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Abstrakt

Tato diplomová práce se zaměřuje na možnost bezkontaktního měření dechové frekvence v průběhu
každodenní fyzické aktivity pomocí radarového systému. Signály zachycené radarem byly zpracovány
pomocí metod analýzy nezávislých komponent (ICA) a empirické vlnové transformace (EWT) pro
extrakci dechové frekvence. Cílem bylo ověřit, zda kombinace IR-UWB radaru a navrženého algo-
ritmu zpracování signálu může poskytnout přesný odhad dechové frekvence bezkontaktně. Výsledky
této studie naznačují, že navrhovaný přístup má potenciál pro efektivní a bezkontaktní monitoro-
vání dechové frekvence při volném pohybu sledovaných osob. Pro ověření algoritmu bylo navržen
a realizován experiment v obytné laboratoři. Algoritmus byl porovnán s daty o dechové frekvenci
získanými pomocí odporového hrudního pásu během experimentů a dosáhl hodnoty Pearsonova
korelačního koeficientu 0,94 a střední chyby (ME) -0,41, což ukazuje Bland-Altmanův graf.

Klíčová slova

IR-UWB, Dálkové snímání, Bezkontaktní měření, Monitorování vitálních funkcí, Dechová frekvence,
Analýza nezávislých komponent (ICA), Empirická vlnková transformace (EWT)

Abstract

This master thesis investigates the possibility of remotely measuring respiratory rate during daily life
physical non-stationary activity using an IR UWB radar system. The radar signals were processed
using Independent Component Analysis (ICA) and Empirical Wavelet Transform (EWT) methods
to extract respiratory rate information. The aim was to determine whether the combination of
the IR UWB radar system and signal processing techniques can provide an accurate estimate of
respiratory rate wirelessly. The outcome of this study suggests that the proposed approach has
potential for effective and non-contact monitoring of respiratory rate. The algorithm was evaluated
against respiratory rate data obtained through a resistance chest belt during the experiments, and
achieved a p-value of the Pearson correlation coefficient analysis of 0.94 and a mean error (ME)
value of -0.41, as indicated by the results of the Bland-Altman plot.
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Chapter 1

Introduction

Nowadays, accurate monitoring of vital signs has become a key part of providing quality care to
patients in home health care, assisted living facilities, nursing homes and adult day care centers.
Because the fundamental techniques (wearable sensors, electrodes, or chest straps) of continuous
sensing of vital signs are often uncomfortable and impractical for long-term measurements, wireless
technology has become the focus of a growing number of research studies in recent years. Since
the United States Federal Communications Commission (FCC) has opened regulations allowing for
the unlicensed use of the 3.1 to 10.6 GHz range, UWB (Ultra-Wideband) technology has become
increasingly prevalent in the field of wireless communication and sensor applications [1]. Its impres-
sive sensitivity to even the slightest change in the human body makes UWB technology an ideal
tool for wirelessly measuring vital signs [2]. UWB technology has been used effectively in a variety
of fields, from medical applications (vital sing sensing) [3, 4, 5, 2, 6] to car crash prevention [7, 8],
and gesture recognition [9].

In an ideal situation, where the object in front of the radar is motionless and does not make
any body movements, the radar signal modulated by chest movement can be precisely estimated
as a respiratory rate. Unfortunately, in real-life scenarios, the presence of noise from walking, daily
movements, and speaking can impede an accurate measurement of respiratory rate. For this purpose,
this thesis introduces a system capable of remotely estimating respiratory rate in real-life scenarios.
Compared to other studies that measure respiratory rate only during periods of no movement and
directly from the back or chest, this study can cope with a variety of different situations, such as
changing angles of the body, different distances between the person and the radar, and a movement
that may be encountered throughout the course of a day.

Realizing the above principles in practice involves several complex design challenges. First,
it was essential to design a method that could effectively separate signals from the body during
changes in position in front of the radar. This challenge is here successfully addressed by applying
the ICA (Independent Component Analysis) algorithm for Blind Source Separation. Only the
component with the highest energy was selected in the respiratory rate segment [0.15 - 0.40] from
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all components separated by ICA. Second, it was crucial to implement a filtering method that is
capable of effectively separating signals that come from only chest movement. For this purpose, an
adaptive filtering method was designed that uses an empirical wavelength transform (EWT) and a
bandpass filter with cutoff frequencies [0.15 - 0.40] at physiological limits of respiratory rate.

The thesis is organized as follows. In Chapter 2, the readers are presented with a comprehensive
and detailed overview of the current state of remote vital sign measurement using radar technology.
This chapter provides an analysis of the various radar technologies utilized in the articles studied,
comparing their advantages and disadvantages, and exploring the commonly employed methods in
remote vital sign measurement. Chapter 3 is dedicated to presenting the theoretical background
necessary to understand the methods employed in the thesis. This chapter provides an in-depth
overview of the theory through the use of equations, flowcharts, and figures. These visual aids are
used to enhance understanding and ensure the clarity of the theoretical concepts presented. Chapter
4 provides an overview of the radar device and methods used in developing the algorithm to estimate
the respiratory rate. Each method is described within its specific context and the reasons for the
methods employed. Chapter 5 described experiment which was developed for evaluation. Chapter 6
presents the study results using absolute error, Pearson’s correlation coefficient, and Bland-Altman
graphs. These results are compared with other studies that focus on developing algorithms for
measuring vital signs. Chapter 7 provides an in-depth discussion of the study findings and their
implications for the field of remote vital sign measurement using radar technology. Chapter 8
serves as the conclusion of the thesis, summarizing all of the insights gained throughout the study,
including the main obstacles, problems, and advantages encountered. Furthermore, the chapter
outlines future work that can be done to further advance the field of remote vital sign measurement
using radar technology.
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Chapter 2

Recent Work

Various techniques have been developed for the remote estimation of vital signs, with particular
emphasis on accurate measurement of respiratory rate. Numerous investigations have effectively
estimated vital signs by monitoring the chest or neck of human subjects in a stationary position of a
measured participant in front of the radar [3, 5, 2]. Additionally, many studies have tried to address
artefacts resulting from movement and ambulation during measurements of vital signs using the
IR-UWB radar [4, 6, 10, 11, 12, 13].

2.1 Radar technologies

While this thesis focusses on the use of the IR-UWB radar to estimate respiratory rate, it is worth
noting that various types of radar have been explored and used effectively in other research studies.
Three additional sensors commonly utilised for remote vital sign measurements include a continuous
wave Doppler radar (CW), a frequency modulated continuous wave radar (FMCW), and optical-
based systems.

When it comes to advantages and disadvantages, CW radar suffers from the absence of modula-
tion, resulting in a lack of timing information and the inability to extract target distance. Further-
more, the requirement for isolation between the transmitter and receiver constitutes a significant
limitation for CW radar systems [14].

FMCW radar emits a continuous wave that is frequency modulated over time, introducing a
timing mark known as a frequency sweep or chirp. The reflected signal is received with a frequency
shift and time delay dependent on the object’s relative speed and distance from the radar sensor.
Spectral analysis can be used to estimate the target’s distance from the sensor and range resolution.
However, the implementation of FMCW radar requires addressing issues such as Tx-Rx leakage,
AC-DC coupling effects, RF non-linearities, and the need for high sampling rates [14]. A critical
drawback of optical-based systems is their inability to penetrate objects.
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Doppler radars can accurately measure the velocity of moving objects, even in challenging en-
vironments with multiple targets or clutter. This makes it an ideal choice for applications where
velocity measurement is critical, such as in meteorology, traffic monitoring, and military surveil-
lance. Doppler radar requires relatively low power consumption compared to other radar systems.
This makes it a cost-effective and energy-efficient solution for applications that require continuous
monitoring, such as in medical devices for remote patient monitoring [15].

