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Abstrakt

Předpokládejme že máme nějakou množinu X a zobrazení T : X → X, bod x ∈ X nazveme pevným
bodem zobrazení T pokud x = T (x). V první částí této práce se budeme zabývat podmínkami,
které zaručují, že tento pevný bod existuje. V druhé části předvedeme některé aplikace těchto vět
o pevných bodech.

Klíčová slova

diplomová práce; věty o pevných bodech; funkcionální analýza

Abstract

Suppose that we have some set X and a mapping T : X → X, we call x ∈ X a fixed point of T
if x = T (x). In the first part of this thesis we will be discussing conditions under which such a
fixed point exists and in the second part we will introduce several applications for these fixed point
theorems.
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List of symbols and abbreviations

s.t. – such that
iff – if and only if
ΩX – {x ∈ X : ∃(xn) ⊂ Ω : xn → x}, if it is clear what X is we will instead

write Ω
intX Ω – Ω ∩ ΩX , we may also write int Ω if it is clear what X is
∂XΩ – ΩX \ Ω, again we may also write ∂Ω
BX(a, b) – {x ∈ X : ∥x− a∥ < b}
conv Ω – The unique minimal convex set C such that Ω ⊂ C

span{x1, . . . , xn} – {
∑︁n
i=1 λixi : λi ∈ R}

diamd Ω – supx,y∈Ω d(x, y), if it is clear what metric d is used we will instead
write diam Ω

×n
i=1Ωi – Ω1 × Ω2 × . . .× Ωn
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Chapter 1

Introduction

Let us analyze a very simple case where f : [0, 1] → [0, 1], suppose that x ∈ [0, 1] is a fixed point of
f , let us define a function g : [0, 1] → R as

g(x) ≡ f(x) − x.

Observe that g(x) = 0, it is also easy to see that

g(0) = f(0) ≥ 0,

and
g(1) = f(1) − 1 ≤ 0.

We know that if g is continuous, then by the intermediate value theorem there exists x ∈ [0, 1] such
that g(x) = 0, meaning that f(x) = x, thus we have found a condition under which f has a fixed
point. In fact this example is the 1-dimensional version of the Brouwer fixed point theorem which
we will be introducing later on.

Many mathematical problems can be converted into fixed point problems, one simple example
is equations, suppose we have a vector space X and a mapping T : X → X, if we are looking for
roots of T , i.e. x ∈ X such that

T (x) = 0X ,

we can easily turn this into a fixed point problem by finding a fixed point of the mapping x ↦→
T (x) + x.

Arguably one of the most fundamental results in functional analysis is the Banach fixed point
theorem which guarantees the existence of a unique fixed point x ∈ X and requires X to be a
complete metric space along with T being a so called contraction which can be understood as T in
some sense moving any two points closer together, this theorem can be used to prove many existence
theorems for solutions of, e.g., partial differential equations, initial value problems for systems of
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ordinary differential equations, variational inequalities and many more. The advantage of using this
particular theorem to show the existence of some problem is that it provides a numerical method for
finding this fixed point given that the mapping T we apply the Banach fixed point theorem can be
reasonably constructed on a computer. In particular if we take any x ∈ X and apply the mapping
T to it again and again we can get arbitrarily close to the fixed point x.

As an illustration of this property, take the space of all compact sets in R2, on this set we can
define a metric dH so that (R2, dH) is a complete metric space. A fixed point of some mapping f
that satisfies the assumptions of the Banach fixed point theorem is of course a set in R2. Let us
take two different sets X, X̃ ⊂ R2 and start applying one such mapping to it and see what happens.
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Figure 1.1: (left) X, (right) X̃.
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Figure 1.2: (left) f(X), (right) f(X̃)
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Figure 1.3: (left) f(f(X)), (right) f(f(X̃))
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Figure 1.4: (left) f(f(f(X))), (right) f(f(f(X̃)))
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Figure 1.5: (left) f(f(f(f(X)))), (right) f(f(f(f(X))))

We can see that after applying f a few times we cannot visually determine which initial set was
used. The third iteration also visually looks the same as the fourth iteration, signifying that we are
close the fixed point of f (close in the sense of dH).
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Chapter 2

Theorems

This chapter will be dedicated to exploring various fixed point theorems.

2.1 Banach Fixed Point Theorem and Its Extensions

First we will present the Banach Fixed Point Theorem which is a fundamental and very well known
statement and then show some of its generalizations, more can be found in [1]. This theorem has
wide application in functional analysis and other fields.

Theorem 2.1 (Banach Fixed Point) Let

• (X, d) be a complete metric space,

• T : X → X satisfies ∀x, y ∈ X : d(T (x), T (y)) ≤ λd(x, y) for some λ ∈ [0, 1) (T is a
contraction).

Then ∃!x ∈ X : T (x) = x.

Proof First we shall prove the existence. Let (xn) ⊂ X be a sequence such that x0 ∈ X is chosen
arbitrarily and xn := T (xn−1), n ∈ N. Because T is a contraction, for n ∈ N we can write

d(xn+1, xn) = d(T (xn), T (xn−1)) ≤ λd(xn, xn−1)

and inductively
d(xn+1, xn) ≤ λnd(x1, x0). (∀n ∈ N)

Now for some natural n,m where n > m consider

d(xn, xm) ≤
n−1∑︂
i=m

d(xi+1, xi) ≤ d(x1, x0)
n−1∑︂
i=m

λi ≤ d(x1, x0)
∞∑︂
i=m

λi = d(x1, x0) λm

1 − λ
. (2.1)
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Since λ < 1 we have d(xn, xm) → 0 as m → ∞, hence (xn) is Cauchy. Since X is a complete metric
space, we know that (xn) has a limit x ∈ X. The relation T (x) = x comes from the fact that

T (xn) = xn+1 → x

and
d(T (xn), T (x)) ≤ λd(xn, x) → 0,

this means that
T (xn) → T (x)

As a sequence can only have one limit, we conclude that T (x) = x. To prove the uniqueness, take
y1, y2 ∈ X and assume that y1 = T (y1) and y2 = T (y2). It holds

d(y1, y2) = d(T (y1), T (y2)) ≤ λd(y1, y2).

Due to the fact that λ ∈ [0, 1) this can only be satisfied if y1 = y2.

Remark 2.1 The proof of this theorem also gives us a numerical method to compute the fixed point
x. If we keep iteratively applying the mapping T to any point within X we can get arbitrarily close
to x. Furthermore we have an estimate of how close we are to x. That is

d(x, xm) ≤ d(x, xn) + d(xn, xm) ≤ d(x, xn) + d(x1, x0) λm

1 − λ
.

Here we utilize (2.1). Sending n → ∞ and utilizing the fact that d(x, xn) → 0 we get

d(x, xm) ≤ d(x1, x0) λm

1 − λ
.

Next we will look at this simple extension of the Banach fixed point theorem

Theorem 2.2 If

• (X, d) is a complete metric space,

• T : X → X and Tm is a contraction for m-th iteration of T

Then ∃!x ∈ X : T (x) = x.

Proof The Banach fixed point theorem guarantees that Tm has a unique fixed point x, we have

Tm(T (x)) = T (T x(x)) = T (x),
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so T (x) is a fixed point of Tm(x) as well as x, but the fixed point of Tm is unique, implying that

T (x) = x.

There are no other fixed points of T since being such means it automatically also a fixed point
of Tm which is subject to the Banach fixed point theorem and has only one fixed point.

Remark 2.2 We should consider whether a situation that a mapping is not a contraction and one
of its iterations is can occur. Otherwise this theorem would be redundant. One such function is the
Dirichet function D : R → R defined as

D(x) =

⎧⎨⎩1 if x ∈ Q

0 if x /∈ Q.

Which is not a contraction but D(D(x)) = 1 is constant and thus a contraction.

This next theorem is an extension of the Banach fixed point theorem. It hinges on a condition
that is less strict but still similar to constructiveness

Theorem 2.3 (Boyd-Wong) Let (X, d) be a complete metric space, let T : X → X and φ :
[0,∞) → [0,∞), if φ is continuous and satisfies φ(r) < r for r > 0 and

d(T (x), T (y)) ≤ φ(d(x, y)), ∀x, y ∈ X

Then ∃!x ∈ X : T (x) = x.

Proof Let (xn) ⊂ X be a sequence defined by xn = T (xn−1) where x0 ∈ X is picked arbitrarily
and let (an) ⊂ R be a sequence defined by an = d(xn+1, xn). It holds

an+1 = d(T (xn+1), T (xn)) ≤ φ(an) ≤ an.

So (an) is non-increasing and is bounded bellow by 0. Therefore (an) converges to some a ≥ 0.
From the inequality above we also have φ(an) → a. Using continuity of φ we get φ(an) → φ(a),
implying φ(a) = a, thus a = 0. Now assume that (xn) is not a Cauchy sequence. Then there exist
ε > 0 and integers mk > nk ≥ k such that

dk ≡ d(xmk
, xnk

) ≥ ε (∀k ∈ N)

We will choose mk to be as small as possible while still satisfying the condition above, i.e.,

d(xmk−1, xnk
) < ε.
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We have
ε ≤ dk ≤ d(xmk

, xmk−1) + d(xmk−1, xnk
) < amk−1 + ε.

This tells us that dk → ε as k → ∞ because ak → 0. It also holds

dk ≤ d(xmk
, xmk+1)+d(xmk+1, xnk+1)+d(xnk+1, xnk

) = amk
+d(T (xmk

), T (xnk
))+ank

≤ amk
+φ(dk)+ank

.

(2.1)
We know that

• dk → ε,

• ak → 0,

• φ is continuous.

By sending k → ∞ in (2.1) we finally get ε ≤ φ(ε) which is a contradiction to ε > 0. Meaning that
(xn) is Cauchy. Same as in the proof of the Banach fixed point theorem (xn) has a limit x because
of completeness of X and this limit is the fixed point in question because

T (xn) = xn+1 → x

and
d(T (xn), T (x)) ≤ φ(d(xn, x)) ⇒ T (xn) → T (x).

For the proof of uniqueness, for arbitrary y1, y2 ∈ X both of which are fixed points of T it holds

d(y1, y2) = d(T (y1), T (y2)) ≤ φ(d(y1, y2)).

Implying that y1 = y2.

Theorem 2.4 Let (X, d) be a metric space, T : X → X and suppose that assumptions of the
Boyd-Wong theorem are satisfied, denote the unique fixed point of T as x and define

δn ≡ d(x, xn).

Suppose that in addition to assumptions of Theorem 2.3 it further holds for some a > 0 and p > 0
that

φ(r) = r − ar1+p + ψ(r), (∀r > 0)

where ψ satisfies
lim
r→0+

ψ(r)
r1+p = 0.

Then for some c > 0 we have
δn ≤ c

n1/p .
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Proof Using the inequality d(T (x), T (y)) ≤ φ(d(x, y)) with x = x and y = xn+1 we get

δn+1 ≤ φ(δn) = δn − aδ1+p
n + ψ(δn)

If δn = 0 for some n, the theorem holds, otherwise set

zn ≡ 1
δpn
.

Since
1

δn+1
≥ 1
δn − aδ1+p

n + ψ(δn)
,

it holds

zn+1 ≥ zn

(︄
1 − a− ψ̃(δn)

zn

)︄−p

,

where ψ̃ ≡ ψ(r)
r1+p , i.e.,

lim
r→0+

ψ̃(r) = 0.

We also have

zn

(︄
1 − a− ψ̃(δn)

zn

)︄−p

− zn → ap. (2.2)

This can be shown by applying the mean value theorem to the function x−p, we get(︄
1 − a− ψ̃(δn)

zn

)︄−p

− 1 = a− ψ̃(δn)
zn

· p · ξ−p−1
n ,

for some ξ ∈
(︂
1 − a−ψ̃(δn)

zn
, 1
)︂
. This gives us

(a− ψ̃(δn))p ≤ zn

⎛⎝(︄1 − a− ψ̃(δn)
zn

)︄−p

− 1

⎞⎠ ≤ (a− ψ̃(δn))p
(︄

1 − a− ψ̃(δn)
zn

)︄−p−1

Implying the claim by squeeze theorem as both bounds go to ap. We can also write this limit as

zn

(︄
1 − a− ψ̃(δn)

zn

)︄−p

= zn + ap+ εn

with εn → 0. From (2.2) we inductively get

zn ≥ z0 + nap+
n−1∑︂
i=0

εi = nap

⎛⎜⎜⎜⎝1 + z0
nap⏞⏟⏟⏞
→0

+
∑︁n−1
i=0 εi
nap⏞ ⏟⏟ ⏞
→0

⎞⎟⎟⎟⎠ = nap(1 + αn)
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for some αn → 0. And thus by the definition of zn we have

δn ≤ 1
n

1
p

( 1
ap(1 + αn))

1
p ≤ c

n
1
p

, (for some c > 0),

this finishes the proof.

Remark 2.3 The Banach fixed point theorem is a specific case of theorem 2.3, if we take

φ(r) = λr, (λ ∈ [0, 1))

Let us also look at an example that does not satisfy the conditions of the Banach fixed point theorem
but satisfies the condition of theorem 2.3. Take T : R → R as T (x) = sin(x). This function is not a
contraction, if it was, its derivative would be lesser than 1 in all points, but this is not the case. Next
we want to show that conditions of theorem 2.3 are satisfied. We are looking for φ : [0,∞) → [0,∞)
such that

| sin(x) − sin(y)| ≤ φ(|x− y|) < |x− y|, (∀x, y ∈ R, x ̸= y)

and is also continuous. We have

| sin(x) − sin(y)| =
⃓⃓⃓⃓
2 sin(x− y

2 ) cos(x+ y

2 )
⃓⃓⃓⃓

≤
⃓⃓⃓⃓
2 sin(x− y

2 )
⃓⃓⃓⃓
.

For
⃓⃓⃓
x−y

2

⃓⃓⃓
≤ π it holds ⃓⃓⃓⃓

2 sin
(︃
x− y

2

)︃⃓⃓⃓⃓
= 2 sin

(︃ |x− y|
2

)︃
.

Hence we will define φ as

φ(r) =

⎧⎨⎩2 sin( r2) (r ∈ [0, π]),

2 sin(π2 ) (r > π).

Observe that φ is continuous and it holds

φ(r) = 2 sin(r2) ≤ 2 sin(r2) < r, (∀r ∈ (0, π])

and
φ(r) = 2 sin(π2 ) = 2 < r, (∀r ∈ (π,∞))

Such function clearly satisfies all conditions of theorem 2.3.
In regards to theorem 2.4 from the Taylor expansion of φ we can see that

φ(r) = r − ar1+2 + o(r1+2).
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Thus δn ≡ d(x, xn), where x is the fixed point of T should satisfy δn ≤ c√
n

for some c > 0. To
illustrate this let us look at some numerical data

sin101(1) ≈ 0.46295

sin103(1) ≈ 0.05459

sin105(1) ≈ 0.00547

Definition 2.1 (Weak Contraction) Let (X, d) be a metric space. We call a mapping T : X →
X a weak contraction if ∀x, y ∈ X, x ̸= y it holds

d(T (x), T (y)) < d(x, y)

Remark 2.4 Every weak contraction has at most one fixed point. This can be shown exactly as in
the proof of the Banach fixed point theorem. Being a weak contraction is however not a sufficient
condition for having a fixed point. For example on the complete metric space X = [1,∞) take
function

T (x) = x+ 1
x
,

that maps X into itself. We have

|T (x) − T (y)| = |x− y + y − x

xy
| = |x− y| · |1 − 1

xy
| < |x− y|. (∀x, y ∈ X, x ̸= y)

Showing that T is a weak contraction, however it has no fixed points as it would imply that a fixed
point x satisfies

x+ 1
x

= x,

which is not possible.

Theorem 2.5 Let (X, d) be a compact metric space and T : X → X be a weak contraction. Then
there exists a unique fixed point x ∈ X of T and for all x ∈ X it holds (Tn(x)) → x as n → ∞.

Proof Suppose that some x ∈ X satisfies

x = min
x∈X

d(x, T (x)),

such x exists since X is compact and the function x ↦→ d(x, T (x)) is continuous due to the fact
that it is a composition of two continuous functions T and d : X × X → R+ which as a metric is
automatically continuous. If x ̸= T (x), then

d(x, T (x)) = min
x∈X

d(x, T (x))) ≤ d(T (x), T (T (x))) < d(x, T (x)).
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As this is a contradiction we can conclude that x = T (x). With existence out of the way let us now
prove the claim about convergence of the above mentioned sequence. We pick x ∈ X arbitrarily. If
Tn(x) = x for some n ∈ N there is nothing to prove. Otherwise define

δn = d(x, Tn(x)).

Since
δn+1 = d(x, T (Tn(x))) = d(T (x), T (Tn(x))) < d(x, Tn(x)) = δn,

we can see that (δn) is decreasing and has a limit r ≥ 0. Let (Tnk(x)) be a subsequence of (Tn(x))
that converges to some x0 ∈ X. If x0 ̸= x, then

d(x, x0) = lim
k→∞

d(x, Tnk(x) = lim
k→∞

δnk
= r,

but we also have
r = lim

k→∞
δnk+1 = lim

k→∞
d(x, T (Tnk(x))) = d(x, T (x0)),

showing that
d(x, x0) = d(x, T (x0)). (2.3)

Since x0 ̸= x it holds
d(x, T (x0)) = d(T (x), T (x0)) < d(x, x0),

which contradicts with (2.3), showing that any convergent subsequence of (Tn(x)) converges to x.
But X is compact so we can conclude that Tn(x) → x.

