
University of Massachusetts Amherst University of Massachusetts Amherst 

ScholarWorks@UMass Amherst ScholarWorks@UMass Amherst 

Computer Science Department Faculty 
Publication Series Computer Science 

1996 

An Empirical Study of Dynamic Scheduling on Rings of An Empirical Study of Dynamic Scheduling on Rings of 

Processors Processors 

Dawn E. Gregory 

Lixin Gao 

Arnold L. Rosenberg 

Paul R. Cohen 

Follow this and additional works at: https://scholarworks.umass.edu/cs_faculty_pubs 

https://scholarworks.umass.edu/
https://scholarworks.umass.edu/cs_faculty_pubs
https://scholarworks.umass.edu/cs_faculty_pubs
https://scholarworks.umass.edu/cs
https://scholarworks.umass.edu/cs_faculty_pubs?utm_source=scholarworks.umass.edu%2Fcs_faculty_pubs%2F1365&utm_medium=PDF&utm_campaign=PDFCoverPages


An Empirical Study of Dynamic Scheduling on Rings of Processors
Extended Abstract

Dawn E. Gregory Lixin Gao Arnold L. Rosenberg Paul R. Cohen

Department of Computer Science, University of Massachusetts
Amherst, MA 01003, USA

Abstract

We empirically analyze and compare two distributed,
low-overhead policies for scheduling dynamic tree-
structured computations on rings of identical PEs. Our
experiments show that both policies give significant par-
allel speedup on large classes of computations, and that
one yields almost optimal speedup on moderate size rings.
We believe that our methodology of experiment design and
analysis will prove useful in other such studies.

1. Introduction

The promise of parallel computers to accelerate compu-
tation relies on the algorithm designer’s ability to keep all
(or most) of a computer’s processors fruitfully occupied all
(or most) of the time. In this paper, we study the problem of
efficiently scheduling evolving binary-tree-structured com-
putations on a ring-structured parallel computer. We thus
face the challenge of efficiently scheduling a computation
whose ultimate “shape” is unknown (precluding “offline”
planning as in [3, 4, 7]), on an architecture that has a large
diameter (precluding efficient random placements as in [6])
and small bisection bandwidth (precluding efficient massive
data transmission as in [5]).

We empirically analyze and compare two distributed,
low-overhead dynamic-scheduling policies. Our simpler
policy—calledKOSO, for “keep-one-send-one”—has each
PE keep one child of a spawning task and pass the other to
its clockwise neighbor in the ring; our more sophisticated
policy—calledKOSO?—operates similarly, but allows child-
passing only from a more heavily loaded PE to a more lightly
loaded one. Based on partial (mathematical) analyses of the
policies, we formulated two conjectures about the efficiency
of the schedules they produce. (a) Both policies yield close
to (optimal)p-fold speedup onp-PE rings, for large, signif-
icant classes of evolving tree-structured computations; (b)
policy KOSO? generally outperforms policyKOSO on these

computations. Our experiments largely substantiate both
conjectures, at least on moderate-size rings.

Our concern here is with the design and analysis of sim-
ulation experiments as much as with comparing scheduling
policies.

2. The Formal Setting

The architecture. A p-PE ring of processing elements
(PEs) hasp identical PEs, denotedP0;P1; : : : ;Pp�1, with
each PEPi connected to itsclockwise neighbor P i+1modp

and itscounterclockwise neighbor Pi�1modp.

The computational load. In order to simplify the design
of our experiments, we formulate a purely combinatorial
environment which abstracts the behavior of multigrid al-
gorithms. Our abstract computational load comprises dy-
namically growingbinary tree-dags (BTs, for short).

The (dynamic) computation that generates a BTT pro-
ceeds as follows, until no active leaves remain. Initially,
T has a single node, named1, which is simultaneously its
root and its (current)active leaf. At each step, some set (de-
pending on the schedule) of then-current active leaf-tasks
getexecuted. An executed taskx may:

� halt, sox becomes apermanent leaf;

� spawn two children, the new active leaves2x and
2x+ 1, sox becomes a nonleaf.