Millimetre wave (mmWave) radar technology utilises short-wavelength electromagnetic waves
to detect and measure objects. Radar systems transmit electromagnetic signals, which are then
reflected by objects in their path. By capturing and analysing the reflected signals, a radar system
can accurately determine various parameters, including range, velocity, and angle of the objects.
This makes mmWave radar technology an effective tool for a wide range of applications, from
industrial sensing to automotive safety systems. But in comparison to the UWB radar that is
languishing behind in price. However, compared to UWB radar, mmWave radar technology is often
more expensive.

IR-UWB radar boasts several advantages, including the ability to provide 2D location informa-
tion with submillimeter displacement accuracy. Additionally, IR-UWB radars exhibit low-power
spectral densities, making them less susceptible to interference signals. Moreover, they offer super
high range resolution. [12]. We can observe Table 2.1 presenting the critical features of various
radar types.

Table 2.1: Crucial features of different types of radar

Radar CW FMCW IR-UWB Doppler radar mmWave

Range detection - High

Better for
long range
short range

is low accurate

Lower than
range detection

of UWB
and FMCW

Higher than
range detection

of UWB
and FMCW

Accuracy High

High
precision

complicated
processing

Influence
on pulse

width and
repetition rate

Lower than
accurancy
of UWB

and FMCW

Higher signal to
noise ratio

(SNR)
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2.2 Algorithms and Methods

Over the years, various radar technologies have been used in the field of vital signs measurements,
leading to the development of several estimation approaches. To ensure the accuracy of these
estimations, many preprocessing techniques have been used, such as DC offset reduction and clutter
removal. Among the commonly used methods for preprocessing are the LoopBack filter [2, 6, 16, 17]
and Kalman filter [3, 6, 11]. These techniques have been found to be effective in reducing unwanted
noise and improving the quality of radar signals, leading to more accurate measurements of vital
signs.

Radar signals used in vital signs measurements are often composed of various harmonic com-
ponents resulting from reflexions of the chest movement due to vital signs and other unwanted
movements. Therefore, it is essential to split the signal according to the frequencies of the desired
signals. To achieve this, various approaches have been used, such as Fast Fourier Transform (FFT)
[3, 7, 15], Empirical Wavelet Transform (EWT) [4, 6], and Empirical Mode Decomposition (EMD)
[5, 13]. These methods have proven to be effective in separating the desired signals from the un-
wanted ones, thus improving the accuracy of the vital signs measurements obtained using radar
technology.

Digital filters such as Finite Impulse Response (FIR) and Infinite Impulse Response (IIR) filters
have also been used in vital signs measurements to extract desired signals and reduce noise [7, 16,
18]. These filters have been found to be effective in removing unwanted noise and artefacts from
radar signals, resulting in more accurate and reliable vital signs measurements. Numerous studies
have proposed more complex approaches, such as neural network algorithms such as CNN [11, 12]
and LSTM models [10].

Table 2.2 presents a comparison of several studies that have focused on measuring vital signs
using various methods and types of radars. The table shows differences in the values of the results,
the number of radars used, the vital signs that were measured, and the type of scenario. Motivation
to include HR results from different studies is rooted in the focus on the detection of vital signs.
Currently, the thesis is focused on RR, but future work may also aim to estimate HR.
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Vital Sign
Assessed

Algorithms
and

methods

Number
of

radars

Radar
types Performance Scenario

[3] HR RR Kalman filter 1 UWB - Static
FFT

[6] HR EWT 1 UWB Movement 4.3
% error rate Movement

Kalman filter Static 2.25
% error rate

Loopback filter

[4] HR RR EWT 2 UWB HR
accuracy 86.9% Movement

Cross correlation RR absolute
error 2.3 rpm

[5] HR EMD 1 UWB RR ICC = 0.852 Static
RR VMD HR = 0.957
R-R R-R = 0.701

[16] RR Loopback filter 1 mm Wave Mean error 2 bpm Static
IIR filters

[18] HR FIR filters 1 UWB HR average
error 1.82% Static

[10] HR RR Body movement
estimation 1 FMCW HR avg.

error 5.57 bpm Movement

LSTM model RR avg.
error 3.32 bpm

[7] HR RR FIR filter 1 UWB RR 0.06 rpm error Static
STFT HR 0.6 bpm error

MS-VMD

[15] HR RR FFT 1 Doppler
radar

Corelation coef.
HR 0.99 Static

Analog BPF Corelation coef.
RR 0.92

Peak detection
[11] HR RR Kalman filter 3 FMCW HR accuracy 92.3% Movement

CCNN module 2x UWB RR accuracy 99.9%
[12] HR RR IAA 2 UWB - Static

[13] HR RR EMD 1 UWB HR avg.
accuracy 97.39% Static

Bandpass filtering RR avg.
accuracy 95.12%

Peak Detection

[19] HR RR MIMO
technologies 1 FMCW - Movement
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Chapter 3

Theoretical Background

This chapter serves as the theoretical basis for the methods and approaches utilized in this thesis.
Its primary objective is to establish a clear theoretical framework that equips readers with the neces-
sary knowledge and understanding of the fundamental concepts, ensuring they fully comprehend the
research methodology and the reasoning behind the chosen approach. The chapter’s focus is on five
key topics: Radar device, Breathing mechanism, digital filters, including Finite Impulse Response
(FIR) and Infinite Impulse Response (IIR); Blind Source Separation, mainly Independent Compo-
nent Analysis (ICA); and Multi-Resolution Analysis, particularly the Empirical Wavelet Transform
(EWT). These concepts are essential to comprehensively understand the research methods and
approaches employed in this thesis.

3.1 Measurement principle

This section explains the measurement principle in detail, describing how data is obtained from radar
and how time and distance are computed in radar matrices. The UWB Radar obtains reflected data
from the body by sending out a very short and low-power pulse of electromagnetic energy. The
signal bounces off the body and returns to the radar where it is then processed to determine the
body’s position. The radar can also measure the little changes in the position of the chest (the
aim of the algorithm). The reflected data is used to create a matrix image of the space in front
of the radar, which can then be used to track movement. Impulse radar can determine the range
by measuring the delay between the transmitted pulse and its echo. The measured delay to the
reflection is calculated using the speed of light, c, divided by 2, as the radar signal must travel to
the target and back [20].

range (ns) = c× τ

2 (3.1)

τ(t) = 2d(t)
c

(3.2)

τ = fast time, d = distance, t = slow time, c = speed of light
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(a) Reflection of radar waves (b) Radar matrix

Figure 3.1: Principe of measurement

The electromagnetic amplitude reflection from the air-skin boundary is 72%. The signal received
from the radar, as described in Section 3.1, can be expressed as the following equation 2. The arrival
time of the received signal reflected from the target is based on equation 4.3.

r(t, τ) =
K∑︂

v=1
rv(t, τ) + rn(t, τ) + rDC(t, τ) + n(t, τ) (3.3)

rn(t, τ) is the signal reflected from the chest, and rv(t, τ) is the signal reflected from different body
parts. K is a number of pulses. rDC(t, τ) is Dc off set and n(t, τ) is Gaussian noise with a variance
of σ2.

Radar echo signals rn(t, τ) are stored in the matrix M(n, k) where n is fast time (represent a
range in [ns]) and k is slow time (represent time in [s]). The dimension of the row is referred to as
the "fast time" dimension, representing the time slots that constitute a single PRI (Pulse Repetition
Interval). Conversely, the dimension of the column is known as the "slow time" dimension, which
refreshes after every PRI. Figure 4.4 (b) illustrates how the concept of "fast time" and "slow time"
can be visualized by converting the time sequence of the signal into a matrix [21].

3.2 Breathing mechanism

When we breathe, the diaphragm contracts and relaxes in a cyclical motion. This motion plays a
vital role in respiration. When the diaphragm contracts, the volume of the thoracic cavity increases,
and the air is drawn into the lungs - inhalation. When the diaphragm relaxes, it applies pressure
on the lungs, expelling the air – exhalation [22]. The fundamental working principle of chest wall
motion estimation is to measure the time-of-flight of the transmitted pulse from IR-UWB radar
and receive the backscattered energy. By measuring the distance to the chest and observing how it
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changes over time due to the movement of the chest, an accurate estimation of the respiratory rate
can be made [10].

