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ABSTRACT

Artist-Configurable Node-Based Approach to Generate Procedural

Brush Stroke Textures for Digital Painting

Keavon Chambers

Digital painting is the field of software designed to provide artists a virtual

medium to emulate the experience and results of physical drawing. Several

hardware and software components come together to form a whole workflow,

ranging from the physical input devices, to the stroking process, to the texture

content authorship. This thesis explores an artist-friendly approach to synthesize

the textures that give life to digital brush strokes.

Most painting software provides a limited library of predefined brush textures.

They aim to offer styles approximating physical media like paintbrushes, pencils,

markers, and airbrushes. Often these are static bitmap textures that are stamped

onto the canvas at repeating intervals, causing discernible repetition artifacts.

When more variety is desired, artists often download commercially available

brush packs that expand the library of styles. However, included and

supplemental brush packs are not easily artist-customizable.

In recent years, a separate field of digital art tooling has seen the popular growth

of node-based procedural content generation. 3D models, shaders, and materials

are commonly authored by artists using functions that can be linked together in a

visual programming environment called a node graph. In this work, the feasibility

is tested of using a node graph to procedurally generate highly customizable

brush textures. The system synthesizes textures that adapt to parameters like

pen pressure and stretch along the full length of each brush stroke instead of

stamping repetitively. The result is a more flexible and artist-friendly way to

define, share, and tweak brush textures used in digital painting.
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Chapter 1

INTRODUCTION

When setting out to build a 2D art tool, a component of core importance is the

brush-based painting system. Existing art software offer varying capabilities

ranging in levels of complexity. Some approaches work by simply stamping a

texture at repeating intervals and the form of that roughly square or circle

pattern defines the look of the paintbrush. Others take a basic predefined length

of a straight brushwork pattern then stretch and wrap it around the curve of the

artist's brush stroke. Yet others use more sophisticated means to simulate the

physics of wet media and paint mixing.

While each method has its pros and cons, a common factor is the inability to

provide deep levels of artistic control over the look, feel, and interactions of a

chosen brush style. This leaves artists stuck with a lack of variety and constrained

in their freedom to realize their creative visions for particular artistic styles. The

digital creative industry is increasingly moving towards building tooling that is

art-directable, and that is an especially valuable trait for a tool so fundamental as

the paintbrush.

Digital illustrations are often made by drawing with a graphics tablet where the

stylus provides artists a more tactile and natural feel compared to a mouse.

Furthermore, graphics tablets provide additional axes of input data including pen

pressure and tilt in three axes of attitude. Many industry-standard digital painting

applications like Photoshop and Krita allow users to map these input axes to

chosen parameters like brush radius and opacity. Such choices are simple and

understandable, but they can only loosely approximate the qualities of physical

brushes, markers, pencils, and other tangible media on a real drawing surface.
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Pressure and tilt do not only affect the opacity and thickness of a line, but in

more complex ways as well. Providing artists control over the mapping from

input to output is a crucial capability for modeling diverse styles of brush

textures effectively.

In the related field of 3D art, procedural texture generation is now a common

workflow that solves the problem of mapping complex input parameters in

nontrivial ways to a rendered output texture. The 3D industry uses 2D textures

for the materials that define the coloration and lighting on the surfaces of

models and environments. For example, these are square textures that will

repeat seamlessly across the surfaces of walls, walkways, weapons, and wagons

in a 3D fantasy scene. Because of the large coverage that would be required to

generate a texture uniquely across a sizable area like the terrain of a world,

repetition helps avoid impractically large GPU memory and disk storage

requirements in games. By comparison, brush paths in a digital painting are

drawn along a curving line, and it is feasible to compute and store textures that

scale in a single axis. Area coverage grows with the square of the edge lengths,

while linear coverage only grows with the edge length. Therefore, it is practical to

procedurally generate a unique texture that spans the length of every brush

stroke in a painting with reasonable memory and computation demands. What

remains is deciding upon exactly how to approach that procedural generation

goal with the aim of being useful, flexible, and user-friendly.

