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ABSTRACT

Trajectory-Tracking Control of the Ball-and-Plate System

Dominic E. Riccoboni

The Mechatronics group in the Mechanical Engineering department of Cal Poly is

interested in creating a demonstration of a ball-and-plate trajectory tracking con-

troller on hardware. The display piece will serve to inspire engineering students to

pursue Mechatronics and control theory as an area of study. The ball-and-plate sys-

tem is open-loop unstable, underactuated, and has complicated, nonlinear equations

of motion. These features present substantial challenges for control - especially if

the objective is trajectory tracking. Because the system is underactuated, common

nonlinear trajectory tracking control techniques are ineffective. This thesis lays out

a theoretical foundation for controlling the hardware.

Several important concepts related to ball-and-plate trajectory tracking control are

presented. Models of the system, with various assumptions, are given and used in

deriving control law candidates. To limit project scope, reasonable control criteria

are introduced and used to evaluate designs from the thesis. Several control archi-

tectures are explored, these being Full-State Feedback with Integral Action, Single-

Input-Single-Output Sliding Mode, and Full-State Feedback with Feed Forward. The

mathematical reasoning behind each is detailed, simulation results are shown to val-

idate their practicality and demonstrate features of the architectures, and trajectory

similarity measure studies are produced to evaluate controller performance for a wide

range of setpoint functions.

The Full-State Feedback with Feed Forward controller is recommended based on its

theoretical advantages and compliance with the control criteria over the competing
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designs. The control architecture has a proof of asymptotic tracking in the linear

model, has excellent performance in simulations that use a nonlinear plant model,

and produces the most pleasing visual experience when viewed in animation.
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Chapter 1

BACKGROUND

The Mechatronics group in the Mechanical Engineering department of Cal Poly is

interested in showcasing a ball-and-plate trajectory-tracking controller on hardware.

The device will serve as a display piece intended to inspire engineering students to

pursue Mechatronics and control theory as an area of study. The ball-and-plate

system is also of scholarly interest, as it has properties that prove challenging for

control algorithm development and can serve as a medium to explore mathematical

techniques in control theory.

This section introduces the ball-and-plate system and outlines a few different dynamic

models. It begins on the topic of trajectory similarity measures, details some proper-

ties relevant to the trajectory-tracking control problem, and reviews some trajectory-

tracking control schemes already developed. These are done with reference to prior

work in the Cal Poly Mechatronics group, and papers from literature.

A graduate mechatronics student at Cal Poly has developed prototype ball-and-plate

hardware, Mangin [3]. A render of the SolidWorks model for the hardware created

by Mangin is shown in Fig. 1.1. This thesis also builds upon model validation

and simulation work done by Richter [6]. The dynamic models were developed by

Richter, and are only detailed in this thesis to the extent necessary to facilitate control

architecture discussion in Chapter 3. The same simplifying assumptions implemented
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by Richter1 were implemented for the plant model used in simulations here, but the

physical parameters have changed since the prototype was completed by Mangin.

Figure 1.1: Render of Ball-and-Plate Platform SolidWorks Assembly Man-
gin [3, p.25]

1.1 Model

This section gives an overview of the system model used in analysis and simulation of

the control systems presented. First, a coupled nonlinear model is introduced, though

explicit formulas are omitted here. Then a decoupled nonlinear model is produced

using some simplifying assumptions. From there, linearizing assumptions and the

decoupled linear model are outlined. Schematics of the system, given by Richter [6],

are shown in figures 1.2 and 1.3.

1The model primarily used assumes that there is no damping in the u-joint, no rolling friction
for the ball, that the ball rolls without slip, and that the ball does not spin about its z axis in the
plate frame.

2



Figure 1.2: System 1 Schematic Richter [6, p.8]

Figure 1.3: System 2 Schematic Richter [6, p.8]

Table 1.1 defines the parameters used in the models, and their approximate values for

the physical system. Values in this table were used to produce numerical simulation

results in later chapters.
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Table 1.1: Parameter Definitions and Numerical Values

rb Radius of the ball 0.0195 [m]

mb Mass of the ball 0.225 [Kg]

zb Distance between center of the u-joint
and center of gravity of the ball

0.122 [m]

zp Distance between center of the u-joint
and center of gravity of the plate

0.0857 [m]

mp Mass of the plate 3.98 [Kg]

Ip,xx Mass moment of inertia of the plate
about its x axis2.

0.079 [Kg m
s2

]

Tmax Max u-joint torque. Applies to Tβ and
Tγ inputs.

1.3 [Nm]

The notation used in this thesis differs in that Rz and Ro of figures 1.2 and 1.3 (the

z-direction distances from the center of the u-joint to the centers of mass of the plate

and the ball, respectively) are replaced with zp and zb (defined in Table 1.1).

More detailed derivations and model analysis than are present in this chapter are

given by Richter [6]. However pertinent model details are included here to give readily

available context to topics discussed later. These details are particularly helpful in

Chapter 3 on control architectures. Additionally, the parameters of the physical

system have since changed3, and there exists notation and formulations specific to

this thesis that must be included.

2The coordinate system used is introduced in Figures 1.2 and 1.3. Ip,yy is assumed to be identical
to Ip,xx and Ip,zz never enters into the dynamics. All products of inertia are assumed to be zero.

3And therefore the matrices have changed.
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1.1.1 Coupled Nonlinear Model

The coupled nonlinear model of the ball-and-plate system was developed by Richter [6]

using a Newton-Euler modeling approach. This thesis uses a substantively identical

parametric model. The full nonlinear model that couples the dynamics of the system

is far too cumbersome to display in a fully expanded form. Despite the cumbersome

nature of the full nonlinear model, it still has utility in that symbolic expressions for

it, generated using the MATLAB® Symbolic Math Toolbox, can be converted into

MATLAB® functions for use in numerical simulation.

The nonlinear equation of motion (1.1), most generally, is a nonlinear function of the

state vector x and the input vector u.

ẋ = F(x,u) (1.1)

The state vector, rearranged from that of Richter, is (1.2).

x = [ x ẋ β β̇ y ẏ γ γ̇ ]T (1.2)

As defined by Richter, x and y states are the positions and velocities of the ball in

the plate frame, and the β and γ states are the u-joint angles (one for each u-joint

axle) and angular velocities. These states are shown in the schematics of figures 1.2

and 1.3. The inputs to the system are the torques about the u-joint axles and the

input vector is (1.3).

u = [ Tβ Tγ ]T. (1.3)
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The system is control-affine, meaning that state-dependant coefficients on the input

variables can be factored out and the nonlinear equations can be written as

ẋ = f(x) + g(x)u (1.4)

The matrix g(x) is, once again, far too cumbersome to display. Its dimensions,

however, are known to be 8× 2. This significant result is related to the fact that the

system is uderactuated - a concept that will be discussed in Section 1.2.3.

1.1.2 Decoupled Nonlinear Model

The decoupled nonlinear model comes from imposing simplifying assumptions on the

coupled nonlinear model. The decoupled system can be approximated as two entirely

separate “teeter-totters”, one for each of the u-joint rotations. System 1 involves x

and β variables alone, and is shown in Fig. 1.2. System 2 involves y and γ and is

shown in Fig. 1.3

In each “teeter-totter” system, the effect of the other system is considered negligible.

For system 1, the pertinent state variables are given by (1.7), and for system 2, they

are given by (1.8). The decoupled nonlinear state equations have the form:

ẋ1 = f1(x1) + g1(x1)u1 (1.5)

ẋ2 = f2(x2) + g2(x2)u2 (1.6)

6



where the decoupled state vectors are

x1 = [ x ẋ β β̇ ]T (1.7)

x2 = [ y ẏ γ γ̇ ]T (1.8)

and the decoupled inputs are

u1 = Tβ (1.9)

u2 = Tγ. (1.10)

The decoupled nonlinear model can be derived by making assumptions when summing

moments in the kinetic analysis for the full nonlinear model. For both “teeter-totter”

systems, system 1 and system 2, the assumption is that the u-joint angle and angular

velocity of the other system are zero. For system 1, γ and γ̇ are set to zero, and for

system 2, β and β̇ are set to zero.

Free-body and kinetic diagrams for the ball alone are given in Fig. 1.4. The vectors

FW ,Ffr and FN represent the weight of the ball, the friction force, and the normal

force, respectively.

The sum of moments are taken about the contact point (point c) of the ball, i.e.,

∑
FBD

Mc =
∑
KD

Mc.
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Figure 1.4: The Free-Body Diagram (FBD) Equated to the Kinetic Dia-
gram (KD) for the Ball Alone Richter [6, p.21]

For the sum of moments about point c in the y direction, with the decoupling as-

sumptions, the result is a moment equation that only contains variables of x1 (1.7).

This moment equation is

g mb rb sin (β) =
7mb rb ẍ

5
+ β̈ mb rb zb +

2 β̈ mb rb
2

5
− β̇2

mb rb x,

which simplifies to

g sin (β) =
7 ẍ

5
+ β̈

(
zb +

2 rb
5

)
− β̇2

x. (1.11)

Doing the same for the sum of moments about point c in the x direction yields a

moment equation that only contains variables of x2 (1.8). This moment equation is

given by

g mb rb sin (γ) = −7mb rb ÿ

5
+ γ̈ mb rb zb +

2 γ̈ mb rb
2

5
+ γ̇2mb rb y,

8



which simplifies to

g sin (γ) = −7 ÿ

5
+ γ̈

(
zb +

2 rb
5

)
+ γ̇2 y. (1.12)

For each system, there are two unknown accelerations, so an additional equation is

needed. The additional equation for each system can be found by considering the

free-body and kinetic diagrams for the ball and plate together, Fig. 1.5.

Figure 1.5: FBD = KD For the Ball and Plate Together Richter [6, p.24]

The the u-joint torques Tm,y and Tm,x in Fig. 1.5 correspond to Tγ and Tβ respec-

tively4. The x, y, and z-direction reaction forces at the u-joint are FR,x, FR,x, and

FR,z and the force of the plate’s weight is Fw,p. To get the two additional equations,

moments are summed at the u-joint (point u), i.e.,

∑
FBD

Mu =
∑
KD

Mu,

4These u-joint torques, are idealized, and the hardware actually contains actuators that push
on the plate through connecting rods. As a consequence, the effective u-joint torques need to be
estimated. This detail is discussed later in Section 2.4.
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and the same decoupling assumptions used to derive (1.11) and (1.12) are imple-

mented to yield

Tβ + g mb x cos (β) + g mb zb sin (β) + g mp zp sin (β) =

β̈

(
mb x

2 +
2 mb rb

2

5
+ Ip,xx + mb zb

2 + mp zp
2

)

+ ẍ

(
mb zb +

2mb rb
5

)
+ 2 β̇ mb x ẋ (1.13)

and

Tγ + g mb zb sin (γ) + g mp zp sin (γ)− g mb y cos (γ) =

γ̈

(
mb y

2 +
2mb rb

2

5
+ Ip,xx + mb zb

2 + mp zp
2

)

+ ÿ

(
−mb zb −

2mb rb
5

)
+ 2 γ̇ mb y ẏ. (1.14)

Together, (1.11) and (1.13) produce (1.5) when ẍ and β̈ are solved for and the system

is put in the first-order, control-affine representation. Equations (1.12) and (1.14)

produce (1.6) in the same fashion. For system 1, without carrying out the matrix

operations, the accelerations in the state-space representation are given by

ẍ
β̈

 = M−1
1 b1 (1.15)
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where

M1 =

 7
5

zb + 2 rb
5

mb zb + 2mb rb
5

mb x
2 +mb zb

2 +mp zp
2 + 2mb rb

2

5
+ Ip,xx


and

b1 =

 β̇
2
x+ g sin (β)

Tβ + g mb x cos (β) + g mb zb sin (β) + g mp zp sin (β)− 2 β̇ mb x ẋ

 .
For system 2, they are given by

ÿ
γ̈

 = M−1
2 b2 (1.16)

where

M2 =

 7
5

−zb − 2 rb
5

−mb zb − 2mb rb
5

mb y
2 +mb zb

2 +mp zp
2 + 2mb rb

2

5
+ Ip,xx


and

b2 =

 γ̇2 y − g sin (γ)

Tγ + g mb zb sin (γ) + g mp zp sin (γ)− g mb y cos (γ)− 2 γ̇ mb y ẏ

 .

11



The input vector for system 1 is then

g1(x1) =



0

− 5 zb+2 rb
7mb x2+2mb zb2−4mb rb zb+7mp zp2+2mb rb2+7 Ip,xx

0

7
7mb x2+2mb zb2−4mb rb zb+7mp zp2+2mb rb2+7 Ip,xx


(1.17)

and the input vector for system 2 is

g2(x2) =



0

5 zb+2 rb
7mb y2+2mb zb2−4mb rb zb+7mp zp2+2mb rb2+7 Ip,xx

0

7
7mb y2+2mb zb2−4mb rb zb+7mp zp2+2mb rb2+7 Ip,xx


. (1.18)

1.1.3 Decoupled Linearized Model

The linearized model comes from taking the Jacobian of the coupled nonlinear equa-

tions of motion with respect to both the states and the inputs. The resulting matrices

are evaluated at a stable operating point where the state vector (1.7) is zeroed. In

this state, the plate is perfectly horizontal and the ball is in the center of the plate.

A linear state-space model results (1.19) where A and B are matrices of constant

coefficients (Richter [6]).

