
Senior Project Report

Alexa Hansen
Derek J. Russell
Storm Randolph

Project Advisor: Andrew Danowitz - Cal Poly Department of Computer Engineering
Client: Rich Murray - Cal Poly Department of Computer Engineering

06/15/2023

Introduction 2

Project Overview 2

RoverX Manual 4

Initial Setup 4

Battery Setup 5

Running Commands 6

Solar Track Algorithms 7

Power Budget System 7

Conclusion & Future Recommendations 12

Appendices 13

A. Config.txt file for raspberry pi 4 model B 13
B. High Level Commands for commandLayer.cpp 15
C. Use/Flow Diagram for commandLayer.cpp 17

References 18

-1-

Introduction

Project Overview

The RoverX Senior Project has been an evolutionary process, with its roots in the
RoverX Capstone project which concluded in the Winter of 2023. Our journey commenced
with a core focus on hardware, which culminated in the successful creation of the Minimum
Viable Product (MVP). Further information on our initial endeavors can be found in the
2022 "Alpha Report" and the 2023 "Summary of Handoff Contents/Quick Start Guide" for
the RoverX project. However, recognizing the limitless possibilities of software in enhancing
the rover's capabilities, our focus shifted towards this exciting frontier. Our final quarter of
the senior project was dedicated to refining the source code and generating comprehensive
documentation, which will serve as an invaluable guide for future rover teams.

In consultation with Prof. Murray, we embarked on the creation of a command layer.
The intention behind this was to provide a user-friendly interface where high-level
commands could be input and subsequently executed by the rover. The unique structure of
this layer was conceived to include an outer layer written in C++, which would then interact
with Python-based movement functions controlling the rover. This interaction is facilitated
by an innovative "interpreter", designed to bridge the C++ and Python realms by translating
C++ commands into executable Python scripts. This strategic choice was fueled by the
impending transition of the rover's source code from Python to C++ or another
object-oriented language by the subsequent rover team. Our aim was to provide a flexible
outer layer that could be seamlessly integrated with the new C++ rover source code. In
essence, we envisaged creating a dynamic platform that could adapt to future
advancements, fostering an environment of continuous development and innovation for the
RoverX project.

-2-

We first created a commandLayer.cpp that is a wrapper for the entire rover project
that is written in C++. In this layer the user will input the command they wish to issue, and
the two parameters that correspond with that command. These commands are specified in
Appendix.B of this paper. This layer is in charge of accepting the user input and using that
for a system function call of a Python script that will run the command. We focused our
attention on setting the code up to be more command based than before, with each python
file categorized by a type of movement command. Since no previous groups provided clear
documentation for rover projects, we decided to also create the following manual for teams
in the future.

-3-

RoverX Manual

Initial Setup
Step 1: Powering Up Rover

The rover can be powered by a hobby battery, the Stellar Power Pack, or by a
power supply. Initially using the power supply to power the rover is
recommended. Before turning on the rover ensure that the voltage, current,
over voltage, and over current settings on the power supply match the image
in figure 3.

Step 2: Calibrate RoboClaws 2x7A
If any RoboClaw settings have been changed each RoboClaw will need to be
recalibrated. Use the BasicMicro Motion Studio App for the RoboClaw 2x7
Motor Controller found on the Basic Micro downloads page,
https://www.basicmicro.com/downloads. Once the App is installed follow
the instructions found in the “Calibration Document for Herbie Roboclaws”
by Ryan Ozawa. These instructions are extremely important..

Step 3: SSH into the rover.
We set up the rover so that it is easier to connect to. After turning on the
rover connect your wifi to roverX_1, then ssh pi@roverx.local. The password
is “parched-mannish-regulate” and will need to be entered to finish the
process.

-4-

https://www.basicmicro.com/downloads

Step 4: Check the config.txt file in
It is extremely important that the config.txt file in the root directory of the
raspberry pi 4 matches the source code provided in Appendix A with the
following commands.

● sudo su
● cd ..
● cd ..
● cd boot
● cat config.txt

Step 5: Installing I2C libraries
Once the rover is powered up navigate to the libi2c-master folder, enter the
following command:

● cd roverSP
● cd libi2c-master
● make

This will make the I2C library that will be used for the project.

Battery Setup
Step 1: Charge Stellar Power Pack (SPP)

The SPP can be charged by supplying 40V with a current limit of 1A to the
SOL pin (and GND to GND). The overall pack voltage can be measured with a
voltmeter on the Vmux pin. Individual cell voltages can be found by
measuring adjacent pins on the left side of the pack. Vmux is not for charging,
only to check pack voltage.

