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ON RADO CONDITIONS FOR NONLINEAR DIOPHANTINE EQUATIONS

JORDAN MITCHELL BARRETT, MARTINO LUPINI, AND JOEL MOREIRA

Abstract. Building on previous work of Di Nasso and Luperi Baglini, we provide general
necessary conditions for a Diophantine equation to be partition regular. These conditions are
inspired by Rado’s characterization of partition regular linear homogeneous equations. We
conjecture that these conditions are also sufficient for partition regularity, at least for equa-
tions whose corresponding monovariate polynomial is linear. This would provide a natural
generalization of Rado’s theorem.

We verify that such a conjecture holds for the equations x2 − xy + ax + by + cz = 0 and
x2 − y2 + ax + by + cz = 0 for a, b, c ∈ Z such that abc = 0 or a + b + c = 0. To deal with
these equations, we establish new results concerning the partition regularity of polynomial
configurations in Z such as {x, x+ y, xy + x+ y}, building on the recent result on the partition
regularity of {x, x+ y, xy}.

1. Introduction

Partition regularity is a central notion in Ramsey theory. Briefly, a family A of subsets of
N is partition regular if every finite coloring of N admits infinitely many monochromatic sets
from A (see Section 2 for precise definitions). A configuration is partition regular if the family
of sets that realize that configuration is partition regular. For instance, the seminal Schur
Lemma from 1916 [28] asserts that Schur’s triples, i.e. configurations {a, b, a+ b} for a, b ∈ N,
are partition regular. Such a result inspired and motivated one of the early gems of Ramsey
theory: the celebrated van der Waerden theorem on arithmetic progressions [29], asserting that
arithmetic progressions of arbitrary finite length are partition regular.

Schur’s triples can be seen as solutions to the Diophantine equation z = x + y. Similarly,
arithmetic progressions can be seen as solutions to a suitable system of linear Diophantine
equations. This perspective led Rado in 1933 [26] to provide a complete characterization of
which systems of linear Diophantine equations are partition regular. An equation (or system
of equations) P (x1, . . . , xn) = 0 is called partition regular if the family

{{a1, . . . , an} ⊆ N : P (a1, . . . , an) = 0}

of its solutions is partition regular. Rado’s theorem provides a characterization of which linear
Diophantine equations are partition regular in terms of a simple condition on their coefficients
(Rado’s condition).

Since Rado’s theorem, progress in the study of partition regularity of Diophantine equations
has been slower, as the nonlinear case has proved to be substantially more difficult. Important
results were obtained by Bergelson [1,2], Khalfalah and Szeméredi [20], Csikvári, Gyarmati, and
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Sárkőzy [9], Hindman [19], Frantzikinakis and Host [16], Green and Sanders [18], Bergelson and
Moreira [7, 8], Moreira [25], and Bergelson, Moreira, and Johnson [4]. Recently, some general
necessary conditions for partition regularity were obtained using nonstandard methods by Di
Nasso and Luperi Baglini [14], building on previous work of Di Nasso and Riggio [15], and
Luperi Baglini [22, 23].

Despite these efforts, the problem of determining which Diophantine equations are partition
regular has been solved only in very special cases. A major problem in this area is to find
explicit necessary and sufficient conditions for a Diophantine equation to be partition regular,
generalizing Rado’s theorem in the linear case. Incidentally, it should be noted that the problem
of determining whether a Diophantine equation has some integer solution is undecidable (in
the sense of computability theory), as shown by Yuri Matiyasevich—building on previous work
of Martin Davis, Hilary Putnam, and Julia Robinson—in his solution of Hilbert’s 10th problem
[24].

In this work, we present general necessary conditions for partition regularity of Diophantine
equations. We name them Rado conditions, as they are inspired by Rado’s characterization
of partition regular linear Diophantine equations, and indeed in the particular case of linear
equations, they recover the conditions from Rado’s theorem. They can also be seen as a
strengthening of some conditions recently proved to be necessary by Di Nasso and Luperi
Baglini [14]; see also [13]. We show that the Rado conditions are indeed sufficient for partition
regularity for the equations x2 − xy + ax + by + cz = 0 and x2 − y2 + ax + by + cz = 0 for
a, b, c ∈ Z such that abc = 0 or a+ b+ c = 0.

In order to verify that the Rado conditions are sufficient for the latter equation, we parame-
trize the solutions with polynomial configurations in Z of the form

{r + p (s) , r + q (s) , rs+ r + ds} ,

where p (s) , q (s) are polynomials with integer coefficients vanishing at 0, and d ∈ Q. We show
that such configurations are partition regular, building on the analogue result from [25] for the
configurations {r + p (s) , r + q (s) , rs}.

We believe that the results of this paper are an important contributions to the study of
partition regularity of Diophantine equations. Indeed, they provide general necessary conditions
that can be used to rule out partition regularity in many cases, and can be seen as a natural
generalization to the nonlinear case of the condition in Rado’s theorem. This paper is divided
in five sections, besides this introduction. Section 2 introduces the terminology to be used in
the rest of the paper, and presents the statements of the main results. In Section 3 we obtain
the necessity of the Rado conditions, and in Section 4 we establish that certain polynomial
configurations in Z are partition regular. These results are then applied in Section 5 to show
that the Rado conditions are both necessary and sufficient in the case of the equations x2 −
xy+ax+ by+ cz = 0 and x2−y2+ax+ by+ cz = 0 where a, b, c ∈ Z are such that a+ b+ c = 0
or abc = 0.

2. Main results

We let N be the set of strictly positive integers, and set N0 := N∪{0}. A finite coloring of N
is a function c : N → {1, 2, . . . , k} for some k ∈ N. In this case, k is the number of colors, and
the elements of {1, 2, . . . , k} are the colors. A subset A of N is monochromatic for the coloring
c if there exists a color i ∈ {1, 2, . . . , k} such that, for every a ∈ A, c (a) = i.

Definition 2.1. Let A be a family of subsets of N. We say that A is partition regular if, for
every finite coloring c of N, there exist infinitely many A ∈ A that are monochromatic for c.
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In the following we will use the same notation and terminology for polynomials as in [14, Sec-
tion 3]. Particularly, a (multi)index is an n-tuple α = (α1, . . . , αn) ∈ Nn

0 . We define the degree of
α to be |α| := α1+ · · ·+αn, and the (Hamming) length ℓ (α) to be |{i ∈ {1, 2, . . . , n} : αi > 0}|.
If x = (x1, . . . , xn) is an n-tuple of variables, xα represents the monomial xα1

1 · · ·xαn
n . We can

then represent a polynomial P ∈ Z [x1, . . . , xn] in the variables x1, . . . , xn as
∑

α cαx
α, where α

ranges in Nn
0 and cα = 0 for all but finitely many α. We define Supp (P ) ⊂ Nn

0 to be the (finite)
set of indices α such that cα is nonzero. There is a natural partial order among indices, obtained
by setting α ≤ β if and only if αi ≤ βi for every i ∈ {1, 2, . . . , n}. An index α is maximal for
P if it is a maximal element in Supp (P ) with respect to such an order, and minimal for P if
it is a minimal element in Supp (P ). Accordingly, the term cαx

α in P is maximal (respectively,
minimal) if α is a maximal (respectively, minimal) index for P . We say that a set J of indices
is homogeneous of degree d if |α| = d for every α ∈ J . Furthermore, for indices β ≤ α we set

α! =
n
∏

i=1

(αi!) and

(

α

β

)

=
n
∏

i=1

(

αi

βi

)

=
α!

β!(α− β)!
.

For P ∈ Z [x1, . . . , xn] we define the partial derivatives

∂βP

∂xβ
:=

∂|β|P

∂xβ1

1 ∂xβ2

2 · · ·∂xβn
n

.

Note that
∂βxα

∂xβ
= β!

(

α

β

)

xα−β

if β ≤ α and it equals 0 otherwise. For r ∈ Z, we consider the polynomial P (r) (x1, . . . , xn) =
P (x1 + r, . . . , xn + r). One can express the coefficients of P (r) (x) in terms of the partial
derivatives of P evaluated at r, as the following computation shows. Suppose that P (x) =
∑

α cαx
α. Then we have that

P (r) (x) =
∑

α

cα (x1 + r)α1 · · · (xn + r)αn

=
∑

α

∑

β≤α

cα

(

α

β

)

r|α|−|β|xβ

=
∑

β

(
∑

α≥β

cα

(

α

β

)

r|α|−|β|)xβ

=
∑

β

1

β!

