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Abstract: Intelligent robotics has drawn a great deal of attention due to its high precision, stability,
and reliability, which are the basic key factors for industrial automation. This paper proposes an
iterative learning control (ILC) technique with predefined-time convergence as a solution to an
applied engineering problem, namely, that local time cannot be preset when a second-order nonlinear
system undertakes control of the accurate tracking of local time under any initial iterative value. A
time-varying sliding surface with an initial value of zero was designed, and it was theoretically proven
that the trajectory tracking error in the sliding surface could converge to zero within a predefined time.
The iterative control problem of trajectory tracking was thus changed to an iterative control problem
of time-varying sliding-mode surface tracing with a starting value of zero. A PD-type closed-loop
ILC with a time-varying sliding mode surface was designed such that the trajectory tracking error
converged and stabilized on the sliding mode surface after a finite number of learning iterations. The
control goal for the system’s output was the ability to track the desired trajectory accurately within a
predefined time interval, and it was achieved by combining this with the predefined time convergence
characteristics of the time-varying sliding mode surface. Numerical simulation of trajectory tracking
control of a repetitive motion manipulator was used to verify the effectiveness of the proposed
controller and its robustness in the face of external disturbances.

Keywords: iterative learning control; sliding mode control; predefined-time convergence; time-
varying sliding mode surface; robotic arm

MSC: 393D05; 37N35

1. Introduction

In engineering applications such as industrial recurrent production, hard disk drive
control, and construction robot wall building, the output of the repetitive motion control
system is required to move a mechanical arm strictly according to the desired trajectory
within a finite time interval [0, T]. When the initial value of trajectory tracking error is zero,
iterative learning control (ILC) is implemented. In short, ILC can ensure that the system
output fully tracks the desired trajectory [1,2], but in practical engineering applications it is
challenging to strictly locate the initial state of the controlled system at the initial position
of the desired trajectory. The arbitrary initial value of iterative learning control can only
ensure that the system output accurately tracks the desired trajectory in local time [Ts, T],
but the existing ILC control strategy cannot be preset or estimated in the bound of time Ts.
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This restricts the application of ILC in practical engineering. Therefore, there is a strong
need to design an iterative learning control algorithm with a predefined time of Ts.

Traditional ILC control theory is predicated on the assumption that the controlled
system’s iterative starting value deviation is zero. When the controlled system is satisfied
with the iterative initial value constraint conditions, the output of the controlled system
can be in a given time interval, in strict accordance with the desired trajectory [3–5] (which
is perfect tracking), but in practical engineering applications, it is difficult to meet every
time constraint with a zero initial iteration value deviation [6]. Thus, the engineering
application of ILC theory is limited. Scholars have confirmed, through theoretical analysis
and experimental verification, that when the deviation between the initial value of the
controlled system and the desired trajectory is a fixed value, or when the initial value of
the system and the desired trajectory satisfy a certain law, this value of the system can
converge to the initial value of the desired trajectory, for which the ILC algorithm can
also ensure that the output of the controlled system follows the desired trajectory [7,8]
(for instance, the tracking accuracy in fractional order control [9,10] and optimal learning
control [11]). This result relaxes the strict requirement that the iterative initial value
variation of the conventional ILC must be zero [12,13], but it is still compatible with real-
world engineering applications. When a difference arises, only iterations of the ILC control
algorithm that satisfy the initial value criteria will be able to fulfil the needs of the practical
engineering application.

Scholars have proposed control strategies such as model predictive control, the initial
value correction method, the boundary layer method, and the attractor method [14–16], but
the initial value correction method involves determining the delay factor in advance [17,18].
The boundary layer in the boundary layer method is asymptotically convergent, which
means that the trajectory tracking error in the boundary layer can only converge to zero
when time tends to infinity, resulting in low trajectory tracking accuracy [19]. The attractor
design in the attractor method has certain limitations, and some attractor control strategies
involve redesigning the desired trajectory [20].When the initial value of the tracking error
between the system output and the desired trajectory is ek(0) ≡ 0, after a finite number of
iterations the system output has the full ability to follow the desired trajectory within the
finite time interval, [0, T]. However, when the initial value of the tracking error between
the system output and the desired trajectory is ek(0) 6= 0, it means that particular system
is able only to track the desired signal within the local time interval [Ts, T], which is
ek(t) ≡ 0, t ∈ [Ts, T]. Although the existing control strategies to suppress the initial value of
any iteration can solve the iterative learning convergence problem under the initial value of
any iteration, they cannot estimate or even set the time, Ts, to achieve local convergence in
advance. In some practical engineering applications, it is required that the system output
accurately tracks the desired trajectory before the given time, Ts. For example, when a
construction robot performs construction processes such as concrete troweling or wall
laying, the mechanical arm must reach the desired trajectory before the given time, Ts, and
repeat the movement strictly according to the desired trajectory to ensure the smoothness
of concrete troweling or the uniformity of wall tiles. Failure to achieve this can lead to
major economic losses for the construction industry, as well as raise the risk of building
collapse. Despite the importance of determining and presetting the local convergence time
in many engineering applications, very little work has been done on the iterative learning
control theory in regard to predefined-time convergence. At the same time, while many
current iterative learning control strategies under arbitrary iterative initial values have been
projected mainly for first-order systems, there are relatively few publications on iterative
learning control strategies for second-order nonlinear systems under arbitrary iterative
initial values.

