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Abstract

Instrumented Indentation Test (IIT) has been developed in the last decades to be
one of the most versatile and convenient tests for the mechanical properties of metallic
materials. In IIT, simply by following the procedure of conventional hardness measurement,
it is possible to obtain from the material not only the hardness but also the tensile data,
parameters for its plasticity model, fracture toughness, and weld residual stress. The method
can be conducted on a considerably small scale. Therefore, it can measure components in situ
without the need to isolate them from their working condition or to machine samples from
equivalent materials for tensile tests. The IIT based on the traditional approach (stress-
strain approach) requires a complicated machine setup to accurately measure the area of
the imprint under the indenter; the reaction force the specimen exerts on the indenter, and
the depth of the indenter head to plot their relation, yielding a Force-Depth (F-D) curve.
These results are essential for evaluating the aforementioned mechanical properties of the
material. Following this approach requires extensive knowledge of material sciences to derive
analytical formulas for different material classes after several empirical studies. The method
is, therefore, expensive as one attempt to study different classes of materials. Besides,
for a soft material such as SS304L, which inherits an excessive pile-up/sink-in effect, the
improperly measured imprint area poses another challenge for IIT.

This thesis attempts to solve the two inherent drawbacks of IIT by applying a Neu-
ral Network (NN) to capture a wider range of material property variation and replace the
intricate analytical calculations. With this approach, Finite Element Method (FEM) is first
employed to simulate IIT, from which several F-D curves can be simulated by varying param-
eters of the constitutive material model used for FEM. After a set of F-D curves is generated,
it is used to train a Feed-Forward Neural Network (FFNN) so that when an arbitrary F-D
curve is fed into the NN, it will output the corresponding parameters for the constitutive
model of the material. The thesis aims to establish a workflow for such a process by at-
tempting to create a NN with high accuracy to assist or replace the complicated analytical
evaluation of IIT and the costly physical measurements. It is proven that this approach is
feasible and the challenges are discussed during the whole thesis. Based on this, suggestions
for future works are made to improve the performance of the NN approach.

Keywords: Instrumented Indentation Testing, Finite Element Method, Neural Net-
work, Feed-Forward Neural Network, SS304L, tensile properties
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Anotace

Bc. Phu Ma Quoc Topic in Czech: diplomová práce. Ostrava: VŠB - Technická
univerzita Ostrava, Fakulta strojní, Katedra aplikované mechaniky, 2022, xx stran. Vedoucí
práce: Sebastián Basterrech, Ph.D.

Diplomová práce zkoumá modelování instrumentovaného indentačního testu (IIT) s
využitím metody konečných prvků (MKP) a neuronových sítí (NN). Cílem práce je vytvořit
NN, která bude schopna vyhodnotit experimentální data z realizovaného IIT takovým způ-
sobem, aby přímo kalibrovala vhodný model plasticity. Studie je prováděna na austenitické
nerezové oceli SS304L, která představuje výzvu pro IIT. K dosažení cíle je proveden IIT
na vzorku SS304L k získání závislosti hloubky zatlačení na reakční síle, kterou materiál
vyvíjí na vtlačovanou kuličku. Kromě toho jsou na stejném materiálu provedeny tahové
zkoušky s digitální korelací obrazu (DIC) k získání tahové deformační křivky, z které lze
identifikovat parametry konstitutivního modelu. Výsledky z IIT a tahové zkoušky jsou poté
použity k vytvoření MKP modelu. S využitím FEM modelu lze simulovat několik IIT a
vytvořit tak soubor dat pro trénování NN v rozsahu austenitických ocelí. Tento soubor dat
je vložen do NN. K nalezení optimální architektury pro dosažení finálního cíle jsou provedeny
numerické experimenty. Práce navrhuje rámec a dokazuje jeho proveditelnost při uvažování
Armstrong-Frederickova modelu zpevnění se třemi parametry. Všechna data a zjištěné výzvy
jsou zaznamenány a diskutovány.

Annotation

Bc. Phu Ma Quoc Study of Topological Optimization: Master Thesis. Ostrava: VŠB -
Technical University of Ostrava, Faculty of Mechanical Engineering, Department of Applied
Mechanics, 2022, xx pages. Supervisor: Sebastián Basterrech, Ph.D.

The diploma work investigates the Instrumented Indentation Test (IIT) modelling
with Finite Element Method (FEM) and Neural Network (NN). The final goal is to create
a NN that can evaluate the experimental data from a physical IIT in such a way to directly
calibrate a suitable plasticity model. The study is conducted on an austenitic stainless steel
SS304L which is a challenge for IIT. To achieve the goal, IIT is performed on a SS304L
specimen to obtain the indenting depth versus the reaction force the material exerts on
the indentation ball. Besides, tensile tests with Digital Image Correlation (DIC) on the
same material are performed to obtain the tensile stress-strain curve, from which parameters
of a constitutive model can be identified. The results from IIT and tensile test are then
used to establish a FEM model. Using the FEM model, several IITs can be simulated to
create a dataset for NN training in the range of austenitic steels. This dataset is fed into a
NN and numerical experiments are done to find an optimal architecture for the final goal.
The thesis proposes a framework and proves its feasibility considering Armstrong-Frederick
hardening model with three parameters. All the data and identified challenges are reported
and discussed.
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Chapter 1

Introduction

The traditional approach to determine tensile properties of a material from Instru-
mented Indentation Test (IIT) is called the stress-strain approach as described in [1]. It
should be noted that this approach is applicable only for IIT with a metallic material using
a spherical indenter. The test is divided into multiple subsequent loading-unloading cycles.
From this, it is possible to record the relationship between the indenting force (F) and the
depth (D) of the indentation ball as it penetrates through the tested specimen. This Force-
Depth (F-D) curve is the backbone of the calculation of tensile properties that the following
four steps.

Step 1: Determine the real contact area between the indentation ball and the tested
material, taking into account the pile-up/sink-in effect.

Step 2: Calculate the true stress (from force and contact area) and true strain (from
contact angle).

Step 3: Fit the true stress-true strain in Step 2 to a constitutive equation.

Step 4: Evaluate the tensile properties: Young’s modulus (from the contact stiffness),
yield strength (intercept of the plastic curve and elastic line), and tensile strength (with the
concept of instability in tension).

Following this process, the tensile properties of a material from a F-D curve are
obtained. However, the drawback of this approach is the need to employ a number of
formulas while proceeding from one step to another. The formulas contain parameters that
can be obtained only from multiple experiments, which inevitably narrows down the number
of materials that can be tested and requires extensive knowledge of materials. The material
used for the study is austenitic stainless steel SS304L, which has been a challenge for the
evaluation of IIT because it is a soft material with extensive pile-up/sink-in effect.

To avoid lengthy, costly calculations and physical tests, this thesis investigates instead
the Neural Network (NN) approach. The aim of this approach is to model the IIT with high
accuracy using a NN model. The desired output is to build a NN that can evaluate the
experimental data from a physical IIT to directly calibrate a suitable plasticity model. The
workflow of the study is depicted in Figure 1.1.

The main components of the study are illustrated in Figure 1.1. First, tensile tests
with Digital Image Correlation (DIC) are carried out on the SS304L tensile specimens to
measure the stress-strain curve from which the true stress-true plastic strain is calculated.
Then, a material model (constitutive model) is fitted to the true stress-true plastic strain
curve using the Least Square Method (LSM).

9



CHAPTER 1. INTRODUCTION 10

Figure 1.1: The workflow of the proposed approach.

The fitted material model is used to describe the plastic behavior of the material
in a Finite Element Method (FEM) model, where IIT is simulated. The FEM model is
constructed so that it can produce a highly accurate result within a relatively short time
so that it is possible to automate the process for the generation of multiple F-D curves
later. Specifically, an IIT simulation with FEM is a F-D curve, which is then calibrated
with the F-D curve from the physical IIT. After calibration, the parameters of the material
model are varied within given ranges to create multiple combinations of material parameters
(configurations). These configurations are fed into the calibrated FEM model to create
multiple F-D curves. Each configuration gives a different F-D curve, which helps us to
substitute multiple lengthy and costly physical IITs.

Multiple F-D curves simulated from the previous step are then used for NN training.
These data need to be standardized to facilitate easier training tasks. To find the optimal
NN model for the task, there is a need to experiment with different structures, activation
functions, etc. The loss value over epochs and the errors between the training data and the
predicted data are the two key indicators for the evaluation of the NN performance. As a
result, the thesis aims to obtain a well-trained NN that can take in a F-D curve and predict
corresponding material parameters.

This thesis is organized as follows. Chapter 2 reviews the backgrounds of all the
physical and numerical means used in this study. Chapter 3 reports the results from surface
roughness measurement, IITs and tensile tests with DIC. Chapter 4 investigates the cali-
bration of the strain-hardening and time-hardening material models with results from the
tensile tests; simulation of the IIT in ANSYS APDL using different material models; and
FEM model validation. Chapter 5 discusses the architecture of the NN chosen for the study
and its implementation. Finally, the thesis is concluded and future works are discussed in
Chapter 6.



Chapter 2

State of the Art

2.1 Instrumented Indentation Test

Hardness, by definition, is the resistance of a body against penetration of another
body [2]. The higher the hardness of a body, the less the body is penetrated (deformed)
under the load applied by another in contact with it. This phenomenon can be easily observed
in real life as how easy ones feel as they use scissors to cut a pizza base in comparison with
sheet metal. The historical scratch hardness scale introduced by Friedrich Mohs in 1822
has brought a good sense of hardness comparison to the scientific community and has been
widely adopted in the mineralogy study and grinding tool assessment. The Mohs scale can
be seen in Table 2.1.

Table 2.1: Mohs hardness scale based on ten different minerals.

Mineral Scale Mineral Scale
Talc 1 Orthoclase 6

Gypsum 2 Quartz 7
Calcite 3 Topaz 8
Fluorite 4 Corundum 9
Apatite 5 Diamond 10

The scale is established based on the fact that any mineral that can scratch the other
has higher hardness. According to the Mohs hardness scale, Talc has the lowest hardness
while Diamond has the highest hardness. Most of the metal alloys used in engineering
applications lie in the range of 4 to 9 Mohs hardness. Remarkably, the Mohs scale is limited
only to metallic materials [2]. The scratch test is the oldest hardness test and has been
developed ever since its first introduction with Mohs scale [3]. Interestingly, the relation
between the hardness of the mineral with Mohs hardness of one and another with Mohs
hardness of two is not linear as can be observed in Figure 2.1.

