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Abstract: Background: Inconsistent findings have been reported regarding the relationship between
dietary iron intake and the risk of gastric cancer (GC). Methods: We pooled data from 11 case-control
studies from the Stomach Cancer Pooling (StoP) Project. Total dietary iron intake was derived from
food frequency questionnaires combined with national nutritional tables. We derived the odds
ratios (ORs) and 95% confidence intervals (CIs) for quartiles of dietary iron through multivariable
unconditional logistic regression models. Secondary analyses stratified by sex, smoking status, caloric
intake, anatomical subsite and histological type were performed. Results: Among 4658 cases and
12247 controls, dietary iron intake was inversely associated with GC (per quartile OR 0.88; 95% CI:
0.83–0.93). Results were similar between cardia (OR = 0.85, 95% CI = 0.77–0.94) and non-cardia GC
(OR = 0.87, 95% CI = 0.81–0.94), and for diffuse (OR = 0.79, 95% CI = 0.69–0.89) and intestinal type
(OR = 0.88, 95% CI = 0.79–0.98). Iron intake exerted an independent effect from that of smoking
and salt intake. Additional adjustment by meat and fruit/vegetable intake did not alter the results.
Conclusions: Dietary iron is inversely related to GC, with no difference by subsite or histological type.
While the results should be interpreted with caution, they provide evidence against a direct effect of
iron in gastric carcinogenesis.

Keywords: gastric cancer; iron; diet; cancer subtypes; cancer subsites

1. Introduction

Gastric cancer (GC) affects more than one million people per year and remains the
fourth leading cause of cancer mortality worldwide, despite long-term decreasing trends [1].
In fact, trends of GC have been interpreted as a triumph of prevention, attributable to a
decreased prevalence of Helicobacter pylori (Hp) and improvement in diet, as well as in the
preservation and storage of foods [2,3]. While infection with Hp remains the main cause of
GC, there is consistent evidence that smoking is a risk factor for GC [4]. High dietary intake
of salt and processed meat represents other important risk factors [5], while fresh fruits,
vegetables and certain micronutrients are protective against its development [6]. GC can
be subdivided into cardia and non-cardia cancer by anatomic demarcations, and into two
main histological types: the well-differentiated or intestinal type, and the undifferentiated
or diffuse type.

Iron is an essential element for human life: it participates in a wide variety of metabolic
processes, including oxygen transport, deoxyribonucleic acid (DNA) synthesis, and electron
transport [7]. There are two main forms of dietary iron: heme and non-heme. Heme iron
is contained only in meat, poultry, seafood, fish, and other animal foods. Non-heme iron
is found in plant-based foods such as grains, beans, vegetables, fruits, nuts, and seeds
and in some animal products such as eggs and dairy [8]. Accumulating evidence and
metanalyses suggest that iron excess is associated with tumorigenesis in multiple human
cancers, including colorectal (relative risk [RR] = 1.08, 95% confidence interval [CI] 1.00–1.17
for an increase of 1 mg/day of heme iron intake), breast (RR = 1.03, 95% CI 0.97–1.09), and
lung cancer (RR = 1.12; 95% CI, 0.98–1.29) [9].

There is biologic plausibility for an association between dietary iron intake and GC.
The carcinogenicity of iron has been studied in animal models, which supported the
hypothesis of an inverse association, since iron deficiency may enhance Hp activity [10].
On the other hand, there is growing concern for the potential carcinogenic effect of excess
dietary iron intake, possibly related to the effect exerted by the heme component, which is
notably contained in red meat [11]. In addition, free iron (non-protein bound) may act as a
prooxidant, leading to reactive oxidative species, which in turn can cause oxidative DNA
damage. In addition, heme iron can lead to the production of N-nitroso compounds, which
are established gastric carcinogens [12,13].
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Existing studies are inconclusive regarding the association between dietary iron and
GC, because of the use of different designs, different measures of iron and iron types,
and methods of categorization. Accordingly, the primary objective of this study was
to contribute to the literature by evaluating the association between total dietary iron
intake and risk of GC within the studies of the Stomach cancer Pooling (StoP) Project, an
international consortium of GC studies. A secondary objective was to further investigate
this relationship according to GC anatomical subsite and histological type.