ẋ = Ax +Bu (1.19)

Evaluation of the Jacobian matrices at the operating point - with numerical pa-

rameters substituted in - yields numerical A and B matrices and the full linearized
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state-space model (1.20). Results here differ from those of Richter and follow from

the prototype designed by Mangin.



ẋ

ẍ

β̇

β̈

ẏ

ÿ

γ̇

γ̈



=



0 1 0 0 0 0 0 0

−1.8786 0 4.1026 0 0 0 0 0

0 0 0 1 0 0 0 0

20.2622 0 31.3281 0 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 −1.8786 0 −4.1026 0

0 0 0 0 0 0 0 1

0 0 0 0 −20.2622 0 31.3281 0





x

ẋ

β

β̇

y

ẏ

γ

γ̇



+



0 0

−0.8511 0

0 0

9.1798 0

0 0

0 0.8511

0 0

0 9.1798



Tβ
Tγ

 (1.20)

The linearized system turns out to be decoupled, and can be determined via lineariza-

tion starting from the nonlinear decoupled model of Section 1.1.2 rather than from

the coupled nonlinear model of Section 1.1.1. To do this, one simply employs the

same Jacobian linearization that produced (1.20) starting from the decoupled nonlin-

ear model. The decoupled linear systems have the same two state vectors, x1 and x2,
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and input vectors, u1 and u2, as Section 1.1.2. The linear decoupled, state equations

are of the form

ẋ1 = A1x1 +B1Tβ (1.21)

ẋ2 = A2x2 +B2Tγ. (1.22)

Expanded out, equations (1.21) and (1.21) are



ẋ

ẍ

β̇

β̈


=



0 1 0 0

−1.8786 0 4.1026 0

0 0 0 1

20.2622 0 31.3281 0





x

ẋ

β

β̇


+



0

−0.8511

0

9.1798


Tβ (1.23)



ẏ

ÿ

γ̇

γ̈


=



0 1 0 0

−1.8786 0 −4.1026 0

0 0 0 1

−20.2622 0 31.3281 0





y

ẏ

γ

γ̇


+



0

0.8511

0

9.1798


Tγ. (1.24)

The effectiveness of this model is discussed by Richter and it is determined that there

are potentially non-negligible differences between simulation results for the linear and

nonlinear models. Despite these differences, certain control techniques presented in

this thesis will utilize systems (1.23) and (1.24) in their derivation. Other control laws

discussed will instead utilize the nonlinear decoupled equations in Section 1.1.2. These

nonlinear decoupled equations will have less mismatch between the internal model of
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the controller and the coupled nonlinear model of Section 1.1.1. These laws will be

evaluated in the context of nonlinear model simulations (unless otherwise specified)

as well as the physical system. So, in this thesis, the discrepancy between the models

will only be discussed to the extent that control law effectiveness is concerned.

1.2 Literature Review

This section gives insight into the trajectory-tracking control problem for the ball-

and-plate system and introduces some control schemes present in literature. The

asymptotic tracking problem as defined in Applied Nonlinear Dynamics, Slotline and

Li [8], is presented. Methods of evaluating control schemes that do not posses a

proof of asymptotic tracking are shown in the Trajectory Similarity Measures section,

referencing the work of Tao et al. [9]. Underactuation, the primary road block to a

nonlinear trajectory-tracking controller for the system, is explored through the work

of Tedrake [10]. There, common nonlinear trajectory-tracking control schemes are

shown to be ineffective for the ball and plate.

1.2.1 The Asymptotic Tracking Problem

In Applied Nonlinear Dynamics, Slotline and Li [8] present the Asymptotic Track-

ing Problem:

“Given a nonlinear dynamics system described by”

ẋ = f(x,u, t)

y = h(x)
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“and a desired output trajectory yd, find a control law for the input u such that,

starting from any initial state in a region Ω, the tracking errors y(t) − yd(t) go to

zero, while the whole state x remains bounded.” The authors also note that, for

practicality, one may require that “x actually remain ‘reasonably’ bounded, and, in

particular, within the range of validity of the system model.”

For our model, there is no consideration for where the edge of the plate is (where the

ball would fall off), and there is no consideration for the fact that the plate cannot

turn upside down (mechanical constraints in the u-joint). Even if the plate could turn

upside down, the model does not capture the fact that the ball would no longer be

constrained to the plate and would fall off. Although these unmodelled constraints

of the system are not captured in the control criteria of Chapter 2, they are obeyed

by simulation results presented in this thesis5.

For some of the work done in this thesis, the distinction that the state remain bounded

is redundant. In the feed-forward controller of Section 3.3.1, the state vector is

comprised of error states alone, and the output is the state vector. In this case, if

there is a proof that the tracking error will asymptotically approach zero then the

state is clearly bounded and no further proof is required. However, for the single-

input-single-output (SISO) sliding mode and full-state feedback (FSFB) with integral

action controllers of Sections 3.2.1 and 3.1.1, there isn’t a known desired trajectory

in the entire state vector. As a consequence, a state vector of error states cannot

be constructed and the output vector is necessarily a subset of the state vector. For

the SISO sliding mode and FSFB with Integral action controllers, one would need to

independently prove that both requirements are satisfied.

5Unless the simulation results are presenting an invalid or unstable controller response.
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This thesis does not attempt to give proofs of asymptotic tracking for the control laws

presented because, in all cases, it is impossible to do so6. However, it does present a

means of evaluating tracking performance for laws where asymptotic tracking cannot

occur. The concept of a Trajectory Similarity Measure (TSM) is introduced in Section

1.2.2 and a suitable choice of TSM is presented in Section 2.2.

1.2.2 Trajectory Similarity Measures (TSMs)

Trajectory similarity measures give us a way to quantify, in some sense, the distance

between two trajectories in space and time. The various TSMs in the literature

treat space and time differently, according to different sets of goals, and each with

different definitions of “similar”. In “A comparative analysis of trajectory similarity

measures ”, Tao et al. [9] provide an overview of trajectory similarity measures as

well as a survey of the “most widely-known and frequently cited trajectory similarity

measures”. They give key use cases including “find the most similar trajectory in a

collection to a given trajectory, e.g. (Buchin et al. 2011)”, clustering, and trajectory

classification.

It is clear from the article that TSMs have a wide range of applications and consti-

tute a deep area of study. Our use for TSMs will be relatively simple: to evaluate

performance of control systems that cannot achieve perfect asymptotic tracking of a

reference signal. If asymptotic tracking could be achieved, there would be no need for

TSMs. Any TSM comparing the response to the reference would evaluate to nearly

zero7. Even if a controller could theoretically asymptotically track, TSMs would prove

6This is known immediately, as all controllers are derived starting from simplified models of the
system. If there were a controller that contained an internal model of the full nonlinear dynamics,
it would be a potential candidate for a proof of asymptotic tracking.

7This is, of course, ignoring the transient portion of the response where the initial conditions are
being dealt with.
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useful in evaluating performance on hardware, as opposed to simulation, where model

uncertainties, noise, disturbances, etc. degrade the controller.

Tao et al. give some characterizing features of TSMs that will prove useful in selecting

an appropriate one for our use case (the selection is done in Section 2.2). The most

relevant concept is that of “Relative versus absolute measures”. The authors state

“In comparing two trajectories, one can consider space and time as either absolute

(i.e. compared with an external spatial and/or temporal reference frame) or relative

(i.e. intrinsic comparison, ignoring absolute times or positions).”

For the ball and plate, this means that, in evaluating a control system response, we

may consider a TSM that allows for phase lag in time, absolute offset in plate location,

or even rotations of the trajectory shape within the frame of the plate. It is difficult

to imagine some of those scenarios being a reasonable response for our controllers

to achieve. For instance, if the setpoint is to draw a four-leaf clover centered at

the origin, it is not likely that the controller draw a perfect four-leaf clover out in

the corner of the plate. Nevertheless, these types of scenarios may, for some given

TSM return a relatively small measure. Other scenarios, however, may be perfectly

reasonable. For instance, if the control objective is to track a perfectly centered circle

of a certain radius and angular frequency, the response of the controller may be a

centered, phase lagged circle with a bit of amplitude attenuation. For some TSMs,

it may be appropriate to shift the response data in time such that the phase lag is

eradicated and then the TSM will measure the effect of the amplitude difference.

With respect to relative and absolute time, TSMs come in three categories (Tao et al.

[9]):
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Table 1.2: TSM Timing Categories
1) Rigid Does not support relative time
2) Flexible Evaluates spatial similarity ignoring time shifts
3) Semi-flexible Evaluates spatial as well as temporal similarity

The authors give intuitive commentary on the differences between the categories: “A

pair of trajectories that are spatially identical but vary in speed profile along the

trajectory will be expected to have a higher similarity score when compared using a

flexible measure than a rigid or semi-flexible measure.”

The TSMs explored by Tao et al. are demonstrated in the Fig. 1.6
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Figure 1.6: TSMs Demonstration. Tao et al. [9, p.649]

“Demonstration of trajectory similarity measures, aligning two trajectories where n=3 and
m=4 (except for LSED, where n=m=3) according to the various measures, along with a

corresponding distance matrix or free-space diagram.” Tao et al. [9, Figure 1]

These examples use trajectories in 2D Euclidean space - the gridded plots represent

the space that the compared trajectories (blue and green) live in. But, these measures

can be easily extended to higher dimensions. For many of these measures, discrete

points in the trajectory are used, and therefore a high enough sample rate to capture
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the trajectory’s features is necessary. The discrete nature allows the data to be

collected in finite distance matrices containing the values used in computing the

measure. As an example, for the Lock-Step Euclidean Distance (LSED), the values

inside the distance matrices are the Euclidean distances [dist2(ai,bi)] between time

aligned points in the trajectory, 1.25. The LSED measure between trajectories A and

B is then

Eu(A,B) =

√√√√ n∑
i=1

dist22(ai,bi). (1.25)

Because the points must be aligned in absolute time, this measure is a rigid TSM. It

is worth noting that the LSED measure will increase with the sample rate and with

the duration of time under consideration. There are however variations that do not

have this property.

An example of a flexible TSM surveyed by the authors is Dynamic Time Warping

(DTW), originally used for speech recognition 8. Tao et al. state:

Dynamic time warping can be seen as selecting a minimum cost path in

the distance matrix. More precisely, DTW selects a path from the lower

left corner to the upper right corner of the distance matrix that minimizes

the sum of the squared distances.

This means that DTW locally distorts the time a particular change in either trajec-

tory takes in order to minimize an LSED-like distance measure. This must be done in

a manner that keeps the time values associated with points in the trajectories mono-

tonically increasing. DTW essentially applies as many zero-order holds to points in

8Imagine your phone needing to understand that you spoke the words “take me to home” regard-
less of the pace at which you spoke them.
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either trajectory as is necessary to make them as close in measure as possible. This

can be done after a global time shift or scaling is applied to one of the trajectories -

for instance, to make two periodic trajectories have the same number of cycles. The

formal definition will not be included here, but it should be noted that this is an

optimization problem where dynamic programming is applied.

1.2.3 Underactuation

The ball-and-plate system is underactuated, and as a consequence, well understood

and effective nonlinear trajectory-tracking methods will not work - at least not per-

fectly. In a course on underactuated robotics at MIT, Tedrake [10], gives an overar-

ching theme in the discussion of underactuation:

Classical control techniques for robotics are based on the idea that feed-

back can be used to override the dynamics of our machines. These exam-

ples suggest that to achieve outstanding dynamic performance (efficiency,

agility, and robustness) from our robots, we need to understand how to

design control system which take advantage of the dynamics, not cancel

them out.

Tedrake speaks of utilizing the natural dynamics of a system to achieve a control

objective. A control method that’s formulated to take advantage of the natural dy-

namics of the ball-and-plate system9 is discussed in Section 1.2.4. Tedrake also speaks

of cancelling out dynamics to achieve control objectives - referring to techniques like

feedback linearization. A common nonlinear control technique, sliding mode control,

is very similar to feedback linearization and also works by cancelling out the system

9The law is argues in this thesis to have limited effectiveness.
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dynamics. Though they will not work perfectly, similar techniques can be made to

work with compromise. For example, an output sliding mode controller is explored

in Section 3.2 where the output variable is chosen to be something other than the x

or y state.

Tedrake describes underactuation as such:

In words, underactuated control systems are those in which the control

input cannot accelerate the state of the robot in arbitrary directions. As a

consequence, unlike fully-actuated systems, underactuated system cannot

be commanded to follow arbitrary trajectories.

Tedrake also gives a formal definition for underactuated mechanical systems. These

second order systems can be represented in the form:

q̈ = f1(q, q̇, t) + f2(q, q̇, t)u (1.26)

where, for our ball-and-plate system, q is a vector containing the degrees of freedom.

For the decoupled dynamics, system 1, the degrees of freedom are given by:

q =

x
β

 (1.27)

The system is then underactuated if (1.28) is satisfied.

rank [f2(q, q̇, t)] < dim [q] (1.28)
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Intuitively, this means that the system has fewer linearly independent actuators than

the number of relevant degrees of freedom. Equation (1.28) makes it clear that the

rank of the input matrix is dependant upon the state of the system. For the ball-

and-plate system, since (1.17) and (1.18) are vectors, the max rank possible is one.

Even so, it is conceivable that for some states, f2 maps u to the zero vector, causing

the system to lose actuation entirely. This is not the case for (1.17) or (1.18) since

the state-dependant terms are always positive and the remaining terms are constant.

