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Abstrakt

Cílem této práce je rozšířit výzkum nově vyvinuté metody Škálovatelné Pravděpodobnostní Aproxi-
mace (SPA) s důrazem převážně na klasifikační problémy. Metoda SPA je uplatněna k diskretizaci
spojitých stochastických procesů a v kombinaci s bayesovským modelováním kauzální inference vede
k vícekriteriálnímu optimalizačnímu problému, který umožňuje splnit obě kritéria současně. Řešení
tohoto problému je navrženo jako algoritmus strojového učení s učitelem, který je vhodný pro různé
klasifikační úlohy. Ačkoli je tento algoritmus omezen z hlediska výpočetní náročnosti, navržený od-
had problému, který je úzce spjat s široce známým algoritmem K -means, je použitelný i pro velké
soubory dat. Předběžné experimenty ukazují, že tuto metodiku lze přizpůsobit k vybrané aplikaci
detekce koroze z obrazových dat.

Klíčová slova

analýza obrazu; detekce koroze; diskretizace; klasifikace; K -means; MATLAB; optimalizace; počí-
tačové vidění; SPA; strojové učení; vícekriteriální optimalizace

Abstract

This thesis aims to extend the research on the newly developed Scalable Probabilistic Approximation
(SPA) method, with emphasis predominantly on classification problems. The SPA method is utilized
to discretize continuous stochastic processes and, in conjunction with Bayesian causal inference
modeling, leads to a multiobjective optimization problem that is capable of simultaneously resolving
both objectives. The solution to this problem is formulated as a supervised machine learning
algorithm that is suitable for various classification tasks. Although the algorithm is limited in
terms of computational cost, a proposed estimation of the problem, which is closely related to the
widely known K -means algorithm, is applicable even for large datasets. Preliminary experiments
demonstrate that this framework is adaptable to the selected application of corrosion detection from
image data.

Keywords

classification; computer vision; corrosion detection; discretization; image analysis; K -means; ma-
chine learning; MATLAB; multiobjective optimization; optimization; SPA



Acknowledgement

First and foremost, I wish to express my sincere gratitude to my thesis supervisor, Ing. Lukáš
Pospíšil, Ph.D., for his invaluable guidance and support throughout the entire bachelor thesis. His
willingness to clarify all my queries and correct my errors, guiding me in the right direction, was
an instrumental part of this work.

In addition, I would like to thank the same person for providing me with the opportunity to
gain hands-on research experience and develop new skills that will undoubtedly benefit my future
academic pursuits. I appreciate the generosity with which he shared his knowledge and expertise,
allowing me to broaden my horizons and learn something new.

Last but not least, many thanks to the professors and instructors of the Department of Applied
Mathematics at VSB – Technical University of Ostrava for providing me with a strong foundation
in mathematics and equipping me with the skills necessary to undertake this work.



Contents

List of symbols and abbreviations 7

List of Figures 8

List of Tables 9

1 Introduction 10

2 Bayesian Causal Inference Modeling 11
2.1 Probability Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Bayesian Causal Inference Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3 Solution of the Lambda Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Discretization 22
3.1 K -means . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2 Scalable Probabilistic Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4 Multiobjective Optimization With SPA 29
4.1 Multiobjective Optimization Problems . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2 MOP With SPA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.3 MOP With K -means . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.4 MOP With Jensen Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5 Applications 38
5.1 Feature Engineering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.2 Bayesian Causal Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.3 Model Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.4 Hyperparameter Tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.5 Synthetic Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.6 Wisconsin Breast Cancer Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.7 Corrosion Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5



6 Conclusion 51

Bibliography 52

Appendices 55

A K-means 56

6



List of symbols and abbreviations

GLCM – Gray-level co-occurrence matrix
KKT – Karush-Kuhn-Tucker
KLD – Kullback–Leibler Divergence
KNN – k-nearest neighbor algorithm
MCC – Matthew’s correlation coefficient
MOP – Multiobjective optimization problem
PCA – Principal component analysis
SML – Supervised machine learning
SPA – Scalable Probabilistic Approximation
SPG – Spectral Projected Gradient
SSE – Sum of squares error
SVM – Support vector machine
WSM – Weighted sum method
N – The set of all natural numbers
R – Real vector space
R+ –

{︁
x ∈ R

⃓⃓
x > 0

}︁
R+

0 – R+ ∪ {0}
Rn – The set of all n-dimensional real vectors (n ∈ N)
ln(x) – Natural logarithm of x
..= – Defined to be equal to
⟨u,v⟩ – Standard scalar product defined as ⟨u,v⟩ ..=

n∑︁
i=1

uivi (n ∈ N)

∥u∥2 – Euclidean norm defined as ∥u∥2
..=
√︁

⟨u,u⟩

7



List of Figures

2.1 Convex function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.1 Functions f and g. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2 L-curve. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.1 Grid search. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.2 Comparison of Algorithms 3, 4, and 5 on synthetic benchmark. . . . . . . . . . . . . 45
5.3 Confusion matrix for corrosion detection. . . . . . . . . . . . . . . . . . . . . . . . . 48
5.4 Visualization of corrosion detection on the test set. . . . . . . . . . . . . . . . . . . . 50

A.1 K -means++ initialization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
A.2 Clustering results using the K -means++ algorithm. . . . . . . . . . . . . . . . . . . 57
A.3 Sum of squares error (SSE) for different number of clusters K. . . . . . . . . . . . . 58

8



List of Tables

4.1 Optimization with different values of the coefficient α. . . . . . . . . . . . . . . . . . 30

5.1 Confusion matrix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.2 Comparison on Wisconsin Breast Cancer dataset. . . . . . . . . . . . . . . . . . . . . 47

9



Chapter 1

Introduction

This thesis proposes an innovative methodology of a recently developed combination of two tech-
niques, namely Scalable Probabilistic Approximation (SPA) and Bayesian causal inference modeling.
The methodology is then applied to real-world classification problems, with the central goal of de-
veloping a machine learning model capable of accurately detecting corrosion from features extracted
from image data using various computer vision methods. This is a significant problem in practice,
as evidenced by recent studies [1, 2].

In forthcoming Chapter 2, a review of selected foundations of probability theory is provided,
which will serve as the basis for subsequent sections. Afterwards, the formulation of a Bayesian
model and a method for determining the solution of this model are presented.

Chapter 3 focuses on discretization, mainly on adaptive discretization, which is an essential
step in the preprocessing of continuous data for the application of Bayesian modeling. The chapter
comprises two parts, with the first one dedicated to K -means and clustering, while the second part
explains the utilization of SPA for discretization purposes.

An integral part of this work is multiobjective optimization, which is the subject of Chapter 4.
The chapter provides an overview of the underlying mathematical principles in this field and subse-
quently delves into the application of multiobjective optimization in combining SPA and Bayesian
modeling into a single composite optimization problem.

Finally, Chapter 5, applies the developed methodology to real-world problems. In addition,
the chapter explains selected key elements of machine learning, such as feature engineering, model
evaluation, and hyperparameter tuning. The applications were implemented in MATLAB and are
freely available on GitHub [3].
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Chapter 2

Bayesian Causal Inference Modeling

In this chapter, we give a brief review of some of the fundamentals of probability theory that will
be useful for the task at hand. Afterwards, we proceed to Bayesian modeling of causal inference,
where we formulate a Bayesian linear model that will guide us throughout this work, and propose
a method for finding the solution to this model.

2.1 Probability Theory

Since we discuss topics related to probability, we remind the definition of a probability space.

Definition 2.1 A probability space is a triplet (Ω,A,P), where Ω is a sample space, A is a σ-
algebra, and P : A → R is a probability function.

An essential building block of Bayesian inference is the Law of Total Probability. Before delving
into this significant theorem, let us first review the definitions of conditional probability and finite
partition.

Definition 2.2 Let (Ω,A,P) be a probability space. The conditional probability of event A ∈ A,
given that event B ∈ A occurred, is defined (and denoted) by [4]

P(A | B) ..= P(A ∩B)
P(B) if P(B) > 0.

Definition 2.3 Let (Ω,A,P) be a probability space and let B1, B2, . . . , Bn ∈ A be a sequence of
incompatible and exhaustive events; i.e.,

(∀i, j = 1, . . . , n) : Bi ∩Bj = ∅ if i ̸= j and
n⋃︂
i=1

Bi = Ω.

We say that the events Bi constitute a finite partition of the sample space Ω [4].
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Theorem 2.1 (The Law of Total Probability [4]) Let (Ω,A,P) be a probability space, and let events
B1, B2, . . . , Bn ∈ A constitute a finite partition of the sample space Ω. Then, for all events A ∈ A,

P(A) =
n∑︂
i=1

P(A | Bi) · P(Bi),

if the conditional probabilities are well defined, i.e., (∀i = 1, . . . , n) : P(Bi) > 0.

Proof
P(A) =

n∑︂
i=1

P(A ∩Bi) =
n∑︂
i=1

P(A | Bi) · P(Bi).

In the following, we present the definition of stochastic vectors and matrices that is intended to
facilitate the notation employed throughout the remainder of this work.

Definition 2.4 A vector v ∈ Rn is called stochastic if and only if all entries are nonnegative and
sum up to one, i.e.,

(∀i = 1, . . . , n) : vi ≥ 0 ∧
n∑︂
i=1

vi = 1.

Afterwards, let

Pn ..=
{︄

v ∈ Rn
⃓⃓⃓⃓

vi ≥ 0 ∧
n∑︂
i=1

vi = 1
}︄

be the set of all n-dimensional stochastic vectors. A matrix A ∈ Rm,n is said to be left stochastic if
and only if (∀j = 1, . . . , n) : A:,j ∈ Pm. Analogously, we define the set of all left stochastic matrices
as follows

Pm,nL
..=
{︃

A ∈ Rm,n
⃓⃓⃓⃓

(∀j = 1, . . . , n) : A:,j ∈ Pm
}︃
.

Lemma 2.2 Let A ∈ Pm,nL and B ∈ Pn,pL be left stochastic matrices. Then, their product AB is also
a left stochastic matrix.

Proof Firstly, given that all elements in matrices A and B are by definition nonnegative, it is
evident that each element in the product AB will also be nonnegative. Secondly, we demonstrate
that every column in AB sums up to one. (∀j = 1, . . . , p) :

m∑︂
i=1

(AB)i,j =
m∑︂
i=1

n∑︂
k=1

Ai,kBk,j =
n∑︂
k=1

(︄
m∑︂
i=1

Ai,k

)︄
Bk,j =

n∑︂
k=1

Bk,j = 1

We have proven that every column of AB is a stochastic vector. Thus, AB is indeed a left stochastic
matrix.

