ActiveTrans Priority Tool: An Analysis of the San Luis Obispo Council of Government's Regional Transportation Plan Active Transportation Project List and Step-by-Step Methodology

> A Senior Project presented to the Faculty of the City and Regional Planning Department California Polytechnic State University, San Luis Obispo

> > In Partial Fulfillment of the Requirements for the Degree Bachelor of Science

> > > by

William F. Daniels

June 5, 2023

© 2023 William F. Daniels

Foreword

Recognizing the significance of establishing financial constraints and effectively prioritizing the multitude of active transportation projects put forth by local agencies, a refined approach was imperative. This methodology was designed to score, rank, and ultimately determine the priority level for each nominated project, ensuring a transparent and equitable allocation of resources within the 2023 Regional Transportation Plan (RTP) framework.

This methodology presents the "ActiveTrans Priority Tool (APT)" in action. The founding methodology is based on the National Cooperative Highway Research Program (NCHRP) Report 803 *Pedestrian and Bicycle Transportation Along Existing Roads – Activetrans Priority Tool Guidebook.* The purpose of this report is to show step by step how to implement the NCHRP Report 803. The methodology is flexible and can be changed based on the goals and values of the agency conducting the analysis.

The variables employed in this methodology were carefully chosen by a Local Stakeholder Steering Committee, ensuring that key considerations and perspectives were duly represented. The resulting project list not only supports the 2023 RTP but also serves as a tool for the future efforts of the San Luis Obispo Council of Governments (SLOCOG). By establishing a priority level and fiscal constraint line, approximately 52 projects totaling \$184 million over a span of 25 years were identified.

Beyond its immediate impact, this project has broader implications for future planning efforts and resource allocation strategies. By providing insights and recommendations for improved future analysis, this publication serves as a foundation for informed decision-making and the optimal equitable utilization of funds.

I am honored to express my profound appreciation to John DiNunzio and the entire SLOCOG staff for their invaluable support and contributions throughout the development of this transformative project. Their commitment to fostering equitable, inclusive, and sustainable transportation infrastructure, serves as a constant source of inspiration for me and further solidifies San Luis Obispo County as the best place to live, work, and play.

This project is conducted in partial fulfillment of the requirements for the degree of Bachelor of Science in City and Regional Planning. I would also like to express my gratitude to my senior project advisor, Professor Keith Woodcock, MCRP, who has been helpful in providing feedback on this report.

I hope that this project inspires future efforts and helps to create positive change in the field of active transportation.

Table of Contents

1.	Introduction
	Active Transportation Relationship to Health, Equity, and Sustainability6
	Active Routes of Regional Significance (ARORS)
	ActiveTrans Priority Tool (APT)9
2.	Methodology13
]	Point Values
]	Resources14
3.	Opportunities
(Creating the Opportunity Layer
4.	Safety
(Creating the Safety Layer
5.	Existing Conditions
	Creating the Existing Conditions Layer27
6.	Demand
	Creating the Demand Layers
7.	Connectivity
(Creating the Connectivity Layers
8.	Equity
(Creating the Equity Layer
9.	Results
]	Final Ranking and Prioritization List
10	. Lessons Learned
11	. Top Projects by Factor

List of Figures

Figure 1-1: Map of Active Routes of Regional Significance	8
Figure 1-2: Map of Sample Project	. 11
Figure 1-3: Intersection of Los Osos Valley Road and Diablo Dr	. 12
Figure 1-4: Intersection of Los Osos Valley Road and S. Higuera St	. 12
Figure 3-1: Adding the Active Transportation Projects	. 16
Figure 3-2: Running an Opportunity Definition Query	. 17
Figure 3-3: Conducting Opportunity Analysis of a Project	. 17
Figure 3-4: Opportunity Analysis Sample Project (GIS)	. 19
Figure 3-5: Opportunity Analysis Sample Project (Excel)	. 19
Figure 3-6: Opportunity Analysis Sample Project Weighted Score	. 20
Figure 4-1: Adding the Crash Data to the Map	. 21
Figure 4-2: Exporting Crash Data Features	. 22
Figure 4-3: Merging Crash Data Features	. 22
Figure 4-4: Running a Crash Data Definition Query	. 23
Figure 4-5: Changing the Symbology	. 23
Figure 4-6 Adding Active Transportation Projects	. 24
Figure 4-7: Safety Analysis Sample Project (GIS)	. 25
Figure 4-8: Safety Analysis Sample Project (Excel)	. 25
Figure 4-9 Safety Analysis Sample Project Weighted Score	. 26
Figure 5-1: Adding Average Daily Traffic Data	. 27
Figure 5-2: Finding Speed and Flow for the Corridor	. 28
Figure 5-3 Sample Project Existing Conditions Analysis (GIS)	. 29
Figure 5-4: Sample Project Existing Conditions Analysis (Excel)	. 29
Figure 5-5: Sample Project Existing Conditions Analysis Weighted Score	. 30
Figure 6-1: Importing the Existing School Data	. 31
Figure 6-2: Filtering out Closed Schools	. 32
Figure 6-3: Creating School Buffers	. 32
Figure 6-4: Assessing Point Values for Schools	. 33
Figure 6-5: Finding Address Data	. 33
Figure 6-6: Creating the Active Transportation Buffer	. 34
Figure 6-7: Clipping the Address Points to the Buffer	. 34
Figure 6-8: Counting the Addresses within 400m of a Project	. 35
Figure 6-9: Scoring the Projects	. 35
Figure 6-10: Sample Project Demand Analysis (GIS)	. 36
Figure 6-11 Sample Project Demand Analysis (GIS)	. 36
Figure 6-12 Sample Project Demand Analysis (Excel)	. 37
Figure 6-13 Sample Project Demand Analysis Weighted Score	. 38
Figure 7-1: Finding the Routes of Regional Significance	. 39

Figure 7-2: Allocating Points for ARORS	40
Figure 7-3: Importing Updated Bikeways Data	40
Figure 7-4: Excluding Planned Bikeway Linework	
Figure 7-5: Assessing Existing Connectivity	
Figure 7-6: Sample Project Connectivity Analysis (GIS)	
Figure 7-7: Sample Project Connectivity Analysis (GIS)	
Figure 7-8: Sample Project Connectivity Analysis (Excel)	
Figure 7-9: Sample Project Connectivity Analysis Weighted Score	
Figure 8-1: Adding the Equity Analysis	
Figure 8-2: Assigning Points for Equity	
Figure 8-3: Sample Project Equity Analysis (GIS)	
Figure 8-4: Sample Project Equity Analysis (Excel)	
Figure 8-5: Sample Project Equity Analysis Weighted Score	

List of Tables

Table 2-1: Point Value Assignments	. 13
Table 2-2: File Locations	. 14
Table 9-1: Final Ranking and Prioritization List	. 49
Table 9-2: Scores for Sample Project CEN-ATP-2309	. 52
Table 11-1: Top 5 Opportunity Projects	. 55
Table 11-2: Top 5 Safety Projects	. 55
Table 11-3: Top 5 Existing Conditions Projects	. 56
Table 11-4: Top 5 Demand Projects	. 56
Table 11-5: Top 5 Connectivity Projects	. 56
Table 11-6: Top 5 Equity Projects	. 57

List of ATP Project Ranking Committee

Nate Stong, Kevin Buchanan, Jeff Legato, Lea Brooks, Helene Finger, Luke Schwartz, Adam Fukushima, Melissa Streder, Jenna Schudson, Kelly Mcclendon, Jan Devera, John DiNunzio

1. Introduction

The San Luis Obispo region is an attractive and friendly place to live, work, and visit, in no small part due to its temperate climate and coastal geography, which is ideal for walking and bicycling year-round. Consistent with the 2021 SLOCOG Active Transportation Plan (ATP), the ActiveTrans Priority Tool (APT) aims to evaluate proposed AT projects to systematically manage the existing transportation system while proactively planning for future investments. This includes completing necessary infrastructure to make walking and biking easier for all, such as building and maintaining facilities; addressing known conflict points such as highway crossings to improve safety and comfort, completing missing gaps in the 300-mile network of Active Routes of Regional Significance, and clearly delineating routes through signage and other wayfinding techniques.

Active Transportation Relationship to Health, Equity, and Sustainability

Active transportation (AT) refers to any self-propelled, human-powered mode of transportation, such as walking or biking, that provides physical activity as a component of the trip (WHO, 2022). This mode of transportation is seen as an important way to promote physical activity and reduce reliance on motor vehicles, which can have positive impacts on health, equity, and the sustainability of a community. Examples of AT include walking, bicycling, pushing baby strollers, wheelchairs, e-scooters. For the purposes of this report, active transportation refers primarily to walking and biking.

Mobility plays a large part in the health, equity, and sustainability of the community. In *Life Between Buildings*, Jan Gehl studies urban design and its impacts on segregating or integrating communities (Gehl, 2011). Transportation infrastructure can provoke physical and social segregation in communities (Litman, 2023). By providing high-speed transportation facilities such as highways, arterials, and railways, low-income neighborhoods can become disconnected from key destinations such as employment opportunities and essential services (Litman, 2023). As a result, low-income communities are more dependent on public transportation or active transportation like walking and biking.