2. Methods

The present study is based on the StoP Project Consortium (http://www.stop-project.
org/, accessed 31 March 2022), which includes 34 case-control or nested-within-cohort stud-
ies, for a total of 13,121 cases and 31,420 controls from 15 countries. The StoP Project aims
at examining the role of several lifestyles and genetic determinants in the etiology of GC
through pooled analyses of individual-level data after central collection and validation of
the original datasets. Principal investigators signed a data transfer agreement and provided
a de-identified copy of the original data set of their studies. The StoP Project received ethical
approval from the University of Milan Review Board (reference 19/15 of 1 April 2015), and
detailed information on the overall aims and methods was given elsewhere [14].

Twenty-one studies with >25% of missing values on the exposure (iron intake) or
main confounders (dietary iron intake, tobacco smoking, socioeconomic status, dietary
salt and caloric intake) were excluded. Two additional studies were excluded because of
outlying values of iron intake (median either >30 mg/day or <1 mg/day, when considering
that the European Food Safety Authority (EFSA) recommends mean dietary intake of
16 mg per day) [15]. We also excluded subjects with extreme values of either caloric intake
(<500 and >5000 kcal/day) or extreme body mass index (BMI) (<15 and >50 kg/m2, for a
total of 57 subjects.

The final analysis is based on 11 case-control studies with information on total dietary
iron intake, including one study from Italy [16], one from Iran [17], one from Portugal [18],
two from Spain [19,20], three from Mexico [21–23], one from Japan [24], and two from the
USA [25,26]. Supplementary Table S1 shows the characteristics of each study. The analysis
includes histologically confirmed GC cases; matched controls were selected based on hospi-
tal, neighborhood or population registries. Eight out of 11 studies included classification of
GC location (cardia vs. non-cardia, excluding undetermined sites) and six studies included
classification of histological type (intestinal vs. diffuse type, excluding undefined histology).
Total dietary iron intake was calculated for each study using food frequency questionnaires
(FFQ) and country-specific dietary composition tables. Iron intake information was har-
monized and expressed as grams per day. Quartiles of intake were calculated across the
combined distribution of controls, as well as based on study-specific distributions. Data
were too sparse to allow separate analyses between heme and non-heme iron.

The final regression models included terms for study center, sex, age (≤55, 56–65, 66–75,
≥76 years), sex, tobacco smoking (never smoker, former smoker, current smoker), socioeco-
nomic status (low, intermediate, and high categories, as defined in each study based on edu-
cation, income or occupation), total caloric intake (500–1506 kcal/day, 1507–1981 kcal/day,
1982–2525 kcal/day, ≥2526 kcal/day), salt consumption (low, intermediate and high).

The analysis was repeated with and without adjustment for meat intake, in a subset
of studies [16,18–24] with available information on this food item. We also considered
additional adjustment for vegetables and fruit intake (low, intermediate and high cate-
gories, based on study-specific tertiles), BMI (18.5–24.99, 25–29.99, 30–34.99, 35–50), alcohol
drinking (overall consumption: never, low—≤12 g/day, intermediate 13–47 g/day, high—
>47 g/day) and family history of GC in first-degree relatives. Hp status was not included
in the analysis given the high number of missing values. The main analysis was repeated
using study-specific quartiles of iron intake.

We conducted stratified analyses to investigate the effect of dietary iron intake across
strata of sex, smoking status, caloric intake, Hp infection (among the studies with <10% of

http://www.stop-project.org/
http://www.stop-project.org/
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missing information for this variable), histological type, anatomical subsite, and type of
controls (hospital-based vs. population-based).

We considered the interaction between iron intake and salt consumption, as well as
between iron intake and smoking status, and calculated the relative excess risk index (RERI)
to assess the adherence of the data to an additive model of interaction and the multiplicative
index (M) for the multiplicative interaction [27].

Given the heterogeneity in the methodology used in the studies included in the pooled
analysis, we conducted a sensitivity analysis based on a two-stage approach. We first
evaluated the association between total dietary iron intake and GC in each study, using the
same multivariate logistic regression models of the pooled analysis. Next, we conducted a
random-effects meta-analysis of these results [28]. To assess the contribution of individual
studies to the overall results, we repeated the meta-analysis excluding one study at a time.