Given that we will be dealing with stochastic processes in the upcoming section, we will provide
a brief overview of the fundamentals. A stochastic process is a system that evolves in time while
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undergoing chance fluctuations. We can describe such a system by defining a family of random
variables Xt, where Xt measures, at time t, the aspect of the system of interest. For example,
Xt might be the number of customers in a queue at time t. As time passes, customers will arrive
and leave, and so the value of Xt will change [5]. A more rigorous definition can be formulated as
follows.

Definition 2.5 A stochastic process (or random process) is a set {Xt, t ∈ T } of random vari-
ables Xt, where T is a subset of R [4].

Remark 2.1 The set T is often referred to as the index set. The set of all possible values of the
random variables Xt is called the state space of the stochastic process and is denoted as S. The
deterministic variable t is often interpreted as time.

• If T is a countable set, then {Xt, t ∈ T } is said to be a discrete-time stochastic process.

• Similarly, if T ⊆ R is an interval, then {Xt, t ∈ T } is said to be a continuous-time stochastic
process. Usually T = [0,+∞).

Definition 2.6 If the possible values taken by the various random variables Xt are assumed to be at
most countably infinite, so that Xt is a discrete random variable for any fixed value of the variable t,
then we say that {Xt, t ∈ T } is a discrete-state stochastic process [4].

A very important class of stochastic processes for practical applications is the class of those known
as Markov processes. A Markov process can be interpreted as a stochastic process in which the
future is independent of the past, given the present [6]. A formal definition of a Markov process
follows.

Definition 2.7 Let {Xt, t ∈ T } be stochastic process. If we can write that

P
(︁
Xtn ≤ xn

⃓⃓
Xt,∀t ≤ tn−1

)︁
= P

(︁
Xtn ≤ xn | Xtn−1

)︁
, (2.1)

where tn−1 < tn, we say that the stochastic process {Xt, t ∈ T } is a Markov process (or Markovian
process) [4].

The preceding Eq. (2.1), known as Markov property (or memoryless property), means that the future
of the process depends only on its present state. In the case of a discrete-state stochastic process,
we refer to Markov processes as Markov chains.

Definition 2.8 If {Xn, n = 0, 1, . . . } is a discrete-state stochastic process such that

P
(︄
Xn+1 = xn+1

⃓⃓⃓⃓
⃓

n⋂︂
i=0

Xi = xi

)︄
= P (Xn+1 = xn+1 | Xn = xn) ,

13



for all states x0, . . . , xn, xn+1 ∈ {0, 1, . . . } and for n = 0, 1, . . . , then {Xn, n = 0, 1, . . . } is called a
(discrete-time) Markov chain [4].

We could also define continuous-time Markov chains1, however, in this work we suffice with discrete-
time Markov chains.

2.2 Bayesian Causal Inference Modeling

Assume that we have two discrete-state stochastic processes X ..= {Xt, t ∈ T } and Y ..= {Yt, t ∈ T },
where T ⊂ N. Our focus is on the causal relationship between these two processes; specifically,
X → Y. The question at hand is: If we have prior information about the state of X , can we infer
the state of Y based on that information? In a broader sense, we are interested in investigating the
interdependence of stochastic processes and whether we can infer the behavior of one process from
the behavior of another.

We now propose a Bayesian linear model that establishes a causal relationship between the
above stochastic processes. Let sX =

{︂
sX1 , . . . , s

X
K

}︂
and sY =

{︂
sY1 , . . . , s

Y
M

}︂
be the sets of states of

X and Y, respectively. Then (∀t ∈ T ) :
πt = Λγt, (2.2)

where

πt =

⎡⎢⎢⎢⎣
P(Yt = sY1 )

...
P(Yt = sYM )

⎤⎥⎥⎥⎦ and γt =

⎡⎢⎢⎢⎣
P(Xt = sX1 )

...
P(Xt = sXK)

⎤⎥⎥⎥⎦
are stochastic vectors with dimensions M ∈ N and K ∈ N, respectively, and where

Λ =

⎡⎢⎢⎢⎣
P(Yt = sY1 | Xt = sX1 ) · · · P(Yt = sY1 | Xt = sXK)

... . . . ...
P(Yt = sYM | Xt = sX1 ) · · · P(Yt = sYM | Xt = sXK)

⎤⎥⎥⎥⎦
is a left stochastic matrix consisting of conditional probabilities. Henceforth, we will assume that
these conditional probabilities are stationary (independent of the data index t) and depend only on
the discrete states. Eq. (2.2) is justified by the Law of Total Probability (Theorem 2.1).

2.3 Solution of the Lambda Problem

In this section, we elaborate on the Bayesian linear model (2.2). We continue to use the notation
from the previous section. Let xt ∈ sX be the observed categorical data (input) and let yt ∈ sY

be the categorical output data. A method will be presented to determine the matrix Λ from the
1The definition can be found, for example, in [4].
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observed data pairs {xt, yt}. We formulate the task as a regression-like optimization problem, where
we fit the model to the given data and derive the optimal parameters of the model. Therefore, it is
convenient to explain the concept of a minimizer.

Definition 2.9 We say that point x∗ is a minimizer of function f : Ω → R on a given feasible set
Ω, written as x∗ = arg

x
min
x∈Ω

f(x) if and only if all points in the feasible set have a larger or equal
function value than f(x∗), i.e., (∀x ∈ Ω) : f(x∗) ≤ f(x) [7].

In our case, let us consider the following constrained optimization problem

Λ∗ = arg
Λ

min
Λ∈ΩΛ

T∑︂
t=1

dist (πt,Λγt), (2.3)

where dist is a distance function2, ΩΛ is a set of all feasible left stochastic matrices such that
ΩΛ = PM,K

L , and Λ∗ is a minimizer of the matrix Λ. By minimizing the distance between π and Λγ

we try to achieve the best possible approximation of (2.2).

In our case, the Kullback-Leibler divergence (KLD), introduced by Kullback and Leibler in [8],
is chosen as the distance function. Generally, the KLD is a measure of dissimilarity between two
probability distributions defined over the same sample set. Given two discrete probability distribu-
tions P and Q, the KLD measures how much information is lost when Q is used to approximate P .
Formally, let X be a discrete random variable with values in the set X = {1, 2, . . . , n}. The KLD
between two probability mass functions p(x) and q(x) of the random variable X is defined as fol-
lows [9]

D(p ∥ q) =

⎧⎪⎨⎪⎩
∑︁
x∈X

p(x) · ln
(︃
p(x)
q(x)

)︃
if (∀x ∈ X ) : [q(x) = 0] ⇒ [p(x) = 0],

+∞ otherwise,
(KLD)

where we use the convention of 0 · ln 0 = 0 and 0 · ln 0
0 = 0. The KLD is always non-negative and

is zero if and only if p = q. The KLD does not qualify as a metric because it does not satisfy
symmetry (i.e., D(p ∥ q) ̸= D(q ∥ p) in general) nor the triangle inequality [9, 10]. In addition, the

2The distance function dist is not necessarily a metric. In the following text, a statistical distance (KLD) is used.
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KLD can be expressed in an equivalent form using logarithmic identities3:

D(p ∥ q) =
∑︂
x∈X

p(x) · ln
(︃
p(x)
q(x)

)︃
=
∑︂
x∈X

p(x) ·
(︁

ln p(x) − ln q(x)
)︁

= −
∑︂
x∈X

p(x) ·
(︁

ln q(x) − ln p(x)
)︁

= −
∑︂
x∈X

p(x) · ln
(︃
q(x)
p(x)

)︃
.

Moreover, KLD can be formulated for stochastic vectors u ∈ Pn, v ∈ Pn as follows:

D(u ∥ v) = −
n∑︂
i=1

ui · ln
(︃vi

ui

)︃
. (2.4)

In the case of our problem, the KLD will have the following form

D(πt ∥ Λγt) = −
M∑︂
m=1

πm,t · ln

K∑︁
k=1

Λm,k · γk,t

πm,t
,

where πm,t denotes the m-th component of the vector πt, and correspondingly, the k-th element of
γt is represented by γk,t. The KLD transforms problem (2.3) into

Λ∗ = arg
Λ

min
Λ∈ΩΛ

−
T∑︂
t=1

M∑︂
m=1

πm,t · ln

K∑︁
k=1

Λm,k · γk,t

πm,t⏞ ⏟⏟ ⏞
=..φ(Λ), φ : RM,K →R

. (2.5)

Using the well-known logarithmic identity3 we obtain the following

φ(Λ) = −
T∑︂
t=1

M∑︂
m=1

πm,t · ln
(︄

K∑︂
k=1

Λm,k · γk,t

)︄
⏞ ⏟⏟ ⏞

=..ψ(Λ), ψ : RM,K →R

+
T∑︂
t=1

M∑︂
m=1

πm,t · ln πm,t⏞ ⏟⏟ ⏞
=.. ξ∈R

. (2.6)

In the following lemma, we clarify that the additive constant term ξ can be omitted in the opti-
mization process.

3(∀x, y ∈ R+) : ln x

y
= ln x − ln y
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Lemma 2.3 Let f : Ω → R be a function on a given feasible set Ω. Then, (∀α ∈ R) :

arg
x

min
x∈Ω

f(x) = arg
x

min
x∈Ω

(︁
f(x) + α

)︁
(2.7)

whenever one side of the equality (2.7) is meaningful.

Proof Recall Definition 2.9. The problem arg
x

min
x∈Ω

f(x) on the left hand side of (2.7) is equivalent
to the problem find x∗ ∈ Ω such that (∀x ∈ Ω) : f(x∗) ≤ f(x). Without loss of generality, we can
add a constant term α ∈ R to both sides of the inequality to obtain f(x∗) + α ≤ f(x) + α, which
is the definition of a minimizer for the problem arg

x
min
x∈Ω

(︁
f(x) + α

)︁
on the right hand side of (2.7).

Thus, equality (2.7) holds.

Since the function − ln(x) is convex on its entire domain (∀x ∈ R+), the problem can be further
estimated using the Jensen’s inequality proposed by Jensen in 1906 [11]. The Jensen’s inequality
can be understood as a generalization of the definition of a convex function; see Figure 2.1 for a
demonstration. In the following, we remind this definition.

f(x)

x1 αx1 + (1− α)x2
x2

f(αx1 + (1− α)x2)

αf(x1) + (1− α)f(x2)

x

f(x)

Figure 2.1: Convex function.

Definition 2.10 A real function f is said to be convex if and only if

(∀x1, x2 ∈ Df ) (∀α ∈ [0, 1]) : f
(︁
αx1 + (1 − α)x2

)︁
≤ αf(x1) + (1 − α)f(x2),
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where Df is the domain of the function f .

The Jensen’s inequality generalizes the statement that the secant line of a convex function lies above
the graph of the function, which is the Jensen’s inequality for two points [12].