∂βP

∂xβ
(r, . . . , r)xβ .

If we let r be the n-tuple (r, . . . , r), then we can write

P (r) (x) =
∑

β

1

β!

∂βP

∂xβ
(r)xβ .

In particular, one has that

P (x) =
∑

β

1

β!

∂βP

∂xβ
(0)xβ .

We denote by P̃ (w) ∈ Z [w] the monovariate polynomial P̃ (w) = P (w, . . . , w).
For a prime p ∈ N, we denote by Zp the ring of p-adic integers; see [27, Chapter 1, Section

1]. It is easy to see that, for Q (w) ∈ Z [w], the equation Q (w) = 0 has an invertible solution in
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Zp if and only if, for every n ∈ N, the equation Q (w) = 0 has an invertible solution in Z/pnZ;
see [27, Chapter 1, Section 6].

Definition 2.2. Fix q ∈ N with q ≥ 2. Consider a function f : Nn → Q. Define

Af =
{

{a1, . . . , an} ⊆ N : f (a1, . . . , an) = 0
}

.

The equation f (x1, . . . , xn) = 0, and the function f , are called:

• partition regular if the family Af is partition regular;
• q-partition regular if, for every k ∈ N, the family consisting of {a1, . . . , an} ∈ Af such
that a1 ≡ · · · ≡ an ≡ 0 mod qk, is partition regular.

In particular, this definition applies when the function f is a polynomial with integer coeffi-
cients.

It is clear that a homogeneous polynomial is partition regular if and only if it is q-partition
regular for every q > 1. We remark in passing that the converse does not hold, i.e., there are
polynomials (e.g. f(x, y, z) = xy − z) which are q-partition regular for every q > 1 but are not
homogenous. Nevertheless, a q-partition regular equation necessarily has zero constant term.
On the other hand, a partition regular equation might have a nonzero constant term, such as
x− y + z2 = 1 (this follows from [6, Theorem 5.2] with r = 1 and p1(z) = z2 − 1).

Proposition 2.3. If the equation P (x1, . . . , xn) = 0 is partition regular, then for every r ∈
Z \ {0}, the equations P (x1 + r, . . . , xn + r) = 0 and P

(

1
r
x1, . . . ,

1
r
xn

)

= 0 are also partition
regular. If the equation P (x1, . . . , xn) = 0 is q-partition regular for some q ∈ N \ {1}, then the
equation P (qx1, . . . , qx) = 0 is also q-partition regular.

Proof. We prove only the last assertion; the others can be established in a similar way. Suppose
c : N → {1, . . . , k} is an arbitrary coloring. Consider a new coloring c̃ : N → {1, . . . , k + 1}
defined as c̃(i) = c(i/q) if i ≡ 0 mod q and c̃(i) = k + 1 otherwise. Let (a1, . . . , an) ∈ Nn be a
c̃-monochromatic solution to P (x1, . . . , xn) = 0 with all ai multiples of q. Then (1

q
a1, . . . ,

1
q
an)

is a c-monochromatic solution to P (qx1, . . . , qxn) = 0. �

The classical characterization of partition regularity for homogeneous linear polynomials due
to Rado [26] states that a (homogeneous) linear polynomial P (x) = a1x1+· · ·+anxn is partition
regular if and only if there exists a set J ⊆ {1, . . . , n} such that

∑

j∈J aj = 0. This condition
can be phrased without explicitly using the coefficients of P by saying that there exists a set
J ⊆ Supp (P ) such that

∑

α∈J

1

α!

∂αP

∂xα
(0) = 0. (1)

For instance, the equation x+ y = 3z is not partition regular. Rado’s condition can also be
used to deduce that certain polynomial equations of higher degree are not partition regular.
We illustrate this point in the following examples.

Example 2.4. The equation x2 + y2 = 3z2 is not partition regular.
Indeed, given a coloring c : N → {1, . . . , k}, let c̃ : N → {1, . . . , k} be the coloring defined

by c̃(x) = c(x2). Whenever (x, y, z) is a c̃-monochromatic solution to x2 + y2 = 3z2, the
triple (x2, y2, z2) is a c-monochromatic solution to x + y = 3z. Choosing a coloring c which
admits no monochromatic solution to x+ y = 3z we constructed a coloring c̃ which admits no
monochromatic solutions to x2 + y2 = 3z2.

In fact, a variation of this idea can be extended to work for general homogeneous polynomials.
This observation was first made by Lefmann in [21, Theorem 2.1], and was also used in [14,
Corollary 3.9].
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Example 2.5. The equation xy = z3 is not partition regular.
Indeed, let f : N → N be a map satisfying f(xy) = f(x) + f(y) for all x, y ≥ 2. Given a

coloring c : N → {1, . . . , k}, let c̃ : N → {1, . . . , k} be the coloring defined by c̃(x) = c
(

f(x)
)

.
Whenever (x, y, z) is a c̃-monochromatic solution to xy = z3, the triple (f(x), f(y), f(z)) is a
c-monochromatic solution to x+y = 3z. Choosing a coloring c which admits no monochromatic
solution to x + y = 3z we constructed a coloring c̃ which admits no monochromatic solutions
to xy = z3 other than the trivial solution (1, 1, 1).

The idea used in Example 2.5 can also be adapted to work for more general monomials. In
fact, it is not necessary to assume that the map f satisfies f(xy) = f(x)+ f(y): it suffices that
f(xy)− f(x) − f(y) is bounded. This will be the case when f(x) is the number of digits of x
in base q (for an arbitrary fixed q). The advantage of using such f is that the original proof of
the necessity of the Rado condition also involves a coloring which looks at the base q expansion
of x.

In what follows, we combine the two methods from Examples 2.4 and 2.5 to generate new
necessary conditions for polynomial equations of higher degree to be partition regular. Before
doing so we need some more definitions.

Definition 2.6. Let φ : Zn → Z be a positive linear map (α1, . . . , αn) 7→ t1α1 + · · ·+ tnαn for
some t1, . . . , tn ∈ N0.

• If c is a finite coloring of N0, then we say that φ is c-monochromatic if {t1, . . . , tn} is
c-monochromatic;

• If P ∈ Z [x1, . . . , xn], and (M0, . . . ,Mℓ) is the increasing enumeration of φ (Supp (P )),
then the partition of Supp (P ) determined by φ is the ordered tuple (J0, . . . , Jℓ), where
Ji = {α ∈ Supp (P ) : φ (α) = Mi}.

Suppose that P ∈ Z [x1, . . . , xn] is a polynomial.

Definition 2.7. A Rado partition of P is an ordered tuple (J0, . . . , Jℓ) such that, for every finite
coloring c of N0, there exist infinitely many c-monochromatic positive linear maps φ : Zn → Z

such that (J0, . . . , Jℓ) is the partition of Supp (P ) determined by φ.

Since φmust be a positive linear map, Jℓ contains at least one maximal index, and J0 contains
at least one minimal index.

Definition 2.8. A Rado set for P is a set J ⊆ Supp (P ) such that there exists a Rado partition
(J0, . . . , Jℓ) for P such that J = Ji for some i ∈ {0, 1, . . . , ℓ}.

A minimal (respectively, maximal) Rado set for P is a set J ⊆ Supp (P ) such that there
exists a Rado partition (J0, . . . , Jℓ) for P with J = J0 (respectively, J = Jℓ).

Example 2.9. Consider the polynomial P (x1, x2, x3, x4) = −x3 − x4 + x1x2 + x1x
2
2. We have

that
Supp (P ) = {(0, 0, 1, 0) , (0, 0, 0, 1) , (1, 1, 0, 0) , (1, 2, 0, 0)} .

We claim that the partition J = (J0, J1, J2, J3) defined by

J0 = {(0, 0, 1, 0)}

J1 = {(1, 1, 0, 0)}

J2 = {(0, 0, 0, 1)}

J3 = {(1, 2, 0, 0)}

is a Rado partition for P . Indeed, suppose that c is a finite coloring of N. By Brauer’s
extension of the van der Waerden theorem on arithmetic progressions, there exist a, b ≥ 3
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such that {a, b, a + b− 1, a+ 2b− 2} is c-monochromatic. We can consider the corresponding
c-monochromatic linear map φ : Z4 → Z,

(α1, α2, α3, α4) 7→ aα1 + bα2 + (a+ b− 1)α3 + (a + 2b− 2)α4.

Then
φ (0, 0, 1, 0) < φ (1, 1, 0, 0) < φ (0, 0, 0, 1) < φ (1, 2, 0, 0) .