The software Substance Designer is the industry standard used by 3D artists for

useful, flexible, and relatively user-friendly procedural texture authorship. It acts

as a toolbox for generating textures in a node graph environment where

functions receive parameters then compute some derived output that the user

wires into other nodes, forming a directed acyclic graph (DAG) of image

processing steps. Functions are the nodes of the graph, represented by boxes,
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and data connections are the edges of the graph, represented as curved wires.

Some nodes generate textures, like Perlin noise that employs a random seed to

produce a cloud-like pattern. Others apply effects to an input texture, like

Gaussian blur or exposure histogram curves. Combining generated content in

clever ways results in practically any material that's imaginable by a procedural

artist, representing photorealistic or stylized looks. It stands to reason that the

proven power of node-based procedural texture generation can be borrowed

and applied to generate stylized or photorealistic brush textures as well.

This thesis contributes a prototype workflow concept to explore the feasibility of

procedural brush authorship. It examines the approach of using an artist-

configurable node graph to offer maximal control over the brush customization

process and finds where the strengths and weaknesses of the solution present

themselves.

The paper begins by investigating the brush rendering approaches taken by

existing software and related academic works for comparison with the proposed

solution (chapter 2). It documents the conceptual model and user experience for

artists using the proposed system (chapter 3). It introduces a concept for a

specialized node dubbed a "Slicer" that is useful for turning time-series data like

pen pressure or tilt into a textured strip based on some artist-defined square

pattern texture (chapter 4). It discusses the implementation process for the

prototype built using web technologies including WebGL, and covers some of the

technical considerations in generating textures of unbounded, user-defined

length in real time (chapter 5). It evaluates the results of attempting to replicate

specific choices of brush styles inspired by physical art media and online

reference pictures (chapter 6). And it concludes by discussing future

improvements and applications of the technique (chapter 7).
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Chapter 2

BACKGROUND

Digital artists have a wide range of choices for painting software and each tool

specializes in different strengths and styles. Vector graphics applications like

Adobe Illustrator and Affinity Designer offer approaches that center around their

curve-based art representation. Raster graphics editors like Adobe Photoshop,

Krita, and Procreate center their solutions around their layer and pixel-based

nature. Specialized paint simulation software like Corel Painter and Adobe Fresco

focus on simulation of wet media and paint mixing. These different approaches

present varying opportunities and drawbacks for artists depending on their

preferences, art styles, and skill areas. Comparisons between different common

brush models, which by happenstance all begin with the letter "S", are examined

in this section.

2.1 Preface: An Ideal Brush Model

To form a mental model about the process of digital painting for comparison with

common approaches, here is a high-level description of the pieces at play. Figure

1 shows how these different components produce a final rendered brush texture.
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Brush style decisions

(user-configurable)
Per-stroke input parameters

Brush stroke dynamics and appearance

Final rendered brush texture

Figure 1: Ideal Brush Model. Represents real life painting or sophisticated digital

painting systems.

The first component in the model is the configurable brush style decisions that

represent how to simulate and render the brush. There is no single way to define

this, but it should provide plentiful flexibility to describe how any multitude of

styles should look, interact, and behave so as to replicate all ranges of both real

and imagined art media. It should also be highly customizable without requiring

artists to create and digitize new physical textures or modify code.

The second component in the model is the input data. Based on user interactions

with input device hardware and settings in the software, this represents the

parameters that change with every unique stroke. Even using the same brush

configuration, these values can differ every time something is drawn. Common

values are listed below, although more are possible and others like "speed" or

"curvature" can be derived from them.
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At each sample along the path:

X and Y coordinates

Pen pressure (optional)

Pen tilt, in up to three axes (optional)

Timestamp (optional)

Possible properties that usually are set once per stroke:

Standard stroke width

Color

The third component in the model is the brush engine which simulates and

renders a textured brush stroke, given the previous two components as input.

The result is a texture that integrates style decisions with the path-specific

parameters and curves with the paintbrush motion. In real life, this "brush

engine" is just the physics of the media interacting with the drawing surface. In

the digital world, this is a physics and/or rendering engine which computes what

is necessary to model or approximate the real life interactions as best as possible.

Many practical approaches use brush patterns scanned from real life to achieve

realistic-looking results without the complexity and difficulty of a high-fidelity

simulation.