Figure 3.2: Movement of the diaphragm while breathing A) Front view B) Side view.

3.3 Digital filters

Digital filters can be classified into two main categories: Finite Impulse Response (FIR) filters and
Infinite Impulse Response (IIR) filters. FIR filters are known for their linear phase response, which
makes them ideal for applications where phase distortion must be minimized. IIR filters, on the
other hand, have a feedback loop that allows them to achieve high levels of attenuation, making
them useful for applications where a high degree of signal filtering is required [23, 24].

3.3.1 Main filter attributes

When designing a filter, it is important to consider several key attributes. The first is the pass
band, which refers to the data that is sent directly to the output time history. To ensure that the
data in the pass band matches the original time history data, it is crucial to eliminate any ripple in
the filter. Ripple is defined as a slight variation in amplitude as a function of frequency, and ideally,
the filter should have an amplitude of exactly one in this band.

Another critical attribute is the transition width, which determines the frequency range between
the pass and stop bands. Depending on the application, it may be desirable to have a narrow
transition width. The method and filter order used will affect how quickly the transition occurs.
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Figure 3.3: Attributes of filter, [25]

The stop band is another essential attribute, which may also contain data if the filter has ripple.
In some applications, the amplitude of the ripple may be insignificant, while in others, it may be
unacceptable.

Lastly, filters create a delay in the output time history, which can vary with frequency. Running
a time history forward and backward through a filter can remove this delay, resulting in a zero-
phase filter. However, in some applications where phase is critical, a zero-phase filter may not be
an option. In these cases, it is crucial to consider the group delay/phase as an important attribute
of the filter design [23, 24, 25, 26].

3.3.2 Comparison of FIR and IIR filters

Digital filters are an essential component in many modern signal processing systems. There are two
primary types of digital filters, namely Finite Impulse Response (FIR) and Infinite Impulse Response
(IIR). These two types of filters differ in their characteristics, design methods, and applications.
Understanding the differences between FIR and IIR filters can help in selecting the most appropriate
filter type for a given signal processing task.

In the realm of digital signal processing, a Finite Impulse Response (FIR) filter is a type of
digital filter whose impulse response has a finite duration. This means that the impulse response of
an FIR filter does not rely on feedback, making it a non-recursive filter [23, 25].
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The transfer function of an FIR filter, denoted by H(z), can be expressed as equation (3.1) or
(3.2):

H(z) =
N−1∑︂
n=0

h(n)z−n (3.4)

H(z) = h(0) + h(1)z−1 + ...+ h(n)z−(N−1) (3.5)

where N is the filter length of the impulse response h(n). The output in the time domain can
be expressed as follow:

y(n) = x(n) ∗ h(n) (3.6)

And output in a frequency domain can be expressed as follow:

X(z) = X(z)H(z) (3.7)

Figure 3.4: Different types of FIR filters, [25]

IIR filters are characterized by having feedback in their transfer function, which allows them to
have a more flexible frequency response compared to FIR filters. The transfer function is stated as
below:

H(z) =
∑︁M

k=0 pkz
−k

1 +∑︁N
k=1 qkz−k

(3.8)
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where pk and qk are the coefficients of the filter. M and N are the number of filter coefficients,
with N ≥ M . The traditional IIR filter is described by the following difference equation:

y(n) =
M∑︂

k=0
pkx(n− k) −

N∑︂
k=0

qky(n− k) (3.9)

Figure 3.5: Different types of IIR filters, [25]

When comparing FIR and IIR filters, there are some notable differences. One advantage of IIR
filters is that they can achieve similar performance to a FIR filter with a lower order, as shown in
Figure 3.4.

Figure 3.6: FIR vs IIR, [25]

This can make them a more efficient option in certain applications. Moreover, IIR filters are
often used in real-time applications due to their lower computational complexity. However, it’s

22



important to note that IIR filters can introduce different delays on different frequencies, which
can be a consideration in certain applications. One potential disadvantage of IIR filters is their
potential for instability, due to the feedback in their transfer function. This instability can cause
the filter output to oscillate or grow without bound, leading to unpredictable behavior. Therefore,
careful design and analysis of the filter is necessary to ensure that it remains stable for its intended
application [23, 24, 25, 26].

Table 3.1: Differences between filters

IIR FIR
Computational speed Fast - Low Order Slow - High Order

Phase / Delay Non constant Constant
Stability Unstable Stable

3.4 Blind Source Separation

Blind Source Separation is a signal processing technique that is used to separate a mixture of
signals into individual components without any prior knowledge of the individual components. The
term "blind" refers to the fact that no prior knowledge is assumed about the sources of the signals.
There are many different methods for Blind Source Separation, but the most common ones are
based on statistical methods such as Independent Component Analysis (ICA), Non-negative Matrix
Factorization (NMF), and Principal Component Analysis (PCA). In this thesis, only Independent
Component Analysis (ICA) is utilized to extract data from radar signals. Therefore, in the following
section, we will focus exclusively on the principles and applications of this method. [27, 28, 29].

3.4.1 Independent component analysis (ICA)

In this part is described Independent Component Analysis (ICA), which is a commonly used statis-
tical technique for solving the blind source separation problem. The subsections below outlines the
fundamental model of ICA and explains the conditions under which its parameters can be estimated
[30, 31, 32].
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3.4.2 ICA model

All signals observed represent over the time are represented as follows, si = {si1, si2, · · · , siN }, where
N is number of time steps. Two source signal can be expressed as follow equation:

S =
(︄
S1

S2

)︄
=
(︄
si = {s11, s12, · · · , s1N }
si = {s21, s22, · · · , s2N }

)︄
(3.10)

The source signals S1 and S2 can be mixed as follows, X1 = a× S1 + b× S2, where a and b are
the mixing coefficients and X1 is the first mixture signal. The two mixtures can be represented as
follows:

X =
(︄
X1

X2

)︄
=
(︄
aS1 + bS2

cS1 + dS2

)︄
=
(︄
ab

cd

)︄(︄
S1

S2

)︄
= AS (3.11)

Therefore, simply, the mixing coefficients (a; b; c, and d) are utilized for transforming linearly
source signals from S space to mixed signals in X space. Mixing mechanism is describe in follow
Figure 3.6:

Figure 3.7: Mixing process, [30]
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Figure 3.7 depicts the unmixing process, which is essential for extracting desired signals from a
mixture.

Figure 3.8: Unmixing process, [30]

3.4.3 Non-Gaussianity and Independence

The central limit theorem states that under certain conditions, the sum of independent signals with
arbitrary distributions tends toward a Gaussian distribution. The sum of two independent signals
generally has a distribution closer to Gaussian than the distributions of the original signals. As such,
a Gaussian signal can be viewed as a linear combination of many independent signals. This concept
highlights the possibility of separating independent signals from their mixtures through a linear
signal transformation that is as non-Gaussian as possible, making non-Gaussianity an important
principle in ICA estimation. To quantify non-Gaussianity, the signals must first be normalized.
Common measures of non-Gaussianity include kurtosis and entropy measures [30, 31, 32].

3.4.4 ICA assumption

Statistical Independence: The components extracted through ICA are assumed to be statistically
independent from each other, i.e., they do not share any common information or sources.

Non-Gaussianity: ICA assumes that the sources of the observed data are non-Gaussian. This
is because, in a Gaussian distribution, the mean and variance provide complete information about
the data, whereas in a non-Gaussian distribution, higher-order moments are also necessary [30, 31,
32].
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3.4.5 ICA pre-processing

The underlying assumption of Independent Component Analysis (ICA) is that the input data con-
sists of independent sources. This means that each component of the input data is statistically
independent of the other components. Moreover, ICA assumes that the sources are non-Gaussian,
which means that they have a probability distribution that is not a normal (Gaussian) distribu-
tion. This is because if the sources are Gaussian, they are not truly independent, since any linear
combination of Gaussian variables is also Gaussian [30, 31, 32].