Policies KOSO and KOSO?. Our two scheduling policies
differ in their load-balancing regimens but share the same
scheduling policy. Both have PEs retain tasks awaiting exe-
cution in a local priorityqueue, ordered by the tasks’ heights
in the BTT being scheduled. Each computation begins with
the root ofT as the sole occupant of PEP0’s task-queue and
all other PEs’ task-queues empty. Subsequently, the task-
queue of each PE contains some subset of the then-active
leaves ofT . At each step, eachPi having a nonempty
task-queue:



1. executes the active leafx in its task-queue which is
first in the mandated order;

2. if taskx spawns two children, thenPi adds the new
leaf2x to its task-queue. UnderKOSO, Pi simultane-
ously sends the new leaf2x + 1 to the task-queue of
PEPi+1modp. UnderKOSO?, Pi sends task2x + 1

to Pi+1modp only if the latter PE has a lighter load
thanPi; otherwise,Pi adds this task also to its own
task-queue.

We assess one time unit for the entire process of executing
a task and performing the balancing actions just described.
Thus, we ignore the fact that a step ofKOSO? consumes a bit
more real time than a step ofKOSO, because of the required
comparisons of loads at each step. Our timing assessment
is congruous with the fine-grain nature of the motivating
multigrid algorithms.

Table 1 illustrates howKOSO and KOSO? distribute the
nodes of the6-level complete binary treeT 6 in the ringR4.

PE level KOSO-resident nodes KOSO?-resident nodes

P0 0 1 1
1 2 2
2 4 4, 5
3 8 8, 10, 11
4 16, 31 16, 17, 20, 21, 22
5 32, 47, 55, 59, 61, 62 32, 33, 34, 35, 40, 41,

42, 44, 45
P1 1 3 3

2 5, 6 6
3 9, 10, 12 9, 12, 13
4 17, 18, 20, 24 18, 23, 24, 25, 26
5 33, 34, 36, 40, 48, 63 36, 37, 43, 46, 47, 48,

50, 52
P2 2 7 7

3 11, 13, 14 14
4 19, 21, 22, 25, 26, 28 19, 27, 28, 29
5 35, 37, 38, 41, 42, 44, 38, 49, 51, 53, 54, 55,

49, 50, 52, 56 56, 57, 58
P3 3 15 15

4 23, 27, 29, 30 30, 31
5 39, 43, 45, 46, 51, 53, 39, 59, 60, 61, 62, 63

54, 57, 58, 60

Table 1. The node-assignments when R4 exe-
cutes T 6 under policies KOSO and KOSO?.

3. Motivating our conjectures

Our conjectures about the individual and comparative
behaviors of policiesKOSO andKOSO? are founded on two
analytical results which may lend the reader some intuition
about how the policies work. The first motivating result
asserts that policyKOSOschedules BTs that ultimately grow
into complete binary trees asymptotically optimally.

Theorem 1 Under policy KOSO, Rp executes any BT that
grows into the height-n complete binary tree T n within time
(2n � 1)=p+ (low-order terms). [2]

The second motivating result focuses on howKOSO and
KOSO? distribute work to the PEs ofRp while the evolving
BT keeps growing. In both parts of the following theo-
rem, we start growing a BT with a single task in PEP0

and all other PEs idle, and we observe the pattern of work
distribution throughoutR p.

Theorem 2 Focus on an evolving BT in which every exe-
cuted task spawns two new tasks.
(a) After N � p � 1 steps of policy KOSO, the numbers of
unexecuted tasks residing in the heaviest and lightest loaded
PEs of Rp differ by p � 2. [2]
(b) AfterN � (p�1)2 steps of policy KOSO?, the numbers of
unexecuted tasks residing in the heaviest and lightest loaded
PEs of Rp differ by 1.

4. The Experimental Setup

Because multigrid computations rarely generate com-
plete binary trees in practice, we wish to explore the be-
haviors ofKOSOandKOSO? under more realistic conditions.
To this end, we designed a suite of experiments based on
simulation ofRp under each policy.

The inputs to the experiments. A key issue in simula-
tion experiments is the generation of random test instances
that model realistic computation. We created an abstract
analogue of a real, important class of tree-structured com-
putations, namely, the computations that arise from numer-
ically integrating real-valued functions on real intervals us-
ing refinement techniques such as the Trapezoid Rule or
Simpson’s Rule. (Our abstraction extends easily to higher-
dimensional multigrid-typealgorithms.) BTs arise naturally
from such algorithms: tasks correspond to real intervals;
spawning corresponds to bisecting the current interval to get
more accuracy; halting corresponds to achieving adequate
accuracy or encountering inadequate (computer) resolution.