Tedrake also tells us that the system can become underactuated if additional con-

straints such as |u| ≤ Tmax are imposed. Input saturation turns out to be an im-

portant constraint that limits the aggressiveness of trajectories achievable by the ball

and plate. In many simulations conducted while the controllers were being tuned, the

input would saturate and immediately cause the response to go unstable. A simple

thought experiment can be construed that demonstrates one way input saturation

can be an issue for the ball and plate. Consider the “teeter-totter” model for system

1, in the configuration shown in Fig. 1.7. With the plate tilted in the positive β

direction, if the ball is located as it is in the figure, and rolling downhill (in the x

direction), as the ball rolls, it gets further and further from the center of the plate.

In the absence of actuation, the plate will continue to tilt and the ball will continue

to roll downhill.

If the goal is to get the ball to move to the left of the plate’s center, it is not difficult

to imagine that, at some point, the plate would need to be tilted the other way. If

there is a limit on how much torque can be applied to rotate the plate in the negative

β direction, the torque may not be enough to counter the influence of gravity, the

momentum of the ball, etc. What’s occurring is, the influence of the state on the

control objective is overpowering the influence of the input. In this case, the issue
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is not that that the actuation is in an unfavorable direction, it’s that it is not large

enough in magnitude to actually tend the states toward the desired direction10.

Figure 1.7: System 1 Schematic Richter [6, p.8]

As will be discussed in Chapter 2, the primary control objective is to track a desired

time-dependant ball trajectory in the plate frame coordinates, x and y. Since we are

not requiring that β and γ follow some time-dependant trajectory as well, i.e. we are

not asking for the system to track arbitrary trajectories in the state-space, the control

objectives are not in conflict with the physics. It is then conceivable for freedom in

the angular trajectories to facilitate perfect tracking in the position trajectories. The

recommended controller design, full-state feedback with feed forward , finds angular

trajectories consistent with the linear representation of the dynamics, given desired

x and y trajectories that meet certain requirements. A feed forward torque is then

found that actuates this (approximately) consistent set of positional and angular

trajectories.

If the system were fully actuated though, this method would not be necessary. There

would be no need to find consistent angular trajectories because all angular trajec-

tories would be consistent. It would be trivial to invert f2 in (1.26) - it would be

10Here, “direction” means “direction in the state space”. For an underactuated system, the state
vector’s derivative cannot be rotated into an arbitrary direction, but if one has a desired direction
that the input can be rotated to, the magnitude of its influence is limited by the saturation.
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full rank and square - and isolate u = Tβ. We could then satisfy the dynamics of

trajectories in x and β separately by specifying q and computing its derivatives:

u = f2(q, q̇, t)−1 (q̈− f1(q, q̇, t)) . (1.29)

If u is enacted while the system has some state q, q̇ that lies on the trajectory at

time t, then the system will remain on the trajectory (in the idealized system). In an

imperfect world, however, a control system would then be wrapped around the error

states to reject disturbances, model uncertainty, noise, offset initial conditions, etc.

Tedrake [10] replaces q̈ in (1.29) with a new input u′:

u = f2(q, q̇, t)−1 (u′ − f1(q, q̇, t)) . (1.30)

When this actuation, u is plugged into (1.26), a fully actuated linear system (1.31)

results.

q̈ = u′ (1.31)

Here, q and q̇ are now measurements of the state (rather than desired trajectories)

and u is the feedback linearizing input. The dynamics of the system can then be set,
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through choice of u′, to be some stable linear dynamics. If the definition of q (1.27)

were in terms of error states,

q =

ex
eβ

 , (1.32)

then the decaying linear dynamics produced would be chosen to asymptotically bring

the error states to zero. This approach is subject to uncertainty since the feedback

linearizing input does not have a perfect model of the system. Tedrake points out

that there are “results which generalize this idea to the case where f1 and f2 are

estimated, rather than known”. One such means of handling the model uncertainty

is sliding mode control (Slotline and Li [8, Ch 7]).

For the ball-and-plate system, full actuation could be achieved by attaching an ac-

tuator to the ball and allowing it to be independently driven along the plate. Then

the trajectory in β could just be to maintain a value of zero and the ball would be

driven around on a horizontal plate to achieve the control objective. This is a far less

interesting scenario.

1.2.4 Ball-and-Plate-Specific Trajectory Tracking Schemes

There are plenty of examples of control systems for the ball and plate, or ball-and-

beam systems in the literature. Many of the reviewed methods take advantage of

simplifying assumptions that, if reasonable, render the system fully actuated and/or

feedback linearizable. It is found that the controllers from the literature, generally

speaking, start from decoupled nonlinear models, but additionally require that the

system behave quasi-statically. For instance, Mohammadi and Ryu [4] begin from a

nonlinear decoupled model and they assume, in similar equations to (1.11) and (1.12),
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that the θ̈ and γ̈ terms, the angular accelerations of the plate, are zero. The authors

then develop a feedback linearizable system that follows from this, and related, as-

sumptions. Ramı́rez-Neria et al. [5] start from similar equations and make the same

θ̈ and γ̈ assumption - though these authors use Jacobian linearization rather than

attempt feedback linearization. These papers retain the motor as the input to the

ball dynamics.

Other methods utilize a cascaded control approach while maintaining the quasi-static

assumption. Liu and Liang [2] present a nonlinear, cascaded control architecture

that utilizes a Lyapunov stability argument in its proof of asymptotic tracking. Jeon

and Hyun [1] use similar techniques and derive the same control law - though these

authors mention the use of a boundary layer to reduce chattering. It is shown below

that this boundary layer is actually crucial for practical application as a chattering

angular input is inconsistent with the necessary assumptions for the law. For these

methods, if a switching law could somehow be implemented (without a boundary

layer), the dynamics of the input are guaranteed to be significant because it would

have impulsive derivatives and we wouldn’t be able to consider them negligible.

Liu and Liang present a decoupled model of the ball-and-plate system. In Section

1.1.2, the ball moment equations, (1.11) and (1.12), relate the positional dynamics

to the angular dynamics. Liu and Liang show these relationships, but frame some of

the terms as an unknown torque, Tx. The sin(β) term is retained and considered the

input to the system.
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For system 1 variables, this results in

ẍ =
5

7
g sin(β) +

5

7mb rb
Tx

ẍ = b ux + ∆f(t) (1.33)

where Tx is the unknown torque on the ball, ux = sin(β), and b = 5
7
g . Here, ux is

considered the input to the positional dynamics for the ball in a fully-actuated system.

The term ∆f(t) is the unknown torque described as a ”time-varying uncertainty”. If

this term were zero, the input would directly determine the acceleration of the ball,

and creating the desired dynamics would be straightforward.

In the theme of Tedrake (Section 1.2.3 on underactuation), these control laws take

advantage of the natural dynamics of the system. They use the fact that the ball has

a natural tendency to roll down an angled plate and are essentially using gravity as

the actuator for the ball.

According to the authors, the unknown torque in (1.33) comes from un-modelled

friction. It is apparent that this term is not solely from un-modelled friction, but

also from the normal force at the contact point of the ball. Regardless, it can be

seen from (1.11) and (1.12) that this term is actually where the β dynamics enter the

expression:

∆f(t) =
5

7

(
− β̈

(
zb +

2 rb
5

)
+ β̇

2
x

)
. (1.34)

The fact that this expression contains hidden information about the plate dynamics

is why the plate could never truly serve as a switching input. The ∆f(t) term itself
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contains the dynamics of the input (sin(β)) so instantaneously altering the input

violently excites the ball.

Liu and Liang derive a sliding mode control law using the sliding surface

s = ėx + λex (1.35)

where

ex = x− xs (1.36)

and xs is the desired x setpoint. In a common manner for sliding mode control, a

Lyapunov function is chosen to be (1.37),

V =
1

2
s2 (1.37)

and its derivative is (1.38).

V̇ = sṡ (1.38)

Here, ṡ brings in the dynamics of the system and a control law follows that intends

to keep V̇ negative definite.
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ṡ = ëx + λėx

ṡ = ẍ− ẍs + λėx

ṡ = ( b ux + ∆f(t) )− ẍs + λėx (1.39)

The control law given by the authors is (1.40),

ux = b−1 ( ẍs − λėx − c1 s− c2 sgn(s) ) (1.40)

where c1 and c2 are constant controller gains. With sliding mode control, there is

typically an additional term to cancel out the nonlinear dynamics and produce a

linear response in the error states. Since this control scheme lumps the nonlinear

dynamics in with the time varying uncertainty ∆f(t), this term is omitted. With this

control law, the derivative of (1.37) is the following:

V̇ = − c1 s2 − c2 |s|+ ∆f(t) s. (1.41)

If V̇ here can be guaranteed negative definite, then asymptotic tracking of the ref-

erence signal is proven. However, (1.34) clearly shows that ∆f(t) and ux are related

through the dynamics of β and therefore the assumed input must remain relatively

calm if the ∆f(t) term is to be kept sufficiently small. Though not explicitly stated

in the papers, this control would need to be achieved using an inner loop with suffi-

ciently faster dynamics compared to the outer positional loop. Because ux must be

31



quasi-static, a boundary layer is needed to prevent the inner loop control objective

from constantly switching.

Ultimately, these angular input sliding mode papers assume an instantaneously achiev-

able angular setpoint can serve as the input to the x and y dynamics. With the

necessary addition of a boundary layer, the law degrades to a simple linear cascaded

control architecture11. Cascaded control and full-state feedback are effectively equiv-

alent for a linear system, but for a nonlinear system, one may have benefits over the

other. Rather than explore this distinction, the cascaded controller will be tabled,

and only the full-state feedback control scheme will be explored in Chapter 3.

As discussed in the underactuation section, 1.2.3, the classic techniques of nonlinear

control cannot be utilized perfectly with the ball-and-plate system. The above ex-

amples are cases where they can work, to a degree. For this thesis though, we desire

aggressive trajectories (discussed in Section 2.3). Therefore the quasi-static assump-

tion will not hold well. The final controller recommended in Chapter 5 reasons about

the dynamics without assumptions that frame the system as fully actuated.

11Where the inner angular control loop has a saturating setpoint.
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Chapter 2

CONTROL CRITERIA

In this chapter, control criteria for the ball and plate are presented, often referring to

topics covered in Section 1.2. Asymptotic tracking is expanded upon for our problem,

an appropriate TSM is chosen, qualitative criteria are introduced, and some practical

considerations are shown before getting into the controller designs of Chapter 3 .

2.1 Defining the Tracking Problem for the Ball and Plate

For the ball and plate, we are interested in the output equation:

y =

x
y

 (2.1)

For the decoupled systems, there are two separate output equations,

y1 = x (2.2)

y2 = y, (2.3)

where x and y are the vector representations of state variables x and y. These choices

allow one to place some printed trajectory shape on the plate so that spectators can
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easily see visual feedback on the tracking performance. Or perhaps, the plate could be

fitted with an LCD touchscreen and the setpoint could be displayed in real time. This

type of experience would likely be much more difficult for different output variables.

In Section 3.2, the global x and y locations of the ball are used as output variables

in deriving the control law, but the performance is judged on the behavior in the

corresponding plate frame variable. 1

We constrain ourselves to analytical, pre-planned output trajectories whose deriva-

tives exist and are known a priori. An additional constraint is necessary for the

feed-forward controller of Section 3.3. There we require that we can find an analyt-

ical solution to a linear ordinary differential equation (ODE) whose forcing function

is the second derivative of the desired trajectory (3.49). These constraints are to

keep the project within a reasonable scope. One may wish to design a control system

with user interaction, where a user alters the setpoint, perhaps by means of a joy-

stick. One can also envision organically drawn setpoints where the user instructs the

controller by drawing a shape on a tablet. The shape could then be parameterized

by time. These trajectories would likely be lookup tables rather than functions with

infinite precision, and their derivatives would need to be arrived at through some

non-trivial process, such as a spline or numerical differentiation. Though interesting,

these scenarios are not considered.

The broadly defined trajectory-tracking problem presented in Section 1.2.1 is consid-

ered the ideal scenario for any control law explored in this thesis. It is found that

asymptotic tracking is a very difficult objective to meet for this underactuated system.

The equations of motion are too cumbersome and complicated, and the input ma-

trix for the full nonlinear system cannot be inverted. Ultimately, none of the control

1In other words, even though the feedback law uses feedback on an output that differs from
ultimate control goal, the goal remains unchanged. The tracking performance will be evaluated in
the same way as other controllers in this thesis.
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systems presented in this thesis can achieve perfect asymptotic tracking. None have

an associated proof in the context of the nonlinear models - though the feed-forward

controller does have a proof in the linear model. Even if a control law that proves

asymptotic tracking were found, the model of the system is imperfect. The nonlinear

model ignores damping, noise, and, potentially, many more factors that contribute

to uncertainty. Therefore it is necessary to loosen the requirement and judge the

controllers on different criteria.

We are interested in controllers that get us as close as possible to asymptotic tracking,

and we give a very high weighting to timely performance. We want the aggressiveness

of the desired trajectory to be reflected in the actual trajectory, and we are not

satisfied that the trajectory merely have the correct shape. These qualitative criteria

lead us to consider the trajectory similarity measures of Section 1.2.2, and in Section

2.2, they guide the choice of TSM by which tracking performance is gauged.