The initial stage of an algorithm is known as pre-processing, which allows the algorithm to
efficiently process the given data. This step is essential for optimizing the data set for subsequent
analysis [30, 31].

First step of pre-processing is centering. Centering is a crucial part of ICA. It involves subtracting
the mean from each variable in the data set, which results in the data being centered around zero.
This step is necessary because ICA assumes that the sources (or components) are statistically
independent and have zero mean. By centering the data, we ensure that the components extracted
through ICA have zero mean as well. Given n mixture signals (X), the mean is µ and the centering
step can be calculated as follows:

D = X − µ =

⎛⎜⎜⎜⎜⎜⎝
d1

d2
...
dn

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
x1 − µ

x2 − µ
...

xn − µ

⎞⎟⎟⎟⎟⎟⎠ (3.12)

the variable D represents the mixture signals that have undergone a centering step, while the
variable µ denotes the mean value of all mixture signals. It is possible to retrieve the independent
components by adding the mean vector back to them after performing ICA.

Another useful method for pre-processing in ICA is to whiten the observed variables first. It
means that before applying the ICA algorithm (and after centering) we transform the observed
vector D linearly to obtain a new vector D̃, which is white. This means that its components are
uncorrelated and their deviations are equal to one. In other words, the covariance matrix of D̃ is
equal to the one matrix [30, 31]:

E
{︂
D̃D̃T

}︂
= 1 (3.13)

The effectiveness of ICA on a particular data-set can be greatly influenced by the proper exe-
cution of certain steps, such as application-specific pre-processing. When dealing with time signals
as data, implementing band-pass filtering can prove to be highly beneficial [30, 31].
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3.5 Multi-Resolution Analysis (MRA)

In data analysis, signals can consist of multiple meaningful components that researchers may want to
study in isolation on the same time scale as the original data. Multi-resolution analysis is a technique
used to break down a signal into components that, when added back together, produce the original
signal exactly. However, it is important to note that the decomposition process must be carefully
considered in order to produce meaningful and interpret-able parts. Ideally, the components should
capture the variability of the data in a physically meaningful way. While multi-resolution analysis
is often associated with wavelets or wavelet packets, there are also non-wavelet techniques that can
produce useful results [33, 34].

Figure 3.9: EWT implemented on the ECG signal, [30]
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3.5.1 MRA methods

When it comes to decomposing desired signals, there are several methods that are widely used
across different applications. Multi-resolution decomposition techniques, including wavelet, wavelet
packet, empirical mode decomposition, empirical wavelet, and variational mode decomposition,
enable researchers to study signal components in relative isolation on the same time scale as the
original data. The MRA techniques and their properties are summarized in the Figure 3.7 below,
along with some general rules of thumb. A double plus sign indicates a particular strength, a single
plus sign indicates that the technique is applicable but not a particular strength. In the case of
binary properties, such as the preservation of energy in the analysis, a check mark indicates that
the technique possesses this property, while an "x" indicates that the property is absent.

Figure 3.10: Advantage and disadvantage of MRA methods, [33]

3.5.2 Empirical wavelet transform (EWT)

The Empirical Wavelet Transform (EWT) is an adaptive multi-resolution analysis (MRA) technique
that uses a wavelet subdivision scheme to break down a signal. The EWT initiates by segmenting
the spectrum of the signal, and its coefficients allow for perfect reconstruction of the original input
signal. Additionally, the EWT coefficients partition the energy of the signal into separate pass-
bands. Gilles developed the EWT, and it was later refined by Gilles and Heal, who proposed and
utilized a histogram-based approach for segmenting the signal’s spectrum [34, 35].

There are two significant elements to the EWT process: (1) breaking down the signal’s spectrum
into segments, and (2) generating the empirical wavelets and utilizing them to handle each segment
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of the signal. Initially, the segmentation of the spectrum involves detecting the local maxima of
the spectrum, which are then sorted in descending order. The largest maxima are selected to form
a peak sequence, and subsequently, the boundaries of all segments are determined by locating the
lowest local minima between two consecutive maxima. The spectrum restricted to a range of [0;π]
is divided into N contiguous segments. The boundaries of all segments are denoted by ωn (where
ω0 = 0 and ωN = π). So each segment is defined as Λn = [ωn−1, ωn]. It is obvious to know that⋃︁N

n=1 Λn = [0, π]. A transient phase whose width is 2τn is defined around each ωn [36].

The basis function for the EWT method is selected as the Meyer wavelet [7], and the corre-
sponding scaling function and empirical wavelets of the EWT are defined in Equations (3.11) and
(3.12).

ϕn(ω) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1, if

|ω| ≤ ωn − τn

cos[π
2 v( 1

2τn
(|ω| − ωn + τn))], if

ωn − τn ≤ |ω| ≤ ωn + τn

0, Otherwise.

(3.14)

ψn(ω) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, if

ωn + τn ≤ |ω| ≤ ωn+1 + τn+1

cos[π
2 v( 1

2τn+1
(|ω| − ωn+1 + τn+1))], if

ωn+1 − τn+1 ≤ |ω| ≤ ωn+1 + τn+1

sin[π
2 v( 1

2τn
(|ω| − ωn + τn))], if

ωn − τn ≤ |ω| ≤ ωn + τn

0, Otherwise.

(3.15)

Figure 3.11: EWT basis construction, [37]
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A properly chosen parameter τ(n) guarantees the EWT to be a tight frame. v(x) is the auxiliary
function of Meyer wavelet whose standard example is defined as [36]:

v(x) =
{︄
x4(35 − 84x+ 70x− 20x), if0 < x < 1
0, Otherwise.

(3.16)

Once the scaling function and empirical wavelets have been derived, the EWT can be established,
with the approximated coefficients being computed as the inner product of the signal and the scaling
function [36]:

W ϵ
f (0, t) = ⟨f, ϕ1⟩ =

∫︂
f(τ)ϕ1(τ − t)dτ (3.17)

The detail coefficients are the inner product of the signal and the empirical wavelets [36]:

W ϵ
f (n, t) = ⟨f, ψn⟩ =

∫︂
f(τ)ψn(τ − t)dτ (3.18)

Then the empirical modes decomposed from the signal are given by [36]:

f0(t) = W ϵ
f (0, t) ⋆ ϕ1(t) (3.19)

fk(t) = W ϵ
f (n, t) ⋆ ψk(t) (3.20)
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Chapter 4

Material and Methods

This section delves into the crucial methods and description of the devices which are used in this
study. The first part provides fundamental information about the radar device. An overview of
fundamental parameters and principles related to radar devices can be find in section 3.1 in the
Theoretical Background. The second part explores the pre-processing stage, including the methods

Figure 4.1: Flow chart of Radar based RR estimation

used and their applications. The third part highlights the use of the Independent Component
Analysis (ICA) algorithm and how it is employed to obtain reflection from the body in the form
of a time series. The fourth part delves into filtering methods, particularly the Empirical Wavelet
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Transform (EWT) algorithm and Infinite Impulse Response (IIR) filtering. The fifth part describes
how the respiratory rate is estimated from the signal. The sixth part describe device which is used for
reference signal measurement. Lastly, is described statistical methods for evaluation. The diagram
below presented in Figure 4.1 provides a visual representation of the process under discussion.
The flowchart includes a series of interconnected boxes and arrows that outline the various stages
involved in the study.

4.1 Radar Device XeThru X4

The XeThru X4 is a small and advanced Impulse Radio Ultra-Wideband (IR-UWB) radar system.
This radar system offers a range of possibilities for developers, particularly in the fields of detection
and imaging. Fig. 4.2 represents the fundamentals of an impulse radar system. An electromagnetic
impulse is transmitted from the Tx antenna, and any reflexions of objects in front of it are received
and sampled through the Rx antenna [38]. The X4 device uses a high-speed sampler that operates

Figure 4.2: Basic UWB radar concept, [38]

at a rate of 23.328 GS/s to capture the energy that rebounds. This allows the X4 to store up to
1536 samples. As electromagnetic waves travel at the speed of light, the sampling of reflected pulses
occurs within a window of roughly 9.9 metres in length. These measurement points are known as
"range bins" [38].

