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Abstract: The segmentation of hepatic vessels is crucial for liver surgical planning. It is also a
challenging task because of its small diameter. Hepatic vessels are often captured in images of low
contrast and resolution. Our research uses filter enhancement to improve their contrast, which helps
with their detection and final segmentation. We have designed a specific fusion of the Ranking
Orientation Responses of Path Operators (RORPO) enhancement filter with a raw image, and we
have compared it with the fusion of different enhancement filters based on Hessian eigenvectors.
Additionally, we have evaluated the 3D U-Net and 3D V-Net neural networks as segmentation
architectures, and have selected 3D V-Net as a better segmentation architecture in combination with
the vessel enhancement technique. Furthermore, to tackle the pixel imbalance between the liver
(background) and vessels (foreground), we have examined several variants of the Dice Loss functions,
and have selected the Weighted Dice Loss for its performance. We have used public 3D Image
Reconstruction for Comparison of Algorithm Database (3D-IRCADb) dataset, in which we have
manually improved upon the annotations of vessels, since the dataset has poor-quality annotations
for certain patients. The experiments demonstrate that our method achieves a mean dice score of
76.2%, which outperforms other state-of-the-art techniques.

Keywords: liver vessel segmentation; hepatic vessel segmentation; 3D U-Net; 3D V-Net; Hessian;
Frangi; Sato; RORPO; improved annotations; Weighted Dice Loss function

1. Introduction

Liver vessel segmentation from Computed Tomography (CT) images is important
before liver surgery resection. Clinicians must know the liver’s morphology and its venous
system location and diameter to plan the path of the surgical cutting. Hence, the segmenta-
tion of the small structures such as hepatic veins is a crucial task. These structures have a
small diameter, and low image contrast and resolution. Today, accurate hepatic vessel labeling
still relies primarily on doctors’ manual segmentation, which is time-consuming and depends
on the specialists’ expertise and skills. As a result, an autonomous, robust, and accurate
hepatic vascular segmentation algorithm is critical and highly desired.

In this work, we address the issues of low-contrast vessels and labour-intensive manual
vessel segmentation. We develop a fully automatic segmentation method that provides
high accuracy and precision for hepatic veins segmentation. The solution does not require
a doctor’s assistance, such as in semi-automatic methods.

Although many vessel segmentation approaches have been investigated by other au-
thors, such as the threshold method, region growing, and morphology-based methods, the
state-of-the-art methods use Convolutional Neural Networks (CNNs) and Deep Learning
(DL) strategies. We use the DL approach in our method as well. Typically, enhancement
filters such as those based on the Hessian matrix are used to improve the contrast and
visibility of the vascular structures. As opposed to that, our method is based on the fusion
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of the raw image with the RORPO (The Ranking Orientations Responses of Path Operators)
[1] enhanced image. This is then utilized by the segmentation architecture of 3D U-Net
or 3D V-Net. The final segmentation pipeline consists of RORPO and 3D V-Net, which
provide the best segmentation results.

In the paper, several experiments are performed, which test the main parts of the
proposed method and make comparisons with alternative state-of-the-art approaches.
The first experiment compares five classical vessel enhancement filters separately: Frangi,
Hessian, Meijering, RORPO, and Sato. The following two experiments evaluate a fusion of
different vessel enhancement filters with two variants of segmentation models (3D U-Net
and 3D V-Net). The fusion of the RORPO enhancement filter with the CT image to detect
the liver vessel structures supported by the 3D V-Net is proven to be the most efficient. We
also suggest the best value of the blending coefficient between the RORPO enhanced image
and the raw CT image. In such a setup, we further experiment with different variants of
dice loss functions to solve the problem of pixel imbalance between the foreground and
background categories. The following experiment then performs the ablation study of the
selected architecture. In the last experiment, a comparison between our proposed algorithm
and other algorithms is provided.

The proposed algorithm is proven to be effective, robust, and accurate for liver vessel
segmentation, even for images with low contrast and high noise. Experiments are per-
formed on the public 3D-IRCADb [2] dataset; the average dice score and precision are
76.2% and 77.7%, respectively.

During the work on this topic, we have used 3D Slicer [3] software, for which we have
created a software extension that can provide doctors and other healthcare professionals
with tools for automatic vessels segmentation, and tools for validating the segmented
datasets. Employing deep learning and 3D Slicer, we can segment vascular structures
automatically, improve the annotations, automatically collect the annotated datasets, and
then fine-tune the neural network models so they can be quickly exposed for further use in
automatic segmentation.

2. Related Work

The trend of the proposed segmentation methods leads to the automation of liver
vessel segmentation [4,5]. The methods for liver vessel segmentation from CT abdominal
images can be divided into several groups: tracking-based algorithms, active contours,
and machine learning [6]. The popular approach to segmenting liver vessels is based on
machine learning methods and Deep Learning (DL) specifically.

The application of 3D U-Net [7–10] is often used for the segmentation of liver vessels
from CT images. The 3D U-Net is composed of analytical and synthetical parts [11], similar
to the standard U-Net architecture, but it uses 3D operators instead. Yu et al. [7] described
the 3D Residual U-Net technique, which is built on 3D U-Net with a 3D morphological
closure operation in the postprocessing phase. The algorithm was tested on their private CT
abdominal dataset. Huang et al. [8] used 3D U-Net with a combination of the variant dice
loss function. The segmented veins were more continuous and complete when training was
carried out using the enhanced manual expert annotations rather than the original dataset.
The tests were carried out using the 3D-IRCADb, SLiver007 [12], and private datasets. Af-
fane et al. [9] experimented with three distinct 3D U-Net approaches: basic U-Net, MultiRes
U-Net, and Dense U-Net. On the 3D-IRCADb dataset, they determined that MultiRes U-Net
architecture was superior for segmenting hepatic blood veins. Golla et al. [10] employed
an ensemble technique. They combined the predictions of networks into ensemble E and
averaged the resulting probability for each class. Probability maps of all networks (2D
U-Net, 3D U-Net, 2D V-Net, and 3D V-Net) and ensembles were resampled back to the
original data, resolution and the maximum probability was applied to the data to extract
the predicted segmentation. The approach was tested on the publicly available datasets
3D-IRCADb and MICCAI [12], with unsuitable data being excluded.
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V-Net [13] is the next commonly used neural network architecture that has been stud-
ied in recent years for segmenting liver blood vessels. Su et al. [14] proposed the DV-Net
algorithm. DV-Net represents a V-Net with a dense block structure. They utilize a combina-
tion of DCDS (dense connection downsampling approach) and D-BCE loss function for
capturing blood vessel structure. The method was tested on 3D-IRCADb. Yang et al. [15]
used an improved V-Net to segment liver blood vessels on the 3D-IRCADb dataset. Im-
proved V-Net is based on inter-scale dense connections in the decoder. Altini et al. [16]
used 2.5D V-Net for the segmentation of liver blood vessels. They trained the method on
the 3D-IRCADb dataset and tested it on their dataset. They used Tversky index-based loss
function in combination with 2.5D V-Net. The Tversky index ensures a short convergence
time due to the unbalanced voxels problem.