This paper will focus on second-order nonlinear systems with repetitive motion, and
propose a PD-type closed-loop iterative learning control strategy based on the predefined-
time convergence sliding mode surface, aiming to show that the controlled system under
any initial value can not only follow a local trajectory for accurate tracking, but also
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predetermine the local convergence time, Ts, in advance. The main innovations and
contribution of this study can be summarized as follows:

1. Provides Lyapunov stability criterion for the stability of nonlinear systems within a
predefined time and describes the theoretical proof under the given conditions.

2. Presents a design for a time-varying sliding mode surface with predefined time
convergence characteristics in which the convergence time of the trajectory tracking
error located in the sliding mode surface can be preset, bringing the advantage that
the convergence time is not affected by the controlling constraints or the initial value
of the iteration.

3. Converts the trajectory tracking control problem, where the initial value of the trajec-
tory tracking error is not zero, into a sliding mode surface tracking control problem in
which the initial value of the sliding mode surface being zero. Establishes a bridge
between the iterative learning control theory with an arbitrary iterative initial value
and the same iterative initial value.

4. The iterative learning control strategy not only solves the problem of arbitrary iterative
initial value suppression and simplifies the theoretical proof of the convergence of
iterative learning, it also achieves the engineering application of the system output,
accurately tracking the desired trajectory within a preset local time.

The remainder of this paper is as follows. Section 2 presents the control problem
formulation and also describes several lemmas for iterative learning convergence proof.
Section 3 proposes an arbitrary initial value suppression strategy based on the predefined
time convergence sliding mode control principle, mentioning its principles. The Lyapunov
stability criterion for predefined time convergence of nonlinear systems is given, and a
design for a sliding mode surface with the character of predefined time convergence and
initial value of zero is presented. The main results of iterative convergence are discussed
in Section 4, which also demonstrates the predefined time convergence condition for a
PD-type ILC. In Section 5, the effectiveness of the proposed nonlinear control strategy is
illustrated by simulations for a robotic system, the results of which are briefly explained.
Finally, Section 6 presents the conclusions.

2. Control Problem Descriptions

Consider the following second-order nonlinear system with repetitive motion characteristics:
.
x1k(t) = x2k(t)
.
x2k(t) = f(xk(t), t) + B(t)uk(t)

yk(t) = x1k(t)

(1)

where xk(t) = [x1k(t), x2k(t)]
T indicates the state variable, yk(t) ∈ Rm is the output variable,

uk(t) ∈ Rl is the control input variable, k represents the number of iterations, and t ∈ [0, T],
B(t) is the bounded function matrix of appropriate dimension. The function f(xk(t), t)
satisfies the Lipschitz condition with respect to the state variable, xk(t), in the time interval
t ∈ [0, T]. That is means there is a constant,M1 > 0, and function f(xk(t), t) satisfies

||f(xk(t), t)− f(xd(t), t)|| ≤ M1||xk(t)− xd(t)|| (2)

The control objective: Let the desired trajectory of the second-order nonlinear system
(1) be yd(t) in an application environment where the iterative initial value, yk(0), of the
second-order nonlinear system (1) cannot be strictly located at the initial value, yd(0), of
the desired trajectory. Design an iterative learning controller, uk(t), to make the output
of system (1) precisely track the desired trajectory, yk(t), over a predefined-time interval,
[Ts, T](0 < Ts < T).
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The tracking error between the system output, yk(t), and the target trajectory, yd(t),
may be determined as follows:

ek(t) = yk(t)− yd(t) (3)

Below are some lemmas for iterative learning convergence proof:

Lemma 1 . Let w(t), b(t), a(t) be a continuous function defined on the interval [0, T], and a(t) > 0.
If [21]

w(t) ≤ b(t) +
∫ t

0
a(τ)w(τ)dτ (4)

then w(t) ≤ b(t) +
∫ t

0 a(τ)b(τ)e
∫ t

τ a(λ)dλdτ.