We seek a probabilistic growth model that leads to BTs
similar in structure to those one might expect to be generated
by random applications of the Trapezoid Algorithm. To this
end, we desire a growth model that produces BTs which:

� are “bushy” near the root (since most nonlinear func-
tions will require some interval refinement initially);

� rather quickly get “scrawny” (since most “actual”
functions will be rather smooth throughout most of
the domain of interest);

� stay rather “shallow” (since [numerical] resolution
will be exceeded before a BT gets very deep).

Our formal model employs a single real-valued parameter
� < 1 to generate a suite of random trees for each of our
experiments. Each experiment works on a familyF(�) of
random trees, which is defined by the rule:



Each level-` node of an evolving BT in F(�)

spawns (two children) with probability � ` and
halts with probability 1� �

`.

Clearly our BTs will be shallow and will quickly get
scrawny. To foster “bushiness” near our BTs’ roots, we use
values of� that are close to unity—specifically, no smaller
than0:96.

The simulation environment. The input generator and
network simulation were written in GNU C and run on a
DEC Alpha under OSF1.1

Our probabilistic input model employs a linear congruen-
tial random number generator. Because spawning decisions
are made locally, the order in which tasks are executed mod-
ifies the shape of the evolving tree. Thus, both the number
of PEs and the policy may result in different trees, even if the
number generator is initialized with the same “seed” value.

The simulation is configured by three parameters: the
number of PEs,p � 3, the load-balancing regimen,Alg 2
fKOSO,KOSO?g, and the input family,� � :96. After running
to completion, the simulator reportsN , the total number of
tasks consumed,h, the maximum height of encountered
tasks, andT , the total running time.

5. The Experiments and Their Results

Our first analyses are based on data from apilot exper-
iment, in which we exercised both policies under a wide
range of conditions. We executed 20 random samples from
the input families� = f:96; :965; :97g on the networksR3,
R6, R10, andR20 under each policy, yielding 480 data
points (2 policies� 20 instances� 3 input families� 4
networks).

Because our conjectures are concerned with network ef-
ficiency, we formulate this analysis in terms of theoverhead,
� � 0, incurred over a trial.� represents the difference be-
tween actual running time and optimal running time, com-
puted as� = T � dN=pe.

To verify our first conjecture—that both of our policies
are “good”—we consider the relationship between� and
N : if the policies are performing optimally, then� andN
will be unrelated. Figure 1 displays this relationship as
captured in the pilot experiment; clearly,� increases asN
increases. We derive an equation for this relationship using
linear regression:� = :013N+26:9. Even though the slope
.013 is fairly small, it can be statistically distinguished from
zero, and we must conclude thatN and� are related. On the
other hand, the line accounts for only 16% of the variance
in �, suggesting that other factors are at work.

Our second conjecture—thatKOSO? outperformsKOSO—
suggests that�should be significantly smaller forKOSO? than

1Source code for the simulation can be obtained via the WWW at
http://eksl-www.cs.umass.edu/�gregory/SPDP.html.

E
P
S
I
L
O
N

N

1000

2000

10000 20000 30000 40000 50000

Figure 1. The relationship between N and �.
Light circles denote KOSO trials, dark squares
represent KOSO?.

for KOSO. As a first test of this, we compare the overhead
incurred by each policy, using at-test to determine if the
difference we observe could have arisen by random chance.
Comparing the average overhead forKOSO (305:9) with
that of KOSO? (91:8) yields a test statistic of5:75, hence
a probability< 10�5 that the policies incur equal overhead.

Extending the analysis. Our first experiment has shown
thatKOSO? is apparently a better load-balancing policy, but
it has not resolved the issue of (approximate) optimality.
Because we know that large rings may incur additional over-
head due to the cost of initial loading, we extend the analysis
to account for ring sizep. Two-factoranalysis of variance
(ANOVA) separates the influences ofp andAlg on� by gen-
eratingF-statistics for three effects: one forp (F = 100:9),
one forAlg (F = 57:5), and one for the non-linearinter-
action between them (F = 18:9). All three of these values
are highly significant (indicating a probability of no effect
< 10�5), which means that bothp andAlg affect the value
of �, and thatp affects the way thatAlg affects the value of
�. The average� under each condition is reported in table 2.

Policy 3 6 10 20
KOSO 29.1 65.8 229.6 899.1
KOSO? 2.8 7.3 19.8 337.2

Table 2. Mean � for Alg and p.