Instead of scratching, another branch of the hardness test focus on indenting a hard
material (usually made of carbide or diamond) to a softer material to evaluate the hardness.
For example, the Herbert pendulum hardness test introduced in 1923 employs a frame that
swings on the tip of an indenter in direct contact with the testing specimen [5]. The rolling
resistance can then be measured, from which the Herbert hardness is calculated [6]. However,

11
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Figure 2.1: Nonlinearity of Mohs hardness with regard to Vickers hardness [4].

the method is not as widespread and well-standardized as other indentation methods such as
Brinell (ISO 6506), Vickers (ISO 6507), and Rockwell (ISO 6509). These methods have the
indenter pushed in the normal direction and in direct contact with the testing material. The
deformed shape (imprint) of the indenter or its depth is evaluated to quantify the hardness.
The three methods differ from one another depending on the geometry of the indenter, the
load applications, the characteristic of the materials to be tested (soft or hard, thick or thin,
the procedure to implement the force, measurement and calculation to obtain the numeric
hardness values, etc.) The principle differences of the three hardness measuring methods are
discussed in [2].

Specifically, Brinell method operates with the largest loads (up to 3000 kgf). There-
fore, it can be used to measure thick specimens with rough surfaces (forging and casting).
The indenter is spherical and made of tungsten carbide. On the other end, Vickers method
works with the smallest range of loads (0.001 kgf to 120 kgf) and is primarily deployed
for microhardness with loads below 1 kgf to characterize the microstructural phase hard-
ness, case-hardened depths, dimensions of heat-affected zones in welding, etc. Thus, the
surface preparation for this method is the strictest among the three methods. The indenter
is pyramid-shaped and made of diamond. Finally, the Rockwell method allows different
combinations of indenter types, sizes and loads. It is frequently used for testing sheet metal
specimens with smooth surfaces. As opposed to the other two methods, where the hard-
ness is defined by the area of the deformed area under the indenter, Rockwell hardness is
calculated from the indentation depth.

The three methods are well-developed, so they have become relatively affordable and
can provide highly accurate results in industrial applications. Additionally, the units used for
hardness measurements such as Brinell hardness (HB), Vickers hardness (HV), and Rockwell
hardness (HR), are not units but they represent measurement procedures from which the
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hardness values are obtained. This means that they cannot be put under conventional math-
ematics operations, such as multiplication or addition. For instance, 50 HBW + 100 HBW
or 50 HBW × 2 do not make sense. Conversion between the three hardness is possible with
either the empirical formula or the regression of data from experiments [7]. A theoretical
study for hardness conversion and tensile strength for materials that are ductile based on
the evaluation of stress-strain curves is discussed in [8].

IIT or Depth-Sensing Indentation (DSI) is first introduced in [9]. In contrast to the
aforementioned classical hardness measurement methods, since its early days, IIT has been
developed so that it can work well with measurements carried out on thin films, coated
profiles, or a variety of soft and hard metals [10]. This is possible because the method uses
an indenter with a known geometry to indent a surface with incremental load or depth whose
magnitude can be even to sub-micron resolution. During the process, the machine monitors
the depth and normal force acting on the tip of the indenter as it is pressed and withdrawn
from the tested surface. The result of the measurement is a curve of normal force (during
loading-unloading cycles) versus the depth of the tip of the indenter, from which the hardness
on a classic scale and the elastic modulus can be derived. Advances in modern technology
have allowed us to measure the viscoelasticity and creep properties of the material using IIT
in one run [11]. As the properties are measured in situ, the final indentation print is no longer
necessary. Furthermore, the method can be highly automated and improved with different
measurement and evaluation protocols, establishing a diverse regime for the development of
IIT.

2.2 Digital Image Correlation

DIC is an optical, non-contact, Non-Destructive Test (NDT) method that is widely
used to obtain the displacement fields on the surfaces of structures when being loaded [12].
Due to its nature, the method is highly applicable for testing environments with extreme
conditions (highly corrosive, underwater, extreme strain, extreme temperature, etc.) [13,
14]. In comparison with strain gauge measurement, DIC is notably advantageous because it
can realize full-field measurement, without the need for skillful installation and calibration
of strain gauges. A typical setup for DIC measurement is composed of a high-resolution
camera system (one or more), a lighting system, and a software for DIC control and post-
processing [15]. Instead of physical strain gauges, virtual strain gauges can be created on
the interested area via the software and appropriate full-field or local strain results can be
extracted.

The method is based on the numerical form of an image, which is a matrix of pixels.
By tracking the position of pixels in an image before (reference state) and after the loading
condition is applied (strained state), ones can calculate the in situ displacement, from which
the strain, stress, and other results can be obtained. It can operate in 2D mode (one camera)
and 3D mode (multiple cameras). In order to realize the measurements, the surface at the
area of interest must have a random visual so that the references for images can be taken. The
patterns on the surface of the measured object can be either from its natural roughness or
painted with white background and topped with arbitrary black dots (speckles) [13]. Owing
to the simple setup requirement, DIC can be applied to almost all solid materials ranging
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from metals, polymers, rocks, composites, ceramics [16], whether they are transparent or not,
as long as they are visible to the DIC camera(s) during the measurement. A typical DIC
setup is illustrated in Figure 2.2. The setup is used for measuring the strain field surrounding
a semi-eclipse surface crack.

Figure 2.2: Example of a typical setup for DIC measurement [17].

Figure 2.2 shows the speckles on the surface of interest where there is the semi-eclipse
crack. A high-resolution 2D camera records sequences of images and a post-processing
software is used to evaluate the results. For 3D measurement, a stereoscopic system with two
cameras is deployed. After capturing the sequential images, a contour map of the interest area
showing the intensity of the strain can then be exported. The accuracy of DIC measurements
depends on the Field of View (FoV), the number of pixels, and their numerical range (gray-
scale resolution). The larger their numerical range, the better the difference between colors
and the lighting condition is captured, leading to better pixel tracking [18]. By tracking the
pixel blocks, it is possible to construct the full-field 2D/3D deformation vector fields. For
more accurate DIC measurements, a number of software techniques have been investigated
to better obtain sub-pixel resolutions. Nevertheless, this requires high computational time
and memory usage because pixel-tracking tasks are conducted on images with much higher
resolutions [19].

2.3 Finite Element Method

FEM is a numerical method used for approximating continuum mechanics, where
a material is modeled as a continuous body to study its deformation and force transmis-
sion [20]. Methodologically, a continuum or a complete system is divided (discretized) into
several smaller, countable (finite) connected parts (elements), whose behaviors are governed
by a finite number of parameters. Then, the solution to the complete system The method
can be calculated as an assembly of its elements. From the mathematical point of view, the
large system described by Partial Differential Equations (PDE) is approximated with the dis-
cretization method (meshing) to form equations that are numerically simple to solve. Owing
to its nature, FEM can be applied to a wide variety of complex continuum systems [21], such
as the calculation of structures, fluid flow, heat transfer, electro-magnetics, vibro-acoustics,
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etc. Because the results of FEM are approximated values solved by numerical approach,
analyzers can tune the boundary values for the input to obtain results with a predefined
accuracy level that meets their demand. For example, regarding the structural analysis,
FEM can be used to solve the maximum stress that gear teeth experience under operation
(Figure 2.3), which is impossible to be solved by an analytical approach.

Figure 2.3: Example of a FEM result showing stresses on gears in contact [22].

As can be observed in Figure 2.3, FEM does this by constructing a mesh of finite
pyramid-shaped elements that spans the geometry domain of the gear. Each finite element
is formulated with necessary boundary values (geometry, loading condition, material prop-
erties, etc.), forming a simple equation. All the equations are assembled into a large system
of equations that represents the entire gear. The final results are then approximated as
FEM minimizes the error function by variation calculus. The results can then be reported
by a contour map, where the red color indicates the maximum stress that the gear tooth
experiences. Based on the stress distribution, the designers can implement necessary design
changes to improve the strength of the components for a longer lifetime. For example, in
the field of structural and stress analysis, FEM can be utilized to study the initiation of
defects in railroad wheels during rolling contact [23], the connection of seats to the frame of
rail wagon during impact [24], optimization of spring-loaded camming device [25], the load-
bearing capacity of steel arch structure [26], the torsional stiffness of steel frame of formula
car [27], etc.

2.4 Material models

For material models, it is essential to introduce basic definitions such as stress, strain,
and other fundamental definitions [28]. Stress (σ) is used to quantify the effect of an external
load on a body. For tensile loading, it is defined by the load over an area

σ =
F

A
, (2.1)

where F is the load and A is the area the applied load is normal to. Similarly, strain (ε)
quantifies the deformation in an infinitesimally small element of the body under the load. It
is calculated by the change in length divided by the initial length

ε =
L− L0

L0
, (2.2)
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where L is the elongation, and L0 is the original length. If the stress is below the yield
limit, the deformation is reversible when the stress is released. This linear elastic region is
described by a parameter called Young’s modulus (E)

E =
σ

ε
, (2.3)

where E is the slope of the line that connects point 0 with the yield limit, and is calculated
following Hooke’s law. The stress and strain in Equation (2.1) and Equation (2.2) are
calculated assuming that the area A remains the same during the whole test until failure.
They are called engineering stress and engineering strain.

Indeed, the area gets smaller as the dog-bone specimen under the tensile test is elon-
gated with tension applied on its both ends. This relative change in dimension is quantified
by the Poission’s ratio (ν)

ν = −εtrans
εaxial

, (2.4)

where εtrans is the strain in transversal direction, and εaxial is the strain in axial (longitudinal)
direction. The minus sign indicates that the two strains are in opposite direction. For metallic
material, empirical studies show that ν is often between 0.3 and 0.35. Given that the area
changes in time, the engineering stress and engineering strain can be calculated into true
stress (σtrue) and true strain (εtrue)

σtrue = σ(1 + ε), (2.5)

and
εtrue = ln(1 + ε). (2.6)

From Equation (2.5) and Equation (2.6), it is possible to calculate the plastic strain
(εpl) and the true plastic strain (εpl,true) as

εpl = εtotal −
σ

E
, (2.7)

and
εpl,true = ln(1 + εpl), (2.8)

where εtotal is the total engineering strain. Subtracting the elastic engineering strain com-
ponent (σ/E) from it results in εpl from which εpl,true can be calculated. The natural
logarithm is denoted as ln. Two values σtrue and εpl,true are essential for establishing the
plasticity models of the materials.

In the field of material science and engineering, stress-strain curves (usually reported
as engineering values) are the fundamental means for the evaluation of the mechanical prop-
erties of materials. A stress-strain curve is obtained by applying tension until failure on a
predefined geometry with a known cross-section (usually dog-bone shape) along its longitu-
dinal symmetrical axis. During the test, the load level and corresponding deformation are
measured to calculate the uni-axial stress and strain levels as shown in Figure 2.4.

It can be observed in Figure 2.4 that as the stress grows versus strain on the tensile
curve, it will first meet the proportional limit (A) and elastic limit/yield point (B). The 0A
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Figure 2.4: Example of a stress-strain curve with important key points [29].

span can be approximated with a line whose slope is calculated using Equation (2.3). As
the stress continues to grow over point B, the deformation is not anymore fully reversible.
Starting from the highest point of breaking stress (D), a phenomenon called necking happens
and the fracture appears (E).