Now we will prove that if (X, d) is a compact metric space than in fact theorems 2.5 and 2.3
are equivalent. If the conditions of theorem 2.3 are met and (X, d) is compact then the condition
of theorem 2.5 are automatically met. Let us show that the opposite implication also holds true.

This following lemma is key to proving a theorem we will showcase next.

Lemma 2.6 Let ρ : [0, 1] → [0, 1], if

• ρ is right continuous.

• ρ is increasing.

• (∀r ∈ (0, 1]) : ρ(r) < r.

Then there exists an increasing continuous function φ : [0, 1] → [0, 1] such that

ρ(r) ≤ φ(r) < r, (∀r ∈ (0, 1])
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Proof We will begin by showing that for all 0 < a < b ≤ 1

inf
r∈[a,b]

(r − ρ(r)) > 0.

If this is not the case, then for any fixed interval [a, b] with 0 < a < b ≤ 1 there exists a sequence
(rn) ⊂ [a, b] with

rn − ρ(rn) → 0.

As rn is a bounded sequence in a compact metric space, there exists r0 ∈ [a, b] such that a sub-
sequence of (rn) has r0 for a limit. For convenience let us denote this subsequence again as (rn).
We will show that there are only finitely many members of (rn) greater or equal to r0. If not, then
there exists a subsequence (rnk

) of (rn) such that rnk
→ r0 with rnk

≥ r for all k ∈ N. For this
subsequence we have

0 = lim
k→∞

(rnk
− ρ(rnk

)) = r0 − ρ(r0),

where the second equality results from the right continuity of ρ. This contradicts ρ(r0) < r0. Now
we can suppose that for each n ∈ N it holds rn < r0, if not we just remove the finitely many
members of (rn) greater or equal to r0. Define

ε ≡ r0 − ρ(r0),

note that ε > 0. Using the fact that rn → r0 and rn − ρ(rn) → 0 we pick m ∈ N large enough so
that r0 − rm < ε

2 and rm − ρ(rm) < ε
2 . But then

ρ(r0) = r0 − ε = r0 − rm + rm − ρ(rm) + ρ(rm) − ε < ρ(rm).

As rn < r0 this is a contradiction with ρ being increasing. Hence we have shown that for all
0 < a < b ≤ 1 it holds infr∈[a,b](r − ρ(r)) > 0.

Now let us get to constructing φ. For n ∈ N we define an = 2−(n−1) and

εn = inf
r∈[an+1,an]

(r − ρ(r)) > 0.

We construct φ̂ : [0, 1] → [0, 1] on intervals In = (an+1, an] in the following way. Set

φ̂(r) = r − ω1, (∀r ∈ I1),

where
ω1 = ε1

and for n ≥ 1 we set
φ̂(r) = r − ωn, (∀r ∈ In),
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with
ωn+1 = min{εn+1, ωn}. (2.4)

Finally we set φ̂(0) = 0. We can see that such φ̂ satisfies φ̂(r) < r for all r ∈ (0, 1]. But φ̂ need not
be continuous. To deal with continuity define φ : [0, 1] → [0, 1] again interval by interval so that

φ(r) = qn+1(r), (∀r ∈ In),

where qn(r) is a straight line connecting the points (an+1, φ̂(an+1)) and (an, φ̂(an))

ϕ̂

ϕ̂

ϕ̂

ϕ

r1r2r3r4r5 I1I2

1

Figure 2.1: Construction of φ.

Such φ is now continuous and is greater of equal to φ̂. It also satisfies φ(r) < r for all r ∈ (0, 1],
this fact translates from φ̂ having the same property. Moreover φ is increasing, since φ is defined
by connecting point it will suffice to show that the y−coordinate of each subsequent point is greater
than the previous one, i.e., we have to show that for all n ∈ N it holds φ̂(an) > φ̂(an+1). Let n ∈ N
be fixed, by definition of In, the point an lies in In and an+1 does not, thus

φ(an)ˆ = an − ωn,

and
φ(an+1)ˆ = an+1 − ωn+1,

19



but from (2.4) it is clear that ωn ≥ ωn+1, since an > an+1 we conclude that φ̂(an) > φ̂(an+1) and
we also conclude this proof.

Theorem 2.7 Let (X, d) be a metric space and let T : X → X, if

• X is non-trivial (contains at least two elements).

• X is compact.

• T is a weak contraction.

Then there exists an increasing continuous function φ : [0,∞) → [0,∞) satisfying

φ(r) < r, (∀r > 0)

and such that
d(T (x), T (y)) ≤ φ(d(x, y)). (∀x, y ∈ X)

Proof We will assume that diam(X) ≤ 1, X is already bounded and we could easily extend lemma
2.6 to a function ρ : [0, d] → [0, d] with d > 0 that satisfies the same requirements but it would
make the proof even more technical than it already is. We will define ρ : [0, 1] → [0, 1] (in general
it would be ρ : [0,diam(X)] → [0,diam(X)]) as

ρ(r) = sup
d(x,y)≤r

d(T (x), T (y)). (2.5)

Now fix r > 0, there exist x, y ∈ X, x ̸= y that satisfy the two following conditions

d(x, y) ≤ r,

and
ρ(r) = d(T (x), T (y)).

This can be shown in the following way, choose (xn), (yn) ⊂ X such that d(xn, yn) < r such that

d(T (xn), T (yn)) → ρ(r).

From the compactness of X and continuity of T we get the existence of subsequences of (xn) and
(yn) converging to some x and y in X with d(T (x), T (y)) = ρ(r) satisfying d(x, y) ≤ r. The fact
that T is a weak contraction implies that

ρ(r) = d(T (x), T (y)) < d(x, y) ≤ r. (2.6)
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To show that ρ is right continuous fix r ∈ [0, 1) and take (εn) ⊂ R+ such that εn → 0. Take
(xn), (yn) ⊂ X that satisfy

d(xn, yn) ≤ r + εn (2.7)

and
ρ(r + εn) = d(T (xn), T (yn)). (2.8)

The existence of such sequences is clear from the definition of ρ (2.5). Using the compactness of
X we can find x, y ∈ X (not necessarily the same as x, y used previously) such that xn → x and
yn → y up to subsequences. The function ρ is clearly non-decreasing, this gives us that

ρ(r) ≤ ρ(r + εn) → d(T (x), T (y)).

Furthermore sending n → ∞ in (2.7) we get

d(x, y) ≤ r.

this implies that
ρ(r) = sup

d(x̃,ỹ)≤r
d(T (x̃), T (ỹ)) ≥ d(T (x), T (y)).

This together with equation (2.6) gives us ρ(r) = d(T (x), T (y)), meaning that

ρ(r + εn) → ρ(r),

showing that ρ is indeed right continuous. With this we have shown that the conditions of the lemma
are satisfied. Giving us the existence of a strictly increasing continuous function φ : [0, 1] → [0, 1]
s.t.

ρ(r) ≤ φ(r) < r, (r ∈ (0, 1]) (2.9)

This is the function we are looking for, from (2.5), (2.9) we can easily see that

d(T (x̃), T (ỹ)) ≤ ρ(d(x̃, ỹ)) ≤ φ(d(x̃, ỹ)). (∀x̃, ỹ ∈ X)

The function φ can be extended for r > 1 by setting

φ(r) = r − 1 + φ(1).

Remark 2.5 We will demonstrate that the condition of compactness in the theorem above is nec-
essary. Consider the weak contraction T (x) = x+ 1

x on X = [1,∞). We will show that there does
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not exist a function φ as described in theorem 2.3. We are looking for a function such that

|T (x) − T (y)| = |x− y|
(︃

1 − 1
xy

)︃
≤ φ(|x− y|) < |x− y| (∀x, y ∈ [1,∞), x ̸= y) (2.10)

Substituting y = x+ 1 into the inequality above we get

1
(︃

1 − 1
x(x+ 1)

)︃
≤ φ(1) < 1 (∀x, y ∈ [1,∞))

Now sending x → ∞ we have
1 ≤ φ(1) < 1.

As this is impossible we conclude that no φ satisfying (2.10) exists.

Definition 2.2 (Non-Expansive Mapping) Let T : X → X with (X, d) being a metric space.
We call T a non-expansive map if

d(T (x), T (y)) ≤ d(x, y) (∀x, y ∈ X)

We already know that a weak contraction need not have any fixed points in a complete metric
space, this extends to non-expansive maps. The question is what conditions are sufficient for a
non-expansive map to have a fixed point.

Definition 2.3 (Uniformly Convex Normed Space) Let X be a normed linear space. If for
all ε ∈ (0, 2] there exists δ > 0 such that for x, y ∈ X with ∥x∥ = ∥y∥ = 1 the condition

∥x− y∥ ≥ ε

implies ⃦⃦⃦⃦
x+ y

2

⃦⃦⃦⃦
≤ 1 − δ.

We call X a uniformly convex normed linear space.

Note that the condition ∥x∥ = ∥y∥ = 1 can be replaced with ∥x∥ ≤ 1 and ∥y∥ ≤ 1.

Remark 2.6 The condition of uniform convexity tells us that for any two points x, y inside the unit
ball separated by distance at least ε the midpoint of the line between x and y will be at a distance of
at most 1 − δ from the origin, this guarantees that the midpoint has distance of at least δ from the
boundary of the unit ball.
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ε

δ

x

y

(x+y

2
)

1

Figure 2.2: Uniform convexity.

We can see that uniform convexity can be associated with "roundness" of unit balls. The Banach
space R2 endowed with the maximum norm ∥(x1, x2)∥ = max{|x1|, |x2|} serves as an example of
a space that is not uniformly convex. Following figure shows the boundary of the unit ball in this
Banach space.

x

y

1

1−1

−1

1

Figure 2.3: Boundary of the unit ball in R2 with the supremum norm.

We can see that it is a square and indeed for, e.g., x = (0, 1) and y = (1
2 , 1) satisfying ∥x∥ =

∥y∥ = 1 we have
⃦⃦⃦
x+y

2

⃦⃦⃦
= ∥(1

4 , 1)∥ = 1 showing that this space is not uniformly convex. An
interesting fact to note is that this space is also an example of a reflexive space that is not uniformly
convex (all finite-dimensional normed linear spaces are reflexive because they are isomorphic to Rn

for some n ∈ N endowed with the Euclid norm).
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Theorem 2.8 Every inner product space is uniformly convex.

Proof Every inner product space H satisfies the parallelogram law, i.e., for all x, y ∈ H it holds
∥x+ y∥2 = 2∥x∥2 + 2∥y∥2 − ∥x− y∥2. Now let x, y ∈ H with ∥x∥ = ∥y∥ = 1 and ∥x− y∥ ≥ ε ∈ (0, 2]
be given, substituting into the parallelogram law we get

∥x+ y∥ =
√︂

4 − ∥x− y∥2 ≤
√︁

4 − ε2,

giving us ⃦⃦⃦⃦
x+ y

2

⃦⃦⃦⃦
= ∥x+ y∥

2 ≤

√︄
1 − ε2

4 = 1 − (1 −

√︄
1 − ε2

4 )⏞ ⏟⏟ ⏞
δ

,

thus using δ = (1 −
√︂

1 − ε2

4 ) we have

⃦⃦⃦⃦
x+ y

2

⃦⃦⃦⃦
≤ 1 − δ,

where δ ∈ (0, 1], implying the claim.

Theorem 2.9 (Milman 1938–Pettis 1939) Every uniformly convex Banach space is reflexive

The proof can be found in [2].

Theorem 2.10 If M is a non-empty closed convex subset of a normed linear space X, then M is
weakly closed.

We will prove that the result holds for a Hilbert space H, the general proof uses the Hahn-Banach
theorem and can be found in [3].
Proof Suppose that (xn) ⊂ M with xn ⇀ x ∈ H as n → ∞, we will show that x ∈ M . Since M is
non-empty, closed and convex there exists a projection Px of x into M , this projection satisfies

(y − Px, x− Px) ≤ 0 (∀y ∈ M),

hence
(xn − Px, x− Px) ≤ 0 (∀n ∈ N). (2.11)

Now since an inner product is bilinear and continuous with xn − Px ⇀ x− Px it follows that

(xn − Px, x− Px) → (x− Px, x− Px). (2.12)

Finally combining (2.11) and (2.12) gives us

(x− Px, x− Px) ≤ 0
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implying that x = Px which means that x ∈ M .

Theorem 2.11 (Browder-Kirk) Let B be a uniformly convex Banach space and T : C → C a
non expansive mapping with C ⊂ B being closed, bounded, convex and non-empty. Then there exists
a fixed point of T in C.

We first will demonstrate a proof in the case that instead of a uniformly convex Banach space B
we have a Hilbert space H, we will later include a proof for the general case which however uses
another strong result making it hard to see how exactly the assumptions guarantee us a fixed point.

Proof We will begin by defining the operator Tn for n = 1, 2, . . . as

Tn(x) ≡
(︃

1 − 1
n

)︃
T (x) + p

n
,

where p ∈ C is fixed. Since C is convex, we have Tn : C → C. It also holds

∥Tn(x) − Tn(y)∥ =
(︃

1 − 1
n

)︃
∥T (x) − T (y)∥ ≤ (1 − 1

n
)∥x− y∥,

showing that Tn is a contraction, hence by the Banach fixed point theorem for all n ∈ N there exists
a xn ∈ C with xn = Tn(xn). As a Hilbert space H is reflexive, this gives us that the bounded
sequence (xn) ⊂ C has a subsequence which we shall again denote (xn) that weakly converges to
some x. By theorem 2.10 x ∈ C. Let us show that x is a fixed point of T .

∥T (x) − xn∥2 − ∥x− xn∥2 = ∥T (x)∥2 − 2(T (x), xn) + ∥xn∥2 −
(︂
∥x∥2 − 2(xn, x) + ∥xn∥2)

)︂
.

Notice that xn ⇀ x implies (T (x), xn) → (T (x), x) and (xn, x) → (x, x), this means that

∥T (x) − xn∥2 − ∥x− xn∥2 → ∥T (x)∥2 − 2(x, T (x)) + ∥x∥2 = ∥T (x) − x∥2, (2.13)

as n → ∞. We also have

∥T (x) − xn∥ ≤ ∥T (x) − T (xn)∥ + ∥T (xn) − xn∥ ≤ ∥x− xn∥ + ∥T (xn) − xn∥

= ∥x− xn∥ + 1
n

∥T (xn) − p∥,

where the first inequality is a triangle inequality, the second inequality comes from T being a non-
expansive mapping and we can obtain the equality on the last line by using xn = Tn(xn). We can
also write this as

∥T (x) − xn∥ − ∥x− xn∥ ≤ 1
n

∥T (xn) − p∥,
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multiplying both sides of the last inequality by (∥T (x) − xn∥ + ∥x− xn∥) we get

∥T (x) − xn∥2 − ∥x− xn∥2 ≤ 1
n

∥T (xn) − p∥ (∥T (x) − xn∥ + ∥x− xn∥)

≤ 1
n

(∥T (xn)∥ + ∥p∥)(∥T (x)∥ + ∥xn∥ + ∥x∥ + ∥xn∥) .

Clearly T (xn) and xn are both members of the bounded set C, so sending n → ∞ while using (2.13)
on the left side yields

∥T (x) − x∥2 ≤ 0,

implying that
T (x) = x.

Now we will introduce a new concept and a result regarding it which will be used to prove the
general version of theorem ??.

Definition 2.4 Let B be a Banach space. The operator T : S ⊂ B → B is called demiclosed if
for every sequence (xn) ⊂ S the conditions

xn ⇀ x ∈ B, T (xn) → y ∈ B

imply that x ∈ S and
T (x) = y.

Theorem 2.12 The following three conditions imply that the operator I − T : S → B, i.e., (I −
T )(x) = x− T (x) is demiclosed

• T : S ⊂ B → B is a non-expansive operator.

• B is a uniformly convex Banach space.

• S is closed, bounded and convex.

The proof of this theorem is rather technical and be found in [4].
Now we are ready to fully prove theorem 2.11.

Proof This proof will take the same direction as the one for Hilbert spaces, theorem 2.12 will in
some sense replace the tricks with inner products we used there.

Again we will define the operator Tn : C → C for n = 1, 2, . . . as

Tn(x) =
(︃

1 − 1
n

)︃
Tx+ p

n
,
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where p ∈ C is fixed. As we have already shown Tn is a contraction, hence by the Banach fixed
point theorem for all n ∈ N there exists a xn ∈ C with xn = Tn(xn).

From theorem 2.9 we know that B is reflexive, this gives us that the bounded sequence (xn) ⊂ C

has a weakly convergent subsequence that we shall again denote as (xn) with

xn ⇀ x ∈ B as n → ∞. (2.14)

Since xn is a fixed point of Tn, we also have

xn − (1 − 1
n

)T (xn) − p

n
= 0,

meaning that
xn − T (xn) → 0 as n → ∞ (2.15)

Using nothing but the assumptions of this theorem we can see that by theorem 2.12, the operator
I − T is demiclosed, hence (2.14) and (2.15) imply that x ∈ C and x = T (x).

Remark 2.7 Let us show that none of the assumptions of theorem 2.11 can be omitted

• Starting with the trivial ones, if C = Rn is not bounded, the non-expansive mapping T (x) =
x+ a with 0 ̸= a ∈ Rn will have no fixed points.

• If C = BR2(0, 1) \ BR2(0, 1
2) is not convex but is compact, the non-expansive mapping T that

rotates every point around the origin say by π/2 does not have a fixed point in C.

• Next taking the open set C = B1(0) ⊂ Rn we can use the mapping T (x) = x+(1,0,...,0)
2 that

shifts points halfway towards a point on the boundary which has no fixed points in C. Mapping
T is even a contraction.