Fig. 4.3 illustrates the outcome of sampling data across the 1536 bins, also known as a radar
frame. When the radar starts measuring and the pulse is reflected 2 meters away from the object, a
higher amplitude is displayed on the frame as a pulse near bin 280. The high amplitude presented
on bin 0 is the result of energy transmitted directly from Tx to Rx, also known as the direct path
[38].
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Table 4.1: Radar Parameters

Parameters Values
Range for RR 5 m
Transceiver X4 SoC

Range resolution 11 cm
PRF 15.19 MHz

Bandwidth 1.40 GHz
Centre frequency 7.29 GHz

Figure 4.3: A radar frame, [38]

4.2 Pre-Processing

Pre-processing is a method of data preparation that is used to prepare raw data for further analysis.
In this paper, two Pre-processing methods are tested. The first method employs a Loop-Back filter
to remove DC components, while the second method utilizes a combination of Loop-Back and
Low-pass filter.

4.2.1 Loop-Back filter

A Loop-Back filter is a type of DC removal filter that utilizes the feedback principle to minimize
the effect of DC offset in a signal. The filter works by passing a portion of the output signal back
to the input, where it is then subtracted from the incoming signal. This causes the unwanted DC
offset to be canceled out and the desired signal to remain. According to Ahmed [20] and Khan [2],
the combination of a Loop-back filter with an IR-UWB radar provides an effective solution for DC
removal. As well as many other studies in the radar environment, it utilizes the Loop-Back filter
for Pre-processing [6, 16, 17, 39].
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The following equations (4.4 and 4.5) describe a Loop-Back filter’s principle.

c[n] = αck−1[n] + (1 − α)xk[n] (4.1)

yk[n] = x[n] − ck[n] (4.2)

Where c[n] is clutter signal and yk[n] is output signal.

Figure 4.4: Slow time vector modulated by chest before and after Loop-back filtering.

4.2.2 Pre-filter

Pre-filter is used to reduce or eliminate high frequencies (frequencies that are above RR segment)
from a signal to improve it before ICA. Pre-filtering can help to ensure that only the frequencies
which become from body reflection are passed on to further stages of processing. A 5 Hz cut-off
frequency is chosen because it surely ensures that any signals reflected from the body are sufficiently
kept with the desired signal. This helps reduce high-frequency noise from radar signals. Testing
frequencies around 5 Hz is useless because the small changes in cut-off frequency will not significantly
affect the result. Around this frequency, the occurring changes are too small to be accurately
measured. Therefore, it is not an effective way to test the system.

The main objective of using a Pre-filter is to enhance the signal that contains body reflections
and to separate high frequencies from it before subjecting it to independent component analysis
(ICA). To achieve this objective, a 2nd-order Chebyshev Type II low-pass filter with a cut-off
frequency of 5 Hz was utilized. The reason for using a Chebyshev Type II low-pass filter is that
it enables the use of a lower-order filter compared to other types of filters. This is because filters
have a characteristic pass-band ripple that is concentrated in the stop-band region, which allows for
a greater attenuation of unwanted frequencies without sacrificing the desired frequency content in
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the pass-band [40]. Additionally, a second-order filter provides a sufficient amount of attenuation
while minimizing phase distortion, making it a good choice for Pre-processing step [23, 25, 26].

4.3 Independent Component Analysis

In this step of signal processing, ICA is used to extract reflection from the body into one time series
because it can separate out the individual components of the signal and can accurately identify
which components are reflections and which of them are background noise. This allows for a more
accurate and reliable measure of the body’s reflection. Every signal collected by the radar, which

Figure 4.5: Range matrix

represents a distinct layer of distance in front of the radar, is subjected to ICA processing. After
identifying the components with maximal statistical independence, we choose only one component
for further processing. The selected component has the highest energy within the physiological
segment of the respiratory rate, ranging from 0.15 to 0.40 Hz.

Figure 4.6: Schema of ICA processing.
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Parameter r(:, N) represents layers in range axis, with N which represents fast time. The energy
of each sub-component is calculated using Equation 9 as a reference.

ϵx =
∞∑︂

n=−∞
|x[n]|2 (4.3)

Figure 4.7: Sub-components from ICA with the highest energy in the RR segment.

4.4 Respiratory segment filtering

The Filtering Step is a crucial process that involves the removal of unwanted noise from radar data.
This paper explores the effectiveness of two filtering methods in achieving this objective. The first
method utilizes a Band-pass filter, which effectively eliminates artifacts that do not correspond
with breathing. The second method is a combination of Band-pass and EWT, which provides an
even more robust filtering approach. By employing these methods, we can significantly enhance the
accuracy and reliability of signal from radar and facilitate more effective analysis of the underlying
respiratory patterns.
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4.4.1 EWT(adaptive filtering)

It assumes that reflection from the body contains heart rate and breath rate expressed like a
signal reflected from the chest rn(t), signal reflected from different parts of body rv(t) and m(t) is
movement artefact. Output from ICA can be expressed as the following equation 4.7:

d(t) = m(t) +
K∑︂

v=1
rv(t) + rn(t) (4.4)

rn(t) = ARRcos(2πfRRt) +AHBcos(2πfHBt) (4.5)

We define the Band-pass boundaries of each segment as the centre between two consecutive
maxima [34]. We have set the number of segments to three, as this aligns with the fact that lower
frequencies resulting from movement m(t) are typically around 0.15 Hz while higher frequencies,
around 0.40 Hz, are reflections from other parts of the body rv(t) . The EWT technique enables
greater control over the frequency Band-pass of the breathing signal by stretching and squeezing
the pass-band to align with the maximum peaks in the power spectrum. This results in a more
precise estimation of the pass-band that corresponds to the breathing signal. After splitting the
signal into three sub-signals, EWT removes the high-frequency component and retains the first two
sub-signals. The decision to keep the first sub-signal with the lowest frequencies is based on the
fact that stretching and squeezing techniques are most effective when applied to the right side of
the spectrum. A lower frequency effectively removes the band-pass filter after EWT.

Figure 4.8: Steps of EWT algorithm Figure 4.9: Local maxima detection
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4.4.2 Band-pass filtering

Band-pass digital filtering is widely used in a cut-off frequency around [0.15 - 0.40] Hz [39, 41, 42]
which is the frequency band of normal breathing in movement without hard physical strain. In
scenarios where we want to estimate RR during physical activity with high physical expenditure
like running, it is necessary to use a wider frequency band ([0.15 – 0.70] Hz). To fulfil this purpose,
a fourth-order Chebyshev Type II band-pass filter has been designed. Chebyshev Type II filters
are known for their sharp roll-off and steep transition band characteristics, making them an ideal
choice for filtering signals that require a sharp cut-off, such as in our case of separating movement
and higher frequencies from the respiratory band [23, 25, 26].

4.5 RR estimation

According to Vanegas, Igual, and Plaza [43], when peak detection like a processing algorithm is
used it must be considered that the RR signal can be polluted by movement artifact which has
frequencies very close to RR. That means that some peaks can be easily confused with true peaks
and vice versa.

Based on this fact, it can be more suitable for our study to use frequency analysis [43] because
reference signals from the chest belt are encumbered by typical daily activities like sitting, standing,
hand movement, and laying. These random movements can make very similar peaks like changes on
the chest during inhalation and exhalation that can make mistakes in peak detection. On the other
hand, frequency analysis can separate different frequencies like single peaks in the power spectrum
[43].

Figure 4.10: Estimation of RR from radar signal and power spectrum of the reference signal

For a slower frequency, such as respiration, a longer time window is necessary to achieve a higher
resolution. This illustrates the importance of choosing an appropriate time window to obtain the
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desired resolution. It means that very short records cannot be processed due to slow frequency of
respiratory [43].