2.2 Selecting an Appropriate Trajectory Similarity Measure

In Section 1.2.2, Table 1.2, the timing categories described by Tao et al. are given.

Because we are interested in timely performance, we need a TSM restricted to absolute

time - i.e. we would like a rigid measure. Furthermore, we are not interested in

trajectories whose relative location is inconsequential. It isn’t acceptable for the

control system to draw a square in the corner of the plate if a centered square is

desired. The Lock-Step Euclidean Distance (LSED) TSM, (1.25), is the measure

given by Tao et al. that meets these criteria.

35



This measure, however, isn’t normalized and so its magnitude may depend on the

amount of time a controller runs for 2. Tao et al. give a normalized version of the

LSED - this is the TSM that meets the criteria given above in Section 2.1. This

modified version of the LSED that gives “the average distance between corresponding

measurements” and is shown in (2.4) 3, Tao et al. [9]:

Eu′(A,B) =
1

n

n∑
i=1

dist2(ai, bi) (2.4)

2.3 Additional Control Criteria

It is desirable to have highly aggressive trajectories. These types of trajectories

are impressive to watch and more difficult to achieve. For slow trajectories, many

of the controllers introduced in Chapter 3 have relatively good performance. To

push the limits of the ball-and-plate hardware, and to find a control architecture

distinguished from those that make limiting assumptions (like a quasi-static plate),

faster trajectories are held in high regard.

Step and regulation control responses will be considered particularly important. If

the controller cannot produce these, it is unlikely to be recommended. Good step

and regulation responses are fundamental and expected out of a controller.

The final criteria is that the controller have qualitatively pleasing behavior, meaning

that overly jolty ball-and-plate motion is penalized. Though this is certainly subjec-

tive, it was determined to be an important element to include given that the purpose

2Say we are comparing a control architecture’s ability to handle circular setpoints at various
frequencies. We would like to be able to compare the TSM between frequencies regardless of how
long we must run the controller for to capture the full shape.

3Remember that dist2(ai, bi) is the Euclidean distance between points ai and bi
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of the design is to be an enjoyable and inspiring display piece. In Chapter 5, this cri-

terion is used to discuss control architectures presented in Chapter 3 and to support

a final design recommendation. To judge controllers by this criterion, animations

were produced in MATLAB® utilizing 3D images of the ball-and-plate system. A

snapshot of one such animation is shown in Fig. 2.1. The animations gave a sense

for what bystanders of the ball-and-plate display will experience. These animations

were viewed throughout the project, for each controller, even for trajectories not in-

cluded in this thesis. Discussion regarding qualitatively pleasing behavior is based on

a multitude of these animated responses.
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Figure 2.1: 3D Animation Example

The response of the controller to noise and disturbances is important to consider for

real world control systems. However, the thesis focuses on finding a control architec-

ture that is theoretically suitable for the system. It seeks to find a good foundation

on which to begin that kind of practical work.
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2.4 Practical Considerations and Constraints

Richter [6] considers the input to the system to be the torques about the u-joint axles.

However, he also notes that the true input torques are supplied by motors attached to

the plate through a crank arm and connecting rod. This implementation is depicted

in Fig. 2.2.

Figure 2.2: Motor Actuation Mechanism Richter [6, p.16]

Richter acknowledges that there is additional complexity if one chooses to consider

the way in which a torque is truly applied to the u-joint axles. We bring in a fraction

of that complexity by considering the crank arm and connecting rod to be a gear ratio

between the applied motor torque and the effective u-joint torque. We assume that

the crank arm, connecting rod, and motor armature are massless. We also assume

that the crank arm and connecting rod are nominally at 90◦ when the platform is

perfectly level. From there, a small angle approximation is employed and the resulting
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expression is that of a constant gear ratio between the motor and the associated u-

joint angle. This gear ratio is computed from the length of the crank arm (about

0.113 [m]), and half the width of the plate (about 0.25 [m]), and takes on a value

of about 2.21. In combination with the maximum continuous torque of the motors,

0.6 [Nm], the maximum u-joint axle torque is found to be 1.33 [Nm]. This torque

value is used in simulation and saturates the input to the plant.
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Chapter 3

CONTROL ARCHITECTURES AND SIMULATION RESULTS

Several control architectures are explored in this chapter, and simulation results for

each are presented.

1. Full-State Feedback (FSFB) with Integral Action

2. Single-Input-Single-Output Sliding Mode

3. Full-State Feedback with Feed Forward

This chapter also gives a motivation for each architecture, details them mathemat-

ically, and discusses simulation results that support the final recommendation in

Chapter 5. For each architecture, several types of trajectories are simulated, namely

the step, regulation, and the quadrifolium rose curve responses. The rose curve is

given by (3.1) and (3.2), where r is the radius of the rose curve (the furthest x or

y will be from zero), n and d select a particular rose curve, and ω is the angular

frequency. The angular frequency is chosen so that the overall shape evolves over a

certain period, Tr - the smaller the period, the more aggressive the trajectory. For

the quadrifolium, n = 2, and d = 1. Figure 3.1 shows that the curve is similar to a

four-leaf clover.

x(t) =
r

2
[cos((

n

d
+ 1)ωt) + sin((

n

d
− 1)ωt)] (3.1)

y(t) =
r

2
[cos((

n

d
+ 1)ωt)− sin((

n

d
− 1)ωt)] (3.2)
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Figure 3.1: Quadrifolim Rose Curve with r = 0.15 [m]

The responses are simulated from offset initial conditions at x0 = 0.075 [m] and

y0 = 0.075 [m]; half way to the edge of the plate in the first quadrant. The initial

plate angles and angular velocities, as well as ball velocities were set to zero. Tuning

each controller was done through manual iteration, input saturation being the most

common and difficult obstacle to overcome. For the tunings that produced reasonable

behavior, large initial errors would cause the torques to saturate and the system would

go unstable. To combat this initial error, the setpoints are eased onto the desired

trajectory through an exponential smoothing function, (3.3), applied to the initial

condition vector. Here, x̄s is the desired setpoint vector, xs is the smoothed setpoint

42



vector, and τ is the time constant. The smoothed setpoint function shape overlaid

with the original is given in Fig. (3.2).

xs = x̄s(1− e−
t
τ ) + x0(e−

t
τ ) (3.3)

Figure 3.2: Quadrifolim Rose Curve with r = 0.15 [m]

It is clear that at time zero, the setpoint is the initial conditions, and at time infinity,

it is the desired setpoint. The time constant of this process was a parameter to

tune and varied between controllers. This solution saves the feedback elements of

the controllers from the initial jolt that results from offset initial conditions. For

disturbance rejection, a similar process might be utilized that smooths the disturbed
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state of the ball back onto the desired trajectory. This scenario is not investigated in

this thesis and is left to future work.

For all control laws presented, the error terms are defined as follows:

Table 3.1: Error State Definitions
Error Term Definition

ex xs − x
ey ys − y
eβ βs − β
eγ γs − γ
ey1 y1s − y1
ey2 y2s − y2

Here, xs, ys, βs, γs, y1s, y2s and are the setpoint variables - the desired trajectories in

the associated state or output variables. The variables y1s and y2s are the setpoints

associated with output variables used in the SISO sliding mode controller of Section

3.2.1 - they are the global x and y position of the ball and are defined in that section.

Optimal tuning over a range of setpoint functions was not conducted as this would

be very challenging and is out of scope for this thesis. However, the tunings found

were enough to introduce the advantages and limitations of the architectures. In

Chapter 4, normalized LSED studies are shown with the same gains presented here.

In that chapter, the controller behavior shown here is given additional supporting

evidence using a wide range of trajectories. In Chapter 5, the FSFB with feed forward

controller is recommended. The controller has a proof of asymptotic tracking in the

linear model, has excellent performance in simulations that use a nonlinear plant

model, and produces the most pleasing visual experience when viewed in animation.
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3.1 Linear Full-State Feedback with Integral Action

The Full-State Feedback with Integral Action controller serves as a kind of baseline

for comparison. It is similar to the PID controller - the standard method that will

work well for many applications. For this system, however, a simple PID scheme

relating the u-joint torques to the ball position would prove challenging. A PID

with left-hand plane poles (and no input saturation, noise, etc) would have a proof

of bounded input-bounded output, BIBO, stability. But there may still be internal

states for which stable output transfer function poles cannot guarantee stability. For

a PID in our system, it may be possible to choose gains that produce stable poles in

the transfer function relating x to xs while also providing for stable angular states.

Ultimately, one would need to place the eigenvalues of the entire state coupling matrix

using only feedback on x - i.e., without feedback on the angular states1. Full-state

feedback eases this burden. In this method, error feedback on the ball states is used

alongside absolute feedback on the angular states to tend the system toward the

desired trajectory while maintaining stability in all the states2.

It is important to note that stability and asymptotic tracking are two very different

things. Imperfect tracking with this method manifests as attenuation/amplification

of frequency components of a signal, and inherent phase lag. These features are

necessary for the scheme to work at all, as error and integral action determine the

1One can choose PID gains (or some other partial-state feedback approach) and analyze where
that feedback places the poles of the state-transition matrix in the equivalent state space represen-
tation of the system. If those poles all happen to be in the left-hand plane, then the angular states
will also be stable. If the poles associated with the angular states are not in the left-hand plane,
then, from the perspective of the PID for x, there are unstable internal states that are unaccounted
for.

2Simon [7] describes the difference between BIBO stability of a linear transfer function and overall
stability of the system in the state space representation. A transfer function may have stable poles,
but unstable, unobservable states may be present in the complete representation. In such a scenario,
not all eigenvalues of the closed-loop state coupling matrix are in the left-hand plane.
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applied torque. For non-constant setpoints, the error integrator cannot supply the

ever-changing signal required to keep the ball on the trajectory. These issues are

characteristic of PID-like trajectory-tracking control schemes.

3.1.1 Control Law

The controller utilizes the linear, decoupled model of Section 1.1.3 in its derivation.

Error integrators on x and y are included to handle constant setpoint situations. They

provide the steady state torque needed to balance the ball away from the equilibrium

point. To bring in the integral action, an augmented state vector for each system is

defined and used to modify the state equations presented there. For system 1, the

augmented state vector is (3.4)

x1a =



∫ t
0
ex dt

ex

ėx

β

β̇


(3.4)

A setpoint vector, x1s, must be introduced to describe the dynamics of the error

states3:

x1s =

xs
ẍs

 . (3.5)

3Here, ẋs is omitted because ẋ does not show up in equations for ẍ and β̈. However, ẋs is needed
to compute ėx.
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The open loop dynamics, (3.6), are found by differentiating x1a. Here, A1a and B1a,

are the augmented A and B matrices closely related to the original matrices.

ẋ1a = A1ax1a +B1aTβ + S1x1s (3.6)

A1a =



0 1 0 0 0

0 0 1 0 0

0 −1.8786 0 −4.1026 0

0 0 0 0 1

0 −20.2622 0 31.3281 0


(3.7)

B1a =



0

0

0.8511

0

9.1798


(3.8)

The setpoint vector enters the error dynamics through the setpoint matrix S1.

S1 =



0 0

0 0

1.8786 1

0 0

20.2622 0


(3.9)
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Unlike the absolute states, the error states are influenced both by the torque and

the desired trajectory. The augmented matrices have additional rows/columns due

to the addition of the integral state. There are also sign differences from the original

dynamics that arise from the error definitions in Table 3.1.

Because the system is fully controllable (Richter [6]) a full-state feedback law can be

introduced to place the poles of the system in the left half plane. This is shown in

(3.10). The control law stabilizes the system and tends it toward the trajectory by

actuating against the error.

Tβ = −K1x1a (3.10)

The law results in a closed-loop system whose input is the setpoint vector:

ẋ1a = [A1a −B1aK1]x1a + S1x1s (3.11)

It is clear from (3.10) that if the error in x is zero, the torque is proportional to the

integral of the error, and the absolute angular states. Unless the time evolution of

these terms is precisely what is required to keep the system on the trajectory, the

system will not stay at zero error. For a constant xs, and implied angular setpoint of

zero4, the law can work perfectly. The torque will be proportional to the integrated

error alone, and the term will find the torque needed to hold the plate horizontal

and the ball in place at xs. This is the only scenario where perfect tracking can

theoretically be achieved.

4There is an implied angular setpoint of zero when absolute β variables are used in the feedback
law. If error states were used for instead, a setpoint of zero would produce the same term in the
feedback law (with a sign change that is accounted for in the pole placement).
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3.1.2 Simulation Results

The control law is implemented in Simulink®. The outer loop is shown in Fig. 3.3.

Here, the setpoints are generated in the MATLAB® symbolic toolbox and brought

into Simulink® as MATLAB® function blocks - they are contained in the “Setpoint

Vectors” subsystem. The setpoint smoothing is also implemented in this subsystem;

it contains MATLAB® function blocks that act on the raw setpoint signals. Each axis

is controlled separately, in correspondence with the linear decoupling assumptions of

Section 1.1.3. For system 1, the controller is contained in the “Controller x dimension”

subsystem, as shown in Fig. 3.4.

Figure 3.3: Outer Control Architecture - FSFB With Integral Action

Figure 3.4: x Axis Control Architecture - FSFB With Integral Action

49



The lqr (Linear-Quadratic Regulator) function in MATLAB® was used to find sta-

bilizing gain matrices (3.12) and (3.13).