However, many cities lack active transportation facilities, which means that low-income individuals are more likely to walk or bike in unsafe conditions (Barajas, 2011). Often when cities lack AT facilities the neighborhoods that suffer the worst are the low-income individuals. "In many cities, white, highly educated, and high-income residents have greater access to public transportation, and wealth differences by race and ethnicity make it easier for white residents to purchase a car, allowing for increased access to jobs. Public transit that is inaccessible for elderly people and people with disabilities can leave transit-dependent residents stranded" (Urban Institute, 2020). According to the US Census, low-income people bike and walk significantly more

Mathadalam	Opportunition	Cofoty	Existing	Domand	Connectivity	Equity	Boculto	Lessons
wiethodology	opportunities	Jalety	Conditions	Demanu			/ Results	Learned

Introductio

than wealthy Americans, which suggests that transportation can be the primary factor in social and class segregation (Avila-Palencia et al., 2017). Slowing traffic speed and improving connectivity as well as increasing active transportation facilities and access are ways that cities can provide more equitable infrastructure. The car dependency and way cities are designed increases inequality and reduces social mixing. By investing in compact communities with active transportation infrastructure the cities can foster more social interactions as well as make resources more available to all communities.

Active transportation and access can improve health in communities in various ways. According to a report by the American Society of Landscape Architects (2017), active transportation can promote physical activity and reduce the risk of chronic diseases such as heart disease, stroke, and diabetes. Furthermore, a study by Walk with a Doc, which is a program that "offers free doctorled walking groups in communities around the world. These ongoing events allow participants to safely walk, learn about current health topics, and meet new people" (Walk with a Doc 2023), found that walking may reduce the risk of heart disease, stroke, cancer, lower cholesterol, blood pressure, and body fat. It also helps to strengthen bones, reduce the risk of injuries from falls, and increase muscle flexibility and joint movement (Warburton et al., 2006). Improving access to active transportation also plays a crucial role in promoting health in communities. According to the US Department of Transportation (n.d.), expanding and improving active transportation infrastructure with the idea of safe and comfortable use in mind can promote health by providing opportunities for physical activity from transportation. The report by the American Society of Landscape Architects also states that active transportation can improve air and water quality, reduce noise pollution, and enhance mental health by providing opportunities for social interaction and stress reduction.

Active transportation has the potential to improve equity in communities by increasing accessibility to transportation for all members of the community, regardless of income or mobility limitations. According to a study in the Journal of Transport & Health, improving active transportation infrastructure can reduce transportation-related health disparities and improve the social and economic equity of communities (Ogilvie et al., 2016). Walkability and access to active transportation options can also improve equity by promoting independence for those who are unable or do not want to drive a car. According to a report by the American Public Transportation Association, active transportation modes such as walking and biking can provide more affordable and accessible transportation options for low-income individuals and families (American Public Transportation infrastructure can improve the quality of life for all members of the community. For example, a project by Cities Unlocked developed sound-based technology to assist people with sight loss on a route from Reading to London, and after the first test, 62 percent of the participants reported an increased feeling of safety, confidence, and resilience (Guide Dogs, n.d.).

rction Methodology Opportunities Safety Existing Occupient Conditions Demand Connectivity Equity Results	Lessons Learned	
--	--------------------	--

Active transportation can have a positive impact on the sustainability of a community by reducing greenhouse gas emissions and promoting sustainable land use practices. By promoting active transportation modes such as walking and biking, communities can reduce their dependence on single-occupancy vehicle trips, which are a significant source of greenhouse gas emissions (National Association of City Transportation Officials, 2016). Active transportation can also reduce the need for new road construction, as it requires less space than motor vehicle travel, and can promote more efficient land use by encouraging mixed-use development and more compact neighborhoods (Urban Land Institute, 2016). Studies have shown that increasing active transportation infrastructure can have a significant impact on sustainability. For example, a study in Portland, Oregon found that investments in biking and walking infrastructure reduced greenhouse gas emissions by 14,000 metric tons per year (Oregon Department of Transportation, 2012). Another study in Barcelona, Spain found that promoting active transportation could reduce transportation-related greenhouse gas emissions by 24 percent (Tight, M. 2016).

Figure 1-1: Map of Active Routes of Regional Significance

Introdu

Active Routes of Regional Significance (ARORS)

"The Active Routes of Regional Significance (ARORS) Network is 300 Miles of existing and planned on and off system bikeways and pedestrian facilities connecting incorporated and unincorporated communities as shown in" Figure 1-1. ¹ One goal of the 2021 ATP and 2023 RTP is to complete the 300-mile network in San Luis Obispo County. According to the 2021 RTP, SLOCOG and their partners will continue to build on these corridors by filling gaps in the network including Class 1 bike paths where possible. Supporting these ARORS and connecting the network is critical for the comfort and safety of the users.

ActiveTrans Priority Tool (APT)

The ActiveTrans Priority Tool is a methodology for prioritizing pedestrian and bicycle improvements. It was selected to be utilized to inform decision making regarding AT projects for the 2023 RTP. In January 2022, a Project Ranking and Prioritization Working Group was convened composed of regional stakeholders to help SLOCOG steer a methodology for constraining the RTP's Active Transportation Project List. Over the spring of 2022, the Working Group met twice to better understand the Active Transportation exercise, provide feedback on decision-making, and input into the technical calibrations unique to the San Luis Obispo regional context. The methodology used is based on the <u>NCHRP Report 803</u>.

The following is an Excerpt from the NCHRP Report 803:

The APT is intended to be used by planners and other agency staff charged with managing a pedestrian or bicycle prioritization effort. It is designed to encourage practitioners to prioritize pedestrian and bicycle improvement locations by establishing a clear prioritization process that is:

- Responsive to agency/community values: Transportation agencies often make decisions based on a defined set of goals or values of the communities they serve.
- Flexible: Rather than being a rigid, "one-size-fits-all" tool, the APT is flexible and allows practitioners to choose the most appropriate approach that reflects agency/community values and resource availability.
- Transparent: The APT is designed to facilitate transparency by breaking the prioritization process down into a series of discrete steps, each of which can be easily documented and explained to the public.
- Responsive to the unique needs of pedestrians and bicyclists.²

² <u>NCHRP 803</u>

oduction	Methodology	Opportunities	Safety	Existing	Demand	Connectivity	Equity	Results	Lessons	
		/		/ Conditions	/	/ .	/	/	/ Learned	1

Figure 1-2: Stakeholder Factor Weighting

Intr

Step 3: Weight Factors	
Factor	Weight
Opportunities (Upcoming Projects)	4
Safety	8
Existing Conditions	6
Demand	4
Connectivity	7
Equity	5

Initially, six factors were identified by the steering committee and weighted according to feedback.

- The six factors are:
 - Opportunities
 - Safety
 - Existing Conditions
 - Demand
 - Connectivity
 - Equity

Then variables were determined based on extensive review of peer agency variables and those suggested by NCHRP 803. A Geographic Information System (GIS) was used to encode the variables. Once the months-long process was completed, a priority score and a priority rank was calculated for the 88 ATP projects, which had a timeframe identified as Short, Medium, or Long. Because numerous projects were identified as Beyond 2045 or beyond the financial 25-year constraint of the RTP, these projects were already considered unconstrained, and therefore not prioritized using the method.

Because the method was designed as a tool to assist planners in constraining the financial threshold at \$185M,³ only 51 projects (S-M-L timeframe), those with the highest priority score were selected to be financially constrained. The remaining 29 projects within the S-M-L timeframe with a lower priority score were filtered out and identified as unconstrained. However, the projects could be funded with a supplemental source.

³ As per the Financial Element of the SLOCOG 2023 RTP

Sample Project CEN-ATP-2309 Background

The Project "Los Osos Valley Road Protected Bike Lanes" (CEN-ATP-2309) is a plan to Install Class IV bike lanes along Los Osos Valley Road between Diablo Drive and South Higuera Street. The project was selected as a sample project for this report.

Figure 1-2: Map of Sample Project

The highlighted section is the proposed project extents for project CEN-ATP-2309.

duction	Methodology	Opportunities	Safety	Existing	Demand	Connectivity	Equity	Results	Lessons	
		/	/ .	/ Conditions	/	/ .	/	/	/ Learned	1

Figure 1-3: Intersection of Los Osos Valley Road and Diablo Dr.

Intro

Diablo Drive is the northern end of the proposed Class IV bike lane on Los Osos Valley Road.

Figure 1-4: Intersection of Los Osos Valley Road and S. Higuera St.

South Higuera Street is the southern end of the proposed Class IV bike lane on Los Osos Valley Road.