All of the statistical analyses were performed on STATA, version 16.1 (Stata Corp.,
College Station, TX, USA) [29]. A p-value lower than 0.05 was considered significant.

3. Results

The analysis included 16,905 subjects, comprising 4658 GC cases and 12,247 controls.
Table 1 shows their distribution by study, sex, age, and major covariables. Cases were
more frequently of low socioeconomic status (40.3%) than controls (34.4%). Also, cases
were more frequently smokers (20.5% vs. 19.4%) and had higher caloric intake (median
2137.8 kcal/day vs. 2030.8 kcal/day) than controls. Overall, 21.2% of cases vs. 8.79% of
controls reported a history of GC among first-degree relatives. Cases were more frequently
in the top quartile of dietary iron (28.4%) and caloric intake (26.5%) than controls (23.7%
and 21.1%, respectively).

Table 1. Distribution of cases of GC and controls according to study center, sex, age, and selected
covariates *.

Cases N (%) Controls N (%)

Total 4658 (100.0) 12,247 (100.0)

Sex
Male 3138 (67.4) 7343 (60.0)

Female 1520 (32.6) 4904 (40.0)

Age (years)
≤55 871 (18.7) 2776 (22.7)

56–65 1048 (22.5) 3025 (24.7)
66–75 1819 (39.1) 4392 (35.9)
≥76 920 (19.8) 2050 (16.7)

Cigarette smoking
Never 1876 (41.6) 5444(45,6)

Former 1710 (37.9) 4187 (35.1)
Current 927 (20.5) 2311 (19.4)

Alcohol drinking
Never 1205 (28.7) 3144 (28.4)
Low 1464 (34.8) 4412 (39.8)

Intermediate 958 (22.8) 2533 (22.9)
High 576 (13.7) 985 (8.9)

Socio-economic status
Low 1823 (40.3) 4142 (34.4)

Intermediate 1726 (38.1) 4555 (37.8)
High 976 (21.6) 3342 (27.8)

Salt consumption
Low 2046 (45.4) 5080 (45.1)

Intermediate 1168 (25.9) 3149 (27.9)
High 1289 (28.6) 3046 (27.0)
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Table 1. Cont.

Cases N (%) Controls N (%)

Meat intake
Q1 986 (24.2) 2357 (25.4)
Q2 900 (22.1) 2439 (26.3)
Q3 988 (24.2) 2359 (25.4)
Q4 1202 (29.5) 2131 (23.0)

Vegetables and fruit intake
Low 1552 (36.5) 3406 (30.8)

Intermediate 1410 (33.2) 3773 (34.2)
High 1286 (30.3) 3869 (35.0)

Total caloric intake
Q1 965 (21.8) 2853 (24.5)
Q2 1162 (26.3) 3303 (28.4)
Q3 1127 (25.5) 3030 (26.0)
Q4 1171 (26.5) 2456 (21.1)

Dietary iron intake
Q1 969 (21.6) 2874 (24.5)
Q2 1083 (24.1) 3171 (27.0)
Q3 1160 (25.9) 2908 (24.8)
Q4 1274 (28.4) 2780 (23.7)

Family history of GC
No 1170 (84.0) 5693 (93.0)
Yes 355 (16.0) 426 (7.0)

BMI
18.5–24.9 1557 (40.6) 3608 (36.6)
25–29.9 1539 (40.1) 4297 (43.6)
30–34.9 585 (15.2) 1519 (15.4)
35–50 157 (4.1) 438 (4.4)

Anatomical site of GC
NACardia 982 (30.3)

Non-cardia 2258 (69.7)

Histological type of GC
NAIntestinal 1119 (59.6)

Diffuse 791 (41.4)
* Numbers may not add to the total because of missing values. Q, quartile; BMI, body mass index; GC, gastric
cancer; NA, not applicable.

The results of the primary multivariate analysis are summarized in Table 2. After
adjustment for potential confounders, the apparent positive association between iron intake
and risk of GC detected in the univariate comparison was reversed, and higher quartiles of
dietary iron intake were associated with a significant reduced risk of GC (OR for Q2 = 0.88,
95% CI 0.78–0.99; for Q3 = 0.82, 95% CI 0.72–0.95; and for Q4 = 0.66, 95% CI 0.56–0.78)
compared to the lowest quartile (Q1), with an OR of 0.88 (95% CI 0.83–0.93) for the increase
in one quartile of iron intake. When considering total iron intake in study-specific quartiles,
results were comparable (OR for 1 quartile increase = 0.90, 95% CI 0.85–0.95).