2.2 Stretching Brush Model

Popular among vector graphics editors, stretching is a method of rendering brush

textures around a curved drawing path. In this model, as broken down in Figure

2, brush styles take the form of long and thin images of brush strokes drawn in a
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straight line. These texture strips are then wrapped around the curving trajectory

of each brush stroke drawn by the artist.

Brush style decisions

(immutable)

Brush stroke dynamics and appearance

(usually physical, then digitized)

Stretch/wrap transformations

Per-stroke input parameters

Final rendered brush texture

Figure 2: Stretching Brush Model. With the stretching method, style decisions

occur before the brush is drawn and per-stroke inputs are applied afterward.

Usually texture strips are authored by using real art media to draw a straight line

of a certain length, then scanning or photographing the image to digitize it as a

texture or detailed vector shape. Since they are based on real brushes, this

approach can often look very good in places where its lack of flexibility is not a

major constraint.

The drawbacks of this approach mainly center around its static, non-adaptive

nature. It is the brush equivalent to authoring 3D material textures by capturing
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real-world photos of surfaces— highly realistic but not very customizable after-

the-fact. It also means that the uniqueness of multiple strokes using the same

texture may become apparent with noticeable duplication of the pattern

throughout the artwork. Because brush texture strips are created beforehand,

the at-time-of-usage properties like stroke length, chosen stroke width, and

localized pressure/tilt cannot be factored into the original texture source.

Figure 3: Brush Texture Axial Stretch. Demonstration in Adobe Illustrator (top)

and Affinity Designer (bottom) shows how the same texture visibly repeats and

deviates from its authored aspect ratio.

To work with arbitrary stroke widths and lengths, the aspect ratio of the texture

will end up being stretched, as shown in Figure 3. To wrap the straight texture

around a curving stroke path, more stretching is necessary where tight turns will

compress inner radii and stretch outer radii. To integrate pressure or tilt data,

users may be able to choose a mapping from those parameters into rendering
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modifiers like opacity or localized stroke width "pucker". Such transformations

take a carefully prepared input texture and reduce its perceptible quality,

somewhat diminishing the overall utility of the stretching brush model.

2.3 Stamping Brush Model

Popular among raster graphics editors, stamping is perhaps the most common

approach used in mainstream digital painting software. The method takes a

texture of roughly square or circular proportions (not a long strip) and repeatedly

stamps that image onto the drawing layer along the trajectory of the brush path.

The model is described in Figure 4.

By avoiding the need to stretch the textures, many of the drawbacks in the

stretching brush model can be avoided. The approach is largely a practical

compromise between that model and the ideal brush model, which explains its

prevalence in the industry. Stamping is more flexible at following arbitrary paths,

especially ones with sharp bends. A larger degree of tailored behavior can be

implemented and made configurable to vary the stamping algorithm and

increase visual variety, achieve different styles, and factor in parameters like pen

pressure and tilt.
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Brush style decisions

Brush stamp appearance

(usually physical, then digitized)

Brush stamping dynamics

Per-stroke input parameters

Final rendered brush texture

Figure 4: Stamping Brush Model. With the stamping method, style decisions by

the author of a brush take the form of a stamp texture and custom settings for

the stamping system that applies brush dynamics and other configurable tricks to

lend variety and quality to the result.

The approach does come with its own share of disadvantages. The illusion can

often be broken when the repetitiveness of the stamp texture becomes

apparent, as shown in the Krita painting application in Figure 5. Randomization of

rotation and countless other tricks can be used to break up the repetition with

the stamping algorithm, however these strategies need to be configured for each

brush style, thereby adding complexity to the user experience. By its nature of

stamping down textures, it works better at modeling the look of dry more than

wet media. Another drawback is that, while the stamping dynamics settings can
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be modified on a brush style preset by the user, the texture (which is often

digitized from a physical pattern) is not so easily reconfigurable.

Figure 5: Stamping Repetition. A noticeable repeating pattern is visible in many

cases with the stamping model, as shown here in Krita.

Figure 6: Alpha Accumulation. There is a tradeoff between alpha accumulation

and repetition based on the choice of spacing distance. The circular brushes have

100% feather on the left and 0% on the right. The top row uses 1% spacing, the

middle row 25%, and the bottom row 50%.