Introduction	Methodology	Opportunities	Safety	Existing	Demand	Connectivity	Equity	Results	Lessons	
		·	/	2 0000000		/	/	/	Z LEALUEU	

2. Methodology

The following material is a step-by-step procedure of the process undertaken to determine ranking and prioritization for the financial element.

Point Values

Projects were assigned points values based on related physical attributes of the project consistent with the following table.

Criteria	Definition	Points						
Opportunities	Grant or Developer funding	Beneficial = 50pts	Necessitated = 100pts					
Safety	Fatal Bike/ped crash	25pts for each fatality						
Safety	Total bike/ped crash 10 years	1-3 crashes = 25 pts	4-7 crashes = 50pts	8-10 crashes = 75pts	11+crashes = 100pts			
Existing Conditions	Avg. Daily Vehicle Traffic	0-10 thousand =25pts	11-20 thousand = 50pts	21-30 thousand = 75pts	31+ thousand = 100pts			
Existing conditions	Posted Speed	1-25 mph = 25pts	26-40 mph = 50pts	41-64 mph = 75pts	65+ mph = 100pts			

Introduction	Methodology	Opportunities	Safety	Existing	Demand	Connectivity	Equity	Results	Lessons Learned	
--------------	-------------	---------------	--------	----------	--------	--------------	--------	---------	--------------------	--

Criteria	Definition	Points			
Demand	Proximity to Schools	Within 1/2 mile = 25pts	within 1/4 mile = 50pts		
Demand	Population Density	1-976 = 25 pts	977-1952 = 50pts	1953-2928 = 75pts	2929-3904 = 100pts
Connectivity	Located on ARORS	Yes = 100 pts	No = 0pts		
Connectivity	Connects to existing Facility	1-2 Connections = 25pts	3-5 Connections = 50pts	6-8 Connections = 75pts	9+ Connections = 100pts
Equity	Located in DAC	25pts for each DAC hexagon			

Resources

These are the resources used for each factor. All geoprocessing was conducted using ArcGIS Pro 3.0.2.

Table 2-2: File Locations

Factor	File path	Last Updated
Opportunities	H:\GIS\Shapefiles\Transportation\Transportation Efficiency Analysis\RTP_Projects_2022Update.gdb\AT_Projects	03/21/2023
Safety	H:\GIS\Shapefiles\Transportation\Collisions\July_202 1_Update\NonMotorized.gdb	08/03/2021
Existing Conditions	H:\GIS\Shapefiles\Transportation\For Will\CombinedLinks2035va1_2 2022-09-07.shp	09/07/2022

Introduction	Methodology	Opportunities	Safety	Existing	Demand	Connectivity	Equity	Results	Lessons	
--------------	-------------	---------------	--------	----------	--------	--------------	--------	---------	---------	--

Factor	File path	Last Updated
Demand	H:\GIS\Shapefiles\LandUseInfo\Schools_point.shp	10/25/2021
Connectivity	H:\GIS\Shapefiles\Transportation\ATPP\2023 RTP\ARORS_2023_RTP.shp	08/25/2021
Connectivity	H:\GIS\Shapefiles\Transportation\Bikeways\Bikeway s2021.shp	10/13/2022
Equity	H:\GIS\Shapefiles\Transportation\ATPP\2023 RTP\DisadvantagedCommunities2021.shp	06/03/2021

Introduction	Methodology	Opportunities	Safety	Existing	Demand	Connectivity	Equity	Results	Lessons Learned	
--------------	-------------	---------------	--------	----------	--------	--------------	--------	---------	--------------------	--

3. Opportunities

Opportunities were given a score of "4" by stakeholders. Opportunities gave SLOCOG the opportunity to factor the ability of the agency to take advantage of existing resources that can support project implementation in a quantifiable way. This can be an important factor because they have the potential to save time and money when implementing AT projects. At the time of this analysis, SLOCOG did not have a mapped database of future roadway improvements or opportunities. When evaluating projects based on their opportunities, SLOCOG had previously identified projects as Necessitated or Beneficial. Land use "Necessitated" projects are transportation projects required for new housing development.⁴ These projects are a Transportation Efficiency Analysis (TEA) priority projects are transportation projects that are not required for housing development but improve the transportation efficiency of an area. Necessitated projects were given a point value of 100 points and beneficial projects were given a score of 50. Projects without these designations scored 0 points.

Creating the Opportunity Layer

⁴ Transportation Efficiency Analysis (TEA)

Introduction	Methodology	Opportunities	Safety	Existing	Demand	Connectivity	Equity	Results	Lessons Learned	
--------------	-------------	---------------	--------	----------	--------	--------------	--------	---------	--------------------	--

Step 1: Find the AT Projects under: H:\GIS\Shapefiles\Transportation\Transportation Efficiency Analysis\RTP_Projects_2022Update.gdb\AT_Projects and add to current map. *Figure 3-2: Running an Opportunity Definition Query*

😫 📾 🗊 5 - 2				Ranki	ng Project final	Command Search (Alt+)	Q	Will - S	an Luis Obispo Council o	of Governments 🚾 🜻 🤉	- a ×
Project Map Insert	Analysis \ Import Map	View Edit Imager	y Share Ta Bright Dark Map Notes Not	Able Feature L Map Light Map Light Map Notes Layer Ter	Ayer Labeling Paired Paste Map Notes No nplates	Data	New Link Chart Distance Link Analysis Measure	e and tion	Add tem~		,
Contents v # X	💽 Map 🗙										~ G
Y Search Q V		Lover Properties	AT Brojects	C remense		2	ALCOLLEN.		168217	"Blor p	alog
		General	AI_FIOJECIS						- 1975 U	ange	Sym
		Metadata	Definition Que	eries			+ N	ew definition query 👻 북	£	2920 /	bolo
Drawing Order		Source	Query 1						1 Black		gy E
🖌 🔣 Map		Elevation		/				SQL 🕥	0 1/12	Sall Carlan	leme
AT_Projects		Selection	Where	Necessitated or Bene	ficial? •	is equal to	* Necessitated	- ×	58	12	· DESSE
-		Display							2732		Part Son Por
 World Topographic Map 		Cache Definition Overs	Or	Necessitated or Bene	ficial? •	is equal to	 Beneficial 	- ×	NO. 3 1572		The second se
World Hillshade		Time				+ Add Chaise			121-1220		istory
		Range						1	Tat Star	TS A Maria	2 AR
		Indexes						Apply Cancel	La Pan Rano	iza e	Car
		Joins								Server and the	140 0
		Relates								CONNECT.	ain Mod
		Page Query	1 Queries				Active def	inition query: Query 1 🗵	122		E Y
	1:442,407	•								🛛 👰 Selected Featur	es: 0 🔢 🔁 🔤
	AT_Projects	×						UK Cancel			× z
	Field: 🐺 Add	Calculate Selection:	C Select By Attributes	n To 🖓 Switch	Clear 🙀 Dele						
	ription	Project Type 20	1P RTP Unescalated Cost	2019 RTP Time Horizon	2021 Cost Estimate	2021 Time Horizon	Jurisdiction Notes	Jurisdiction	Buffer Name	Shape_Length Necessitated or Bene	I Field ^ tions
	1 ke/ped tra	Class I	1700000	U	<null></null>	<null></null>	Parks follow up	County	Avila Beach	7745.578386	<null></null>
	2 sutt Rd. to	Class II	5100000	U	<null></null>	<null></null>	Bikeways Plan	County	San Luis Obispo	12298.323609	<null> pro</null>
	3 anes, shar	Class II	2210000	U	<null></null>	<null></null>	<null></null>	Arroyo Grande	5 Cities	12776.404889	<null></null>
	4 :destrian/	Class II	68000	By 2045	<null></null>	<null></null>	<null></null>	Grover Beach	5 Cities	4216.997849	<null></null>
	5 bike/ped t	Class I	3500000	U	<null></null>	<null></null>	<null></null>	County	5 Cities	4995.156835	<null></null>
	6 mpo Rd. f	Class II	1870000	U	<null></null>	<null></null>	<null></null>	County	<null></null>	8518.779237	<null></null>
	7 ass I bike	Class I	8173000	By 2025	<null></null>	By 2028	Parks follow up	County	<null></null>	5608.398571	<null></null>
	8 ass I bike/	Class I	7650000	By 2025	7650000	By 2024	<null></null>	County	Templeton	6928.425709	<null></null>
	9 ulti-use p	Class I	3400000	By 2030	<null></null>	By 2035	might move this to un	Atascadero	Atascadero	39314.233009	<null></null>
	10 ass II bike	Class II	1700000	U	<null></null>	<null></null>	<null></null>	County	Templeton	2610.973946 Necessitated	<null></null>
	11 Iders and	Class II	765000	U	<null></null>	<null></null>	<null></null>	County	Templeton	4294.106373	<null></null>
	12) off-high	Class I	2040000	U	<null></null>	<null></null>	<null></null>	SLOCOG	<null></null>	11509.222204	<null></null>
		▶I 0 of 145 selected							Filters: (3) (3)) Tal 0+ + 1	100% - 2

Step 2: Create a definition query. This will filter out all projects in the data that are not necessitated or beneficial.