Theorem 2.4 (Jensen’s inequality.) Let f be a real convex function defined in Df ⊂ R and let
(∀i = 1, . . . , n) : xi ∈ Df , αi ∈ [0, 1] and

n∑︁
i=1

αi = 1 (n ∈ N). Then

f

(︄
n∑︂
i=1

αixi

)︄
≤

n∑︂
i=1

αif(xi). (2.8)

Proof (By induction.) For the trivial case n = 1 the statement holds. The case for n = 2 is true by
the definition of a convex function. Assume that the statement holds for a certain k ∈ {2, . . . , n}.
It follows that

f

(︄
k+1∑︂
i=1

αixi

)︄
= f

(︄
αk+1xk+1 +

k∑︂
i=1

αixi

)︄
= f

(︄
αk+1xk+1 + (1 − αk+1) 1

1 − αk+1

k∑︂
i=1

αixi

)︄

≤ αk+1f(xk+1) + (1 − αk+1)f
(︄

1
1 − αk+1

k∑︂
i=1

αixi

)︄

= αk+1f(xk+1) + (1 − αk+1)f
(︄

k∑︂
i=1

αi
1 − αk+1

xi

)︄

≤ αk+1f(xk+1) + (1 − αk+1)
k∑︂
i=1

αi
1 − αk+1

f(xi)

= αk+1f(xk+1) +
k∑︂
i=1

αif(xi)

=
k+1∑︂
i=1

αif(xi).

We have demonstrated that the assumption implies that the proposition is valid for k + 1. Thus,
by the principle of Mathematical Induction the inequality is true for all natural numbers [13].

In our case, the Jensen’s inequality can be applied to Eq. (2.6) to obtain

ψ(Λ) = −
T∑︂
t=1

M∑︂
m=1

πm,t · ln
(︄

K∑︂
k=1

Λm,kγk,t

)︄
≤ −

T∑︂
t=1

M∑︂
m=1

K∑︂
k=1

πm,tγk,t ln Λm,k⏞ ⏟⏟ ⏞
=.. ψ̂(Λ), ψ̂ : RM,K → R

.

The goal is to minimize the estimation ψ̂. We will show that such an estimation results in a better
problem in terms of the solvability. In this case, the problem has an analytical solution for Λ. In
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the following, we provide the derivation. Since the given optimization problem is constrained, we
briefly review the theory of Lagrange function and the corresponding optimality conditions.

Lemma 2.5 (About Lagrange Function and KKT Conditions [7, 14].)
Let us consider an optimization problem

x∗ = arg
x

min
x∈Ω

f(x),

where the objective function f : Rn → R is a convex function and the feasible set Ω ⊂ Rn is
convex (i.e., (∀x1,x2 ∈ Ω)(∀α ∈ [0, 1]) : αx1 + (1 − α)x2 ∈ Ω), described by equality and inequality
constraints

Ω ..=
{︂

x ∈ Rn : hEi(x) = 0 i=1,...,mE

hIj(x) ≤ 0 j=1,...,mI

}︂
̸= ∅,

where

• hEi : Rn → R are linear functions describing equality constraints,

• hIj : Rn → R are convex functions describing inequality constraints.

Suppose x∗ solves this problem. Then, there exist vectors λE ∈ RmE and λI ∈ RmI , λI ≥ 0, such
that x∗ solves the Lagrangian problem

x∗ ..= arg
x

min L (x, λE , λI) ,

where L : RmE × RmI → R is Lagrangian function defined by

L(x, λE , λI) ..= f(x) +
mE∑︂
i=1

λEihEi(x) +
mI∑︂
j=1

λIjhIj(x).

The appropriate optimality conditions of this problem, so-called Karush-Kuhn-Tucker (KKT) con-
ditions, are given by

∇xL(x, λE , λI) = ∇f(x) +
mE∑︂
i=1

λEi∇hEi(x) +
mI∑︂
j=1

λIj∇hIj(x) = 0

∇λE
L(x, λE , λI) = [hE1(x), . . . , hEmE

(x)]T = 0

∇λI
L(x, λE , λI) = [hI1(x), . . . , hImI

(x)]T ≤ 0

λI ≥ 0

λIjhIj(x) = 0, j = 1, . . . ,mI .

Proof See Luenberger[15], Bertsekas[16], Nocedal and Wright[17] or Boyd and Vandenberghe[7].
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In the case of our problem, we will show that the inequality constraints on the feasible set ΩΛ in
the optimization problem (2.3) can be ignored, i.e., we do not have to consider the constraint that
each element of Λ must be in the interval [0, 1], since the equality constraint that each column of Λ
sums up to one will be sufficient. Let us define a Lagrangian function L(Λ,λ) to minimize Λ such
that

L(Λ,λ) = ψ̂(Λ) +
K∑︂
k=1

λkhk(Λ:,k), (2.9)

where (∀k = 1, . . . ,K) : hk : RM → R are the linear equality constraint functions that represent

that each column of Λ sums up to one, that is,
M∑︁
m=1

Λm,k = 1. It follows that hk(Λ:,k) =
M∑︁
m=1

Λm,k−1.

By substitution of functions hk and ψ̂ to (2.9) we obtain

L(Λ,λ) = −
T∑︂
t=1

M∑︂
m=1

K∑︂
k=1

πm,tγk,t ln Λm,k +
K∑︂
k=1

λk

(︄
M∑︂
m=1

Λm,k − 1
)︄
.

We can find the stationary points of L using KKT conditions (Lemma 2.5):

(∀m̂, k̂) : ∂L
∂Λm̂,k̂

= −
T∑︂
t=1

πm̂,tγ k̂,t
1

Λm̂,k̂
+ λk̂ = 0 (2.10)

(∀k̂) : ∂L
∂λk̂

=
M∑︂
m=1

Λm,k̂ − 1 = 0 (2.11)

from (2.10),

λk̂ = 1
Λm̂,k̂

T∑︂
t=1

πm̂,tγ k̂,t

Λm̂,k̂ = 1
λk̂

T∑︂
t=1

πm̂,tγ k̂,t (2.12)

from (2.11),

1
λk̂

T∑︂
t=1

(︄
M∑︂
m=1

πm,t

)︄
⏞ ⏟⏟ ⏞

=1 (∀t)

γ k̂,t − 1 = 0

T∑︂
t=1

γ k̂,t = λk̂. (2.13)
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Substituting (2.13) into (2.12) we obtain the following

Λm̂,k̂ =

T∑︁
t=1

πm̂,tγ k̂,t

T∑︁
t=1

γ k̂,t

∈ [0, 1] . (2.14)

We have shown that every element of Λ is indeed in the interval [0, 1] because the inequality

T∑︂
t=1

πm̂,tγ k̂,t ≤
T∑︂
t=1

γ k̂,t

holds. Thus, the assumption of ignoring the inequality constraints of the feasible set ΩΛ is justified.
If the denominator of (2.14) is equal to zero, then there is no data point that can provide information
to compute the conditional probabilities between the k̃-th state of input xt and the state of output yt.
The corresponding state is not present in the given data. From the minimization point of view,
the terms corresponding to these zero entries γ k̃,t, ∀t = 1, . . . , T , are not present in the objective
function (that is, all are equal to zero); therefore, any choice of Λ:,k̃ does not influence the value
of the objective function. Consequently, any choice of these values is the solution. If this situation
occurs, then we use the uniform distribution,

(∀m = 1, . . . ,M) : Λm,k̃ = 1
M
,

i.e., the conditional probabilities are equally distributed between states. This choice reflects the
lack of information on the causality between this state and πt.

Remark 2.2 Instead of the Bayesian model (2.2) we may employ the following discrete-time
Markov chain

(∀t ∈ T ) : πt+1 = Λπt, (2.15)

where T ⊂ N ∪ {0}, πt ∈ PK is a stochastic vector, and Λ ∈ PK,KL is a left stochastic matrix that
encompasses conditional probabilities of transition between states. Following the identical steps
shown in this section, one can straightforwardly derive a solution for the Markov chain (2.15) that
is analogous to the solution of the Bayesian model (2.2). The solution is given below:

(∀k1, k2 = 1, . . . ,K) : Λk1,k2 =

T−1∑︁
t=0

πk1,t+1πk2,t

T−1∑︁
t=0

πk2,t

.
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Chapter 3

Discretization

The Bayesian model presented in the previous section represents the exact relationship between
two categorical processes under the assumption of a stationary transition matrix Λ. However, in
practical applications, we usually deal with continuous stochastic processes. To apply the (discrete)
Bayesian model, we first need to discretize the given processes, and we accomplish this by utilizing
the provided data.

One of the most commonly used approaches for discretization is introducing fixed boxes (also
known as data binning or data bucketing), where the range of values for a continuous variable is
divided into a grid (e.g., equidistant) and categorized based on the corresponding intervals. A
typical example of this is a histogram. Although this approach is straightforward, it suffers from
an exponential growth in the number of boxes as the dimensionality of the problem increases.

In our methodology, we utilize adaptive discretization, where the number of boxes is independent
of the dimension of the given data. Specifically, we adopt K -means.

3.1 K-means

K -means is widely recognized as an important clustering technique that belongs to the field of
unsupervised learning. The fundamental objective of clustering is to assign labels to data points
by leveraging an unlabeled dataset [18]. A loose definition of clustering could be “the process
of organizing objects into groups whose members are similar in some way.” Each cluster is then
characterized by the common features of the entities it contains; the vector of these common features
is called a centroid. Usually, the objects in a cluster are “more similar” to each other and “less
similar” to the objects of the other clusters [19].

The basic idea is the following. First, one has to choose K ∈ N – the number of clusters.
Then an initial clustering is required. This can be achieved by randomly assigning K feature
vectors to be the initial centroids or, for example, by means of the K -means++ initialization [20].
Afterwards, we compute the distance from each data point to each centroid using a metric, such
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as the Euclidean distance. Consequently, we assign each data point to the closest centroid (like if
we labeled each data point with a centroid id as the label). For each centroid, we calculate the
average feature vector of the data points labeled with it. These average feature vectors become the
new locations of the centroids. We recompute the distance from each data point to each centroid,
modify the assignment, and repeat the procedure until the assignments do not change after the
centroid locations were recomputed [18], or other convergence criteria (e.g., a predefined number
of iterations1) are satisfied. The above procedure with random centroid initialization is sometimes
referred to as Lloyd’s K -means algorithm [20].