Table 4.2: Frequency Resolution

Time window Frequency resolution
3 s 0.25 Hz
4 s 0.13 Hz
8 s 0.03 Hz

In Table 4.2, there is a description of the resolution that can be achieved for different window
lengths when using FFT to estimate the RR. However, it is crucial to take into account the specific
frequency range being analyzed, as the respiratory rate typically falls within the range of 0.15 to
0.40 Hz. This means that when selecting an appropriate window length, it is essential to consider
the trade-off between temporal resolution and frequency resolution, taking into account the desired
level of accuracy and the specific requirements of the analysis. Ultimately, selecting the appropriate
window length for the FFT analysis can significantly impact the accuracy and reliability of the
resulting RR estimate.

4.6 TMSi MOBi8 device

Figure 4.11: TMSi MOBI8 device, [44]

The TMSi MOBi8 is a certified medical device. It is capable of measuring various physiological
parameters, including the ECG, using one-lead sensors that are connected to the body via three
certified ECG electrodes. It also features a PPG NONIN 8000JFW sensor that is attached to
the finger to measure pulse oximetry, a respiratory belt sensor that is placed around the chest to
determine the frequency of breath, and an accelerometer that is attached to the lower back area
to detect movement. In this study, the TMSi MOBi8 device was used as the gold standard to
measure respiratory rate. A resistance chest belt was also used along with the device to obtain the
respiratory rate.
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4.6.1 Reference RR

The data from the chest belt are analyzed to determine the respiratory rate. These data are a
time series that fluctuates in response to chest movements. The method described in Section 4.5 is
used to obtain the respiratory rate for each minute of recorded data and the results are averaged.
In the Results section of this study, the calculated value of the reference signal is denoted as Av,
computed for all measurements and used to evaluate the estimated value of the radar device. This
study found that the reference signal from the chest belt is not ideal for this type of experiment,
and alternative methods that are less sensitive to movement artifacts will be used in future testing.

4.7 Statistic methods

The purpose of this thesis is to demonstrate the effectiveness of our algorithm in remotely estimating
the respiratory rate using the IR UWB radar (XeThru X4) even during spontaneous movements.
The accuracy of the estimated respiratory rate is confirmed by comparing it with a reference signal
obtained from a resistance chest belt. The results are evaluated by absolute error (AB), mean error
(ME) and standard deviation (STD), which are defined in Equation (4.6) (4.7) (4.8). The results
are also displayed using a Bland-Altman plot and Pearson’s correlation coefficient (PCC), which
is described in Equation (4.9). Evaluation methods were selected based solely on a comprehensive
review that focused exclusively on respiratory monitoring sensing systems [43].

AB = |Mv −Av| (4.6)

ME =
∑︁K

n ABn − µ

K
(4.7)

STD =

√︄∑︁K
n ABn − µ

K
(4.8)

PCC =
∑︁K

K=1 (Mv − ϵ)(Av − J)√︂∑︁K
K=1 (Mv − ϵ)2

√︂∑︁K
K=1 (Av − J)2

(4.9)

Mv denotes measured value and Avdenotes reference value. (J) is the mean of the reference
values and ϵ is mean of measured value.
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4.7.1 Pearson’s correlation coefficient

The reason for using the Pearson’s correlation coefficient (PCC) in the study was to compare the
performance of different settings and determine which produces the best results. PCC is a statistical
measure that indicates the strength and direction of the linear relationship between two variables.
When applying the PCC to different settings, it becomes possible to evaluate the correlation between
the variables and assess the strength of the relationship. This allows for a comparison of the settings
and an identification of which one produces the most desirable outcomes. Therefore, the use of PCC
in this study provides a quantitative and objective way to compare different settings and determine
which is optimal for the desired outcomes.

4.7.2 Bland-Altman plots

The use of the Bland-Altman plot in this study was motivated by the need to evaluate the agreement
between reference values and estimated values in a more intuitive and visual manner. Although
other statistical measures, such as Pearson’s correlation coefficient, provide valuable information on
the strength of the relationship between variables, they do not provide a clear understanding of the
limits of agreement LOA between the two values.
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Chapter 5

Experiment description

The experiment was organized into five distinct scenarios, each corresponding to a different room
in the Enschende e-health house of UT (University of Twente), including the kitchen, bedroom,
bathroom, stairs, and living room. In each scenario, 10 participants were invited to participate
in normal physical activity, each scenario lasting two minutes. During each measurement in each
scenario, participants performed daily movements such as sitting, standing, picking up items from
a table or kitchen desk, or using the water tap. This was done to create movements that would
mimic daily activities to some extent. A group of 10 individuals, consisting of 8 males and 2 females
aged 20 to 27, was recruited as participants. None of them have any health problems or chronic
diseases. All participants are students enrolled in the university. Data collection was authorized
by our institute’s Human Research Ethics Committee (UTwente University EEMCS). Before each
measurement, a one-minute warm-up period was performed during which the XETHRU radar was
activated and the reference TMSi MOBi8 device was tapped into the participants’ body. This was
done to ensure that all devices were configured correctly and worked properly.

Before each measurement, each participant was presented with the details of the experiment
and had to give their informed consent. Then, a participant completed all scenarios consecutively,
starting with the kitchen, followed by the living room, bedroom, bathroom, and finally stairs. The
entire experiment took approximately two hours for each participant. All informed consents are
attached to this thesis.

5.1 Kitchen scenario

Figure 5.1 provides a detailed description of the kitchen scenario map, while Table 5.1 accurately
outlines the scenario process using timestamps.
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Table 5.1: Detail description of kitchen scenario

Time Description of the activity Comment
Measurement n.3

0 s Start the experiment in front of the cooker Starting artifact
Take some stuff from the kitchen hood

put it beside the cooker and put it back
10 s Turn on the right side and go to the wash basin

Open and close the cabinet
20 s Turn on the right side and go to the fridge

Open and close the fridge
30 s Turn on the left side and go to the cooker

Turn on the left side and go to the cooker
40 s Turn on the right side and go to the wash basin

Open and close the cabinet
50 s Turn on the right side and go to the fridge

Open and close the fridge
1 min Turn on the left side and go to the cooker

Turn on the left side and go to the cooker
—————————————————— Repeat cycle 1x

2 min End

Figure 5.1: Kitchen scenario room map
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5.2 Bedroom Scenario

Figure 5.2 provides a detailed description of the bedroom scenario map, while Table 5.2 accurately
outlines the scenario’s process through timestamps.

Table 5.2: Bedroom Scenario

Time Description of the activity Comment
0 s Start the experiment on the bed Starting artifact
10 s Sit on the bed
15 s Go towards to chair

Sit on the chair
From the chair go back towards the bed

Sit on the bed (position 2)
30 s Start laying on the bed
40 s Sit on the bed
45 s Go towards to chair

Sit on the chair
From the chair go back towards the bed

Sit on the bed (position 2)
1 min Start laying on the bed

—————————————————— Repeat cycle 1x
2 min End

Figure 5.2: Bedroom scenario room map
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5.3 Bathroom Scenario

Figure 5.3 provides a detailed description of the bathroom scenario map, while Table 5.3 accurately
outlines the scenario process through timestamps.

Table 5.3: Bathroom Scenario

Time Description of the activity Comment
0 s Start the experiment at the door Starting artifact
5 s Go towards to wash basin and start making movements
15 s Go on the toilet

Make some PA (take the phone from your pocket)
25 s From the toilet back to the door
35 s Go towards to wash basin and start making

movements (Brushing teeth)
45 s Go on the toilet

Make some PA (take the phone from your pocket)
55 s From the toilet back to the door

————————————————– Repeat all cycle 1x
2 min End

Figure 5.3: Bathroom scenario room map
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5.4 Stairs scenario

Figure 5.4 provides a detailed description of the stairs scenario map, while Table 5.4 accurately
describes the scenario process through timestamps.