Figure 3-3: Conducting Opportunity Analysis of a Project

😫 📾 🗊 5 - 0 - =					Ranking Pro	oject final 👂 Comm	and Search (Alt+Q)	Will	I - San Luis Obispo Council of Governments 👐 🌻 🤉	- 0 ×
Project Map Insert	Analysis	View	Edit Imagery	Share Table	Feature Layer	Labeling Da	ta			
New New Coolbox *	 Impo Impo Impo Task 	rt Map rt Layout ~ Co ~	nnections Add Folder	Bright Map Notes	Light Map Pair Notes Map N	ed Pastel Map Notes	Red Green Map Notes	nk t Distance and Direction bisition bisition bisition Distance and Distance and Di	Add Item -	
[The second	~			cajer rempiace		1 citik Parto	iyas measurements i septes	- Storica	
Contents v # x	E map	^				Morris	Bay 3	Sall Lui		CONTRACTOR OF
Y Search P V			man ii bu				Contra Contra	Ourspe		S International S
👌 🔁 🖸 🔽 🖊 🗄	1:442,40	• •	≡ <u>37</u> +- N >			5,6	59,511.71E 2,316,110.14N ftUS	5 ¥	ା ଲ୍ୟ Selected F	eatures: 0 🚺 🔁 🚦
Drawing Order	III AT_Pr	ojects $ imes$								> ogy
d Man	Field: 🐺	Add 📳 Calc	ulate Selection: 0	Select By Attributes 🛛 🖓 Zo	om To 📲 Switch 📃	Clear 🙀 Delete 📑 🤇				= 5
A AT Projects	J OBJE	CTID * Shape *	2019 RTP ID #	Project Name	Project Description	Project Type	Necessitated or Benef			> vent
_	1 10	Polyline	NTH-AT2-1008	Las Tablas Rd. Class II	Construct Class II bike	Class II	Necessitated			Exp
World Topographic Map	2 27	Polyline	REG-AT1-1002	Anza Trail: Salinas River	Construct 25-mile bike	Class I	Beneficial			ort
Vorld Hillshade	3 74	Polyline	NTH-AT3-1901	Creston Rd. Complete	Streetscape enhancem	Livability	Necessitated			Histo
	4 78	Polyline	CEN-AT3-1006	Broad St Medians Orc	Install landscaped me	Livability	Beneficial			yv
	5 85	Polyline	X0X-ATP-2324	Froom Ranch Frontag	Install sidewalks on w	Safety	Necessitated			Attri
	6 90	Polyline	CEN-AT1-1012	Railroad Safety Trail (P	Construct Class I bike	Class I	Beneficial			bute
	7 95	Polyline	CEN-AT1-1016	Railroad Safety Trail: b	Construct bike bridge	Class I	Beneficial	N		3
	8 98	Polyline	X00(-ATP-2309	Los Osos Valley Road	Install Class IV bike la	Class IV	Necessitated	45		odify
	9 102	Polyline	X00(-ATP-2312	South Broad-Santa Bar	Install Class IV bikewa	Class IV	Beneficial			Feat
	10 103	Polyline	X00(-ATP-2313	Tank Farm Road Comp	Convert from 5-lane to	Class IV	Beneficial			ure:
	11 104	Polyline	X0X-ATP-2314	Oceanaire Neighborh	Install neighborhood	Class III	Beneficial			8
	12 106	Polyline	X00(-ATP-2316	Higuera Protected Bik	Install Class IV bikewa	Class IV	Necessitated			tífica
	13 108	Polyline	X00(-ATP-2318	Madonna Road Bikew	Install Class I path fro	Class I	Beneficial			tion
	14 114	Polyline	NTH-AT1-1004	Creekside Bike Path: P	Construct path: Nickla	Class I	Beneficial			e I
	15 115	Polyline	NTH-AT1-1005	Creekside Bike Path: P	Construct path: Snead	Class I	Beneficial			eopro
	16 116	Polyline	X0X-ATP-2333	Paso's portion of the	North River Bikeway- p	Class I	Beneficial			Cess
	17 118	Polyline	NTH-AT3-1902	Niblick Rd. Corridor e	Transportation deman	Livability	Necessitated			ing
	18 126	Polyline	STH-AT1-1003	Beach Cities Trail: Boar	Construct bike/ped trail	Class I	Beneficial			
	19 128	Polyline	STH-AT2-1005	S. 4th St. bike lanes: G	Restripe to provide Cl	Class II	Beneficial			
	20 135	Polyline	X00(-ATP-2303	The Pike restriping	striping, bike lanes	SRTS/Livability	Beneficial			
	21 144	Polyline	NTH-ATP-2342	The Grand Loop	Bikeway Route around	Class I	Beneficial			
	22 145	Polyline	NTH-AT2-1401	Huer Huero Creek Trail	Construct Class II bike	Class II	Beneficial			
	Click	to add new row								
			C22 colorited						Eiterre 🛞 🕾 🖈 💷	+ 1009/ - 1 7
		PI 08	122 selected							T 100% 1 🗾

Introduction	Methodology	Opportunities	Safety	Existing Conditions	Demand	Connectivity	Equity	Results	Lessons Learned	
--------------	-------------	---------------	--------	------------------------	--------	--------------	--------	---------	--------------------	--

Step 3: After the definition query, determine the point value based on the criteria found in Table 1.

Step 4: Input the project into the PlanDesign_Tools_APT_Programmed_Spreadsheet using the points assigned in the previous step.

Introduction	Methodology	Opportunities	Safety	Existing	Demand	Connectivity	Equity	Results	Lessons
	/		· ·	Z Conditions	/	/ .	/	/	/ Learned

Sample Project CEN-ATP-2309 Opportunity Analysis:

Figure 3-4: Opportunity Analysis Sample Project (GIS)

Figure 3-4 is the linework for Project CEN-ATP-2309 with the field "Necessitated or Beneficial".

AutoSave 🔵 OFF	a B 🖗	9 • C •			💁 PlanDesign_To	ols_APT_Programmed_	Spreadsheet	-Working DRAFT	v1~			Q &
Home Insert	Draw Pa	ge Layout	Formulas	Data Review	View Autom	ate Acrobat 🖓 Tell	me				Commen	its 🖻 Share
Ê- ×	Calibri (Body)					General	- 🔳 -	₩,•₩,•	🚝 Insert 🗸 了	Σ· 4π· Ο·		
Paste		⊞• ≼	<u>2 - A</u> -				Condition	al Format Cell	Eormat v	U v ∠ 0 / − Sort& Find &	Analyze Create and	Share
A81 📥 🗙	√ f _x ce	N-ATP-2309					Pormattin	g as lable Styles		Pitel Select		-DF -
A	E		v		AE	AF	-	вс	IJ	GR	GT	н
-												
2												
3	Scoring Metho	d:								-		
			6			and an						
6 RTRID V	Completion Year	T Impleme	Opportuniti	es	al Bike/Ped Crash	Satety Eatal & Sovere Bike/Ped Crach	Crash T	raffic Speed	Daily Vehicle Traffic	Population Density	Provimity to Schools	Connects to Existin
60 CEN-ATP-2312	completion real	- Inpective	inc my racare con	50	100	Tatal a Severe bite, rea classi	0	75	toury venice truthe	75	75	75
61 CST-AT3-1007				0	0		0	50		25 5	50 5	75
62 STH-AT3-1401				0	25		0	75		25	25	75
63 STH-AT3-1402				0	75		25	25		25	25 7	75
64 STH-AT2-1019				0	100		0	25		50 50	50	75
65 CST-AT3-1008				0	25		0	25		25 5	50 5	75
66 NTH-AT1-1003				0	50		0	75		25	50 10	00
67 CEN-ATP-2322				0	50		0	25		25 5	50 10	0
68 CEN-ATP-2311				0	50		0	25		25 5	50 12	25
69 CEN-ATP-2317				0	100		25	50	:	25 10	0 12	25
70 NTH-AT2-1903				0	25		0	25		25 2	25 12	25
71 STH-AT2-1007				0	25		0	25		25 5	50 12	25
72 STH-AT3-1404				0	25		0	25		25 5	50 12	25
73 STH-ATP-2303				50	25		0	25		25 5	50 12	25
74 NTH-ATP-2342				50	50		25	75		50 5	75 12	25
75 STH-AT2-1006				0	25		0	25		25	50 15	50 10
75 STH-ATP-2306				0	25		0	25		25	19	0
72 NTH AT2 1008				0	75		0	25		25	15	0
79 CEN-AT3-1008				0	50		0	25		75	5 15	50
80 CEN-ATP-2314		-		50	/5		0	75		25	50 10	50
81 CEN-ATP-2309		1		100	100		25	75		75	75 19	50
82 STH-ATP-2334		(100	100		23	50		25	50 10	50
83 CEN-ATP-2315				0 -	100		0	25		50	75 11	15
84 NTH-AT2-1902				0	100		25	50		50	50 17	75
85 NTH-AT1-1001				0	25		0	25		25	25 20	0
86 NTH-AT1-1401				0	0		0	25		25	25 20	00
87 NTH-AT3-1902				100	100		0	50		50 5	50 22	25
88 NTH-AT3-1901				100	100		0	75		25	50 25	50
89 STH-AT2-1901				ol	50		0	50		sal	11	25
🔹 🕨 🔰 Step 8	8 Input Data	Step 9 Scale	e Variables	Step 10A Calc F	riority Scores	Step 10B Calc Priority Rank	Sheet1					
Dearth 92 Ac									075 0		m	

Figure 3-5: Opportunity Analysis Sample Project (Excel)

Introduction	Methodology	Opportunities	Safety	Existing Conditions	Demand	Connectivity	Equity	Results	Lessons Learned	
--------------	-------------	---------------	--------	------------------------	--------	--------------	--------	---------	--------------------	--

This project was previously designated as a necessitated project and scored 100 raw points for the opportunities factor. The points in this section were multiplied by the stakeholder value of 4 and added with the other 5 factor scores to create the final score.