K1 = [ − 516.2 −1209.2 −378.7 409.1 47.6 ] (3.12)

K2 = [ 516.2 1209.2 378.7 409.1 47.6 ] (3.13)

The Q and R matrices, (3.14) and (3.15), were manually tuned to prevent instability

due to input saturation, and to produce reasonable regulation, step, and quadrifolium

responses in simulation.

Q =



2.5× 107 0 0 0 0

0 108 0 0 0

0 0 106 0 0

0 0 0 0.5836 0

0 0 0 0 0.1111


(3.14)

R = 93.8262 (3.15)

The time constant τ of the smoothed setpoint, (3.3), was set to 1. Faster values

lead to instability caused by input saturation5. The responses for system 1, the x

direction6, are shown in figures 3.5, 3.6, and 3.7. The regulation response of Fig. 3.5

was stable and can be seen to asymptotically approach zero error, as expected.

5With the gain matrices chosen for the controller and the setpoints explored, τ of 1 was about
as fast as possible. This value may not be good for all types of rose curves or for different tunings.

6The responses for system 2, the y direction, are qualitatively equivalent and are not shown.
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Figure 3.5: Regulation Response - FSFB With Integral Action
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Figure 3.5 shows that the controller is able to bring the ball from the initial conditions

to the origin. The response does not rely on the integrator in this case, as the steady

state torque required to keep the ball at the origin is zero. The implied angular

setpoint of zero is dynamically consistent with the ball setpoint, so the objective for

the controller is actually achievable. With the quadrifolium setpoint, Fig. 3.7, this is

not the case, as the control law contains a dynamically inconsistent angular setpoint

that cannot possibly be achieved if the ball is to stay on the trajectory. The step

response of Fig. 3.6 also achieves its objective.
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Figure 3.6: Step Response, xs = −0.15 [m] - FSFB With Integral Action

This response is simulated with a setpoint of xs = −0.15 [m]; the edge of the plate7.

Here, the integrator is supplying the non-zero steady state torque required to hold the

ball at the setpoint, away from the origin. Because the angle associated with this sce-

nario is zero, the controller can once again achieve the dynamically consistent angular

7Overshoot past the edge of the plate does occur in some simulations, but this is ignored. For
the real system, the setpoint can simply be placed inward a bit to prevent the ball from falling off,
or the tuning can be adjusted to prevent overshoot.
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setpoint. Just as with the regulation controller, the error is seen to asymptotically

approach zero. The quadrifolium response, Fig. 3.7, most clearly demonstrates the

issues with the architecture. Poor performance is achieved, even for a quadrifolium

setpoint that is slow relative to those tracked by the the FSFB with feed forward

controller.

Figure 3.7: Quadrifolium Response, r = 0.15 [m], Tr = 6 [s] - FSFB With
Integral Action
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The quadrifolium period achieved by this control law was limited by the input sat-

uration. Because the frequency components of the setpoint are amplified in the re-

sponse, the accelerations involved are higher and the achieved trajectory requires

higher torque values than would be required at zero tracking error8. The ball also

lags behind the setpoint, a behavior that, along with the amplification, will produce

a larger lock-step Euclidean distance. The result for β is similar to that of Tβ and ex

in that the response is some altered combination of the two frequency components of

the setpoint. The upside to this is that the plate is in sync with the ball and produces

a relatively pleasing response per control criteria laid out in Chapter 2.

Figure 3.8 shows another way of visualizing the quadrifolium response9. The shape is

clearly exaggerated, and some key features are missing - namely that the ball passes

through the origin between each pedal of the rose curve. The response is also a bit

skewed, and the degree to which these features are present changes with the particular

curve and the tuning.

8Faster trajectories, ones involving more torque, are easily achieved with the FSFB with Feed
Forward controller of Section 3.3. This means that if the FSFB with Integral action is attempting
to produce an achievable trajectory given the system’s physical limitations.

9The small circles in this figure are to indicate the desired location and actual location of the
ball at a particular time - they do not represent the size of the ball.
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Figure 3.8: Quadrifolium Response, Ball Path, r = 0.15 [m], Tr = 6 [s] -
FSFB With Integral Action

One might inquire about altering the setpoint such that this architecture’s response

lands on the actual desired trajectory. For instance, if the setpoint is a circle, the law

could first filter the setpoint and produce some phase and amplitude difference. This

would be done in such a way that whatever phase lag or attenuation/amplification

the law produces places the response precisely on the desired trajectory. Since the

rose curve is comprised of two frequencies, and other trajectories may be comprised of

even more, the setpoint conditioning would need to alter each frequency component

differently. For more complicated signals, this would be incredibly cumbersome. If

this could be achieved, the controller would have no way of combating model inaccu-

racies. The true transfer functions may not be exactly what were used to filter the

setpoint and the scheme ultimately would have an open-loop element to it.
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3.2 SISO Sliding Mode

The angular input sliding mode controller of Section 1.2.4 utilizes an input that has its

own, slow, internal dynamics. If a sliding mode architecture can be found that takes

advantage of a more fundamental input to the system, the torque, then the controller

can truly utilize the Lyapunov stability argument. The problem is that the torque

directly influences the entire state vector. Because the system is underactuated, there

is no direct path between an input and the ball that does not involve the dynamics

of the plate. In Section 1.2.4, the derivation of the control law of Liu and Liang is

shown. If the time varying uncertainty term ∆f(t) were left untouched, the controller

could attempt to cancel those nonlinearities.

Following the authors same reasoning, for system 1, the sliding variable would be

(3.16) and its derivative would be (3.17).

s1 = ėx + λ1 ex (3.16)

ṡ1 = ẍs − ẍ+ λ1ėx

ṡ1 = ẍs − [ 1 0 ]
(
M−1

1 b1
)

+ λ1ėx (3.17)

Here, rather than ẍ being given by (1.33), the formulation containing ∆f(t), it would

be represented as it is in Section 1.1.2, as row one of (1.15). In this way, Tβ would be

included explicitly. The control law would then utilize this fundamental input whose

dynamics are not strongly tied to the dynamics of interest, as they are with Liu and

Liang.
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With the feedback law implemented, the derivative of the Lyapunov function could

be controlled to (3.18)10 - but only if Tβ could be made arbitrarily large.

V̇ = − c2 |s1| (3.18)

The issue is that the actuation that cancels the nonlinear dynamics in ẍ would need

to be unbounded if the angular terms are unbounded. This control law attempts to

cancel these dynamics using feedback on the entire state vector, but its objective has

no regard for the plate behavior. Because of this, the dynamics would essentially be

guaranteed to be unbounded11.

3.2.1 Control Law

In this section, an alternative output variable, y1, is considered as a way of circum-

venting the issues in Section 3.2, and this output serves as the starting point for

deriving the single-input-single-output (SISO) sliding mode controller presented in

this chapter. If an output variable can be chosen that brings in both x and β, then

it is conceivable to design a sliding mode control law where the control objective

actually involves the plate dynamics. Because our ultimate goal is to control x to

xs, the output variable, y1, needs to be similar enough to x that controlling y1 to xs

produces an acceptable response.

10The −c1s21 term is not present here, as it is with Liu and Liang, but V̇ is still negative definite.

11Without stabilizing feedback on β states, the natural instability of the system will be present.
Even if x is tracking perfectly, β states will be unbounded. There are however, unlikely initial
conditions that may produce a stable solution.
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A major issue with this idea is that of stability. Because there is a many-to-one

relationship between the internal states and the output variable12, unstable states

may be coalescing into a bounded output. So a proof of stability in the output

variable is not necessarily a proof of stability in the states. This is a very similar

problem to the one discussed in Section 3.2.

While selecting an output variable whose stability proves internal state stability is

impossible13, an output that usually produces stable states is given by (3.19). This

output has physical significance - it is the global x location of the ball for the decoupled

nonlinear model. If the ball were to follow this trajectory, one could look down on

the plate along the z-direction and see the ball tracing out the shape of the setpoint.

y1 = xcos(β) + zbsin(β) (3.19)

This output was chosen intuitively, and a proof of state stability was not found for

the SISO sliding mode controller. However, simulation results in Section 3.2.2, show

that the law can produce stable trajectories with reasonably good performance in

many scenarios. The reason for this may be that if ey1 is zero, large variations in

the states are too costly and take the system off the path of the tracked output.

Small variations in the states also imply small variations in Tβ. Therefore, if Tβ is

not saturated at one point along the trajectory, adjacent points may be unlikely to

saturate and asymptotic tracking of the output can be maintained.

12The state space essentially projects onto the output space.

13A stable output variable is not in-and-of-itself a proof of internal state stability. However, it
may still be possible to formulate a Lyapunov stability argument for the control law.
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The control law is formulated using the usual techniques of sliding mode control.

The sliding variable is given in terms of the output variable (3.19) using numerical

parameters in Table 1.1.

s1 = ėy1 + λ1 ey1 (3.20)

s1 = ẏ1s − ẏ1 + λ1 (y1s − y1)

s1 = ẏ1s − cos (β)
(
ẋ+ 0.1220 β̇

)
+ β̇ x sin (β)

+ λ1 (y1s − 0.1220 sin (β)− x cos (β))

(3.21)

The derivative of the sliding surface (3.23), once again brings in the system dynamics.

ṡ1 = ėy1 + λ1 ey1

ṡ1 = ÿ1s − ÿ1 + λ1 (ẏ1s − ẏ1)

ṡ1 = ÿ1s + sin (β)
(
β̈ x+ 2 β̇ ẋ+ 0.1220 β̇

2
)

− cos (β)
(
−β̇2

x+ ẍ+ 0.1220 β̈
)

+ λ1

(
ẏ1s − cos (β)

(
ẋ+ 0.1220 β̇

)
+ β̇ x sin (β)

)
(3.22)

ṡ1 = ÿ1s + λ1ẏ1s + h1(x1, λ1) + P1

ẍ
β̈

 (3.23)

Where P1 is given by (3.24) and h1(x1, λ1) is given by (3.25).

P1 =

[
− cos (β) sin (β) x− cos (β) 0.1220

]
(3.24)
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h1(x1, λ1) = sin (β)
(
x+ 2 β̇ ẋ+ 0.1220 β̇

2
)

+ β̇
2
x cos (β)

+ λ1

(
− cos (β)

(
ẋ+ 0.1220 β̇

)
+ β̇ x sin (β)

) (3.25)

In (3.23 ) Tβ enters the equation when ẍ and β̈ are replaced with their definitions

in (1.15). With the length and complexity of these equations, writing this step out

explicitly is cumbersome and unhelpful. A more concise representation is presented

here, but a bit of a notation shift must occur. The general form of the decoupled

nonlinear equations for system 1 are given by (1.5)14. For this analysis, (3.26) gives

an example of the notation to be used. Here, “k” denotes the kth row of the decoupled

nonlinear state equations, and all terms in (3.26) are scalars.

ẋ1,k = f1,k + g1,kTβ (3.26)

Now (3.23) can be rewritten as (3.27) using the new notation.

ṡ1 = ÿ1s + λ1ẏ1s + h1(x1, λ1) + P1


f1,2
f1,4

+

g1,2
g1,4

Tβ
 (3.27)

The Lyapunov function and its derivative are given by (3.28) and (3.29).

V1 =
s21
2

(3.28)

V̇1 = s1 ṡ1 (3.29)

14Along with (1.15) one can write out a very large f1(x1) expression. To clarify, here x1 is given
by the state vector definition for the decoupled nonlinear model, (1.7).
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To produce a negative definite V̇1, Tβ is formulated in two parts (3.30). Here,

Tβ = T̂β + T̃β (3.30)

Where T̂β, the “nullifying torque”, is given by (3.31) and cancels the nonlinear dynam-

ics and makes V̇1 zero. The switching torque, T̃β, makes V̇1 negative definite through a

saturation boundary layer on s1, and is given by (3.32). The switching torque makes

the sliding surface s1 attractive for the system. When at or near s1 = 0, the output

error states decay according to (3.20).

T̂β = −

P1

g1,2
g1,4



−1ÿ1s + λ1ẏ1s + h1(x1, λ1) + P1


f1,2
f1,4



 (3.31)

T̃β = −

P1

g1,2
g1,4



−1

sat (kBLs1) (3.32)

The switching torque being implemented as a saturation on s1 means that for a

sufficiently small value of the term, the law contains linear feedback on s1, with

gain kBL. Because the decoupled nonlinear model has inaccuracies15, the the sliding

variable will stay bounded near s1 = 0, but will not be perfectly zero16. This is the

trade off necessary to eliminate actuator chattering.

15The control law contains an internal model of the decoupled nonlinear dynamics - this is a source
of uncertainty that sliding mode attempts to handle. If this control law contained an internal model
of the coupled nonlinear dynamics, there still might be error in s1 since there would be numerical
error in the solver.

16So long as Tβ itself does not saturate. There are SISO sliding mode responses that go unstable
because the internal states become so violent that Tβ saturates and s1 can no longer be made an
attractive surface
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3.2.2 Simulation Results

As with Section 3.3.2, the Simulink® model for this controller is comprised of two

distinct dimensions. The setpoints are once again analytical functions that enter in

through MATLAB® function blocks in the “Setpoint Vectors” subsystem. The outer

loop is shown in Fig. 3.9.