Lemma 2 . Suppose that the mentioned function, O(ξ)(t), for the time interval t ∈ [∆, T] mollifies
the following conditions [21]:

(1) ||O(ξ)(t)|| ≤ M(a +
∫ t

0 ||ξ(s)||ds)
(2) ||O(ξ)(t)−O(ζ)(t)|| ≤ M(

∫ t
0 ||ξ(s)− ζ(s)||ds)

In the above formula, if M and a are non-negative constants, then we can draw the
following two conclusions:

(a) For ζ(t) ∈ Cr[0, T], there exists a unique ξ(t) ∈ Cr[0, T], such that

ξ(t) + O(x)(t) = ζ(t) (5)

(b) According to the definition of the function defined as O(ζ) = O(ξ)(t), where
ξ ∈ Cr[0, T] is the only solution defined by (a), there exists an M1 > 0 such that

||O(ζ)(t)|| ≤ M1(a +
∫ t

0
||ζ(s)||ds) (6)

Lemma 3 . Let the constant series {bk}k≥0, bk ≥ 0 converge to zero, and the function Ok(θ)(t)
satisfy [21]

||Ok(θ)(t)|| = K(bk +
∫ t

0
||θk(τ)||dτ) (7)

In the previous expression, K > 1 is a constant. If we assume that Ψ(t), which can be
r× r, is a dimensional matrix of continuous functions, and Ψ : Cr[0, T]→ Cr[0, T] , then:

Ψ(θ)(t) = Ψ(t)θ(t) (8)

From the above equations, it follows that when the spectral radius of Ψ < 1, then:

lim
k→∞

(Ψ + Ok)(Ψ + Ok−1) · · · (Ψ + O0)(θ)(t) = 0 (9)

3. Arbitrary Initial Value Suppression Strategy Based on Predefined-Time
Convergence Sliding Mode Surface
3.1. Arbitrary Initial Value Suppression Strategy and Its Principle

According to the sliding mode control principle [22], a system state whose initial value
is located at any position in the state space can reach and stabilize in the sliding mode
surface S(x(t)) under the sliding mode controller and within the sliding mode surface
(equivalent to S(x(t)) ≡ 0) sliding to the equilibrium point, O. The sliding mode control
(SMC) law is illustrated in Figure 1.
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This study offers an arbitrary iterative initial value suppression control technique based
on a predefined-time convergence sliding mode surface to tackle the arbitrary starting value
issue in iterative learning control, using a control goal system (1) and the SMC principle.

When the starting state of the k-th iterative learning is at any point in space, it is the
same as the initial value of trajectory or route tracking errors, ek(0) 6= 0. By applying
the SMC concept, it is possible to build a sliding mode surface,S(ek(t)),with predefined-
time convergence characteristics and an iterative learning controller, uk(t), allowing the
controller, uk(t),to drive errors,ek(t), that arrive at any starting position and stabilize in
the sliding mode surface (equivalent to S(ek(t)) ≡ 0). When the tracking error ek(t)
is stabilized in the sliding mode surface according to the predefined-time convergence
characteristics of the SMC surface, and when the tracking error, ek(t), returns to zero within
the predetermined period, Ts; that is, when ek(t) ≡ 0, t ∈ [Ts, T], the goals of suppressing
the issue of random starting values and achieving precise tracking of the intended trajectory
are both realized.

To achieve the trajectory tracking error satisfying ek(t) ≡ 0 within the predefined-time
interval t ∈ [Ts, T], several core problems present themselves. The first is ensuring that
the tracking error, ek(t), converges and stabilizes within the sliding mode surface S(ek)
after finite iterative learning, that is, lim

k→∞
S(ek(t)) = 0. The second is that in the sliding

mode surface S(ek(t)), trajectory tracking error ek(t) converges to the equilibrium point in
a predefined-time, Ts, that is, lim

t→Ts
ek(t) = 0. Based on the above two core problems, this

paper designs a controller that suppresses the arbitrary iterative initial value problem in
two steps. The first step is to design the sliding mode surface S(ek(t)) with the characteristic
of converging to the equilibrium point within the predefined-time, Ts, to ensure that the
tracking error ek(t) in sliding mode surface S(ek(t)) converges to the equilibrium point
within the predefined-time, Ts. The second step is to design an iterative learning controller
to ensure the convergence of iterative learning, so that the tracking error ek(t) reaches and
stabilizes in the sliding surface S(ek(t)).

3.2. Predefined-Time Convergence Lyapunov Stability Criterion and Sliding Mode Surface Design

Predefined-time convergence is the key to suppressing the arbitrary initial value of
iteration and ensuring that the trajectory tracking error can achieve accurate tracking before
the predefined-time, Ts. The definition of predefined-time stability is given below.

Definition 1. For a second-order nonlinear system (1), if there is a preset constant, Ts > 0, such
that for any t ∈ [0, ∞] the condition is satisfied:

whent→ Ts , lim
t→Ts

y(t) = 0; When t ≥ Ts, ithas y(t) ≡ 0

Then the second-order nonlinear system (1) is globally predefined-time stable.
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A Lyapunov stability criterion of the predefined-time convergence is presented below
and proven theoretically in order to facilitate the assessment of the nonlinear system’s
global predefined-time convergence.