Home Inset Oran Page Layout Formula Data Review Verw Automata Actobal Tenne Impletion Calibrid (body) 11 ArX Impletion	AutoSave 🔵	☞ Â₿₿ፇ~C ···	PlanDes	ign_Tools_APT_Programmed_Spreadsheet	-Working DRAF	T v1 ~			୦ ୫
Calibre Los of a large control of the contr	Home Inse	ert Draw Page Layout Form	ulas Data Review View	Automate Acrobat 🖓 Tell me				Comments	🖻 Share
ALDI A B Bit (Step 8 lange 104k1/481/-0**, Step 8 lange 104k1/81/*) A B B B B B B C A B	Paste V	Calibri (Body) 11 A B I U ∨ II ✓	× A = = = ≫ • • = = = 1 = =	20 v General v Image: Second state Image: Second state Condition Image: Second state Second state Second state	al Format Cell g as Table Style	l Insert v ∑ Delete v I Format v	∑ ¥ A Z V ↓ Sort & Find å Ø ¥ Filter Select	 Analyze Analyze Create and Share Adobe PDF 	
A C H J C H J C H J C C H J C	A101 🛟	× ✓ f_x =IF('Step 8 Input Data'!A	\81⇔"",'Step 8 Input Data'!A81,"")						
Step 104: Calculate Priority Score Opportunity Ricemic Priority Ricemic Prioritana Ricemic Priority Ricemic Priority Ricemic Prioritana	A	8	G	н			к		м
S O Operatories (Useomic Precisi (Step 10A: Calculate Priority Score							
C C O	ID	GAP LOCATION	Opportunities (Upcoming Projects) SCORE	Opportunities (Upcoming Projects) WEIGHTED SCORE	Safety SCORE Sa	afety WEIGHTED SCORE	Existing Conditions SCORE	Existing Conditions WEIGHTED SCOP	E Demand S
THAT 3001 00 00 00 125 1000 250 126 STAAT 2011 00 00 00 100 100 175 1250 100 STAAT 2012 00 00 00 400 400 755 4250 1 STAAT 2017 00 00 00 400 400 915 1250 100 910 101 100 900 400 100 910 100 900 100 910 910 900	7 CEN-AT1-101	5	0.0	0.0	0.0	0.0	12.5	75.0	50.0
21 ThAT 7204 0.0 0.	8 STH-AT3-101	1	0.0	0.0	12.5	100.0	25.0	150.0	62.5
Characterization 50.0 20.0 50.0 400.0 75.0 400.0 75.0 400.0 75.0 400.0 75.0 400.0 75.0 400.0 75.0 400.0 75.0 400.0 75.0 400.0 75.0 400.0 75.0 425.0 75.0 <t< td=""><td>9 STH-ATP-230</td><td>м</td><td>0.0</td><td>0.0</td><td>50.0</td><td>400.0</td><td>37.5</td><td>225.0</td><td>50.0</td></t<>	9 STH-ATP-230	м	0.0	0.0	50.0	400.0	37.5	225.0	50.0
Strat. 00 <th< td=""><td>CEN-ATP-231</td><td>2</td><td>50.0</td><td>200.0</td><td>50.0</td><td>400.0</td><td>75.0</td><td>450.0</td><td>75.0</td></th<>	CEN-ATP-231	2	50.0	200.0	50.0	400.0	75.0	450.0	75.0
3) HAT-1800 00 00 00 00 00 900<	1 CST-AT3-100	7	0.0	0.0	0.0	0.0	37.5	225.0	62.5
31 Mar 1840 00	2 STH-AT3-140	1	0.0	0.0	12.5	100.0	50.0	300.0	50.0
19 19 00<	3 STH-AT3-140	12	0.0	0.0	50.0	400.0	25.0	150.0	50.0
Si Ariansi DD DD <thdd< th=""> DD DD</thdd<>	STH-AT2-101		0.0	0.0	50.0	400.0	37.5	225.0	62.5
Chr.A.T. 2021 D.0 D.0 <thd.0< th=""> <thd.0< th=""> <th< td=""><td>S LST-AT3-100</td><td>12</td><td>0.0</td><td>0.0</td><td>12.5</td><td>100.0</td><td>25.0</td><td>150.0</td><td>62.5</td></th<></thd.0<></thd.0<>	S LST-AT3-100	12	0.0	0.0	12.5	100.0	25.0	150.0	62.5
City ATF 2311 0.0 0.0 250 280.0 250 100.0 1 City ATF 2311 0.0 0.0 0.0 455 580.0 250.0 150.0 1 The ATF 2000 0.0 0.0 0.0 0.0 125.5 1300.0 25.0 150.0 1 The ATF 2007 0.0 0.0 0.0 125.5 1300.0 25.0 150.0 1 The ATF 2007 0.0 0.0 0.0 125.5 1300.0 25.0 150.0 1 The ATF 2007 0.0 0.0 20.0 125.5 100.0 25.0 150.0 1 The ATF 2007 0.0 0.0 20.0 125.5 100.0 10.0 1 The ATF 2007 0.0 0.0 0.0 125.5 100.0 125.5 150.0 125.5 The ATF 2008 0.0 0.0 0.0 125.5 100.0 125.5 150.0 125.5 150.0 125.5 150.0 <td>CEN ATD 222</td> <td>13</td> <td>0.0</td> <td>0.0</td> <td>25.0</td> <td>200.0</td> <td>30.0</td> <td>150.0</td> <td>75.0</td>	CEN ATD 222	13	0.0	0.0	25.0	200.0	30.0	150.0	75.0
CRAFF232 00 02 425 500 25.5 22.60 1 VirkAF2307 00 00 00 125 1000 25.0 1300 1 STMAT5007 00 00 00 125 1000 25.0 1500 1 STMAT5007 00 00 00 125 1000 25.0 1500 1 STMAT5007 00 00 00 125 1000 25.0 1500 1 STMAT5007 00 00 00 125 1000 25.0 1500 1 STMAT5007 00 20.0 125 1000 25.0 1500 1 STMAT5006 00 0.0 125 1000 25.0 1500 1 STMAT5007 00 0.0 0.0 125 1000 25.0 1500 1 1 1 1 1 1 1 1 1 1 1 <td< td=""><td>CEN-ATP-232</td><td>1</td><td>0.0</td><td>0.0</td><td>25.0</td><td>200.0</td><td>25.0</td><td>150.0</td><td>87.5</td></td<>	CEN-ATP-232	1	0.0	0.0	25.0	200.0	25.0	150.0	87.5
NTMA72900 00 00 00 00 25.5 100.0 25.0 100.0 <td>9 CEN-ATP-231</td> <td>7</td> <td>0.0</td> <td>0.0</td> <td>62.5</td> <td>500.0</td> <td>37.5</td> <td>225.0</td> <td>112.5</td>	9 CEN-ATP-231	7	0.0	0.0	62.5	500.0	37.5	225.0	112.5
3 10 00 00 125 1000 250 1000 100 5 5 5 500 250 1500 250 1500 100 10 5 5 500 200 125 1000 250 1500 100 10 5 5 500 200 125 1000 250 1500 10 5 5 00 00 00 125 1000 250 1500 10 5 5 00 00 00 125 1000 250 1500 10 5 15 00 00 00 125 1000 250 1500 10 5 15 00 00 00 125 1000 250 1500 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10	0 NTH-AT2-190	33	0.0	0.0	12.5	100.0	25.0	150.0	75.0
2 Th-AT-300 0.0 0.0 125 1000 25.0 1500 1000 100 100	1 STH-AT2-100	7	0.0	0.0	12.5	100.0	25.0	150.0	87.5
Synthemic 2000 125 1000 250 1000 100	2 STH-AT3-140	4	0.0	0.0	12.5	100.0	25.0	150.0	87.5
NTHAT 2020 300 2000 37.5 3000 42.5 1500 1 STHAT 2006 0.0 0.0 0.0 12.5 1000 25.0 150.0 1 STHAT 2006 0.0 0.0 0.0 12.5 1000 25.0 150.0 1 STHAT 2006 0.0 0.0 0.0 12.5 1000 25.0 150.0 1 STHAT 3006 0.0 0.0 0.0 12.5 1000 25.0 150.0 1 STHAT 3006 0.0 0.0 0.0 17.5 300.0 75.0 450.0 1 STHAT 2016 0.0 0.0 0.0 12.5 100.0 25.0 150.0 1 STHAT 2016 0.0 0.0 20.0 12.5 100.0 25.0 150.0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3 STH-ATP-230	13	50.0	200.0	12.5	100.0	25.0	150.0	87.5
S ThirkAT 3006 0.0 0.0 0.0 125 1000 25.0 1500 12 S ThirkAT 3005 0.0 0.0 0.0 125 1000 25.0 1500 12 S ThirkAT 3005 0.0 0.0 0.0 0.0 125 1000 25.0 1500 12 S ThirkAT 3005 0.0 0.0 0.0 175 300.0 25.0 150.0 12 C MAR 3107 0.0 0.0 0.0 175 300.0 75.0 460.0 1 C MAR 3107 0.0 0.0 0.0 125 100.0 10 100.0 100.0 10 100.0 100.0 10 100.0 10 100.0	4 NTH-ATP-234	12	50.0	200.0	37.5	300.0	62.5	375.0	100.0