Step 2: I2C Bus
If the pack shows a good voltage (25-31V) but won’t communicate via I2C,
check the pack is addressed with I2C on bus 4 using i2cdetect -y 4 (this is
also useful for troubleshooting the IMU/Jetson Nano I2C devices to
determine if they are connected addresses). Address 0x28 should be up,
indicating the pack is listening on I2C. The test_valid_write_DSC test case
in the test_battery.py program on the pi to change the Short-Circuit
Discharge Current Limit Timeout value to a longer period of time. The inrush
current to the DC-DC converter causes the battery pack to trigger a DSC
condition (Discharge Short Circuit), but by extending this time, it gives the

-5-

DC-DC converter more time to charge at a high current before the BMS thinks
it is a short. The battery_test program does other things, but the
test_valid_write_DSC test case provides a general framework to follow
to permanently changing the configuration in EEPROM (see the
ISL94203/94202 reference docs for more info on addressing scheme and the
other parameters you can change). The DSC config is currently only changed
in RAM (volatile) so if the pack powers down, the configuration value will be
lost.

Running Commands
Step 1: Navigate to the Source Code

When the rover is powered on it will start at the first rover home screen.
There are numerous directories to choose from, the one for the most current
version of this project is roverSP and that is located in the rover directory.
There is another directory rover that is located in rover/src/rover that
contains the original source code that was written by the Herbie, Vega, and
RoverX teams. To navigate to the executable source code is roverSP enter the
following commands:

● cd rover
● cd roverSP
● cd src

Now all of the source code can be accessed and high level commands can be
run in the terminal.

Step 2: Running High Level Commands
To begin running high level commands, compile commandLayer.cpp and then
execute the program.

● g++ -o commandLayer.cpp

This will give you an executable that should then be run in the terminal. The
user will be prompted to, “Enter RoverX High Level Command”, enter one of
the commands in Appendix B. Every high level command requires two
parameters, it will either be two int values or one string and one int value.
When a command is not going to be using the parameters the user will just
enter 0. There are no input checks in the program at the moment. It has to be
inputted exactly as the manual suggests.

-6-

IMPORTANT: The first command you run upon powering up the rover is
CARW (Calibrate All Rover Wheels), or else no other commands will be able
to be run.

The program, commandLayer.cpp, will keep running until the command EXIT
is entered.

Solar Tracking Algorithm
The goal of the solar tracking algorithm is to have the rover collect as much sunlight

as possible throughout the day. The current solar tracking algorithm on the rover tracks the
position of the sun during a six hour time period. The rover initially starts in its “sunrise”
position for the first hour of this period. Then after this first hour, and at every additional
hour after, the algorithm will first output the current position of the sun and then call the
rover’s tank turn method for 15 degrees left. Once this six hour period is over, the rover
will tank turn back to its original “sunrise” position. The algorithm takes two different
arguments: the latitude and longitude of your current location. As a default, the current
latitude and longitude are set to Cal Poly’s location coordinates. The following steps detail
how to properly access and run the algorithm.

Step 1: Run the Solar Tracking Algorithm
To run the solar tracking algorithm, run the following command:

● python3 solar_tracking.py
The solar tracking algorithm takes two arguments, the latitude and longitude

of the current location. These parameters can be adjusted as needed. Once the algorithm is
started, it will continue until the six hour cycle has completed or it is manually stopped by
user interrupts.

Power Budget System

A. Introduction
The uniqueness of the PowerMonitor script is best encapsulated in its adaptability.

Designed to be elastic, it can be modulated to accommodate a spectrum of scenarios and
power conditions. From vast industrial complexes with elaborate energy requirements, to
small households on a quest to optimize their energy utilization, the PowerMonitor script

-7-

can be attuned to align with the context. This adaptability distinguishes it as a universally
applicable instrument in the arena of modern energy management.

The significance of the PowerMonitor script, however, transcends its technical
prowess. At its heart, it acts as a lighthouse guiding us towards a sustainable future. It
represents a pivotal transition from reactive to proactive energy management, thrusting us
towards a future where energy use is not merely monitored but optimized for efficiency
and sustainability. As we continue on this path of refinement and innovation, creating tools
akin to the PowerMonitor script, we are not only reshaping our energy landscapes, but
fundamentally altering the destiny of our planet. Our endeavors now are investments for
the future - each stride in this direction brings us closer to an existence where sustainable
and intelligent energy consumption is not the exception but the norm.