A different approach than the common utilization of either the U-Net or V-Net ar-
chitecture is applied in [17,18]. In [17], the authors propose a fusion network called
TransfusionNet. This method is based on a transformer for semantic segmentation. The
authors use the 3D-IRCADb and LiTS [19] datasets for pre-training, and their data for
fine-tuning the segmentation network. Xu et al. [18] applied a deep neural network based
on the bootstrapping technique to the 3D-IRCADb dataset. A convex combination of the
model predictions and preliminary predictions with the subsequent application of a noise
filter is used to segment the liver blood vessels.

There is a full body of work that focuses on image enhancement that can be applied
before training the segmentation model. This is especially true if complex structures such
as vessels are segmented. Shahid and Taj [20] apply a set of preprocessing operations,
including filtering via the Frangi filter, to enhance retinal vessels before their segmentation.
Soomro et al. [21] use steps to suppress irregular illumination and to improve low and
varying contrast via contrast-limited adaptive histogram equalization for the task of retinal
vessel segmentation. Blaiech et al. [22] studied the effect of enhancing the 2D images
for coronary artery segmentation. Different enhancement methods (Frangi, CLAHE, and
RORPO) were used in normal conditions and in the presence of noise. Lamy et al. [23]
compared seven different vessel enhancement filters on real (3D-IRCADb) and synthetical
(VascuSynth [24]) datasets. RORPO has been evaluated as being the best-performing
method on the whole liver area when applied to the real 3D-IRCADb dataset.

With a focus on the use of vessel-enhancing filters as a part of the pipeline for hepatic
vessel segmentation, Survarachakan et al. [25] applied four enhancement filters (Hessian,
Frangi, Sato, and Meijering), and proposed to fuse their outcomes in two different segmen-
tation designs. The proposed methods are evaluated on the clinical OSLO-COMET dataset.

In our research, we propose an algorithm that effectively fuses the vessel enhancement
technique represented by RORPO [1] with the raw CT image, and handles the problem
of pixel imbalance by employing a variant of the dice loss function to optimize the seg-
mentation even further. Evaluation is performed on the publicly available 3D-IRCADb
dataset. Compared to the above-mentioned related works [16,23,25], our proposed method
can provide better segmentation results, and it adopts a much simpler approach of com-
bining properly the original raw image with the enhanced image to tackle the problem of
vessel segmentation. Numerous related works likewise fail to account for the foreground–
background pixel mismatch. We use Weighted Dice Loss to provide penalties for the
number of incorrectly categorized voxels to tackle the problem. Additionally, some of the
related research ignores the dataset’s inferior quality annotations for some patients. To
ensure that no vessels are missed and that the segmentation accuracy provides an accurate
portrayal of various algorithms, we resolve this by enlisting the aid of medical professionals
to annotate any missed vessels.

3. Segmentation Platform

Together with the proposed algorithm, we have developed a plugin extension for
3D Slicer [26] that (i) provides a remote AI-Assisted Annotation service (AIAA) to med-
ical doctors from a High-Performance Computing (HPC) cluster, allowing them to use
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state-of-the-art methods to perform the automatic segmentation of desired tissue from
medical images, and (ii) provides a mechanism to collect the segmented and validated data
generated in step (i). We can use the stored data to fine-tune the existing neural network
models. These enhanced models can then be employed for automatic tissue segmentation
in step (i).

Since the current state-of-the-art medical image processing methods are based on Deep
Learning (DL), and typically, DL algorithms are trained with a large amount of data, we
allow for the use of multiple GPUs during the training phase to produce models of the
required quality in a reasonable amount of time. We use the multi-GPU nodes of an HPC
cluster to train models from scratch, as well as single GPU nodes to provide model inference
using AIAA. All of the connections and data are encrypted using Secure Shell (SSH).

The entire concept is depicted in Figure 1. Two main sections can be distinguished:
one runs at a medical doctor’s site in a local hospital (frontend), and the other operates at an
HPC cluster facility (backend). The frontend allows the doctor to load, view, and perform
automatic segmentation, and improve annotation on the medical data using HPC resources.
The backend part provides the computational power and other required features.

Figure 1. The main concept of the tool for medical image processing and analysis.

The provided concept adopts the Clara Train SDK [27] from NVIDIA. It contains sev-
eral APIs, such as those for AIAA, and a training framework for DL-based model training.
We use Clara Train SDK, version 4.0, which is solely PyTorch-based. The Clara Train-
ing Framework builds on the open-source MONAI framework [28], which is specifically
devoted to deep learning in healthcare imaging.

Clara’s AIAA is a client-server-based architecture that delivers a C++ or Python client
API. Many medical image viewers, such as 3D Slicer (see Figure 2) can be interfaced as
clients [29] to obtain the AIAA services offered by the server running on the network. Based
on the pre-loaded models on the server, the AIAA can perform the automatic segmentation
of specific tissues and display the results. Doctors can edit and postprocess the resulting
tasks. A modified version of this extension, accommodated for HPC cluster usage, has
been used by medical doctors to provide improved annotations of the 3D-IRCADb dataset.
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Figure 2. Slicer’s Segment Editor with the AIAA extension.

4. The Hardware Used

For training the models, we utilized cluster nodes with 8 × NVIDIA A100 (40 GB
HBM2) per node. Each node is a powerful x86–64 computer, equipped with 2 × 64-core
AMD Zen 3 EPYC™ 7763, 2.45 GHz processor and 1024 GB of memory.

5. Datasets and Improved Annotations

Publicly available datasets that contain labeled hepatic vessels are listed in Table 1.
3D-IRCADb is the most commonly used dataset. We use it in our experiments as well. This
particular dataset is described in more detail in the following subsection.

Table 1. Overview of publicly available datasets.

Name of dataset Published Number of patients

3D-IRCADb [2] 5 May 2019 22 patients

Medical Segmentation Decathlon (MSD) [30] 20 December 2020 430 patients

Vascular Synthesizer (VascuSynth) [24] March 2013 120 synthetic samples

The MSD [30] is another publicly available dataset. However, its ground truth is of
poor quality, far inferior to the 3D-IRCADb dataset. Therefore, we have not used this
dataset at all in this work.