Theorem 1. In a nonlinear system (1), for any given predefined-time, Ts > 0, if there exsits a
positively definite and radially unbounded Lyapunov function, V(t), which satisfies

.
V(t) ≤ − π

2λTs
√

ab
(aV1−λ(t) + bV1+λ(t)) (10)

where the parameters satisfy 0 < λ < 1, a > 0, b > 0, then

(1) if V(0) 6= 0, then the system is global predefined-time stable and converges to the equilibrium

time: ts =
2Ts
π arctan

(√
b
a Vλ(0)

)
< Ts and

(2) f V(0) = 0, then V(t) ≡ 0, meaning that the system state is always at the equilibrium point.

Proof . According to
.

V(t) ≤ − π
2λTs

√
ab
(aV1−λ(t) + bV1+λ(t)), adding the nonnegative

constant ∆ ≥ 0 to the right hand means that

.
V(t) = − π

2λTs
√

ab
(aV1−λ(t) + bV1+λ(t))− ∆

changes it format, giving:

dV(t)
dt = − π

2λTs
√

ab
aV1−λ(t)(1 + b

a V2λ(t))− ∆

= − π
2λTs

√
ab

aV1−λ(t)(1 + b
a V2λ(t) + 2λTs

√
ab

πaV1−λ(t)∆)
(11)

After transforming (11), we obtain

π
√

a
2Ts
√

b
dt = − λVλ−1(t)dV(t)

1 + (
√

b
a Vλ(t))

2
+ 2λTs

√
ab

πaV1−λ(t)∆
= − dVλ(t)

1 + (
√

b
a Vλ(t))

2
+ 2λTs

√
ab

πaV1−λ(t)∆
(12)

After compiling differentiation (12), in order to make the integration process simpler,
we have √

b
a

π

2Ts

√
a
b

dt =
π

2Ts
dt = −

d(
√

b
a Vλ(t))

1 + (
√

b
a Vλ(t))

2
+ 2λTs

√
ab

πaV1−λ(t)∆
(13)

Assume that V(ts) = 0 at time ts and integrate both sides of Equation (13) simul-

taneously on (0, ts]. Since V(t) ≥ 0, ∆ ≥ 0, then 2λTs
√

ab
πaV1−λ(t)∆ ≥ 0 and, according to

lim
t→∞

arctan(t) = π
2 , we have:

∫ ts
0

π
2Ts

dt = −
∫ ts

0
d(
√

b
a Vλ(t))

1+(
√

b
a Vλ(t))

2
+ 2λTs

√
ab

πaV1−λ(t)
∆
= −

∫ V(ts)
V(0)

d(
√

b
a Vλ(t))

1+(
√

b
a Vλ(t))

2
+ 2λTs

√
ab

πaV1−λ(t)
∆

=
∫ V(0)

0
d(
√

b
a Vλ(t))

1+(
√

b
a Vλ(t))

2
+ 2λTs

√
ab

πaV1−λ(t)
∆
≤
∫ V(0)

0
d(
√

b
a Vλ(t))

1+(
√

b
a Vλ(t))

2

⇒ πt
2Ts
|ts
0 ≤ arctan

(√
b
a Vλ(t)

)
|V(0)
0 ⇒ π

2Ts
ts ≤ arctan

(√
b
a Vλ(0)

)
⇒ ts ≤ 2Ts

π arctan
(√

b
a Vλ(0)

)
≤ 2Ts

π
π
2 = Ts

(14)



Mathematics 2023, 11, 56 7 of 19

When V(0) = 0, ts ≤ 2Ts
π arctan

(√
b
a Vλ(0)

)
= 0, it means that V(t) ≡ 0 is always

true, indicating that the system state has always been at the equilibrium point. �

The predefined-time convergence stability criterion of the nonlinear system is mainly
used to determine whether the trajectory tracking error located in the sliding mode surface
can converge to the origin within a predefined time. We can derive a predefined-time
sliding mode surface. The main goal of the proposed surface is to converge at that par-
ticular predefined time. This kind of time-varying sliding surface with predefined time
characteristics can be described as follows:

S(e(t)) =



.
e(t) + π

2λTs
√

ab
(ae1−λ(t) + be1+λ(t))−( .

e(0) + π
2λTs

√
ab
(ae1−λ(0) + be1+λ(0))

)
exp(−αt)

t ≤ t∆

.
e(t) + π

2λTs
√

ab
(ae1−λ(t) + be1+λ(t)) t∆ ≤ t ≤ T

(15)

where the parameters satisfy 0 < λ < 1, a > 0, b > 0, α > 0, Ts is the predefined-time, and
t∆ is a smaller constant that satisfies t∆ � Ts. Subsequently, a trajectory tracking error, e(t),
in the sliding mode surface may go to zero within a predefined-time Ts, which is given in
the form of a theorem, and can be proved theoretically.