Therefore the partition of Supp (P ) determined by φ is J .

Notation 2.10. Consider variables z1, . . . , zn. For α ∈ Zn let pα (z1, . . . , zn) be the linear poly-
nomial α1z1 + · · ·+ αnzn. For J ⊆ Nn

0 , let EJ be the Q-linear span of {pα−β : α, β ∈ J}.

Proposition 2.11. Suppose that (J0, . . . , Jℓ) is a Rado partition for P . Then one has that, for
every i ∈ {0, 1, . . . , ℓ}:

(1) The set Ji is convex, in the sense that if α(1), . . . , α(m) ∈ Ji and λ1, . . . , λm ∈ Q are such

that λ1+· · ·+λm = 1, and λ1α
(1)+· · ·+λmα

(m) ∈ Supp (P ), then λ1α
(1)+· · ·+λmα

(m) ∈
Ji;

(2) every nonzero polynomial p (z1, . . . , zn) = a1z1 + · · · + anzn in EJi is partition regular,
i.e. there exist ℓ ≥ 2 and 1 ≤ i1 < i2 < · · · < iℓ ≤ n such that ai1 , . . . , aiℓ are nonzero
and ai1 + · · ·+ aiℓ = 0;

(3) if α, β ∈ Ji and ℓ (α + β) ≤ 2, then |α| = |β|.

Proof. (1) This follows from the definitions and the fact that linear maps preserve affine
combinations.

(2) By the definition of Rado partition, for every finite coloring c of N there exists a positive
linear map φ : Zn → Z, say φ : (α1, . . . , αn) 7→ t1α1 + · · ·+ tnαn, such that {t1, . . . , tn}
is c-monochromatic and φ(α) = φ(β) for every α, β ∈ Ji. Therefore pα−β(t1, . . . , tn) = 0
whenever α, β ∈ Ji, and hence p(t1, . . . , tn) = 0 whenever p ∈ EJi.

(3) If ℓ(α+ β) ≤ 2, then the polynomial pα−β depends on at most two variables, and hence
if it is partition regular must take the form pα−β(z1, . . . , zn) = λ(zi−zj) for some λ ∈ N0

and some i 6= j. Consequently, |α| − |β| = pα−β(1, . . . , 1) = 0 as required.
�

Definition 2.12. A lower Rado functional of order m ∈ N0 for P ∈ Z [x1, . . . , xn] is a tuple
(J0, . . . , Jℓ, d1, . . . , dm) for some ℓ ≥ m and d1, . . . , dm ∈ N such that, for every finite coloring
c of N and for every n ∈ N, there exist infinitely many c-monochromatic positive linear maps
φ : Zn → Z, (α1, . . . , αn) 7→ t1α1+ · · ·+ tnαn such that (J0, . . . , Jℓ) is the partition of Supp (P )
determined by φ and, if (M0, . . . ,Mℓ) is the increasing enumeration of φ (Supp (P )), then Mi−
M0 = di for i ∈ {1, 2, . . . , m}, and Mm+1 −Mm ≥ n.

Definition 2.13. An upper Rado functional of order m ∈ N0 for P ∈ Z [x1, . . . , xn] is a tuple
(J0, . . . , Jℓ, d0, . . . , dm−1) for some ℓ ≥ m and d0, . . . , dm−1 ∈ N such that, for every finite
coloring c of N and for every n ∈ N, there exist infinitely many c-monochromatic positive linear
maps φ : Zn → Z, (α1, . . . , αn) 7→ t1α1 + · · · + tnαn such that (Jℓ, . . . , J0) is the partition of
Supp (P ) determined by φ and, if (Mℓ, . . . ,M0) is the increasing enumeration of φ (Supp (P )),
then Mi −Mm = di for i ∈ {0, 1, . . . , m− 1}, and Mm −Mm+1 ≥ n.

In Remark 2.26 below we give a simpler description of Rado functionals in the language of
non-standard analysis.

Example 2.14. Consider as in Example 2.9 the polynomial P (x1, x2, x3, x4) = −x3−x4+x1x2+
x1x

2
2 and the Rado partition (J0, J1, J2, J3) defined there. We claim that (J3, J2, J1, J0, 2) is an

upper Rado functional of order 1 for P , and that (J0, J1, J2, J3, 1) is a lower Rado functional of
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order 1 for P . Indeed, suppose that c is a finite coloring of N, and n ∈ N. By Brauer’s extension
of the van der Waerden theorem on arithmetic progressions there exist a, b ≥ n + 2 such that
{a, b, a + b− 1, a+ 2b− 2} is c-monochromatic. Consider the linear functional φ : Z4 → Z,

(α1, α2, α3, α4) 7→ aα1 + bα2 + (a+ b− 1)α3 + (a + 2b− 2)α4.

Then we have that

φ (0, 0, 1, 0) < φ (1, 1, 0, 0) < φ (0, 0, 0, 1) < φ (1, 2, 0, 0) .

Furthermore,

φ (1, 2, 0, 0)− φ (0, 0, 0, 1) = 2

φ (0, 0, 0, 1)− φ (1, 1, 0, 0) = b− 2 ≥ n

φ (1, 1, 0, 0)− φ (0, 0, 1, 0) = 1.

This witnesses that (J3, J2, J1, J0, 2) is an upper Rado functional of order 1 for P , and that
(J0, J1, J2, J3, 1) is a lower Rado functional of order 1 for P .

Example 2.15. Consider the polynomial P (x, y, z, w) = xy2 + yz + w. Then we have that

Supp (P ) = {(1, 2, 0, 0) , (0, 1, 1, 0) , (0, 0, 0, 1)} .

We claim that (J0, J1, J2, 1, 2) is a lower Rado functional of order 2 for P , where

J0 = {(0, 0, 0, 1)}

J1 = {(0, 1, 1, 0)}

J2 = {(1, 2, 0, 0)} .

Indeed, suppose that c is a finite coloring of N. By Brauer’s extension of the van der Waerden
theorem there exist a, b ≥ n + 2 such that {a, b, a+ b− 1, a+ 2b− 2} is c-monochromatic.
Consider the linear functional φ : Z4 → Z,

(α1, α2, α3, α4) 7→ aα1 + bα2 + (a+ b− 1)α2 + (a + 2b− 2)α3.

Then we have that

φ (0, 0, 0, 1) + 2 = φ (0, 1, 1, 0) + 1 = φ (1, 2, 0, 0) = a + 2b.

This witnesses that (J0, J1, J2, 1, 2) is a lower Rado functional of order 2 for P .

We consider the following generalizations of Rado’s criterion of partition regularity.

Definition 2.16. A polynomial P (x) =
∑

α cαx
α ∈ Z [x1, . . . , xn] satisfies the maximal Rado

condition if for every q ∈ N\{1} there exists an upper Rado functional (J0, . . . , Jℓ, d0, d1, . . . , dm−1)
for P such that, setting dm := 0, the polynomial

w 7→
m
∑

i=0

qdi
∑

α∈Ji

cαw
|α|

has a root in [1, q].

Definition 2.17. Let P be a polynomial such that P̃ is nonzero and splits as a product of
linear factors over Z. We say that P satisfies the minimal Rado condition if for every prime
p ∈ N there exists a root a ∈ Z of P̃ and a minimal Rado functional (J0, . . . , Jℓ, d1, . . . , dm) for
P (a) such that, setting d0 := 0, the equation

m
∑

i=0

pdi
∑

α∈Ji

1

α!

∂αP

∂xα
(a)w|α| = 0
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has an invertible solution in Zp.

Lemma 2.18. Let P be a polynomial such that P̃ is nonzero and splits as a product of linear
factors over Z and P satisfies the minimal Rado condition. Then there exists a root a ∈ Z of
P̃ and a minimal Rado set J of P (a) such that the equation

∑

α∈J

1

α!

∂αP

∂xα
(a)w|α| = 0

has a nonzero solution in Z/pZ for infinitely many primes p ∈ Z. If J is homogeneous, this
implies that

∑

α∈J

1

α!

∂αP

∂xα
(a) = 0.

Proof. Fix a prime number p. Then since P satisfies the minimal Rado condition, there exists
a root a ∈ Z of P̃ and a minimal Rado functional (J0, . . . , Jℓ, d1, . . . , dm) for P (a) such that,
setting d0 := 0, the equation

m
∑

i=0

pdi
∑

α∈Ji

1

α!

∂αP

∂xα
(a)w|α| = 0

has an invertible solution in Zp. Considering the canonical quotient map Zp → Z/pZ, we obtain
that the equation

∑

α∈J0

1

α!