3.1.1 Prerequisite for K-means

In this section, we derive an analytical solution for the trivial case of K -means, where K = 1.
Let X ∈ RD,T represents the given data from a finite-dimensional data space. We denote X ..=
{xt | (∀t = 1, . . . , T ) : xt ..= X:,t} as the set of feature vectors (or data points). The goal is to find
the optimal centroid c∗ ∈ RD for the set X , that is, a centroid, such that the sum of distances
from the centroid to all feature vectors of X is minimal. The formulation of the corresponding
optimization problem is is given by

c∗ = arg
c

min
T∑︂
t=1

∥xt − c∥2
2 , (3.1)

where ∥·∥2
2 denotes the Euclidean distance squared. The squared Euclidean distance is chosen be-

cause of its more favorable properties. In this case, the optimization problem (3.1) has an analytical
solution, and we now provide its derivation. We define the objective function L as follows

L(c) ..=
T∑︂
t=1

∥xt − c∥2
2 =

T∑︂
t=1

⟨xt − c,xt − c⟩ =
T∑︂
t=1

(︂
xTt xt − 2xTt c + cT Ic

)︂
,

where I ∈ RD,D is an identity matrix such that

(∀i, j = 1, . . . , D | i ̸= j) : Ii,j = 0 and (∀i, j = 1, . . . , D | i = j) : Ii,j = 1.

1It is advisable to use the maximum number of iterations as a safeguard, since the convergence of the algorithm
cannot be guaranteed.
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From necessary condition for local minimum, we can conclude that

∇cL(c) =
T∑︂
t=1

(−2xt + 2c) = 0

T∑︂
t=1

2xt =
T∑︂
t=1

2c

Tc =
T∑︂
t=1

xt

c = 1
T

T∑︂
t=1

xt. (3.2)

Additionally, the corresponding Hessian matrix of function L is given by

H = 2
T∑︂
t=1

I = 2T I = 2

⎡⎢⎢⎢⎢⎢⎢⎣
T 0 · · · 0

0 T
. . . ...

... . . . . . . 0
0 · · · 0 T

⎤⎥⎥⎥⎥⎥⎥⎦ ,

where I ∈ RD,D is an identity matrix. Since the Hessian matrix H is symmetric positive definite,
the sufficient condition for local minimum and the quadratic nature of function L with respect to
the variable c imply that (3.2) represents the global minimum of L. Thus, (3.2) is the solution to
the optimization problem (3.1). Unsurprisingly, the result (3.2) is the mean value of all data points
in the set X .

3.1.2 K-means as Optimization Problem

The aim of this section is to derive the Lloyd’s K -means algorithm. We use the same notation as
in preceding Section 3.1.1. The goal is to find the optimal centroids c∗

k ∈ RD, k = 1, . . . ,K, for
the set X , that is, centroids such that the sum of distances from the centroid to all points affiliated
with the given centroid is minimal. The data point xt is said to be affiliated with the centroid c∗

k,
if and only if c∗

k minimizes the distance from xt to all centroids c1, . . . , cK . We need to find a way
to determine whether a point is affiliated with a centroid. Motivated by the set indicator function
(characteristic function)

Ω ⊂ Rn, χ(x) ..=

⎧⎨⎩1, if x ∈ Ω,

0, if x /∈ Ω,
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we define cluster indicator function γ : {1, . . . ,K} × {1, . . . , T} → {0, 1} as follows

γ(k, t) ..=

⎧⎨⎩1, if xt is affiliated to cluster c∗
k,

0, elsewhere.

Moreover, we construct the matrix Γ ∈ PK,TL so that (∀k = 1, . . . ,K)(∀t = 1, . . . , T ) :

Γk,t ..= γ(k, t).

One data point xt can be associated with exactly one centroid ck at a time. In other words, each
data point in X is exactly in one cluster. It follows that Γ is a left stochastic matrix. Finally, we
can describe K -means as an optimization problem given by

[C∗, Γ∗] = arg
C,Γ

min
Γ∈ΩΓ

Lkmeans, (3.3)

where C ..=
[︂
c1 c2 · · · cK

]︂
∈ RD,K , ΩΓ = PK,TL is the set of all feasible left stochastic matrices Γ,

and

Lkmeans(C, Γ) ..=
T∑︂
t=1

K∑︂
k=1

Γk,t ∥xt − ck∥2
2 . (3.4)

The derivation of the analytical solution for the centroids C∗ is analogous to Section 3.1.1. Since
the problem (3.3) is separable in variable k, we can obtain the optimal centroid for each k as follows

(∀k = 1 . . . ,K) : c∗
k = arg

ck

min
T∑︂
t=1

Γk,t ∥xt − ck∥2
2

L(ck) ..=
T∑︂
t=1

Γk,t ∥xt − ck∥2
2 =

T∑︂
t=1

Γk,t ⟨xt − ck,xt − ck⟩ =
T∑︂
t=1

Γk,t
(︂
xTt xt − 2xTt ck + cTk Ick

)︂

∇ck
L(ck) =

T∑︂
t=1

Γk,t (−2xt + 2ck) = 0 (Necessary condition for local minimum.)

−
T∑︂
t=1

Γk,txt + ck
T∑︂
t=1

Γk,t = 0

ck
T∑︂
t=1

Γk,t =
T∑︂
t=1

Γk,txt (3.5)

c∗
k =

∑︁T
t=1 Γk,txt∑︁T
t=1 Γk,t

(3.6)
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Notice that the denominator in (3.6), ∑︁T
t=1 Γk,t, is equivalent to the number of points affiliated

to the k-th centroid ck, for brevity, we denote this number as Nk. The corresponding Hessian
associated with the function L is given by

H = 2NkI = 2

⎡⎢⎢⎢⎢⎢⎢⎣
Nk 0 · · · 0

0 Nk
. . . ...

... . . . . . . 0
0 · · · 0 Nk

⎤⎥⎥⎥⎥⎥⎥⎦ ,

where I ∈ RD,D is an identity matrix. The Hessian H is symmetric positive definite if Nk > 0.
Additionally, the function L is quadratic in variable ck, and the equation (3.6) is well defined for
any non-empty cluster. Thus, (3.6) is a minimum of the objective function L. However, if there is
an empty cluster, then (3.5) has an indefinite number of solutions. This is because the objective
function does not incorporate the corresponding variable ck, and, as a result, the problem is solved
for any value. This situation arises when the centroid of the empty cluster cannot be determined
unambiguously. Under the assumption that there is no empty cluster, the result (3.6) represents
the mean value of all points affiliated with the cluster ck.

The solution to the Γ subproblem is straightforward. For each data point xt we find the distances
to all centroids and choose the centroid that is closest to the given data point. Mathematically, we
can write that

(∀t = 1, . . . , T ) : Γ∗
:,t = arg

Γ:,t

min
Γ:,t∈PK

K∑︂
k=1

Γk,t ∥xt − ck∥2
2 , (3.7)

(∀k = 1, . . . ,K) : Γ∗
k,t =

⎧⎪⎨⎪⎩
1, if k∗ = arg

k
min ∥xt − ck∥2

2,

0, elsewhere.
(3.8)

The K -means algorithm can be solved as a sequence of split optimization problems. We alter-
nately update the matrix Γ∗ (with fixed C) and find minimizers for the centroids C∗ (with fixed Γ).

Algorithm 1: K -means
Set initial approximation of centroids C0.
i = 0
while “convergence criteria” do

Γi+1 = arg
Γ

min
Γ∈ΩΓ

L(Ci, Γ) −→ Reassign each data point to its nearest centroid (3.8).

Ci+1 = arg
C

minL(C, Γi+1) −→ Compute centroid of each cluster (3.6).

i = i+ 1
end

In each step of Algorithm 1 the objective function improves (or remains the same when the algorithm
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converges), since the solution found in the previous step is in the search space of the current step.
However, since we fix some of the variables in each step, this is a local search procedure that does
not guarantee optimality [21].

A simple MATLAB implementation of Algorithm 1 (Listing A.1) and a practical example of
K -means++ initialization (Fig. A.1), as well as the resulting clustering (Fig. A.2) and a widely
used heuristic for determining the ideal number of clusters (Fig. A.3), can be found in Appendix A.

3.2 Scalable Probabilistic Approximation

In this chapter, we introduce the Scalable Probabilistic Approximation (SPA) method [22]. Later in
this work, we will demonstrate that SPA and K -means are closely interconnected, not only because
both can accomplish data discretization into clusters.

Let X ∈ RD,T represents the given data, and let ΩΓ = PK,TL be the feasible set of all left
stochastic matrices Γ, where Γ is composed of stochastic column vectors γt ∈ PK . Finally, let
the matrix S ∈ RD,K , defined as S ..=

[︂
s1 s2 . . . sK

]︂
, encompasses all possible discrete states

(clusters). The number of discrete states is denoted as K > 1, T ∈ N represents the number of data
points (feature vectors) xt ..= X:,t, and D ∈ N stands for the dimension (number of features) of each
data point. The general formulation of the SPA optimization problem in Euclidean space is given
by

[S∗, Γ∗] ..= arg
S,Γ

min
Γ∈ΩΓ

L(S, Γ), (3.9)

where L is an objective function defined as

L(S, Γ) ..=
T∑︂
t=1

⃦⃦⃦⃦
⃦xt −

K∑︂
k=1

Γk,tsk

⃦⃦⃦⃦
⃦

2

2

+ ε2
SΦS(S) + ε2

ΓΦΓ(Γ). (3.10)

In the case of SPA, Γ encompasses unknown cluster affiliation stochastic vectors and S contains
unknown mapping parameters between the data X and the probability representation Γ. The pos-
sibility of Tikhonov-based regularization [23] of the original ill-posed problem2 using regularization
functions ΦS(S), ΦΓ(Γ) with the corresponding regularization parameters ε2

S, ε
2
Γ > 0 is included.

We can consider a linear relationship between a data point xt and its corresponding probabilistic
representation γt such that

xt =
K∑︂
k=1

Γk,tsk = Sγt, (3.11)

where S ∈ RD,K is a matrix of parameters of this mapping [22]. Equation (3.11) can be interpreted
as the expected value of the data representation vectors sk with the probability density vector γt.

2The solution to the problem (3.9) without the regularization is not unique [22]. Therefore, it is an ill-posed
problem. Tikhonov-based regularization is introduced to transform the original ill-posed problem into a well-posed
problem.
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The problem (3.9) can be solved iteratively as a sequence of split optimization problems. Assume
that a feasible initial approximation S0 is given. Each iteration i involves solving the subproblem
for Γi+1 with fixed Si, followed by the subproblem for Si+1 with fixed Γi+1. This procedure is
summarized in the following pseudocode.

Algorithm 2: SPA
Set initial approximation S0.
i = 0
while “convergence criteria” do

Γi+1 = arg
Γ

min
Γ∈ΩΓ

L(Si, Γ), where Si is fixed.