We are also aware of synthetically generated vascular datasets that can be provided by
the VascuSynth [24] software. However, since these datasets cannot replace clinical data
where patients have curvilinear vessels, we have not used them either.

5.1. Dataset 3D-IRCADb

The proposed method has been evaluated on the publicly available 3D-IRCADb [2]
dataset. We have specifically used its subset 3D-IRCADb-01, which is used in most of the
similar research, and thus allows for the comparison. The dataset contains 20 CT volumes
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(10 male and 10 female). Fifteen cases (75%) of this dataset have hepatic tumors. The dataset
contains various classes. The classes used in our study are portalvein and venoussystem.
We combined them into one class of veins. The pixel spacing varies from 0.56 to 0.84 mm,
and the slice thickness varies from 1 to 4 mm.

There are several challenges within the dataset. In some cases, the inferior vena cava
is not part of the liver mask. Besides that, one patient had many liver tumors that covered
the majority of the liver vessels. Another patient had inner metallic objects, such as stents,
that significantly affected the brightness of the volume. Despite these bottlenecks, we
kept all of the volumes from the dataset in the experiment to have more training data.
Furthermore, slight abnormalities make the network more robust, even if the output quality
suffers. Although low-quality data were used, our technique was still able to achieve a
high prediction quality. The training and testing sets should equally include cases of liver
vessels of similar appearance (both containing difficult and easy cases). To ensure this, we
split the dataset as follows. Training set contains patients—2, 5, 7, 12, 10, 11, 13, 16, 18, 19.
Validation includes patients—4, 9, 20, 6, 17. Testing set is represented by patients—1, 3, 8,
14, 15.

Improving Annotations of 3D-IRCADb

Since there are some limitations in the annotations of hepatic vessels in the 3D-IRCADb
dataset, we decided to improve them. The limitations are mainly because of inadequately
annotated hepatic veins, although they are clearly visible and could be marked correctly.
Similar problems have been found and tackled by [8,31]. Some of the CT volumes in
3D-IRCADb are under-segmented, while others are over-segmented. These issues might
lead to the misinterpretation of results when segmented vessels appear as false positives
or false negatives while testing the neural networks [18]. Another major limitation is the
inconsistency of the annotated data for the vena cava. The vena cava is visible in some
images but not in others. It also makes vessel enhancement difficult [8].

Because the annotated datasets used in [8,31] are not publicly available, the additional
labeling of the missing veins in 3D-IRCADb has been performed using the Slicer built-in
tools and the extension explained in Section 3. It increased the quality of annotations; see
Figure 3. The comparison of the dice scores with the original and improved dataset is in the
experimental part of the paper. If it is not stated differently, the experiments used refined
annotations since the vessel prediction is better and more continuous with them.

Figure 3. Annotations on Patient 1 from 3D-IRCADb dataset. (a) CT image; (b) Original Annotation;
(c) Improved Annotations; (d) 3D of Original Annotation; (e) 3D of Improved Annotations.

6. Methods

The core of our solution lies in the use of enhancement filters and deep learning
methods for vessel segmentation. We perform experiments on the dataset, as explained in
Section 5.1. We apply different filters to improve the contrast between the liver and hepatic
vessels, and use the enhanced data as input to a segmentation network.

6.1. Vessel Enhancement Filters

We have used five filters to enhance the tubular structures and other structural informa-
tion of the veins. Similar to Survarachakan et al. [25], we have applied four Hessian-based
filters. Besides that, a specific morphological filter has been used as well. Namely, we have
used Hessian, Frangi, Meijering, and Sato as the Hessian-based filters, and RORPO as the
morphological filter. Figure 4 shows the enhancing effect of these filters on vessels.
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Figure 4. Comparison of different vessel enhancement filters.

6.1.1. Hessian Matrix Computation

The Hessian matrix serves as a fundamental computational method used in all Hessian-
based filters. It calculates the local gradation change by performing the second-order partial
derivatives of the input image voxel X = (x, y, z) in nine directions. It is defined as

H(X) =

 fxx fxy fxz
fyx fyy fyz
fzx fzy fzz

 =


∂2 f
∂x2

∂2 f
∂x∂y

∂2 f
∂x∂z

∂2 f
∂y∂x

∂2 f
∂y2

∂2 f
∂y∂z

∂2 f
∂z∂x

∂2 f
∂z∂y

∂2 f
∂z2

 (1)

Eigenanalysis is used to avoid computing derivatives in many directions, and to extract
only the principal directions. Let e1 be the eigenvector representing the axial direction,
let e2, e3 be the cross-sectional direction of H(X), and the associated λ1, λ2, λ3 are the
eigenvalues. The eigenvalues should meet the following condition: |λ1| ≤ |λ2| ≤ |λ3|. The
vessel centerline voxel should satisfy the following: λ2 ≈ λ3 � 0, λ1 ≈ 0.

6.1.2. Hessian Vesselness Filter

By integrating the directional gradient and the Hessian matrix, Ng et al. [32] suggested
a modified multi-scale Hessian filter. It is assumed that the brightness of a hepatic vessel is
high in the middle and progressively declines toward the end, allowing it to be described
as a Gaussian structure transverse to its axis. The convolution between the image gradient
field and the Gaussian kernel is the basis of each approximation in the Hessian matrix H at
a specified scale σ. The eigenvalues λ1, λ2 are calculated and utilized to compute the curve
derivation R and similarity measure S. The curvilinear likeliness E is given by

E(x, y, σ) =

0 i f λ2 < 0

e
−R
2β2

1 [1− e
−s
2β2

2 ] otherwise
(2)

The response of the filter L is set as a maximum of different scales that approximate
the size of the ridges. It is expressed as

L(x, y) = max
σmin6σ6σmax

[E(x, y, σ)] (3)
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The parameters β1, β2 control the sensitivity of the filter to the measure R and S,
respectively.

6.1.3. Frangi Vesselness Filter

The Frangi [33] approach uses all three eigenvalues to discriminate the local orientation
pattern. These three eigenvalues serve in the differentiation of blobs Rb, and plate-like
and line-like structures Ra. To decrease the influence of noise S, a Hessian norm measure
was developed.

Rb = |λ1| /
√
|λ2λ3| (4)

Ra = |λ2| / |λ3| (5)

S =
√

λ2
1 + λ2

2 + λ2
3 (6)

They propose the following combination of the components to define a vesselness
function,

F =

0 i f λ2 > 0orλ3 > 0,

(1− exp(− R2
a

2α2
)) exp(− R2

b
2β2

)(1− exp(− S2

2c2
))

(7)

The parameters α, β, γ are the thresholds that control the sensitivity of the filter to the
measures Ra, Rb, and S.