∂αP

∂xα
(a)w|α| = 0

has a nonzero solution in Z/pZ. Notice that, by definition, J0 is a minimal Rado set of P (a).
As P̃ has finitely many roots, there exists a root a of P̃ that is obtained as above from

infinitely many primes p. For this root a, as P (a) has finitely many minimal Rado sets, there
exists a minimal Rado set J0 of P (a) that is obtained as above from infinitely many primes p.
This concludes the proof of the first assertion.

In the case when J is homogeneous of degree d, we have that
∑

α∈J0

1

α!

∂αP

∂xα
(a)w|α| =

∑

α∈J0

1

α!

∂αP

∂xα
(a)wd.

Therefore, the equation
∑

α∈J0

1

α!

∂αP

∂xα
(a)w|α| = 0

has a nonzero solution in Z/pZ if and only if
∑

α∈J0

1

α!

∂αP

∂xα
(a) ≡ 0 mod p.

If this holds for infinitely many primes p, this implies that
∑

α∈J0

1

α!

∂αP

∂xα
(a) = 0.

Thus, the second assertion follows from the first one. �

In the next section, we will prove the following necessary conditions for partition regularity
in terms of the Rado conditions.

Theorem 2.19. Fix P ∈ Z [x1, . . . , xn]. Suppose that P is partition regular. Then:
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(1) P satisfies the maximal Rado condition;

(2) if P̃ is nonzero and splits over Z as a product of linear factors, then P satisfies the
minimal Rado condition.

The first assertion of Theorem 2.19 is proved in Theorem 3.1 below, while the second assertion
of Theorem 2.19 is an immediate consequence of Proposition 3.2 and Theorem 3.3.

We observe that Part (2) of Theorem 2.19 recovers, in the particular case of homogeneous
linear polynomial, one direction in the Rado characterization of partition regular homogeneous
linear equations. Furthermore, Corollary 3.9 of [14] is the particular instance of Part (2)
of Theorem 2.19 when P is homogeneous. In view of Corollary 2.27 below, Theorem 3.10
of [14] is the particular instance of Part (1) of Theorem 2.19 when P (x1, . . . , xn) is of the form
P1 (x1) + · · ·+ Pn (xn) for some monovariate polynomials P1, . . . , Pn.

It would be interesting to know whether the Rado conditions provide sufficient criteria for
partition regularity for more general Diophantine equations, at least for equations P (x1, . . . , xn) =
0 with infinitely many solutions in N and such that the corresponding monovariate polynomial
P̃ is a homogeneous linear polynomial. Such a result would be a natural generalization of
Rado’s characterization of homogeneous linear equations from [26].

Conjecture 2.20. Let P ∈ Z [x1, . . . , xn] be a polynomial such that P̃ (w) := P (w, . . . , w) is
a nonzero homogeneous linear polynomial. Suppose that the equation P (x1, . . . , xn) = 0 has
infinitely many solutions in N. Then, the following assertions are equivalent:

(1) P is partition regular;
(2) P satisfies the maximal Rado condition and the minimal Rado condition.

We provide evidence towards Conjecture 2.20 by considering the families of polynomials
x2−xy+ax+ by+ cz and x2− y2+ax+ by+ cz for a, b, c, k ∈ Z. We establish that Conjecture
2.20 holds for such families, as long as either the product or the sum of the coefficients is zero.

Theorem 2.21. Fix a, b, c ∈ Z. Assume that either abc = 0 or a + b + c = 0. Suppose that
P (x, y, z) is either the polynomial x2−xy+ax+by+cz, or the polynomial x2−y2+ax+by+cz.
Then the following assertions are equivalent:

(1) P is partition regular;

(2) P satisfies the minimal Rado condition whenever P̃ is nonzero.

Remark 2.22. Notice that the maximal Rado condition is always satisfied for a polynomial P
as in Theorem 2.21.

The only case left out by Theorem 2.21 is when a, b, c, and a + b + c are all nonzero. In
this case, P satisfies the minimal Rado condition if and only if 0 ∈ {a+ b, a+ c, b+ c}. Hence,
only the following six cases remain.

Problem 2.23. Fix a, b ∈ Z \ {0}. Are the following polynomials partition regular?

• x (x− y)− xy + a (x− y) + bz
• x (x− y) + a (y − z) + bx
• x (x− y) + a (x− z) + by
• (x+ y) (x− y) + a (x− y) + bz
• (x+ y) (x− y) + a (y − z) + bx
• (x+ y) (x− y) + a (x− z) + by

In order to prove Theorem 2.21, we will use the recent result from [25] asserting that the
configuration {x+ p (y) , x+ q (y) , xy} is partition regular whenever p (y) , q (y) are polynomials
with integer coefficients vanishing at 0 (see Theorem 4.6 below). In other words, for every finite
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coloring of N there exist infinitely many a, b ∈ N such that the set {a+ p (b) , a+ q (b) , ab} is
monochromatic. In fact, we will need a similar result for the configurations

{x+ p (y) , x+ q (y) , xy + x+ dy}

where d ∈ Q; see Theorem 4.9.
Theorem 2.19 will be proved using the formalism of hypernatural numbers and nonstandard

extensions. We will adopt the notation and terminology from [14]. Particularly, we will consider
a c

+-saturated nonstandard extension ∗N of N. Any finite coloring c : N → {1, 2, . . . , k} extends
to a coloring of ∗N, which we still denote by c. If ξ, η ∈ ∗N, we write ξ ≪ η and η ≫ ξ if η − ξ
is infinite. Two hypernatural numbers ξ, η are indiscernible (or u-equivalent) if c (ξ) = c (η) for
every finite coloring c of N; see [14, Definition 3.1]. This is equivalent to the assertion that, for
every A ⊆ N, ξ ∈ ∗A if and only if η ∈ ∗A. To denote that ξ, η are indiscernible, we write ξ ∼ η.
Several properties of such relation are listed in [10–12]. In particular, we have the following:

• If ξ, η ∈ ∗N are indiscernible and ξ < η, then ξ ≪ η;
• If ξ, η ∈ ∗N are indiscernible, and f : N → N, then f (ξ) , f (η) ∈ ∗N are indiscernible;
• If ξ ∈ ∗N and f : N → N are such that ξ ∼ f (ξ), then ξ = f (ξ);
• If ξ ∈ ∗N and k ∈ N are such that ξ ∼ k, then ξ = k.

Fix ξ ∈ ∗N and q ∈ N with q ≥ 2. By transfer, ξ admits a unique base q expansion. This is
an internal sequence (ai)i∈∗N0

in {0, 1, . . . , q − 1} such that

Suppq (ξ) := {i ∈ ∗N0 : ai 6= 0}

is hyperfinite, and
∑

i∈∗N aiq
i = ξ. If σ is the least element of Suppq (ξ), and τ is the largest

element of Suppq (ξ), then we call τ the position of the first nonzero digit in the base q expansion
of ξ, and we call σ the position of the last nonzero digit of the base q decomposition of ξ.
Accordingly, we call aτ the first nonzero digit (in the base q expansion of ξ), and aσ the last
nonzero digit (in the base q decomposition of ξ). Similarly, if i ∈ {1, 2, . . . , τ}, we call aτ−i the
i-th digit, and aσ+i the i-th to last digit.

It follows from the properties of indiscernible pairs that, when q ∈ N \ {1} and ξ, ξ′ ∈ ∗N

are indiscernible, if σ, σ′ are the positions of the last nonzero digits of ξ, ξ′, respectively, then
σ, σ′ are indiscernible. The same applies to the positions τ, τ ′ of the first nonzero digits of ξ, ξ′.
Furthermore, we have that the last nonzero digits of ξ, ξ′ are equal, and the first nonzero digits
of ξ, ξ′ are equal as well. More generally, for every i ∈ N, the i-th digits of ξ, ξ′ are equal, and
the i-th to last digits of ξ, ξ′ are equal. It follows by overspill that there exists ν ∈ ∗N infinite
such that, for every i ≤ ν, the i-th digits of ξ, ξ′ are equal, and the i-th to last digits of ξ, ξ′ are
equal. If ξ ∈ ∗N and q ∈ N\{1}, then we say that ξ has no finite tail in base q if the position of
its last nonzero digit in the base q expansion of ξ is infinite. This is equivalent to the assertion
that ξ ≡ 0 mod qn for every n ∈ N.

The following characterization of partition regularity is well-known; see for example [14,
Proposition 3.2].