Si+1 = arg
S

minL(S, Γi+1), where Γi+1 is fixed.

i = i+ 1
end

The attentive reader may discern the similarity between Algorithms 1 and 2. In the upcoming
chapter, we clarify that there exist certain instances in which SPA provides the same solution
as K -means. However, SPA has the potential to attain an even better level of discretization.
Additional features of SPA, such as solutions to the S and Γ subproblems, optimality conditions,
and generalization to arbitrary spaces, can be found in the original text [22].
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Chapter 4

Multiobjective Optimization With SPA

Multiobjective optimization (also known as multicriteria or vector optimization) is a field of mathe-
matical optimization that deals with the simultaneous optimization of multiple objective functions.
In the case of real-world applications, the objectives are often in conflict with one another. For
example, in financial portfolio management, one may want to maximize the return on investment
while minimizing risk. Multiobjective optimization aims to find the best trade-offs among these
objectives, rather than optimizing them individually. This chapter provides an introduction to
the fundamentals of multiobjective optimization, presents a step-by-step example, and ultimately
proposes a method that integrates SPA with a Bayesian linear model.

4.1 Multiobjective Optimization Problems

In this section, we introduce multiobjective optimization problems (MOPs) in the following form.

Minimize {f1(x), f2(x), . . . , fm(x)}

subject to x ∈ Ω,
(4.1)

where m ≥ 2, (∀i = 1, . . . ,m) : fi : Rn → R are objective functions and Ω ⊂ Rn is a (nonempty)
feasible set [24]. If an objective function fi is to be maximized, it is equivalent to minimize the func-
tion −fi. If there is no conflict between the objective functions, then a solution can be found where
every objective function attains its optimum. In this trivial case, no special methods are required.
Henceforth, we assume that there does not exist a single solution that is optimal with respect to
every objective function, i.e., the objective functions are at least partly conflicting. Therefore, due
to the contradiction and possible incommensurability of the objective functions, it is not possible
to find a single solution that would be optimal for all the objectives simultaneously. MOPs are, in
a sense, ill-posed [24].
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Multiobjective optimization is a vast area of research and we will only scratch the surface here1.
In the following, we introduce the weighting method for solving MOPs [25].

Minimize
m∑︂
i=1

αifi(x)

subject to x ∈ Ω,

where αi ≥ 0 are the weighting coefficients representing the relative importance of the objectives.
The αi are usually normalized so that

m∑︁
i=1

αi = 1, this variant of the weighting method is often

referred to as the weighted sum method (WSM). The idea of the WSM is the conversion of the MOP
into a single objective optimization problem using a convex combination of objectives [27]. The
weighting coefficients αi do not reflect the relative importance of the objectives in the proportional
sense because the objectives may be incommensurable.

We demonstrate the application of multiobjective optimization on a typical financial problem
of portfolio selection, which involves two conflicting objectives. Specifically, the goal is to maximize
financial gains while minimizing financial risks.

Example 4.1
Let x ∈ R, f : R → R represents negative financial gains, e.g. f(x) = x2 − 3, and let g : R → R
represents financial risks, e.g. g(x) = (x − 3)2. We use the WSM with a weighting coefficient
α ∈ [0, 1]. The unconstrained optimization problem with a composite objective function can be
written as follows

x∗ = arg
x

minα · f(x) + (1 − α) · g(x). (4.2)

Table 4.1: Optimization with different values of the coefficient α.

α x∗ Meaning

1 arg
x

min f(x) Profit maximization is paramount, risks are ignored.

0.5 arg
x

min 0.5 · f(x) + 0.5 · g(x) The meaning of the weight α is not known a priori.

0 arg
x

min g(x) Risk minimization is the most important, gains are ignored.

The meaning behind different choices of α is explained within Table 4.1.

1For more information on multiobjective optimization, see [24, 25, 26] or [27].
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Figure 4.1: Functions f and g.
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Figure 4.2: L-curve.

Fig. 4.1 displays the graphs of functions f and g with their respective minima marked with black
dots, while Fig. 4.2 shows the corresponding L-curve [28]. The L-curve is a curve constructed from
the solutions of optimization problems for different choices of weighting coefficient α. The curve
demonstrates that for higher values of α, the optimization process prioritizes minimizing the first
objective function f , resulting in a small value of f in the minimizers. In contrast, the function g is
neglected, leading to a higher value in the corresponding minimizers. The opposite situation occurs
when the value of α is small.

The L-curve can be used to determine the optimal value of α according to preferences. However,
the two objective functions are generally conflicting, i.e., they do not share a common minimizer.
Hence, the right choice of the appropriate value of the coefficient α that balances both objectives is
ultimately a matter of trade-off between the two objectives. ▲

Thus far, we have sufficed with the intuitive meaning of multiobjective optimization. However, there
exists extensible underlying theory. In the following, we give an overview of one of the fundamental
principles, Pareto optimality.

A point x∗ ∈ Ω ⊂ Rn is called Pareto optimal or a Pareto minimizer for the problem (4.1), if
there does not exist x ∈ Ω such that (∀i = 1, . . . ,m) : fi(x) ≤ fi(x∗) and fj(x) < fj(x∗) for at
least one index j ∈ {1, . . . ,m}. The set of all the Pareto optimal solutions is denoted by S. The set
F ..= {f(x∗) | x∗ ∈ S}, which contains the image of all Pareto optimal solutions, is called the Pareto
front [26]. In the case of Fig. 4.2, each point on the L-curve corresponds to a Pareto minimizer of
the problem (4.2). It follows that in this simple example the L-curve is equivalent to the Pareto
front.
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4.2 MOP With SPA

In this section, we demonstrate that the MOP methodology can be applied to SPA (3.9) and a
slight modification of the Bayesian linear model (2.2). In the following, we formulate a Bayesian
linear model for any two stochastic processes X ..= {Xt, t ∈ T } and Y ..= {Yt, t ∈ T }; please notice
that these stochastic processes need not be discrete-state. In order to apply the (discrete) Bayesian
model, a discretization of the processes into K discrete states (clusters) is introduced. Specifically,
SX ∈ RD,K and SY ∈ RM,K , where, in general, K ≪ T . Let xt ∈ X be the observed input data and
let yt ∈ Y be the output data. Finally, we can formulate the Bayesian linear model as follows

Π = ΛΓ, (4.3)

where (∀m = 1, . . . ,M)(∀t = 1, . . . , T )(∀k = 1, . . . ,K) :

Πm,t = P(yt is in state SYm),

Γk,t = P(xt is in state SXk ),

are probabilistic representations of the above discretization and where Λ is a matrix of conditional
probabilities such that

Λm,k = P(yt is in state SYm if xt is in state SXk ).

It follows that Π,Λ, and Γ are left stochastic matrices. Henceforth, we assume that the conditional
probabilities in the matrix Λ are stationary (independent of the data index t) and depend only on
the discrete state indices m and k. Moreover, when it is apparent from the context, we will omit
the superscript of discrete states (SX and SY ). Eq. (4.3) can be justified by the the Law of Total
Probability (Theorem 2.1).

Similarly to Section 2.3, one can derive a solution of the Λ problem for (4.3) by minimizing the
KLD between Π:,t and ΛΓ:,t, (∀t = 1, . . . , T ). The form of the KLD is as follows

D(Π:,t ∥ ΛΓ:,t) = −
M∑︂
m=1

Πm,t · ln Λm,:Γ:,t
Πm,t

.

The solution of the Λ problem in (4.3) is analogous to (2.14) and is given by

Λm,k =

T∑︁
t=1

Πm,tΓk,t
T∑︁
t=1

Γk,t
= ⟨Πm,: , Γk,:⟩

T∑︁
t=1

Γk,t
∈ [0, 1] . (4.4)

In the case of our problem, we can assume that the matrix S in SPA provides the required discretiza-
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tion of the given data X ∈ RD,T and that Γ ∈ PK,TL in (4.3) contains probabilistic representations
of the data points X:,t. The corresponding constrained MOP is stated as follows.

Minimize {L1(S, Γ), L2(Λ, Γ)}

subject to Γ ∈ ΩΓ and Λ ∈ ΩΛ,
(4.5)

where ΩΓ = PK,TL , ΩΛ = PM,K
L , and

L1(S, Γ) =
T∑︂
t=1

⃦⃦⃦⃦
⃦X:,t −

K∑︂
k=1

Γk,tS:,k

⃦⃦⃦⃦
⃦

2

2

,

L2(Λ, Γ) = −
T∑︂
t=1

M∑︂
m=1

Πm,t · ln Λm,:Γ:,t
Πm,t

.

To clarify, L1 is the SPA objective and L2 is the KLD objective. Using the WSM with weight
α ∈ [0, 1], we can formulate the corresponding composite optimization problem as follows

[S∗, Γ∗,Λ∗] = arg
S,Γ,Λ

min
Γ∈ΩΓ
Λ∈ΩΛ

α
T∑︂
t=1

⃦⃦⃦⃦
⃦X:,t −

K∑︂
k=1

Γk,tS:,k

⃦⃦⃦⃦
⃦

2

2

− (1 − α)
T∑︂
t=1

M∑︂
m=1

Πm,t · ln Λm,:Γ:,t
Πm,t

, (4.6)

where S ∈ RD,K are unknown mapping parameters between the data points X:,t and the correspond-
ing probability representations Γ:,t. The problem described in (4.6) is separable from t, which means
that we could potentially solve T simpler problems rather than solving (4.6) directly. However, we
have managed to find a solution that solves all T problems in a single step. The algorithm used
to solve (4.6) can be expressed as a sequence of split optimization problems, similar to the SPA
formulation in Section 3.2. Nonetheless, the subproblems for Γ and Λ require a numerical solution.
Specifically, we utilize the Spectral Projected Gradient (SPG) method [29, 30] to solve them.

Algorithm 3: SPA + KLD
Set feasible initial approximation S0 and Λ0.
i = 0
while “convergence criteria” do

Γi+1 = arg
Γ

min
Γ∈ΩΓ

L(Si, Γ,Λi) −→ Numerical solver (SPG).

Si+1 = arg
S

minL(S, Γi+1,Λi) −→ Solution of S subproblem in SPA [22].

Λi+1 = arg
Λ

min
Λ∈ΩΛ

L(Si+1, Γi+1,Λ) −→ Numerical solver (SPG).

i = i+ 1
end

The performance of Algorithm 3 is limited in terms of the high computational cost of the Γ sub-
problem. However, there exists an alternative; the L1 function (SPA) can be estimated by means
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of the Jensen’s inequality described in Theorem 2.4:

L1(S, Γ) =
T∑︂
t=1

⃦⃦⃦⃦
⃦X:,t −

K∑︂
k=1

Γk,tS:,k

⃦⃦⃦⃦
⃦

2

2

≤
T∑︂
t=1

K∑︂
k=1

Γk,t · ∥X:,t − S:,k∥2
2 = Lkmeans(S, Γ), (4.7)

where Lkmeans is the objective function of K -means (3.3), when we choose S to be equivalent to C.
The motivation behind the different notation is to emphasize that the clustering provided by SPA
is in general distinct from K -means, and the computation is also quite different.