• Take ℓ2, the space of sequences satisfying
∑︁∞
i=0 |xi|2 < ∞ endowed with the norm ∥x∥ =

(
∑︁∞
i=0 |xi|2)1/2. Let ε ∈ (0, 1] and define Tε : Bℓ2(0, 1) → Bℓ2(0, 1) as

Tε(x) = (ε(1 − ∥x∥), x0, x1, . . .)

Tε maps the closed unit ball to itself because we have

∥Tε(x)∥ = ([ε(1−∥x∥)]2+∥x∥2)1/2 ≤ ((ε(1−∥x∥)+∥x∥)2)1/2 = ε(1−∥x∥)+∥x∥ = ε+∥x∥(1−ε),

and for ∥x∥ ≤ 1 this turns to ∥Tε(x)∥ ≤ 1. We also have

∥Tε(x) − Tε(y)∥2 = (ε(∥y∥ − ∥x∥))2 + ∥x− y∥2 ≤ (ε(∥x− y∥))2 + ∥x− y∥2,
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giving us that ∥Tε(x) − Tε(y)∥ ≤
√

1 + ε2∥x − y∥. In summary Bl2(0, 1) is a non-empty
bounded closed convex subset of a Hilbert space (Hilbert spaces are uniformly convex) and Tε

is Lipschitz continuous with a Lipschitz constant arbitrarly close to 1 but still greater and Tε
has no fixed points in Bl2(0, 1).

• Next we shall investigate if the assumption of uniform convexity is necessary. Let X be the
set of sequences of real numbers vanishing at infinity endowed with the supremum norm, such
X is a Banach space, define C = BX(0, 1). Then the mapping T (x) = (1, x0, x1, . . .) from C

to C where T is clearly non-expansive (it preserves distances in fact) has no fixed points.

• Finally let us break the assumption of completeness. Let X be the vector space of all se-
quences with a finite number of non-zero elements endowed with the norm ∥(x0, x1, . . .)∥ =
(
∑︁∞
i=0 |xn|2)

1
2 and define the operator T as

T (x0, x1, . . .) = (1
2 ,
x0
2 ,

x1
2 , . . .)

it holds T : BX(0, 1) → BX(0, 1) since for all x ∈ BX(0, 1) it holds

||T (x0, x1, . . .)|| = (1
4 +

∞∑︂
i=0

|xi2 |2)
1
2 ≤ (1

2)
1
2 ≤ 1.

X is a uniformly convex space since it is an inner product space and the set BX(0, 1) is
non-empty, closed, bounded and convex, however T has no fixed points in BX(0, 1).

2.2 Brouwer Fixed Point Theorem and Mapping Degree

The Brouwer fixed point theorem gives us a fixed point property for continuous mappings from
convex compacts in Rn onto themselves. Over the years many proofs of this theorem have been put
forward using various fields of mathematics, in this chapter we will demonstrate two such ways one
using mathematical analysis and one using graph theory coupled with mathematical analysis. First
we will prove this theorem by using the Brouwer mapping degree theory.

Brouwer mapping degree is motivated by counting the number of solutions f(x) = y inside a
domain U . In complex analysis we can define such a degree for holomorphic functions using the
concept of a winding number. We define a winding number of a closed path γ : [0, 1] → C around
a point z0 ∈ C by

n(γ, z0) = 1
2πi

∫︂
γ

dz
z − z0

.
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Assuming U is a simply connected domain n(γ, z0) gives us the number of times γ encircles z0 with
respect to orientation of γ. Further more for holomorphic f we have

n(f(⟨γ⟩), 0) = 1
2πi

∫︂
γ

f ′(z)
f(z) dz =

∑︂
k

n(γ, zk)αk,

where ⟨γ⟩ denotes the image of γ, i.e., ⟨γ⟩ = {γ(z) : z is in the domain of γ}. Each point zk is zero
of f in U and αk its multiplicity. If γ is a positively oriented Jordan curve, then n(γ, zk) = 1 if
zk ∈ int(γ). With this we can define deg(f, U, 0) = n(f(⟨γ⟩), 0), where int(γ) = U which counts the
number of zeros inside U . We can set deg(f, U, z0) = n(f(⟨γ⟩) − z0, 0) if z0 /∈ ⟨γ⟩.

While this result is interesting it does not give us much in terms of having a good way to compute
this degree without knowing the zeros of f . This is where homotopy invariance comes in. If we can
find a homotopy H : [0, 1] × ⟨γ⟩ → C \ 0 between f : ⟨γ⟩ → C \ {0} and g : ⟨γ⟩ → C \ {0}, i.e.,
continuous H s.t. H(0, z) = f(z) and H(1, z) = g(z) for all x ∈ ⟨γ⟩ then n(f(γ), 0) = n(g(γ), 0).
Brouwer mapping degree extends this concept for continuous functions from Rn to Rn.

Definition 2.5 Let Dr
y(U,Rn) = {f ∈ Cr(U,Rn) : y /∈ f(∂U)} and let deg be a function that for

each triplet f ∈ Dy = D0
y, a bounded open set U ⊂ Rn and y ∈ Rn assigns a real number deg(f, U, y).

We call deg a degree if

C1 deg(f, U, y) = deg(f − y, U, 0).

C2 deg(Id, U, y) = 1 if y ∈ U .

C3 For two disjoint open sets U1, U2 ⊂ U with y /∈ f(U \ (U1 ∪ U2)) it holds deg(f, U, y) =
deg(f, U1, y) + deg(f, U2, y).

C4 If H(t) = (1 − t)f + tg ∈ Dy(U,Rn), t ∈ [0, 1], then deg(f, U, y) = deg(g, U, y)

Theorem 2.13 The following properties can be derived from the definition of degree given f, g ∈
Dy(U,Rn)

• deg(f, ∅, y) = 0.

• If Ui, 1 ≤ i ≤ N are disjoint open subsets of U with y /∈ f(U \ ∪Ni=1Ui), then deg(f, U, y) =∑︁N
i=1 deg(f, Ui, y).

• If y /∈ f(U), then deg(f, U, y) = 0. Also if deg(f, U, y) ̸= 0, then y ∈ f(U).

• If for all x ∈ ∂U it holds ∥f(x) − g(x)∥ < d(y, f(∂U)), then deg(f, U, y) = deg(g, U, y).

Proof To prove the fist property take U1 = U and U2 = ∅ in C3. The second property follows from
C3 inductively. The third property is a consequence of taking U1 = ∅, U2 = ∅ in C3. Now let us
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prove the last property. For all x ∈ ∂U it holds

d(y, f(∂U)) ≤ ∥y − f(x)∥ ≤ ∥H(t, x) − y∥ + ∥H(t, x) − f(x)∥ ≤ ∥H(t, x) − y∥ + ∥g(x) − f(x)∥

giving us
∥H(t, x) − y∥ ≥ d(y, f(∂U)) − ∥f(x) − g(x)∥.

From the assumptions we can see that ∥H(t, x) − y∥>0 hence by C4 deg(f, U, y) = deg(g, U, y).

Theorem 2.14 There exists a unique degree that satisfies C1-C4. Moreover, deg(., U, y) : Dy(U,Rn) →
Z is constant on each component. For f ∈ Dy(U,Rn) we have

deg(f, U, y) =
∑︂

x∈f−1(y)
sgn det f̃ ′(x),

where f̃ ∈ D2
y(U,Rn) with |f − f̃ | < d(y, f(∂U)) so that ∀x ∈ f̃

−1(y) : det f̃ ′(x) ̸= 0.

The proof of this theorem can be found in [5]. The process of developing this explicit formulation
of the degree is quite intricate. We need to differentiate between regular values and critical values
of f , we can define the set of regular values as RV(f) = {y ∈ Rn|∀x ∈ f−1(y) : det f ′(x) ̸= 0} and
the set of critical values CV(f) as its complement in Rn. It can be shown that given f ∈ D1

y(U,Rn)
and y /∈ CV(f) a degree exists in the form of

deg(f, U, y) =
∑︂

x∈f−1(y)
sgnJf (x),

where the sum is finite and we set
∑︁
x∈∅ = 0. This equality holds in particular because when we

without restriction consider y = 0 we have f−1(y) = {x1, . . . , xN}, avoiding the trial case where
f−1(y) = ∅. Picking neighborhoods U(xi) around xi small enough we get

deg(f, U, 0) =
N∑︂
i=1

deg(f, U(xi, 0)).

We can substitute U(xi) with BRn(xi, δ). Focusing on a single one of these xi and assuming xi = 0 we
have deg(f,Bδ(0), 0) = deg(f ′(0), Bδ(0), 0) for δ small enough (here we understand f ′(0) as the linear
mapping x ↦→ f ′(0) · x), this is due to homotopy invariance. This allows us to work with matrices
as opposed to functions. What is interesting about matrices is that two full rank n × n matrices
M1 and M2 are homotopic iff sgn detM1 = sgn detM2 and in fact deg(M,Bδ(0), 0) = sgn detM
for an invertable n× n matrix M . The real tricky part of proving the theorem above is extending
this formula to all f ∈ Dy(U,Rn) and all y ∈ Rn (with y /∈ f(∂U)). Without going into too many
details, a big win is that the set of regular values of f ∈ C1(U,Rn) is dense in Rn. We first run into
problems admitting critical values which are resolved by making use of the fact that f ∈ C2(U,Rn)
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the map deg(f, U, .) : Rn → Z is locally constant with the exception of f(∂U), so we define

deg(f, U, y) = deg(f, U, ỹ), y /∈ f(∂U), f ∈ C2(U,Rn),

where ỹ ∈ RV (f) with |ỹ− y| < d(y, f(∂U)). This gives us more problems because now we have to
deal with the condition f ∈ C2. As a matter of fact the way this is resolved can be observed in the
formulation of the theorem above.

In the proof of the Brouwer fixed point theorem we will require the following result from topology.
Afterwards we will have everything we need.

Theorem 2.15 Let X and Y be Banach spaces and let K be a closed subset of X. If F ∈ C(K,Y )
then there exists F̃ ∈ C(X,Y ) with F̃ (x) = F (x) for all x ∈ K. Furthermore F̃ (X) ⊂ conv(F (K)).

The proof can be found in [5].

Theorem 2.16 (Brouwer fixed point in Rn) Let K be a non-empty compact convex subset of
Rn for some n ∈ N. Then every continuous mapping f : K → K has a fixed point.

Proof Let us first prove the theorem for the case where K = BRn(0, r) for some r > 0. If there is
a fixed point on ∂BRn(0, r) the statement is true, otherwise set H(t, x) = x− tf(x), t ∈ [0, 1]. We
will show that H(t) ∈ D0(K,Rn) for all t ∈ [0, 1), for all x ∈ ∂K we have

∥H(t, x)∥ ≥ ∥x∥ − t∥f(x)∥ ≥ (1 − t)r > 0, (0 ≤ t < 1),

and the possibility that H(1, x) = 0 has already been ruled out since that would imply that f has
a fixed point on ∂BRn(0, r). Hence deg(x− f(x), BRn(0, r), 0) = deg(x,BRn(0, r), 0) = 1. The claim
follows from property 3 in theorem 2.13. Let us move on to the general case. Clearly K ⊂ BRn(0, r)
for some r > 0. Theorem 2.15 gives the existence of a continuous retraction R : Rn → conv(K) = K,
i.e., R(x) = x for all x ∈ K. Set f̃ = f ◦ R, then f̃ : Rn → K, clearly f̃ is a continuous function
from BRn(0, r) into itself. Our previously shown claim gives us a fixed point x ∈ BRn(0, r) of f̃ .
Since range(f̃) ⊂ K, then x must lie in K.

Theorem 2.17 (Brouwer fixed point) Let K be a non-empty compact convex subset of a finite
dimensional normed linear space X. Then every continuous function f : K → K has a fixed point.

Proof Let n = dimX, then there exists an isomorphism L : X → Rn, i.e., L is linear, L is a
bijection and there exist k,K > 0 such that ∀x ∈ X it holds k∥Lx∥ ≤ ∥x∥X ≤ K∥Lx∥, where ∥Lx∥
is the Euclidian norm. We claim that if L(K) is a non-empty compact convex subset of Rn and
that if y ∈ L(K) is a fixed point of g : L(K) → L(K) defined as g = L ◦ f ◦ L−1 in L(K), then
x = L−1y is a fixed point of f in K, moreover g is continuous. Let us go through these one by one

• Since K is non-empty L(K) is also non-empty.
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• L(K) is convex: Let y1, y2 ∈ L(K) and let y = (1 − t)y1 + ty2 for some t ∈ [0, 1], we have

y = (1 − t)Lx1 + tLx2

for some x1, x2 ∈ K, since L is linear and K is convex it holds

y = L((1 − t)x1 + tx2) ∈ L(K).

• L(K) is compact: We have k∥Lx∥ ≤ ∥x∥X meaning L is bounded and since it is also linear
we know that L is continuous. Now let (yn) ⊂ L(K), there exists xn ∈ K for all n ∈ N such
that yn = Lxn, because K is compact there exists a subsequence (xnk

) of (xn) that converges
to some x ∈ K. From continuity of L we get

ynk
= Lxnk

→ L(x) ∈ L(K),

showing that (yn) has a subsequence that converges to a point in L(K).

• If y is a fixed point of g : L(K) → L(K) defined as g = L ◦ f ◦L−1 and we define x = L−1(y).
Then

y = g(y) = L(f(L−1(y))) = L(f(x)),

applying L−1 to both sides we get
L−1y = f(x)

hence x = f(x).

• Continuity of g: Function g is a composition of functions L, f and L−1. We have already
shown that L is continuous and continuity of f is one of the assumption of the theorem, all
we need to do is show that L−1 is continuous. First let us note that since L is one-to-one we
have L(L−1(x)) = L−1(L(x)) = x. For α ∈ R and y1, y2 ∈ Rn it holds

L−1(αy1) + L−1(αy2) = L−1(L(L−1(αy1) + L−1(αy2))) = L−1((αy1) + (αy2))

meaning that L−1 is linear. Now let y ∈ Rn, since L is onto we can write y = L(x) for some
x ∈ X. We have

k∥Lx∥ ≥ ∥x∥X = ∥L−1(L(x))∥,

by substituting y = Lx we obtain
k∥y∥ ≥ ∥L−1y∥,

where y ∈ Rn was chosen arbitrarily, so L−1 is bounded and hence continuous.
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By the Brouwer fixed point theorem in Rn, the function g has a fixed point y in L(K), by our earlier
considerations x = L−1(y) ∈ K is a fixed point of f .

Remark 2.8 All the assumptions of this theorem are necessary, all of these assumptions except a
few that we will cover shortly were already discussed in the part regarding theorem 2.11. We will not
be looking into the condition of finite-dimensionality since it will be explored in the next section and
we will see that if K is a non-empty closed bounded convex subset of a normed linear space X, then
a continuous mapping from X to X need not have fixed points. As an example of a discontinuous
function that has no fixed points over a non-empty compact convex set BR2(0, 1) we can use mapping
T that rotates all points around the origin by say π where we define T (0, 0) = (0, 1). However a
question still remains whether this theorem could be extended to infinite-dimensional Banach spaces
and the answer will be given in the next section regarding the Schauder fixed point theorem.

While the Brouwer degree is a powerful tool for finding out whether a function f : Rn → Rn

has a fixed point in a given region, this proof of the Brouwer fixed point theorem is not very telling
of how exactly the assumptions guarantee us a fixed point, so we will also include an elementary
proof albeit in the case that f : R2 → R2, this proof will make use of the Sperner lemma from graph
theory.

Theorem 2.18 (Sperner Lemma) Consider the following situation, we are given a triangle with
vertices A1, A2, A3 and perform a division (i.e., triangulation) of the initial triangle, splitting it into
n triangles, denote the set of these triangles as D and denote the set of vertices of triangles in D

as V . Now with each vertex in V we associate an integer ranging from 1 to 3 in accordance with
these rules:

• If v ∈ V lies on the side AiAj of the initial triangle then v can only be assigned numbers i or
j.

• If v ∈ V does not lie on a side of the initial triangle then any number from the set {1, 2, 3}
can be assigned.

(Note that these rules imply that the vertex Ai is numbered i).
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Figure 2.4: Vertex numbering.

The Sperner lemma states that regardless of the used division and specific choice of numbering
there always exists a triangle in D with vertices numbered 1, 2, 3.

Proof We will define a graph G in the following way:

• Each vertex of G will represent a face of the triangulation D, this includes a vertex for the
exterior face v, i.e., one of the vertices represents the outside of the triangle. Because of this
association we will be referring to triangles in D and the exterior face as if they were vertices
of G.

• Two faces of D will be connected by an edge if the side that separates them has end points
numbered 1 and 2, it does not matter in which order. This is also the case with the exterior
face v, it will be connected to triangles that have a side with end points numbered 1 and 2
provided this side overlaps with a side of the initial triangle.
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Figure 2.5: Graph G.

Consider the degree of each triangle in D:

• The degree is non-zero if and only if one of its vertices is numbered 1 and another one is
numbered 2.

• If the degree is non-zero and if the last vertex is also numbered 1 or 2, the triangle has degree
2.

• If the degree is non-zero and if the last vertex is numbered 3, the triangle has degree 1.

Notice that no other options can occur, so a triangle has odd degree if and only if it has vertices
numbered 1, 2 and 3.

Let us show that the exterior face v has odd degree. Clearly edges with an end point in v can
only cross the side A1A2 of the initial triangle, the vertex A1 must be numbered 1 and similarly A2

must be numbered 2. If there are other triangle vertices lying on the side A1A2, they are numbered
1 or 2, so we are looking to show that given a string of numbers 1, 2 beginning with 1 and ending
with 2 contains an odd number of times there is a switch from 1 to 2 or from 2 to 1. The string
will begin with a sequence of 1s until there is a switch to a sequence of 2s, this gives us one switch
which must always be there, if there is another switch to 1 the string cannot end until a switch back
to 2 is made giving us a total of 3 switches, now we can see that the string cannot end on an even
number of switches since that would mean that the string cannot end with number 1.