One further limitation of stamping is how the discrete nature of individual

stamps, spaced at a chosen distance interval, leads to an undesirable

phenomenon called alpha accumulation. This is where the translucent pixels in a

stamp that mostly overlaps itself will add up to become more opaque, reducing

the intended translucency that is desired. To reduce the alpha accumulation, a
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wider spacing interval can be set so fewer stamps overlap each other, but then

the discrete repetition becomes more obvious. Figure 6 shows how variations in

spacing affect the alpha accumulation and obviousness of separate stamps for

simple feathered circular brushes.

2.4 Sweeping Brush Model

In response to the discrete nature of stamping, a variation has been proposed in

academic works called the brush sweeping model. Rather than placing the stamp

texture at a repeating interval, it smears the texture across the stroke trajectory.

The differences between sweeping and stamping are discussed in Chapter 2: A

Brush Stroke Synthesis Toolbox[1] of Image and Video-Based Artistic Stylisation

by Paul Rosin and John Collomosse.

A modern implementation[2] uses integral calculus to analytically determine the

pixel fill opacity in the rendering process efficiently on the GPU.

Sweeping is not widely used in painting software because it only works robustly

with feathered circular brushes. Textures, like those frequently used in stamping,

are not easily integrated in the 2D plane.

2.5 Simulating Brush Model

Some painting applications like Corel Painter and Adobe Fresco use more

sophisticated simulation-based methods to provide a painting experience that

better models physical painting, especially with wet media.
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Commercial software and research implementations[3] [4] [5] usually focus on

modeling the brush bristles,[6] [7] fluid dynamics,[8] and pigment transfer and

mixing.[9]

Primary drawbacks include performance concerns, complexity, and specialization

that makes it difficult to integrate with other brush models or styles. This

category of varied methodologies is mentioned for completeness but not

surveyed in depth here.

2.6 Synthesizing Brush Model (Proposed)

Procedural brush texture strip generation is a new brush model approach

explored in this paper. It is based primarily off the stretching brush model

described in section 2.2 but aims to provide a high degree of customization

where that model provided none. Its breakdown in Figure 7 shows how it takes

the stretching concept from that model but is otherwise essentially the ideal

brush model.
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Brush style decisions

(user-configurable)

Brush stroke dynamics and appearance

Per-stroke input parameters

Stretch and curve transformations

Final rendered brush texture

Figure 7: Synthesizing Brush Model. The proposed method provides full

dynamics and appearance control to the user based on input data, then stretches

the resulting texture strip like the texture stretching brush model. This is the

ideal brush model but with the insertion of the "Stretch and curve

transformations" step.

Instead of using physical art media to create, then digitize, a single specimen of a

straight textured stroke, the author of a brush style utilizes a node graph to

procedurally generate the paint stroke style. The resulting node setup acts as the

"source code" implementing the brush style decisions made by its author, and

that can be modified by any user later on.

Because brush texture strips are created while painting at runtime, the at-time-

of-usage properties like stroke length, chosen stroke width, and localized
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pressure/tilt can be factored directly into the look and style of the texture

source. The predefined length of a digitized strip texture using the conventional

model is no longer a concern when the procedural system can generate the

correct length to match the brush path's arc length. By varying the seed used in

the procedural noise patterns that contribute to the look of the brush, each

separate brush stroke in a drawing can look entirely unique so no repetition is

observed. Aside from stroke self-intersection and stretch at areas of sharp

curvature described in the stretching brush model section, this approach solves

nearly all the drawbacks with that model.
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Chapter 3

NODE SYSTEM

The node graph is an interface where a brush author may combine nodes in

arbitrary ways to generate custom styles. Nodes are artist-friendly boxes with

settings, inputs, and outputs that provide an abstraction over code and GPU

shaders to perform some visual operation like generating a procedural texture or

modifying a texture in some way. Textures can be linked together with wires

between an output port from one node and an input port on another node.

There are several types of nodes that are described in the sections below, many

of which may look familiar to users of node-based material or shader editors.

Nodes can be configured to output a Square or Strip, which specifies that the

dimensions are either 1:1 or a wide rectangle that would extend as the artist

draws a longer and longer brush stroke. The Slicer node, which slices square

textures into strip textures, is a new concept introduced in this body of research.