B. Setting Up Jupyter Notebook for PowerMonitor Project

Step 1: Installing Python
● Before installing Jupyter Notebook and the associated Python libraries,

ensure that Python is installed. Python 3 is recommended.
https://www.python.org/downloads/

Step 2: Installing Jupyter Notebook with Anaconda
Anaconda is a Python distribution platform that significantly simplifies the
process of installing and managing Python and its libraries. It’s particularly
advantageous for data science projects. Here’s why:

1. Ease of Installation: Anaconda comes bundled with Python, Jupyter
Notebook, and many other useful data science tools, eliminating the
need to manage dependencies and packages separately.

2. Package and Environment Management: Anaconda allows you to
create isolated environments that are very useful when working on
projects with different package and library requirements.

3. Comprehensive Data Science Toolkit: Anaconda includes many
pre-installed, popular data science libraries, making it a
comprehensive tool for data analysis and scientific computing.

4. Compatibility and Conflict Prevention: Anaconda ensures
compatibility between the different packages and libraries it includes.
It also helps prevent conflicts between Python packages that might
arise when they're installed globally.

5. Reproducibility: Anaconda's environment management ensures
reproducibility of your data science projects. You can share your

-8-

https://www.python.org/downloads/

environment configuration with others so they can recreate the same
setup.

6. Platform Agnostic: Anaconda works on all major operating systems.

Step 3: Installing Anaconda and Jupyter Notebook
1. Download Anaconda: Visit the Anaconda distribution page at

https://www.anaconda.com/distribution/#macos. Select the Python
3 version and click on the download button.

2. Install Anaconda: Open the downloaded file and follow the
instructions to install Anaconda. This will install Anaconda, Python,
Jupyter Notebook, and a range of other tools and libraries useful for
data science.

Step 4: Setting Up a New Conda Environment
● It's generally a good idea to set up a separate Conda environment for

each project. This helps isolate your project and its dependencies from
other projects.

● To create a new environment named "PowerMonitor", open Terminal
and type: conda create --name PowerMonitor

● To activate this new environment, type: conda activate
PowerMonitor

Step 5: Installing Required Python Libraries
Install the Python libraries required for your PowerMonitor project. Since
you've installed Anaconda, it's recommended to use conda for package
installation because it can handle dependencies more effectively:

● conda install numpy scikit-learn matplotlib seaborn

If a package is not available through conda, then install it using pip, Python's
package installer.

Step 6: Opening up Jupyter Notebook from the Terminal
After activating the Conda environment and installing all the required
packages, you can start Jupyter Notebook by typing jupyter notebook in
Terminal. This will start the Jupyter Notebook server and open a new tab in
your default web browser.

-9-

Step 7: Creating a New Notebook
On the Jupyter Notebook dashboard (which displays in your browser after
launching Jupyter Notebook), click on the "New" dropdown button in the top
right corner, then select "Python 3" under the Notebook section. A new tab
will open with a new notebook.

Step 8: Importing Libraries
In the first cell of your new Jupyter notebook, import all the libraries you
installed. To execute the code in the cell, press Shift + Enter.

● import numpy as np
● from sklearn.model_selection import train_test_split
● from sklearn.tree import DecisionTreeRegressor
● from sklearn.metrics import mean_squared_error
● import matplotlib.pyplot as plt
● import seaborn as sns

C. Essential Python Libraries and Frameworks
a. The script employs Python, a multifaceted programming language lauded for

its applicability in scientific computation, machine learning, and data
analysis. Several integral Python libraries are put into service, including:
i. NumPy: Facilitates array manipulation and mathematical

computations.
ii. Sci-kit Learn: Enables data splitting, predictive modeling through

linear regression, and computing mean squared error.
iii. Matplotlib and Seaborn: Used for data visualization through a

diverse array of plots.
iv. Datetime: Utilized to ascertain the current day and date.
v. Random and Logging: Generate random values and record alerts,

respectively.

D. System Architecture
The PowerMonitor script is structured around two classes, MockMLModel and
PowerMonitor, which simulate power usage across a 24-hour period.

1. MockMLModel: Predicts power consumption variables such as the
time of day, the day of the week, and specific holidays. It is designed to

-10-

replicate the behavior of a more sophisticated machine learning
model.

2. PowerMonitor: Simulates the functioning of a power storage system,
modulating power collection and consumption over time. It monitors
system state, logs alerts, and visualizes power data.

Apart from these classes, a main function manages user inputs, model training,
power data calculations, and the display of results.

E. Model Training and Prediction
The script adopts decision tree regression for power consumption prediction. It
generates a dataset simulating power consumption over 30 days, taking into
consideration peak and off-peak hours. This dataset serves as the basis for training
the model, which is subsequently deployed for making predictions in the
PowerMonitor class.