6.1.4. Meijering Vesselness Filter

To recognize very elongated structures, Meijering et al. [34] suggested a parameter-free
vesselness function. It is based on the following modified Hessian matrix H′(f):

H′(f) =

h11 +
α
2 (h22 + h33) (1− α

2 )h12 (1− α
2 )h13

(1− α
2 )h21 h22 +

α
2 (h11 + h33) (1− α

2 )h23
(1− α

2 )h31 (1− α
2 )h32 h33 +

α
2 (h11 + h22)

 (8)

In general, α = 1/3. The eigenvalues of H′(f) with respect to H( f ) is expressed as

λ′i = λi + αλj + αλk (9)

for i 6= j 6= k.
The vesselness is defined by,

F =

{
λmax / λmin λmax < 0
0 λmax ≥ 0

(10)

where, λmax = max{λ′1, λ′2, λ′3}, which is computed at each voxel, and λmin is the minimum
of all λmax of the image.

6.1.5. Sato Vesselness Filter

Sato et al. [35] suggested a line enhancement filter function that is responsive to varied
diameter ranges. Sato et al. sorted the eigenvalues as λi as λ1 ≥ λ2 ≥ λ3. The eigenvector
e1 corresponds to the direction of the putative vessel. |λ1| < 0 and |λ1| < 0 represent the
sizes of the cross-section. The Sato vesselness introduces a ratio of the eigenvalues to obtain
a high response in tubular structures. It is provided by,

F =


λc exp(− λ2

1
2(α1λc)2)

) λ1 6 0, λc 6= 0

λc exp(− λ2
1

2(α2λc)2)
) λ1 > 0, λc 6= 0

0 λc = 0

(11)
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where α1 < α2, λc = min{−λ2,−λ3}. The parameters α1 and α2 control the asymmetrical
strength.

6.1.6. RORPO Vesselness Filter

Differential information is not used by the RORPO [1,36] filter. RORPO, on the other
hand, is based on the mathematical morphology of the path operators, and is thus defined
using adjacency relations. RORPO is semi-global and non-linear. This filter computes the
path openings in the seven primary directions, ranks their responses point-by-point, and
extracts structures based on low and high responses at each voxel. This noise-resistant filter
maintains the intensity of curvilinear shapes while reducing the intensity of other structures.

Path operators with thin voxels oriented along their length are expressed as:

LnR = Lmin × f nR−1, (12)

where LnR is path length to detect, Lmin is the minimal path length, the geometric sequence
of scales is fεR, and the number of scales is nR.

6.2. Segmentation Pipelines

The three main steps of the segmentation pipelines we have implemented are image
data preprocessing, vessel enhancement, and image segmentation. These are explained in
the following subsections. First, the image preprocessing is performed, and then specific
enhancement filters are applied and either fused before the segmentation or immediately
after the segmentation. Figures 5–7 show three different approaches.

We have implemented three segmentation pipelines. In the first two pipelines, the
fusion of filters are inspired by the approach of Survarachakan et al. [25], and they serve as
a comparison. The third pipeline that we propose implements a simple but very effective
fusion of raw and filtered images before performing the segmentation.

6.2.1. Data Preprocessing

In our method, the liver area is extracted and cropped according to the liver mask to
focus primarily on the liver vascular system. The liver region is extracted in the first step
as opposed to the last step in Survarachakan et al. [25]. This helps to remove unnecessary
resulting boundaries, and leads to less interference with the background. All scans are
converted into 1 × 1 × 1 mm isotropic resolution. The image intensities are windowed
to lie within the 〈80, 220〉 Hounsfield Unit (HU) range, and are then mapped to the range
〈0, 1〉. In addition, the 3D anisotropic diffusion is applied to lower the image noise and to
still preserve the significant parts such as edges and lines.

6.2.2. Vessel Enhancement

The enhancement of vessels is the preprocessing step used before the segmentation.
The preprocessing steps are implemented using the scikit-image library [37]. This step is a
key factor in obtaining significantly better segmentation results. Enhanced images acquired
by the application of different filters (see Section 6.1) are utilized either before or following
the segmentation.

A method that combines the results of individual vessel enhancement filters simultane-
ously before segmentation, and which is inspired by the approach of Survarachakan et al. [25],
is depicted in Figure 5. The final enhanced image is obtained by averaging the respective
pixel values from all filters. The resulting image is then used as an input to the segmentation
network. Two variants of this approach have been considered. They either use Hessian, similar
to [25], or RORPO as one of the four filters. As proven by experiments, the Hessian filter
has the weakest enhancing effect on the segmentation results in terms of the dice score. The
RORPO filter, on the other hand, has the strongest enhancing effect. Therefore, the initial idea
of this method was to use the strongest combination of four filters that would outperform the
solution presented in [25]. We indicate this method as FilterAdded, and distinguish whether
Hessian or RORPO has been used. The fusion of filters is defined as:
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FilterAddedHe =
He + Fr + Me + Sa

number of filters
(13)

and

FilterAddedRo =
Ro + Fr + Me + Sa

number of filters
(14)

where He, Ro, Fr, Me, and Sa, stand for the Hessian, RORPO, Frangi, Meijering, and Sato
filter outputs.

Preprocessing:
Extract, isotropic
resolution, cropp,

and HU windowing

Frangi

Meijering

Sato

RORPO

Hessian

OR

Input volume Output volume

3D Anisotropic
diffusion

Segmentation 
Network

Figure 5. Workflow of fusing different enhancement filters prior to segmentation (FilterAdded).

Inspired by the second approach of Survarachakan et al. [25], a better overall result
can also be achieved by combining the prediction results from four trained models, each
of which used a different vessel improvement filter. Only the pixels predicted from at
least two independent filters were taken into account when combining the results, in order
to reduce false positives. The approach is depicted in Figure 6. Similar to the previous
approach, we opt between two variants of applied filters, either with the Hessian or with
the RORPO. Again, the variant with the RORPO filter brings better results, as shown in
the experiments. We indicate this method as SegAdded, and distinguish whether Hessian
or RORPO has been used. A combination of the enhanced outputs is provided in the
following manner:

SegAddedHe = (He∩ Fr) ∪ (He∩Me) ∪ (He∩ Sa)

∪(Sa∩Me) ∪ (Sa∩ Fr) ∪ (Me∩ Fr)
(15)

and

SegAddedRo = (Ro∩ Fr) ∪ (Ro∩Me) ∪ (Ro∩ Sa)

∪(Sa∩Me) ∪ (Sa∩ Fr) ∪ (Me∩ Fr)
(16)

where He, Ro, Fr, Me, and Sa, stand for the Hessian, RORPO, Frangi, Meijering and Sato
filtered and segmented outputs, respectively.