The so called first theorem of graph theory states that the sum of degrees of all vertices in a
graph is equal to twice the number of edges, so this sum must be an even number, so there must be
at least one triangle in D with an odd degree, by our previous considerations there exists a triangle
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with vertices numbered 1, 2 and 3, not only that, we are also guaranteed that the number of such
triangles must always be odd, as a side note, this observation is key to proving the Sperner lemma
for higher-dimensional simplices.

Theorem 2.19 (Brouwer fixed point in R2) Let K be a non-empty compact convex subset of
R2 and let f : K → K be continuous, then there exists a fixed point of f in K.

Proof First let us show that this holds if f maps the triangle △ given by vertices (0, 1) = A1,
(1, 0) = A2, and (0, 0) = A3 into itself. We will define functions α1, α2, α3 : △ → [0, 1] to map
x = (x1, x2) ∈ △ as follows

α1(x) = x2, α2(x) = x1, α3(x) = 1 − x2 − x1.

If we were to write x as a convex combination of vertices of △, i.e., x =
∑︁3
i=1 λiAi where λi satisfy∑︁3

i=1 λi = 1 and λi ≥ 0 for i = 1, 2, 3, then αi(x) = λi, these functions are referred to as barycentric
coordinates. Now we will define the sets M1,M2,M3 so that

Mi = {x ∈ △ : αi(x) ≥ αi(f(x))}. (i ∈ {1, 2, 3})

Notice that if x ∈ Mi for some i ∈ {1, 2, 3}, then f does not shift x any further from the side of △
opposite to Ai. Suppose that we have x ∈ M1 ∩M2 ∩M3, then by definition of Mi it holds

αi(f(x)) ≤ αi(x), (∀i ∈ {1, 2, 3}) (2.16)

we also have
α1(x) + α2(x) + α3(x) = 1, (∀x ∈ △) (2.17)

Equations (2.16), (2.17) give us

1 = α1(f(x)) + α2(f(x)) + α3(f(x)) ≤ α1(x) + α2(x) + α3(x) = 1.

The only way this can be satisfied is if for each i ∈ {1, 2, 3} we have αi(f(x)) = αi(x). Remember
that the functions αi, i ∈ {1, 2, 3} have the property that

x =
3∑︂
i=1

αi(x)Ai, (∀i ∈ {1, 2, 3})(∀x ∈ △)

hence the relation (∀i ∈ {1, 2, 3}) : αi(f(x)) = αi(x) implies that f(x) = x.
Next we will show that such x exists. Let (Dn) be a sequence of divisions of △ into smaller

triangles such that maxT∈Dn diam(T ) → 0 as n → ∞, such exists, applying any division that splits
the triangle into somewhat equal-sized pieces recursively will do, see for example the barycentric
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simplicial divison [6]. We will number the vertices of all triangles in Dn according to the rules
proposed in the Sperner Lemma and we will also require that if a triangle vertex is numbered
i, then the vertex is a member of Mi, let us see that this is indeed possible. Starting with the
vertices of △ themselves, A1 = (0, 1), so α1(A1) = 1 which is the maximum value α1 can attain, so
automatically A1 ∈ M1, similarly α2(A2) = 1, so A2 ∈ M2, lastly α3(A3) = 1, so A3 ∈ M3.

Moving onto sides of △, if x ∈ △ lies on the side AiAj where i, j ∈ {1, 2, 3}, i ̸= j, let k ∈ {1, 2, 3}
satisfy k ̸= i, k ̸= j. Since x can be written as a convex combination of vertices Ai, Aj and since x
can be uniquely written as

x = αi(x)Ai + αj(x)Aj + αk(x)Ak,

we have αk(x) = 0, this implies that

αi(x) + αj(x) = 1. (2.18)

Suppose that x /∈ Mi and x /∈ Mj , this means that

αi(x) < αi(f(x)),

αj(x) < αj(f(x)).

This coupled with (2.18) gives us

1 = αi(x) + αj(x) < αi(f(x)) + αj(f(x)) ≤ αi(f(x)) + αj(f(x)) + αk(f(x)) = 1,

bringing us to a contradiction.

For triangle vertices lying on the inside of △ there are no numbering rules, but we must show
that each x = (x1, x2) ∈ △ must be a member of Mi for some i ∈ {1, 2, 3}. Suppose that

αi(x) < αi(f(x)), (∀i ∈ {1, 2, 3})

from this we get
3∑︂
i=1

αi(x) <
3∑︂
i=1

αi(f(x)),

but from the definition of α1, α2, α3 we can see that both sides must be equal to 1 giving us a
contradiction.

By the Sperner lemma for an arbitrary n ∈ N the division Dn contains a triangle with vertices
numbered 1, 2 and 3, we will denote its vertices as an,1, an,2, an,3 ∈ △), where vertex an,i is always
numbered i, this establishes three sequences. Since all of these sequences are contained inside the
compact set △, we they all have subsequences that converge with the same index set, to show
this let (ak′ ,1) be a convergent subsequence of (ak,1), next there exists a convergent subsequence
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(ak′′ ,2) of (ak′ ,2) and finally there is also a convergent subsequence (ak′′′ ,3) of (ak′′ ,3), clearly ak′′′ ,i

converges for all i ∈ {1, 2, 3}. We will take the convenience of denoting these subsequences as
(ak,1), (ak,2), (ak,3) again. Remember that

max
T∈Dk

diam(T ) → 0, as k → ∞

this implies that
lim
k→∞

ak,1 = lim
k→∞

ak,2 = lim
k→∞

ak,3 ≡ a.

For each k ∈ N, i ∈ {1, 2, 3}, ak,i satisfies

αi(ak,i) ≥ αi(f(ak,i)),

sending k → ∞ and using continuity of f (and of α1, α2, α3) we get

a ∈ M1 ∩M2 ∩M3,

meaning that a is a fixed point of f .

Now we will show that this result is maintained if we scale △ by a constant and shift it. Let
c ∈ R+ and b ∈ R2 be given and define σ : R2 → R2 as

σ(x) = c · x+ b.

We will now define the set
△c,b = σ(△) = {σ(x) : x ∈ △}.

it is easy to see that σ has an inverse

σ−1(x) = x− b

c
,

note that both the function σ : R2 → R2 and its inverse are continuous (because of this property and
the fact that △c,b = σ(△) we can call the sets △ and △c,b homeomorphic). Let f△c,b

: △c,b → △c,b

be continuous, clearly σ−1 ◦ f△c,b
◦ σ : △ → △ is a continuous mapping, thus by our previous

considerations there exists a ∈ △ such that

(σ−1 ◦ f△c,b
◦ σ)(a) = a

applying the mapping σ to both sides we get

f△c,b
(σ(a)) = σ(a),
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hence σ(a) ∈ △c,b is a fixed point of f△c,b
. Lastly we will use the same trick as in the original proof

using theorem 2.15. It is clear that K ⊂ △c,b for some c ∈ R+ and b ∈ R2. Theorem 2.15 gives
the existence of a continuous retraction R : R2 → conv(K) = K, i.e., R(x) = x for all x ∈ K.
Set f̃ = f△c,k

◦ R, then f̃ : R2 → K, clearly f̃ is a continuous function from △c,b into itself. Our
previously shown claim gives us a fixed point x = f̃(x), since range(f̃) ⊂ K, then x must lie in K.

This proof can also be extended into Rn. There is a variation of the Sperner lemma for simplices,
using this we would prove that the Brouwer fixed point theorem holds on a unit simplex S with
vertices A1, . . . , Ad+1 for some d ∈ N, instead of functions α1, α2, α3 we would use n + 1 functions
α1, . . . , αn+1 : S → [0, 1] satisfying

• For all x ∈ S it holds x =
∑︁n+1
i=1 αi(x)Ai

• For all x ∈ S it holds
∑︁n+1
i=1 αi(x) = 1.

2.3 Schauder Fixed Point Theorem

This section is dedicated to the Schauder fixed point theorem which extends the Brouwer fixed
point theorem to infinite-dimensional Banach spaces. It can be proven by extending the concept of
a mapping degree to Banach spaces but we will be proving it by approximating compact operators
in Banach spaces by mappings with finite-dimensional range and using the Brouwer fixed point
theorem on them. Let us begin by stating the said approximation theorem.

Theorem 2.20 Let X,Y be normed linear spaces and let A : S → Y be a continuous operator,
where S is a non-empty subset of X such that A(S) is a relatively compact (its closure is compact)
subset of Y . Then for all n ∈ N there exist a finite-dimensional subspace Yn of Y and a continuous
operator An : S → Yn which satisfies

sup
u∈S

∥A(u) −An(u)∥ ≤ 1
n

and it further holds that An(S) ⊂ conv(A(S)).

Proof We will begin by constructing a finite 1
2n -net over A(S). Let n ∈ N be given and let Φ

be the collection of BY (A(x), 1
2n) for all x ∈ S, we can see that Φ is a cover of A(S), indeed let

y1 be a limit point of A(S), then there exists a y2 ∈ A(S) with ∥y1 − y2∥ < 1
2n showing that Φ

covers not only A(S) but also A(S). From the assumptions of the theorem we know that A(S) is
compact, thus there exists a finite subcover of Φ, this along with the way that Φ is defined gives us
Au1, Au2, . . . , AuN that satisfy

min
k∈{1,...,N}

∥Au−Auk∥ ≤ 1
2n. (∀u ∈ S) (2.19)
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Next we will define the Schauder operator An : S → Y in the following way

An(u) =
∑︁N
k=1 ak(u)A(uk)∑︁N

k=1 ak(u)
, (∀u ∈ S)

with ak : S → R being defined as

ak(u) = max{ 1
n

− ∥A(u) −A(uk)∥, 0}, (k ∈ [1, N ]).

The operator An is well defined because ak is non-negative for all k ∈ [1, N ], from (2.19) we can
see that for all u ∈ S there exists k ∈ {1, . . . , N} s.t. ak(u) > 0 therefore there will be no division
by zero taking place. Now let us discuss the continuity of An. As sums of continuous functions
are also continuous as well as ratios of continuous functions where the denominator is greater than
zero having the same property, it follows that if ak is continuous for all k ∈ {1, . . . , N}, then
An is also continuous. Continuity of ak, ∀k ∈ {1, . . . , N} comes from it being a composition of
continuous functions. With this we have shown that An is continuous. We also need to show that
An(S) ⊂ conv(A(S)). For all u ∈ S and k ∈ {1, . . . , N} we have

An(u) =
∑︁N
k=1 ak(u)A(uk)∑︁N

k=1 ak(u)
=

N∑︂
k=1

ak(u)∑︁N
l=1 al(u)⏞ ⏟⏟ ⏞
λk(u)

A(uk) =
N∑︂
k=1

λk(u)A(uk),

with λk(u) = ak(u)∑︁N

l=1 al(u)
which for all u ∈ S satisfies λk(u) ≥ 0, ∀k ∈ {1, . . . , N} and

∑︁N
k=1 λk(u) = 1.

Hence
∑︁N
k=1 λk(u)A(uk) is a convex combination of (A(u1), A(u2), . . . , A(uN )) giving us the inclusion

An(S) ⊂ conv(A(u1), A(u2), . . . , A(uN )) ⊂ conv(A(S)).

Which is exactly what we wanted. The property that An : S → Yn with dimYn < ∞ can also be
derived from this revelation as

An(S) ⊂ conv(A(u1), A(u2), . . . , A(uN )) ⊂ span{A(u1), A(u2), . . . , A(uN )} = Yn, dimYn < ∞.

To finish the proof we need to show that

∥A(u) −An(u)∥ ≤ 1
n
, (∀u ∈ S).

We have

∥A(u) −An(u)∥ = ∥
∑︁N
k=1 ak(u)(A(u) −A(uk))∥∑︁N

k=1 ak(u)
≤
∑︁N
k=1 ak(u)∥A(u) −A(uk)∥∑︁N

k=1 ak(u)
. (2.20)
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Now from the definition of ak(u) we can see that

∥A(u) −A(uk)∥ ≥ 1
n

=⇒ ak(u) = 0, (∀k ∈ {1, . . . , N})

giving us that
ak(u)∥A(u) −A(uk)∥ ≤ 1

n
ak(u). (∀k ∈ {1, . . . , N})

By summing both sides we get

N∑︂
k=1

ak(u)∥A(u) −A(uk)∥ ≤ 1
n

N∑︂
k=1

ak(u).

As
∑︁N
k=1 ak(u) > 0 (see part where we prove that An is well defined) we have

∑︁N
k=1 ak(u)∥A(u) −A(uk)∥∑︁N

k=1 ak(u)
≤ 1
n
.

Finally from (2.20) we get
∥A(u) −An(u)∥ ≤ 1

n
.

Now we are ready to prove the Schauder fixed point theorem.

Theorem 2.21 (Schauder Fixed Point) Let S be a non-empty closed convex subset of a normed
linear space X. Then every continuous operator A : S → S with the property that A(S) is relatively
compact has a fixed point in S.

Proof Theorem 2.20 gives us the existence of a finite dimensional subspace Xn of X and a contin-
uous operator An : S → Xn with An(S) ⊂ conv(A(S)) for all n ∈ N where

∥Au−Anu∥ ≤ 1
n
. (∀u ∈ S)

Now define Sn = Xn ∩ convA(S) ⊂ S, we firstly want to show that An|Sn : Sn → Sn. This holds
because (note that Sn ⊂ S) An : S → Xn and An(S) ⊂ conv(A(S)) which is one of the properties
of An.

In order to be able use the Brouwer fixed point theorem on An|Sn we still have to show that Sn
is a compact convex subset of Xn. Sn is the intersection of two convex sets convA(S) and Xn (all
linear subspaces are convex), hence Sn itself is also convex.

With convexity out of the way, let us move on to boundedness of Sn. The set A(S) is relatively
compact and thus bounded, by extension the set convA(S) is also bounded, since Sn ⊂ convA(S)
it is clear that Sn itself is bounded.
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As an intersection of two closed sets convA(S) and Xn, Sn is also closed, Xn is closed because
it is a finite-dimensional subspace of X. We have found that Sn is a closed and bounded subset of
a finite-dimensional space Xn, so Sn is compact.

Now applying the Brouwer fixed point theorem to An|Sn : Sn → Sn where Sn is compact and
convex we obtain the sequence (un) ⊂ Sn with

An(un) = un, (∀n ∈ N)

Since the sequence (A(un)) lies inside a relatively compact set A(S), there exists a subsequence
(A(unk

)) of (A(un)) such that
lim
k→∞

A(unk
) = v ∈ X.

Moreover (A(unk
)) ⊂ S where S is closed, so v ∈ S. We also have unk

→ v as k → ∞ because

∥unk
− v∥ ≤ ∥unk

−A(unk
)∥ + ∥A(unk

) − v∥ = ∥Ank
(unk

) −A(unk
)∥ + ∥A(unk

) − v∥

≤ 1
nk

+ ∥A(unk
) − v∥ → 0 as k → ∞.

Now using the continuity of A and the fact that unk
→ v as k → ∞, we get that A(unk

) → A(v) as
k → ∞. Since v and Av are both limits of A(unk

) as k → ∞, we conclude that A(v) = v.

This result is clearly an extension of the Brouwer fixed point theorem. We would like S to
be assumed closed and bounded instead of compact, but unfortunately it would not be enough to
guarantee a fixed point, see theorem 2.11 where we show that if A is further non-expansive and B

uniformly convex the result holds, there we give an example of a mapping T : Bl2(0, 1) → Bl2(0, 1)
that has no fixed points but is Lipschitz continuous with a Lipschitz constant that can be chosen
arbitrarly close to 1 while remaining greater.

Theorem 2.22 (Schaefer) Let B be a Banach space and let A : B → B be a continuous compact
(i.e. maps bounded sets to relatively compact sets) operator, if the set

F = {x ∈ X : x = λAx}, (λ ∈ [0, 1])

is bounded, then A has a fixed point in B.

Proof Let r > supx∈F ∥x∥ and define the operator G : B → B as

Gx =

⎧⎨⎩Ax, if ∥Ax∥ ≤ r,

r·Ax
∥Ax∥ , if ∥Ax∥ > r.

We can see that G is continuous and maps BB(0, r) ⊂ B to itself, clearly if ∥Ax∥ ≤ r, then
∥Gx∥ = ∥Ax∥ ≤ r and in case that ∥Ax∥ > r we have ∥Gx∥ = r∥Ax∥

∥Ax∥ = r. The operator G is further
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compact as A maps all bounded subsets of B to relatively compact subsets of B and all G does is
multiply images of A by a number bounded above by 1. Since G : BB(0, r) → B0(r) is continuous
and compact with BB(0, r) being non-empty, closed, bounded and convex, by the Schauder fixed
point theorem there exists x ∈ BB(0, r) s.t. Gx = x. We claim that ∥Ax∥ ≤ r, suppose ∥Ax∥ > r

we get
x = Gx = r

∥Ax∥
Ax = λ0Ax, (λ0 < 1)

implying that x ∈ F but we also have ∥x∥ = r∥Ax∥
∥Ax∥ = r which contradicts r > supx∈F ∥x∥. Thus we

can conclude that Gx = Ax = x.

2.4 Kakutani Fixed Point Theorem

In this section we will discuss a fixed point theorem for point-to-set mappings which extends the
Brouwer fixed point theorem and has applications for example in game theory.