F. Energy Management Mechanisms
The PowerMonitor class administers an energy management system that adjusts
power consumption contingent on the state of power storage and the time of day.
"Missions", signifying activities that require additional power, can be added, thereby
influencing power consumption patterns. When stored power falls below 20% of the
initial power, the script engages an energy-saving mode, diminishing power
consumption by half.

G. Data Visualization
The script generates visualizations for three dimensions of power: stored power,
power consumed, and power collected, leveraging the capabilities of Seaborn and
Matplotlib libraries. These visualizations facilitate the analysis of fluctuations in
power consumption and collection throughout a day.

H. Logging and Alert System
The script incorporates an alert system that logs vital information pertaining to
power consumption and collection. It issues alerts when power is decreasing
rapidly, when power depletion is imminent, when a power outage is expected, and

even when there is surplus power or idle time.

-11-

https://scikit-learn.org/stable/auto_examples/tree/plot_tree_regression.html

Conclusion & Future Recommendations
This project has provided us with such an amazing real world experience to

implement all of our knowledge garnered at Cal Poly. We would first like to thank Rich
Murray and Andrew Danowitz for providing so much guidance and experience, this project
would never have gotten as far as it has without these two. We would also like to give a
special thanks to our correspondence from last year's Vega rover team, thank you for
accepting our late night phone calls and debugging sessions.

Given the time provided we were unable to get each of the movement commands
working correctly. Currently all of our corner motors only turn left, despite being given a
right turn command. We attempted to fix this within the code but even trying to brute force
the turn in the correct direction did not work. I recommend the next team look into reading
the current encoder values of the M2 corner motors to see what they are. It is either not
reading the value correctly or not being set correctly. As a team we were unable to come up
with a solution and even after reaching out to previous teams, we were unable to find a fix
for this issue. The issue with the corner motors will affect every command that involves a
corner motor, such as tank turns.

We would also recommend creating safe exits in python for individualMovement.py,
individualCorner.py, tankTurn.py, and multipleMovement.py. These exits should not stop
the entire program, but simply reset the while loop in commandLayer.cpp to ask for the
next command. There are also no input validations in commandLayer.cpp, and those will
absolutely need to be added for each specific command.

Another recommendation would be to modify the solar tracking algorithm so that it
will be able to properly call the rover’s tank turn function. As of now, the current solar
tracking algorithm calls a manual tank turn function that is located in rover.py. This
function requires you to manually turn the wheels into a tank turn position before running
the function for it to run properly.

-12-

Appendix

A. Config.txt file for raspberry pi 4 model B
For more options and information see

http://rpf.io/configtxt

Some settings may impact device functionality. See link above for details

uncomment if you get no picture on HDMI for a default "safe" mode

#hdmi_safe=1

uncomment this if your display has a black border of unused pixels visible

and your display can output without overscan

disable_overscan=1

uncomment the following to adjust overscan. Use positive numbers if console

goes off screen, and negative if there is too much border

#overscan_left=16

#overscan_right=16

#overscan_top=16

#overscan_bottom=16

uncomment to force a console size. By default it will be display's size minus

overscan.

#framebuffer_width=1280

#framebuffer_height=720

uncomment if hdmi display is not detected and composite is being output

#hdmi_force_hotplug=1

uncomment to force a specific HDMI mode (this will force VGA)

#hdmi_group=1

#hdmi_mode=1

uncomment to force a HDMI mode rather than DVI. This can make audio work in

DMT (computer monitor) modes

#hdmi_drive=2

uncomment to increase signal to HDMI, if you have interference, blanking, or

no display

#config_hdmi_boost=4

uncomment for composite PAL

#sdtv_mode=2

#uncomment to overclock the arm. 700 MHz is the default.

-13-

#arm_freq=800

Uncomment some or all of these to enable the optional hardware interfaces

#dtparam=i2s=on

dtparam=spi=off

Uncomment this to enable infrared communication.

#dtoverlay=gpio-ir,gpio_pin=17

#dtoverlay=gpio-ir-tx,gpio_pin=18

Additional overlays and parameters are documented /boot/overlays/README

Enable audio (loads snd_bcm2835)

dtparam=audio=on

[pi4]

Enable DRM VC4 V3D driver on top of the dispmanx display stack

dtoverlay=vc4-fkms-v3d

max_framebuffers=2

[all]

#dtoverlay=vc4-fkms-v3d

NOOBS Auto-generated Settings:

enable_uart=1

#dtoverlay=w1-gpio

start_x=0

gpu_mem=128

This enables uart on pins:

8, 10

27, 28

7, 29

24, 21

32, 33

zero doesn't need an overlay

dtoverlay=uart2

dtoverlay=uart3

dtoverlay=uart4

dtoverlay=uart5

dtparam=i2c_arm=on

This enables i2c on pins:

bus1: 3, 5

bus4: 31, 26

bus6: 15, 16

dtoverlay=i2c1,pins_2_3,baudrate=400000

-14-

dtoverlay=i2c4,pins_6_7,baudrate=400000

dtoverlay=i2c6,pins_22_23,baudrate=400000

#hdmi_enable_4kp60=1

B. High Level Commands for commandLayer.cpp
Tank Turn Commands
1: TTCW(int direction, int degree): tank turn clockwise

Example of usage: TTCW right 180

2: TTCC(int direction, int degree): tank turn counter clockwise
Example of usage: TTCC leftt 360

Calibration Commands
3: CARW(): Calibrate All Rover Wheels

Example of usage: CARW 0 0
HAS TO BE THE FIRST COMMAND RAN UPON POWERING UP!
***the two parameters must be zero (they aren't being used)

Multi-Wheel Movement Commands
4: AWMF(int distance, int speed): move all wheel motors forward

Example of usage: AWMF 300 300

5:AWMB(int distance, int speed): move all wheel motors backward
Example of usage: AWMB 300 300

6: TAFC(string direction, int degree): turn all front corner motors
Example of usage: TAFC left 30

7: TABC(string direction, int degree): turn all back corner motors
Example of usage: TABC right 15

24:TACM (string direction, int degree): turn all corner motors a specified direction
Example of usage: TACM left 20

25: RCAW(): Recenter All Wheels
Example of usage: RCAW 0 0
***the two parameters must be zero (they aren't being used)

26: EXIT(): Exit program
Example of usage: EXIT 0 0
***the two parameters must be zero (they aren't being used)

Individual Movement Commands
8: FLWF(int distance, int speed): front left wheel forward

Example of usage: FLWF 300 300

9: FLWB(int distance, int speed): front left wheel backward

-15-

Example of usage: FLWB 300 300

10: MFLC(string direction, int degree): move front left corner
Example of usage: MFLC left 15

11: FRWF(int distance, int speed): front right wheel forward
Example of usage: FRWF 300 300

12: FRWB(int distance, int speed): front right wheel backward
Example of usage: FRWB 300 300

13: MFRC(string direction, int degree): move front right corner
Example of usage: MFRC right 15

14: BLWF(int distance, int speed): back left wheel forward
Example of usage: BLWF 300 300

15: BLWB(int distance, int speed): back left wheel backward
Example of usage: BLWB 300 300

16: MBLC(string direction, int degree): move back left corner
Example of usage: MBLC right 30

17: BRWF(int distance, int speed): back right wheel forward
Example of usage: BRWF 350 350

18: BRWB(int distance, int speed): back right wheel backward
Example of usage: BRWB 350 300

19: MBRC(string direction, int degree): back front right corner
Example of usage: MBRC left 15

20: MRWF(int distance, int speed): middle right wheel forward
Example of usage: MRWF 300 300

21: MRWB(int distance, int speed): middle right wheel backward
Example of usage: MRWB 300 300

22: MLWF(int distance, int speed): middle left wheel forward
Example of usage: MLWF 300 300

23: MLWB(int distance, int speed): middle left wheel backward
Example of usage: MLWB 300 300

-16-

C. Use/Flow Diagram for commandLayer.cpp

-17-

References

Hansen, A. (2022). Reassembling the Solar Rover 1. Capstone I. California Polytechnic State
University. Unpublished manuscript.

Hansen, A., Kita, E., Randolph, S., Reyna, L., & Russell, D. J. (2022). Alpha Design Report,
RoverX. Capstone II. California Polytechnic State University. Unpublished manuscript.

Hansen, A., Kita, E., Randolph, S., Reyna, L., & Russell, D. J. (2023). Design Build Test 1
Milestone: RoverX. Capstone II. California Polytechnic State University. Unpublished
manuscript.

Hansen, A., Kita, E., Randolph, S., Reyna, L., & Russell, D. J. (2023). Design Build Test 2
Milestone: RoverX. Capstone II. California Polytechnic State University. Unpublished
manuscript.

Hansen, A., Kita, E., Randolph, S., Reyna, L., & Russell, D. J. (2023). Summary of Handoff
Contents/Quick Start Guide. Capstone II. California Polytechnic State University.
Unpublished manuscript.

Ozawa, R. (2020). Calibration Document for Herbie Roboclaws. Capstone I&II. California
Polytechnic State University. Unpublished manuscript.

-18-