Table 5.4: Detail description of the stairs scenario

Time Description of the activity Comment
0 s Start the experiment at the door Starting artifact
0 s Walk up the stairs and sit on chair
15 s Stand up from chair and walk down

the stairs to starting point
30 s Walk up the stairs and sit on chair
45 s Stand up from chair and walk down

the stairs to starting point
1 min Walk up the stairs and sit on chair

—————————————————— Repeat all cycle 1x
2 min End

Figure 5.4: Stairs scenario room map
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5.5 Living-room Scenario

Figure 5.5 provides a detailed description of the living-room scenario map, while Table 5.5 accurately
outlines the scenario’s process through timestamps.

Table 5.5: Living-room Scenario

Time Description of the activity Comment
0 s Sitting on the sofa (duration is 10 s) Starting artifact
10 s Stand up and go towards the tv

From the tv go to the chair and sit on it (duration is 15 s)
25 s Stand up from the chair and go back to the sofa

Sitting on the sofa (duration is 10 s)
35 s Stand up and go towards the tv

From the tv go to the chair and sit on it (duration is 15 s)
50 s Stand up from the chair and go back to the sofa
1 m Sitting on the sofa (duration is 10 s)

1 min 10 s Stand up and go towards the tv
From the tv go to the chair and sit on it (duration is 15 s)

1 min 25 s Stand up from the chair and go back to the sofa
Sitting on the sofa (duration is 10 s)

1 min 35 s Stand up and go towards the tv
From the tv go to the chair and sit on it (duration is 15 s)

1 min 50 s Stand up from the chair and go back to the sofa
2 min End

Figure 5.5: Living room scenario room map
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Chapter 6

Results

Chapter 6 of the thesis provides a comprehensive analysis of the results obtained from testing the
algorithm with four different settings. The results are presented in a structured manner, starting
with absolute error followed by Pearson’s correlation coefficient, and concluding with Bland-Altman
plots. Each section presents results for a specific setting:

• EWT + Pre-filter

• single Pre-filter

• single EWT

• nonEWT + nonPre-filter

In this section, the Pearson correlation coefficient and Bland Altman analysis were utilized for
testing purposes. However, before proceeding with the testing, it was necessary to check if the data
followed a normal distribution. To achieve this, the Shapiro-Wilk test was used with a significance
level of 0.05. The resulting p-values for all setting can be find in Table 6.1. On the basis of the
p-values obtained from the Shapiro-Wilk test, it can be concluded that the data in all settings tested
come from a normal distribution. This is evident as the p-values for all settings are greater than
the significance level of 0.05. Therefore, the data meet the assumptions required to perform the
Pearson correlation coefficient test. The assumption of normal distribution has been confirmed only
for the Kitchen and Stars scenario, while the other scenarios do not follow a normal distribution. As
a result, Pearson’s correlation coefficient and Bland-Altman analysis have been applied exclusively
to these scenarios.

Table 6.1: P - values for all settings.

EWT + Pre - filter Pre - filter EWT nonEWT + nonPRE
p - value 0.1457 0.0756 0.5136 0.0865
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6.1 Absolute errors

This particular section enumerates the absolute errors attributed to each measurement performed
in every segment of the experiment, along with a comprehensive summary of the absolute errors
of the entire experiment (see Table 6.2). In addition, Table 6.3 summarizes the absolute error for
different settings for each scenario separately.

Table 6.2: Absolute error of different settings for all scenarios.

Setting of Pre-processing
and filtering part

(ME ±STD)

EWT +
PRE-filter EWT PRE-filter nonEWT +

nonPRE

All scenarios
(Peak/min) 2.79 ±3.39 3.86 ±4.11 3.69 ±3.96 4.01 ±4.16

Table 6.3: Absolute error of different settings for each scenario.

Setting of Pre -processing
and filtering part

(ME ±STD)

EWT +
PRE-filter EWT PRE-filter nonEWT+

nonPRE

Livingroom 4.92 ±4.17 5.02 ±4.25 5.25 ±4.27 5.44 ±4.50
Stairs 1.19 ±0.99 1.39 ±1.32 1.62 ±1.39 2.06 ±3.51

Bedroom 2.59 ±3.56 2.96 ±3.78 3.06 ±4.30 3.44 ±4.08
Kitchen 0.70 ±0.86 2.54 ±4.02 1.11 ±1.87 1.81 ±3.05

Bathroom 4.19 ±4.17 6.15 ±4.53 6.63 ±4.78 7.81 ±3.91

Figure 6.1: Absolute error + ME for All scenarios (Pre – filter + EWT)
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Figure 6.2: Absolute error + ME for All scenarios (Pre – filter)

Figure 6.3: Absolute error + ME for All scenarios (EWT))

Figure 6.4: Absolute error + ME for All scenarios (nonEWT + nonPRE-filter)
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6.2 Pearson’s correlation coefficient

In this section, we present the results of the Pearson correlation coefficient for all the settings tested
in this thesis. The data in this section are presented in the same order as in the previous section.
The results suggest that the data from the Kitchen and Stairs scenarios resulted in high accuracy. In
particular, the measurements taken while moving directly in front of the radar exhibit have greater
accuracy than those obtained in the other three scenarios, where the movement was farther away
from the radar. These observations show the impact of the motion’s position in front of the radar
on the data collected. The lack of errors in the Kitchen and Stairs scenarios indicates that they
can be used as reliable sources of information for the next processing. This provides us with more
information regarding the performance of individual approaches in preprocessing and filtering.

Figure 6.5: PCC for Kitchen and Stairs (EWT +
PRE-filter)

Figure 6.6: PCC for Kitchen and Stairs (PRE-filter)

Figure 6.7: PCC for Kitchen and Stairs (EWT) Figure 6.8: PCC for Kitchen and Stairs (nonEWT
+ nonPRE)
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6.3 Bland-Altman plots

This section only contains results from the Kitchen and Stairs scenario, for the same reason as
before. Its main focus is on the performance of different settings, which could not be tested in the
other three scenarios due to a high value of error.

Figure 6.9: Bland-Altman for Kitchen and Stairs
(EWT + PRE-filter)

Figure 6.10: Bland-Altman for Kitchen and Stairs
(PRE-filter)

Figure 6.11: Bland-Altman for Kitchen and Stairs
(EWT)

Figure 6.12: Bland-Altman for Kitchen and Stairs
(nonEWT + nonPRE)
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6.4 Description of measured values

Based on the result in Figure 6.1 and Table 6.2, it is evident that the results obtained with an EWT
and PRE filter setting have lower errors than the others. The results suggest that the data from the
Kitchen and Stairs scenarios resulted in high accuracy. In particular, the measurements taken while
moving directly in front of the radar exhibit have greater accuracy than those obtained in the other
three scenarios, where the movement was farther away from the radar. These observations show
the impact of the motion’s position in front of the radar on the data collected. The lack of errors in
the Kitchen and Stairs scenarios indicates that they can be used as reliable sources of information
for the next processing. This provides us with more information regarding the performance of
individual approaches in preprocessing and filtering.

In Table 6.1, the precision of various settings in preprocessing and filtering approaches is com-
pared, revealing that the EWT + PRE-filter setting yields the best results with the lowest ME
value of 2.72 and STD value of 3.39. The single EWT and single prefilter approaches exhibit similar
outcomes. The use of the non-EWT + non-Pre approach yields the poorest outcome in estimating
respiratory rate, as indicated by the highest ME value of 4.22 and STD value of 4.28. However, it
is important to note that due to the high influence of the walking track, this validation makes it
challenging to determine the true performance of a single setting. Due to this fact, only the data
pertaining to the Kitchen and Stairs scenario will be processed in the upcoming validation.

For the Kitchen and Stairs scenarios in (Section 6.2) in Figures 6.5 through 6.8, the results of the
Pearson correlation coefficient analysis showed the highest values when the combination of the EWT
and the PRE filter was used with the highest p-value of 0.94. This suggests that the use of these
two methods is the optimal choice for these scenarios, as it provides the most accurate results for
the radar data. The testing findings suggest that using the EWT + PRE filter approach effectively
adjusts the frequency spectrum size to match respiratory patterns in the signals, highlighting its
value when compared to three other settings. The p values indicate that the single PRE filter had
a value of 0.89, while the single EWT and non-EWT + non-PRE settings had lower values of 0.67
and 0.88, respectively, indicating less precision in respiratory rate estimation.