The third and most effective approach that we have implemented operates with the
RORPO filter and makes a fusion of the enhanced image with the preprocessed raw image
before the segmentation. The detailed pipeline is shown in Figure 7. The linear blending
fuses the original and enhanced images to create input for the segmentation network.
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Figure 6. Workflow of fusing vessel enhanced outputs after the segmentation (SegAdded), where X,
Y = {He or Ro, Fr, Me, Sa}.

Extract Liver ROI Isotropic
resolution 1x1x1

Cropp the
liver region Linear blending

3D Anisotropic
diffusion RORPO

HU windowing

512 x 512 x 128

Segmentation 
Network

290 x 290 x 205

Output volume

512 x 512 x 128 290 x 290 x 205 290 x 290 x 205 290 x 290 x 205

290 x 290 x 205 290 x 290 x 205

290 x 290 x 205

Input volume

Figure 7. Workflow of linear blending of original and RORPO enhanced image.

6.2.3. Linear Blending

The blending method applies a linear combination of two source images, and it is
expressed as:

g(x) = β · f0(x) + α · f1(x), (17)

where f0(x) represents the original image, f1(x) stands for RORPO enhanced image, g(x)
provides the blended image, and x represents the pixel coordinate. Both images have to be
of the same size and type. Coefficient α lies in the interval 〈0, 1〉 and determines how much
the enhanced image will prevail over the original image. The optimal value of Coefficient α
can be determined by running experiments in the stated interval, with an appropriate α
increment. Coefficient β depends on α and it is expressed as:

β = (1.0− α) (18)

6.3. Segmentation Model

We have experimented with two types of segmentation architectures: 3D U-Net and
3D V-Net. They are often used to segment tissues from medical images.

The 3D U-Net architecture on which we conducted the experiments is shown in
Figure 8. Each layer of the network has a contracting encoding path and an expanding
decoding path with a skip connection between them. The encoding path extracts hidden
features from the input data, which are then reconstructed by the decoding path, to provide
the prediction. The skip connection is used to retain more semantic information, and thus
adds the initial feature map to the final feature map. The encoder downsamples the data
using strided convolutions of the residual unit in the spatial dimensions by a factor of 2,
followed by a Batch Normalization (BN), and a Parametric Rectified Linear Unit (PReLU) as
an activation function. During backpropagation, the PReLu learns a small slope parameter,
which multiplies with the negative input to better adapt to the other parameters (such as
weights and biases). The decoder upsamples using 2 × 2 × 2 up-convolution (transpose
convolutions) with stride 2. These convolutions occur at the beginning of each block.

The 3D V-Net implementation is based on Milletari’s [13] design of the 3D V-Net.
The 3D V-Net is intended for 3D medical image segmentation and is shown in Figure 9.
The network has encoding and decoding blocks, as well as an additional convolutional
block in between, similar to the 3D U-Net. The encoder and decoder are also coupled by
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skip connections, but instead of 2 × 2 × 2 max-pooling, down-convolutions with stride
2 × 2 × 2 and kernel-size 2 × 2 × 2 are used for encoding. The strided deconvolution is
used for decoding. The top-level blocks have one convolutional layer, the second-level
blocks have two, and the remaining blocks have three convolutional layers. The number
of channels in each block is the same as in the U-Net configuration, but all convolutions
extract spatial features using 5 × 5 × 5 kernels.

Figure 8. Architecture of 3D U-Net segmentation model.

In the case of hepatic vessel segmentation, the network performs better if the image
data are preprocessed (see Section 6.2.1).

Figure 9. Architecture of 3D V-Net segmentation model.

6.3.1. Data Augmentation

We employ data augmentation in our approach to improve the amount of input data,
and to decrease overfitting while training. In each spatial dimension, we apply symmetric
padding to the data. We crop random fixed-size sections with a foreground or a background
voxel in the center. We rotate the data by 90◦ in all three spatial planes. We also use a
random offset to adjust the intensity.
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6.3.2. Parameter Settings and Training

We have used the same parameter settings for all experiments reported in this paper,
unless otherwise stated. We have used a batch size of 2, the Adam optimizer with a learning
rate of 2.0e−4, and 1000 of epochs. A learning rate scheduler has been applied to adjust the
initial learning rate and to further decrease it. The learning rate scheduler is defined as
lr = init_lr× (1− epoch

nEpoch )
power, where init_lr = 0.0002, nEpoch = 5000 and power = 0.1.

We have used a Dropout of 0 for 3D U-Net, and 0.5 for 3D V-Net. We have used ReLU as
the activation function.

6.3.3. Loss Function

During the training process, the loss function assists in minimizing the error for each
training sample. Because liver vessels make up a minor percentage of the liver, imbalanced
foreground (the liver vessels) and background (the liver) classes frequently induce prediction
deviation, biasing the classification to the background with more voxels. Therefore, we
have experimented with different loss functions. We have used the Weighted Dice Loss
function [38] as a final selection. It uses the dice coefficient to place penalties for the
number of misclassified voxels, to solve the high-class imbalance problem and to enhance
segmentation accuracy; see Table 2.

Table 2. Loss Functions: where gi is the ground truth; pi is the prediction.

Loss Function Equation Definition

Dice [39] 2 ∑N
i pigi

∑N
i p2

i + ∑N
i g2

i

Calculates the overlap of gi and pi.

Dice-BCE [40]
1− Dice + λbLBCE

LBCE = −(pi log(gi) + (1− pi) log(1− gi))

Evaluates the class prediction of each
pixel vector, and then averages all pixels.

λb is 0.5.

Log Cosh Dice [40] log(cosh(pi − gi)) + λl ∗ Dice For smoothing variations, can be used for
skewed dataset. λl is 0.5.

Focal [40]
−αt(1− LBCE)

γ log(LBCE)

LBCE = −(pi log(gi) + (1− pi) log(1− gi))

It up-weights the contributions of
difficult examples. Here, γ is 0.5, αt is 0.5.

Dice Focal [40] Dice + λ f ∗ Focal Variant of Dice loss, with focus on
difficult examples. λ f is 0.5.

Tversky [40] ∑N
i pigi

∑N
i pigi + βt ∑N

i (1− pi)gi + αt ∑N
i pi(1− gi)

Adds weight to False positives and False
negatives, where αt is 0.5 and βt is (1-αt).