The 0B span is the elastic region. The BE span is the plastic region with the first
portion BD being the strain hardening region, and the second portion DE being the necking
region. If the stress is released within the elastic region, the deformation is fully reversed.
If the stress level enters the strain-hardening region, permanent deformation occurs. In this
region, piling up of dislocations (defects in the crystal lattice) happens and additional stress
is required to additionally plastically deform the material. At this stage, the material appears
stronger and harder. When the stress approaches the breaking stress, necking happens as
the cross-section of the tensile specimen significantly reduces until the final fracture. For
different materials, the stress-strain curves have different shapes as illustrated in Figure 2.5.

Figure 2.5: Example of different stress-strain curves for different material types [29].

It is clear now that the stress-strain curve in Figure 2.4 is applicable only for ductile
material (blue curve). For brittle material, it does not experience necking as the stress level
reaches the breaking stress, resulting in almost a straight line for the stress-strain curve
(green and pink curves).
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The stress-strain curve is important for engineers because it helps them to evaluate
what kind of material they are working with and whether their designed component will
fail or not under a given loading condition. It is worth mentioning that stress-strain curves
obtained from the uni-axial tensile tests are applicable only for 1D cases. In practice, for the
evaluation of metallic materials, 1D stress-strain data can be expanded to 2D or 3D cases
by applying appropriate failure criteria [30], such as Rankine criterion (theory of maximum
principal stress), Tresca criterion (theory maximum shear stress), von Mises criterion (theory
of maximum distortion energy), and the theories of Coulomb-Mohr or Modified Mohr,etc.
One failure criterion can better fit a material type than another based on empirical studies.

Material model or constitutive model is an equation that relates the stress (applied
force) to the responding strain (responding deformation) or vice versa. It is one important
input for FEM calculation. The behaviors of different materials are rather different from
one to another, which are categorized into four ideal cases: elastic model, plastic model,
viscoelastic model, and viscoplastic model [31]. The "visco" term refers to the viscous
(fluidic) behavior. Elastic and plastic models do not depend on time (in other words, speed of
deformation, strain rate), while viscoelastic and viscoplastic models do. The time dependence
can be observed as one put a hand to water, the faster one does, the bigger the resistance
of the water against the hand [31]. Within the framework of this section, only the plastic
model is discussed, because it is applicable to a wide range of metallic materials (including
steels in this study) and the interest is paid to modelling the plastic deformation under
repeated indentation of IIT measurement. For material modelling, the hardening region can
be approximated with a linear function, piece-wise linear function, or functions with higher
orders as shown in Figure 2.6.

Figure 2.6: Hardening region approximated with different hardening functions [32].

For IIT, since the cyclic loading over the yield limit is involved, it is necessary to
consider the two phenomena, i.e., isotropic hardening and kinematic hardening. Taking for
example the 3D stress state and bilinear hardening model (where the hardening region is
approximated with linear function), the two definitions can be illustrated in Figure 2.7.

The AB portion of the 1D stress state depicted on the right side of the figures cor-
responds to the monotonic uniaxial loading in a tensile test. On the left side, the cylinder
shows the stress state in a 3D case with the base circle being the yield surface. For a ma-
terial following isotropic hardening, when being loaded over the yield limit (point A), the
yield surface is expanded to the yield stress (point B). When being unloaded in the opposite
direction, the stress becomes 0 (load is completely released) and then negative (compressive)
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Figure 2.7: Two hardening models: isotropic hardening (left), and kinematic hardening
(right) [33].

stopping at the other side of the yield surface (point C). Point B and point C are outside of
the original yield surface.

While for material following kinematic hardening, the yield surface does not change
in size but its origin is shifted. In this case, point B is outside the original yield surface but
point C remains inside. In comparison with B, the yield stress at C in the opposite direction
(compression) is reduced, which is called the Bauschinger effect [34]. For monotonic loading
(portion AB), the behavior is the same for both types of hardening even though the 3D yield
surfaces are different. However, for cyclic loading, they differ significantly because, after the
first cycle, many other loading cycles are involved.

There is also the combined hardening, where the isotropic and kinematic harden-
ing are combined, in which the yield surface both grows in size and its origin is shifted.
This combined model is studied by Armstrong and Frederick [34] and later improved by
Chaboche [35, 36]. Armstrong-Frederick (AF) model and its extension, Chaboche (CHAB)
model, have been widely used by the commercial FEM code to describe the cyclic elasto-
plastic behavior of materials under low cycle fatigue load or when the spring back effect
is the interest of the study [37]. Hereby, just resulting constitutive relations for monotonic
uniaxial loading and particular constitutive models are reported. By taking into account the
initial values of plastic strain and backstress to be 0, the AF constitutive model is given as

σ = σY +
C

γ
(1− e−γεpl), (2.9)

where σ is the true stress, εpl is the true plastic strain, σY is the yield limit, C and γ are ma-
terial parameters. The AF model is easy to implement, however, cannot describe accurately
the hysteresis loop in the case of cyclic loading. CHAB model solves this disadvantage by
including the backstress components superposed of M back-stress parts [38], then

σ = σY +
M∑︂
i=1

Ci

γi
(1− e−γiεpl). (2.10)

The derivation of Equation (2.9) and Equation (2.10) can be found in [39]. To obtain
the material parameters Ci and γi, it is necessary to first choose the number of M parts, then
fit it with the σ and εpl calculated from the tensile test data. The curve fitting method that



2.5. NEURAL NETWORKS 20

is used in this study is the LSM [40]. It is a popular regression method that approximates
functions by attempting to minimize the sum of the squared residuals. A residual stands for
the difference between the fitted value that the model provides and the observed value.

From the mathematical point of view, Equation (2.10) resembles the Generalized
Additive Model (GAM) whose degrees of freedom can be monitored to model highly complex
non-linear data [41]. The AF model and its extension, CHAB model, are used to describe
the strain-hardening behavior of the materials. Also known as work hardening, under a
constant load rate, the higher the load or stress a material withstands, the stronger the
material becomes. This owes to the formation and rearrangement of dislocations in the
crystal lattice structure of the material. In general, this mechanism is captured with strain
hardening models as an attempt to predict the change of mechanical properties because of
plastic deformation.

Time-hardening models, on the other hand, are models that describe the hardening
behavior of a material with respect to time. Under a constant load, the longer the time, the
stronger the material becomes. This is because the dislocation density gradually increases
in the crystal lattice structure of the material. As the material is stressed over time, more
dislocations are formed and entangled with each other, making the material harder to de-
form. These models are useful for predicting the strength of components exposed to high
temperatures and constant stresses over a long period, such as components of gas turbines,
nuclear reactors, pressure vessels, steam pipes, etc.

Among the constitutive models that are used for describing the rate dependency of
materials, there is the Perzyna model. It is a popular model used for the description of
visco-plastic behavior. The primary feature of the model is to express the “overstress” effect,
where the rate-independent yield function describing the visco-plastic strain can be higher
than zero [42]. The Perzyna model is given as

εpl̇ = γv(
σeq
σy

− 1)
1
m , (2.11)

where εpl̇ is the accumulated (equivalent) plastic strain rate, γv is the material viscosity
parameter, σeq is the equivalent stress and σy is the yield stress of the material in static.
The Perzyna model is a visco-plastic model used to describe the elastic-plastic and rate-
dependent behavior of materials. In technical practice, it is possible to combine both the
strain hardening model (CHAB) and the time hardening model (Perzyna) to describe both
effects where significant plastic deformation and high strain rate are present, such as impact
or explosion simulations.

2.5 Neural Networks

Machine Learning (ML) is a sub-branch of Artificial Intelligent (AI), which stands for
the use of algorithms and data to replicate the learning process of humans on computers.
It is a term that is first coined in [43] revolving around developing an autonomous checker
program. Recent years have witnessed the tremendous growth of ML applications both
for commercial and research purposes in the fields of computer vision, semantic analysis,
prediction, natural language processing, and information retrieval [44].
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An supervised ML method typically contains three consecutive components: a data
processing procedure, an evaluation function, and an updating/optimization process [45].
A data processing module contains algorithms that intake data and attempt to predict or
recognize patterns. The evaluation function monitors the accuracy of the model prediction.
Evaluation function is so-called error/loss/fitness function [46]. An updating/optimization
process tunes the parameters of the algorithms to reduce the error iteratively until a threshold
error value is met [47].

There are four main ML methods: supervised learning, unsupervised learning, semi-
supervised learning, and reinforcement learning [48]. Supervised learning takes labeled data
as input and classifies them. Unsupervised learning takes unlabeled data as input and
autonomously recognizes patterns, then classify them. Semi-supervised learning takes both
labeled and unlabeled data as input and classifies them. Reinforcement learning employs a
trial-and-error approach to find the optimal solution for a problem.

NN is a sub-branch of ML. First defined in [49], NN is a logical calculus that resembles
the human nervous system. In the last decades, NN has been developed and employed to solve
complex real-life problems that would take a considerable amount of computing resources
to solve or that are unsolvable for human experts with traditional algorithms in various
fields ranging from security to science, agriculture, manufacturing, education, marketing,
etc. [50]. NN stands out from the rest of the traditional calculation methods due to the
diverse approaches (different NN models) that it offers to work efficiently with large and
complex datasets, yielding highly accurate and reliable results. A basic NN structure is
depicted in Figure 2.8.

Figure 2.8: A basic NN structure with one input/hidden/output layer.

As can be observed in Figure 2.8, a basic NN is comprised of three layers: an input
layer, a hidden layer, and an output layer. Layers contain nodes (neurons) and a node is
connected to another with links. The input layer takes in the data and passes it through the
hidden layer. After the evaluation is done, the result of the task can be taken in the output
layer. A node is a fundamental processing unit of a NN that collects input and produces
output. Figure 2.9 shows how inputs are calculated to produce an output.

As illustrated in Figure 2.9, inputs are collected and re-scaled by multiplying them
with their corresponding connection weight. The summation of the weighted inputs is then
added with a bias and passed through an activation function (φ()) to produce the output.
The output then is in the form of y =

∑︁n
i=1 xiwi + b. In a NN with learnable parameters,

the weights and biases can be updated during the training process to produce the desired
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Figure 2.9: A basic neuron structure showing the calculation of inputs to an output.

outputs.

An activation function is a scalar-to-scalar function that calculates a net output of a
node given an input or a set of inputs (output of multiple nodes). It defines the functional
form of how a node should be activated to produce an output as the node has calculated
the weighted sum and added the bias [51]. Among the most popular activation functions are
sigmoid, tanh, Rectifier Linear Unit (ReLU), leaky ReLU, Exponential Linear Unit (ELU),
softmax, softplus, etc. The shapes of these activation functions are depicted in Figure 2.10.

Figure 2.10: Examples of different activation functions [52].