Theorem 2. For any predefined-time Ts > 0, when the sliding mode surface (15) satisfies
S(e(t)) = 0, it shows that the error e(t) will converge to zero within the predefined-time, Ts,
and the convergence time is:

ts =
2Ts

π
arctan

√ b
a

Vλ
1 (0)

 < Ts (16)

where a = a21−0.5λ, b = b21+0.5λ, λ = 0.5λ.

Proof. Note variable as:

ω(t) =
(

.
e(0) +

π

2λTs
√

ab
(ae1−λ(0) + be1+λ(0))

)
exp(−αt) (17)

When S(e(t)) = 0 has
.
e(t) =

−
π

2λTs
√

ab
(ae1−λ(t) + be1+λ(t)) + ω(t) t ≤ t∆

− π
2λTs

√
ab
(ae1−λ(t) + be1+λ(t)) t∆ ≤ t ≤ T

,

establish the Lyapunov function as V1(t) = 0.5eT(t)e(t), and derive it to get

.
V1(t) = eT(t)

.
e(t)

=

−
π

2λTs
√

ab
(aeT(t)e1−λ(t) + beT(t)e1+λ(t)) + eT(t)ω(t) t ≤ t∆

− π
2λTs

√
ab
(aeT(t)e1−λ(t) + beT(t)e1+λ(t)) t∆ ≤ t ≤ T

=

−
π

2λTs
√

ab
(a21−0.5λV1

1−0.5λ(t) + b21+0.5λV1
1+0.5λ(t)) + eT(t)ω(t) t ≤ t∆

− π
2λTs

√
ab
(a21−0.5λV1

1−0.5λ(t) + b21+0.5λV1
1+0.5λ(t)) t∆ ≤ t ≤ T

=

−
π

2λTs
√

ab
(aV1

1−λ(t) + bV1
1+λ(t)) + eT(t)ω(t) t ≤ t∆

− π

2λTs
√

ab
(aV1

1−λ(t) + bV1
1+λ(t)) t∆ ≤ t ≤ T

(18)

where a = a21−0.5λ, b = b21+0.5λ, λ = 0.5λ. Due to the fact that t∆ satisfies t∆ � Ts, and
ω(t) contains the exponent part exp(−αt), when α takes a larger value, ω(t) can quickly
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tend to zero, so the influence of eT(t)ω(t) on
.

V1(t) is very small and (18) can actually be
equivalent to:

.
V1(t) = −

π

2λTs
√

ab
(aV1

1−λ(t) + bV1
1+λ(t)) (19)

According to Theorem 1, when the sliding mode surface (15) fulfils the condition
S(e(t)) = 0, which implies an error, e(t), it may converge to zero within the predefined-
time, with a convergence time of

ts =
2Ts

π
arctan

√ b
a

Vλ
1 (0)

 < Ts

From the above analysis, it can be seen that the predefined-time convergence sliding
mode iterative learning control strategy proposed in this paper can be described as design-
ing an iterative learning controller for a sliding mode surface, S(ek(t)), so that the sliding
mode surface S(ek(t)) converges to 0 after iterative learning. This means that the trajectory
tracking error, ek(t), will converge to 0 within the predefined-time, Ts, achieving the control
purpose of accurately tracking the desired trajectory within the preset interval [Ts, T]. �

This control strategy transforms the trajectory tracking control problem with an initial
trajectory tracking error value that is not zero into a sliding mode surface tracking control
problem with the initial value of the sliding surface at zero. It also establishes a bridge
connecting the iterative learning control theory of arbitrary iterative initial value and the
same iterative initial value. The theoretical connecting bridge not only solves the arbitrary
initial value problem of iteration but also simplifies the theoretical proof of the convergence
of iterative learning and can take advantage of the existing theoretical achievements of
iterative learning control.

For convenience, in the theoretical proof of the convergence of iterative learning, we
will take S(ek(t)) as Sk(t).

4. Convergence Analysis of PD-Type ILC

To ensure that the output of the nonlinear system accurately tracks the desired tra-
jectory within the predefined-time interval, [Ts, T], the sliding mode surface Sk(t) must
converge to zero. Therefore, let the desired trajectory of the sliding mode surface Sk(t) be
Sd(t) = 0, and

.
Sd(t) = 0, then denote the tracking error δSk(t) = Sk(t)− Sd(t) = Sk(t).

The PD-type closed-loop iterative learning controller for sliding mode surfaces is
designed as:

uk+1(t) = uk(t) + H1δSk+1(t) + H2δ
.
Sk+1(t)

= uk(t) + H1Sk+1(t) + H2
.
Sk+1(t)

(20)

where H1 is proportional gain matrix, H2 is differential gain matrix, and H1 and H2 are
positive-definite matrixes.