Definition 2.6 (Point-to-Set Mapping) Given a non-empty set S, we call every mapping Φ
that associates points of S with subsets of S (i.e., Φ : S → 2S) a point-to-set mapping.

Definition 2.7 Let S be a non-empty set and let Φ : S → 2S be a point-to-set mapping, we call
x ∈ S a fixed point of Φ if x ∈ Φ(x).

For example take S = [0, 1] and Φ(x) = [0, x2]. This mapping has two fixed points x1 = 0 and
x2 = 1.

Definition 2.8 Let S be a metric space and let Φ : S → 2S be a point-to-set mapping, we call Φ
upper semi-continuous if xn → x, yn → y and ∀n ∈ N : yn ∈ Φ(xn) together imply that y ∈ Φ(x).

Definition 2.9 Let X be a vector space. We call points x0, . . . , xn ∈ X with n ∈ N affinely
independent if for all λ0, . . . , λn ∈ R

n∑︂
i=0

λixi = 0,
n∑︂
i=0

λi = 0

imply that
λi = 0, ∀i ∈ {0, . . . , n}

From this definition it is clear that all convex combinations of affinely independent points are
given uniquely. Also note that if dim(X) = d, then we can find combinations of at most d + 1
affinely independent points in it.
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Definition 2.10 A set S ⊂ Rd, d ∈ N defined by the affinely independent points x0, . . . , xd in Rd

as

S =
{︄

d∑︂
i=0

θixi| θi ≥ 0 (i = 0, . . . , d),
d∑︂
i=0

θi = 1
}︄

= conv{x0, . . . , xd}

is called a simplex.

A simplex in R2 is a triangle and in R3 it is a tetrahedron, in R it is a segment.
Now we are ready to state the Kakutani fixed point theorem. We will begin by proving it on

a simplex, the proof is quite technical. Then we will go on to show that it can be extended to
non-empty compact convex subsets of Rd.

Theorem 2.23 (Kakutani Fixed Point on a Simplex) Let S be a simplex in Rd, if Φ : S → 2S

is an upper semi-continuous point-to-set mapping whose images are non-empty and convex, then Φ
has a fixed point in S.

Proof Let Sn for n ∈ N be a division of all simplices in Sn−1 into several smaller simplices where
S0 = {S} such that max△∈Sn diam(△) → 0 as n → ∞, another quality we desire is that if E is an
intersection of some △1, . . . ,△r ∈ Sn and we denote the set of common vertices of △1, . . . ,△r as
V , then E = conv(V ). Such a division exists, e.g., we can use the barycentric simplicial subdivision
which more specifically satisfies

max
△∈S1

diam(△) ≤ d

d+ 1 diam(S). (2.21)

Details can be found in [6], clearly applying such division recursively will yield max△∈S1 diam(△) →
0 as n → ∞

S1S

1

Figure 2.6: Barycentric simplicial subdivision.

Now if x ∈ S, then there exists △x ∈ Sn for some fixed n ∈ N, this point x can be written as

x =
d∑︂
i=0

θixi,
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where x0, . . . , xd are vertices of △x and θi ≥ 0 (i = 0, . . . , d),
∑︁d
i=0 θi = 1. For each xi, Φ(xi) is

a set of vectors in Rd, define yi ∈ Φ(xi) to be one of these vectors arbitrarily picked. The points
y0, . . . , yd constitute some △y = conv{y0, . . . , yd} ⊂ S which is not necessarily a simplex.

x1

x2

x3

y1

y2

y3

Φ(x1)

Φ(x2)

Φ(x3)

1

Figure 2.7: Relation of x0, . . . , xd to y0, . . . , yd.

Let n ∈ N be fixed, for each x ∈ S we can define a mapping φn : S → S in the following way, if
x is a vertex of some △x ∈ Sn we set φn(x) = y ∈ Φ(x).

Now using the fact that x is contained inside some simplex in Sn with vertices x0, . . . , xd, we
define φn(x) =

∑︁d
i=0 θiφn(xi). Such mapping is clearly well defined for vertices and interior points

of simplices in Sn, we must show that it is also well defined for points that lie in two or more
simplices, i.e., on the common boundary of several simplices. Let x ∈ S be a point that lies in
△1,△2, . . . ,△r ∈ Sn and let E =

⋂︁r
k=1 △k. Remember that the division we are using guarantees

that the common vertices of △1, . . . ,△r are all members of E and that E is a simplex generated
by these common vertices denoted as x0, . . . , xm for some m ∈ N∪{0}, hence

x =
m∑︂
i=0

θixi.

We also have

x =
d∑︂
i=0

θ△k
i x△k

i =
m∑︂
i=0

θixi, (k = 0, . . . , r)

Using the fact that all convex combinations of affinely independent vectors are given uniquely we
get

φn(x) =
d∑︂
i=0

θ△k
i φn(x△k

i ) =
m∑︂
i=0

θiφn(xi), (k = 0, . . . , r)

showing that φn : S → S is well defined for all x ∈ S.
Next we will show that φn is continuous, let xk → x ∈ S as k → ∞, one of following three cases

can occur

45



1. x ∈ int(△) for some △ ∈ Sn with vertices v0, . . . , vd. Since every neighborhood of x contains all
but finitely many points of (xk) we may assume that (xk) ⊂ △. We can write xk =

∑︁d
i=0 θ

k
i vi

and x =
∑︁d
i=0 θivi. We have

d∑︂
i=0

(θki − θi)vi = xk − x → 0 ∈ Rn (2.22)

and also
d∑︂
i=0

(θki − θi) =
d∑︂
i=0

θki −
d∑︂
i=0

θi = 0, (∀k ∈ N) (2.23)

Since (θki ) are sequences inside a compact set for all i = 0, . . . , d, they must have a convergent
subsequence (θkl

i ). Now v0, . . . , vd are affinely independent so (2.22), (2.23) imply that (θkl
i )

must converge to θi. As this is the case any convergent subsequence of (θki ), it follows that
lim supk→∞ θki = lim infk→∞ θki = θi which implies limk→∞ θki = θi. Thus we have

φn(xk) =
d∑︂
i=0

θki φn(vi) →
d∑︂
i=0

θiφn(vi) = φn(x) (as k → ∞).

2. Alternatively assume that x is a member of △1, . . . ,△r ∈ Sn and that there is a sequence xk
such that xk → x. Again we may assume that (xk) is contained inside ∪ri=1△i, we also may
assume that every △i, i = 1, . . . , r contains infinitely many members of (xk) (if not we could
simply discard those finitely many members). Now we can split (xk) up into subsequences
(xik) such that for each i ∈ {1, . . . , r} it holds

(xik) ⊂ △i,

where for each n ∈ N the point xk is a member of the sequence (xik) for at least one i ∈
{1, . . . , r}. From our previous considerations we can see that φn(xik) → φn(x) for all i ∈
{1, . . . , r} (all we needed in case 1 was that the sequence was fully contained in a single
simplex). In other words for any fixed i ∈ {1, . . . , r} given ε > 0 we can find Nk ∈ N such that

(k > Nk) =⇒ ∥φn(xik) − φn(x)∥ < ε.

If we take N = max{N1, . . . , Nr} we get

(k > N) =⇒ ∥φn(xk) − φn(x)∥ < ε,

this is due to the fact that for each i ∈ {1, . . . , r} the sequence (xik) is a subsequence of (xk)
and the property that for each k ∈ N the point xk is a member of the sequence (xik). We can
see that φn(xk) → φn(x).
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We have shown that φn : S → S is a continuous mapping, since S is compact, convex and non-
empty by the Brouwer fixed point theorem there exists a sequence (xk) ⊂ S such that xk = φk(xk)
for all k ∈ N. Now let △k ∈ Sk be a simplex that contains xk, if there are more, just pick one.
Let vk0 , . . . , vkd denote the vertices of △k, we can write xk =

∑︁d
i=0 θ

k
i v

k
i for some θk0 , . . . , θkd with the

usual properties, we also have φk(xk) =
∑︁d
i=0 θ

k
i q
k
i , where qki = φk(vki ) ∈ Φ(vki ) for i = 0, . . . , d.

Since xk is a fixed point of φk we have

xk = φk(xk) =
d∑︂
i=0

θki q
k
i

There exist subsequences (xkl
), (θkl

i ) and (qkl
i ) that all converge as l → ∞ using the same index

set (kl), all of these sequences are contained inside compact sets so they all have convergent subse-
quences, now let (xk′ ) be a convergent subsequence of (xk), next can find a convergent subsequence
(θk

′′

1 ) of (θk
′

1 ), continuing this process finitely many times we will arrive at our desired index set
(kl). We have xkl

→ x, θkl
i → θi and qkl

i → qi with

x =
d∑︂
i=0

θiqi.

Let us also note that since diam△k → 0 as k → ∞ and xn ∈ △k for all k ∈ N, it holds vki → x for
i = 0, . . . , d. Let us summarize some facts, we have

• qkl
i ∈ Φ(vkl

i ) for i = 0, . . . , d.

• qkl
i → qi for i = 0, . . . , d.

• vkl
i → x for i = 0, . . . , d.

By upper semi-continuity of Φ, these three properties give us that qi ∈ Φ(x). Finally since Φ(x) is
convex x =

∑︁d
i=0 θiqi ∈ Φ(x).

Theorem 2.24 (Kakutani Fixed Point) Let S be a non-empty compact convex subset of Rd, if
Φ : S → 2S is an upper semi-continuous point-to-set mapping whose images are non-empty and
convex, then Φ has a fixed point in S.

Proof This proof will pretty much shadow the way we extended the Brouwer fixed point theorem
to more general sets by using the fact that the result holds for closed balls.

Since S is compact, there exists a simplex S△ that contains S. By theorem 2.15 there exists a
continuous retraction R : Rd → conv(S) = S, i.e., R(x) = x for all x ∈ S. We set Φ̃ = Φ◦R, we have
Φ̃ : Rd → 2S . By the Kakutani fixed point theorem for simplices applied to Φ̃|S△ : S△ → 2S ⊂ 2S△

there exists x ∈ S△ such that x ∈ Φ̃(x). Since range(Φ̃) ⊂ 2S , we necessarily have Φ̃(x) ⊂ S.
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Remark 2.9 Let us see if all the assumptions are necessary

• Breaking the condition of compactness by taking an open set: Let S = (0, 1) and let Φ(x) =
[x3, x2], then Φ is upper semi-continuous, assume xn → x, yn → y with yn ∈ Φ(xn). We have

x3
n ≤ yn ≤ x2

n,

and by sending n → ∞ we get
x3 ≤ y ≤ x2

implying that y ∈ Φ(x). But Φ has no fixed points. It is easy to see that no other conditions
of theorem 2.24 other than compactness have been broken.

• Breaking the condition of compactness by taking an unbounded set: Let S = [2,∞), clearly S
is closed, take Φ(x) = [x2, x3] by the same reasoning as above Φ is upper semi-continuous and
Φ has no fixed points. No other conditions of theorem 2.24 other than compactness have been
broken.

• Convexity of S: Let S = BR2(0, 1) \ BR2(0, 1
2), such S is compact. Define Φ(x) = {−x} and

assume that xn → x, yn → y and ∀n ∈ N : yn ∈ Φ(xn), we have

yn = −xn,

sending n → ∞ we get
y = −x,

meaning that y ∈ Φ(x), showing that Φ is upper semi-continuous. Clearly Φ has no fixed
points in S. All conditions of theorem 2.24 other then convexity of S have been satisfied.

• Convexity of Φ(x): Let S = [0, 1] and define Φ(x) = [0, 1] \ (x − 1
10 , x+ 1

10), such Φ is upper
semi-continuous, assume xn → x, yn → y with yn ∈ Φ(xn), we have

|yn − xn| ≥ 1
10

Letting n → ∞ we get
|y − x| ≥ 1

10
implying that y ∈ Φ(x). Φ(x) is also non-empty for all x ∈ S and there are no fixed points of
Φ in S. No other conditions of theorem 2.24 other than convexity of Φ(x) have been broken.
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• Semi-continuity of Φ: Let S = [0, 1] and take

Φ(x) =

⎧⎨⎩[2
3 , 1] if x ≤ 1

2

[0, 1
3 ] if x > 1

2

Clearly Φ(x) is non-empty and convex for all x ∈ S. Let xn = 1
2 + 1

n+1 , then xn → 1
2 ≡ x,

assume that yn → y with yn ∈ Φ(xn) for all n ∈ N. This means

yn ∈ [0, 1
3] (∀n ∈ N)

Since [0, 1
3 ] is closed, y must also lie in [0, 1

3 ]. However Φ(x) = Φ(1
2) = [2

3 , 1], so y /∈ Φ(x),
implying that Φ is not upper semi-continuous. Clearly Φ has no fixed points in S and all the
other conditions of theorem 2.24 have been satisfied.
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Chapter 3

Applications

This chapter will feature applications of theorems we have introduced. We will begin with a few
statements regarding solvability of systems of ordinary differential equations.

3.1 Picard-Lindelöf Theorem

Definition 3.1 Let

d
dtx1(t) = f1(t, x1, . . . , xn), (3.1)

d
dtx2(t) = f2(t, x1, . . . , xn),

...
d
dtxn(t) = fn(t, x1, . . . , xn)

be a system of ordinary differential equations where f1, . . . , fn : Rn+1 → R are defined over some set
G ⊂ Rn+1 and x1, . . . , xn : R → R are defined over some interval I. We can also write this system
in vector form as d

dtx(t) = f(t, x), where f : Rn+1 → Rn and x : R → Rn are defined as

x(t) = (x1(t), . . . , xn(t)),

and
f(t, x) = (f1(t, x), . . . , fn(t, x)).
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We will also associate with this system the points t0 ∈ I and x0 ∈ Rn s.t. (t0, x0) ∈ G, together

d
dtx(t) = f(t, x), (3.2)

x(t0) = x0

constitute an initial value problem. We call x a solution of the initial value problem (3.2) on some
interval J ⊂ I if

• (∀t ∈ J) : (t, x1(t), . . . , xn(t)) ∈ G.

• x is differentiable on J .

• (∀t ∈ J) : d
dtx(t) = f(t, x(t)).

• x(t0) = x0.

Theorem 3.1 (Picard-Lindelöf - version 1) Let t0 ∈ R, x0 ∈ Rn and a, b > 0, let us denote
I = [t0, t0 + a] and D = {x ∈ Rn : ∥x − x0∥ ≤ b}. If there exists L > 0 such that ∀x, y ∈ D the
continuous function f : I ×D → Rn satisfies

∥f(t, x) − f(t, y)∥ ≤ L||x− y||, (∀t ∈ I) (3.3)

then there exists a unique solution of the initial value problem (3.2) on the interval J = [t0, t0 + δ],
where δ ∈ R+ is chosen so that δ ≤ a, δM ≤ b and δL < 1, given M = max(t,x)∈I×D ∥f(t, x)∥, such
exists.

Proof Let F be the metric space of all continuous mappings x : J → Rn that for all t ∈ J satisfy
∥x(t) − x0∥ ≤ b endowed with the metric

d(x, y) = max
t∈J

∥x(t) − y(t)∥.

Such metric space is complete since F is a closed subsets of a metric space that is known to be
complete (that is the metric space of all continuous functions over a closed interval endowed with
the metric d). Define the mapping T : F → F as

T (x)(t) = x0 +
∫︂ t

t0
f(s, x(s))ds.

T maps F into itself since for all t ∈ J we have

∥T (x)(t) − x0∥ =
⃦⃦⃦⃦∫︂ t

t0
f(s, x(s))ds

⃦⃦⃦⃦
≤
∫︂ t

t0
∥f(s, x(s))∥ds ≤ M (t− t0)⏞ ⏟⏟ ⏞

≤a

≤ Mδ ≤ b. (3.4)
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If x ∈ F is a fixed point of T , it satisfies x(t) = x0 +
∫︁ t
t0
f(s, x(s)) for all t ∈ J hence it is a solution

of the initial value problem (3.2) on J . Conversely any solution of (3.2) on J is a fixed point of T .
If we can show that there exists a unique fixed point of T the proof is finished. For all x, y ∈ F and
t ∈ J we have

∥T (x)(t) − T (y)(t)∥ ≤
∫︂ t

t0
∥f(s, x(s)) − f(s, y(s))∥ds,

using (3.3) we get
∫︂ t

t0
∥f(s, x(s)) − f(s, y(s))∥ds ≤ L

∫︂ t

t0
∥x(s) − y(s)∥ds ≤ Lmax

s∈J
∥x(s) − y(s)∥(t− t0) ≤ Lδρ(x, y),

implying that ρ(T (x), T (y)) ≤ Lδρ(x, y). Our assumptions about δ guarantee that T is a con-
traction, thus by the Banach fixed point theorem the mapping T has a unique fixed point. This
completes the proof.

By adjusting the metric used in the proof we can find out that the interval on which we are
guaranteed a unique solution actually does not depend on L. The following result is this improved
version of theorem 3.1.

Theorem 3.2 (Picard-Lindelöf - version 2) Let t0 ∈ R, x0 ∈ Rn and a, b > 0, let us denote
I = [t0, t0 + a] and D = {x ∈ Rn : ∥x − x0∥ ≤ b}. If there exists L > 0 such that ∀x, y ∈ D the
continuous function f : I ×D → Rn satisfies

∥f(t, x) − f(t, y)∥ ≤ L||x− y||, (∀t ∈ I)

then there exists a unique solution of the initial value problem (3.2) on the interval J = [t0, t0 + δ],
where δ ∈ R+ is chosen so that δ ≤ a and δM ≤ b, given M = max(t,x)∈I×D ∥f(t, x)∥.