The activation functions shown in Figure 2.10 are used to introduce nonlinearities into
the NN [53]. It is essential for the training of the Feed-Forward Neural Network (FFNN)
because the backpropagation algorithm needs to multiply the derivative of the activation
function. Therefore, the chosen activation function has to be differentiable in order to be
backpropagate-able. That is why sigmoid and other hyperbolic tangent functions have been
widely adopted in the existing literature given that they can provide meaningful derivatives.
Softplus, on the other hand, is a newer alternative that is differentiable and it is easier to
demonstrate its derivative, in comparison with ELU [54].

The sigmoid function, which resembles an S, is used to convert variables that approach
infinite to simple probabilities between 0 and 1. Most of the outputs are near 0 or 1. It
has proven the capability to reduce extremely high or low values (outliers) in the dataset
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without the need to remove them. This is applicable as well for tanh function. Whereas for
other functions, such as softplus, produce the outputs from 0 to +∞.

Depicted in Figure 2.8 is one of the most popular NN models, which is called FFNN.
It is widely adopted in solving practical problems owing to its simple structure, easy im-
plementation, and capability to recognize complex patterns in large datasets. A FFNN is
a classification algorithm that contains forward connections between all the nodes without
feedback connection [50, 55]. Each connection has a different weight value. During the in-
formation processing, data is entered from input nodes, then passes consecutively from one
to another hidden layer to reach the output nodes. A layer is only connected to its previous
layer and data is transmitted in one direction, from the inputs to the outputs [56]. If a NN
is designed with more than two hidden layers, it is referred to as a Deep NN. The number
of hidden layers and nodes in each hidden layer is arbitrary and is chosen depending on
the complexity of the problem to be solved. A training process of a FFNN consists of the
following steps:

Step 1: Weights initialization: the weight values between the nodes are randomly set.

Step 2: Forward propagation: data is input into the NN, with output of each node
calculated using the weighted sum of its inputs and an activation function.

Step 3: Error calculation: the difference between the predicted output and the actual
output (loss value) is calculated using a loss function (objective function).

Step 4: Backpropagation: the loss is propagated backward through the network and
adjusted to minimize the loss value.

Step 5: Loss minimization: repeating Steps 2-3-4 for multiple runs (epochs) or until
the loss value reaches a predefined threshold.

Loss function (or objective function) is a function that is used to compute the dif-
ference between outputs and their corresponding expected outputs. The subject for an
optimization problem is to minimize the loss function or maximize its negative. In the con-
text of NN, a loss function attempts to calculate how close the values predicted by NN are to
their true counterparts [57]. The errors are calculated for all the predictions over the dataset
and then averaged then to a single number that represents the performance of the NN. For
continuous variables, mean square error (or LSM) is often chosen as a loss function, while
for binary and ordinal outcomes, hinge loss, poisson loss, or logistic loss are used [51].

For most of the problems that need NN, it is impossible to find an exact analytical so-
lution but rather an approximated one using an iterative optimization algorithm to minimize
the loss function, for example, gradient descent, stochastic gradient descent, and adaptive
moment estimation [58, 59]. Given for example the Adam optimization algorithm [60], it is a
stochastic gradient descent method based on adaptive estimation of first-order and second-
order moments. The method requires minimal memory, remains invariant to the diagonal
rescaling of gradients and thus is computationally efficient and highly applicable for prob-
lems with large datasets/parameters [61]. For the mentioned FFNN, backpropagation is a
technique to calculate the gradient in the NN, while the method for updating the loss value
can be one of the listed optimization algorithms. It should be noted that backpropagation is
applicable not just to FFNN or NN in general. For different problems or different NN such
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as a Recurrent NN (RNN), it can be a good fit as well.

Indeed, NN has been combined with FEM to predict the mechanical properties of
materials from IIT results (usually F-D curves). Traditionally, the IIT test produces F-D
curves from which empirical formulas can be applied to calculate the material properties [62].
However, it is subject to difficulties with the work-hardening phenomenon when excessive
pile-up/sink-in effects exist [63]. Therefore, it is possible to avoid these drawbacks by employ-
ing FEM (with a given material model) to simulate several IITs from which F-D curves are
collected. These curves are then used to train a NN. The trained NN is then used to predict
the parameters of the material model. In [63] the calculation of material parameters using
NN in combination with FEM is referred to as an inverse approach. Using the inverse ap-
proach, it is possible to predict the uniaxial tensile flow [64], nanomechanical properties [65],
and residual stress [66].

Specifically, authors in [64] employ NN to predict the tensile properties of six types
of steels: lean duplex, ferritic-bainitic, dual-phase, transformation-induced plasticity, and
austenitic stainless steel. The Taguchi orthogonal array method is used to reduce the training
data pairs while being able to provide prediction with high efficiency and accuracy (controlled
below 1%). Besides, reported in [65] is the combination of nanoindentation and NN to
determine the nanomechanical properties. Specifically, a database of material properties
such as yield strength-to-modulus ratio, coefficient for work hardening, Poisson’s ratio, and
indentation angle are collected. The proposed NN is trained with this database and later
used to predict the aforementioned parameters by taking F-D relationship as input. The
authors validate the proposed solution for a wide range of steel and aluminum. In [66],
authors attempt to predict the equi-biaxial residual stresses and mechanical properties of
an aluminum plate. The compare the k-nearest neighbor (a supervised ML model) with
the Kriging model and prove that the former performs slightly better in terms of prediction
accuracy for such a task.



Chapter 3

Physical tests

3.1 Surface roughness measurement

3.1.1 Measurement setup

The specimen for IIT is cut from a cold-drawn SS304L bar. It is cylinder-shaped
with a height of 10 mm. On one side, the circular surface is machined and grinded to
meet the roughness requirement for the IIT test following the traditional Brinell test - ISO
6506 [67]. Ball indenter has the advantage of averaging out the hardness differential due
to surface irregularities owing to its large area. Besides, a spherical shape ensures that the
force application is always normal to the tested surface and relatively consistent within the
testing period. By the rule of thumb, an areal average roughness (Sa) of 2 µm is sufficient
for proper hardness measurement.

3.1.2 Results

The surface roughness of the specimen is inspected with Alicona Infinite Focus 5G op-
tical microscope from Alicona Imaging GmbH. The area to be sampled is 1.614 mm x 1.610 mm
resulting in the true area of 2.597 mm2. The number of measured points in this area is
3,348,896. The surface roughness results are shown in Figure 3.1.

Figure 3.1: Surface roughness measurement: close-up view (left), and contour map of the
surface (right).
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As shown in Figure 3.1, the inherits the marks from the cutting tool and scratches as
it is stored together with other specimens. The maximum and minimum roughness is respec-
tively 2.241 µm and -1.539 µm. The Sa value is 0.193 µm. The surface roughness satisfies the
requirement for the subsequent hardness test. Besides, it should be noted that the surface
should be even and free of dust, lubricants, and any oxide scale to facilitate accurate mea-
surement of the ball indenter’s diameter. Any surface alteration resulted from heat-working
or cold-working has to be avoided because it introduces a layer of hardened material which is
unfavorable for IIT test. This means that if the IIT measurement is conducted on a machine’s
component in situ, it is necessary to remove the painted/hardened/oxidated/scratched outer
layers while keeping it clean from other foreign matters.

3.2 Instrumented Indentation Test

3.2.1 Measurement setup

The machine used for IIT is PIIS 3000 from UTM company [68]. The machine is
portable, fully automatic, and designed for testing the mechanical material properties, frac-
ture toughness, and weld residual stress of structural components operating under industrial
conditions (in situ). The machine follows the standards B0950, B0951, ISO/TR 29381,
KEPIC code MDF A370 and ASME Code case 2703.

The indenter is made of carbide material with E = 624 GPa at 23℃. The transducer
is 4 mm above the indenter. The measurement starts with a depth of 0 mm when the contact
force is detected to be 2 N. The period taken for each step is relatively long to avoid any
undesired change of material related to rapid load or temperature changes. The machine is
kept free from shock and vibration during the measurement. The test setup and result are
shown in Figure 3.2.

Figure 3.2: UTM test setup (left) and IIT results for the SS304L sample (right).

As can be observed in Figure 3.2, the hardness specimen is machined on the bottom
side with two perpendicular faces to facilitate better clamping on the jig. Since the machine
is fixed on its frame, multiple IIT measurements are realized by moving the jig under the
indentation ball. The hardness test is carried out along the diameter and it is possible to
observe the imprints of all the tests. The positioning is realized manually aiming at having an
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adequate distance between the test imprints (the holes) while attempting to keep them in a
straight line. The distance is maintained so that the build-up or shrink-in effect surrounding
a test imprint does not influence the result of another.

3.2.2 Results

There is no visible deformation on the back surface of the specimen. It indicates
that the height of 10 mm is sufficient for the IIT and the results are free from the influence
of the specimen’s thickness. Indeed, the thickness of the test piece should be at minimum
eight times the depth of the indentation (150 µm), which is applicable for the case herein.
The PIIS machine automatically exports the F-D curves in .csv format. The imprints are
numbered from left to right following Figure 3.2 with point 6 at the middle of the measured
line. The F-D results are collected and plotted in the same graphs for easier comparison as
shown in Figure 3.3.

Figure 3.3: F-D curve results from IITs of the SS304L sample: from point 1 to point 6
(middle point) (left), and from point 6 (middle point) to point 11 (right).

As can be observed in Figure 3.3, the maximum force is the highest at the points
situated furthest from the center (near the outer edge) and gradually reduces as the indenter
head is moved toward the center. This indicates that the specimen under investigation has
harder outer layers and is thus in-homogeneous. As for the tensile specimen, the outer
layers of the bar are machined out, leaving alone the core with the weakest strength. The
difference in hardness corresponds to the fact that the material is cold-drawn, leading to
increased hardness in the outer layers. Thus, the tensile results and the IITs are comparable
only in the middle of the bar. This is valid for this study, because the tensile specimens
are subjected to turning process that machines out only the outer layers of the material
which are hardened. However, for a more appropriate study, the chosen material should be
homogeneous, so that IIT and tensile test results are comparable.
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3.3 Digital Image Correlation measurement

3.3.1 Measurement setup

The tensile specimens are machined by the turning method from the same billet that
is used for IIT. For DIC measurement, the samples have to be painted first with white
background and black dots as can be observed in Figure 3.4.

Figure 3.4: Preparation of specimens for tensile test with DIC measurement.

As shown in Figure 3.4, the two grip sections are covered with tape to avoid be-
ing painted, so that the specimens are not slippery when being gripped by the grippers.
The tensile test is carried out at room temperature with a hydraulic machine LabControl
100 kN/1000 Nm following ISO 6892-1 standard. The used position rate is 10 mm/min and
the specimens are tested to failure.

The position change of the black patterns on the gauge section is monitored by a
camera and calculated to strain using the software MERCURY RT. In order to do so, it
is necessary to first calibrate the camera with the software, then create a virtual probe to
capture the longitudinal strain. Notably, the position of the probe must be visible by the
camera during the whole testing period so that the initial, as well as the elongated length,
can be recorded. The setup for the DIC measurement can be seen in the following Figure 3.5.