Theorem 3. In relation to the second-order nonlinear system defined in (1), if the PD-type iterative
learning controller is the controller which is described in (19), and the spectral radius satisfies

ρ([I− BH2]
−1) < 1 (21)

then, the sliding mode surface Sk(t) will converge to zero under the condition of k→ ∞ , ie
lim
k→∞

Sk(t) = 0.
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Proof. Introduce variable as:

r(t) = −
.
yd(t) +


π

2λTs
√

ab
(ae1−λ(t) + be1+λ(t))−ω(t) t ≤ t∆

π
2λTs

√
ab
(ae1−λ(t) + be1+λ(t)) t∆ ≤ t ≤ T

.
r(t) = −

..
yd(t) +


π

2λTs
√

ab
(a(1− λ)e−λ(t) + b(1 + λ)eλ(t))

.
e(t) + αω(t) t ≤ t∆

π
2λTs

√
ab
(a(1− λ)e−λ(t) + b(1 + λ)eλ(t))

.
e(t) t∆ ≤ t ≤ T

(22)

Then
S(t) =

.
y(t) + r(t)

.
S(t) =

..
y(t) +

.
r(t)

According to Formula (1), we have

Sk(t) =
.
x1k + r(t) = x2k + rk(t)

.
Sk(t) =

.
x2k +

.
rk(t) = f(xk, t) + Buk +

.
rk(t) , F(Sk, t) + Buk

(23)

where F(Sk, t) = f(xk, t)+
.
rk(t). Because f(xk(t), t) is a function of x1k, x2k, and within the time

interval t ∈ [0, T], it satisfies the Lipschitz condition regarding xk(t) and Sk(t) = x2k + rk(t).
Therefore, the function F(Sk, t) also satisfies the Lipschitz condition with variable Sk. That
is, there is a constant M2 > 0, with

||F(Sk, t)− F(Sd, t)||≤ M2||Sk − Sd|| (24)

The unique solution of this differential equation is obtained according to
.
Sk = F(Sk, t) +Buk

add Sk(0) = 0.

Sk =
∫ t

0
[F(Sk) + Buk]dτ =

∫ t

0
F(Sk)dτ +

∫ t

0
Bukdτ (25)

Then:

Sk+1(t) =
∫ t

0 F(Sk+1)dτ +
∫ t

0 Buk+1dτ =∫ t
0 F(Sk+1, τ)dτ +

∫ t
0 Bukdτ +

∫ t
0 B[H1Sk+1(τ) + H2

.
Sk+1(τ)]dτ =∫ t

0 [F(Sk+1)− F(Sk)]dτ + Sk +
∫ t

0 BH1Sk+1(τ)dτ + BH2Sk+1 −
∫ t

0 Sk+1(τ)
dBH2

dτ dτ

(26)

Then[
I− BH2]Sk+1(t) = Sk(t) +

∫ t

0
[F(Sk+1, τ)− F(Sk, τ)]dτ +

∫ t

0
BH1Sk+1dτ −

∫ t

0
Sk+1

dBH2

dτ
dτ (27)

is deformed to obtain

Sk+1 = [I− BH2]
−1{Sk +

∫ t

0
[F(Sk+1)− F(Sk)]dτ +

∫ t

0
BH1Sk+1dτ −

∫ t

0
Sk+1

dBH2

dτ
dτ} (28)

Note Ψ(t) = [I− BH2]
−1, and is defined as

Kk+1(Sk+1)(t) = −[I− BH2]
−1{
∫ t

0
[F(Sk+1)− F(Sk)]dτ +

∫ t

0
BH1Sk+1dτ −

∫ t

0
Sk+1

dBH2

dτ
dτ} (29)

Then:
Sk+1(t) + Kk+1(Sk+1)(t) = Ψ(t)Sk(t) (30)
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According to Formula (25), it can be deduced that:

Sk+1(t)− Sk(t) =∫ t
0 [F(Sk+1)− F(Sk)]dτ +

∫ t
0 BH1Sk+1dτ + BH2Sk+1 −

∫ t
0 Sk+1

dBH2
dτ dτ

(31)

By taking the norm on both sides of (31) we obtain

||Sk+1(t)− Sk(t)|| ≤ M2
∫ t

0 ||Sk+1 − Sk||dτ+∫ t
0 ||BH1Sk+1||dτ + ||BH2Sk+1|| +

∫ t
0 ||Sk+1||||dBH2

dτ ||dτ ≤
M2
∫ t

0 ||Sk+1 − Sk||dτ + N1
∫ t

0 ||Sk+1||dτ + N2||Sk+1||+ N3
∫ t

0 ||Sk+1||dτ ≤
M2
∫ t

0 ||Sk+1 − Sk||dτ + N4
∫ t

0 ||Sk+1||dτ + N2||Sk+1||

(32)

where: N1 = sup
τ∈[0,T]

||B(τ)H1||, N2 = sup
τ∈[0,T]

||B(t)H2||, N3 = sup
τ∈[0,T]

||dB(τ)H2
dτ ||, N4 = N1 + N3

According to Lemma 1, we have:

||Sk+1(t)− Sk(t)|| ≤
N4
∫ t

0 ||Sk+1||dτ + N2||Sk+1||+ M2
∫ t

0 [N4
∫ τ

0 ||Sk+1||dv + N2||Sk+1||]eM(t−τ)dτ ≤
N5
∫ t

0 ||Sk+1||dτ + N2||Sk+1||
(33)

where N5 = N4 + M2N4TeMT + M2N2eMT. By taking the norm on both sides of Equation (28),
we obtain:

||Kk+1(Sk+1)(t)|| ≤ ||[I− BH2]
−1||(M2

∫ t

0
||Sk+1 − Sk||dτ + N4

∫ t

0
||Sk+1||dτ) ≤ N6

∫ t

0
||Sk+1||dτ (34)

where N6 = sup
t∈[0,T]

||[I− BH2]
−1(M2N5T + M2N2N4).