STHAT-306 0.0 0.0 0.0 125 1000 25.0 1500 1 STHAT-306 0.0 0.0 0.0 175 3200 25.0 1500 1 STHAT-306 0.0 0.0 0.0 175 3200 25.0 1500 1 STHAT-306 0.0 0.0 100 100 25.0 1500 1 STHAT-306 0.0 0.0 100 100 25.0 150.0 1 STHAT-301 0.0 0.0 100 125 100.0 25.0 150.0 1 STHAT-3140 0.0 0.0 0.0 50.0 450.0 13.5 225.0 1 STHAT-1401 0.0 0.0 0.0 12.5 100.0 13.5 225.0 1 STHAT-1401 0.0 0.0 12.5 100.0 13.5 120.0 13.5 120.0 13.5 120.0 13.5 120.0 13.5 130.0	5 STH-AT2-100	16	0.0	0.0	12.5	100.0	25.0	150.0	100.0
27 71 min 3-300 00 00 37.5 300.0 25.0 150.0 1 01 min 3-1007 0.0 0.0 0.0 17.5 300.0 75.0 150.0 1 01 min 3-1007 0.0 0.0 0.0 17.5 300.0 75.0 150.0 1 01 min 3-1007 0.0 0.0 0.0 12.5 100.0 75.0 150.0 1 01 min 3-1007 0.0 0.0 0.0 12.5 100.0 75.0 150.0 1 01 min 3-1007 100.0 40.0 0.0 20.0 75.0 150.0 1 01 min 3-1007 0.0 0.0 0.0 0.0 10.0 10.0 1 1 10.0 1 1 10.0 1 <td< td=""><td>6 STH-ATP-230</td><td>16</td><td>0.0</td><td>0.0</td><td>12.5</td><td>100.0</td><td>25.0</td><td>150.0</td><td>100.0</td></td<>	6 STH-ATP-230	16	0.0	0.0	12.5	100.0	25.0	150.0	100.0
NTMAT:3000 0.0 0.0 0.0 0.0 25.0 20.0 25.0 10.0 1 0 (RA-H3:000 0.0 0.0 0.0 10.0 <t< td=""><td>7 STH-AT3-140</td><td>3</td><td>0.0</td><td>0.0</td><td>37.5</td><td>300.0</td><td>25.0</td><td>150.0</td><td>100.0</td></t<>	7 STH-AT3-140	3	0.0	0.0	37.5	300.0	25.0	150.0	100.0
0 (2k-AR-73107) 0.0 0.0 737.5 300.0 75.0 440.0 1 0 (2k-AR-7316) 50.0 125.5 100.0 125.5 150.0 12 0 (2k-AR-7316) 0.0 400.0 425.5 550.0 75.0 440.0 1 0 (2k-AR-7315) 0.0 0.0 400.0 97.5 225.0 1 0 (2k-AR-7315) 0.0 0.0 50.0 440.0 37.5 225.0 1 0 (2k-AR-7315) 0.0 0.0 50.0 440.0 37.5 225.0 1 0 (2k-AR-7315) 0.0 0.0 0.0 50.0 440.0 37.5 225.0 1 0 (2k-AR-7315) 0.0 0.0 0.0 25.5 550.0 50.0 300.0 1 0 (2k-AR-7315) 0.0 0.0 0.0 0.0 25.0 150.0 1 0 (7k-14-15)-002 100.0 400.0 50.0 400.0 50.0 300.0 1	8 NTH-AT3-100	8	0.0	0.0	25.0	200.0	25.0	150.0	87.5
OD (PK-AFT-2314 50.0 20.0 12.5 100.0 25.0 150.0 1 OD (FK-AFT-2314 0.0 0.0 12.5 100.0 25.0 150.0 1 OD (FK-AFT-2314 0.0 0.0 50.0 400.0 37.5 450.0 1 OD (FK-AFT-2315 0.0 0.0 0.0 50.0 400.0 37.5 225.0 1 OT (FK-AFT-2302) 0.0 0.0 0.0 60.0 37.5 225.0 1 OT (FK-AFT-202) 0.0 0.0 0.0 400.0 37.5 225.0 1 OT (FK-AFT-202) 0.0 0.0 0.0 62.5 500.0 50.0 300.0 1 OT (FK-AFT-302) 0.0 0.0 0.0 64.0 0.0 150.0 1 OT (FK-AFT-302) 100.0 400.0 25.0 150.0 300.0 1 OT (FK-AFT-302) 100.0 400.0 25.0 250.0 300.0 1	9 CEN-AT3-100	7	0.0	0.0	37.5	300.0	75.0	450.0	100.0
01 01000 4000 62.5 5000 75.0 44000 1 02 1100.0 0.0 0.0 0.0 37.5 225.0 1 02 114.77.235 0.0 0.0 50.0 400.0 37.5 225.0 1 01 114.77.235 0.0 0.0 50.0 400.0 37.5 225.0 1 05 114.77.236 0.0 0.0 0.0 50.0 400.0 37.5 225.0 1 05 114.77.236 0.0 0.0 0.0 25.0 150.0 1 06 114.77.2360 0.0 0.0 0.0 0.0 25.0 150.0 1 07 114.77.1390 100.0 400.0 50.0 400.0 50.0 300.0 1 07 114.77.290 0.0 0.0 0.0 25.0 20.0 300.0 1 07 114.77.290 0.0 0.0 25.0 20.0<	CEN-ATP-231	4	50.0	200.0	12.5	100.0	25.0	150.0	100.0
OD OD OD State D D D State D State S	CEN-ATP-230	9	100.0	400.0	62.5	500.0	75.0	450.0	112.5
00 (thr M-17:30) 0.0 0.0 50.0 400.0 37.5 225.0 1 00 (thr M-17:30) 0.0 0.0 60.5 500.0 500.0 100.0	2 STH-ATP-233	14	0.0	0.0	50.0	400.0	37.5	225.0	100.0
OK INHART-1002 0.0 0.0 0.0 62.5 50.00 50.0 50.00 1 OK INHART-1001 0.0 0.0 0.0 12.5 100.0 25.5 150.00 1 OK INHART-1001 0.0 0.0 0.0 0.0 25.5 150.00 1 OK INHART-1001 0.0 0.0 0.0 0.0 25.0 150.0 1 OK INHART-1001 0.0 0.0 0.0 0.0 0.0 25.0 150.0 1 OK INHART-1001 100.0 40.0 50.0 40.0 50.0 300.0 1 OK INHART-1001 100.0 40.0 50.0 40.0 50.0 300.0 1 OK INHART-1001 0.0 0.0 2.5 50.0 40.0 50.0 300.0 1 OK INHART-1001 100.0 40.0 50.0 40.0 50.0 300.0 1 OK INHART-1001 100.0 100.0 25.0 20.0 3	03 CEN-ATP-231	5	0.0	0.0	50.0	400.0	37.5	225.0	125.0
OS (htth-11-1001) 0.0 0.0 12.5 100.0 25.0 150.0 1 00 (htth-11-1001) 0.0 0.0 0.0 0.0 25.0 150.0 1 07 (htth-11-1001) 0.0 0.0 400.0 50.0 400.0 50.0 300.0 1 07 (htth-11-1001) 100.0 400.0 50.0 400.0 50.0 300.0 1 07 (htth-11-1001) 0.0 0.0 0.0 25.0 200.0 300.0 1 07 (htth-11-1001) 0.0 0.0 25.0 200.0 50.0 300.0 1 07 (htth-11-1001) 0.0 0.0 25.0 200.0 50.0 300.0 1 10 Step 100 Catle Priority Scores Step 108 Catle Priority Ramk Sheet1 Sheet3 + +	MTH-AT2-190	02	0.0	0.0	62.5	500.0	50.0	300.0	112.5
Op Nith-AT-1401 0.0 0.9 0.0 0.5 25.0 150.0 1 VirkAT-1401 100.0 400.0 50.0 450.0 50.0 300.0 1 VirkAT-1502 100.0 400.0 50.0 460.0 50.0 300.0 1 VirkAT-1502 100.0 400.0 50.0 460.0 50.0 300.0 1 VirkAT-1502 0.0 0.0 0.0 23.0 20.0 300.0 1 VirkAT-1502 Step 10A Calc Priority Rank Step 10B Calc Priority Rank Step11 Step12 Step13 4	15 NTH-AT1-100	01	0.0	0.0	12.5	100.0	25.0	150.0	112.5
VTH http://size 100.0 400.0 50.0 400.0 50.0 300.0 1 VTH http://size 100.0 400.0 50.0 400.0 50.0 300.0 1 VTH http://size 0.0 0.0 25.0 200.0 50.0 300.0 1 V Hint Art 1901 0.0 0.0 25.0 200.0 50.0 300.0 1 V Hint Art 1901 0.0 0.0 25.0 200.0 50.0 300.0 1 Step 8 liput Data Step 10A Calc Priority Scores Step 10B Calc Priority Rank Sheet1 Sheet3 +	6 NTH-AT1-140	01	0.0	0.0	0.0	0.0	25.0	150.0	112.5
Operation 1000 4000 500 4000 500 3000 1 37 Hind 7: 501 00 4000 500 4000 500 3000 1 37 Hind 7: 501 00 4000 500 25.0 2000 50.0 300.0 1 10 00 00 60.0 50.0 300.0 1 10 Step 3 brout Data Step 100 Calc Priority Rank Steel1 Steel2 Steel3 4	NTH-AT3-190	02	100.0	400.0	50.0	400.0	50.0	300.0	137.5
W 311M-1212 UU UU UU UU UU UU UU UU 25.0 20.0 50.0 300.0 1 ↓ Step 8 Scale Variables Step 10A Calc Priority Scores Step 10B Calc Priority Rank Sheet1 Sheet2 Sheet3 + ↓ Sheet3 Step 10B Calc Priority Rank Sheet1 Sheet3 +	8 NTH-AT3-190	01	100.0	400.0	50.0	400.0	50.0	300.0	150.0
191	5 STH-AT2-190	21	0.0	0.0	25.0	200.0	50.0	300.0	75.0
		ep 8 Input Data Step 9 Scale Variable	es Step 10A Calc Priority Scores	Step 10B Calc Priority Rank Sheet1	Sheet2	Sheet3 +			
	Danada 😤	Assessibility investigate		Chip the sale thong hand	Augusta 220.065	01570 Count: 01	C	. m	