Figure 3.9: Outer Control Architecture - SISO Sliding Mode

The inner loop, seen in Fig. 3.10, shows a much more complicated scheme than for the

linear controllers. The nullifying torque is a large nonlinear expression implemented as

a MATLAB® function block. The sliding variable is computed in the “S1” subsystem,

and is presented in Fig. 3.11. The output variables themselves are no longer trivial,

and are computed in this subsystem using function blocks. While the law is derived

using output definitions in the decoupled nonlinear model, the measurement of the

outputs in the Simulink® model uses the outputs defined in the coupled nonlinear

model. This is a potential source of error in the responses shown.
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Figure 3.10: x Axis Control Architecture - SISO Sliding Mode

Figure 3.11: s1 sliding variable computation - SISO Sliding Mode

Tuned parameters for the SISO sliding mode simulations are shown in Table 3.2.

Here, kBL is the linear feedback gain applied to s1 prior to entering the unity slope

saturation block in Fig. 3.10. The parameter BLsize sets the input value of s1 at

which saturation occurs, allowing us to set some notion of acceptable error. The
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parameter BLsat gives the saturated output value of s1 given kBL and the unity slope

of the block, i.e. BLsat = kBL ×BLsize.

Table 3.2: SISO Sliding Mode Control Parameters
Parameter Tuned Value

τ 2
λ1 2
kBL 100
BLsize 0.001
BLsat 0.1

The setpoint that the SISO Sliding mode controller handled best was the quadrifolium

with a period of 6 seconds. This is shown in Fig. 3.12. The output y1s tracks very

well, but x1, the actual objective for the controller, shows issues. The result is in phase

with the setpoint though, and Fig. 3.13 shows that the shape is less exaggerated than

that of Fig. 3.8, the ball path of the integral controller. Figure 3.14 shows that the

law is able to make s1 = 0 an attractive sliding surface. The response stays bounded

within BLsize around 0. The regulation and step responses for the controller, however,

are shown to be fundamentally flawed, and show performance far inferior to those of

more dynamics trajectories.
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Figure 3.12: Quadrifolium Response, Output vs. State, r = 0.15 [m], Tr =
6 [s] - SISO Sliding Mode
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Figure 3.13: Quadrifolium Response, Ball Path, r = 0.15 [m], Tr = 6 [s] -
SISO Sliding Mode

Figure 3.14: Quadrifolium Response, s1, r = 0.15 [m], Tr = 6 [s] - SISO
Sliding Mode

There is relatively good performance when one only considers the x1 response, however

the output is allowing an exchange of x1 and β states to coalesce into y1, and there
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is internal oscillation between these that produces jarring behavior when viewed in

animation. Figure 3.15 shows these higher frequencies in both the actuation and the

angular response. As the ball tracks the global x and y setpoints, the plate oscillates

more often than it would be expected to. This means that this response fails the

“visually pleasing” control criteria.

Figure 3.15: Quadrifolium Response, Tβ and β, r = 0.15 [m], Tr = 6 [s] -
SISO Sliding Mode
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The control scheme does not always produce a good quadrifolium response, and the

resulting instability is different for that of the integral controller. For the integral

controller, the instability is caused by the attenuation present in the law. Trajectories

are imperfect, and have error that produces exaggerated shapes when compared to

the setpoint shape. This happens relatively early in the response. For this controller,

internal oscillations present in some of the faster setpoints cause instability long after

the trajectory has developed significantly. By making the period 5.15 [s], Fig. 3.16

shows this behavior.
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Figure 3.16: Quadrifolium Response, Output vs. State, r = 0.15 [m], Tr =
5.15 [s] - SISO Sliding Mode

Here, the system leaves the sliding surface after it has already entered the boundary

layer (Fig. 3.19)17. This is because the internal oscillations of the states were dynamic

enough to cause T̂β to saturate Tβ and the sliding surface could not be kept attractive

by T̃β. Figure 3.17 shows β oscillations becoming more violent and Tβ saturating.

17There is no guarantee that the response in Fig. 3.12 wouldn’t also leave the sliding surface
eventually. The state response does appear to be continuously developing and may eventually break
down. This is a potentiality for all responses given the nature of the law, and is a considerable
downside of the architecture.
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Figure 3.18 shows that T̂β is responsible for the saturation in Tβ and Figure 3.19

shows the system leaving the sliding surface.

Figure 3.17: Quadrifolium Response, Tβ and β, r = 0.15 [m], Tr = 5.15 [s] -
SISO Sliding Mode
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Figure 3.18: Quadrifolium Response, T̂β, r = 0.15 [m], Tr = 5.15 [s] - SISO
Sliding Mode

Figure 3.19: Quadrifolium Response, s1, r = 0.15 [m], Tr = 5.15 [s] - SISO
Sliding Mode

The issue with internal state oscillation is more visually unappealing for the regulation

response. For this, the plate is expected to tilt the ball toward the setpoint, and bring

the ball to a standstill at the origin, perhaps with a bit of overshoot. However, the law
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does not inherently care about the way in which the output is achieved, and violent

oscillations are produced to maintain the ball at a single global x location. Looking

down on the plate, one would see a perfectly still ball - yet the plate is wobbling.

Figure 3.20 shows this for regulation. The output variable behaves just fine18, but

it is achieved at the cost of an overactive system. The angular and torque responses

in Fig. 3.21 show this even better. Here, the plate oscillates by about two degrees,

and the motors are constantly active. For regulation, they should theoretically be

unnecessary at steady state.

Figure 3.20: Regulation Response - SISO Sliding Mode

18If a little slow - with tuning it may be made faster.

73



Figure 3.21: Regulation Response, Tβ and β - SISO Sliding Mode

The step response has this same issue, and even goes unstable in Fig. 3.22. For this

response, the law landed on even more active angular and torque responses, Fig. 3.23,

before ultimately breaking down.
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Figure 3.22: Step Response - SISO Sliding Mode
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Figure 3.23: Step Response, Tβ and β - SISO Sliding Mode

3.3 Full-State Feedback with Feed Forward

In a perfect world, we would have knowledge of ball-and-plate trajectories that pro-

duce the desired ball behavior and we could wrap a linear controller around this

trajectory. We could select a plate frame trajectory for the ball, determine a non-
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linear expression for consistent angular trajectories, and then solve for the torque

required to produce that trajectory from any set of initial conditions.

There are problems with this approach. Finding a consistent set of angular trajecto-

ries involves analytically solving the highly nonlinear dynamics with a cumbersome

amount of terms. Even if we could analytically solve the dynamics, finding a set of

initial conditions that produce a stable angular trajectory would be highly non-trivial

because the system is naturally unstable. Out of an infinite number of trajectories

that produce the desired ball behavior, it may turn out that there is only one that

produces stable angular behavior. The inherent instability in the system also makes

a numerical approach to solving the nonlinear dynamics difficult. One would need to

iterate through initial conditions until a stable trajectory is produced in the simula-

tion output. If it so happens that there are only a few good trajectories, these initial

conditions may be very difficult to find.

Despite the setbacks, the idea of planning out a dynamically consistent angular trajec-

tory can be put to good use. If we linearize the system about the operating point, as

was done for the FSFB controller of Section 3.1, the task of finding these trajectories

becomes much easier. Whether or not the linearizing assumptions hold is determined

in simulations using the full nonlinear model. In an ordinary differential equation

(ODE) relating the x dynamics to the β dynamics, (3.49), there is an unstable eigen-

value for the open loop system - this is a reflection of the natural instability in the

real system. This is shown explicitly in Section 3.3.1. For the nonlinear relationship

between x and β it is not so simple as the existence of an unstable eigenvalue.

It is shown that faster trajectories produce more nonlinearity-related performance

issues, but great performance can still be achieved. The full-state feedback controller

with feed forward discussed in this section relates the angular states to the desired ball

trajectory in the linear model. It then finds a dynamically consistent trajectory for
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the entire state vector that depends on the choice of setpoint signal19. A feed forward

torque can be ascertained from the resulting trajectory. To help address offset initial

conditions and model uncertainty, a FSFB regulation controller is implemented on

the error states.

3.3.1 Control Law

To ensure that the error controller provides integral action, the FSFB with feed

forward scheme utilizes a similar augmented state vector to that of Section 3.1. For

system 1, this vector is shown in (3.33).

e1 =



∫ t
0
ex dt

ex

ėx

eβ

ėβ


(3.33)

To reason out the control scheme, two additional vectors must be introduced and

related to e1. The augmented state vector for the absolute states, x1a, is shown in

(3.34). The setpoint vector for this scheme, x1s, is shown in (3.35) 20.

19The setpoint signal, xs, must be chosen such that a particular solution to the ODE can be found
analytically. The particular solution cannot be found easily with numerical methods.

20While vectors x1 and x1s both contain integrated x and xs terms, the Simulink® implementa-
tion, Section 3.3.2, first constructs ex and then directly integrates it.
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x1a =



∫ t
0
x dt

x

ẋ

β

β̇


(3.34)

x1s =



∫ t
0
xs dt

xs

ẋs

βs

β̇s


(3.35)

These are related to e1 in the following way:

e1 = x1s − x1 (3.36)

The dynamics of all three of these vectors are shown below. By manipulating these

equations, and applying a FSFB control law on the error states, it can be shown that

asymptotic tracking is theoretically possible for the linear system. The dynamics of

x1a and x1s are given in (3.37) and (3.38). Here, T̂β is the feed forward torque. It

is an actuation plan consistent with the setpoint dynamics. If the system is at zero

error, this torque will keep the system on the desired trajectory21.

21Matrices A1a and B1a are the same between these two equations because the setpoint obeys the
original dynamics of the system
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ẋ1s = A1ax1s +B1aT̂β (3.37)

ẋ1a = A1ax1a +B1aTβ (3.38)

The matrices A1a and B1a in these equations are very similar to (3.7) and (3.8) for

the FSFB controller with integral action. The augmented state vectors for the two

FSFB controllers differ only by a few minus signs that arise from the error definitions.

For this controller, they are:

A1a =



0 1 0 0 0

0 0 1 0 0

0 −1.8786 0 4.1026 0

0 0 0 0 1

0 20.2622 0 31.3281 0


(3.39)

B1a =



0

0

−0.8511

0

9.1798


(3.40)
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The dynamics of e1 are derived as follows:

ė1 = ẋ1s − ẋ1a (3.41)

ė1 = A1ax1s − A1ax1a +B1aT̂β −B1aTβ (3.42)

ė1 = A1ae1 +B1aT̃β (3.43)

Here the input to the error dynamics, T̃β, is introduced:

T̃β = T̂β − Tβ (3.44)

This torque has a direct influence on the error states if T̂β is correctly determined.

Using T̃β, a full-state feedback law is introduced, as was done in Section 3.1.1, to

place the poles of the error dynamics.

T̃β = −K1e1 (3.45)

Continuing from (3.43), the closed-loop error dynamics become (3.46).

ė1 = [A1a −B1aK1]e1 (3.46)

The result is a stable, homogeneous system of ODEs in the error states that is inde-

pendent of the chosen setpoint. What’s left is to determine the feed forward torque
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T̂β. This is done by eliminating T̂β from (1.23)22 and solving the resulting ODE. Rows

two and four of (1.23), equations for ẍs and β̈s, are each solved for T̂β:

T̂β = 1.175ẍs − 2.2072xs + 4.82βs (3.47)

T̂β = 0.1089β̈s − 2.2072xs − 3.4127βs (3.48)

Equating (3.47) and (3.48), and solving for ẍs, produces a forced, linear ODE with

forcing function determined by the desired setpoint.

ẍs = −0.0927β̈s + 7.0071βs (3.49)

The general solution to this equation is comprised of a homogeneous part, βsH , and

particular part, βsP . The homogeneous part has a single unstable eigenvalue and

if this were an initial-value problem (which it is not), this part would depend on

the initial conditions. The particular part generally takes on the form of the forcing

function ẍs and is solely determined by the forcing function.

βs = βsH + βsP

βs = C1e
−8.6936t + C2e

8.6936t + βsP (3.50)

For a stable open loop system, the ODE could be solved numerically, as an initial

value problem, but in this case the unstable eigenvalue poses a problem. Unless the

22Equation (1.23) with absolute variables replaced by setpoint variables.
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initial conditions used in the numerical solution were just right23, this part of the

solution would show itself and the angular trajectory we ask the controller to track

would itself be unstable. The key to benefiting from (3.50) is to realize that this is

not actually an initial-value problem, we’re simply looking for an angular setpoint

that is consistent with the dynamics of the system. The solution does not need to

satisfy any initial or boundary conditions, and so long as it is feasible for the system

to eventually reach the specified trajectory in β, it is a valid setpoint signal. In other

words, the only requirements we have for βs is that it be consistent with xs and the

equations of motion, and that it is bounded (for stability purposes). A FSFB error

control law can handle the offset initial conditions and lead the angular states onto

βs as time progresses.

The term in (3.50) that satisfies the requirements of consistency with xs and the

dynamics, and boundedness is βsP , the particular solution24. This part of the solution

will be bounded if the forcing function is bounded, and it will have the same frequency

content as the forcing function. The range of possible βsP is the frequency response

for (3.49), i.e. it contains the same information as its Bode plot. This means that

for a periodic setpoint signal, one can extract the amplitude ratio and phase of each

frequency component from the Bode plot and construct βsP for all βs. For this thesis,

the MATLAB® symbolic toolbox was used to solve for the particular solution.

For a certain desired setpoint, an expression for βs is found in this manner, and then

substituted, for βs, into either (3.47) or (3.48) to solve for the feed forward torque

23The solver would also have to be very good. Solver errors will cause the unstable eigenvalue to
seep back into the solution.

