in [24], where grouping and completion has been
achieved in a five-dimensional space, depending on position (x1, x2), orientation, time and apparent
velocity. We also refer to [35] where other classical illusion only dependent on orientation have been
considered (Hering, Wundt, Ehrenstein, Zollner illusions). We expect that better results could be
obtained with the algorithm we present here, able to combine the grouping effect with the orientation
selectivity.
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An other feature which could be considered is the disparity feature, which allows reconstruction
a 3D image from 2 flat projections on the retina of the eyes. With our approach these aspects of
perception of images have to be developed in the group SE(3) of rigid motion of the 3D space. This
phenomena is probably related to the distal properties of brightness perception. Indeed according
to [79] a flat image exhibiting various reflectance distributions, observed under uniform illumination,
can be interpreted as a scene with different level of illumination, giving the impression of a 3D object,
and giving rise to illusions of perception of brightness.

4 Anysotropic aspects of the geometry induced by learned
kernels

Studies of visual acuity in humans were among the first investigations to uncover preferences for
vertical and horizontal stimuli. Emsley (192S) noticed acuity differences among subjects asked to
resolve line gratings. Maximal acuity occurred when the gratings were in horizontal or vertical
orientations. We will see that this anisotropy can be explained in terms of kernel learned by natural
images.

4.1 Statistics of images

An intriguing hypothesis is that association fields induced by horizontal connectivity have been
learned by the history of visual stimuli that a subject has perceived. In this case the specific
connectivity pattern would result from some statistical property of natural images.

A specific study to assess the existence of this relation has been proposed in [69]. Research
has been focused on the statistics of edges in natural images and particularly in the statistics of
co-occurence of couples of edges taking into account its relative position and orientation. The
statistics has been estimated analyzing a number of natural images from the image database:
http://hlab.phys.rug.nl/imlib/index.html, which has been many times used in literature to com-
pute natural image statistics It consists on 4000 high-quality gray scale digital images, 1536 × 1024
pixel and 12 bits in depth. Images have been preprocessed by linear filtering with a set of oriented
edge detection kernels (Gabor filters) and performing non maximal suppression. A list of pixels
corresponding to edges with their respective orientations has been obtained by thresholding and
binarization. If we fix the orientations θc and θp, a 2× 2 histogram can be computed counting how
many edges have orientation θc at the central pixel and orientation θp at the position (∆x,∆y).
An example is depicted in figure 12, left. If we consider all possible orientations θc of the central
pixel and θp of the other pixels, we obtain a four dimensional histogram (∆x,∆y, θc, θp) (see fig. 12,
right).
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eft: a 2D histogram of occurrence of edges. The color at the point (∆x,∆y) represents the number
of edges with orientation θc (diagonal) at the central point and orientation θp (horizontal) at the

point (∆x,∆y). The red colour represents the highest values, and blue the lowest. Right: the four
dimensional histogram. In each row the direction θc of the central pixel is fixed, while the final

orientation θp takes different values, and the corresponding 2D histogram is represented.

Figure 12: L

4.2 Anysotropic Connectivity kernels

In [69] a 3D histogram (∆x,∆y,∆θ) is obtained where the third coordinate is the relative orientation
∆θ = θp−θc. This kernel, invariant by rotation and translation was compared with the one obtained
with the Lie group theory.

Here we keep now completely independent any orientation in order to study possible anisotropy
of the statistic in the different directions.

We focus in particular on the histogram with the central orientation horizontal and the one with
the central orientation diagonal. This means that we consider separately the first and the third row
of the histogram.

Figure 13: The first and the third row of the histogram representing the statistics of edge co-
occurrence with respect to a central orientation respectively horizontal or diagonal
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We have selected two histograms each one constituted by 16 128 × 128 images. Hence each of
them can be considered a 128×128×16 array, discretization of a 3D kernel. We will denote the two
histograms respectively associated with the horizontal or diagonal central orientation as follows:

Khor : R2 × S1 → R and Kdiag : R2 × S1 → R.

We visualized each of them in figure 13 by slices and figure 14 in 3D: it is clear that they are different,
even though they have some similarity with the 3D kernel in figure 7. In particular if we assume that
cortical connectivity is modulated by the geometry of the perceived images, then the connectivity
kernel will be different for different directions.

Figure 14: The histograms Khor and Kdiag of edge co-occurence related to the horizontal and
diagonal direction are function defined on a 3D space with real values. For a fixed value of c we
depict here a level surfaceKhor(x, y, θ) = c (left) and Khor(x, y, θ) = c (right). These level surfaces
are represented as surfaces in the 3D domain of the kernels.

4.3 Anisotropic association fields

We can project the kernels Khor and Kdiag on the 2D plane, in order to understand their properties.
We obtain respectively

KΠ,hor(x1, x2, ξ1, ξ2) = max
θ
Khor(0, 0, x1, x2, θ) KΠ,diag(x1, x2, ξ1, ξ2) = max

θ
Kdiag(0, 0, x1, x2, θ)

The two kernels are depicted in figure 15. We can see that they have completely different properties.
The horizontal one takes higher values, and has a longer action. Moving from the diagonal the
values change very rapidly. Hence the kernel has a very clear ability to discriminate the horizontal
direction with respect to any other one.