It is presented in greater detail in the next chapter.

3.1 Generator Nodes

The Gradient node generates a white-to-black gradient. Its available style

choices, pictured in Figure 8, include "Linear Horizontal", "Linear Vertical",

"Bookmatched X", "Bookmatched Y", and "Radial". An "Invert" setting can

reverse the direction of black and white. "Falloff" and "Thickness" affect the

ramp of the gradient and "Outer Radius" affects the size of the radial gradient's

circular reach. Like all nodes that produce a texture, the orange dot acts as the

output for what is shown in the node's thumbnail.
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Figure 8: Gradient Node. Shown with its five styles.

The Perlin Noise node generates a randomized cloud pattern. Its scale can be

chosen, as shown in Figure 9, to provide different frequencies of noise as desired,

and regardless of scale the texture will tile seamlessly along its edges. Its seed

can be set to provide a new random pattern.

Figure 9: Perlin Noise Node. Shown at different scales.

The Voronoi Noise node generates a randomized cellular structure. Different

jitter values between 0 and 1 can provide a choice of regularity or disorder. Eight

choices of style can produce a diverse array of looks to suit the artist's needs.

These are "F1" (Figure 10), "F2" (Figure 11), "Subtract" (Figure 12), "Multiply"

(Figure 13), "Divide" (Figure 14), "Power" (Figure 15), "Multilog" (Figure 16), and

"Caustics" (Figure 17). These styles are implemented taking a grid of points,

randomizing their offset based on the jitter value, and calculating the distance of

each pixel to the nearest point for the F1 value and the distance to the second-
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nearest point for the F2 value. Additional styles are created by arithmetically

combining F1 and F2 as described in the captions in the figures below.

Figure 10: Voronoi Noise Node, F1 Style. Shown at different jitter values with the

"F1" style.

Figure 11: Voronoi Noise Node, F2 Style. Shown at different jitter values with the

"F2" style.

Figure 12: Voronoi Noise Node, Subtract Style. Shown at different jitter values

with the "Subtract" style, which is calculated in GLSL as F2 - F1.
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Figure 13: Voronoi Noise Node, Multiply Style. Shown at different jitter values

with the "Multiply" style, which is calculated in GLSL as F1 * F2.

Figure 14: Voronoi Noise Node, Divide Style. Shown at different jitter values

with the "Divide" style, which is calculated in GLSL as F1 / F2.

Figure 15: Voronoi Noise Node, Power Style. Shown at different jitter values

with the "Power" style, which is calculated in GLSL as pow(F2, F1).
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Figure 16: Voronoi Noise Node, Multilog Style. Shown at different jitter values

with the "Multilog" style, which is calculated in GLSL as log(F1) * log(F2).

Figure 17: Voronoi Noise Node, Caustics Style. Shown at different jitter values

with the "Caustics" style, which is calculated in GLSL as log(log(F1) * log(F2)).

3.2 Modifier Nodes

The Blend node takes two input textures and composites them as a single

output. Two examples are shown in Figure 18. The blend mode can be selected

between "Normal", "Dissolve", "Multiply", "Screen", "Add (Linear Dodge)",

"Overlay", and "Subtract" which uses the industry-standard compositing blend

equations. Opacity can also be set to let the bottom layer show through the

translucent top layer.
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Figure 18: Blend Node. Shown in two example compositing scenarios.

The Levels node takes a texture and clamps its light and dark regions as specified.

Three examples are shown in Figure 19. "Shadows" and "Highlights" clamps the

dark and light parts of the image, making anything beyond the specified values

either pure black or pure white. "Midtones (Interp Factor)" biases the gray levels

towards clamped white or black areas. "Minimums" and "Maximums" caps the

darkest and lightest parts of the texture at some gray level.

Figure 19: Levels Node. Shown in three example usage scenarios.

The Transform node takes a texture and modifies its scale, offset position, and

rotation. Two examples are shown in Figure 20. It can be configured to repeat,

mirror repeat, and clamp when the input texture bounds are exceeded. When

rotating, the exposed corners can be configured to have the colors clamped if

desired.
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Figure 20: Transform Node. Shown in two example usage scenarios.