24Including the stable term of the homogeneous solution would also produce a βs that satisfies
the requirements, but it is unnecessary to do this.
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T̂β. Because βs is analytical, computing β̇s is straightforward. Using (3.44), (3.45)

and (3.47), and replacing βs with βsP , the final control law (3.51) can be derived.

Tβ = T̂β − T̃β

Tβ = 1.175ẍs − 2.2072xs + 4.82βsP +K1e1 (3.51)

Once again, this control law cannot account for the nonlinearities present in the true

dynamics. However, Section 3.3.2, as well as LSED studies in Chapter 4, show that

even for highly dynamic trajectories (ones that push motors to the limit) the influence

of these nonlinearities is relatively small.

3.3.2 Simulation Results

The Simulink® implementation is very similar to that of the FSFB controller with

integral action. The outer and inner loops are given in figures 3.24 and 3.25.

The FSFB with feed forward outer loop shows the addition of a feed forward input,

uFF =

T̂β
T̂γ

 (3.52)

and a summing junction to produce the absolute input, per (3.44). The feed forward

input is a time dependent actuation plan generated in the symbolic toolbox using the

methods of Section 3.3.1. In Fig. 3.25, a setpoint vector in all the states is used to

compute the error vector25.

25The integral state is not included in the setpoint vector, as ex is integrated directly.

84



Figure 3.24: Outer Control Architecture - FSFB With Feed Forward

Figure 3.25: x Axis Control Architecture - FSFB With Feed Forward

Gain matrices for this controller, (3.53) and (3.54), were chosen to be identical to

those of Section 3.1.2, adjusting of course for sign differences. The time constant τ

of (3.3), was set to 1 once again. These choices allow for a more direct comparison of

the two architectures.

K1 = [ 516.2 1209.2 378.7 409.1 47.6 ] (3.53)

K2 = [ − 516.2 −1209.2 −378.7 409.1 47.6 ] (3.54)
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Simulation results for the feed forward controller differ from those of the integral

controller in that they show, in a red dashed line, the angular setpoint, βs, and feed

forward torque, T̂β, that the controller introduces.

With (effectively) the same gain matrices, the regulation response in Fig. 3.26 is

identical to that of the Fig. 3.5. For the feed forward controller, βs and β̇s are

zero - which are the same angular setpoints as the implied angular setpoints in the

integral action controller. Also, both the feed forward torque of this architecture, and

the setpoint vector of the integral controller are zero. Consequently the closed-loop

dynamics of the two architectures, (3.11) and (3.46), are identical for regulation26.

26If T̂β is zero, T̃β = −Tβ and one need only work out the sign nuances.
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Figure 3.26: Regulation Response - FSFB With Feed Forward

In Fig. 3.26, the angular setpoint of zero is shown explicitly, and the error-affecting

torque, T̃β is shown to approach zero as predicted by (3.46). The error, as with the

integral controller, can be seen to asymptotically approach zero. The absolute torque
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and the error-affecting torque differ only by a minus sign, as shown in (3.55). As

predicted by the law, it approaches T̂β = 0.

Tβ = −T̃β (3.55)

Figure 3.27: Step Response, xs = −0.15 [m] - FSFB With Feed Forward
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Just as with Fig. 3.26, the angular setpoint for the step response is zero, and Tβ

approaches T̂β - this time to a nonzero value. As this occurs, the error-affecting

torque, T̃β, and the error once again approach zero. The regulation and step responses

for both controllers perform well, but the quadrifolium responses in figures 3.28 and

3.29 show the advantage of the feed forward27.

27Section 3.3.3 discusses the architecture with and without the feed forward element. There are
great advantages to having dynamically consistent setpoints in the entire state vector whether or
not one uses a feed forward torque.
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Figure 3.28: Quadrifolium Response, r = 0.15 [m], Tr = 6 [s] - FSFB With
Feed Forward

For the quadrifolium response with a period of 6 seconds, Fig. 3.28, the performance

is far better than that of the integral controller, Fig. 3.7. The initial conditions

are almost immediately handled by the controller, with the help of the trajectory

smoothing (3.3), and x becomes visually indistinguishable from xs. For this response,
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the β setpoint is non-trivial and is an attenuation/amplification of the two frequency

components in xs, the rose curve frequencies of (3.1). The controller tracks this as

well - a necessary condition for xs to be tracked. Here, even for a more complicated

trajectory, the absolute torque approaches T̂β. However, since the trajectory is more

dynamic than in figures 3.26 and 3.27, there are more nonlinearity errors and neither

T̃β nor ex truly asymptotically approach zero as predicted by the closed-loop error

dynamics for a linear plant model, (3.46)28.

28A simulation using the linear model of the system is presented in 3.3.3 and shows the theoretical
behavior for a quadrifolium setpoint.
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Figure 3.29: Quadrifolium Response, r = 0.15 [m], Tr = 3.75 [s] - FSFB With
Feed Forward

At a period of 3.75 seconds, good performance is also achieved in Fig. 3.29, though

nonlinearity error is prominent due to the aggressiveness of the setpoint. This can be

seen most readily in the T̃β and ex plots. Still, the x, β, and feed forward paths are

tracked relatively well.
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The shape carved out by the ball for each of these responses is shown in figures 3.30

and 3.31. The 6 second period shows a far better adherence to the desired shape than

that of the integral controller, Fig. 3.8, and with the relatively large ball, it is difficult

to notice the small imperfections in the response29. The 3.75 second period response

is also far better than that of Fig. 3.8, but still shows distortion of the intended

shape. In animation, however, it is usually difficult to notice these imperfections.

Figure 3.30: Quadrifolium Response, Ball Path, r = 0.15 [m], Tr = 6 [s] -
FSFB With Feed Forward

293D animations were produced to give a visual experience of the ball-and-plate behavior - these
claims are based on experiencing the responses this way. A snapshot of a 3D animation is shown in
Fig. 2.1.
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Figure 3.31: Quadrifolium Response, Ball Path, r = 0.15 [m], Tr = 3.75 [s] -
FSFB With Feed Forward

3.3.3 Turning off the Feed Forward Torque

Turning off the feed forward torque for this architecture, while retaining the feedback

element, produced almost indistinguishable responses. Using a dynamically consistent

setpoint produces much better performance than setting βs to zero. However, there

is a distinct advantage to using the feed forward torque. An exploration of a control

scheme similar to the feed forward controller, but without T̂β is investigated in this

section.

To show a theoretical comparison between the two controllers, simulation results using

a linear plant model are used. Figures 3.32 and 3.33 show the architecture with and

without T̂β implemented. The quadrifolium response for the feedback-only controller

show that the law is very effective at tracking the setpoint in both x and β. However,

a key difference between the responses is that, for Fig. 3.32, T̃β does not decay to

zero - it actually approaches a signal very close to the computed T̂β. Here, ex behaves
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very similarly to that of Fig. 3.33. However, the error can’t possibly be zero if it is

producing the actuation necessary to keep it there.

Figure 3.32: Quadrifolium Response, Linear Plant Model, r = 0.15 [m],
Tr = 6 [s] - Feed Forward Turned Off
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Figure 3.33: Quadrifolium Response, Linear Plant Model, r = 0.15 [m],
Tr = 6 [s] - Feed Forward Kept On

It is insightful to look more closely at some of the signals. Figures 3.34 and 3.35 show

zoomed in error responses for each controller. The closer scrutiny reveals that only

the feed forward controller asymptotically tracks the setpoint. This is because, for
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the first controller, ex needs to contribute to the actuation where in the second, it

does not.

Figure 3.34: ex zoomed in - Feed Forward Turned Off

Figure 3.35: ex zoomed in - Feed Forward Turned On

The Tβ response in Fig. 3.32 appears at first to approach T̂β. This is illustrated

better in Fig. 3.36. However, a zoomed in plot, Fig. 3.37, shows that the difference

oscillates around zero with a very small amplitude.

Figure 3.36: Tβ − T̂β - Feed Forward Turned Off
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Figure 3.37: Tβ − T̂β Zoomed In - Feed Forward Turned Off

To understand what is going on, we need to take a look at ė1 without the feed forward

term present. The open loop dynamics of the error vector, e1, can be expressed in

a similar manner to the open loop dynamics of ẋ1a for the integral controller, once

again given by (3.6):

ẋ1a = A1ax1a +B1aTβ + S1x1s. (3.6)

Differentiating e1 produces (3.56), where A1a and B1a are still given by (3.39) and

(3.40) respectively, and x̄1s is given by (3.57).

ė1 = A1ae1 −B1aTβ + S1x̄1s (3.56)

x̄1s =



xs

ẍs

βs

β̈s


(3.57)
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The bar notation is introduced to differentiate the setpoint vector used in deriving

the feed forward law,

x1s =



∫ t
0
xs dt

xs

ẋs

βs

β̇s


, (3.35)

from that used here. The S1 matrix differs from that of the FSFB with integral action

law and is given by (3.58).

S1 =



0 0 0 0

0 0 0 0

1.8786 1 −4.1026 0

0 0 0 0

−20.2622 0 −31.3281 1


(3.58)

In the T̃β relation given in Section 3.3.1,

T̃β = T̂β − Tβ, (3.44)

if no feed forward torque (T̂β) is implemented, and only the feedback portion of the

law,

T̃β = −K1e1, (3.45)
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is used, then the absolute torque, Tβ, becomes (3.59).

Tβ = K1e1 (3.59)

With this, the closed-loop dynamics become (3.60).

ė1 = [A1a −B1aK1]e1 + S1x̄1s (3.60)

This differs from the feed forward closed-loop dynamics of Section 3.3.1,

ė1 = [A1a −B1aK1]e1, (3.46)

in that the S1x1s term is present and the error states no longer homogeneously decay

to the zero vector. The form of (3.60) is exactly like that of (3.11) for the integral

controller.

ẋ1a = [A1a −B1aK1]x1a + S1x1s (3.11)

For the FSFB controller with feed-forward turned off, the objective of a controls

engineer would be to attenuate the frequency content of S1x1s through choice of

K1. This is precisely what the K1 vector is doing in Fig. 3.32. Rather than this

being a coincidence, it may be that decently tuned gains in the integral controller of

Section 3.1 are bound to work even better here. Or perhaps the frequency response

for this scheme attenuates most reasonable trajectory vectors for this system. These

speculations are left for future consideration.
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With the integral controller, the design goal is not as clear as it is for (3.60). In the

case of the integral controller, attenuating the setpoint for all states is not necessarily

a good thing. We want the error states to be small, but the angular states are absolute

and shouldn’t be small. In fact we want them to be close to the signals consistent

with the desired x trajectory. This is a huge pitfall for the integral controller if one

is to choose gains using frequency domain analysis.

The feedback law for this section does not implement a feed forward torque, but it

can be written in terms of the feed forward torque one would need to get the behavior

discussed in Section 3.3. This feed forward term takes the place of the setpoint term

S1x̄1s, and the substitution tells us that failing to supply the feed forward torque is

the same as actuating the closed-loop error dynamics with B1aT̂β. I.e., a FSFB law

utilizing a dynamically consistent setpoint vector, x1s (3.35), is the same as lumping

the feed forward torque of Section 3.3 in with the error dynamics.

ė1 = A1ae1 −B1a(T̂β − T̃β) + S1x̄1s (3.61)

Substituting T̃β for the FSFB law, and leaving T̂β in the equation, we get (3.62).

ė1 = [A1a −B1aK1]e1 −B1aT̂β + S1x̄1s (3.62)

If we were to make (3.62) look exactly like the closed-loop feed forward controller

dynamics,

ė1 = [A1a −B1aK1]e1, (3.46)
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then B1aT̂β would need to be precisely S1x1s. This establishes an equivalence of the

two terms.

S1x̄1s = B1aT̂β (3.63)

This means we can rewrite (3.60) as (3.64).

ė1 = [A1a −B1aK1]e1 +B1aT̂β (3.64)

Equation (3.64) shows that the closed-error dynamics, without the feed forward torque

of Section 3.3 implemented, still contains information about that feed forward torque.

These error dynamics are now actuated in the same way as the system would be

actuated if the error were zero and the ball were on the trajectory. This may or may

not have deeper significance, but it is an interesting fact nonetheless.

The task of attenuating B1aT̂β would likely be much easier here than for the integral

controller. Since error in every state drives the actuation, the likelihood that the

resulting torque is similar to T̂β is higher. So a there would likely be a wide range

of K1 gains that produce favorable ex Bode plots. Speaking loosely, there are no

contradictory objectives in the feedback law. Regardless, the procedure for tuning

each controller would be the same. One would place the poles of the closed-loop

transfer function to create a favorable Bode plot for ex, given the forcing function’s

frequency content.

This task can be avoided though if one simply implements T̂β. If the dynamically

consistent setpoint vector has already been formulated, T̂β immediately follows. Also,

when the scheme lacks feed forward, the error controller is coupled to the overall
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performance. With feed forward, one can tune the error controller separately. If one

needs to tune to avoid some mechanical resonance, or prominent noise frequencies, it

does not have to be balanced with attenuating B1aT̂β.
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Chapter 4

LOCK-STEP EUCLIDEAN DISTANCE STUDY

This chapter presents normalized Lock-Step Euclidean distance (2.4) studies for the

controller architectures presented in Chapter 3. The same controller gains are used for

these studies as were used for simulation results in that chapter. Normalized LSED

measures are plotted for several rose curves across a range of periods. These allow for

a more quantitative comparison between the architectures, and help solidify controller

advantages/limitations discussed in the control architectures chapter. There, suitable

sets of controller gains were found that, produced stable responses for some regulation,

step, and quadrifolium cases. However, the solution space for the controllers is quite

large. For each, there are many tuning parameters, setpoints, and initial conditions

that can be tested. The studies do not present simulation data from an optimized set

of gains for each controller. One could find gains that minimize the LSED over a range

of setpoints and then present the LSED studies for the range, however this would be a

large design challenge on its own. Rather, gains were found through manual iteration

and were used as a demonstration of a typical controller response for that architecture.