This pattern was confirmed in models that were further adjusted by quartiles of meat
intake (i.e., OR = 0.90, 95% CI = 0.83–0.98 adjusting by meat intake, and OR = 0.91, 0.84–0.99,
not adjusting for meat intake, based on eight studies with available information). The
magnitude and direction of the association was maintained when adjusting for BMI, alcohol
consumption, family history of GC, and vegetable and fruit intake.

The results of the sensitivity analysis excluding studies with >10% of missing data for
iron, socioeconomic status and salt, also yielded similar findings.

The robustness of these results was further corroborated by the analysis excluding one
study at a time (Supplementary Table S2).
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Table 2. Adjusted odds ratios and 95% confidence intervals of the association between dietary iron
intake and other selected characteristics and gastric cancer.

Covariate Adjusted OR 95% CI

Dietary iron (quartiles)
Q1 Ref
Q2 0.88 0.78–0.99
Q3 0.82 0.72–0.95
Q4 0.66 0.56–0.78

Dietary iron (one quartile increase) 0.88 0.83–0.93

Tobacco smoking
Never Ref

Current 1.17 1.07–1.29
Former 1.22 1.09–1.36

Socioeconomic status
Low Ref

Intermediate 0.65 0.59–0.72
High 0.52 0.46–0.58

Calories (quartiles)
Q1 Ref
Q2 1.20 1.06–1.36
Q3 1.28 1.11–1.49
Q4 1.57 1.33–1.87

Salt intake
Low Ref

Medium 1.12 1.01–1.24
High 1.15 1.03–1.29

Meat intake (quartiles)
Q1 Ref
Q2 1.20 1.03–1.40
Q3 1.23 1.03–1.48
Q4 1.28 1.05–1.56

BMI (kg/m2)
18.5–24.9 Ref
25–29.9 0.77 0.70–0.84
30–34.9 0.84 0.74–0.95
35–50 0.85 0.69–1.05

Alcohol drinking
Never Ref
Low 0.83 0.75–0.91

Intermediate 0.90 0.80–1.00
High 1.24 1.08–1.43

Family history of GC
Negative Ref
Positive 2.37 2.01–2.79

Vegetable and fruit intake
Low Ref.

Medium 0.80 0.73–0.88
High 0.69 0.61–0.76

OR, odds ratio, adjusted for study, sex, age, smoking status, socioeconomic status, caloric intake, salt intake. BMI,
body mass index; CI, confidence interval; GC, gastric cancer; Q, quartile; Ref, reference category.

Table 3 shows the results by GC subsite and histological type. The inverse association
between iron and GC was consistent irrespective of cancer subsite. In particular, the OR
for the highest quartile of iron intake was significantly reduced for both cardia (OR for Q4
vs. Q1 = 0.63, 95% CI = 0.47–0.86) and non-cardia GC (OR = 0.64, 95% CI = 0.51–0.81), and
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the OR for the increase in one quartile of intake showed a 15% reduction for cardia, and
a 13% reduction for non-cardia GC. Iron was inversely related as well to intestinal (OR
for Q4 vs. Q1= 0.65, 95% CI = 0.47–0.92) and diffuse type (OR = 0.46, 95% CI = 0.31–0.68).
ORs for increase in one quartile were 0.88 (95% CI = 0.79–0.98) for the intestinal and 0.79
(95% CI = 0.69–0.89) for the diffuse type.

Table 3. Adjusted odds ratios and 95% confidence intervals of the association of total dietary iron
intake by quartile, anatomical site and histological type of gastric cancer.

Dietary Iron Intake Anatomical Site Histological Type

Cardia
OR (95%CI)

Non Cardia
OR (95%CI)

Diffuse
OR (95%CI)

Intestinal
OR (95%CI)

Quartiles
Q1 Ref Ref Ref Ref
Q2 1.09 (0.86–1.39) 0.81 (0.69–0.96) 0.68 (0.51–0.91) 0.82 (0.64–1.04)
Q3 0.96 (0.73–1.25) 0.74 (0.61–0.90) 0.58 (0.42–0.81) 0.74 (0.56–0.98)
Q4 0.63 (0.47–0.86) 0.64 (0.51–0.81) 0.46 (0.31–0.68) 0.65 (0.47–0.92)

One quartile increase 0.85 (0.77–0.94) 0.87 (0.81–0.94) 0.79 (0.69–0.89) 0.88 (0.79–0.98)
OR, odds ratio, adjusted for study, sex, age, smoking status, socioeconomic status, caloric intake, salt intake. CI,
confidence interval; Q, quartile; Ref, reference category.