Note N7 = max{N6, 1}, has

||Kk+1(Sk+1)(t)|| ≤ N7

∫ t

0
||Sk+1(τ)||dτ (35)

Similarly, it can be deduced that:

||Kk+1(Sk+1)(t)−Kk+1(Sk)(t)|| ≤ N8

∫ t

0
||Sk+1(τ)−Sk(τ)||dτ (36)

where the constant N8 > 1. According to Lemma 2, the particular function designed as
Kk+1, such that

Sk+1(t) + Kk+1(PSk)(t) = Ψ(t)Sk(t) (37)

where Kk+1(ΨSk)(t) satisfies

||Kk+1(ΨSk)(t)|| ≤ N9

∫ t

0
||Ψ(τ)Sk(τ)||dτ (38)

N9 > 0 is a constant in the Formula (38).
Defining the function Ok+1 is Ok+1(Sk)(t) = −Kk+1(ΨSk)(t); according to Lemma 3,

we know that N10 > 1 such that ||Ok+1(Sk)|| ≤ N10
∫ t

0 ||ΨSk||dτ, and

Sk+1(t) = (ΨSk)(t) + Ok+1(Sk)(t) = (Ψ + Ok+1)(Sk)(t) = (Ψ + Ok+1) · · · (Ψ + O1)(S0)(t) (39)

As mentioned in Lemma 3, if the condition of a spectral radius of Ψ that is
ρ(Ψ) = ρ([I− BH2]

−1) < 1, then Sk(t)→ 0, k→ ∞ is uniformly established for t, such
that the sliding mode surface, Sk(t), converges to zero uniformly under the control of
PD-type closed-loop iterative learning law.�
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According tso Theorem 2, when S(ek(t)) = 0, which signifies that tracking error, ek(t),
definitely converges to the equilibrium point within a predefined-time, Ts, then lim

t→Ts
ek(t) = 0,

such that the trajectory tracking error ek(t) of the nonlinear system under arbitrary initial
value of iteration is convergent in the predefined-time that is our control target.

5. Simulation Experiment

The simulation target of this article is a two degree of freedom (2-DOF) manipulator
undergoing repeated motion within the control of a trajectory tracking controller, as shown
below. The manipulator’s dynamic model is described as follows (see below Figure 2):

D(q(t))
[ ..

q1(t)..
q2(t)

]
+ C(q(t),

.
q(t))

[ .
q1(t).
q2(t)

]
+ g(q(t)) =

[
u1(t)
u2(t)

]
(40)
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In the above-mentioned Equation (39), q(t),
.
q(t),

..
q(t) denote the joint position, veloc-

ity, and acceleration of the manipulator respectively. D(q(t)) denotes the inertial matrix,
C(q(t),

.
q(t)) signifies the centripetal force matrix, g(q(t)) shows the gravity vector, and

u(t) denotes the control input. The expressions of the elements in the matrices D(q(t)),
C(q(t),

.
q(t)), and g(q(t)) are: D11(t) = m1l2

c1 + m2(l2
1 + l2

c2 + 2l1lc2 cos(q2(t))) + I1 + I2,
D12(t) = m2(l2

c2 + l1lc2 cos(q2(t)) + I2), h(t) = −m2l1l2 sin(q2(t)), D21(t) = m2(l2
c2 + l1lc2

cos(q1(t) + q2(t))), D22(t) = m2l2
c2 + I2, C11(t) = h(t)q2(t), C12(t) = h(t)q1(t) + h(t)q2(t),

C21(t) = −h(t)q1(t), C22(t) = 0, g1(t) = (m1lc1 + m2l1)g cos(q1(t)) + m2lc2g cos(q1(t)+
q2(t)), g2(t) = m2lc2g cos(q1(t) + q2(t))

The relevant parameters of the manipulator are listed in Table 1.

Table 1. Parameters of robotic manipulator.