3.3 Input and Output Nodes

The Input and Output nodes are the defaults provided in a fresh node graph, as

pictured in Figure 21. These two nodes cannot be deleted or duplicated.

Figure 21: Input and Output Nodes. Shown with the pressure sampling data

connected to the brush output.

The Input node provides several strips of stroke input data from the stylus axes

including pressure, tilt altitude (angle from parallel to normal with the tablet

surface), tilt azimuth (angle clockwise from the +X axis), and X and Y positions on
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the page (increasing from the top left). Each ranges from 0 (black) to 1 (white).

While the X and Y positions are provided for completeness, they are unlikely to

be useful directly in the procedural texture authorship process; they are more

useful in the stroke wrapping stage which is not in the scope of this prototype

implementation.

The Output node is the destination for node graph data. When a strip texture is

plugged into the Color field, the magnified result is previewed along the full

width of the application below the node graph. When a square texture is plugged

into the "Color" and/or "Displacement" field, the magnified result is previewed

along the right side of the application. The displacement, when connected, also

renders the texture on a spinning 3D plane with a perturbed height matching the

dark (low) and light (high) parts of the provided texture. "Displacement Scale"

multiplies the height by a chosen factor. While displacement is not directly

involved in the final brush texture, it is a useful tool to visualize square textures

in the third dimension while working. Often square textures are sampled by

other nodes in the graph in a way that represents height or intensity information

and this feature makes those cases easier to conceptualize.
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Chapter 4

SLICER NODE

The Slicer node is an important node designed to convert from square textures

into strip textures, demonstrated in Figure 22. Squares are useful to work with

because their aspect ratio makes them easy to preview, and it is thus desirable to

rely on them for many of the creative decisions that go into building a node

graph out of generators and modifiers.

Figure 22: Slicer Node, Slant Demo. Shown with an upward-slanted blob shape

having vertical cross-sections sliced based on pressure. The rendered output

(along the bottom of the image) demonstrates how the increase then decrease in

pen pressure rides the slant up then subsides back down by the end.

One example of a common use for the Slicer is to define the way that a brush

tapers with an increase in stylus pressure or tilt angle. A more involved example

of this concept in Figure 23 approximates the brush pressure contour component

of a semi-diluted ink brush.
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Figure 23: Slicer Node, Taper Demo. Shown with the Slicer node used to

generate the pressure-based taper for an ink brush with partially diluted ink.

The node's two inputs are the "Sliceable" square texture and the "Slice Column

Depth" strip texture. The sliceable texture should be designed in a way that its

vertical cross sections (columns of pixels) vary on a continuum from left to right.

For example, a left-pointing triangle has cross sections that heighten from left to

right which makes it great for modeling pen pressure along the brush stroke.

Described another way, the Slicer node maps the columns of the input strip

texture to the columns of the input square texture, where the brightness of the

strip column corresponds to how far right the slice should be taken from the

sliceable. Reading an input strip from left to right, the dark shades slice columns

from the left parts of the sliceable and the light shades slice from the right parts.

The description of the Slicer node's function may be confusing upon initial

introduction but it becomes intuitive to reason about after a brief period of

usage. It therefore serves as a useful artist-friendly tool in the node graph
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system's toolbox of nodes, whereas a more complex stroke generating method

could be difficult enough to limit its utility.

The concept of mapping slices from square into strip textures in a user-friendly

manner for the purpose of brush stroke generation is a technique contributed by

this body of research as a novel part of the larger system design.
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Chapter 5

IMPLEMENTATION

The aim of the research conducted in this thesis is to explore the feasibility of the

proposed brush authorship approach. Ergo, the implementation is not the main

focus of this work, but some details are covered in this section for the sake of

completeness. The reference implementation is foremost a prototype and not

meant to provide production levels of robustness, efficiency, and user comforts.

Those concerns lie outside the scope of this work, which focuses on proving the

technique itself. The final chapter references future plans for the implementation

of the concepts stemming from this research in a production-ready graphics

editor application.

In order to explore the technique and iterate rapidly, a flexible node graph

system was required. A barebones node graph library previously built by the

thesis author was used as the groundwork for the graphical user interface and

shader composition, upon which many purpose-built systems and nodes were

written to power the needs of the brush synthesis use case. Specific encountered

challenges included handling intermixed texture aspect ratios, recording and

importing stylus axis input samples, correctly displaying enlarged Output node

renderings, designing and building the Slicer node, and filling in the gaps with

utility nodes most necessary for a useful brush authorship experience.