Eq. (4.7) demonstrates a vital relationship between SPA and K -means, specifically that K -means
produces only an upper estimate of the SPA optimization problem (3.9), when the squared Euclidean
distance is employed as the distance function [22]. In other words, measured in terms of the
squared Euclidean distance, the discretization provided by K -means is always suboptimal to the
discretization obtained with SPA. However, if the matrix Γ is binary, the inequality (4.7) becomes
an equality, thereby making K -means equivalent to SPA in Euclidean space [22]. In the upcoming
section, we discuss a similar MOP involving K -means.

4.3 MOP With K-means

This section presents a multiobjective formulation of K -means (3.3) and the Bayesian linear mod-
el (4.3). It is worth noting that this approach bears a strong resemblance to the one introduced
in Section 4.2, the main difference being that the discretization is now performed by K -means rather
than SPA. The notation used in previous sections is retained. The estimate of the constrained MOP
(4.5) is given as follows.

Minimize {L1(C, Γ), L2(Λ, Γ)}

subject to Γ ∈ ΩΓ and Λ ∈ ΩΛ,

where

L1(S, Γ) =
T∑︂
t=1

K∑︂
k=1

Γk,t · ∥X:,t − C:,k∥2
2 , (4.8)

L2(Λ, Γ) = −
T∑︂
t=1

M∑︂
m=1

Πm,t · ln Λm,:Γ:,t
Πm,t

. (4.9)

Note that L1 is now the K -means objective and L2 remains the KLD objective. Again, the WSM
with weight α ∈ [0, 1] is used. The corresponding composite optimization problem can be written
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as follows

[C∗, Γ∗,Λ∗] = arg
C,Γ,Λ

min
Γ∈ΩΓ
Λ∈ΩΛ

α
T∑︂
t=1

K∑︂
k=1

Γk,t · ∥X:,t − C:,k∥2
2 − (1 − α)

T∑︂
t=1

M∑︂
m=1

Πm,t · ln Λm,:Γ:,t
Πm,t

. (4.10)

The problem (4.10) can be solved as a sequence of split optimization problems as shown in Algo-
rithm 4.

Algorithm 4: K -means + KLD
Set feasible initial approximation C0 and Λ0.
i = 0
while “convergence criteria” do

Γi+1 = arg
Γ

min
Γ∈ΩΓ

L(Ci, Γ,Λi) −→ Numerical solver (SPG).

Ci+1 = arg
C

minL(C, Γi+1,Λi) −→ Solution of K -means in variable C (3.6).

Λi+1 = arg
Λ

min
Λ∈ΩΛ

L(Ci+1, Γi+1,Λ) −→ Numerical solver (SPG).

i = i+ 1
end

Although the subproblems for Γ and Λ still require a numerical solution, from a numerical standpoint
this problem is substantially easier to solve than the problem with SPA. However, Algorithm 4 still
has some limitations in terms of performance, particularly when dealing with large datasets where
T > 10, 000.

4.4 MOP With Jensen Estimation

Because the preceding algorithm, Algorithm 4, does not meet the desired level of performance, it
is necessary to either find a more effective algorithm or to further estimate the objective function.
To address this issue, we demonstrate in this section that it is possible to further estimate the
second objective function, L2 (4.9), by using logarithmic identities and then applying the Jensen’s
inequality (Theorem 2.4):

L2(Λ, Γ) = −
T∑︂
t=1

M∑︂
m=1

Πm,t · ln Λm,:Γ:,t
Πm,t

= −
T∑︂
t=1

M∑︂
m=1

Πm,t · ln
(︄

K∑︂
k=1

Λm,kΓk,t

)︄
+

T∑︂
t=1

M∑︂
m=1

Πm,t · ln Πm,t⏞ ⏟⏟ ⏞
=.. ξ ∈R

,

35



where the additive constant ξ can be omitted in the context of minimization2. Since the function
− ln(·) is convex, it follows that

L2(Λ, Γ) ≤ −
T∑︂
t=1

M∑︂
m=1

K∑︂
k=1

Πm,t · Γk,t · ln (Λm,k) . (4.11)

Analogously to the previous sections, we combine the K -means objective L1 (4.8) and the estimated
KLD objective L2 (4.11) into a single optimization problem given by

[C∗, Γ∗,Λ∗] = arg
C,Γ,Λ

min
Γ∈ΩΓ
Λ∈ΩΛ

α
T∑︂
t=1

K∑︂
k=1

Γk,t · ∥X:,t − C:,k∥2
2 − (1 −α)

T∑︂
t=1

M∑︂
m=1

K∑︂
k=1

Πm,t · Γk,t · ln (Λm,k) . (4.12)

In the case of our problem, Γ can be factored out from (4.12) to obtain the following

[C∗, Γ∗,Λ∗] = arg
C,Γ,Λ

min
Γ∈ΩΓ
Λ∈ΩΛ

T∑︂
t=1

K∑︂
k=1

Γk,t

(︄
α · ∥X:,t − C:,k∥2

2 − (1 − α)
M∑︂
m=1

Πm,t · ln Λm,k

)︄
. (4.13)

The constrained optimization problem (4.13) can be solved using a modified K -means algorithm,
where the main difference is that the solution of the Γ subproblem is now as follows

(∀t = 1, . . . , T ) : Γ∗
:,t = arg

Γ:,t

min
Γ:,t∈PK

K∑︂
k=1

Γk,t

(︄
α · ∥X:,t − C:,k∥2

2 − (1 − α)
M∑︂
m=1

Πm,t · ln Λm,k

)︄
,

Γ∗
k,t =

⎧⎪⎪⎨⎪⎪⎩
1, if k∗ = arg

k
min

{︄
α ∥X:,t − C:,k∥2

2 − (1 − α)
M∑︁
m=1

Πm,t · ln Λm,k

}︄
,

0, elsewhere.
(4.14)

Algorithm 5: K -means + KLD + Jensen
Set feasible initial approximation C0 and Λ0.
i = 0
while “convergence criteria” do

Γi+1 = arg
Γ

min
Γ∈ΩΓ

L(Ci, Γ,Λi) −→ Solution of the Γ subproblem (4.14).

Ci+1 = arg
C

minL(C, Γi+1,Λi) −→ Solution of K -means in variable C (3.6).

Λi+1 = arg
Λ

min
Λ∈ΩΛ

L(Ci+1, Γi+1,Λ) −→ Solution of the Bayesian linear model (4.4).

i = i+ 1
end

2Please recall Lemma 2.3.
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Algorithm 5 summarizes the solution of (4.13). We solve three split optimization problems for Γ, C,
and Λ, similar to the approach taken in previous sections. However, with the proposed estimation,
the solution of each subproblem can now be expressed as a closed-form analytic formula.

This algorithm has demonstrated a respectable ability to process large datasets, making it a
useful tool when dealing with a significant amount of data. In fact, its efficiency makes it suitable
for datasets with sizes exceeding 10,000 data points, where some conventional algorithms may
struggle to perform effectively.
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Chapter 5

Applications

In this chapter, we explore the fundamental concepts and techniques behind supervised machine
learning (SML) and the application of Algorithms 3, 4, and 5 to classification tasks. Additionally, we
delve into the important topics of feature engineering, model evaluation, and hyperparameter tuning,
which play a crucial role in achieving high accuracy and robustness in classification models. All
applications presented in this chapter have been implemented in MATLAB and are freely available
on GitHub [3].

In supervised learning, the dataset is the collection of labeled samples (X,Y ) = {(xt, yt)}Tt=1.
Each element xt among T is called a feature vector. A feature vector is a vector in which each
dimension d = 1, . . . , D contains a value (feature) that describes the sample in some way. The
label yt can be either an element belonging to a finite set of classes {1, 2, . . . ,M} or a real num-
ber [18]. For instance, if our samples are images of corrosion, then we can have two classes
{corrosion, not_corrosion}.

The goal of an SML algorithm is to use the dataset to produce a model that takes a feature
vector xt as input and outputs information that allows deducing the label for this feature vector [18].

5.1 Feature Engineering

The problem of transforming raw data into a dataset is called feature engineering. Everything
measurable can be used as a feature. The goal is to create informative features: these would allow
the learning algorithm to build a model that predicts the correct labels of the data used for training.
Highly informative features are also called features with high predictive power [18]. We demonstrate
the process of feature engineering in the following example.

Example 5.1
Suppose that we have a dataset that includes corrosion images. The aim is to identify pixels that
show signs of corrosion. Consider an image, a square image with a resolution of 256×256 pixels, for
simplicity. The image can be divided into tiles, hereafter called patches. Assume that the patches
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have dimensions 16 × 16 pixels; the total would be 162 = 256 patches. The objective is to extract
informative features from the patches that would allow the learning algorithm to build a reliable
model.

Image =

⎡⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎦
For instance, we can investigate the roughness of individual patches because corrosion generally has a
rough texture. This can be accomplished by computing the gray-level co-occurrence matrix (GLCM)
and its corresponding features contrast, correlation, energy (uniformity), and homogeneity [31, 32].
These features can be used to create a patch descriptor (feature vector) such that

xt =

⎡⎢⎢⎢⎢⎢⎣
contrast in the t-th patch

correlation in the t-th patch
energy in the t-th patch

homogeneity in the t-th patch

⎤⎥⎥⎥⎥⎥⎦ ,

where t = 1, . . . , T and T ∈ N is the number of patches. Subsequently, we assemble the patch
descriptors into a matrix X ∈ RD,T as follows

X =
[︂
x1 x2 · · · xT

]︂
.

▲

Frequently, the values of extracted features are on dissimilar scales. For example, one feature may
range between [0, 1], while another may take values from the interval [−1000, 1000]. This can lead
to undesirable behavior, such as biased outcomes in K-means clustering. In this case, the squared
Euclidean distance is computed from each data point to all centroids. When the values of the
features are on different scales, one feature may dominate over the others and the features with
smaller values may be neglected.

5.1.1 Normalization

A widely used and straightforward solution is to normalize the values. Normalization [18] is the
process of converting an actual range of values that a numerical feature can acquire, into a standard
range of values, typically within the interval [0, 1]. The normalization formula is as follows

x(d) = x(d) − min(d)

max(d) − min(d) , (5.1)
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where min(d) and max(d) are, respectively, the minimum and the maximum value of the feature
x(d) in the dataset, and x(d) denotes the normalized feature within the interval [0, 1]. Eq. (5.1) is
also known as min-max normalization or min-max scaling. Using the notation from the previous
chapters, we can express x(d) as a vector from the set {X1,:,X2,:, . . . ,XD,:}, where X ∈ RD,T .