Weighted Dice [38] 1− ∑N
i pigi

∑N
i pigi + αl βl ∑N

i (1− p2
i )∑N

i (1− g2
i )

Data with unbalanced classes, where αl is
0.5 and βl is 6 [38].
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7. Experiments and Results

We have tested the proposed algorithms on the 3D-IRCADb dataset. If not otherwise
stated, all of the experiments were performed using improved labels in the 3D-IRCADb
dataset. We have used typical metrics to compare the implemented methods. Specifically,
these include the Dice Score, the Accuracy, the Sensitivity, and the Precision. Specific
equations for the metrics are expressed in Table 3.

Table 3. Measures of segmentation quality. TP and TN stand for True Positive and True Negative
(correctly segmented pixels), while FP and FN stand for False Positive and False Negative (incorrectly
segmented pixels).

Metrics Equation Explanation

Dice Score
2TP

2TP + FP + FN
The overlap of the two segmentations, divided by the total size

Accuracy
TP + TN

TP + TN + FP + FN
Correctly predicted data points out of all the data points

Sensitivity
TP

TP + FN
When identifying TP and the cost of an FN is high

Precision
TP

TP + FP
When identifying TP and the cost of an FP is high

7.1. Experiment 1: Comparison of Different Vessel Enhancement Filters

First, the five vascular enhancement filters were compared: Hessian, Frangi, Meijering,
RORPO, and Sato. The five different neural networks were trained to compare the filters in
terms of their effect on vessel segmentation. In this experiment, the 3D U-Net architecture
was used. The processing workflow from the raw input to the segmented output is shown
in Figure 10. Table 4 provides the comparison of different filters concerning segmentation
quality measures. The table is divided into two sections. The first one provides results
using original annotations, and the second one uses improved annotations.

3D Anisotropic
diffusion

Vessel enhancement filter 
(Hessian or Frangi or
Meijering or RORPO

or Sato)

Segmentation
Network

Preprocessing: Extract,
isotropic resolution,

cropp, and HU windowing

Figure 10. Application of individual filters.

7.2. Experiment 2: Fusion of Vessel Enhancement Filters

As described in Section 6.2.2, we have used three different segmentation pipelines that
leverage different vessel enhancement filters to improve segmentation results. Specifically,
the pipelines named as FilterAddedHe, FilterAddedRo, SegAddedHe, SegAddedRo, and our
method (the RORPO filter with a linearly blended input image) were implemented and
compared. The dice scores of different approaches performed on the test data are shown in
Table 5.

Comparison of Segmentation Pipelines

We have compared all three segmentation pipelines and have used either 3D U-Net
or 3D V-Net as the segmentation architecture. The Segmentation results are shown in
Table 5. Our approach provides the best performance in this comparison. As for the specific
segmentation network, the 3D V-Net leads to better results than the 3D U-Net if applied in
our method.
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Table 4. Comparison of different enhancement filters on the 3D-IRCADb dataset and 3D U-Net as a
segmentation network.

Filter
Original annotations

DSC ACC SEN PRC

Unenhanced 56.4± 13.8 98.3± 2.3 66.0± 14.2 56.5± 23.9
Hessian 60.0± 12.1 99.0± 0.3 62.9± 6.2 62.4± 21.6
Frangi 62.1± 6.6 99.0± 0.4 74.6 ± 6.6 53.9± 8.6
Meijering 62.4± 8.9 99.0± 0.7 69.1± 9.2 57.6± 11.9
Sato 58.3± 9.1 98.7± 0.9 68.4± 7.3 51.5± 11.4
RORPO 62.7 ± 6.6 99.2 ± 0.2 60.7 ± 6.7 69.4± 19.1

Filter
Improved annotations

DSC ACC SEN PRC

Unenhanced 62.7± 15.4 98.2± 2.3 72.5± 13.7 63.2± 25.5
Hessian 66.1± 8.0 99.0± 0.3 68.3± 5.3 65.4± 13.0
Frangi 69.6± 3.9 99.1± 0.1 75.7± 6.1 64.6± 3.7
Meijering 66.7± 10.1 98.7± 1.0 76.8± 6.2 61.2± 16.2
Sato 67.0± 4.8 98.9± 0.4 77.7 ± 7.1 59.2± 4.9
RORPO 69.7 ± 4.8 99.2 ± 0.1 62.9 ± 6.1 79.1 ± 9.0

Table 5. Comparison of segmentation pipelines with enhancement filters applied to improved
3D-IRCADb with standard Dice Loss function and different networks.

Filter
3D U-Net

DSC ACC SEN PRC

Unprocessed 62.7± 15.4 98.2± 2.3 72.5± 13.7 63.2± 25.5
FilterAddedHe 67.8 ± 4.8 99.0 ± 0.4 72.8 ± 5.6 64.4 ± 9.0
FilterAddedRo 71.7 ± 3.2 99.1± 0.2 77.3± 5.0 67.1± 3.7
SegAddedHe 70.2 ± 4.2 99.0 ± 0.3 79.5 ± 6.1 63.1 ± 5.0
SegAddedRo 70.9 ± 3.8 99.0± 0.3 79.3 ± 6.1 64.3± 4.2
Our method 74.4 ± 4.6 99.3 ± 0.1 72.7 ± 5.8 76.5 ± 6.4

Filter
3D V-Net

DSC ACC SEN PRC

Unprocessed 68.4± 12.2 98.7± 1.1 80.7± 3.6 61.3± 17.3
FilterAddedHe 68.8± 4.4 99.1± 0.2 69.5± 4.9 68.3± 6.0
FilterAddedRo 73.5± 3.8 99.2± 0.1 75.9± 4.8 71.5± 5.3
SegAddedHe 72.9± 3.5 99.1± 0.1 81.5± 4.4 66.1± 4.4
SegAddedRo 72.7± 3.7 99.1± 0.1 82.1 ± 3.8 65.5± 5.0
Our method 75.4 ± 4.3 99.3 ± 0.1 76.9± 4.1 74.4 ± 7.8

7.3. Experiment 3: Linear Blending with the RORPO Filter

Based on the results from the previous experiment, it is obvious that the linear blending
with just the RORPO filter outperforms approaches where multiple filters are combined.
Therefore, the focus was aimed on using only this method and elaborating whether the
blending between the original and enhanced image was set to its optimum, or whether it
could improve the results even further by setting it to a different value. As described by
Equations (17) and (18), the blending is controlled by setting the α value from the interval
< 0, 1 >. The effect of different α values is shown in Figure 11.