Stratified analyses according to sex, caloric intake, and smoking status are provided in
Supplementary Table S3. There was no apparent effect modification by sex. The inverse
association between dietary intake and risk of GC appeared somewhat stronger in the
higher quartiles (Q3, Q4) of caloric intake vs. lower (Q1, Q2). The inverse association was
also apparently stronger in magnitude for current smokers (OR for Q4 vs. Q1, 0.41; 95% CI,
0.27–0.61) compared to former (OR for Q4 vs. Q1, 0.75; 95% CI, 0.58–0.97) and never
smokers (OR for Q4 vs. Q1, 0.80; 95% CI, 0.62–1.04). Hp status did not modify the effect of
iron intake and GC.

When stratifying by control type, the negative association between iron intake and
GC risk was evident in studies with population-based controls (OR for one quartile
increase = 0.86, 95% CI = 0.81–0.91), compared to studies with hospital-based controls
(OR = 0.97, 95% CI = 0.86–1.10).

The interaction between iron and smoking status was more compatible with a multi-
plicative model (M = 1.06, p = 0.49) rather than an additive model (RERI = 0.10, Figure 1,
panel A). The interaction between iron and salt intake appeared to be compatible with
both an additive model (RERI = 0.04) and a multiplicative one (M = 1.02, p = 0.75, Figure 1,
panel B). The results of the meta-analysis of the study-specific OR for Q4 vs. Q1 of iron
intake are reported in Figure 2. The meta-OR was 0.90 (95% CI 0.82–0.99), and the p-value
of the test of heterogeneity was 0.049. These results are similar to those of the main analysis
reported in Table 2. The robustness of these results was further corroborated by the analysis
excluding one study at a time (Supplementary Table S2).Nutrients 2022, 14, x FOR PEER REVIEW 8 of 14 
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categorized above (reference category) vs. below median intake. Odds ratios adjusted for study, sex,
age, smoking status, socioeconomic status, calorie intake, salt intake. Ref = reference.
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Figure 2. Meta-analysis of individual study results on the association between iron intake (one
quartile increase) and gastric cancer.

4. Discussion

We found an inverse association between total dietary iron and GC, corresponding to
a 12% reduced risk of GC for the increase in one quartile of iron intake. The magnitude
and direction of the association were similar between anatomical sub-sites (cardia and non-
cardia) and histological type (intestinal and diffuse). The results were confirmed in a meta-
analytic approach and in several sensitivity analyses. Moreover, the interaction between
iron intake and smoking status appeared to follow a multiplicative model, suggesting
independent opposing effects on GC, while that between iron salt intake did not distinguish
between an additive and a multiplicative model.

Iron is not currently recognized among the dietary factors associated with GC. The last
World Cancer Research Fund Report [5] did not mention iron among the nutritional items
possibly linked to GC, while the International Agency for Research on Cancer has not evalu-
ated iron in its Monographs program [30]. A meta-analysis that reported a positive associa-
tion between iron intake and several cancers was inconclusive for GC [9]. Given the hetero-
geneous results on this topic, we provided a synthesis of evidence (Table 4, [8,12,17,31–36]).
Among the studies in Table 4, Jakszyn and coauthors analyzed the European Prospective
Investigation into Cancer and Nutrition (EPIC) and found a significant positive association
between heme iron intake and GC [31], while several case-control studies described an
inverse relationship when considering total dietary iron.
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Table 4. Selected other published studies on dietary iron and GC risk.