5.1.2 Standardization

Another prevalent option for dealing with differences in the scale of individual features is standard-
ization. Standardization (or z-score normalization) [18] is a procedure during which the feature
values are rescaled so that they exhibit the properties of a standard normal distribution with µ = 0
and σ = 1, where µ is the mean (the average value of the feature, averaged over all samples in the
dataset) and σ is the standard deviation from the mean. Standard scores (or z-scores) of features
are calculated as follows:

x(d) = x(d) − µ(d)

σ(d) ,

where µ(d) and σ(d) are, respectively, the mean and standard deviation of the d-th feature x(d), and
x(d) denotes the standardized feature.

A common practice in data analysis is to test both normalization and standardization methods,
and then decide which one to use based on the performance of the selected algorithm [18]. Fur-
ther information on evaluating the performance of machine learning algorithms will be covered in
Section 5.3.

5.2 Bayesian Causal Inference

Assuming that an SML model has been trained using one of the developed algorithms, the question
that arises is how to employ this model for prediction purposes. This is where Bayesian inference
comes into play. Recall that in Algorithms 3, 4, and 5, the main goal is to find the optimal matrices
C (S), Γ, and Λ. Essentially, Λ allows us to infer the label from a vector of features. To make a
prediction using the Bayesian linear model (4.3), given matrices Λ and C, we need a discretization of
the input feature vector xt and the corresponding probabilistic representation Γ:,t (∀t = 1, . . . , T ).
The discretization can be obtained using one step of the K -means algorithm with the pre-trained
matrix of centroids C (or S in the case of SPA). Then, we can make a prediction using the Bayesian
linear model (4.3):

(∀t = 1, . . . , T ) : Π:,t = ΛΓ:,t,

where Π:,t contains the predicted encoded label1. We use the so-called one-hot encoding for labels,
where we create a (transposed) binary vector for each class of a finite set of classes {1, 2, . . . ,M}.
For example, suppose that we have three labels and two classes {corrosion, not_corrosion},

1The prediction does not have to be binary, instead the columns of Π may contain probabilities.
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corresponding one-hot encoding, where the first row represents corrosion and the second row
represents not_corrosion, is illustrated below:

Π =
[︄
1 0 1
0 1 0

]︄
corrosion,

not_corrosion,

where 1 represents class membership. In this example, the first label is corrosion, the second label
is not_corrosion and the third label is again corrosion. Since each column of Π is a stochastic
vector, we can write in terms of probability that

Π:,t =
[︄

P(xt is corrosion)
P(xt is not_corrosion)

]︄
.

5.3 Model Evaluation

A widely used technique for evaluating machine learning models is the three-way split, also known
as the train-validation-test split [18]. This method involves dividing the available data into three
subsets:

1. Training set, which is used to train the model.

2. Validation set, which is used to evaluate the model during training. The model is tested on
the validation data to assess how well it generalizes to new data. Moreover, the validation set
is used for hyperparameter tuning (we address this in following Section 5.4).

3. Test set, which is used to measure the final performance of the model. Once the model has
been trained and optimized using the training and validation sets, it is tested on the test data
to assess its ability to make accurate predictions on new, unseen data.

To summarize, the three-way split is a key step in developing and evaluating machine learning models
because it allows us to tune hyperparameters and assess the model’s generalization performance,
i.e., its ability to perform on previously unseen data.

To evaluate the performance of classification models, a set of widely accepted performance
metrics and tools are typically used, including confusion matrix, accuracy, precision / recall, F -score,
and Matthew’s correlation coefficient (MCC). The confusion matrix is a table that summarizes how
successful the classification model is at predicting samples belonging to various classes. One axis of
the confusion matrix is the label predicted by the model and the other axis is the actual label [18].

Example 5.2
Suppose that we have a binary classification problem and that our model predicts two classes,
corrosion and not_corrosion. An illustration of what a confusion matrix may look like follows.
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Table 5.1: Confusion matrix.

Predicted
corrosion not_corrosion

A
ct

ua
l

corrosion 57 (TP) 7 (FN)
not_corrosion 13 (FP) 42 (TN)

The above confusion matrix (Table 5.1) indicates that out of the samples that actually belonged
to the corrosion class, 57 were accurately identified (TP – true positive). Similarly, 42 samples
that did not belong to the corrosion class were correctly classified as not_corrosion (TN – true
negative). However, the model also made incorrect predictions by classifying 13 samples that were
not_corrosion as corrosion (FP – false positive), and 7 samples that were actually corrosion

as not_corrosion (FN – false negative). ▲

In the following, we provide a concise description of the performance indicators that can be computed
from the confusion matrix. Accuracy is a useful performance metric when errors in predicting all
classes are equally important. Accuracy is given by the number of correctly classified samples
divided by the total number of classified samples. In terms of the confusion matrix, it is given by
the following formula [18]:

Accuracy ..= TP + TN
TP + TN + FP + FN .

Accuracy is a useful performance metric for balanced datasets, where the number of samples in each
class is roughly equal. However, in the case of an imbalanced dataset, accuracy can be misleading,
as a high accuracy score can be achieved by merely predicting the majority class. For example, when
10% of the samples are in the positive class and 90% of the samples come from the negative class,
the model can achieve 90% accuracy by predicting solely the negative class and ignoring the positive
class. This phenomenon is known as the accuracy paradox. Nonetheless, there are other metrics that
are more suitable for unbalanced datasets, such as precision / recall, F -score, and MCC. Precision
is the ratio of correct positive predictions to the total number of positive predictions [18]:

Precision ..= TP
TP + FP .

Recall is the ratio of correct positive predictions to the overall number of positive samples in the
test set [18]:

Recall ..= TP
TP + FN .

The definition of F -score or F -measure is given as follows [33]:

Fβ ..= (β2 + 1) · Precision · Recall
β2 · Precision + Recall ,
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where 0 ≤ β < +∞ is a parameter that controls the balance between precision and recall. When
β = 1, F1 becomes equivalent to the harmonic mean of precision and recall. This performance
metric is commonly known as F1-score [33]:

F1 ..= 2
1

Precision + 1
Recall

= 2 · Precision · Recall
Precision + Recall = 2 · TP

2 · TP + FP + FN .

It is worth noting that the F1-score ignores true negatives, which may be important in some ap-
plications. Although accuracy and F1-score are the prevalent performance metrics, both have their
flaws. The authors of [34] recommend the use of Matthew’s correlation coefficient (MCC) for bi-
nary classification problems over accuracy and F1-score, particularly when dealing with unbalanced
datasets. The formula in terms of confusion matrix is as [34] follows

MCC ..= TP · TN − FP · FN√︁
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

.

Accuracy, F1-score, and precision / recall range from 0 to 1, where 1 represents perfect classification
and 0 means perfect misclassification. In contrast, the MCC ranges from -1 to 1. However, it can
be normalized to the standard interval [0, 1]:

NormMCC ..= MCC + 1
2 .

For more information about performance metrics, please refer, for example, to this insightful com-
parative study by Chicco and Jurman [34].

5.4 Hyperparameter Tuning

Hyperparameters are parameters that are not optimized by the learning algorithm itself, and the
best combination must be found experimentally [18]. The optimal choice of hyperparameters is
crucial because they control the behavior of the algorithm and affect (often significantly) the final
performance. In the case of Algorithms 3, 4, and 5 we have to optimize two hyperparameters,
specifically, the weighting coefficient α and the number of clusters K. To address this issue, we
adopt grid search, which is one of the simplest hyperparameter tuning strategies. The grid search
process is straightforward and is best explained by an example.

Example 5.3
Assume that we want to evaluate the performance of the model with four different numbers of
clusters K ∈ K = {25, 30, 35, 40} and four distinct values of the weighting coefficient α ∈ W =
{0.9997, 0.9998, 0.9999, 1}. As the name of the technique suggests, we arrange the values into a grid
(i.e., we perform the Cartesian product K × W or W × K) and calculate the performance of the
model for each of the pairs in the grid. An illustration of the results is given in Fig. 5.1.
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Figure 5.1: Grid search.

Fig. 5.1 demonstrates the grid search for the above problem. Here, we compare the performance
by the F1-score metric, which is plotted against the grid as a surface plot, the highest score being
marked by a black triangle. Hyperparameters that result in the best model (measured by F1-score)
are α = 0.9999 and K = 25. ▲

In summary, grid search is a brute-force approach that systematically tries every combination of
hyperparameters defined in the grid. As with most brute-force algorithms, this approach can of-
ten be computationally demanding. In the application for corrosion detection, we used Bayesian
optimization [35], which utilizes a more sophisticated strategy. Specifically, the Bayesian hyper-
parameter optimization algorithm iteratively builds a probabilistic model to decide which set of
hyperparameters should be evaluated next. This approach is usually more efficient and, in the case
of our problem, demonstrates better results. Additional information is covered in Section 5.7.

5.5 Synthetic Problem

Before we delve into practical applications, we demonstrate the functionality of Algorithms 3, 4,
and 5 on the following synthetic problem. We generated:

• a random matrix of cluster centroids C ∈ RD,K (random integers from interval [−10, 10]),

• a random left stochastic matrix Γ ∈ PK,TL ,

• a random left stochastic matrix Λ ∈ PM,K
L ,

• a matrix X ∈ RD,T such that X = CΓ, and
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Figure 5.2: Comparison of Algorithms 3, 4, and 5 on synthetic benchmark.

• a matrix of one-hot encoded labels Π ∈ PM,T
L , such that the labels are generated according to

the probabilities given by the product ΛΓ. If both Λ and Γ are binary, then it follows from
Lemma 2.2 that Π = ΛΓ.

Moreover, we added Gaussian noise with standard deviation σ = 0.15 to matrix X, and introduced
artificial labeling errors in matrix Π by deliberately setting 5% of the labels to be incorrect. The
problem has a dimension of T = 1000, ten features D = 10, four true clusters K = 4, and three
classes M = 3. The true Λ and Γ matrices are both binary. To mitigate the possibility of inac-
curate initial approximations, three random runs are conducted for each fitting (learning) of the
algorithms. The algorithms are fitted to the data X for each value of the weighting coefficient
α ∈ {0, 0.05, 0.1, 0.15, . . . , 0.95, 1}. The benchmark results are presented in Fig. 5.2. The figure il-
lustrates the theoretical results of the preceding chapter, demonstrating two important estimations.
Firstly, K -means produces only an upper estimate of the SPA method. Secondly, the estimation of
KLD with the Jensen’s inequality is an upper estimate of KLD. Recall that the objective functions
in Algorithms 3, 4, and 5 can be generally expressed as

L = α · L1 + (1 − α) · L2,
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where α ∈ [0, 1]. The outcome is similar to Example 4.1. When the coefficient α approaches zero,
the value of L1 is large because it is neglected in the optimization process, while the value of L2 is
minimized because it is prioritized in the optimization. The opposite occurs when the value of α is
close to one.