Remark 2.24. The equation P (x1, . . . , xn) = 0 is partition regular if and only if there exist
ξ1, . . . , ξn ∈ ∗N which are infinite, indiscernible, and such that P (ξ1, . . . , ξn) = 0.

In the same way, one can prove the following characterization of q-partition regular equations.

Remark 2.25. Fix q ∈ N \ {1}. The equation P (x1, . . . , xn) = 0 is q-partition regular if and
only if there exist ξ1, . . . , ξn ∈ ∗N which are infinite, indiscernible, with no finite tail in base q,
and such that P (ξ1, . . . , ξn) = 0.

One can also characterize upper and lower Rado functionals, as follows.
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Remark 2.26. Let P ∈ Z [x1, . . . , xn] be a polynomial. Then (J0, . . . Jℓ, d0, . . . , dm−1) is an
upper Rado functional for P if and only if there exist infinite, indiscernible τ1, . . . , τn ∈ ∗N and
M0, . . . ,Mℓ ∈

∗N such that Mℓ < Mℓ−1 < · · · < M0,

Ji = {α ∈ Supp (P ) : α1τ1 + · · ·+ αnτn = Mi}

for i ∈ {0, 1, . . . , ℓ},

di = Mi −Mm

for i ∈ {0, 1, . . . , m− 1}, and Mm −Mi is infinite for i ∈ {m+ 1, . . . ℓ}.
Similarly, (J0, . . . Jℓ, d0, . . . , dm−1) is a lower Rado functional if and only if there exist infinite,

indiscernible σ1, . . . , σn ∈ ∗N and M0, . . . ,Mℓ ∈
∗N such that M0 < M1 < · · · < Mℓ,

Ji = {α ∈ Supp (P ) : α1σ1 + · · ·+ αnσn = Mi}

for i ∈ {0, 1, . . . , ℓ},

di = Mi −M0

for i ∈ {1, . . . , m}, and Mi −Mm is infinite for i ∈ {m+ 1, . . . ℓ}.

Corollary 2.27. If (J0, . . . , Jℓ, d0, d1, . . . , dm) is an upper or lower Rado functional, i, j ∈
{0, 1, . . . , m}, α ∈ Ji and β ∈ Jj are such that ℓ (α + β) ≤ 2, then i = j and |α| = |β|.

Proof. We consider the case when (J0, . . . , Jℓ, d0, d1, . . . , dm) is an upper Rado functional, as
the other case is analogous. Suppose that τ1, . . . , τn ∈ ∗N and Mℓ < · · · < M0 are obtained
from (J0, . . . , Jℓ, d0, d1, . . . , dm) as in the previous remark. Without loss of generality, we can
assume that i ≤ j, α = (α1, α2, 0, . . . , 0) and β = (β1, β2, 0, . . . , 0). Then we have that

α1τ1 + α2τ2 = Mi

and

β1τ1 + β2τ2 = Mj .

Observe that Mi −Mj is finite. Define γ1 := α1 − β1 and γ2 := α2 − β2. Thus,

Mi −Mj = γ1τ1 + γ2τ2

and

γ1τ1 = −γ2τ2 +Mi −Mj ∼ −γ2τ1 +Mi −Mj .

It follows that

γ1τ1 = −γ2τ1 +Mi −Mj

and hence

(γ1 + γ2) τ1 = Mi −Mj .

Since τ1 is infinite, we have that γ1 = −γ2, Mi = Mj , and i = j. This concludes the proof. �

3. Necessity of the Rado conditions

In this section, we assume that P (x1, . . . , xn) =
∑

α cαx
α ∈ Z [x1, . . . , xn] is a polynomial

with integer coefficients.

Theorem 3.1. Suppose that P is partition regular. Then P satisfies the maximal Rado condi-
tion.
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Proof. For ξ, η ∈ ∗R finite, we write ξ ≈ η if ξ − η is infinitesimal. We also let st (ξ) be
the standard part of ξ. Fix q ∈ N \ {1}. Set cα := 1

α!
∂αP
∂xα (0) for every index α. By

assumption there exist ξ1, . . . , ξn ∈ ∗N such that ξ1, . . . , ξn are indiscernible, infinite, and
P (ξ1, . . . , ξn) = 0. For i ∈ {1, 2, . . . , n}, let τi be the position of the first nonzero digit
in the base q expansion of ξi. Observe that τ1, . . . , τn are infinite and indiscernible. Set
τ := (τ1, . . . , τn). For an index α, we define α · τ to be α1τ1 + · · ·+ αnτn. Let (Mℓ, . . . ,M0) be
the increasing enumeration of {α · τ : α ∈ Supp (P )}. Define m to be the least element of the
set {t ∈ {0, 1, . . . , ℓ} : Mt+1 ≪ M0}. For t ∈ {0, 1, . . . , ℓ}, define

Jt = {α ∈ Supp (P ) : α · τ = Mt} .

For i ∈ {0, 1, . . . , m}, define di := Mi −Mm. Observe that (J0, . . . , Jℓ, d0, . . . , dm) is an upper
Rado functional for P , as witnessed by (τ1, . . . , τn); see Remark 2.26.

Fix now an infinite ν ∈ ∗N such that, for i ≤ ν, the i-th digits of ξ1, . . . , ξn in the base q
expansion are equal. We can write

ξi = qτi
(

σ + q−νρi
)

where 1 ≤ σ < q and ρ1, . . . , ρn ∈ ∗R are such that 0 ≤ ρi ≤ 1 for every i ∈ {1, 2, . . . , n}.
Define ζi := σ + q−νρi for i ∈ {1, 2, . . . , n} and, for t ∈ {0, 1, . . . , ℓ},

Qt (x) :=
∑

α∈Jt

cαx
α.

Set also w = st (σ) ∈ R and observe that 1 ≤ w ≤ q. Then we have that

0 = P (ξ) =
ℓ

∑

t=0

Qt (ξ) =
ℓ

∑

t=0

qMtQt (ζ1, . . . , ζn) .

Thus
m
∑

t=0

qdtQt (ζ1, . . . , ζn) = −

ℓ
∑

t=m+1

1

qMm−Mt
Qt (ζ1, . . . , ζn) ≈ 0

is infinitesimal. Set ρ := (ρ1, . . . , ρn). For t ∈ {ℓ−m, ..., ℓ}, we have

Qt (ζ1, . . . , ζn) = Qt

(

σ + q−νρ1, . . . , σ + q−νρn
)

=
∑

α∈Jt

∑

β≤α

cασ
|α|−|β|q−ν|β|ρβ

=
∑

α∈Jt

cασ
|α| +

∑

α∈Jt

∑

β≤α
β 6=0

cασ
|α|−|β|q−ν|β|ρβ.

Observe that
∑

α∈Jt

∑

β≤α
β 6=0

cασ
|α|−|β|q−ν|β|ρβ ≈ 0

is infinitesimal. Therefore, we have that

Qt (ζ1, . . . , ζn) ≈
∑

α∈Jt

cασ
|α|.

Thus

0 ≈

m
∑

t=0

qdtQt (ζ1, . . . , ζn) ≈
m
∑

t=0

qdt
∑

α∈Jt

cασ
|α|.
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Considering the standard part, we have

0 =
m
∑

t=0

qdt
∑

α∈Jt

cαw
|α|.

Since w ∈ [1, q], this concludes the proof. �

Proposition 3.2. Suppose that the monovariate polynomial P̃ associated with P is nonzero
and splits over Z as a product of linear factors. If P is partition regular, then for every prime

p ∈ N there exists a root a of P̃ such that P (a) is p-partition regular.

Proof. Define ℓ to be the degree of P̃ , and suppose that a1, . . . , aℓ ∈ Z are the roots of P̃ .
Suppose that P is partition regular. Then there exist infinite, indiscernible ξ1, . . . , ξn ∈ ∗N such
that P (ξ1, . . . , ξn) = 0. Fix an infinite ν ∈ ∗N and ρ ∈

{

0, 1, . . . , pℓν − 1
}

such that

ξ1 ≡ · · · ≡ ξn ≡ ρ mod pℓν ,

where
{

0, 1, . . . , pℓν − 1
}

denotes the set of x ∈ ∗N0 such that x < pℓν . Thus, we have that

P̃ (ρ) ≡ 0 mod pℓν , which implies that pℓν divides (ρ− a1) · · · (ρ− aℓ). Hence, there exists a

root a of P̃ such that pν divides ρ− a. This implies that

ξ1 − a ≡ · · · ≡ ξn − a ≡ ρ− a ≡ 0 mod pν .