Figure 3.5: Setup of tensile test for a SS304L specimen with DIC measurement.
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In Figure 3.5, it is possible to observe that the specimen is gripped so that the gauge
section is visible to the camera. A flashlight is installed to provide sufficient illumination for
the image recording process. The extra tapes on the bottom grips are applied to prevent
redundant reflection, which caused the software to fail in recognizing the virtual probe. In
this study, five specimens are tested with the position rate of 10 mm/min from which the
average results and standard deviation are calculated. Additionally, two extra samples are
tested, one with 1 mm/min and one with 100 mm/min.

3.3.2 Results

The surface of the specimen under tensile test is recorded. Owing to the pattern
movements in each consecutive image frame, the software can track the axial displacement
and calculate the axial strain of the specimen. From that, it is possible to export a contour
map for better visualization. However, in this study, it is sufficient to report the unprocessed
snapshots of the DIC measurement as in Figure 3.6.

Figure 3.6: A broken SS304L tensile specimen monitored with DIC measurement.

The specimen broke in the middle, which is ideal for tensile test because it showed
that the specimen is machined properly so that no defect appears near its shoulders. The
failure in the middle is observed as well for four other specimens. What can be drawn from
the failure mode is that the material is highly ductile (necking and considerable elongation).
The highlights of the specimens under the tensile test are depicted in the following Figure 3.7.

As can be seen from Figure 3.7, the initial virtual strain gauge is stretched and
disappeared after the specimen is broken. There are breakages of the painting that appear
in the form of horizontal cracks along the gauge length of the specimen. In the last figure, the
necking phenomenon indicated that the material under testing is ductile. Indeed, SS304L is a
highly ductile material owing to the high composition of Chromium. The optical microscope
Alicona InfiniteFocus 5G is used to capture the fracture in detail. The close-up view of the
fracture of the tensile specimen is shown in Figure 3.8.

Figure 3.8 shows a significant reduction of the cross-section due to necking, indicating
that the material is highly ductile. Moreover, it is remarkable that the outer surface of the
sample resembles the staircase that it inherits from the turning process. Judging from the
failure of the sample (fracture in the middle) as well as the shape of the necking, it can be
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Figure 3.7: Failure of a SS304L specimen under tensile test: original shape (left), elongation
under testing (middle), and broken specimen (right).

Figure 3.8: Close-up view of the fracture of the SS304L tensile specimen.

drawn that the tool’s imprints affect the tensile results. However, how significant the effect
is is not the subject of this study. Rather, the thesis aims to establish first the framework
that integrates the FEM in combination with NN and refines the material inputs later. A
property that is more significant for this study is the dependency of the material on the
strain rate (strain rate sensitivity). The stress-strain curves of the material tested under
three different strain rates are plotted in Figure 3.9.

It can be concluded from Figure 3.9 that different strain rate does not affect much
the yield limit while considerably reducing the ductility of the material. The mechanical
properties evaluated from these three tests are reported in Table 3.1.
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Figure 3.9: Effect of different strain rate on the stress-strain curve of the material.

Table 3.1: Material properties from tensile tests for three different strain rates.

Test speed E [MPa] σy [MPa] σu [MPa] εu [-] εmax [-]
1 mm/min 180203 439 702 0.48124 0.61128
10 mm/min 184896 436 670 0.32687 0.47393
100 mm/min N/A N/A 635 0.11026 0.11026

In Table 3.1, there are E, yield strength σy, ultimate strength σu, ultimate strain εu
corresponding to σu, and the strain at fracture εmax. It should be noted that non-applicable
(N/A) marking is because of the data missing from tensile tests. Herein, the results of 10
mm/min are chosen for the study because it is in general the most common strain rate that
the technical components made of this material would meet in reality, instead of the two
other extreme conditions, too slow (1 mm/min) or too fast (100 mm/min).



Chapter 4

Finite Element Method

4.1 Material model

4.1.1 Calibration of Chaboche model

First, to simulate an indentation test using FEM, there is a need to find a constitutive
model that describes the plastic behavior of the material under testing. From the tensile
data, a set of points governing the relationship between true stress and true plastic strain
can be calculated and later fitted with LSM to a chosen constitutive model such as CHAB.
Employed in this study are two variants of CHAB model whose formulas are shown as follows.
The first variant is

σ = σy + C2εpl +
C1

γ1
(1− e−γ1εpl), (4.1)

that corresponds to
σ = b0 + b1εpl + b2(1− e−b3εpl). (4.2)

Besides, there is

σ = σy +
C1

γ1
(1− e−γ1εpl) +

C2

γ2
(1− e−γ2εpl), (4.3)

that corresponds to
σ = b0 + b1(1− e−b2εpl) + b3(1− e−b4εpl). (4.4)

Equation (4.2) and equation (4.4) are re-formulated with variables from b0 to b4 to
use for curve fitting in Python for simpler computation. Three functions are named and used
for curve fitting studies. Specifically, Equation (4.2) is function CHAB4, Equation (4.4) is
function CHAB5Y and function CHAB5. Function CHAB5Y differs from CHAB5 because
the first variable b0 is fixed with the σy value of 436 MPa. After the curve fitting using
Python, the variables from b0 to b4 are obtained and listed in Table 4.1. The fitted variables
in Table 4.1 are calculated according to Equation (4.1) and Equation (4.3) to obtain the
material parameters in Table 4.2.
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Table 4.1: Curve fitted variables for CHAB with different number of parameters.

Model b0 [MPa] b1 [MPa] b2 b3 [MPa] b4

CHAB4 480 1158 91 50 0
CHAB5Y 436 838 2 103 182
CHAB5(1) 330 784 2 205 357
CHAB5(2) 330 205 357 784 2

Table 4.2: Curve fitted variables recalculated to material parameters.

Model σy [MPa] C1 [MPa] γ1 C2 [MPa] γ2

CHAB4 480 4550 50 1158 0
CHAB5Y 436 1676 2 18746 182
CHAB5(1) 330 1568 2 73185 357
CHAB5(2) 330 73185 357 1568 2

From CHAB5 model, there are two variations CHAB(1) and CHAB(2). CHAB5(1)
has C1 and γ1 lower than C2 and γ2 while CHAB5(2) is vice versa. The reason for the
existence of CHAB5(1) and CHAB5(2) functions is that they return the same curve-fitting
plot. This is acceptable from the mathematical point of view and defining the material model
in ANSYS APDL with either CHAB(1) or CHAB(2) will return the same results. However,
it is not correct in terms of material model, because in CHAB model with five parameters,
the two parameters of the first nonlinear component (C1 and γ1) should be greater than
those of the second nonlinear component (C2 and γ2). Therefore, only the parameter set for
CHAB5(2) is considered for CHAB5. The curve fitting results for the three functions are
presented in Figure 4.1.

Figure 4.1: Fitting results of CHAB models with different number of parameters.

The three fitted curves plotted in Figure 4.1 approximate relatively well the stress
value where the true plastic strain is over 0.05. A close-up view of the yield region approxi-
mated by the three functions is presented in Figure 4.2.
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Figure 4.2: Comparison of CHAB models with different number of parameters for their
ability to approximate the yield region.

As can be observed in Figure 4.2, the curvature portion near the yield region (with
plastic true strain value between 0.002 and 0.01) could not be approximated with CHAB4
function following Equation (4.1). Therefore, it is necessary to add another nonlinear term
to the origin CHAB4 function to better approximate that portion, thus, the reason for using
CHAB5Y function and CHAB5 function following Equation (4.3). Subsequently, it can be
drawn that the CHAB5 function is the most suitable function for the SS304L material used
in this study.

4.1.2 Calibration of Perzyna model

The Perzyna model can be combined with a kinematic hardening model such as CHAB
to describe the time dependency of the material. However, it should be noted that if Perzyna
is employed, the CHAB model must be fitted with the tensile result from the lowest position
rate, which is 1 mm/min, as opposed to the tensile result from 10 mm/min is fitted with
CHAB5 above. Even though the Perzyna model calibration is reported here, it serves only
as a possible direction for future work where strain-rate sensitivity can be considered. For
IIT simulation in this study, the tensile data from the test of 10 mm/min is utilized instead
of the 1 mm/min because it is closer to the testing speed of the real machine.

For calibration of the Perzyna model, it is necessary to start with the tensile result
of the lowest strain rate, which will serve as a reference for further calculation. First, the
plastic strain rate for the testing speed of 1 mm/min is calculated. By plotting the true
plastic strain versus time, the plastic strain rate can be obtained as shown in Figure 4.3.

The slope of the curve obtained by linear fitting in Figure 4.3 is the plastic strain
rate, which is ε̇pl,1 = 0.04828 %/s. This calculation procedure is applicable as well for
the test results of 10 mm/min and 100 mm/min and the results are respectively ε̇pl,10 =
0.4828 %/s and ε̇pl,100 = 4.828 %/s. Furthermore, it is necessary to collect the engineering
stress at 1% engineering strain (σε1%) and the corresponding plastic strain (εpl1%). Moreover,
calibrating the combination of CHAB and Perzyna models requires as well the true stress
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Figure 4.3: The plastic strain rate of tensile test with the lowest strain rate of 1 mm/min.

calculated at 1% engineering strain using CHAB5 model (σCHAB,ε1%). As aforementioned,
the CHAB5 model is used but the fitting is realized on the tensile test with the lowest position
rate (1 mm/min). The procedure is the same but a different set of material parameters is
calculated, that is, σy = 250 MPa, C1 = 60775 MPa, γ1 = 325 MPa, C2 = 1463 MPa, and
γ2 = 0.67. Then εpl1% and an intermediate variable x are calculated as follows

εpl1% = 0.01−
σε1%
E

, (4.5)

x =
σε1% − σCHAB,ε1%

E
. (4.6)

Utilizing Equation (4.5) and Equation (4.6) results in Table 4.3. Variable x is then
plotted versus ε̇pl for three different strain rates and conduct curve fitting with power law to
show the equation that governs their relation in Figure 4.4.

Table 4.3: Parameters for calibration of Perzyna model.