Under both policies,� increases significantly between
p = 10 andp = 20. This leads us to suspect the results are
heavily influenced by thestartup costs associated with load-
ing the ring. To isolate startup costs from other overhead,
we ran another experiment that measures two new variables:
Startup, the number of steps before all PEs become busy,
andSteady, the number of steps in which all PEs are occu-
pied. We divide each by total running timeT , to arrive at
the fraction of running time spent in each condition.



We repeated the two-factor ANOVA ofp andAlg on each
of these variables, in hopes of eliminating one or more of the
effects. The analysis ofStartupshows thatp has a significant
impact, but the effect ofAlg and the nonlinear interaction
have gone away. This is precisely what we predicted: ring
size affects the overhead due to startup costs.

Unfortunately, our analysis shows thatSteady is subject
to the same effects as the overhead�. Thus, while the new
experiment yielded one interesting result, we have reached
another dead end.

Looking inside the computation. Still lacking precise
quantification of the effects of eitherporAlg, we ran another
experiment to look even deeper inside the computation. In
this experiment, we collectedtime-series of the number of
busy PEs and the net queue-size for each PE on each step
of the trial. From a sample of such trials, we selected four
representative instances of approximately equal length, one
for each algorithm on two different size rings. These data
are displayed in figure 2.

(a) 5

10

50 100 200150 250

10

20

30

50 100 200150 250

(b)
2

3

4

5

6

7

8

100 200 300

10

20

30

40

50

100 200 300

(c)
5

10

50 100 200150 250

10

20

50 100 200150 250

(d)
2

3

4

5

6

7

8

100 200 300

10

20

30

100 200 300

Figure 2. Busy PEs (left) and queue-sizes
(right) for: KOSO on (a) R16 and (b) R8; KOSO?

on (c) R16 and (d) R8.

The plots in figure 2 show a variety of interesting features.
First, note that the number of busy PEs (left) never stabilizes
onR16 (plots (a) and (c)), while onR8 (plots (b) and (d))
this number quickly reaches a plateau and remains there

for most of the trial. This plateau is indicative of the ring
reaching its steady-state, where all PEs are busy. Thus, we
see further evidence of ring size affecting the startup time:
larger rings never reach the steady state.

The graphs of queue-size (right) tell an even more inter-
esting story. When the ring never reaches its steady state
(plots (a) and (c)), we see a large variance among the queue-
sizes. When the network spends most of its time in steady
state (plots (b) and (d)), this variance should be reduced;
however,this occurs only under policy KOSO?. In plot (d)
we see that the queues forKOSO? are nearly the same size
over the entire trial. This is an important result, because
it shows thatKOSO? results inmore even queue sizes than
KOSO; thus,KOSO? literally does a better job ofbalancing the
load among the PEs, by minimizing variance in the length
of PE queues.

6. Ongoing Work

Having (largely) substantiated our conjectures on an ab-
stract computational load, we are currently devising an ex-
perimental study that will compare the results reported here
with those obtained from usingKOSO andKOSO? to sched-
ule “real” tree-structured computations, specifically those
generated by multigrid algorithms.

Acknowledgements. The research of L.-X. Gao and A. L.
Rosenberg was supported in part by NSF Grant CCR-92-21785.
The research of D. E. Gregory was supported by an NSF Graduate
Research Fellowship.

References

[1] P.R. Cohen (1995):Empirical Methods for Artificial Intelli-
gence. MIT Press, Cambridge, MA.

[2] L.-X. Gao and A.L. Rosenberg (1996): Toward efficient
scheduling of evolving computations on rings of processors.
J. Parallel Distr. Comput., to appear.

[3] L.-X. Gao, A.L. Rosenberg, R.K. Sitaraman (1995): Optimal
architecture-independentschedulingof fine-grain tree-sweep
computations.7th IEEE Symp. on Parallel and Distr. Pro-
cessing, 620-629.

[4] S.L. Johnsson (1987): Communication efficient basic linear
algebra computations on hypercube architectures.J. Parallel
Distr. Comput. 4, 133-172.

[5] R.M. Karp and Y. Zhang (1988): Randomized parallel algo-
rithms for backtrack search and branch-and-boundcomputa-
tion. J. ACM 40, 765-789.

[6] A.G. Ranade (1994): Optimal speedup for backtrack search
on a butterfly network.Math. Syst. Theory 27, 85-101.

[7] T. Yang and A. Gerasoulis (1991): A fast static scheduling
algorithm for dags on an unbounded number of processors.
Supercomputing ’91, 633-642.


	An Empirical Study of Dynamic Scheduling on Rings of Processors
	tmpbLHiKO.pdf