Proof Take F defined as in the previous proof but we will swap out the metric d with

d̃(x, y) = max
t∈J

(︂
e−K(t−t0) ∥x(t) − y(t)∥

)︂
,

where K > L is chosen arbitrarily. This metric is equivalent with d, the lower bound for d̃ comes
from the relation

e−K(t−t0) ∥x(t) − y(t)∥ ≥ e−Kδ ∥x(t) − y(t)∥, (∀t ∈ J)

giving us
d̃(x, y) ≥ e−Kδ d(x, y)

and to get the upper bound for d̃ we can use the fact that e−K

≥0⏟ ⏞⏞ ⏟
(t− t0) ≤ 1, this gives us

e−K(t−t0) ∥x(t) − y(t)∥ ≤ ∥x(t) − y(t)∥
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implying that
d̃(x, y) ≤ d(x, y)

bounding ρ̃(x, y) from both sides. So F with the metric ρ̃ is a complete metric space. All that is
left to do is show that T , defined the same way as in the previous proof is a contraction in this
metric. Indeed for all x, y ∈ F and all t ∈ J we have

e−K(t−t0) ∥T (x)(t) − T (y)(t)∥ ≤
∫︂ t

t0
e−K(t−t0) ∥f(s, x(s)) − f(s, y(s))∥ds

≤ L

∫︂ t

t0
e−K(t−t0) ∥x(s) − y(s)∥ds = L

∫︂ t

t0
e−K(t−s) e−K(s−t0) ∥x(s) − y(s)∥ds

≤ Lmax
s∈J

(︂
e−K(s−t0) ∥x(s) − y(s)∥

)︂ ∫︂ t

t0
e−K(t−s) ds

= Lρ̃(x, y)
(︂
K−1 −K−1 e−K(t−t0)

)︂
≤ LK−1ρ̃(x, y).

Since K was chosen to be greater than L this shows that T is a contraction, so by the Banach fixed
point theorem T has a unique fixed point, finishing the proof. All we needed to assume about δ
was that δ ≤ a and Mδ ≤ b to guarantee that T would map F into itself as can be seen in (3.4).

3.2 Peano Theorem

The main result of this section guarantees existence of a solution of the initial value problem 3.2
under weaker assumptions however it does not guarantee uniqueness. We will need to supplement
a few definition and an auxiliary theorem.

Definition 3.2 We call a sequence of continuous functions (fk) mapping some set E into Rn

pointwise bounded whenever

(∀x ∈ E)(∃M ∈ R)(∀k ∈ N) : ∥fk(x)∥ ≤ M.

Definition 3.3 We call a sequence of continuous functions (fk) mapping some set subset E of a
metric space (X, d) into Rn equicontinuous whenever

(∀ε > 0)(∃δ > 0)(∀k ∈ N)(∀x, y ∈ E) : d(x, y) < δ =⇒ ∥fk(x) − fk(y)∥ < ε.

Theorem 3.3 (Arzela-Ascoli) Let (fn) be a sequence of continuous functions mapping a compact
set K in some metric space into Rn, if (fn) is pointwise bounded and equicontinuous then there exists
a uniformly convergent subsequence (fnk

) of (fn).

The proof of this theorem can be found in [7], the proof is written for complex valued functions but
it is also valid for functions into Rn.
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Theorem 3.4 (Peano) Let t0 ∈ R, x0 ∈ Rn and a, b > 0, let us denote I = [t0, t0 + a] and
D = {x ∈ Rn : ∥x − x0∥ ≤ b}. If the function f : I × D → Rn is continuous then there exists a
solution of the initial value problem (3.2) on the interval J = [t0, t0 + δ], where δ ∈ R+ is chosen so
that δ ≤ a and δM ≤ b, given M = max(t,x)∈I×D ∥f(t, x)∥.

Proof The direction of this proof will be to verify all the assumptions of the Schauder fixed point
theorem to show that the operator T defined same as before has a fixed point. Let X be the Banach
space of all continuous functions x : J → Rn endowed with the norm

∥x∥ = max
t∈J

∥x(t)∥.

and let
S = {x ∈ X : ∥x(t) − x0∥ ≤ b (∀t ∈ J)}.

The set S is clearly closed and bounded, it is also convex since for all x, y ∈ S and λ ∈ [0, 1] it holds

∥(1 − λ)x(t) + λy(t) − x0∥ ≤ ∥(1 − λ)(x(t) − x0) + λ(y(t) − x0)∥

≤ (1 − λ)∥(x(t) − x0)∥ + λ∥(y(t) − x0)∥ ≤ b. (∀t ∈ J)

Now define T : S → S same as in the proof of the Picard-Lindelöf theorem, that is

T (x)(t) = x0 +
∫︂ t

t0
f(s, x(s))ds, (t ∈ J)

from (3.4) we already know that T indeed maps S into itself under the assumptions that δ ≤ a and
Mδ ≤ b.

Let us show that T is continuous. Since the function f is continuous on a compact set J × D,
it is uniformly continuous on it, implying that

(∀ε > 0)(∃δ > 0)(∀t ∈ I)(∀x, y ∈ D) : ∥x− y∥ < δ =⇒ ∥f(t, x) − f(t, y)∥ < ε.

Now suppose (xn) ⊂ S with xn → x, for any given δ we can find an index N ∈ N such that

∥xn − x∥X ≤ δ

if n ≥ N . We have

∥T (xn)(t) − T (x)(t)∥ ≤
∫︂ t

t0
∥f(s, xn(s)) − f(s, x(s))∥ds. (∀t ∈ J)

Now choose ε > 0 arbitrarily and take δ > 0 so that for all α, β ∈ D, ∥α − β∥ < δ implies
∥f(s, α) − f(s, β)∥ < ε. Taking n large enough we get ∥x(s) − xn(s)∥ < δ for all s ∈ J (because X
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uses the maximum norm), it follows that
∫︂ t

t0
∥f(s, xn(s)) − f(s, x(s))∥ds ≤ ε(t− t0) ≤ εδ. (∀t ∈ J)

Because ε > 0 was chosen arbitrarily and independently of t this gives us that T (xn)(t) converges
to T (x)(t) uniformly, i.e., ∥T (xn) − T (x)∥X → 0 as n → ∞, implying that T is continuous.

Next we will show that T (S) is relatively compact. For all x ∈ S and t1, t2 ∈ J we have

∥T (x)(t1) − T (x)(t2)∥ =
⃦⃦⃦⃦∫︂ t2

t1
f(s, x(s))ds

⃦⃦⃦⃦
≤ M |t1 − t2|.

As x was chosen arbitrarily this implies that all sequences in T (S) are equicontinuous. All sequences
in T (S) are also bounded by the constant ∥x0∥ + b thus by the Arzela-Ascoli theorem if (fn) is a
sequence in T (S) it has a convergent subsequence, this means that T (S) is relatively compact. In
summary the continuous operator T maps S into S, S is non-empty, closed and convex and T (S)
is relatively compact. By the Schauder fixed point theorem there exists a fixed point of T in S.

3.3 Lax-Milgram Lemma

In this section we will use the Banach fixed point theorem to prove a fundamental result in partial
differential equation theory. Let us begin by stating an auxiliary lemma

Lemma 3.5 Let V be a Hilbert space, let a, b : V × V → R be bilinear forms and let F ∈ V ∗,
assume the following

• (∃c > 0)(∀u ∈ V ) : a(u, u) ≥ c∥u∥2 (ellipticity of a).

• (∃k > 0)(∀u, v ∈ V ) : b(u, v) ≤ k∥u∥∥v∥ (continuity of b).

• (∃u ∈ V )(∀v ∈ V ) : a(u, v) = F (v).

Then for each α ∈ R with |α| < c
k it holds

(∃!u ∈ V )(∀v ∈ V ) : a(u, v) + αb(u, v) = F (u).

Proof Assume that u1, u2 both satisfy (∀v ∈ V ) : a(u1, v) = F (v) = a(u2, v), then by ellipticity of
a we have

0 = a(u1 − u2, u1 − u2⏞ ⏟⏟ ⏞
∈V

) ≥ c∥u1 − u2∥2,
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implying that u1 = u2, hence u from the third assumption is given uniquely. Let T : V → V be an
operator defined so that for each w ∈ V we have

(∀v ∈ V ) : a(T (w), v) = F (v) − αb(w, v).

Since b is continuous, F (v) − αb(w, v) for a fixed w ∈ V is a member of V ∗ giving us that T is well
defined (i.e. for each w ∈ V there exists a unique T (w) ∈ V ).

Let us show that T is a contraction. Let w1, w2 ∈ V , we have

c∥T (w1) − T (w2)∥2 ≤ a(T (w1) − T (w2), T (w1) − T (w2)) (3.5)

and also

a(T (w1) − T (w2), T (w1) − T (w2)) = a(T (w1), T (w1) − T (w2)) − a(T (w2), T (w1) − T (w2))

= −α (b(w1, Tw1 − Tw2) − b(w2, T (w1) − T (w2))) = −α(b(w1 − w2, T (w1) − T (w2)))

≤ |α|k∥w1 − w2∥∥Tw1 − Tw2∥

Put together with (3.5) this means that

∥Tw1 − Tw2∥ ≤ |α|k
c

∥w1 − w2∥.

By our choice of α this gives us that T is a contraction. Using the Banach fixed point theorem there
exists a unique fixed point u of T in V , i.e.,

(∃!u ∈ V )(∀v ∈ V ) : a(u, v) = F (v) − αb(u, v),

which is what we were trying to prove.

Theorem 3.6 (Lax-Milgram Lemma) Let V be a Hilbert space, let a : V ×V → R be a bilinear
form and let F ∈ V ∗. Assume the following

• (∃c > 0)(∀u ∈ V ) : a(u, u) ≥ c∥u∥2 (ellipticity of a).

• (∃k > 0)(∀u, v ∈ V ) : a(u, v) ≤ k∥u∥∥v∥ (continuity of a).

Then
(∃!u ∈ V )(∀v ∈ V ) : a(u, v) = F (v).

Proof We will begin by taking the symmetric part and antisymmetric part of a, that is

aS(u, v) = 1
2(a(u, v) + a(v, u)),
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aA(u, v) = 1
2(a(u, v) − a(v, u)).

Next we will define at(u, v) = aS(u, v) + taA(u, v) where t ∈ [0, 1]. These forms have the following
properties

• aA is continuous with the constant k. For all u, v ∈ V we have |aA(u, v)| ≤ 1
2(|a(u, v)| +

|a(v, u)|) ≤ k∥u∥∥v∥.

• at is elliptic for each t ∈ [0, 1] with the constant c. For all u ∈ V it holds at(u, u) = a(u, u) ≥
c∥u∥2.

• at is continuous for all t ∈ [0, 1] with the constant k. For all u, v ∈ V it holds

|at(u, v)| = 1 + t

2 |a(u, v)| + 1 − t

2 |a(v, u)| ≤ k∥u∥∥v∥
(︃1 + t

2 + 1 − t

2

)︃
= k∥u∥∥v∥.

We claim that if
(∃!u ∈ V )(∀v ∈ V ) : at(u, v) = F (v) (3.6)

for some t ∈ [0, 1) then for each α ∈ (0, ck ) such that t+ α ≤ 1 we have

(∃!u ∈ V )(∀v ∈ V ) : at+α(u, v) = F (v). (3.7)

This can be shown using lemma 3.5 since

at+α(u, v) = aS(u, v) + (t+ α)aA(u, v) = at(u, v) + αaA(u, v),

where at(u, v) is elliptic on V with a constant c and aA(u, v) is continuous with a constant k and
α < c

k .
aS is an inner product on V because it is symmetric, bilinear and aS(v, v) > 0 if v is not the

zero element of V (this comes from ellipticity of a0 = aS). Furthermore the norm induced from aS

is equivalent to the original norm of V , this is a result of continuity and ellipticity of a0 = aS , hence
by the Riesz representation theorem we have

(∃!u ∈ V )(∀v ∈ V ) : aS(u, v) = F (v),

which gives us that some at for a larger t again satisfies assumption (3.6), this constitutes a repeat-
able process, since the step length by which we can increase t each time is constant, by repeating
this process finitely many times we will arrive at

(∃!u ∈ V )(∀v ∈ V ) : a1(u, v) = a(u, v) = F (v).
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3.4 Fractals

Definition 3.4 (Hausdorff Distance) Let M be a metric space and let X,Y ⊂ M be non-empty,
we call

dH(X,Y ) = max{sup
x∈X

d(x, Y ), sup
y∈Y

d(y,X)}

the Hausdorff distance of X and Y .

Theorem 3.7 Hausdorff distance constitutes a metric over any collection F of non-empty closed
bounded subsets of some metric space M .

Proof

1. dH : F × F → R. All members of F are bounded so it is clear that dH can only attain finite
values.

2. dH(X,X) = 0 for all non-empty subsets X of M . This is apparent from supx∈X d(x,X) = 0.

3. X ̸= Y =⇒ dH(X,Y ) > 0 for all X,Y ∈ F . Both X and Y are closed sets with X ̸= Y , this
means that one of these sets contains a point p that does not lie in the closure of the other
set, we may assume that p ∈ X. Since this is the case there exists ε > 0 such that d(p, y) ≥ ε

for all y ∈ Y , i.e., d(p, Y ) ≥ ε, hence

sup
x∈X

d(x, Y ) ≥ d(p, Y ) ≥ ε.

From the definition of dH this implies that dH(X,Y ) ≥ ε > 0.

4. symmetry of dH comes from symmetry of the max operator.

5. Triangle inequality: Let X,Y, Z be non-empty subsets of M . We will begin by showing that
it holds

d(x, Z) ≤ d(x, y) + d(y, Z) (∀x ∈ X)(∀y ∈ Y )

For each x ∈ X, y ∈ Y, z ∈ Z it holds

d(x, z) ≤ d(x, y) + d(y, z),

taking a sequence (zn) ⊂ Z so that d(y, zn) → d(y, Z) we get

d(x, Z) = inf
z∈Z

d(x, z) ≤ d(x, zn) ≤ d(x, y) + d(y, zn), (∀x ∈ X), (∀y ∈ Y )

sending n → ∞ yields

d(x, Z) ≤ d(x, y) + d(y, Z). (∀x ∈ X), (∀y ∈ Y )
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We will call this property the triangle inequality for point-to-set distance. Following up on
this take a sequence (yn) ⊂ Y such that d(x, yn) → d(x, Y ), we have

d(x, Z) ≤ d(x, yn) + d(yn, Z) ≤ d(x, yn) + sup
y∈Y

d(y, Z) ≤ d(x, yn) + dH(Y, Z). (∀x ∈ X)

sending n → ∞ gives us

d(x, Z) ≤ d(x, Y ) + dH(Y,Z). (∀x ∈ X)

Once more we will take a sequence (xn) ∈ X such that d(xn, Z) → supx∈X d(x, Z), it holds

d(xn, Z) ≤ d(xn, Y ) + dH(Y, Z) ≤ sup
x∈X

d(x, Y ) + dH(Y, Z) ≤ dH(X,Y ) + dH(Y, Z).

Letting n → ∞ we get
sup
x∈X

d(x, Z) ≤ dH(X,Y ) + dH(Y,Z). (3.8)

Note that dH(X,Z) = max{supx∈X d(x, Z), supz∈Z d(z,X)}, so to finish the proof we need to
show that

sup
z∈Z

d(z,X) ≤ dH(X,Y ) + dH(Y, Z),

but this is nothing but swapping X for Z and vice versa in (3.8) which we may do since the
same is assumed about both sets.

Note that if we allow a metric to attain the value of infinity, boundedness is not needed, this
proof also tells us that if we do not require members of F to be closed sets then dH is a pseudometric,
i.e., has all the properties of a metric except the property that two points have zero distance implies
that the two points are equal.

Theorem 3.8 If M is a complete metric space then the collection of all non-empty compact sets
denoted as H(M) endowed with the Hausdorff metric is a complete metric space in and of itself.

The proof of this theorem can be found in [8].

Definition 3.5 (Iterated Function System) We call a family of contractions f1, . . . , fm : Rn →
Rn an iterated function system and with it associate the union map H(Rn) → H(Rn) defined as

f(X) =
⋃︂

i∈{1,...,m}
fi(X) ≡

⋃︂
fi(X).

59



Theorem 3.9 Let f1, . . . , fm : Rn → Rn be an iterated function system, then the union map f

associated with it is a contraction, i.e., for all X,Y ∈ H(Rn) it holds

dH(f(X), f(Y )) ≤ λ dH(X,Y ). (for some λ < 1)

Proof Consider

dH
(︂⋃︂

fi(X),
⋃︂
fi(Y )

)︂
= max

⎧⎨⎩ sup
xf ∈
⋃︁
fi(X)

d(xf ,
⋃︂
fi(Y )), sup

yf ∈
⋃︁
fi(Y )

d(yf ,
⋃︂
fi(X))

⎫⎬⎭ .
Fix xf ∈

⋃︁
fi(X), then xf ∈ fk(X) for some k ∈ {1, . . . ,m}, we have

d(xf ,
⋃︂
fi(Y )) ≤ d(xf , fk(Y )) ≤ sup

x∈X
d(fk(x), fk(Y )) ≤ λk sup

x∈X
d(x, Y ),

in general this gives us
d(xf ,

⋃︂
fi(Y )) ≤ max

i∈{1,...,m}
(λi) sup

x∈X
d(x, Y )

implying that
sup

xf ∈
⋃︁
fi(X)

d(xf ,
⋃︂
fi(Y )) ≤ max

i∈{1,...,m}
(λi) sup

x∈X
d(x, Y ).