Test speed ε̇pl [s−1] σε1% [MPa] εpl1% [-] x

1 mm/min 0.00048 525 0.00708662 0.731721
10 mm/min 0.0047 527 0.00707552 0.741721
100 mm/min 0.047 548 0.00695899 0.846721

By fitting three points in Figure 4.4 with power law, m = 0.0319 and 1/γv
1/m = 0.9153

are obtained. From these, two Perzyna parameters, that is, m = 0.0319 and γv = 16.029
are calculated. The viscoplastic stress σvp can be calculated for three different strain rates
using formula

σvp = σy(
εpl̇

γv
)m. (4.7)

The viscoplastic stress for three cases, respectively, for 1 mm/min, 10 min/min, and
100 mm/min are σvp,1 = 143 MPa, σvp,10 = 154 MPa, and σvp,100 = 166 MPa. These
viscoplastic stress components are summed up with the true stress calculated with CHAB5
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Figure 4.4: The relation between x and εpl̇ for calibration of Perzyna model.

for 1 mm/min (σCHAB) to obtain the total true stresses for three different strain rates
following

σtotal,1 = σCHAB + σvp,1, (4.8)

σtotal,10 = σCHAB + σvp,10, (4.9)

σtotal,100 = σCHAB + σvp,100. (4.10)

The analytical solutions σtotal,1, σtotal,10, and σtotal,100 are plotted versus εpl,true and
fit well with the experimental results. To simulate and calibrate the time-dependent vis-
coplastic model, a 3D cube with sides of 1 mm, which is meshed with one linear BRICK185
element. The material parameters are E, v = 0.3 (linear isotropic); C1, C2, C3, C4, and C5

corresponding respectively to σy, C1, γ1, C2, and γ2 (CHAB kinematic hardening); m and
γ (rate-dependent visco-plasticity, Perzyna model).

This FEM model functions so that when one can simulate the time-hardening phe-
nomenon by changing the time for simulation. The time is calculated from the test speed
respectively for 1 mm/min, 10 mm/min, and 100 mm/min to be 24 s, 2.4 s, and 0.24 s.
The displacement is 40%, which is approximated from εu. The true stress-true (total) strain
curves for three different strain rates are shown in Figure 4.5.

Figure 4.5: Comparison of true stress-true strain curves obtained from experiments and
ANSYS APDL: 1 mm/min (left), 10 mm/min (middle), and 100 mm/min (right).

From Figure 4.5, it can be observed that the Perzyna model is well calibrated with
reality for the herein SS304L material. The material setting can be used for simulations of
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more complicated components. It should be noted as well that the Perzyna model is not
employed for the simulation of IIT in this study because the indenting speed is relatively low.
Therefore, it is sufficient to work with the tensile results from the test speed of 10 mm/min.

4.2 Simulation in ANSYS APDL

The scripting is prepared in ANSYS Mechanical APDL 2019 R1. The geometry is
chosen to be 1 mm x 1 mm square deformable 2D plane indented by a rigid 2D circle repre-
senting the ball indenter of 1 mm in diameter. To save computational time, 2D axisymmetric
simulation is employed. The simulation setup is based on [1].

4.2.1 Meshing

First, the meshing strategy for the cube is decided as depicted in Figure 4.6. The
edges with the same letter marking (a, b, c) have the same number of nodes. Marking for
the nodes is also applied in the APDL script. The meshing strategy is based on [69].

Figure 4.6: Meshing strategy for IIT simulation.

From Figure 4.6, it should be noted that the mapped meshing is applicable only for
four-sided faces. Therefore, any splitting that results in faces with more or less than four
sides will fail the meshing machine. After defining the number of nodes on the sides, the
geometry is meshed with 2D elements (PLANE182). The element type is linear. Due to the
node distribution in the previous step, the area under the indenter is refined with smaller
elements after meshing as shown in Figure 4.7.

The meshed geometry in Figure 4.7 subjects to the indentation of a ball indenter
driven by a pilot node at the center. This node is used to collect the reaction force as
well as the depth to form the F-D curve, which is the backbone of the whole study. The
contact type is Surface-to-Surface (CONTA172) between the rigid indentation ball geometry
(TARGE169) and a deformable 2D cube (PLANE182). The contact algorithm is Augmented
method. The pilot node is assigned with a high ID (99999) so that it does not coincide with
any other node if the geometry is going to refined with a bigger number of elements.

In this example, the edges a, b, and c are meshed respectively with 10, 12, and 8
divisions. For the first trial, there is only one loading cycle during which the indenter is
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Figure 4.7: Meshed geometry and setup for IIT simulation.

pressed down from 0 to 150 µm without any middle unloading like in the real IIT. The von
Mises (equivalent) stress (VMS) contour is shown in Figure 4.8.

Figure 4.8: VMS result after for one loading-unloading cycle.

The VMS distribution in Figure 4.8 follows the Hertz contact [70]. Specifically, the
maximum stress is below the contact surface. The maximum VMS recorded at the region
with red contour is 1020 MPa. It should be noted that the more the mesh is refined, the
better the resolution of the contour is. However, this comes at the cost of significantly longer
computational time. The mesh study is shown in Table 4.4.
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Table 4.4: Effect of mesh size on simulation for one loading-unloading cycle.

a b c Element Time [s]
10 12 8 636 25
20 24 16 2502 112
40 48 32 9930 490

As shown in Table 4.4, by increasing the number of nodes on side a, b, and c, the
number of elements and the time for calculation increases by many folds. Finer mesh leads
to better contour mapping and a smoother F-D curve, but the maximum VMS remains
approximately 1020 MPa and the maximum force on the F-D curve is the same. Notably, to
simulate the real IIT, one has to simulate 15 loading-unloading cycles, which will significantly
prolong the time for simulation.

4.2.2 Boundary condition

Regarding the movement of the indenter, after indenting for 10 µm, the indenter is
withdrawn 5 µm so that the elastic component (stress/strain) can be released, leaving alone
the plastic component. This is done to facilitate the analytical stress-strain calculation later
on as described in [1]. In APDL simulation, the displacement of the ball indenter versus
time can be set as shown in Figure 4.9.

Figure 4.9: Movement of the ball indenter for 15 loading-unloading cycles.

In fact, the movement of the indenter in Figure 4.9 does not follow the real setup of
the IIT machine. The IIT machine is programmed so that after 10 µm of indenting, the
indenter is withdrawn for 50 % of the in situ measured load. These two actions form one
loading-unloading cycle and are repeated until the indenter tip reaches 150 µm. With regard
to the geometry and coordinate system in Figure 4.7, three different types of boundary
conditions are investigated as illustrated in Figure 4.10.

In the first case, the material sample is sized 1 mm x 1 mm with one symmetric
boundary condition (fixed movement in Ox axis) in the left edge and one fixation (fixed
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Figure 4.10: Different boundary conditions for IIT simulation.

movements in both Ox and Oy axes) in the bottom edge. Besides, two more cases are
considered. The second case is with extra constraint in Ox axis in the right edge. The
third case is with wider sample size, resembling best the reality in which the diameter of the
indenter is considerably small in comparison with the size of the test sample.

The reason for considering the second and third cases is that in the first case, the right
(free) edge can still deform, which may not present the reality where it is surrounded by much
thicker material. Adding an additional constraint in the free edge (second case) or widening
the free edge (third case) would introduce the effect of the rigid material surrounding the
stressed area to the simulation. After comparison, the most appropriate boundary condition
is the second case, regarding that fact that the number of elements can be significantly
reduced while not sacrificing so much the accuracy in comparison with the third case. The
boundary conditions in the second case are chosen and applied throughout the whole study.

4.2.3 Results

The exact 15 loading-unloading cycles are simulated. There are 2502 elements and
the time for simulation is 480 s. It should be noted that the computational time is almost
4.3 times higher than that of one loading-unloading cycle. The reaction force of the indenter
versus the depth of the indentation ball is depicted in Figure 4.11.

From Figure 4.11, the 15 loading-unloading cycles can be clearly observed. The
withdrawal of 5 µm almost retracts the indenter head from contact with the specimen,
as shown by the force value of almost 0. Conventionally, these peaks of the F-D curve
are subjected to a further calculation to some points on a true stress-true plastic strain
curve so that fitting can be realized to find out the constitutive model for the material.
However, owing to the new approach with NN, F-D curves are sufficient for model training
and prediction, which saves us additional computational time and effort. Figure 4.12 presents
the contour maps of the VMS value when the indenter is at the depth of 150 µm and after
its complete withdrawal from the specimen.

Figure 4.12 shows that the maximum von Mises stress when the indenter is at its
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Figure 4.11: F-D curve results for 15 loading-unloading cycles.

Figure 4.12: VMS results before and after complete withdrawal of the indenter for 15 loading-
unloading cycles.

deepest position is 982 MPa (left side), and after it retreats is 667 MPa (right side). The
equivalent plastic strain is shown in Figure 4.13.

As can be seen in Figure 4.13, after the withdrawal of the indenter, all the elastic
strain is released, left alone the plastic strain. The permanent deformation (imprint of the
indenter) is caused by a substantial amount of plastic deformation of the material under
the contact surface before the indenter is removed. The maximum equivalent plastic strain
is 1.168. A majority of the permanently deformed region is with equivalent plastic strain
ranges between 0.19 and 0.91.
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Figure 4.13: Equivalent plastic strain after complete withdrawal of the indenter for 15
loading-unloading cycles.

4.3 Model validation

4.3.1 Validation of simulated results

The simulation at this stage is ready for the automization process in which the pa-
rameters (σy, C1, γ1, C2, γ2) are varied within specific ranges to input into the FEM model
to obtain a corresponding number of F-D curves. These curves are used for the purpose of
subsequent NN training. In order to reduce the number of simulations when shuffling the
parameter set, the study considers stabilized values of C1 and γ1 and adds them to σy. The
CHAB5 model utilized so far for the simulation in Equation (4.3) becomes the AF model as
follows

σ = σy +
C1

γ1
(1− e−γ1εpl). (4.11)

It should be noted that in the stabilized state, where the term εpl stabilizes at a value
less than 1 and is multiplied with usually a very large γ1, the product of −γ1εpl will become
negatively large. This results in the near 0 product of the term e−γ1εpl , thus, making the term
1− e−γ1εpl approximately 1. Therefore, the new σy in this case is equal to the summation of
σy and C1/γ1 (=σ∞). Using Equation (4.11), the number of parameters is reduced from five
to only three (σy, C1, and γ1), which is now equivalent to the AF model. The next step is
to validate whether this AF model returns the same F-D results as the CHAB5 model that
is previously used. The recalculated parameters for the AF model from the CHAB5 model
are listed in Table 4.5.

Table 4.5: Conversion of curve fitted material parameters from CHAB model to AF model.

Model σy [MPa] C1 [MPa] γ1 C2 [MPa] γ2

CHAB5 330 73185 357 1568 2
AF 535 1567 2 0 0
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In Table 4.5, σy has been summed up with C1/γ1 in the CHAB5 model to result in
the new σy in AF model. Besides, C2 and γ2 in CHAB5 model have become C1 and γ1 in
AF model. The F-D curves obtained from FEM simulation using CHAB5 and AF material
models are plotted in Figure 4.14 and compared with the experiment.

Figure 4.14: F-D results with the use of AF and CHAB5 model in comparison with IIT
result.

The F-D curves for the two constitutive models are approximately the same indicating
that the AF (with fewer parameters) can be used instead of the CHAB5 model for the
simulation. This is better for later working with NN because it reduces significantly the
number of training samples. It should be noted as well that there is a need to add a
compliance to the F-D results collected from the FEM so that it correlates better with the
setup of the machine.