Define now ηi := ξi − a for i ∈ {1, 2, . . . , n}. Observe that η1, . . . , ηn are indiscernible, infinite,
with no finite tail in base p, and such that P (a) (η1, . . . , ηn) = 0. The conclusion thus follows
from Remark 2.25. �

Theorem 3.3. Suppose that p ∈ N is a prime. If P is p-partition regular, then there exists a
minimal Rado functional (J0, . . . , Jℓ, d1, . . . , dm) for P such that, setting d0 = 0, the equation

m
∑

i=0

pdi
∑

α∈Ji

1

α!

∂αP

∂xα
(0)w|α| = 0

has an invertible solution in the ring Zp of p-adic integers.

Proof. Suppose that P is p-partition regular. Thus, there exist infinite, indiscernible ξ1, . . . , ξn ∈
∗N with no finite tail in base p such that P (ξ1, . . . , ξn) = 0. For i ∈ {1, 2, . . . , n}, let σi be
the position of the last nonzero digit in the base p expansion of ξi. Observe that σ1, . . . , σn are
infinite and indiscernible. Set σ := (σ1, . . . , σn). For an index α, define α · σ to be α1σ1 + · · ·+
αnσn. Let (M0, . . . ,Mℓ) be the increasing enumeration of {α · σ : α ∈ Supp (P )}. Define m be
the least element of the set {i ∈ {0, 1, . . . , ℓ} : M0 ≪ Mi+1}. For t ∈ {0, 1, . . . , ℓ}, define

Jt = {α ∈ Supp (P ) : α · σ = Mt} .

For i ∈ {0, 1, . . . , m}, define di = Mi−M0. Observe that (J0, . . . , Jℓ, d0, . . . , dm) is a lower Rado
functional for P , as witnessed by (σ1, . . . , σn). For i ∈ {1, 2, . . . , n}, let ζi ∈

∗N be such that

ξi = pσiζi.

Define ζ = (ζ1, . . . , ζn). Observe that ζ1, . . . , ζn are indiscernible and, for α ∈ Jt, we have that

ξα = pMtζα.

Fix ν ∈ ∗N infinite such that ζ1 ≡ · · · ≡ ζn mod pν and Mm + ν ≪ Mm+1. Let ρ ∈
{1, . . . , pν − 1} be such that ζ1 ≡ ρ mod pν , where as before {1, . . . , pν − 1} denotes the set of



14 JORDAN MITCHELL BARRETT, MARTINO LUPINI, AND JOEL MOREIRA

x ∈ ∗N such that x < pν . Observe that, by definition of ζ1 and ρ, p does not divide ρ. To ease
the notation, let cα := 1

α!
∂αP
∂xα (0). We have that

0 =
∑

α

cαξ
α ≡

m
∑

i=0

pMi

∑

α∈Ji

cαζ
α = pM0

m
∑

i=0

pMi−M0

∑

α∈Ji

cαζ
α mod pMm+ν .

Hence,

0 ≡

m
∑

i=0

pMi−M0

∑

α∈Jt

cαζ
α ≡

m
∑

i=0

pdi
∑

α∈Jt

cαρ
|α| mod pν .

In particular, for every k ∈ N,

m
∑

i=0

pdi
∑

α∈Ji

cαρ
|α| ≡ 0 mod pk.

Since p does not divide ρ, this witnesses that the equation
∑m

i=0 p
di
∑

α∈Ji
cαw

|α| ≡ 0 mod pk

has an invertible solution in Z/pkZ. Since this holds for every k ∈ N, we have that the equation

m
∑

i=0

pdi
∑

α∈Ji

cαw
|α| = 0

has an invertible solution in Zp. �

Example 3.4. Consider the quadratic polynomial

P (x, y) = x2 + y2 − xy − ax− by + ab

with a, b ∈ Z. We claim that the equation P (x, y) = 0 has only finitely many integer solutions
when a = b, and it does not satisfy the minimal Rado condition when a 6= b. In particular, P
is not partition regular.

Suppose that a = b, in which case

P (x, y) = x2 + y2 − xy − ax− ay + a2.

Set

r = x− y − a

and observe that

P (x, y) = x2 + y2 − xy − ax− ay + a2

= r2 + xy + ax− 3ay

= y2 + y (r − a) + a2 + ar + r2.

If x, y is an integer solution to P (x, y) = 0, we have necessarily that (r − a)2 ≥ 4 (a2 + ar + r2)
and hence a+ r = 0. Therefore x = y and

P (x, y) = (x− a)2 .

Thus the only integer solution to P (x, y) = 0 is (a, a) when a = b.
Consider the case when a 6= b. In this case we have

P̃ (w) = (w − a) (w − b) .
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Furthermore

P (a) (x, y)

= (x+ a)2 + (y + a)2 − (x+ a) (y + a)− a (x+ a)− b (y + a) + ab

= x2 + y2 − xy + 2ax+ 2ay − ax− ay − ax− by

= x2 + y2 − xy + (a− b) y.

Similarly, we have that
P (b) (x, y) = x2 + y2 − xy + (b− a)x.

As a 6= b, we have that (a− b) y and x2 are the only minimal terms in P (a). Therefore,
all minimal Rado sets for P (a) are singletons. Similarly, all minimal Rado sets for P (b) are
singletons. By Lemma 2.18, this shows that P does not satisfy the minimal Rado condition
when a 6= b.

Example 3.5. Consider the polynomial

P (x, y) = x2 − y2 + xy − ax− by + ab

with a, b ∈ Z. We claim that P does not satisfy the minimal Rado condition when a 6= b. In
particular, P is not partition regular.

We have that
P̃ (w) = (w − a) (w − b) .

Furthermore,

P (a) (x, y)

= (x+ a)2 − (y + a)2 + (x+ a) (y + a)− a (x+ a)− b (y + a) + ab

= x2 − y2 + xy + 2ax− (a+ b) y

and

P (b) (x, y)

= (x+ b)2 − (y + b)2 + (x+ b) (y + b)− a (x+ b)− b (y + b) + ab

= x2 − y2 + xy + (3b− a)x− 2by.

Since either a, b is nonzero, at least one between 2a and a + b is nonzero. Hence the minimal
terms P (a) (x, y) are contained in the set {2ax,− (a + b) y}. Hence, all the minimal Rado sets
for P (a) are homogeneous. Similarly, the terms of minimal indices for P (b) are contained in
{(3b− a) x, (−2b) y}, and all the minimal Rado sets for P (b) are homogeneous. Since we have

2a− (a+ b) = a− b 6= 0

(3b− a)− 2b = b− a 6= 0

we conclude by Lemma 2.18 that P does not satisfy the minimal Rado condition.

4. Partition regularity of polynomial configurations

In this section we show, building on results from [25], that certain polynomial configurations
in N are partition regular. Let us define the following notation:

Notation 4.1. Let Q+ be the set of nonnegative rational numbers. Given d ∈ Q and a subset
E ⊆ Q+, we define

E + d = {x ∈ Q+ | x− d ∈ E}

and
E/d = {x ∈ Q+ | |dx| ∈ E}.
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Definition 4.2. Fix d ∈ Q. A subset A ⊆ N + d is piecewise syndetic if there exists some
fixed k ∈ N such that A contains arbitrarily long increasing sequences a1 < · · · < an satisfying
ai+1 − ai ≤ k, for all i ∈ {1, . . . , n− 1}.

Definition 4.3. A subset A of N is:

• IP-set if there exists an infinite increasing sequence (ak)k∈N such that, for every increas-
ing sequence of indices k1 < k2 < · · · < kn in N, ak1 + ak2 + · · ·+ akn ∈ A;

• an IP∗-set if, for every IP-set B, A ∩ B 6= ∅.

We will make use of the following well-known property of piecewise syndetic subsets of N: if
E ⊆ N is piecewise syndetic and c is a finite coloring of N, then there exists a c-monochromatic
piecewise syndetic subset of E (see, for instance, [17, Theorem 1.24]).

A polynomial generalization of the classical van der Waerden theorem on arithmetic progres-
sions was established by Bergelson and Leibman [5]. We will use the following reformulation;
see for example [3, Theorem 4.5].

Theorem 4.4 (Bergelson and Leibman). Fix d ∈ Q. Let E ⊆ N+ d be piecewise syndetic, and
let F ⊆ Z[x] be a finite set of integer-valued polynomials such that f(0) = 0 for every f ∈ F .
Then the set

{

n ∈ N : E ∩
⋂

f∈F

(E − f(n)) is piecewise syndetic

}

is IP*.