In this study, is utilized the Bland-Altman (Section 6.3) plots for the estimated respiratory rate
under various preprocessing and filtering settings, including EWT + PRE-filter, single EWT, single
PREfilter, and nonEWT + nonPRE. ME (mean error) is represented by a solid line, while LOA
(limits of agreement) are represented by dashed lines and are defined as ME ± 1.96xSTD. Once
again, the EWT + PRE filter setting has shown the best performance, with estimated Respiratory
Rate observations being very close to the ME (mean error) value of -0.41. The LOA (limits of
agreement) are also quite narrow, with the upper boundary at only 1.9 and the lower boundary at
-2.8.

The other plots in the study showed less accurate results compared to the prefilter and EWT
settings, with wider limits of agreement (LOA) boundaries. Specifically, the upper LOA limit for
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the PRE filter setting was 3.0 and the lower limit was -4.0, while the EWT setting had an upper
limit of 2.4 and a lower limit of -2.8. The widest LOA was observed in the non-PRE + non-EWT
setting, with an upper limit of 3.0 and a lower limit of -3.3. These boundaries represent the range
within which 95% of the differences between the estimated and reference values are expected to
fall. In addition, extreme values were observed in figures 6.10, 6.11, and 6.12. On the basis of these
findings, the pre-filter and EWT settings are expected to provide more accurate results compared
to the other settings.
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Chapter 7

Discussion

The results of this study demonstrate the potential of IR UWB radar for noncontact breathing
sensing in free movement daily activities. Compared to previous studies that have used multiple
radars or required participants to remain still during the sensing process, our approach used only
a single radar and was able to estimate the respiratory rate during a variety of daily activities,
including walking and normal body movements.

Table 7.1 summarizes the results of our study compared to other studies that have attempted
to estimate the respiratory rate from radar signals during free movement. Based on the result, the
proposed approach achieved avg. error of 0.95 in (Kitchen and Stairs) breaths per minute (RPM)
and 0.95 in (All scenarios) breaths per minute (RPM), which is comparable to or superior to the
performance of other methods. Our study has shown better results compared to the study conducted
by [4], in which the authors attempted to estimate respiratory rate (RR) using two UWB radars
during free movement, but without walking. On the contrary, our study was able to estimate RR
during walking, which is a more realistic scenario. Our study used the empirical wavelet transform
(EWT), which was able to separate signals from different frequency bands and provide an accurate
estimation of the RR signal. Although [4] also used EWT, our study still achieved better results.
These findings highlight the potential of using UWB radar and EWT for noncontact RR estimation,
especially in scenarios where movement is involved.

In the study by [7], a very low average error of 0.06 rpm was reported, which is lower than
the average error observed in our study. However, it is important to note that this study [7] did
not involve movement, and the subjects did not have to deal with changing positions in front
of the radar due to walking. Despite this limitation, the study still demonstrated highly accurate
results, indicating that methods such as the short-time Fourier transform (STFT) and the multistage
variational mode decomposition (MS-VMD) can be effective in achieving our objective. In the study
conducted by [10], the authors demonstrated that the estimation of respiratory rate (RR) can be
achieved using a different approach than the methods employed in the majority of other studies.
Unlike our study, where RR was estimated using statistical methods, filtering, and multiresolution
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Table 7.1: Overall performance

Article Number of radars Radar types Number of
participants

Performance
ME (RPM)

Our study
(All scenarios) 1 UWB 10 2.79

Our study
(Kitchen and Stairs) 1 UWB 10 0.95

[10] 1 FMCW 14 3.32
[4] 2 UWB 8 2.3
[16] 1 mmWave - Error <2.00
[7] 1 UWB 4 0.06

analysis, the authors attempted to measure RR from the volume of movement, which has a high
amplitude in the radar signal. To achieve this, they designed custom machine learning models
to capture the complex correlation between RF signal patterns, movement power, and vital signs.
However, it is important to note that the study reported a higher average error than ours, with
a value of 3.32 rpm. Despite this limitation, the findings of their study highlight the potential of
using innovative approaches, such as machine learning, in noncontact vital sign estimation, which
could offer new insights and possibilities for future research in this field.

Our study demonstrates the effectiveness of the independent component analysis (ICA) algo-
rithm in processing the IR UWB radar signal and accurately estimating the respiratory rate. By
decomposing the signal into independent components and selecting the component that corresponds
to respiratory activity, the ICA algorithm was able to extract respiratory rate characteristics with
high accuracy and robustness. In addition to ICA, our study also investigated the effectiveness of
the empirical wavelet transform (EWT) as an adaptive filter for respiratory rate estimation from
IR UWB radar signals. The EWT appears as the effective method for the extraction of respiratory
radar signals. However, our study also identified several obstacles that need to be addressed in
future work.

One of the main limitations of our approach is that the respiratory rate is accurately estimated
only when the participant is measured from the front size of the radar. In wider movements, when
the radar signal is weaker, the results are less accurate. This limitation is due to the fact that the
signal quality of the radar decreases with distance, and the features of the respiratory rate become
harder to detect. Our study found that the living room scenario, with a 2-meter wide walking
path, produced worse results compared to the kitchen and stairs scenarios, where the path was
only a single line and the participants did not deviate more than approximately 20 cm from the
path. The bedroom and bathroom scenarios, with track widths of approximately 2 meters and 150
cm, respectively, yielded similar results. Interestingly, when comparing the influence of distance,
we found that it did not impact the results in our scenarios. For example, the best results were
obtained in the kitchen scenario, where the farthest point from the radar was 3 meters and 30 cm
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away, while in the bathroom scenario, the participants were only 2 meters and 40 cm away from
the radar. These findings emphasize the importance of considering the width of the track when
using this approach and the type of radar for remote measurement of respiratory rate. Our results
suggest that this approach can be successful when the person being measured is only in front of the
radar and does not make wider tracks by walking.

Improving the accuracy of RR estimation in the future will require the direct focusing of Radar
waves on the measured object. This is crucial, given the high error rates resulting from low reflection
from distant objects in front of the radar. Furthermore, to optimize the utilization of ICA-based
extraction algorithms in radar-based systems, further testing and development are essential. The
most effective approach to accurately estimate RR from radar signals will require identifying the
optimal utilization of these algorithms.
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Chapter 8

Conclusion

The primary objective of this thesis is to investigate the potential of adaptive signal processing
techniques, including Independent Component Analysis (ICA) and Empirical Wavelet Transform
(EWT), for respiratory rate estimation using IR UWB radar signals. These techniques have the
potential to extract meaningful information from complex and noisy physiological signals and can
contribute to the development of noninvasive health monitoring technologies across various appli-
cations. The study demonstrated the effectiveness of ICA in extracting radar signals, even when
the object being measured is in motion, indicating the potential of IR UWB radar as a noncontact
sensing modality for vital signs monitoring. More research is recommended to explore the appli-
cation of ICA with radar systems in real-world scenarios and investigate the detection of multiple
persons using ICA, which could significantly enhance the capabilities of radar systems in complex
environments.

While the findings of this study suggest the potential of IR UWB radar for vital signs monitoring,
more research is needed to explore its performance in different contexts and populations and to
investigate the potential of other vital signs, such as heart rate or blood pressure, for noncontact
sensing using IR UWB radar. This thesis contributes to the field of radar measurements and signal
processing by demonstrating the effectiveness of ICA in extracting signals from moving objects and
indicating the potential of IR UWB radar for noncontact vital signs monitoring. The work done
here is expected to inspire further research in this area, leading to the development of more accurate
and effective radar systems in the future.

The thesis demonstrates that non-contact RR measurement using IR UWB radar with ICA and
filtering methods can be an effective tool for RR estimation. The study shows that this approach
is comparable and, in some cases, better than the current studies in this field of work.
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