Web technologies were used for the software stack in this experimental

implementation. These proved to be ideal for rapid prototyping with an

inherently visual technology.
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HTML and CSS provide a robust and flexible GUI system, so nodes are created

from HTML elements containing form inputs abstracted into a system of reusable

widgets, like labels, dropdown boxes, number fields, thumbnail textures, and

spacers. Upon these, abstracted input and output data connectors are mounted

where relevant to the design of a particular node.

Rendering of the textures within nodes is performed by JavaScript's WebGL 2 API

which extends multiplatform support to all modern web browsers. WebGL calls

send texture buffers between nodes and upload new user-configured input

values as uniforms to the shaders. Each node (except Input and Output) has its

own shader written as part of its implementation. The process of authoring a

new node is modular, requiring only a new shader and JavaScript file that

provides the widget definitions and housekeeping work.

Enlarged previews of the Output textures use additional shader programs written

outside the node system. The 2D views for the square and strip textures, along

the right and bottom sides respectively, render a texture on a quad set to the

correct aspect ratio in their vertex shaders. The spinning 3D quad is similar but

uses a highly subdivided mesh where the displacement map is evaluated in the

vertex shader to adjust the height of each vertex.

The brush squiggle preview uses an imported OBJ file's triangle strip mesh with

UV maps. It was created in Blender from an imported SVG file encoded with the

recorded X and Y coordinates. The recording of the pen pressure was performed

using a pen tablet and the JavaScript Pointer API. Its data was written to a JSON

file that is read at runtime by the node graph to provide the strips of data

samples.
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A descoped feature would have included an additional preview view with an

interactive stroke drawing input surface. This would convert the trajectory path

into a triangle strip at the set stroke width with UV coordinates mapping

progressively along a strip texture. The live pressure, altitude, azimuth, X, and Y

values would feed into the Input node textures while the user draws and the

node graph would recompute the drawing to provide a texture to the Output for

display on the triangle strip. If the user kept drawing for long enough to overrun

the allocated width of the strip texture, it would be doubled in width.

Alternatively, a 3D texture could be employed where additional depth layers

could hold the overflow. An opportunity for performance gains would come from

not re-rendering the full output texture from the node graph each frame,

because the sampled information at earlier points along the stroke path do not

change and therefore would not need to be redrawn. The prototype

implementation does not encounter this because its lacks a temporal aspect that

would occur during an interactive drawing session.

An interactive demo, and full source code for the prototype, may be found at:

https://github.com/Keavon/Brush-Nodes

https://github.com/Keavon/Brush-Nodes
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Chapter 6

RESULTS

Brush authorship is inherently a creative, artistic process. That journey begins by

looking at reference imagery of a certain brush style from real life or other

software with the intention of replicating its look. Then, the different conceptual

components are broken down and replicated in an arm of the node graph, then

each are combined with each other to produce a result. It is also a highly iterative

process and ideas that don't work are replaced with new ones. Numerous

parameters are also tweaked throughout.

If all goes well, the result should resemble the reference imagery in style. It isn't

possible to create a facsimile replica but the aim is to produce a brush style with

an equivalent look and feel. This is naturally subjective, but when the brush is

only a small part of the many strokes that make up a full work of art, tiny

imperfections end up becoming insignificant in terms of overall utility.

This section explores several example brushes created to push the boundaries in

different stylistic directions.

6.1 Flat Bristle Brush with Paint

Brushes with more viscous wet media like paint, as opposed to ink or watercolor,

tend to show the bristles of the brush and transfer paint to more of the page

when added pressure is applied because there is greater contact with the

geometry of the many bristles against the surface.
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This example, shown in Figure 24, achieves the goal of replicating the overall look

of an assortment of reference images found through an online search. It also

manages to avoid an overly complex node graph, meaning it is simple for less

advanced users to create or modify and there is still plenty of room to add

further levels of detail and sophistication as desired.