Figure 3-6 shows with the stakeholder multiplier of 4, the project scores 400 points for the Opportunity factor.

4. Safety

Safety was given the highest score of "8" by the stakeholder group. The Safety factor accounts for the risk of a pedestrian or bicyclist being involved with a traffic collision or crash. Safety is important because pedestrians and bicyclists are vulnerable to being killed or injured when struck by a motor vehicle. Concerns about safety can be a significant barrier when people choose to walk or bicycle. In this analysis safety was evaluated primarily in terms of reported pedestrian and bicycle crashes and crash rates. Transportation Injury Mapping System (TIMS) data was utilized during this section of the analysis. Crash data was separated by fatal and non-fatal crashes. Crashes along a corridor were counted up and depending on the total number of crashes, they were given a predetermined number of points. They were also assigned 25 extra points for each fatality along the corridor. The points in this section were multiplied by the stakeholder value of 8 and added with the other 5 factor scores to create the final score.

Creating the Safety Layer

Step 1: Find the most recent non-motorized crash data for the past 10 years and add it to the map: H:\GIS\Shapefiles\Transportation\Collisions\July_2021_Update\NonMotorized.gdb

Introduction	Methodology	Opportunities	Safety	Existing Conditions	Demand	Connectivity	Equity	Results	Lessons Learned
--------------	-------------	---------------	--------	------------------------	--------	--------------	--------	---------	--------------------

Step 2: Export features to preserve the original data set. In this case this step had to be completed with the 2011-2015 and 2016-2020 datasets.

Figure 4-3: Merging Crash Data Features

Step 3: Merge the exported features into one dataset.

Introduction Methodology Opportunities Safet	Existing Conditions Demand	Connectivity Equity	Results	Lessons Learned
--	-------------------------------	---------------------	---------	--------------------

Figure 4-4: Run	ning a Crash	Data Definition	Query
-----------------	--------------	-----------------	-------

😫 📾 🗊 5 - 0 - =							Ra	anking Project final	P Command St	earch (Alt+Q)		Will - San Li	uis Obispo Coun	cil of Governm	ients WD 🔎	? -	- 0 ×
Project Map Insert	Analysis	View	Edit Ima	agery Sh	are	Table	Featur	e Layer Labeli	ng Data								
🔊 🎾 ModelBuilder 🛛 🔔	6					1		0. 000				2771	9. 🐟		*m		
History C Python * Ready To	Tools	Painwire	Summarite	Soutial	Painain	a Ontimi	Tad Hot	Feature Raster	Data	Suitability Visibility E	o o o o o o o o o o o o o o o o o o o	estatistical Bus	iness Data	Fx	Function		
Senvironments Use Tools	·	Buffer	Within	Join	Clip	Spot A	nalysis 🗢	Analysis - Analysi	s~ Engineerin	ng Modeler Analysis 3D	Analysis - Analysis -	Wizard Ana	lysis - Interop -	Functions	Editor		
Geoprocessing	15			Tools				Portal			Workflows			Rat	ter		^
Contents v # ×	🔣 Map 🗙																> Cata
Y Search P ~	1/23	- ut	Nor comes	29 August	a Valley	•	78	AC N	State Unit	N 4351	Lopez	AL SI	SAN 1	61 3	VA S	150	SAL S
1- A M / L	150	Ti	Ser St	Let Om	37.3		100	211	1000	e suroit	Mountan	1001	0.5925	18	Stall b	12/3	Symb
	120	181	S. Carl	412 00	+ 40	Sel Yan	105 0	*o	216	A Start	141	Santa	Sec.	CAR	12320	P. J.	olog
Drawing Order	Mont	aña de ate Park	CN X	S. E	100	23333		Valley.		- Sala	115	1 40	1-22	1 aller	Sec. 1	24330	CISIE =
🔺 🔣 Map	SA.	SE	AL SEPT	Contra V	Laver	r Propertie	es: Crash1	120					οx	12	28 8	1. 11.	A Sa emer
Crash1120	TAN	NO.	EL MAR	Part	Gene	eral							ster.	日本以	15.5	Million .	87.87. m
COLLISION_SEVERITY	221	15.	21	1636 pt	Meta	adata		Definition Queries			-	New definition	n query v 😪	V 23	1212	Jr lo	Hi
• 1	1329 10	331	1 155	Irish H	Sour	ce		Query 1						XX	いいた	C.M.	Juntain
• 2	TITE	PR-	and the second second	1000	Eleva	ation							SQL 🔵	Id	1918		AID tory
• 4	1	18		TIAR	Selei	ction		Where C	OLLISION_SEVER	NTY • is equal to	o • 1		• ×	ntain	NY K	1.01	ALL AL
<all other="" values=""></all>	1.3	1.8	Can's	on the	Uisp	lay								6.00	5	18-	ibut
▷ ☑ Opportunities		1000	Diabis	22236	Defi	inition Quer	,	Or + C	OLLISION_SEVER	NTY • is equal t	o * 2		• ×	SITT		119.02	1997
World Hillshade		- 27	3.281	1200	Time			01 + 0	OLLISION SEVER	TV • is equal to	0 - 3		- ×	See.	NEEN J	1400	1 L Iodify
Wond i misridde			"Linner	Sugar	Rang	ge								111	all a	Sh RA	RUCE S
	1:115,974	•	■ <u>35</u> + N3		Inde	xes		Or + C	OLLISION_SEVER	ITY • is equal to	o - <mark>4</mark>		- × -		କୁଧ୍ୟ Sel	ected Feature	s 0 🚺 🔁 🏹
	Crash1120	×			Joint	5				+ Add C	lause						× No
	Field: Add	d 🕎 Calc	ulate Selecti	on: 🔓 Select	By Page	e Query		1 Overier			Active	definition over	- Ourse 1 🗐				I
	OBJECTID	* Shape *	CASE_ID ACC	IDENT_YEAR	PR	/		i queites			ALUVE	dennición que	y, query 1 👝	CITY_LOC S	PECIAL_COND E	BEAT_TYPE CI	HP_BEAT_TY ^
	54 758	Point	<null></null>	<null></null>	< N							OK	Cancel	<null></null>	<null></null>	<null></null>	Nu 🦉 တြ
	55 759	Point	<null></null>	<null></null>	<n< td=""><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td><null></null></td><td><null></null></td><td><null></null></td><td><nu proc<="" td=""></nu></td></n<>			1						<null></null>	<null></null>	<null></null>	<nu proc<="" td=""></nu>
	56 760	Point	<null></null>	<null></null>	<null></null>	<null> <</null>	Null>	<null></null>	<null></null>	<null></null>	<null></null>	<null></null>	<null></null>	<null></null>	<null></null>	<null></null>	<nu iss<="" td=""></nu>
	57 761	Point	<null></null>	<null></null>	<null></null>	<null> <</null>	Null>	<null></null>	<null></null>	<null></null>	<null></null>	<null></null>	<null></null>	<null></null>	<null></null>	<null></null>	<nu da<="" td=""></nu>
	58 762	Point	<null></null>	<null></null>	<null></null>	<null> <</null>	Null>	<null></null>	<null></null>	<null></null>	<null></null>	<null></null>	<null></null>	<null></null>	<null></null>	<null></null>	<nu< td=""></nu<>
	59 763	Point	<null></null>	<null></null>	<null></null>	<null> <</null>	Null>	<null></null>	<null></null>	<null></null>	<null></null>	<null></null>	<null></null>	<null></null>	<null></null>	<null></null>	<nu< td=""></nu<>
	60 764	Point	<null></null>	<null></null>	<null></null>	<null> <</null>	Null>	<null></null>	<null></null>	<null></null>	<null></null>	<null></null>	<null></null>	<null></null>	<null></null>	<null></null>	<nu< td=""></nu<>
	61 765	Point	<null></null>	<null></null>	< wull>	<null> <</null>	nuil>	<null></null>	< Null>	<null></null>	<null></null>	<null></null>	<null></null>	<null></null>	< Null>	<null></null>	< Nu
	02 700	Point	<null></null>	<nuii></nuii>	< HUR>	<nuii> <</nuii>	nuil>	<null></null>	N NUID	<nuii></nuii>	< Null>	<nuii></nuii>	<nuii></nuii>	<nuii></nuii>	< NUII>	<ruum></ruum>	<nu< td=""></nu<>
	64 769	Point	<nolls< td=""><td><null></null></td><td>< Nolls</td><td><null> <</null></td><td>Notes</td><td><null></null></td><td>< Nolls</td><td>< Null></td><td>< Null></td><td><null></null></td><td>< Null></td><td>< Null></td><td>< Null></td><td>< Nolls</td><td>< Nu</td></nolls<>	<null></null>	< Nolls	<null> <</null>	Notes	<null></null>	< Nolls	< Null>	< Null>	<null></null>	< Null>	< Null>	< Null>	< Nolls	< Nu
		- ville						<nuid< td=""><td></td><td></td><td>enquis</td><td>strull s</td><td>s mult</td><td>s really</td><td>struit s</td><td>STRUE?</td><td></td></nuid<>			enquis	strull s	s mult	s really	struit s	STRUE?	
													Pile				>
		• P1 0 0	T 1,004 selected										niters:			+ 10	.0% • 1 🔁