Note that X and Y here are interchangeable, so the inequality

sup
yf ∈
⋃︁
fi(Y )

d(yf ,
⋃︂
fi(X)) ≤ max

i∈{1,...,m}
(λi) sup

y∈Y
d(y,X)

also holds. In terms of Hausdorff distance this says that

dH (f(X), f(Y )) ≤ max
i∈{1,...,m}

(λi)dH(X,Y ),

which is what we were trying to show.

Theorem 3.10 (Collage Theorem) Let f1, . . . , fm : Rn → Rn be an iterated function system
with contraction constants λ1, . . . , λm, and denote λ = maxi∈{1,...,m} λi, then there exists a unique
fixed point F ∈ H(Rn) of the union map f such that for all X ∈ H(Rn) it holds

lim
k→∞

fk(X) → F.

Moreover for all X ∈ H(Rn) it holds

dH(X,F ) < dH(X, f(X))
1 − λ

.
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Proof From theorem 3.9 we know that the union map f : H(Rn) → H(Rn) is a contraction, hence
by the Banach fixed point theorem it has a unique fixed point and for any X ∈ H(Rn) we have

lim
k→∞

fk(X) = F.

We can derive the convergence estimate in the following way

dH(X,F ) = dH(X, lim
k→∞

fk(X)) = lim
k→∞

dH(X, fk(X)),

the last equality comes from continuity of a metric, using the triangle inequality we get

dH(X, fk(X)) ≤
(︂
dH(X, f(X)) + dH(f(X), f2(X)) + . . .+ dH(fk−1(X), fk(X))

)︂
, (∀k ∈ N)

using the fact that f is a contraction we get

dH(X,F ) ≤ lim
k→∞

dH(X, f(X))
(︂
1 + λ+ . . .+ λk−1

)︂
= dH(X, f(X))

1 − λ
,

giving us the result.

Definition 3.6 We call F ∈ H(Rn) self-similar if it is a fixed point of the union map f of some
iterated function system f1, . . . , fm : Rn → Rn.

Definition 3.7 (Hausdorff Measure) Let X ⊂ Rn for some n ∈ N, define

Hs
δ (X) = inf

{︄ ∞∑︂
i=1

diam(Ui)s : (Ui) is a δ-cover of X
}︄
, (s ≥ 0)(δ > 0)

where by δ-cover of X we mean a countable (or finite collection) of sets Ui ⊂ Rn with diameter less
or equal to δ such that

X ⊂
∞⋃︂
i=1

Ui.

We call
Hs(X) = lim

δ→0+
Hs
δ (X)

the s-dimensional Hausdorff measure of X.

Theorem 3.11 The Hausdorff measure is well defined for every set X ⊂ Rn, but it may be infinite.

Proof First of all for each δ > 0 there exists a countable or finite δ-cover (Ui) of X ⊂ Rn, we can
just take the collection of balls with diameter δ centered around each q ∈ Qn, as Qn is a countable
set that is dense in Rn this would give us a countable δ-cover of Rn and in turn all its subsets.
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Now fixing s ≥ 0, δ > 0, Hs
δ (X) exists since we are taking an infimum of a set of real numbers.

Now as δ decreases the set of feasible δ-covers gets smaller, meaning that for each t > 0

Hs
δ+t(X) = inf

{︄ ∞∑︂
i=1

diam(Ui)s : (Ui) is a (δ + t)-cover of X
}︄

≤ Hs
δ (X)

if Hs
δ (X) as a function of δ is bounded above, then it converges since it non-increasing, otherwise

Hs
δ (X) goes to infinity as δ → 0+.

This theorem is not a reason to panic, we are not claiming that the Hausdorff measure is a
measure if taken over Rn, however it can be shown that it is a measure if taken over the Borel
subsets of Rn, the proof can be found in [9].

Theorem 3.12 Let f : Rn → Rn and let X ⊂ Rn, if there exists λ > 0 s.t. for all x, y ∈ Rn it
holds

∥f(x) − f(y)∥ ≤ λ∥x− y∥,

then
Hs(f(X)) ≤ λsHs(X)

Proof We will begin by proving the inequality

Hs(f(X)) ≤ λsHs(X).

Suppose that X ⊂ Rn and (Ui) is a δ-cover of X, then

diam(f(X ∩ Ui)) ≤ λ diam(X ∩ Ui) ≤ λdiam(Ui), (∀i ∈ N).

Clearly (X∩Ui) is a δ−cover of X, thus the inequality above implies that (f(X∩Ui)) is a λδ−cover
of f(X). We also have

∞∑︂
i=1

diam(f(X ∩ Ui))s ≤ λs
∞∑︂
i=1

diam(Ui)s,

denote the set of all δ−covers (Ui) of X as C, taking an infimum over this set we get

inf
(Ui)∈C

∞∑︂
i=1

diam(f(X ∩ Ui))s⏞ ⏟⏟ ⏞
≥Hs

λδ
(f(X))

≤ λsHs
δ (X).

The result follows from sending δ → 0+.

Theorem 3.13 (Scaling Property) Let X ⊂ Rn and let λ > 0, it holds

Hs(λX) = λsHs(X)
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We can see that this property holds just by looking at the definition of Hausdorff measure.

Definition 3.8 (Hausdorff Dimension) Hausdorff dimension is derived from Hausdorff mea-
sure, suppose that (Ui) is a δ−cover of an arbitrary set X ⊂ Rn, and let s, t ∈ R+ with t > s, it
holds ∞∑︂

i=1
diam(Ui)t =

∞∑︂
i=1

diam(Ui)t−s diam(Ui)s ≤ δt−s
∞∑︂
i=1

diam(Ui)s, (∀i ∈ N)

this implies that
Ht
δ(X) ≤ δt−sHs

δ (X).

Observe that if Hs(X) < ∞, we know that Ht(X) = 0. This motivates defining Hausdorff dimension
as the value of s such that

s = inf{t > 0 : Ht(X) ∈ R}.

Notice that this way, if Hs(X) is finite for every s > 0, then X has Hausdorff dimension 0,
conversely if Hs(X) = ∞ for every s > 0, the Hausdorff dimension of X is ∞.

There are multiple different ways to define dimension of a fractal, under certain conditions these
definitions are equivalent, the key aspect of these dimensions is the scaling property described in
theorem 3.13 which we can associate it with if we do not want to delve into complicated definitions.

Definition 3.9 (Fractal) We call a self-similar set with non-integer Hausdorff dimension a frac-
tal.

There are many ways to define a fractal, this definition covers two most common properties
we expect from fractals, that is, for one fine structure or a certain roughness of the shape which
is what non-integer Hausdorff dimension corresponds to. Another common feature is some form
of self-similarity, we often view fractals as objects that upon zooming in repeat certain features or
even stay the same.

Theorem 3.14 Let f1, . . . , fm : Rn → Rn be an iterated function system that satisfies

dH(fi(X), fi(Y )) = λi(dH(X,Y )), (∀i ∈ {1, . . . ,m}) (3.9)

and let F be the unique fixed point of the union map f . Suppose that there exists a non-empty open
bounded set S such that

m⋃︂
i=1

fi(S) ⊂ S, (3.10)

where fi(S) for i ∈ {1, . . . ,m} must be disjoint, then the Hausdorff dimension of F denoted as s
satisfies

m∑︂
i=1

λsi = 1.
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The proof can be found in [9].

This theorem lets us easily classify whether a set we produce by iterating a union map of an
iterated function system is a fractal.

Let us see an example of what an iterated function system that satisfies condition (3.10) looks
like. Define f1, f2 : R1 → R1 so that f1(x) = 1

3x and f2(x) = 1
3x + 2

3 , both satisfy condition (3.9)
with λ1 = λ2 = 1

3 . Let S = (0, 1), then f1(S) = (0, 1
3) and f2(S) = (2

3 , 1), these two sets are disjoint
and satisfy condition (3.10), the fixed point of the union map of these functions called is the Cantor
middle third set, its Hausdorff dimension s is given by

1
3s + 1

3s = 1,

this is equivalent to
log3( 2

3s ) = log3(2) − s = 0,

hence s = log3(2) ≈ 0.6309.

We might wonder if every self-similar set is a fractal. Define f1, f2, f3, f4 : R2 → R2, as

f1(x) = 1
2x

f2(x) = 1
2x+ (0, 1

2)

f3(x) = 1
2x+ (1

2 , 0)

f4(x) = 1
2x+ (1

2 ,
1
2)

Clearly each of these mappings satisfy condition (3.9) with λ1 = λ2 = λ3 = λ4 = 1
2 . Let S =

(0, 1) × (0, 1), then
4⋃︂
i=1

fi(S) ⊂ S,

and the images fi(S) with i = 1, . . . , 4 are disjoint. By theorem 3.14, the Hausdorff dimension s of
the fixed point of the union map F (which is actually the square [0, 1] × [0, 1]) is given by

4∑︂
i=1

(1
2)s = 1,

this implies that
log2(4 1

2s ) = log2(4) − s = 0,

implying that s = 2, we can see that not all self-similar sets, even such that satisfy assumptions of
theorem 3.14 are necessarily fractals.

Now it is time to create some fractals for ourselves. We will showcase the Koch curve generated
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by functions f1, f2, f3, f4 : R2 → R2 defined as

f1(x1, x2) =
(︄1

3 0
0 1

3

)︄(︄
x1

x2

)︄

f2(x1, x2) =
(︄1

3 cos(π3 ) −1
3 sin(π3 )

1
3 sin(π3 ) 1

3 cos(π3 )

)︄(︄
x1

x2

)︄
+
(︄1

3
0

)︄

f3(x1, x2) =
(︄1

3 cos(−π
3 ) −1

3 sin(−π
3 )

1
3 sin(−π

3 ) 1
3 cos(−π

3 )

)︄(︄
x1

x2

)︄
+
(︄ 1

2√
3

6

)︄

f4(x1, x2) =
(︄1

3 0
0 1

3

)︄(︄
x1

x2

)︄
+
(︄2

3
0

)︄

Here finding out whether these functions satisfy the requirements of theorem 3.14 is not as easy as
with in the previous examples, clearly f1, . . . , f4 are all contractions, however the question is what
open set to choose to show that these functions satisfy the open set conditions. Let S be the interior
of the triangle with vertices (0, 0), (1, 0) and (1

2 ,
√

3
6 ). Since f1, . . . , f4 are all affine mappings, for

each i ∈ {1, . . . , 4} fi(S) is determined by where vertices of S get mapped, let us see where f1, . . . , f4

will map these vertices.

f1(0, 0) = (0, 0), f1(1, 0) = (1
3 , 0), f1(1

2 ,
√

3
6 ) = (1

6 ,
√

3
18 ),

f2(0, 0) = (1
3 , 0), f2(1, 0) = (1

6 + 1
3 ,

1
2
√

3
), f2(1

2 ,
√

3
6 ) = (1

3 ,
1

3
√

3
),

f3(0, 0) = (1
2 ,

√
3

6 ), f3(1, 0) = (1
6 + 1

2 , 0), f3(1
2 ,

√
3

6 ) = (1
6 + 1

2 ,−
1

6
√

3
+

√
3

6 ),

f4(0, 0) = (2
3 , 0), f1(1, 0) = (1, 0), f4(1

2 ,
√

3
6 ) = (5

6 ,
√

3
18 ).

The plot of
⋃︁4
i=1 fi(S) will be the interior of the triangles in the image bellow
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Figure 3.1:
⋃︁4
i=1 fi(S).

We can see that
⋃︁4
i=1 fi(S) ⊂ S and that for i ∈ {1, 2, 3, 4} the sets fi(S) are disjoint, thus

the functions f1, . . . , f4 satisfy the requirements of theorem 3.14 and we can compute the fractal
dimension of the Koch curve. In condition (3.9) functions f1 and f4 have λ1 and λ2 both equal to
1
3 , this is easy to show, for all x, y ∈ R2 it holds

∥f1(x) − f1(y)∥ = ∥f4(x) − f4(y)∥ = ∥1
3(x− y)∥ = 1

3∥x− y∥.

In fact λ2 and λ3 are also equal to 1
3 , we can omit the step where we add constants as they will

get canceled out by subtraction, then each of these functions is nothing but a rotation matrix
multiplied by 1

3 . It is well known that rotation matrices preserve distance, thus the only aspect
changing distance of two points is multiplication by 1

3 . With this in mind, the Hausdorff dimension
s of the Koch curve is given by

4∑︂
i=1

1
3s = 4 1

3s = 1,

from this we can derive that
s = log3(4) ≈ 1.2619.

If we take the set [0, 1] as an initiator, the iterations of the union map look in the following way
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Figure 3.2: Initiator - 0 iterations.
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Figure 3.3: 1 iteration.
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Figure 3.4: 2 iterations.
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Figure 3.5: 3 iterations.

Now take the set shown in the next image as the initiator
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Figure 3.6: Initiator - 0 iterations.

We get the following results
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Figure 3.7: 1 iteration.
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Figure 3.8: 2 iterations.
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Figure 3.9: 3 iterations.
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Figure 3.10: 4 iterations.

We can observe that the first iteration looks like it has nothing to do with the Koch snowflake,
in the second iteration the general outline is there but the curves are still quite different. The third
iterations using these two initiators look pretty much the same. The third iteration also already
has so many fine details that the fourth iteration does not show any change due to the thickness of
the line in the plot. Next take the square [0, 1] × [0, 1] as a generator, we will use a dots to plot the
graph this time, the iterations look like this
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Figure 3.11: Initiator - 0 iterations.
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Figure 3.12: 1 iteration.
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Figure 3.13: 2 iterations.
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Figure 3.14: 3 iterations.

Here we can make similar observations.

3.5 Game Theory Applications

Definition 3.10 (Normal Form Game) A game is a triplet (I, (Ai)i∈I , (pi)i∈I), where
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• I = {1, 2, . . . , n}, n ∈ N is called the set of players.

• For each i ∈ I, Ai is the set of strategies available to player i, no limitation other than non-
emptiness as to what Ai contains are imposed. If for some i ∈ I, the set Ai is finite we will
denote the number of its members as mi.

We call A = ×i∈IAi the set of strategy profiles. Every a ∈ A is called a strategy profile and
can be written as a = (a1, . . . , an) where ai is a strategy player i has chosen.

• For each i ∈ I, pi : A → R is called the payoff function for player i, we call the mapping
p : S → Rn defined as p ≡ (p1, . . . , pn) the payoff function.

We will only consider the case where there is a finite number of players. Let us look at a
classical example of a normal form game known as the prisoner’s dilemma. The police have taken
two suspects of grand theft auto into custody and put them in solitary confinements with no means
of communicating with each other. Each of the suspects are given the option to confess or to remain
silent and are told the consequences of their choices:

• If no one confesses, the suspects will both be sentences to 1 year in prison for possession of
stolen goods.

• If one confesses and the other one remains silent, the one who confessed will go free and the
other one will be sentences to 10 years in prison.

• If they both confess, both will be sentenced to 5 years in prison.

This game has two players, both possess the same strategy set consisting of strategies "remain silent"
and "confess", the payoff function can be defined as

p("remain silent", "remain silent") = (−1,−1)

p("remain silent", "confess") = (−10, 0)

p("confess", "remain silent") = (0,−10)

p("confess", "confess") = (−5,−5)

We can visualize this problem with the following table

Player 1 →
Player 2 ↓

remain
silent

confess

remain
silent

(−1,−1) (0,−10)

confess (−10, 0) (−5,−5)
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Definition 3.11 Here we define the following types of normal form games.

• Suppose that we have a normal form game (I, (Ai)i∈I , (pi)i∈I) where for each i ∈ I, the set Ai
is finite and contains mi ∈ N members. From it we can create a mixed strategy game in the
following manner.

– Let Si = Π(Ai), where Π(Ai) denotes the set of all probability distributions over Ai, we
call Si the set of mixed strategies available to player i.

– Let si ∈ Si, and ai ∈ Ai then si(ai) denotes the probability that pure strategy ai will be
chosen under mixed strategy si.

– Suppose that s ∈ ×i∈ISi, we define the mixed strategy payoff function for player i as

ui(s) =
∑︂

a∈×i∈IAi

pi(a)
∏︂
j∈I

sj(aj).

We call (I, (Si)i∈I , (ui)i∈I) a mixed strategy game. We can view this as players trying to
be more unpredictable and choosing their strategy with a certain degree of randomness.

• If a game is not a mixed strategy game, we call it a pure strategy game.

We can see that the prisoners dilemma is a pure strategy game.
Since for each i ∈ I the set Ai is finite, the set Si is fully defined by a vector containing numbers

(λ1, . . . , λmi) that satisfy

mi∑︂
k=1

λk = 1, (∀k ∈ {1, . . . ,mi}) : λk ≥ 0 (3.11)

each λk represents the probability that pure strategy ak ∈ Ai will be picked. Note that

Si = conv{(1, 0, . . . , 0⏞ ⏟⏟ ⏞
length=mi

), (0, 1, 0, . . . , 0), . . . , (0, . . . , 0, 1)}. (3.12)

Each of the vectors composing the convex combination in (3.12) represents a pure strategy in Ai,
so in some sense we can view Si as the set of convex combinations of pure strategies in Ai.

Definition 3.12 (Nash Equilibrium) Let (I, (Ai)i∈I , (pi)i∈I) be a normal form game and let
a∗ = (a∗

1, . . . , a
∗
n) ∈ A be a strategy profile. We shall establish the following notation

(a∗
i , a

∗
−i) ≡ (a∗

1, . . . , a
∗
n),

where a∗
i ∈ Ai represents the strategy player i has chosen and a∗

−i ∈ ×j∈I\{i}Aj contains the strate-
gies of all players other than player i. We call a∗ a Nash equilibrium if for each i ∈ I we have
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ui(a∗
i , a

∗
−i) ≥ ui(ai, a∗

−i), (∀ai ∈ Ai). (3.13)

A strategy profile a∗ being a Nash equilibrium means that all players have chosen strategies
such that no one person can increase their payoff by changing their strategy. The Nash equilibrium
is one of the ways we can define a solution of a normal form game. In case of the prisoners dilemma,
the strategy profile ("confess", "confess") is a unique Nash equilibrium, it is even strict meaning that
we can use a strict inequality in (3.13). From this we can see that in some types of games the Nash
equilibrium is not the best way to define their solution.