Figure 24: Flat Bristle Brush with Paint. Style created by procedural generation.
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6.2 Ragged-Edged Ink Brush Pen

A brush pen with a vividly black ink provides almost a completely solid

appearance except for the taper and the ragged edges, caused by the paper's

small-scale surface geometry and the brush tip. Replicating that effect around

the edges is this test's goal, shown in Figure 25. The system handles ink-based

brushes very well, which other brush models like stamping often struggle with.

Figure 25: Ragged-Edged Ink Brush Pen. Style created by procedural generation.
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6.3 Watered-Down Ink Brush

Taking the ink brush style even further, this test proves the effective ability to

replicate the look of watered-down ink which behaves in nontrivial ways. Physical

painting of areas on a dry page makes the wet areas store water in a tapered

dome-shaped water blob because of surface tension, causing the ink particles to

dry onto the page quickest near the edges as the wet area contracts during the

drying process. This leaves behind a darker perimeter where the extents of the

brushed area wet the page, then an inner region where the ink flows in unique

patterns of greater concentration within the blob of water. This test, shown in

Figure 26, illustrates that procedural generation based on noise textures lends

itself very well to emulating that phenomenon. All other brush models besides

simulation are generally incapable of achieving a similar look. The brush preview

in this case looks remarkably photorealistic.
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Figure 26: Watered-Down Ink Brush. Style created by procedural generation.

6.4 Dotted Stamp Roller

Deviating from the category of brushes altogether and using an alternate

application method such as a roller is a good method for testing robustness of

the technique. This example, shown in Figure 27, successfully provides an organic

look by integrating random variation and pressure into the semi-regular grid

pattern of the referenced style. This also remains simple and beginner-friendly by

using only a handful of nodes.
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Figure 27: Dotted Stamp Roller. Style created by procedural generation.
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Chapter 7

CONCLUSION

The stress tests attempted in the previous chapter lend credence to the viability

of the novel method proposed in this paper. Wet media is especially challenging

to replicate using the prevalent stamping brush model and the sample works

demonstrate that the technique performs well in that area.

Future improvements to the system should revolve around adding to the library

of available nodes to expand the workflow's capabilities. Other brush models like

stamping and sweeping are actually compatible with the node-based workflow

and would take the form of nodes. To improve support for dry media, a stamp

node could take a square texture and draw it at repeating intervals based on an

assortment of parameters to output a strip texture. Among other desirable

nodes would be one that tapers an input strip texture based on the brightness

values encoded in a second input strip. More useful data strips from the Output

texture would include speed, since physical paint brushes often draw more lightly

with quick motion, and a factor encoding brush angle in relation to the direction

of brush motion. These improvements would make the system easier to use and

more powerful at building complex and highly reactive brush styles. Another

improvement would be the inclusion of color which could even vary with

properties like pressure or tilt.

A direction for further research on the subject beyond the concepts explored

here could work towards finding solutions to the limitations of texture stretching.

Dealing with clean stretching around sharp curve bends would be valuable. A

related topic can aim to solve the start and end points of stroke paths which may

end abruptly if the stroke data and node graph do not provide for clean ends.
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Another topic can look to find the best approach for dealing with a self-

intersecting stroke where the texture runs through itself and needs to blend

nicely or even interact with itself in a procedurally described way. A further

challenge involves finding a way to shorten or lengthen the curve of a previously

drawn stroke on its interior by modifying the path geometry without causing the

texture on one end to "slide" along the existing geometry from the length

change. One more is finding a comprehensible manner to use 3D noise textures

to prevent the "bookmatched" or jagged/pixelated look of the Slicer node so the

extra dimension is always providing fresh imagery.

The concept of applying a node graph procedural authoring environment, with

application-specific nodes (like Slicer) designed for dealing with both square and

strip textures, appears to be a worthwhile technique for digital painting research

and real world painting tools to adopt. It moves towards, and nearly reaches, the

ideal brush model that provides artists with full customization and integration of

pen tablet axis inputs. The novel method presented in this paper improves upon

unsolved problems in the approaches used by popular graphics editing tools and

would be a welcome addition to future 2D painting applications.

The author of this thesis is the creator of a node-based 2D graphics editing tool

and plans to use this concept as inspiration for the application's painting system.

Further information can be found at the project's website:

https://graphite.rs

https://graphite.rs/
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