The diagonal one takes lower values, and has a shorter action, and does not change very much far
from the diagonal. As a consequence the kernel assume comparable values for diagonal and slightly
off diagonal segments.
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Figure 15: A model of association field inspired by statistic of images. The horizontal one (left) and
the diagonal one (right) have completely different geometrical properties.

4.4 Difference in horizontal versus diagonal orientation detection

Here we would like to related the geometry of the non isotropic association fields we have found
and the difference in orientation detection for stimuli aligned in horizontal as compared to stimuli
in oblique orientations.

We start with a few horizontal segments, which can be evaluated with the horizontal association
field. Since the intensity of the kernel is very high, it takes the same values on aligned horizontal
segment (see figure 16 above left), and keep the same value even if these are taken apart (see
figure 16 above middle). On the other side the values change very rapidly while moving from the
horizontal, hence the kernel takes values very different on non aligned segments, leading to a a very
high discrimination (see figure 16 above right) in accordance with psycophysical results.

Figure 16: The value of the association kernel on different configurations of horizontal an diagonal
segments.

When we repeat the experiment on diagonal segments the situation is very different. The kernel
tends to group aligned diagonal segments (see figure 16 bottom), but since the intensity of the kernel
decreases rapidly with the distance, the kernel is not able to group distant segments, even if they
are diagonal. Finally the values of the diagonal kernel change very slowly while moving from the
diagonal, hence the kernel takes the same values on diagonal misaligned segments, leading to a low
discrimination, in accordance with the so called oblique effect.
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4.5 Oblique effect in the Kanizsa square

The oblique effect was studied in Kanizsa square with misaligned edges in [18]. The problem refers
to the ability to perceive stimuli lying in the horizontal orientation with greater efficiency than
stimuli situated in any other orientation. It was proved that the stimuli in the oblique orientation is
perceived as square for greater degrees of misalignment than those in the cardinal axis orientation
(see figure 3).

Here we simulate the experiment with our model and for misalignment at 0, 6, and 12 degrees
for the Kanizsa squares and diamonds (see figure 17). We first express the propagation with the
two different kernels KΠhor and KΠdiag in terms of fundamental solution of differential equations.
The horizontal kernel is strongly directional, so that it will be represented as a pure subriemannian
operator. Consequently the Lagrangian operator will be exactly the one introduced in (12):

Lhor =

∫
|∇u−∇I|2dxdy +

∫
|∇u−A|2dxdy +

∫
|X1AA|2dxdy.

The diagonal kernel is weaker and less directional, so that we will add a Riemannian coefficient to
better model it. Consequently the Lagrangian operator will be:

Ldiag =

∫
|∇u−∇I|2dxdy +

∫
|∇u−A|2dxdy +

1

2

∫
|X1AA|2dxdy + ε

∫
|X3AA|2dxdy.

The minimizers of the two functionals are computed and results are presented in figure 18:
as in the perceptual experiment, both the Kanizsa square and diamond are completed if there is
no misalignment (left image). In presence of a misalignment of 6 degrees, due to the strongly
directional properties of the kernel, the horizontal Kanizsa square is not reconstructed, while the
strongly diffusive effect of the diagonal kernel does not allow to appreciate the misalignment, and the
diamond is much better completed in accordance with experimental results (middle image). Finally
for a misalignment of 12 degrees, neither the square nor the diamond are reconstructed (right image).
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Figure 17: The reconstruction made by our model. In good agreement with the experiments, with
edge misalignment of 0, degrees both the square and the diamond are reconstructed (left images),
for misalignment of 6 degree the square is not reconstructed, while the diamond is reconstructed
(middle images). Finally for 12 degrees neither the square not the diamond are reconstructed (right
images).

5 Conclusion

We presented here a general model, which unifies a number of models of the neurogeometry of
perception. Every family of cells, is parametrized with coordinates R2×F , where R2 represents the
position on the retinal plane and F the extracted feature. The cortical connectivity is expressed via
a kernel KF , whose eigenvectors can describe the emerge of perceptual units [73] and represent the
distribution of neural activity in un the primary cortex. Cortical connectivity kernels, projected on
the 2D plane induces a geometry of perception on the visual plane. Propagation with these kernels
is responsible for perceptual completion. The model is first applied to contrast and orientation
perception using kernels invariant with respect to suitable Lie group laws following the presentation
of [23]. These models are able to justify modal completion as for example the Kanzsa square.
However they discard the ability of the visual system to perceive stimuli lying in the horizontal
orientation with greater efficiency than in any other orientation. In order to take into account this
aspect, we applied the model with non isotropic kernels learned by statistical of images, recovering
anisotropy in the geometry of perception in different orientations. A more radical heterogeneity able
to account for different geometries locally defined will be considered in the future. A preliminary
study has been presented in [71].
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