Reference Iron Exposure Comparison OR 95% CI Design

[31] Dietary iron intake (heme) Top vs. bottom quartile 1.67 1.20–2.34 Cohort

[32] Dietary iron intake (heme) Top vs. bottom quintile 0.83 cardia
0.72 non-cardia

0.53–1.30
0.48–1.08 Cohort

100 µg increase 0.95 cardia
0.96 non-cardia

0.86–1.05
0.87–1.06

[33] Dietary iron intake Top vs. bottom quartile 0.56 0.27–1.15 Case-control

[34] Dietary iron intake (heme) Top vs. bottom quintile (p
for trend = 0.18) 4.83 NA Cohort

[35] Dietary iron intake Top vs. bottom tertile (p
for trend = 0.018)

0.65 total
0.81 heme

0.64 non heme

0.45–0.94
0.56–1.17
0.44–0.92

Case-control

[8] Dietary iron intake
(calorie adjusted) Top vs. bottom quartile 1.05 0.60–1.85 Cohort

[12] Dietary iron intake Top vs. bottom quartile 1.71 total
1.99 heme

0.75–3.18
1.00–3.95 Case-control

[36] Dietary ironintake Top vs. bottom tertile (p
for trend = 0.02) 0.41 0.19–0.89 Case-control

OR, odds ratio. CI, confidence interval.

Additional evidence on the association between iron and cancer is provided by the
studies of subjects affected by hemochromatosis, caused by mutations in the HFE gene,
connoted by the progressive accumulation of iron because of altered iron transport pro-
teins [37]. A nested case-control study within the EPIC cohort investigated the incidence of
GC in subjects with HFE mutations, finding a functional polymorphism resulting in about
a 30% excess risk of GC, with a stronger effect for the non-cardia and intestinal type [38].
Conversely, other authors find no relation between hemochromatosis and GC [39]. On the
other hand, iron deficiency anemia enhances cancer risk, including for GC [40–43].

A potential modifier of the effect of iron is Hp, which is the main risk factor for
GC [44]. Hp causes gastric atrophy and hence reduces acid secretion [44]. This may alter
micronutrients bioavailability directly and by modifying gut microbiota [45]. Dietary heme
iron has been reported to enhance the risk of GC in subjects infected with high-risk Hp
strains, but not in those infected with low-risk ones [46].

A balanced diet provides a daily amount of 10 to 20 mg of iron, which corresponds to
the intake of our study population (average intake 14.75 mg/day, 95% CI = 14.65–14.84) [32].
Among the two main types of iron, the heme fraction (organic) represents a small propor-
tion of the total, which, however, can be more easily adsorbed than non-heme (inorganic)
iron [32]. The latter represents the major fraction and is present in both animal and veg-
etable foods [32]. The proportion of heme iron contained in meat is minor compared to that
of non-heme, so it seems that the direct link between red meat and GC is found irrespective
of iron content. Indeed, this does not invalidate a negative association found with total iron.

Heme iron may contribute to carcinogenesis through increasing oxidative stress or
by catalyzing the endogenous formation of N-nitroso compounds [32]. Given the lower
bioavailability of non-heme iron, the total amount of iron intake should be adjusted for
meat and vegetable intake when it is not possible to establish the food origin of the nutrient.
To address this issue, we built models adjusted for either vegetable and fruit intake or
meat intake: the association between iron and GC remained negative, suggesting the
independent role played by iron. Similar results were also obtained when adjusting for
alcohol drinking, which is a risk factor of GC [47].

This is one of the few studies investigating dietary iron by GC anatomical and histolog-
ical categories, contributing to the definition of its effect on the specific GC types. Indeed,
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the negative association with iron intake was described for both cardia and non-cardia GC,
with only a small difference between the two. Previous studies are limited, but they are
consistent with ours, showing only minor differences in the role of dietary iron on cardia
and non-cardia GC [31].

The dose-response relationship was confirmed for both diffuse and intestinal histolog-
ical types. There are few comparable results given the difficulty in collecting histological
data; however, dietary factors generally show similar results for intestinal and diffuse
GC [21,48,49]. We identified only one study reporting the significant influence of dietary
factors, including iron, on the intestinal but not the diffuse type [50]. These results can
be due either to a real lack of difference in the subtypes’ vulnerability to the exposure, or
to the lack of statistical power given the small number of histology specific results [49].
Our analysis was based on a large number of cases (1816 intestinal and 1151 diffuse), thus
providing valuable insights. Additional studies would be needed to assess how nutritional
factors are associated with the different subtypes of GC, which implies the effort required
in collecting information on the GC type.