Theorem 3.15 (Existence of a Nash Equilibrium) Let (I, (Si)i∈I , (ui)i∈I) be a mixed strategy
game. If the set of players I is non-empty (we also already assumed I to be finite), and for each
i ∈ I the finite set Ai of pure strategies available to each player is non-empty, then there exists a
Nash equilibrium s∗ ∈ S.

Proof Let s ∈ S be a mixed strategy profile and analogously to the definition of Nash equilibrium
let si ∈ Si to be the strategy player i has chosen and let s−i = s \ si represent the strategies of the
other players. For each i ∈ I define the mapping Φi : S → 2Si as

Φi(s) = arg max
s̃i∈Si

ui(s̃i, s−i).

Φi actually does not need the whole s in the input only s−i but defining it this way is more convenient
for us, the mapping is given a strategy profile returns strategies player i can use so that his payoff
is optimal, keep in mind that there can be multiple strategies that have optimal payoff. Next step
is defining mapping Φ : S → 2S , denote the number of players as n and let

Φ(s) = Φ1(s) × . . .× Φn(s). (3.14)

From the definition of Φi it should be clear that if s∗ is a fixed point of Φ, i.e., s∗ ∈ Φ(s∗), then it
is a Nash equilibrium. We will show that S can be viewed as a subset of Rd for some d ∈ N and
that Φ and S satisfy the assumptions of the Kakutani fixed point theorem 2.24. Let us go by these
assumptions one by one.

• S is a subset of Rd for some d ∈ N: Each s ∈ S can be written as

s = (s1, . . . , sn),

Since for each i ∈ I, the set Ai is finite, si is given by a finite vector of non-negative real
numbers (λ1, . . . , λmi), mi ∈ N. It is easy to see that s ∈ Rd, where d =

∑︁
i∈I dim(si).

• S is non-empty: This follows from I as well as Ai for each i ∈ I being non-empty.
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• S is compact: It is clear that for each i ∈ I the set Si is compact, since S = ×i∈ISi it is clear
that S is compact.

• S is convex: From (3.12) we can see that for each i ∈ I the set Si is convex. S being the
cartesian product of Si through all i ∈ I is also convex, indeed suppose that v, w ∈ S and let
t ∈ [0, 1] be given arbitrarily, then

(1 − t)v + tw = (1 − t)(v1, . . . , vn) + t(w1, . . . , wn) = ((1 − t)v1 + tw1, . . . , (1 − t)vn + twn).

But since Si is a convex set for each i ∈ I the vector (1−t)vi+twi ∈ Si, thus (1−t)v+tw ∈ S.

• Images of Φ are non-empty: Remember that we denote the number of pure strategies in Ai

as mi. For each i ∈ I the set Si is compact and the function ui a composition of continuous
functions, so arg maxs̃i∈Si ui(s̃i, s−i) always exists, implying that for all s ∈ S the set Φ(s) is
non-empty.

• Images of Φ are convex: Suppose that for some s ∈ S we have v, w ∈ Φ(s), since v, w ∈ S we
may again write that

v = (v1, . . . , vn),

w = (w1, . . . , wn).

Now let t ∈ [0, 1] be given, we already know that

(1 − t)v + tw = ((1 − t)v1 + tw1, . . . , (1 − t)vn + twn).

In order to prove that (1 − t)v + tw ∈ Φ(s) we need to show that for each i ∈ I it holds

(1 − t)vi + twi ∈ Φi(s) = arg max
s̃i∈Si

ui(s̃i, s−i),

where we use the notation s = (si, s−i) introduced before. Now let i ∈ I be fixed, from the
fact that

vi ∈ arg max
s̃i∈Si

ui(s̃i, s−i),

wi ∈ arg max
s̃i∈Si

ui(s̃i, s−i),

we can see that

ui(vi, s−i) = ui(wi, s−i), (3.15)
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each of these can be written as

ui(vi, s−i) =
∑︂

a∈×n
i=1Ai

pi(a)vi(ai)
∏︂

j∈I\{i}
sj(aj)

ui(wi, s−i) =
∑︂

a∈×n
i=1Ai

pi(a)wi(ai)
∏︂

j∈I\{i}
sj(aj)

note that a = (a1, . . . , an) where ai represents one of the pure strategies available to player i.
These two equalities give us

(1 − t)ui(vi, s−i) + tui(wi, s−i) =
∑︂

a∈×n
i=1Ai

pi(a)((1 − t)viai + twi(ai))
∏︂

j∈I\{i}
sj(aj),

but equality (3.15) implies that for the left side we have

(1 − t)ui(vi, s−i) + tui(wi, s−i) = ui(vi, s−i),

and the right side is clearly equal to ui((1 − t)vi + twi, s−i). These two observations say that

ui((1 − t)vi + twi, s−i) = ui(vi, s−i) = max
s̃i∈Si

ui(s̃i, s−i),

implying that
(1 − t)vi + twi ∈ Φi(s).

• Φ is upper semi-continuous: Suppose that (vl), (wl) ⊂ S, with vl → v and wl → w where
∀l ∈ N : wl ∈ Φ(vl), we will show that w ∈ Φ(v). Let i ∈ I be given, the condition wl ∈ Φ(vl)
means that

wli ∈ arg max
ṽi∈Si

ui(ṽi, vl−i),

implying that for all w̃i ∈ Si it holds

ui(wli, vl−i) ≥ ui(w̃i, vl−i),

sending n → ∞ we obtain

ui(wi, v−i) ≥ ui(w̃i, v−i). (∀w̃i ∈ Si)

Since i ∈ I was chosen arbitrarily, we conclude that w ∈ Φ(v).

By the Kakutani fixed point theorem there exists a fixed point of Φ in S, this concludes the proof.

The next theorem is a general statement that is applicable in game theory.
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Theorem 3.16 (Minimax Theorem) Let mapping f : X×Y → R be continuous, where the sets
X ⊂ Rp and Y ⊂ Rq for some p, q ∈ N are both non-empty, compact and convex. If for all x0 ∈ X

and for all α ∈ R the set
{y ∈ Y : f(x0, y) ≤ α}

is convex and for all y0 ∈ Y and for all β ∈ R the set

{x ∈ X : f(x, y0) ≥ β}

is also convex, then it holds

max
x∈X

min
y∈Y

f(x, y) = min
y∈Y

max
x∈X

f(x, y).

Proof We will begin by defining mappings Φ1 : X → 2Y and Φ2 : Y → 2X so that

Φ1(x0) = {y0 ∈ Y : f(x0, y0) = min
y∈Y

f(x0, y)},

and
Φ2(y0) = {x0 ∈ X : f(x0, y0) = max

x∈X
f(x, y0)}.

Next step is defining the mapping Φ : X × Y → 2X×Y as

Φ(x0, y0) = Φ2(y0) × Φ1(x0)

Clearly if some (x0, y0) ∈ X × Y satisfies (x0, y0) ∈ Φ(x0, y0), then it holds

f(x0, y0) = min
y∈Y

f(x0, y) = max
x∈X

f(x, y0).

In order to show that such a point exists let us verify that Φ and the setX×Y satisfy the assumptions
of the Kakutani fixed point theorem.

• X × Y is non-empty: This is assumed

• X×Y is compact: Both of these sets are assumed to be compact, hence their cartesian product
must be compact.

• X × Y is convex: Suppose that (x1, y1), (x2, y2) ∈ X × Y and let t ∈ [0, 1] be given, then

(1 − t)(x1, y1) + t(x2, y2) = ((1 − t)x1 + tx2, (1 − t)y1 + ty2),
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since the sets X,Y are assumed to be convex we know that

(1 − t)x1 + tx2 ∈ X,

(1 − t)y1 + ty2 ∈ Y,

showing that X × Y is a convex set.

• Images of Φ are non-empty: For all (x0, y0) ∈ X×Y the sets Φ1(x0) and Φ2(y0) are non-empty
because a minimum or maximum of a continuous function over a compact set always exists,
so Φ(x0, y0) = Φ2(y0) × Φ1(x0) is clearly always non-empty.

• Images of Φ are convex: Suppose that for some fixed (x0, y0) ∈ X×Y we have (x1, y1), (x2, y2) ∈
Φ(x0, y0). We have

f(x0, y1) = min
y∈Y

f(x0, y) = f(x0, y2) ≡ α,

clearly y1, y2 are both members of the set

{y ∈ Y : f(x0, y) ≤ α}

which is assumed to be convex. Let t ∈ [0, 1] be given, then

(1 − t)y1 + ty2 ∈ {y ∈ Y : f(x0, y) ≤ α},

implying that
(1 − t)y1 + ty2 ∈ Φ1(x0) (3.16)

because α = miny∈Y f(x0, y). In a similar manner

f(x1, y0) = max
x∈X

f(x, y0) = f(x2, y0) ≡ β,

so x1, x2 are both members of the set

{x ∈ X : f(x, y0) ≥ β},

also assumed to be convex, hence

(1 − t)x1 + tx2 ∈ {x ∈ X : f(x, y0) ≥ β},

implying that
(1 − t)x1 + tx2 ∈ Φ2(y0). (3.17)
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From (3.16), (3.17) we can see that

(1 − t)(x1, y1) + t(x2, y2) = ((1 − t)x1 + tx2, (1 − t)y1 + ty2) ∈ Φ2(y0) × Φ1(x0) = Φ(x0, y0),

showing that Φ(x0, y0) is convex.

• Φ is upper semi-continuous: Suppose that ((xn, yn)), ((un, vn)) ⊂ X × Y with (xn, yn) →
(x0, y0) and (un, vn) → (u0, v0), where for all n ∈ N it holds (un, vn) ∈ Φ(xn, yn), we will show
that (u0, v0) ∈ Φ(x0, y0). We have

f(un, yn) = max
u∈X

f(u, yn),

implying that
f(un, yn) ≥ f(u, yn). (∀u ∈ X) (3.18)

Similarly we have
f(xn, vn) = min

v∈Y
f(xn, v),

meaning that
f(xn, vn) ≤ f(xn, v). (∀v ∈ Y ) (3.19)

Sending n → ∞ and using continuity of f , equations (3.18) and (3.19) yield

f(u0, y0) ≥ f(u, y0), (∀u ∈ X)

f(x0, v0) ≤ f(x0, v), (∀v ∈ Y )

in other words u0 ∈ Φ2(y0) and v0 ∈ Φ1(x0), hence

(u0, v0) ∈ Φ(x0, y0).

By the Kakutani fixed point theorem 2.24 there exists a fixed point (x0, y0) ∈ X × Y of Φ, i.e.,
(x0, y0) ∈ Φ(x0, y0), for such point it holds

f(x0, y0) = min
y∈Y

f(x0, y) = max
x∈X

f(x, y0).

We have

min
y∈Y

max
x∈X

f(x, y) ≤ max
x∈X

f(x, y0) = f(x0, y0) = min
y∈Y

f(x0, y) ≤ max
x∈X

min
y∈Y

f(x, y). (3.20)

On the other hand we have

f(x̃, ỹ) ≥ min
y∈Y

f(x̃, y), (∀x̃ ∈ X)(∀ỹ ∈ Y )
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applying a maximum to the 1st argument of f on both sides gives us

max
x∈X

f(x, ỹ) ≥ max
x∈X

min
y∈Y

f(x, y), (∀ỹ ∈ Y )

since this applies to all ỹ ∈ Y it also holds

min
y∈Y

max
x∈X

f(x, y) ≥ max
x∈X

min
y∈Y

f(x, y). (3.21)

This concludes the proof.

Definition 3.13 (Zero Sum Game) We call a normal form game (I, (Ai)i∈I , (pi)i∈I) a zero sum
game, if for each sa ∈ A it holds ∑︂

i∈I
pi(a) = 0

A zero sum game has the feature that for each strategy profile a ∈ A the sum of all player’s payoffs is
zero, essentially this means that one person’s win is another person’s loss. Note that every constant
sum game (i.e., a game where for each a ∈ A, the sum of all player’s payoff is always equal to the
same constant) can be easily converted to a zero sum game.

Remark 3.1 In this remark we shall discuss how the minimax theorem effects zero sum games.
Suppose we have a two player zero sum game, denote

q1 = max
a1∈A1

min
a2∈a2

p1(a1, a2),

we shall call (q1,−q1) the value of the game if player 2 goes first. This corresponds to player 2
having the first turn and picking a strategy optimal to him, player 1 then chooses a strategy so that
his payoff is at least q1 thus minimizing his potential losses.

Consider the converse scenario

q2 = min
a2∈A2

max
a1∈A1

p1(a1, a2).

We will call (q2,−q2) the value of the game if player 1 goes first. Here player 1 first picks a strategy
optimal for him and then player 2 knows this and picks his strategy so that his payoff is at least −q2.
The minimax theorem shows that under certain conditions (vaguely such as the game in question
being a mixed strategy game or players being able to pick strategies from some continuous spectrum)
both values of the game will be equal, i.e.,

(q1,−q1) = (q2,−q2).
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This would mean that order of play does not matter. Also note that relation (3.21) requires no
assumption, thus we always have

q2 ≥ q1,

thus having the first turn can be an advantage.
In the case that the conditions of the minimax theorem are satisfied then the strategy profile

a∗ = (a∗
1, a

∗
2) such that

p1(a∗
1, a

∗
2) = max

a1∈A1
min
a2∈a2

p1(a1, a2) = min
a2∈A2

max
a1∈A1

p1(a1, a2)

is also a Nash equilibrium. This concept can be extended for games with a finite number of players.
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Chapter 4

Conclusion

This thesis was of the compilational nature, no new theorems or entirely new proofs were introduced,
but the proofs we wrote were much more detailed than those that can be commonly found and we
also introduced a lot of concepts needed in those proofs, so this text is well suited to be used as
a studying material. Nearly all examples such as those showing that no assumptions of a certain
theorem can be omitted we made up ourselves. Now let us summarize the contents of this thesis.

There are many fixed point theorems out of which we have picked several that are particularly
useful. We started with the Banach fixed point theorem which is very far reaching even though its
proof is quite simple especially compared to some we have seen later on. The Boyd-Wong theorem
showed us that the condition of contractiveness can be relax a little while still maintaining the
result, but we saw that if the condition of contractiveness is not satisfied, the fixed point iteration
method no longer has exponential convergence. Another contraction principle we introduced was
theorem 2.5 which stated that on a compact metric space X we only need a mapping T : X → X

to be a weak contraction, interestingly enough on compact metric spaces this result is equivalent to
the Boyd-Wong theorem.

The Browder-Kirk fixed point theorem bridges the gap between contraction principles and fixed
point theorems that rely on convexity and compactness such as the Schauder fixed point theorem.
It provides sufficient conditions under which non-expansive mappings have a fixed point but its
assumptions also include that the mapping T go from a closed bounded convex and non-empty set
C into itself. We have shown a simple and transparent prove for the case that C is a subset of a
Hilbert space H and later proved the general version using an auxiliary theorem that has a technical
proof.

In the section about the Brouwer fixed point theorem we showed two ways it can be proven,
the first way relies on the concept of mapping degree which in and of itself is a very powerful
tool in dealing with fixed points and zeros of mappings, proving that mapping degree with the
desired properties exists (which we did not do here) is a lot of work but if we can utilize the degree
proving the Brouwer fixed point theorem itself is an easy matter. The second way we proved the
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Brouwer fixed point theorem is using the Sperner lemma from graph theory, this proof is particularly
interesting as it utilized two seemingly unrelated branches of mathematics.

The Schauder fixed point theorem is an extension of the Brouwer fixed point theorem into
infinite-dimensional spaces, we used a proof where we approximated the operator over an infinite-
dimensional space by operators over finite-dimensional spaces and applied the Brouwer fixed point
theorem. This proof was quite straight forward. We gave an example which showed that the
condition of compactness cannot be swapped out for the set being closed and bounded. In fact if
this was the case, the Browder-Kirk fixed point theorem would have been rendered useless.

The last result we introduced was the Kakutani fixed point theorem, it provides sufficient con-
ditions under which there exists a fixed point of a point-to-set mapping. In fact the Brouwer fixed
point theorem is a special case of this theorem and is used to prove this result. The proof suffers
from an abundance of technical details but without these it is relatively straight forward.

We have also discussed some applications of these theorem, for applications of the Banach fixed
point theorem we have used the Picard-Lindeöf theorem which provides sufficient conditions for
existence of a unique solution of initial value problems of systems of ordinary differential equations,
the Lax-Milgram lemma that guarantees a unique solution of certain types of operator equations
that often arise when solving boundary value problems for partial differential equations and as
the third application of this theorem we have introduced a method of constructing fractals using
contractions in Rn.

As an application of the Schauder fixed point theorem we have introduced the Peano theorem
which guarantees the existence of a solution of initial value problems for systems of ordinary differ-
ential equations. This theorem is similar to the Picard-Lindeleöf theorem, it assumes less and also
guarantees less.

Finally we showed some applications of the Kakutani fixed point theorem in game theory, specif-
ically the existence theorem for a Nash equilibrium and the minimax theorem that can even be used
outside of game theory. In this section we saw how easily some problems can be transformed into
fixed point problems.
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