The elapsed time for the benchmark was 4301.32 seconds, which is equivalent to approximately
72 minutes. The majority of the computation time (around 70 minutes) was consumed by the
numerical solution of the Γ subproblem in Algorithm 3 (SPA+KLD). The benchmark was performed
on a standard laptop computer with an AMD Ryzen 5 4600H 6-core CPU and 16 GB of RAM.

5.6 Wisconsin Breast Cancer Dataset

In this section, we compare the developed algorithms with other standard SML algorithms on the
Wisconsin Breast Cancer (Diagnostic) dataset, available on the UCI Machine Learning Reposi-
tory [36]. Specifically, the algorithms used for the comparison are decision tree [37], k-nearest
neighbors (KNN) [38], support vector machine (SVM) with linear kernel [39], and support vector
machine with Gaussian kernel [39]. The Wisconsin Breast Cancer dataset comprises 569 sam-
ples, each with 30 features extracted from digitized images of fine needle aspirate (FNA) of breast
mass [36]. The primary objective is to develop a machine learning model that can accurately predict
whether a given sample is malignant (positive class) or benign (negative class).

The first step is standardization2, because the features are not on the same scale. Afterwards,
for the decision tree and the SVMs, the data is split into a training set (75%) and a test set (25%).
Moreover, MATLAB internally optimized the kernel scale hyperparameter for the SVMs. For the
remaining algorithms, the data was divided into a training set (60%), validation set (20%), and test
set (20%). In the case of the KNN algorithm, we tuned the hyperparameter k ∈ {1, 2, . . . , 30} (the
number of neighbors) on the validation set before evaluating its performance using the optimal k
on the test set. For Algorithm 4 and Algorithm 5, we performed a grid search on the validation
set to select the optimal hyperparameters α and K. After consulting the L-curve to determine the
optimal range of the weighting parameter α, we selected the grid as follows

α ∈ {0, 0.1, 0.2, . . . , 0.9, 1} ,

K ∈ {2, 3, 4, 7, 10, 15} .

The best model was chosen based on the performance on the validation set measured by the MCC.
It is worth mentioning that in both of the aforementioned cases, the data is stratified3 during
splitting due to the slight imbalance of the data set. The positive class to negative class ratio is
approximately 0.37. The mean results with standard deviation obtained from 10 random runs are

2We also tested normalization, however, the model achieved better performance with standardization.
3Stratified sampling is a technique in which the data are divided into training, validation (optional), and test sets

so that the ratio between the classes is approximately the same.
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given in Table 5.2. Algorithm 3 is excluded from the comparison due to its excessive computational
cost.

Table 5.2: Comparison on Wisconsin Breast Cancer dataset.

SML algorithm NormMCC Accuracy F1-score

Gaussian SVM 0.972 ± 0.01 0.965 ± 0.02 0.973 ± 0.01
Linear SVM 0.970 ± 0.01 0.962 ± 0.01 0.971 ± 0.01
K -means + KLD + Jensen 0.958 ± 0.02 0.945 ± 0.03 0.962 ± 0.02
KNN 0.954 ± 0.02 0.936 ± 0.03 0.958 ± 0.02
K -means + KLD 0.948 ± 0.02 0.931 ± 0.03 0.952 ± 0.02
Decision tree 0.908 ± 0.02 0.885 ± 0.03 0.913 ± 0.02

Based on the data presented in Table 5.2, the support vector machines (SVMs) produced the most
favorable results. Subsequently, the modified K -means (Algorithm 5), k-nearest neighbors (KNN),
K -means + KLD (Algorithm 4), and the decision tree followed in terms of performance.

5.7 Corrosion Detection

In this section, we present a method for detecting corrosion from image data using an annotated
dataset [40]. The dataset contains images of corrosion, where each pixel is marked as either
corrosion or not_corrosion. From the original dataset, a subset of 70 images is selected and
21 of them are used for visualization (some of those images are displayed in Fig. 5.4). The remain-
ing 49 images are utilized to train, validate, and test the SML model.

In the feature engineering phase, we first resize each image to match the height of 256 pixels
and divide each image into 16 × 16 patches. If more than half of the pixels in a patch are labeled as
corrosion, we consider the patch to contain corrosion and label it with the number one (positive
class). Otherwise, we consider the patch to be free from corrosion and label it with the number zero
(negative class). The resulting binary vector of patch labels is denoted as y.

Afterwards, we employ a feature extraction technique inspired by Hoang [41] to obtain color
features from the patches. We calculate statistical moments, entropy, and range for each patch to
extract six features per color channel from both the HSV (hue, saturation, value) and RGB (red,
green, blue) color models. In total, we obtain 36 color features.

Subsequently, we construct four gray level co-occurrence matrices (GLCMs) [31, 32, 42], one for
each direction in the set {(7, 7), (−7, 7), (7,−7), (−7,−7)}, for each color channel including the gray-
scale. From each matrix, we compute four features: contrast, correlation, energy, and homogeneity.
Altogether, we obtain 36 + 112 = 148 features per patch; the set of these features is referred to as
a patch descriptor.
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Eventually, the patch descriptors are assembled into a matrix X ∈ RD,T , where D = 148 is the
number of features and T = 17872 represents the number of samples (i.e., the number of patch
descriptors). Because the features have varying scales, their values are transformed into the range
[0, 1] using min-max normalization4. Since the feature dimension D is large, we employ principal
component analysis (PCA) [43] for the dimensionality reduction. The number of dimensions is
reduced from 148 to 18 while maintaining 95% of explained variance. Given the size of the dataset,
the most suitable algorithm from those developed is Algorithm 5.

To ensure the reliability of the model, we split the data X and the labels y into training,
validation, and test sets with ratios of 60%, 20%, and 20%, respectively, where each set contains a
proportional number of positive and negative samples (i.e., we perform stratified sampling). The
model is trained by fitting it to the data Xtrain and the labels ytrain that are drawn from the training
set. Once trained, the model’s hyperparameters are tuned using Bayesian optimization [35] on the
validation set. We experimentally set the ranges for the hyperparameters α (weighting parameter)
and K (number of clusters) as

[︁
0.99, 1 − 10−8]︁ and [2, 150], respectively, and chose negative MCC

as the objective of Bayesian optimization. Eventually, Bayesian optimization found the optimal
hyperparameters to be α = 0.9901 and K = 136. Finally, we evaluated the model’s performance on
new unseen data represented by the test set.
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Figure 5.3: Confusion matrix for corrosion detection.

4Similarly to Section 5.6, we tested both normalization and standardization. However, the model performed better
with normalization.
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Once the model was trained and the hyperparameters tuned, we evaluated its performance us-
ing various metrics. Fig. 5.3 presents the confusion matrix for the test set. The corresponding
performance metrics are as follows:

NormMCC = 0.851,

F1-score = 0.810,

Accuracy = 0.861,

Precision = 0.822,

Recall = 0.799.

Fig. 5.4 demonstrates the algorithm’s ability to generalize to previously unseen data. The first
column shows the original image, while the second column displays the corresponding annotation.
The third column represents the conversion of annotations to patches, and the fourth column reveals
the prediction on a scale from zero to one, where one (white color) represents absolute certainty
that the patch contains corrosion, and zero (black color) indicates the opposite. Finally, the last
column presents the overlay of the original image with the prediction.
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Figure 5.4: Visualization of corrosion detection on the test set.
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Chapter 6

Conclusion

This thesis provides an overview of the SPA methodology and its connection to K -means, along
with a technique for utilizing SPA to discretize continuous stochastic processes as a preliminary
step for Bayesian causal inference modeling. Furthermore, research on the SPA methodology has
been extended from the perspective of multiobjective optimization, resulting in a framework with
a family of three supervised machine learning algorithms that demonstrate the applicability of
the SPA methodology to a variety of classification problems. All proposed algorithms have been
implemented in MATLAB and made freely available on GitHub [3]. The thesis presents results on
selected applications.

Although the efficiency of the proposed models falls short of that of neural networks, they offer
the advantage of being explainable models, unlike neural networks that are considered black box
heuristics [44]. However, further research is needed to enhance the proposed methodology. This may
involve the inclusion of additional image features, exploring possible image augmentations, image
preprocessing techniques such as denoising, and alternative feature selection methods. Additionally,
further regularization may yield improvements.

In the future, research may focus on using the SPA methodology for time series analysis by
combining the SPA method and Markovian models. Additionally, as neural networks continue to
gain popularity, we may incorporate them into future investigations and comparisons.
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Appendix A

K-means

function [C, Gamma, sse, it] = kmeans(X, K, maxIters, eps)

sse = zeros(1,maxIters+1); sse(1) = Inf; % Sum of squares error

T = size(X,2); % Number of data points in the dataset

[C] = get_kmeans_pp_centroids(X, K); % K-means++ initialization

for it = 2:maxIters+1

Gamma = zeros(K, T);

for t = 1:T

[sse_t,id] = min( sum( (C - X(:,t) ).^2 , 1 ));

sse(it) = sse(it) + sse_t;

Gamma(id,t) = 1;

end

for k = 1:K

ids = Gamma(k,:) == 1;

C(:,k) = mean(X(:,ids),2);

end

if norm(sse(it-1) - sse(it)) < eps

sse = nonzeros(sse(2:end));

it = it-1;

break

end

end

end

Listing A.1: Basic implementation of the K -means algorithm in MATLAB.
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Figure A.1: K -means++ initialization.

Displayed in Fig. A.1 are the red circles representing the initial centroid approximation generated
by the K -means++ algorithm on a dataset of 2D points (blue squares). These centroids serve as
starting points for the iterative K -means clustering algorithm. The K -means++ algorithm is a
modification of the standard K -means algorithm, which utilizes a more intelligent method to select
the initial centroids to improve the convergence rate and quality of the resulting clusters [20].

Figure A.2: Clustering results using the K -means++ algorithm.

Fig. A.2 illustrates the resulting clustering of a dataset consisting of 2D points obtained by applying
the K -means++ algorithm. In this case, the K -means++ algorithm partitions the data points into
five clusters based on their similarity in terms of the Euclidean distance.
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Figure A.3: Sum of squares error (SSE) for different number of clusters K.

Figure A.3 demonstrates the elbow method heuristic. The elbow method is a clustering analysis
technique that involves plotting the SSE against the number of clusters. The optimal number of
clusters is determined by selecting the “elbow” point on the graph, which balances minimizing
within-cluster variance and avoiding overfitting. In the case of Figure A.3, based on the elbow
method heuristic, K = 5 seems to be a sensible choice. Furthermore, the visualization in Fig. A.2
confirms the presence of five clusters in the data.
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