Parameter Value Unit

Manipulator’s mass (m1) 10 kg

Manipulator’s mass (m2) 5 kg

Length of joint (l1) 1.00 m

Length of joint (l2) 0.50 m

Length of joint (lc1) 0.50 m

Length of joint (lc2) 0.25 m

Moment of inertia (I1) 0.83 kg.m2

Moment of inertia (I2) 0.30 kg.m2

Gravitational acceleration (g) 9.81 m·s−2
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The simulation time was set to 20 s, the number of iterations to 10, and the predefined
convergence time to Ts = 8s. With the Matlab command x0 = (rand (4, 1)−0.5).*10, we
produced a random initial point for each iteration, which we then used to determine the
initial value of the position and velocity of iterative learning.

The controller parameters for the simulation investigation are given in Table 2.

Table 2. Controller parameters.

Element Description

Simulation interval (t) 30 s

No. of iterations (K) 10 times

Predefined-convergence time (Ts) 8 s

Sliding surface p = 7, a = 1.4, b = 1, α = 100

ILC controller
PD Controller

Proportional gain = [1500, 0; 0, 800]
Differential gain = [1500, 0; 0, 400]

Reference position signal y1d = sin(3t)
y2d = cos(3t)

5.1. Case 1: Control Performance (Without Disturbances)

Based on the PD-type closed-loop iterative learning controller designed in this paper
for numerical simulation, the trajectory tracking results of the first, third, fifth, seventh,
and tenth iterations are shown in Figures 3–7. Because the initial value of the iteration in
each iterative learning process is randomly generated, the average value of the absolute
value of the trajectory tracking error after the predefined time Ts = 8s (called the average
absolute error) was selected as the iterative convergence evaluation standard. The iterative
convergence graph of the absolute average error and the number of iterations is shown in
Figure 8.
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The numerical simulation results show that in the simulation environment, where
the initial values qk(0) and

.
qk(0) were randomly generated in each iteration, based on the

PD-type closed-loop iterative learning controller designed in this paper, the two degree
of freedom manipulator system achieved iterative convergence after only two learning
iterations. The absolute average error after 8s was lower than 0.004, which shows that, based
on the control algorithm proposed in this paper, the end position of the manipulator can
accurately track the desired trajectory after a predefined time, which verifies the feasibility
of the algorithm. It effectively resolves the control problem such that the output of the
nonlinear system can track the desired trajectory with high precision within the predefined
time interval under an arbitrary initial value of iteration.

It can be seen from Figure 9 that the control torque of the manipulator was very large
in the first few seconds, but that it then reduced to less than 60 N, while the value of u2
was even less than 30 N. This demonstrates that the proposed controller has smaller control
input, which means the controller requires less effort from the manipulator.

5.2. Case 2: Robustness (With Disturbances)

In order to verify the robustness of the controller to external disturbances while
keeping the control parameters the same as in Case 1 and the initial value of the iteration in
each iterative learning process randomly generated, a numerical simulation was performed
after adding an external disturbance d(t) = [3sin(t), 1(1− e−t)]

T to the dynamic system of
the two degree of freedom manipulator. The trajectory tracking effect after 10 iterations is
shown in Figure 10. The iterative convergence diagram of the mean absolute error with
respect to the number of iterations is shown in Figure 11.
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It can be seen from Figures 10 and 11 that when an external disturbance was added
to the dynamic system of the manipulator, the end position of the manipulator could
still achieve high-precision tracking of the desired trajectory after the preset convergence
time. By comparing Figure 7 with Figure 10, it can be seen clearly that after the external
disturbance was added to the system, the absolute average error value and varying trend
after the preset convergence time did not change. This indicates that the addition of an
external disturbance to the mechanical arm dynamics system had no effect on the iterative
convergence accuracy and convergence speed. The proposed controller was able to achieve
high-precision trajectory tracking within the predefined time. It can therefore be concluded
that the iterative learning control algorithm proposed in this paper is strongly robust in the
face of bounded external disturbances.
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6. Conclusions

This paper presented a study into the problem of accurate tracking control of a second-
order nonlinear system with arbitrary iterative initial values within a preset time interval.
First, a time-varying sliding mode surface with predefined-time convergence and zero initial
value characteristics was constructed, and the Lyapunov stability criterion for predefined-time
convergence, which is used to evaluate the trajectory tracking error in the sliding mode surface
that can converge to the origin at the predefined-time, was given. Second, it was theoretically
proven that the predefined convergence time was independent of the initial value of iteration
and control parameters. Furthermore, in the process of designing an iterative learning controller,
the iterative control problem of trajectory tracking under an arbitrary initial value of iteration
was transformed into a time-varying sliding mode surface tracking iterative control problem
when the initial iteration value is zero. This establishes a bridge for converting the theory of
iterative learning control between the arbitrary initial value and the same initial value. Finally,
we presented a design for a PD-type closed-loop iterative learning controller based on a time-
varying sliding mode surface. It was proved theoretically that the trajectory tracking error of a
second-order nonlinear system can converge and stabilize within the sliding mode surface after
learning with a finite number of iterations. This confirmed that the system output was capable
of accurately tracking the desired trajectory within a predefined time.

This work expands the application area of iterative learning control theory in practical
engineering applications.
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