By replacing the function n 7→ f (n) with the function n 7→ f (n + 1), we immediately obtain
the following consequence.

Corollary 4.5. Fix d ∈ Q. Let E ⊆ N+ d be piecewise syndetic, and let F ⊆ Z[x] be a finite
set of integer-valued polynomials such that f(1) = 0 for every f ∈ F . Then the set

{

n ∈ N : E ∩
⋂

f∈F

(E − f(n)) is piecewise syndetic

}

− 1

is IP*.

Using Theorem 4.4, the following partition regularity result was established in [25].

Theorem 4.6. Let c be a finite coloring of N. Let s ∈ N and, for each i ∈ {1, . . . , s}, let Fi be
a finite set of functions Ni → Z such that for all f ∈ Fi and any x1, . . . , xi−1 ∈ N, the function
x 7→ f(x1, . . . , xi−1, x) is a polynomial with integer coefficients vanishing at 0. Then, there exist
infinitely many x0, . . . , xs ∈ N such that the set

{x0 · · ·xj : 0 ≤ j ≤ s} ∪ {x0 · · ·xj + f(xj+1, . . . , xi) | 0 ≤ j < i ≤ s, f ∈ Fi−j}

is monochromatic for c.

The following corollary is an immediate consequence of Theorem 4.6 and saturation.

Corollary 4.7. Fix s ∈ N. There exist infinite ξ0, . . . , ξs ∈ ∗N such that, for every 0 ≤ j <
i ≤ s, and for every function f : Ni−j → Z such that, for every xj+1, . . . , xi−1 ∈ N, the function
x 7→ f (xj+1, . . . , xi−1, x) is a polynomial with integer coefficients vanishing at 0, one has that

ξ0 ∼ ξ0 · · · ξi ∼ ξ0 · · · ξj + f (ξj+1, . . . , ξi) .
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Remark 4.8. If ξ0, . . . , ξs ∈
∗N are as in Corollary 4.7, then we have that ξ0 ≡ · · · ≡ ξs ≡ 0 mod q

for every q ∈ N. Indeed, we have that, for 0 < i ≤ s,

ξ0 · · · ξi−1 + ξi ≡ ξ0 · · · ξi−1 mod q

and hence ξi ≡ 0 mod q. It follows that ξ0 ≡ ξ0ξ1 ≡ 0 mod q.

The following result is the analogue of Theorem 4.6 for polynomials vanishing at 1. While the
proof of Theorem 4.9 bears some resemblance to the proof of Theorem 4.6, some modifications
are needed to deal with polynomials vanishing at 1. It is unclear how to obtain an analogue of
such results for polynomials vanishing at a point other than 0 or 1. Recall that we let N be the
set of integer that are greater than or equal to 1, and N0 = N ∪ {0}. Notice that, according to
Notation 4.1, N ∩ (N0/d+ 1) = N when d = 0.

Theorem 4.9. Fix d ∈ Q. Let c be a finite coloring of N + d. Let s ∈ N and, for each
i ∈ {1, . . . , s}, let Fi be a finite set of functions Ni → Z such that for all f ∈ Fi and any
x1, . . . , xi−1 ∈ N, the function x 7→ f(x1, . . . , xi−1, x) is a polynomial with integer coefficients
vanishing at 1. Then there exist infinitely many x0 ∈ N + d and x1, . . . , xs ∈ N ∩ (N0/d + 1)
such that the set

{x0 · · ·xj : 0 ≤ j ≤ s} ∪ {x0 · · ·xj + f(xj+1, . . . , xi) | 0 ≤ j < i ≤ s, f ∈ Fi−j}

is contained in N + d and monochromatic for c.

Proof. Observe that we have that

{x0 · · ·xj : 0 ≤ j ≤ s}

is contained in N+ d, as long as x0 ∈ N+ d and x1, . . . , xs ∈ N ∩ (N0/d+ 1).
Fix a finite coloring c : N + d → {1, 2, . . . , r}, and set Ci = {n ∈ N+ d : c(n) = i} for

i ∈ {1, 2, . . . , r}. We will recursively construct four sequences:

• A sequence (yi)
∞
i=1 in N ∩ (N0/d+ 1);

• Two sequences (Bi)
∞
i=0 and (Di)

∞
i=1 of piecewise syndetic subsets of N+ d;

• A sequence (ti)
∞
i=0 of elements of {1, . . . , r};

such that Bi ⊆ Cti for every i ≥ 0.

We begin by choosing t0 ∈ {1, . . . , r} such that Ct0 ∩ (N+ d) is piecewise syndetic (which is
always possible since N + d itself is piecewise syndetic), and let B0 := Ct0 . Now, assume that
n ≥ 1 and (yj)

n−1
j=1 , (Bj)

n−1
j=0 , (Dj)

n−1
j=1 and (tj)

n−1
j=0 have already been defined. For i, j ∈ N with

i ≤ j, we set yi,j := yiyi+1 · · · yj, whenever these have been defined.
For each k ∈ {1, . . . , s} and every f ∈ Fk, we define the collection Gn(f) of all functions

g : Z → Z of the form

g(z) = ym1+1,n−1(f(ym1+1,m2
, ym2+1,m3

, . . . , ymk+1,n−1z)−f(ym1+1,m2
, ym2+1,m3

, . . . , ymk+1,n−1))
(2)

for any possible choice 0 ≤ m1 < m2 < · · · < mk < n. In (2), we adopt the convention
that an empty product (such as ymk+1 · · · yn−1 when mk+1 = n − 1) is equal to 1. If k > n,
then we set Gn(f) to be empty. Observe that each g ∈ Gn(f) is a polynomial with integer
coefficients vanishing at 1. Notice that N ∩ N0/d is an IP-set. By Corollary 4.5, we can find
some yn ∈ N ∩ (N0/d+ 1) such that the intersection

Dn := Bn−1 ∩

s
⋂

k=1

⋂

f∈Fk

⋂

g∈Gn(f)

(Bn−1 − g(yn)) (3)
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is piecewise syndetic. Therefore, ynDn ⊆ N + d is also piecewise syndetic. (The fact that
yn ∈ N ∩ (N0/d+ 1) and Dn ⊆ N+ d guarantee that ynDn ⊆ N+ d.) We then define Bn to be
a c-monochromatic piecewise syndetic subset of ynDn, and let tn ∈ {1, 2, . . . , r} be such that
Bn ⊆ Ctn . This concludes the recursive construction.

We note that, for every i ∈ N, Bi ⊆ yiDi ⊆ yiBi−1. This implies that, for every j < i,
Bi ⊆ yiyi−1 · · · yj+1Bj . Since (ti)

∞
i=0 takes only finitely many values, there exists t ∈ {1, . . . , r}

and infinitely many tuples of natural numbers n0 < · · · < ns such that tn0
= tn1

= · · · = tns
= t.

Consider the elements x1 := yn0+1,n1
, x2 := yn1+1,n2

, . . ., xs := yns−1+1,ns
of N + 1. Pick then

x̃ ∈ Bns
, and observe that

x̃ ∈ Bns
⊆ xsBns−1

⊆ xsxs−1Bns−2
⊆ · · · ⊆ xsxs−1 · · ·x1Bn0

,

and hence there is x0 ∈ Bn0
⊆ N + d such that xsxs−1 · · ·x0 = x̃ and xjxj−1 · · ·x0 ∈ Bnj

⊆ Ct

for 0 ≤ j ≤ s. For 0 ≤ j ≤ i ≤ s, set xj,i := xjxj+1 · · ·xi = ynj−1+1,ni
. We need to show that

the set

A := {x0,s} ∪ {x0,j + f(xj+1, . . . , xi) | 0 ≤ j < i ≤ s, f ∈ Fi−j}

is contained in Ct. Fix 0 ≤ j < i ≤ s and f ∈ Fi−j . We claim that x0x1 · · ·xj+f(xj+1, . . . , xi) ∈
Bnj

. We have that

x0,i + xj+1,if (xj+1, . . . , xi) ∈ Bni
+ xj+1,if (xj+1, . . . , xi)

⊆ yni
Dni

+ xj+1,if (xj+1, . . . , xi)

= yni

(

Dni
+ xj+1,i−1yni−1+1,ni−1f (xj+1, . . . , xi)

)

By the definition of Dni
, we have that

Dni
+ xj+1,i−1yni−1+1,ni−1

(

f(xj+1, . . . , xi)− f(xj+1, . . . , xi−1, yni−1+1 · · · yni−1)
)

⊆ Bni−1

Hence,

x0,i + xj+1,if (xj+1, . . . , xi) ∈ yni

(

Bni−1 + xj+1,i−1yni−1+1,ni−1f(xj+1, . . . , xi−1, yni−1+1 · · · yni−1)
)

Proceeding in this fashion, after ni − ni−1 steps one obtains

x0,i + xj+1,if (xj+1, . . . , xi) ∈ xi

(

Bni−1
+ f (xj+1, . . . , xi−1, 1)

)

.