To our knowledge, this is the first study to investigate the interaction between iron
and other risk factors of GC. Tobacco smoking and salt intake are reported to increase
the risk of GC [51]. Our results suggest that iron acts independently from the other risk
factors considered, with a protective effect towards GC also in smokers and in subjects with
intermediate or high salt intake.

Iron intake is preferable to serum iron as a measure of the possible effect of the metal,
as a loss of iron because of hemorrhage, malnutrition or malabsorption could reduce total
serum levels [52]. This could particularly impair the use of serum iron to investigate this
relationship in case-control studies where serum samples before cancer occurrence are
unlikely to be available.

As we pooled data from different studies, dietary iron was not measured with the same
instruments, which may result in exposure misclassification in pooled analysis. Moreover,
some studies may have underestimated iron consumption because they might not have
collected information on certain iron-containing foods. Additionally, the recalling of the
frequency and quantity of specific foods consumed could have been influenced by the
knowledge of disease status, although dietary assessment in many studies addressed the
habit one or two years before diagnosis. The fact that the models were adjusted by study
center accounts, at least in part, for this source of bias.

We partially addressed this potential limitation by adjusting the main model by meat,
as well as by vegetables and fruit intake in separate analyses, which confirmed the negative
association between iron and GC, suggesting an effect independent from vegetable or
meat origin.

The pooled analysis was also mildly weakened by heterogeneity. This can be explained
by the geographical and temporal variability among the pooled studies, and by differences
in dietary exposure assessment. Additionally, Hp status was not considered in this analysis
because of missing values in the majority of studies. Case–control studies have limited
ability to measure Hp because blood samples of cases are obtained at GC diagnosis [12].
Indeed, Hp is subject to reverse causation, where the modification of cancer environment
due to progressive mucosal damage leads to the clearance of the carcinogen agent; this
could lead to differential misclassification of Hp status and underestimate the association;
in particular it may be difficult to assess if negative cases had ever been positive (naïve)
or not [53]. Besides this, up to 90% or more of non-cardia GC are due to Hp infection [44],
reducing its role as potential confounder in our analysis, where non-cardia represents >70%
of the total cases.

An additional limitation of our analysis was the lack of ability to distinguish the effect
of heme and non-heme iron.

Our study consists of a large, pooled analysis including international studies, with
detailed data available on different nutritional and lifestyle factors associated with GC. Iron
intake was assessed by using calculations from FFQs, and the correspondent variables were
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built through accurate statistical analyses. Results were adjusted by important confounders
for GC and corroborated by several sensitivity analyses. Information on subsite and
histological types were available for many cases, leading to valuable results which have
been rarely reported elsewhere. Moreover, we explored the interaction between iron and
other factors, suggesting an independent role of dietary iron from tobacco smoking in the
development of GC, with no prevailing model of interaction with salt intake. This is a
new result, which contributes to providing a better knowledge on the possible role of iron
on gastric carcinogenesis. Heterogeneity among the included studies was of borderline
statistical significance. Thus, the fluctuations found among the study-specific results
may be due to chance. Indeed, our analysis considered studies from different countries
with potentially different dietary patterns, with no standardized criteria for collecting the
exposures of interest. The results are strengthened by the fact that, as shown in the meta-
analysis, the largest contribution to the overall association comes from a nested case-control
study [26]: cohort studies are more likely to provide valid results than case-controls [12,54].
The fact that the apparent effect of iron intake was stronger in studies with population-
based controls than in hospital-based ones provides additional support to the validity of
our results.

In conclusion, we provided evidence of a possible inverse relationship between iron
intake and GC. The association persisted when adjusting for vegetable and fruit intake, meat
intake and other potential confounders, and appeared to be independent from smoking.
The association was confirmed for both GC subsites and histological types. While the
results should be interpreted with caution, given the difficulty in assessment of food intake,
they provide evidence against a direct effect of iron in gastric carcinogenesis. Additional
studies are needed to characterize this association; in particular, studies should include
separate analyses of heme and non-heme iron in order to clarify any potential difference in
their effect on GC risk. The mechanisms through which dietary iron might exert its effect
on stomach carcinogenesis warrants further investigation, particularly since dietary intake
represents a modifiable risk factor and holds promise for GC interception.
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