7.3.1. Comparison of Segmentation Models with Different Blending Values

We have compared our method of linear blending with the RORPO filterm using
either 3D U-Net or 3D V-Net as the segmentation architecture. The highest dice score is
achieved by blending with 60% (α = 0.6) of the image enhanced usin the RORPO, and 40%
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(β = 0.4) of the original image in both 3D U-Net- and 3D V-Net-based architectures; see
Figure 11. It also shows that segmentation with 3D V-Net provides better dice scores and
more consistent results over a wider spectrum of α values than 3D U-Net. As an acceptable
region for blending value, the region between 40 and 60% is set.

Figure 11. The average dice score for different blending ratios between the RORPO and the original
image while using 3D U-Net and 3D V-Net.

7.3.2. Comparison of Different Loss Functions

We have evaluated different types of loss functions and their effects on the segmen-
tation quality. The evaluation was performed on the best-performing setup with the 3D
V-Net as a segmenter. The results for all metrics are shown in Table 6.

Table 6. Comparison of different loss functions tested on the improved 3D-IRCADb dataset and the
3D V-Net architecture.

Loss Functions
3D V-Net

DSC ACC SEN PRC

Dice Loss 75.4± 4.3 99.3± 0.1 76.9± 4.1 74.4± 7.8
Dice-BCE Loss 75.9± 3.5 99.3± 0.1 75.5± 3.1 76.8± 7.1
Log Cosh Dice Loss 74.6± 3.3 99.3± 0.1 73.5± 4.2 76.3± 7.4
Focal Loss 74.4± 3.7 99.3± 0.1 70.2± 4.0 79.6± 8.0
Dice Focal Loss 75.2± 4.3 99.3± 0.1 75.2± 4.3 75.6± 7.0
Tversky Loss 76.0± 4.2 99.3± 0.1 75.7 ± 3.9 76.8± 7.1
Weighted Dice Loss βl = 6 76.2 ± 3.7 99.3 ± 0.1 75.0 ± 3.4 77.7 ± 6.1

The best-performing loss function in our model is the Weighted Dice Loss. It operates
with the parameter βl (see Table 2) to tackle the problem of class imbalance. The higher the
value of βl , the greater the penalty for misclassified voxels. Unfortunately, this also slows
down the gradient flow and increases the risk of sticking in the local minima. When βl is in
the range of 5–7, optimal outcomes are obtained. We have found βl = 6 to be the best in
our study.

7.4. Experiment 4: Ablation Study on the Final Segmentation Pipeline

We have performed the ablation of a varying number of convolutional filters at all
stages of the 3D V-Net architecture after training. We have found that certain stages are
more significant than others for the quality of veins segmentation.

The V-Net is divided into several stages (the stages are shown in Figure 9) that operate
at different resolutions during the down- as well as upsampling phases. Each stage consists
of one to three convolutional layers, with each layer having a specific number of channels
(filters). We ablated groups of similar filters at every stage by increasing the percentage
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(25%, 50%, and 75%) of similar filters. Since the number of filters varies from stage to
stage, it means that the same percentage may correspond to a different number of ablated
filters. The similarity between filters within a group was calculated based on the absolute
Euclidean distance of the normalized filter weights. Ablations were performed by manually
setting the weights and biases of all incoming connections of a filter to 0, thus eliminating
any activation of that filter.

Figure 12 shows the dice scores for ablations of 25%, 50%, and 75% at every stage of the
V-Net. Each data point shows the effect of a specific stage ablation. The dice score is affected
noticeably more in stages ’in 16’, ’down 64’, and ’up 64’, than in the other stages. Furthermore,
the effect of the largest ablation has a stronger influence on some stages than on others. For
instance, stage ’up 32’ shows a noticeably larger drop in dice score for 75% of the ablated
filters, compared to 50%, while the stages ’down 256’ and ’up 256’ are largely unaffected.

Figure 12. Effects of different ablations amounts in all 3D V-Net stages.

7.5. Segmentation Results

Figure 13 shows the segmentation results of the proposed algorithm on the improved
3D-IRCADb dataset. The provided method can predict the vascular structure well, and the
results are close to the ground truth.

Figure 13. In each case, the first row shows the ground truth, and the second row shows the
predictions in the axial, sagittal, coronal, and 3D views.
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7.6. Experiment 5: Comparison of Performance between the Proposed Algorithm and
Other Algorithms

We have compared our segmentation approach with the work of others. Specifically,
with works [4,8,14–16,18,23], which combine different approaches to provide liver vessel
segmentation.

In the case of [4,8,14,15,18], it was impossible to make a fair comparison. The source
code for these methods was not available, so it was not possible to train and test these
methods on the same enhanced 3D-IRCADb dataset that we used in our work. We provide
only an indirect comparison with the numerical results as presented in those papers. A
comparison is provided in the first part of Table 7.

We were able to objectively evaluate the performance of methods from [16,23] since
their code is available. The authors of the paper [23] published the code on GitHub and
have also created an online demonstration tool for using the filters. We tested the RORPO
filter with default parameter settings. Then, the result was thresholded. The parameter
nbThresholds = 200 means that each patient is thresholded with a 200x different value.
This value is increased by a very small step of 0.005 and lies in the range of < 0, 1 >. As
opposed to that, the authors of the paper [16] implemented 2.5D V-Net with Tversky loss
function. They combined patients from the 3D-IRCADb dataset, and CT scans from the
Polyclinic of Bari. The 2.5D V-Net approach processes five slices as five channels, since
the network uses only 2D convolutional layers. The random patches of five consecutive
slices are sent to the network for training. To test the network, the sliding window is used.
However, we infer sub-volumes of dimensions 512× 512× 5, and only the middle slice is
used for prediction on the middle slice. The results of these methods and our proposed
method are provided in the second part of Table 7.

Table 7. Comparison of the proposed method, with related works.

Filters Published Dice score Accuracy Sensitivity Specificity

Indirect comparison

Zhang et al. [4] 2018 67.3 96.4 73.7 97.4
Huang et al. [8] 2018 75.3 97.6 76.7 98.8
Su et al. [14] 2021 75.46 - 76.9 -
Yang et al. [15] 2021 71.6 98.5 75.4 99.5
Xu et al. [18] 2020 68.7 99.8 78.6 99.2

Direct comparison (re-implemented related works)

Altini et al. [16] 2020 65.0 ± 9.7 99.8 ± 0.4 52.3 ± 10.8 88.9 ± 6.2
Lamy et al. [23] 2020 59.6 ± 5.8 98.9 ± 0.3 55.9 ± 4.2 64.8 ± 12.0