Conventionally, the full information on loading-unloading cycles is important because
of the need to consider each peak of force at each cycle to back-calculate a point on the true
stress-true plastic strain curve. By taking five peaks of five consecutive loading-unloading
cycles in F-D curve, one can calculate, following the procedure described in [1], five true
stress-true plastic strain points. From these points, an appropriate material model can be
found by curve fitting and the corresponding material parameters can be calculated.

However, herein, the combination of FEM and NN is employed in an attempt to avoid
completely the conventional calculating procedure. The new approach is that F-D curves
are collected from the FEM instead of IIT. Then, point 0 and the point at which the force
is the highest are recorded. From these two points, a line is created and added with a fixed
compliance so that it best reflects the physical measurement. By this approach, only the
slope of the straight portion of the F-D curve is important and the unloading cycles are
neglectable. It is equivalent to having only one loading-unloading cycle which is proven to
be feasible as in [71]. This explains why only the depth-controlled approach is used instead
of combining force-controlled and depth-controlled approaches in the real scenario, which
would considerably complicate the simulation process.
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4.3.2 Compliance calculation

The simulated result is lower than the experimental result obtained from the IIT
measurement due to the compliance of the machine, which can be seen from the difference
between the two highest points of the two curves in Figure 4.15.

Figure 4.15: Comparison between the experiment (15 cycles), and the simulation (one cycle).

Figure 4.15 shows the maximum force of the experiment is 1145 N while the maximum
force of the simulation is 931 N. Thus, the compliance is calculated to be 214 N. This
compliance will be added to all the F-D results that will be used for ML model.

4.3.3 Creation of dataset with FEM model

The parameters of AF model in Table 4.5 are varied within their ranges (or do-
mains), σy ∈ [175; 400] MPa - step size 25 MPa, σ∞ ∈ [500; 950] MPa - step size 50 MPa,
γ1 ∈ [1; 10] - step size 1. Remarkably, for simulation in APDL, σ∞ has to be recalculated
to C1 ∈ [500; 9500] MPa - step size 500 MPa, for inputs of AF model. As a result, for the
combination of 10 values for each parameter σy, C1, and γ1, it is possible to obtain 1000
different true stress-true plastic strain inputs as shown in Figure 4.16.

Each unique combination of the three parameters is called a configuration. In total,
there are 1000 configurations in Figure 4.16 for simulation in APDL. The 1000 maximum
force values extracted from the F-D curves before and after adding compliance are shown in
Figure 4.17.

The results from Figure 4.17 can be utilized for further training with ML. It should
be noted that only the last point (maximum force) of each simulation for NN (only one
value) is needed. The force, after being added with a compliance, varies between a range,
F ∈ [475.502; 1750.89] N. The minimum and maximum force have, respectively, the corre-
sponding material parameters σy, C1, γ1 of 175 MPa, 500 MPa, 10; and 400 MPa, 9500 MPa,
1. It should be noted that, in practice, the F-D curve obtained from the IIT measurement
is not a straight line. Therefore, a better approach is to calculate the compliance for all 15
peaks and add those compliance values to every 10 µm of depth. However, due to the fact
that the F-D curve in FEM simulation is simplified to indent 150 µm in one loading cycle
and the model is meshed with a relatively small number of elements, the peaks in between
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Figure 4.16: True stress-true plastic strain curves from CHAB model using 1000 configura-
tions.

Figure 4.17: F-D curves simulated with 1000 configurations before (left) and after adding
the machine compliance (right).

0 µm and 150 µm are not with sufficient accuracy to be considered for ML study.

For improvement, 15 cycles should be modeled in FEM simulation. The number of
elements should be double or triple the current one. For each peak, a separate compliance
value must be added to better calibrate the simulation with reality. Moreover, different
constitutive models with different number of parameters can be considered to describe the
behaviour of the material more appropriately. These changes should be carried out with
caution that the computational time will increase by many folds and more effort is required
for pre- and post-processing of the data.



Chapter 5

Neural Network

5.1 Neural Network setup

5.1.1 Neural Network construction

Python language 3.11.0 is utilized for NN construction and visualization of data for
the whole study. The primary packages that are employed are numpy 1.23.5, pandas 2.0.0,
plotly 5.14.1, sklearn 0.0.post2, tensorflow 2.12.0, matplotlib 3.7.1, etc. The FFNN is im-
plemented with the help of tensorflow package. The network can be constructed with inputs
from users regarding how the dataset is divided into training set and testing set, the number
of nodes in input/output layers, the number of hidden layers and the number of nodes on
each layer, the optimizer (herein Adam), the loss function, the number of epochs, etc.

5.1.2 Training and testing data

Each configuration of parameters of CHAB mode can be input into ANSYS APDL
and obtain one corresponding F-D curve. By varying the parameters in specific ranges,
combining them, and inputting them to ANSYS APDL, one can obtain a set of multiple
F-D curves, which can later be used to train and test the NN. The set of samples is divided
in this study by 80-20, 80% is used for training while 20% is used for testing the accuracy
of the trained model. The aim is to minimize the loss function that indicates the differences
between the real values and the prediction. The study first investigates the performance
of the proposed NN using a dataset of 1000 samples and later expands it to 7859 samples.
Because the parameters and the resulting force are real values with high variation, it is
necessary to normalize the data within small ranges such as [-1; 1] and [0; 1]. Small values
in uniform format are better for training and testing of NN [72].

5.1.3 Training and testing procedure

After having collected a set of 1000 different F-D curves, the force values and their
corresponding combinations of three parameters are separated to be the input and output for
NN, respectively. The values are normalized and fed into a FFNN. The loss and variation of
the predicted parameters from the real parameters are evaluated. The NN is reconstructed
as an attempt to minimize the loss. A NN that is successfully trained can take force value(s)
from the experiment and return parameters for the constitutive model with high accuracy.
This helps to get rid of the burden of calculation using complicated formulas from empirical
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studies in the existing literature (many material constants are highly dependent on the mate-
rial being tested), and the simulation tool (expertise in FEM and professional software) [63].

5.1.4 Data preparation

The automatized simulation of IIT with one loading cycle results in 1000 F-D curves.
The three parameters and their corresponding force from each simulation are extracted and
added to a numpy matrix (.npy). Because these data vary in a wide range with different
magnitude, it is necessary to normalize the data so that the NN can calculate the weights
and biases easier. In this study, the data is normalized in the range of [0; 1]. To train the
NN, there is a need to split the original dataset of the maximum force values and randomized
them. In this study, the dataset is split so that 80% is used for training and 20% is used for
testing the trained NN. The maximum force values collected from 1000 simulations and 80%
of it after splitting and randomization are shown in Figure 5.1.

Figure 5.1: The simulated force values: original dataset with 1000 force values (left), and
training dataset with 800 force values after splitting and randomization (right).

It can be seen that the original set of force values in Figure 5.1 (left) are relatively
structured. This is because the simulations are realized with variation of material parameters
in order. After splitting and randomization, the force values for training in Figure 5.1 (right)
are almost arbitrarily distributed. This would later complicate the training and testing of
the NN because it has to find a function that fits well with the data using the LSM or Mean
Square Error (MSE). This is the key parameter for assessing the accuracy of a NN.

As a remark, in the code and graphs shown later in this study, X stands for the input
and y for the output. The training data (80%) is with ending _train and the prediction
based on the training data is with ending _tr. In the same manner, the testing data (20%)
is with ending _test and the prediction based on the testing data is with ending _te.
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5.2 Results

5.2.1 Neural Network structure

We study first the effect of different NN structures on the loss values. The NN is built
with one input and three outputs. The sigmoid function is applied for all the nodes. The
number of epochs is set to 150 so that saturation is observed. The learning rate is 0.001.
The training data is normalized between [0; 1]. The results are shown in Table 5.1.

Table 5.1: Comparison of loss values of different NN structures.

Hidden layer 1 1 3 3 3 5 5 5
Node/hidden layer 5 10 1 5 10 1 5 10
Total hidden nodes 5 10 3 15 30 5 25 50

Loss 0.0698 0.0698 0.1026 0.0696 0.0685 0.1025 0.0715 0.0678

It should be noted that the loss results vary slightly given a number of factors: the
evaluating procedure, the numerical precision, and the stochastic nature of the algorithm.
Therefore, each simulation is run a few times and only the average outcomes are reported.
It can be observed in Table 5.1 that the lowest loss that can be obtained is with a NN of ten
hidden layers, each with five nodes. The result is, however, comparable with the simplest
structure of one hidden layer, each with five nodes. Remarkably, the loss values higher than
0.10 exhibit an interesting pattern. Figure 5.2 illustrates how the training data is predicted
by showing the results of the NN with three hidden layers, each with one node.

Analytically, to interpolate such a noisy dataset, one of the best solutions is to cal-
culate the average value, which results in a straight line for the prediction as shown in
Figure 5.2. This is undesirable for us because it means that the three parameters remain
constant regardless of the force value. The NN with one hidden layer containing five nodes
is the most reasonable in terms of the loss value and simplicity of the structure. This NN
structure is utilized for further studies and the results are presented in the below subsections.

5.2.2 Activation function

The NN structure with one hidden layer containing five nodes is studied in combina-
tion with different activation functions. The key performance indicators are the loss versus
epoch, and error between the real data (y_test) and the prediction (pred_te). For better
visualization, only the first 100 samples are plotted. The activation function remains to be
sigmoid. Figure 5.3 shows the results.

As illustrated in Figure 5.3, the sigmoid function convereges slowly to a loss value of
0.0698. The prediction of parameter 1 follows the trend of the training data. Notably, the
prediction of parameter 2 fits the best to training data. However, the prediction of parameter
3 has a significant gap in comparison with the training data and the trend is almost opposite.
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Figure 5.2: Evaluation of NN structure: Loss versus epoch, and error between the real data
and the prediction. The almost constant blue lines indicate that the parameters are not
learned properly for some NN structures.

Sigmoid function is then changed to softplus function. Using the same structure, the results
are shown in Figure 5.4.

The loss in Figure 5.4 is 0.072, which is slightly worse than that of sigmoid. Moreover,
for parameter 2, wrong predictions (bigger than 1) are made. It can be drawn that the
softplus activation function with the herein NN structure is not appropriate for such a task.
Therefore, the sigmoid function is used for further study.

5.2.3 Separate evaluation of each parameter

The three parameters are then evaluated separately to observe if the loss value can be
better. The NN structure has one input, one hidden layer with five nodes, and one output.
The activation function is sigmoid. The results are shown in Figure 5.5, Figure 5.6, and
Figure 5.7.