The LSED studies here take a similar approach, and alongside studies in Appendix

A, serve as persuasive evidence for the recommendation in Chapter 5. The FSFB

with feed forward controller performs better than the other two designs over a wide

range of trajectories and is stable for more aggressive dynamics.

Studies were conducted for rose curves with a r = 0.15 [m] over a Tr range of three

to ten seconds. The system generally went unstable for Tr values below around three

seconds - any faster and the torques would typically saturate causing failure. It was

decided that the transient parts of the rose curve responses should be neglected.
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Simulations were conducted for four periods of each setpoint. To get the steady

state behavior, the first two periods were not included in the LSED computations.

To compute the LSED, each steady state response was re-sampled at a frequency of

thirty Hertz and measured relative to the setpoint evaluated at those same times.

In Chapter 3, the SISO sliding mode controller was shown to perform better than

the FSFB with integral action controller, and the FSFB with feed forward was shown

to perform better than both. Figure 4.1 confirms this over a wider range of quadri-

folium setpoints. At about Tr = 5.25 [s], the sliding mode and integral controllers go

unstable. Those measures are orders of magnitude greater than those where stable

behavior was verified earlier. The feed forward controller though, goes unstable at a

significantly faster setpoint, around Tr = 3.75 [s]. As discussed in Chapter 3, the pri-

mary source of error in the feed forward controller is nonlinearity error. As expected,

this increases with the frequency of the setpoint for all studies conducted.

(a) Setpoint Curve (b) LSED Results

Figure 4.1: LSED Study, Quadrifolium Rose Curve, n = 2, d = 1

The Dürer folium study of Fig. 4.2 shows that the integral controller is actually able

to produce more aggressive trajectories than that of the sliding mode controller. The

sliding mode controller shows significantly degraded performance, only being able to
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achieve relatively slow trajectories. For results where they are both stable, however,

the sliding mode controller still performs better.

(a) Setpoint Curve (b) LSED Results

Figure 4.2: LSED Study, Dürer Folium Rose Curve, n = 1, d = 2

The trifolium study, Fig. 4.3, shows interesting behavior for the sliding mode con-

troller. The controller shows some unpredictability in that it produces a stable re-

sponse at one trajectory and an unstable response at a slower trajectory. This be-

havior may be present elsewhere, but a higher density of periods may be necessary

to notice it for the other trajectories.

(a) Setpoint Curve (b) LSED Results

Figure 4.3: LSED Study, Trifolium Rose Curve, n = 3, d = 1
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Chapter 5

DISCUSSION, CONCLUSION, AND FUTURE WORK

This discusses the architecture detailed in Chapters 3 and 4 in the context of concepts

from the literature review, Section 1.2, and with regard to control criteria laid out

in Chapter 2. The work here reiterates and collects statements about the unique

behavior of each control law presented, and gives a final recommendation based on

the totality of information in this thesis. This chapter also summarizes the content of

this thesis, restates the final controller recommendation in this broader context, and

identifies potential avenues for future work and implementation on hardware.

5.1 FSFB with Integral Action Discussion

The FSFB with Integral action controller utilizes a standard, classical, approach

to trajectory-tracking control. Linear feedback on an augmented state vector (3.4)

containing only error states in x and y is used to both stabilize the system and

tend the system toward the desired trajectory. With regard to Tedrake’s work on

underactuated robotics, the control law neither seeks to cancel out the nonlinear

dynamics, nor does it directly attempt to take advantage of the natural dynamics of

the system. The law can be summarized as follows: add some stabilizing feedback

from the angular states, i.e. introduce springiness and damping to the plate, and

actuate the ball toward the desired trajectory in its own states.

Inherent in this law is phase and amplitude error, as the integrator is inadequate to

supply the necessary torque to keep the system on the trajectory. In other words,

this controller does not have a proof of asymptotic tracking in any of the models
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presented. Additionally, modifying the phase and amplitude of the setpoint’s fre-

quency components such that the response lands on the correct trajectory is argued

to be intractable and fundamentally flawed. Acceptable performance may be achieved

with this approach, but tuning the controller is a difficult task. Not only may the

controller need to be tuned differently for different setpoint functions, but the error

dynamics and the overall performance are coupled together. If one needs to tune for

noise, mechanical resonance, disturbance rejection, initial conditions, etc., this must

be balanced with the steady state tracking performance.

Despite these flaws, the controller does perform well in the regulation and step cases.

It also produces a qualitatively pleasing response as the angular behavior is in-sync

with the ball behavior (they contain the same frequency components). With the

tuning presented, the controller is able to achieve more aggressive trajectories than

that of the SISO sliding mode control scheme, though it performs worse where both

controllers stabilize the system. For faster trajectories, the performance is not very

good, even if it produces a stable response, but for slower trajectories, it performs well

enough that someone viewing the hardware in action might have a hard time telling

that the setpoint is not being perfectly tracked. A final remark is that this controller

is relatively easy to implement, and may prove to be the easiest to discretize and

deploy on real hardware.

5.2 SISO Sliding Mode Discussion

The SISO sliding mode controller contains an internal model of the decoupled nonlin-

ear dynamics. The law was explored in an attempt to account for modelled dynamics

that are neglected in the linear controllers, but this was done at the cost of altering

the objective for the controller. Because the system is underactuated, the nonlinear
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input matrix, g1(x1), cannot be inverted and the state dynamics cannot be cancelled

out (Tedrake [10]). However, it is found that choosing an output variable, y1 (3.19),

comprised of both x and β states allows us to formulate a control law that cancels

the output dynamics. Therefore this law is in opposition to Tedrake’s mantra that

one should take advantage of the natural dynamics of the system. The law is shown

to place the x trajectory close enough to the setpoint, in many cases, despite the fact

that it is not actually the control objective.

Though there is no proof of stability in the states, simulating the SISO sliding mode

control law is shown to produce relatively good performance for rose curve trajectories.

Simulated responses show close to asymptotic tracking in the output variable (limited

by model uncertainty), where stability is maintained, yet internal states oscillate at

higher frequencies than the setpoint in order to achieve it. The result is a qualitatively

unpleasant experience for the viewer. Additionally, for step and regulation cases,

performance is poor. Stability with the SISO sliding mode control law in regulation

and step cases is unpredictable and internal state oscillations are prominent for these

types of setpoint signals.

The SISO sliding mode controller LSED results were between those of the integral

controller and the feed forward controller, for stable responses. The law was least

able to produce highly dynamic trajectories as internal state activity would cause

the torque to saturate and the sliding surface could no longer be made attractive.

Additionally, the law would be most difficult to implement as the nullifying feedback

contains many functions to evaluate and discretizing the law would be non-trivial.
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5.3 Recommendation: Full-State Feedback with Feed Forward

The FSFB with feed forward controller is recommended over the FSFB with integral

action and SISO sliding mode controllers. It is the only control law containing a proof

of asymptotic tracking in any model of the system, it shows excellent performance in

simulation, outperforming the competition for a wide range of setpoint signals and

setpoint frequencies, and it produces the most qualitatively pleasing visual experience

when viewed in animation. Additionally, it has the advantage that the error dynamics

are not directly tied to the tracking performance - as it is for the integral controller.

The control law contains a proof of asymptotic tracking in the linear model, and

utilizes the natural dynamics of the system, in theme with Tedrake, to track the

desired ball trajectory. To produce the necessary elements of the law, the input torque

is algebraically eliminated from the equations of motion. The resulting ODE relating

the ball setpoint to the angular states is solved, and the particular solution alone

is used to produce a dynamically consistent setpoint vector. This solution is then

substituted into the torque equation to produce the feed forward torque. With the

combination of these elements, and when tuned well enough, the control law satisfies

all of the control criteria from Chapter 2, and it produces excellent performance.

Performance predicted in the linear system is shown to hold even in simulations using

the coupled nonlinear model. For much more dynamic trajectories than the competing

laws, the responses are stable and the LSED measure is orders of magnitude lower.

When viewed in animation, the responses are often visually indistinguishable from

perfect tracking and produce a qualitatively pleasing visual experience. Just as with

the integral controller, the angular trajectory has the same frequency components as

the ball trajectory and the plate is in-sync with the ball. With this combination of
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tracking performance and synchronization, the visual experience of the feed forward

controller is above and beyond the integral and sliding mode controllers.

A final, major advantage of the control law, is the that the error dynamics are uncou-

pled from the tracking performance in the linear model1. The error dynamics, given

by (3.46), need only be stable and decaying for asymptotic tracking to be achieved

- i.e. any tuning will produce good tracking at steady state. The tuning can then

be done to combat nonlinearities (like saturation or unmodelled vibration), attenu-

ate noise, or buff out uncertain model parameters. In Section 3.3.3, the dynamically

consistent setpoint vector alone is used to produce good tracking. This controller,

however, does not produce uncoupled error dynamics that the feed forward torque

produces.

5.4 Conclusion

The ball-and-plate system, whose dynamics are complicated, nonlinear, and under-

actuated was introduced in this thesis. Coupled nonlinear, decoupled nonlinear, and

decoupled linear models, derived by Richter, with parameters specific to the latest

iteration of the hardware, were briefly presented and used to facilitate discussion

around various controller designs. The asymptotic tracking problem was defined and

a trajectory similarity measure was selected to evaluate responses that do not achieve

asymptotic tracking. This Lock-Step Euclidean distance measure was evaluated for

many simulations in the LSED studies presented in this thesis. Though not all-

encompassing, these studies supported the controller discussion and the final design

recommendation. Underactuation was shown to be an incredibly important property

that limited the control techniques that could be utilized.

1There will always be nonlinearity issues present, but simulations show that for the most part,
these are inconsequential, with the exception of input saturation.
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Within the limitations of the underactuation, three different controllers were explored,

two derived in the linear model, and one derived in the decoupled nonlinear model.

Each control architecture was motivated mathematically, and simulations were pre-

sented that highlighted important behaviors. The Full-State Feedback with Integral

action and Single-Input-Single-Output Sliding Mode controllers were found to have

merit, but were ultimately fundamentally limited and inferior to the Full-State Feed-

back with Feed Forward controller. This final controller was recommended for its

proof of asymptotic tracking in the linear model, its excellent performance in simu-

lations with the full nonlinear plant model, and its pleasing visual experience when

viewed in animation. The Full-State Feedback with Feed Forward design was shown

to be an excellent theoretical foundation for trajectory-tracking control on ball-and-

plate hardware.

5.5 Future Work

The simulations presented in this thesis lack some important real-world considera-

tions. The model did not include noise present in the system - a including a model

of the noise would allow for tuning in simulation that more accurately represents

what implementation on real hardware will entail. For the implementation, it may be

necessary to introduce a filter, perhaps a Kalman Filter, to reduce noise and produce

similar performance to that shown in simulation.

The control laws did not take into account disturbances. If it is desired that someone

should be able to poke the ball and have the system recover from the action, more

work is needed. The tuning that was conducted for this thesis did not hold well

for large values of the error, and an exponential smoothing function (3.3) was found

necessary. This function only smooths the system from the initial conditions to
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the trajectory, and a disturbance would essentially re-introduce a set of large initial

conditions. Future work would may need to include a less aggressive error controller

that does not saturate or a smoothing law that reacts to disturbances.

The initial conditions used in simulation were not realistic. For the ball to start

at an offset plate-frame location with the plate perfectly horizontal will not occur

if the motors are turned off. With the motors turned off, the ball will slide to the

edge of the plate as it tilts and hits the floor. It would then be stopped by barriers

present along the edge. This barrier would need to be included in the system model

if the associated initial conditions were to be properly accounted for in simulation.

The hardware design by Mangin includes a manual balancing via USB interface that

allows the system to start roughly at the unstable equilibrium point. Implementation

of the trajectory-tracking controller would likely benefit from this initial condition

and future designs should build it in.

Any controller implemented on a microcontroller will necessarily have a discrete ac-

tuation. The laws presented in this thesis do not account for this. Future work may

require that either the hardware support a fast enough loop closure rate that this can

be neglected, or that a discretization be brought in mathematically and evaluated

further.
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APPENDICES

Appendix A

ADDITIONAL LSED STUDIES

This appendix gives additional Lock-Step Euclidean Distance study data for rose

curves not presented in the main body of this thesis.

(a) Setpoint Curve (b) LSED Results

Figure A.1: LSED Study, Circle Rose Curve, n = 1, d = 1

(a) Setpoint Curve (b) LSED Results

Figure A.2: LSED Study, Limaçon Trisectrix Rose Curve, n = 1, d = 3
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(a) Setpoint Curve (b) LSED Results

Figure A.3: LSED Study, Rose Curve, n = 2, d = 3

(a) Setpoint Curve (b) LSED Results

Figure A.4: LSED Study, Rose Curve, n = 3, d = 5
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