Our method 2022 76.2 ± 3.7 99.3 ± 0.1 75.0 ± 3.4 99.7 ± 0.1

8. Discussion

In the first experiment, different vascular enhancement filters were compared. The task
was to find out which of the five filters was the best, in terms of the segmentation quality
measures. From the visualizations of the filters’ enhancing effects in Figure 4, it can be seen
that the RORPO filter performs very well. There is a minimum amount of image noise. In
addition, there are no visible boundaries between the liver and the background that could
affect the result. Although the image enhanced by the Frangi filter seems promising as
well, the vessels are relatively thin. Visible boundaries and some noise are typical for the
Meijering filter and the Sato filter. In terms of the segmentation quality, the dice scores for
the original and the improved annotations prove that the RORPO is the most effective filter,
and has permitted us to improve the dice score from 62.7% to 69.7% and to reduce the mean
standard deviation from 13.8% to 4.8%. The improvement in dice score and reduction in
standard deviation shows that the model can segment vessels more efficiently in different
test patients.
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The second experiment focused on leveraging the vessel enhancement effects of
different filters in various segmentation pipelines. In FilerAdded, four enhancement filters
were combined, and the model was trained on this combined data. In SegAdded, four
models were trained with distinct enhancement filters, and the results were later combined
when at least two models were able to predict the vessel pixel. In linear blending, the
original image was combined with the RORPO enhanced image. By comparing the different
pipelines, the linear blending provides the best results for all observed metrics except
sensitivity. Here, the SegAdded approach performs better. Results were also obtained from
different segmentation models (3D U-Net and 3D V-Net).

In the third experiment, a detailed analysis of the proposed method was provided.
We have explored the effect of RORPO on the original image. We have set the mixing
ratio between RORPO and the original image, α, from 0% to 100%, with a step of 10%.
The RORPO filter has a significant positive effect on the result. The best segmentation
is achieved by using 40% of the original image and 60% of RORPO. The acceptable α
range is 40–60%. This proves that the role of background information is also helpful in
segmenting the region of interest. The results are also performed on 3D U-Net and 3D
V-Net, and 3D V-Net performs better than 3D U-Net. This shows that for volumetric input,
3D V-Net performs better. Hence, we used V-Net in all further tests. However, 3D V-Net
is more expensive in terms of computing resources, and the time for training is twice as
long as that of 3D U-Net. Another evaluation of the proposed method focused on the use
of different dice loss functions. The Weighted Dice Loss βl = 6 outperformed other loss
functions, achieving a dice score of 76.2% and a mean standard deviation of 3.7%. This
loss function can deal with unbalanced classes and enhance segmentation accuracy and
sensitivity. Parameter βl = 6 was used to introduce a penalty for misclassified pixels, and
also to avoid trapping the loss function in local minima. The βl parameter can be in the
range (0, 9). If the βl parameter is set to a lower or higher value than 6, the results are
worse overall, since the coefficient penalizes too few or too many false negatives. This
approach set the final version of the method and led to the highest dice score, as well as
increased precision.

The fourth experiment examined the effects of varying percentages of ablations on
the segmentation performance of the 3D V-Net architecture trained on the 3D-IRCADb
dataset. As anticipated, the performance typically declined as the number of ablated filters
increased. The results of the experiment showed that some filters contributed more to
the performance than others. The effect of ablation is much stronger for stages (’down
64’, ’up 64’) for 50% ablation, and stages ’up 32’ for 75% ablation. The stages (’down
256’, ’up 256’) showed negligible performance loss, as these stages may have redundant
feature representation. This experiment determines the influence of different layers on the
segmentation results. By identifying the network’s sensitive areas, we want to modify the
model’s architecture in future research.

In the last experiment, we compared the performance of the proposed method with some
other algorithms described in the related work. We compared indirectly with [4,8,14,15,18]
because it was not possible to re-implement or evaluate these methods with our dataset. A
direct comparison was made with [16,23]. These methods were re-implemented based on
the available source code and evaluated with our dataset. The authors in [23] just used a
thresholding approach that did not provide satisfactory vessel segmentation. The authors
of the paper [16] used 2.5D V-Net with a Tversky loss function, yielding results with high
variability and a high mean standard deviation. We can state that our method prevails in
dice score and specificity value over all of the other methods. In comparison with the two
reimplemented methods, we dominate in terms of sensitivity, meaning that there are fewer
missing and fragmented vessels. In terms of accuracy, our method lags just slightly behind.

Overall, the method outlined in this paper can automatically segment enough liver
vessels to correctly extract the vessels, and it can be further manually corrected using Slicer
tools. The automatic segmentation results are visually presented in Section 7.5. The method
works on CT obtained from different machines with different acquisition parameters. Our
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method is also able to segment images with different liver shapes, livers with thinner vessels,
and livers with vessels atrophied. The specific combination of the original image with the
vessel-enhanced image is the originality of our work, and it outperforms other methods
proposed in the literature. The method outlined in this paper have some limitations.
The results in some cases have misclassified vessel endings, variability in vessel edges,
and some regions are not connected to the main vessels. Finally, we need more data to
make the model more robust, test the vessel segmentation, and lower the variability in
our experiments.

9. Conclusions and Future Works

The proposed algorithm effectively segments liver vessels with a dice score of 76.2%
and a precision of 77.7%. The network can automatically segment labeled or even other
unmarked liver vessels (that should be labeled) from the CT images. The RORPO filter
used for vessel enhancement in conjunction with blending its output with the original CT
image has successfully been proven to give better results compared to other state-of-the-art
techniques. Thus, adding this information to the enhanced vessels has helped to improve
the robustness of the segmentation model. The Weighted Dice Loss metric based on the
dice coefficient is used for the loss function computation to improve segmentation accuracy,
and to deal with unbalanced foreground and background class voxels. The Weighted Dice
Loss function with βl = 6 has been proven to perform the best if it is combined with the
3D V-Net.

This best performing model has been made available to the local hospital’s doctors,
who can use it for the initial annotation of new data using the tool described in Section 3.

In the future, we plan to cooperate with medical doctors more closely, extend the
training set with new validated data, and continue our research in the area of hepatic vessel
segmentation. Additionally, in our future studies, we will focus on experiment pruning
and computational cost reduction by understanding the significance of ablated filters.
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Abbreviations
The following abbreviations are used in this manuscript:

CT Computed Tomography
HU Hounsfield Unit
SSH Secure Shell
RORPO Ranking Orientation Responses of Path Operators
HPC High-Performance Computing
GPU Graphics Processing Unit
API Application Programming Interface
FilterAdded Filtered images added
SegAdded Segmentation maps added
BN Batch Normalization
PReLU Parametric Rectified Linear Unit
SDK Software Development Kit
CNN Convolutional Neural Networks
DL Deep Learning
AIAA AI-Assisted Annotation
MONAI Medical Open Network for AI
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