As can be observed in Figure 5.5, Figure 5.6, and Figure 5.7, separated training of
parameters 1, 2, and 3 results in respectively the loss of 0.0922, 0.0255, and 0.0965. The
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Figure 5.3: Evaluation of NN with sigmoid activation function: Loss versus epoch, and error
between the real data and the prediction.

predicted parameter 1 follows the trend of the training data but with a significant difference.
The prediction of parameter 2 fits the best to the training data. Meanwhile, the predicted
parameter 3 goes in the opposite direction to the training data. In other words, parameter
2 is the best learned but not the others. From the material point of view, parameter 2
corresponds to C in the AF constitutive model, which defines the initial slope of the plastic
curve from point σy. Indeed, the yield limit of the material has been exceeded within the
very first few loading-unloading cycles, evident from the physical IIT. The material behavior
after being indented deeper than this threshold value up to 150 µm is primarily plastic.
Therefore, it is reasonable that parameter 2 has the highest influence on the force value that
is predicted.

5.2.4 Reversed model

Mathematically, it is better for the NN model to interpolate if there are more inputs
than outputs [73]. Therefore, the thesis proceeds with an investigation of a reversed structure
of the above NN model with three inputs (three parameters) and one output (one maximum
force value). The NN is with one hidden layer consisting of five nodes. The activation
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Figure 5.4: Evaluation of NN with softplus activation function: Loss versus epoch, and error
between the real data and the prediction.

function is sigmoid. The model with one input and three outputs is henceforward called the
original model. The loss value and deviation of the prediction of maximum force from the
training value are shown in Figure 5.8.

As shown in Figure 5.8, the loss value is 0.001. It should be noted that, in principle,
the fitting functions cannot approximate (or learn) the outliers. This is a common issue
in ML applications, in general, the learning model has difficulties learning the extremes,
they work much better over smooth and regular functions. In general, the force values are
predicted with considerably high accuracy. This confirms the hypothesis that the higher the
number of inputs than outputs, the better the prediction with NN model. With this level
of accuracy, the reversed NN model can be used to replace the FEM model in APDL with
acceptable error.

5.2.5 Usage of reversed model

The reversed model predicts well the force values from three inputs. As a result, the
reversed model can be employed instead of the FEM simulation in APDL (with acceptable
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Figure 5.5: Evaluation of NN in predicting only parameter 1: Loss versus epoch, and error
between the real data and the prediction.

Figure 5.6: Evaluation of NN in predicting only parameter 2: Loss versus epoch, and error
between the real data and the prediction.

error) to create more force prediction from a higher number of parameter configurations.

For example, by halving the step size for variation of the three parameters in their
domains, the number of configurations can be increased from 1000 to 6859. These 6859 con-
figurations can be input into the reversed model to predict the corresponding 6859 maximum
force values. Subsequently, 6859 sets of parameters and corresponding forces (obtained from
the reversed model) are collected and combined with the previous 1000 results (obtained
from simulation in APDL) to create a larger dataset that can be used to train the original
NN model. This is done to increase the number of samples in an attempt to reduce the loss
value of the original model.

Because of the increased number of data, the structure of the original model is modi-
fied to have three hidden layers, each with 10 nodes. The activation function remains to be
sigmoid. The results of training with 7859 samples are shown in Figure 5.9.
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Figure 5.7: Evaluation of NN in predicting only parameter 3: Loss versus epoch, and error
between the real data and the prediction.

Figure 5.8: Evaluation of the reversed NN in predicting force: Loss versus epoch, and error
between the real data and the prediction.

In Figure 5.9, there is a steep drop in loss value within the first 20 epochs. The loss
converges then to the value of 0.0610. In comparison with the original model in Figure 5.3,
the loss value is almost 1% better. Parameter 2 is still the best prediction. Notably, owing to
the increase of input samples, parameter 3 is better approximated, evident from the fact that
the prediction starts following the trend line of the train data. This confirms the hypothesis
that the higher the number of training samples, the better the prediction of the NN model.
In general, there is not a significant improvement in terms of statistical differences.
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Figure 5.9: Evaluation of NN trained with 7859 samples: Loss versus epoch, and error
between the real data and the prediction.

The three parameters are studied separately following the above procedure. The
results can be observed in Figure 5.10, Figure 5.11, and Figure 5.12.

Similar to the previous results with 1000-sample training, parameter 2 is best learned.
The loss values observed in Figure 5.10, Figure 5.11, and Figure 5.12 for parameters 1, 2,
and 3 are respectively 0.0839, 0.0205, and 0.0852. Parameters 1 and 3 are used together to
train the NN, which results in a loss value of 0.0845. By increasing the number of training
samples to almost eight times, the loss value decreases approximately 1% for parameter 1 and
parameter 3. Whether these two parameters are trained separately or together has almost
no influence on the accuracy of the NN model. For parameter 2, the loss value is 0.5%
indicating that increasing training samples does not have the same effect on all parameters.

Besides, one has to consider the fact that the supplementary 6859 results generated
from the reversed NN contain already prediction errors. This would result in substantial
accumulated error the more samples are generated and employed. Moreover, it should be
noted that FEM is an approximating method by its nature, which inevitably downgrades
the performance of the model if it is not calibrated well with the physical measurement.



5.2. RESULTS 55

Figure 5.10: Evaluation of NN trained with 7859 samples in predicting only parameter 1:
Loss versus epoch, and error between the real data and the prediction.

Figure 5.11: Evaluation of NN trained with 7859 samples in predicting only parameter 2:
Loss versus epoch, and error between the real data and the prediction.

Figure 5.12: Evaluation of NN trained with 7859 samples in predicting only parameter 3:
Loss versus epoch, and error between the real data and the prediction.



Chapter 6

Conclusions and Future work

The final goal of the study has been accomplished, that is, to create a framework
that incorporates FEM and NN to evaluate the experimental data from a physical IIT on a
material and directly calibrate a suitable plasticity model for it. The study is conducted on
austenitic steel SS304L that contains high Chromium composition and therefore is soft by its
nature. The material has been a challenge for IIT because the technology requires accurate
measurement of the imprint area and corresponding F-D curve to derive the mechanical
properties following the stress-strain approach. A solution for this is the application of NNs
where the F-D curve is the only input that is needed. A FEM model is then utilized to
simulate several IITs and a NN is employed to learn the patterns from the simulated data.
Once appropriately trained, this NN can intake an F-D curve and predict the corresponding
parameters for the plasticity model of the material with high accuracy.

Specifically, IITs are conducted on a SS304L specimen to obtain a set of F-D curves as
references. Then, the tensile test with DIC are carried out on dog-bone specimens machined
from the same billet to obtain a set of stress-strain curves. A presentative curve is chosen
for fitting with the CHAB model with LSM. The fitted model is later used to describe the
plastic behavior of the material under IIT simulation with FEM. The software employed
for FEM modelling of IIT is ANSYS APDL. After adding the compliance to the F-D curve
obtained for this first simulation, the FEM is calibrated. Then, a variation of the material
parameters of the CHAB model is conducted to produce 1000 configurations, from which
1000 corresponding F-D curves can be simulated. It should be noted that these curves should
be added with a compliance to reflex reality. From these curves, 1000 maximum forces are
extracted and combined with 1000 configurations of material parameters to make an input
dataset for training a FFNN. To find the optimal NN model for the task, different structures
and different training approaches are investigated. Reported in the thesis is also the use a
reversed structure of the NN to increase the number of samples in the input dataset from
1000 samples to 7859 samples. The 7859 samples are subject to the same procedure as the
1000 samples with the NN study. The following paragraphs summarize the contributions of
the thesis and its drawbacks, from which directions for future works are discussed.

Physical test with IIT: The influence of the surface roughness of the specimen on
IIT results is not yet studied. Based on the difference in maximum force (hardness) measured
along the diameter, one can acknowledge that the cold-drawn SS304L bar is not an ideal
material for the study because it is in-homogeneous. It also suggests that for such a billet,
any additional machining that removes the outer layer with higher strength is unfavorable
because it leaves only the weak core with lower strength for the final machined parts. On
the other hand, it can be drawn that PIIS 3000 machine from the UTM company is able to
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measure the local hardness with consistent results. This is evident from the gradual change
of the F-D curves from high to low as IIT is conducted from the outer surface toward the
core. Another factor that may affect the results is the modelling of loading-unloading cycles,
where the loading phase is depth-controlled (indents 10 µm per step) and the unloading phase
is force-controlled (retracts 50 % of force per step). In practice, one can change the setup
for indentation and retraction to better suit their needs. For example, one of the possible
adjustments is to increase/decrease the indenting depth or fully withdraw the indenter after
each step to totally release the elastic strain, leaving alone the plastic strain at the imprint.

Tensile test with DIC measurement: Because the material is soft, the close-up
view of the fracture shows remarkably clear imprints inherited from the cutting tool. The
effect of this phenomenon on the tensile strength of the SS304L specimen is unknown. It
is only visible after the specimen has been significantly elongated to failure. Indeed, the
machined surface is so smooth that the paint cannot stick well. Besides, the strain-rate
dependency of the material can be considered for future FEM simulation.

FEM simulation in ANSYS APDL: The thesis prioritizes establishing the work-
flow, therefore, only one value of machine compliance is employed. In fact, the line that
connects the maximum forces over the depth in IIT is nonlinear. In other words, the com-
pliance for each loading-unloading cycle is different. Therefore, it is necessary to simulate 15
loading-unloading cycles and add the corresponding compliance to model better the reality.
Moreover, for better accuracy, it is possible to prepare the geometry with finer mesh and
increase the number of steps in each cycle of the simulation. The simultaneous force/depth
control can be modeled as well. However, one has to consider the fact that each improvement
will increase the computational time by many folds and the FEM model will be automated to
produce a huge number of F-D results for later NN training. Moreover, different constitutive
models to describe strain-hardening and/or time-hardening behaviors can be employed.

NN training: The FFNN model learns well parameter 2, which is C in the AF
constitutive model. From the material point of view, C defines the initial slope of the plastic
curve from point σy. Therefore, it is reasonable that it has the highest influence on the force
value that is predicted because the behavior of the material during IIT is almost in the plastic
region (permanent deformation). To improve the performance of the NN, it is necessary to
experiment with different activation functions or architectures in terms of the number of
nodes and hidden layers. Besides, instead of FFNN, different types of NN can be considered.
It should be noted that the input force for the approximation task is almost a white noise
distribution with many outliers. Therefore, one of the possible improvements would be to
smooth the dataset of forces by filtering the outliers using a predefined window so that it
becomes less noisy and the approximation by NN can be realized better. Another approach
is to increase the number of training data by simulating more configurations. The number of
inputs can be increased as well by simulating the full 15 loading-unloading cycles so that for
each configuration, there are 15 maximum force values (after each loading-unloading cycle
with compliance added) instead of one force value as studied herein. Furthermore, other ML
techniques can be analyzed in the future. Besides, it would be good to integrate methods
for augmenting the training data (such as Bagging or other strategies for sampling). A NN
model has been implemented and proves itself to be a promising tool for the highly accurate
evaluation of material properties in combination with IIT.
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