Since by assumption f (xj+1, . . . , xi−1, 1) = 0, we have that

x0,i + xj+1,if (xj+1, . . . , xi) ∈ xiBni−1
.

Dividing by xi we deduce that

x0,i−1 + xj+1,i−1f(xj+1, . . . , xi) ∈ Bni−1
⊂ xj+1,i−1Bnj

.

Therefore, dividing by xj+1,i−1 it follows that

x0,j + f (xj+1, . . . , xi) ∈ Bnj
⊆ Ct

as claimed. This concludes the proof that A ⊆ Ct. �

Corollary 4.10. Fix d ∈ Q, and s ∈ N. Then there exist infinite ξ0 ∈
∗N+ d and ξ1, . . . , ξs ∈

∗N0/d+1 such that, for every for every function f : Ni → Z such that, for every x1, . . . , xi−1 ∈ N,
the function x 7→ f (x1, . . . , xi−1, x) is a polynomial with integer coefficients vanishing at 1, one
has that

ξ0 ∼ ξ0 · · · ξi ∼ ξ0 · · · ξj + f (ξj+1, . . . , ξi)

for 0 ≤ j < i ≤ s.
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Corollary 4.11. Fix d ∈ Q. There exist infinite r ∈ ∗N and s ∈ ∗N0/d such that for every
polynomial with integer coefficients p (w) vanishing at 0 one has that

r ∼ r + p (s) ∼ rs+ r + ds.

Proof. By Corollary 4.10 there exist infinite r0 ∈
∗N+ d and s0 ∈

∗N0/d+ 1 such that

r0 ∼ r0 + p (s0 − 1) ∼ r0s0

for every polynomial with integer coefficients p (w) vanishing at 0. Set now r := r0 − d and
s := s0 − 1. Observe that

r + d ∼ r + d+ p (s) ∼ rs+ r + ds+ d

and hence
r ∼ r + p (s) ∼ rs+ r + ds

for every polynomial with integer coefficients p (w) vanishing at 0. �

As an application of Theorem 4.9 and Theorem 4.6, we establish the partition regularity of
certain Diophantine equations.

Example 4.12. Let

p(x, z) = a0x
d + a1x

d−1z + · · ·+ ad−1xz
d−1 + adz

d

be a homogeneous polynomial of degree d ≥ 1 in the variables x and z. Set

P (x, y, z) = xd(x− y) + p(x, z).

The solutions to the equation P (x, y, z) = 0 are parametrized by










x = r

y = r + p(1, s)

z = rs

.

Notice that p (1, 0) = a0 and p (1, 1) =
∑d

i=0 ai. Therefore Corollary 4.7 proves that the
equation P (x, y, z) = 0 is partition regular when a0 = 0, and Corollary 4.10 proves that the

equation P (x, y, z) = 0 is partition regular when
∑d

i=0 ai = 0.

5. Applications

The goal of this section is to use Theorem 2.19 to establish Theorem 2.21. Fix a, b, c ∈ Z

not all zero such that abc = 0 or a + b + c = 0. We start by considering the polynomial
P (x, y, z) = x2 − xy + ax+ by + cz = 0. Observe that P̃ (w) = (a+ b+ c)w.

Lemma 5.1. If a + b + c 6= 0 and P (x, y, z) = x2 − xy + ax + by + cz satisfies the minimal
Rado condition, then one of the following holds:

(1) a = b = 0,
(2) at most one among a, b, c is zero, and 0 ∈ {a+ b, a + c, b+ c}.

Proof. Suppose that P satisfies the minimal Rado condition, and assume that at least one
between a, b is nonzero. We have that the only root of P̃ is 0, and the only minimal indices for
P have degree 1. In particular, any minimal Rado set for P is homogeneous of degree 1. This
implies that at most one among a, b, c is zero, and 0 ∈ {a+ b, a + c, b+ c}. �

Lemma 5.2. Consider the polynomial P (x, y, z) = x2 − xy + ax+ by + cz for a, b, c ∈ Z such

that abc = 0 or a + b + c = 0. If P̃ = 0 or P satisfies the minimal Rado condition, then P is
partition regular.
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Proof. By Lemma 5.1, either a = b = 0 or at most one among a, b, c is zero, and 0 ∈
{a + b, a+ c, b+ c, a+ b+ c}.

When a = b = 0, P reduces to x (x− y) + cz. Such a polynomial is partition regular by
Example 4.12.

We now consider the case when exactly one among a, b, c is zero. When c = 0 and a+ b = 0,
the equation reduces to (x+ a) (x− y) = 0, which admits the constant solutions x = y, and
hence it is (trivially) partition regular. When b = 0 and a + c = 0, the equation reduces
to x (x− y) + a (x− z) = 0, which is partition regular by Example 4.12. When a = 0 and
b + c = 0, the polynomial reduces to P (x, y, z) = x (x− y) + b (y − z). Observe now that
P (b) (x, y) = x (x− y) + b (x− z), which has just been shown to be partition regular.

Similarly, when a, b, c are all nonzero, and a + b + c = 0, one has that P (b) (x, y, z) =
x (x− y) + (a+ b) x+ cz. Thus, P (b) is partition regular, as shown above. This concludes the
proof. �

We now consider the polynomial P (x, y, z) = x2 − y2 + ax+ by + cz. Observe that P̃ (w) =
(a + b+ c)w.

Lemma 5.3. Suppose that a+ b+ c 6= 0 and P (x, y, z) = x2 − y2 + ax+ by + cz satisfies the
minimal Rado condition. Then at most one among a, b, c is zero, and 0 ∈ {a+ b, a + c, b+ c}.

Proof. Suppose that P satisfies the minimal Rado condition. We have that the only root of P̃
is 0. By Corollary 2.27, we have that any minimal Rado set for P is homogeneous of degree 1.
This implies that at most one among a, b, c is zero, and 0 ∈ {a+ b, a + c, b+ c}. �

Lemma 5.4. Suppose that a, b, c ∈ Z are such that either a + b + c = 0 or abc = 0. Set
P (x, y, z) = x2 − y2 + ax + by + cz. If P̃ = 0 or P satisfies the minimal Rado condition, then
P is partition regular.

Proof. By Lemma 5.3, either a = b = c = 0 or at most one among a, b, c is zero, and 0 ∈
{a + b, a+ c, b+ c, a+ b+ c}.

When a+ b = 0, P (x, y, z) = 0 reduces to (x− y) (x+ y+a) = 0, which admits the constant
solutions x = y, and hence it is (trivially) partition regular.

We consider now the case when a+ b 6= 0 and a+ b+ c = 0. By Proposition 2.3, it suffices to
show that the polynomial P (x, y, z) = 1

4
(x2 − y2) + ax+ by + cz is partition regular. Observe

that setting x = r+s and y = r−s we have that P (x, y, z) = rs+(a+ b) r+(a− b) s−(a+ b) z.
Therefore, we have that P (x, y, z) is partition regular if and only if there exist r, s ∈ ∗N such

that a + b divides rs+ (a− b) s and r + s ∼ r − s ∼ 1
a+b

rs+ r + (a−b)
a+b

s. For this, it suffices to

find r0, s0 ∈
∗N such that s0

|a+b|
∈ ∗N and r0 + s0 ∼ r0 − s0 ∼ r0s0 + r0 +

a−b
a+b

s0, as then one can

set r := (a+ b) r0 and s := (a+ b) s0. We have that such r0, s0 exist by Corollary 4.11.
We now consider the case when a + b 6= 0 and a + b + c 6= 0. In this case, we have that P

does not satisfy the minimal Rado condition, and hence there is nothing to prove. To see this,
notice that if P satisfies the minimal Rado condition, then by Lemma 5.3 at most one among
a, b, c is zero, and 0 ∈ {a + b, a+ c, b+ c}. Since by hypothesis abc = 0 and a+ b 6= 0, it follows
that c = 0. This gives the contradiction that 0 ∈ {a, b}, concluding the proof. �

Theorem 2.21 is an immediate consequence of the lemmas in this section and Theorem 2.19.
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