Step 4: Run a definition query to remove the Null crashes (crashes without a noted collision severity) in the dataset.

ntroduction	Methodology	Opportunities	Safety	Existing	Demand	Connectivity	Equity	Results	Lessons Learned	
-------------	-------------	---------------	--------	----------	--------	--------------	--------	---------	--------------------	--

Step 5: Change the symbology to unique values with respect to crash severity to make it easier to visually identify the severity of the crash.

Figure 4-6 Adding Active Transportation Projects

Step 6: Add the most recent shapefile of all the AT projects to be evaluated. Select the project. Count the collisions on the corridor noting the severity. Note: it is important to zoom in along the corridor; some crashes happen on top of each other and may be difficult to count accurately. Use Table 1 to determine point values for the variables.

Step 7: Input the project into the PlanDesign_Tools_APT_Programmed_Spreadsheet using the points assigned in the previous step.

Introduction	Methodology	Opportunities	Safety	Existing Conditions	Demand	Connectivity	Equity	Results	Lessons Learned	$\left \right\rangle$
--------------	-------------	---------------	--------	------------------------	--------	--------------	--------	---------	--------------------	-----------------------

Sample Project CEN-ATP-2309 Safety Analysis:

Figure 4-7: Safety Analysis Sample Project (GIS)

Figure 4-7 is the linework for project CEN-ATP-2309 with the Crash Data.

Figure 4-8: Safety Analysis Sample Project (Excel)

AutoSave 🔵 or	- 687	o ~ G	8	PlanDesign_Too	ls_APT_Programmed_Spr	readsheet-Wo	orking DRAFT v1	×			ଦ ୫
Home Inser	rt Draw Page	Layout Formulas I	Data Review	View Automat	te Acrobat 🖓 Tell me					5	Comments 🖻 Comments
Paste 🗳	Calibri (Body) B I <u>U</u> ∽	• 11 • A^ A [×] ⊞ • <u> </u>	= = <u>=</u> * = = = •	•••• ≣ ≖ ≣ ₩na	General ✓ p Text % 9 1 18	Conditional F Formatting a	Format Cell s Table Styles	Insert ✓ Delete ✓ Format ✓	∑ × A ▼ Z ✓ Z ✓ Sort & F Filter S	ind & Analyze elect Data	Create and Share Adobe PDF
A81 🌲	\times \checkmark $f_{\rm X}$ cen-a	ATP-2309									•
A	E	v		AE	AF	вс	DJ		GR	GT	HW
1	Step 8: Input Data										
2	Scoring Method:										
4		Opportunities		Saf	ety	Exis	ting Conditions		Demand		Connectivity
6 RTP ID 💌	Completion Year	Implement w/ Future Constru- Implement w/ Future Constru-	action Total Bike/	Aed Crash 🝸 Fatal &	Severe Bike/Ped Crash Crash	Traffic Speed 💌	Avg. Daily Vehicle T	raffic 🔻 Populati	on Density 🔻 Proximi	ty to Schools 🔽 Conne	tcts to Existing Facility 🔽 Locat
60 CEN-ATP-2312			50	100	0	75		75	75	75	100
61 CST-AT3-1007			0	0	0	50		25	50	75	50
62 STH-AT3-1401			0	25	0	/5		25	25	75	50
63 STH-A13-1402			0	75	25	25		25	25	75	75
64 STH-AT2-1019			0	25	0	25		35	50	/5	50
65 NTH-AT1-1003			0	25	0	25		25	50	100	75
67 (FN-ATP-2322			0	50	0	25		25	50	100	50
67 CEN-ATP-2311			0	50	0	25		25	50	125	75
69 CEN-ATP-2317			0	100	25	50		25	100	125	100
70 NTH-AT2-1903			0	25	0	25		25	25	125	25
71 STH-AT2-1007			0	25	0	25		25	50	125	75
72 STH-AT3-1404			0	25	0	25		25	50	125	75
73 STH-ATP-2303			50	25	0	25		25	50	125	75
74 NTH-ATP-2342			50	50	25	75		50	75	125	100
75 STH-AT2-1006			0	25	0	25		25	50	150	50
76 STH-ATP-2306			0	25	0	25		25	50	150	75
77 STH-AT3-1403			0	75	0	25		25	50	150	100
78 NTH-AT3-1008			0	50	0	25		25	25	150	50
79 CEN-AT3-1007			0	75	0	75		75	50	150	50
80 CEN-ATP-2314			50	25	0	25		25	50	150	75
81 CEN-ATP-2309			100	100	25	75		75	75	150	100
82 STH-ATP-2334			0	100	0	50		25	50	150	100
83 CEN-ATP-2315			ő	160		25		50	75	175	100
84 NTH-AT2-1902			0	100	25	50		50	50	175	75
85 NTH-AT1-1001			ő	25	0	25		25	25	200	50
85 NTH-AT1-1401			0	0	0	25		25	25	200	50
			Ohen ADA Onla Dela		ten ten out- private parts	01	010				
Ready 120	Accessibility: Investig	ate	Step TUA Gaid Prior	ty scores St	sp TOB Calc Phonty Rank	Sneeti	Average: 87	1.5 Count: 11	Sum: 875 🏢	圆 町 - —	 + 110%

CEN-ATP-2309 had over 11 crashes along the corridor so it scored 100 points for "total bike/ped crash". The corridor also got a score of 25 points for a fatality in the past 10 years. The project scored a raw 62.5 points for safety.

Introduction	Methodology	Opportunities	Safety	Existing	Demand	Connectivity	Equity	Results	Lessons
milouucion	INICTIOUDIOGY	opportunities	Jaiety	Conditions	Demanu	Connectivity		/ nesures	Learned

Figure 4-9 Safety Analysis Sample Project Weighted Score

		Flandes	gn_loois_API_Programmed_Spr	eadsheet-v	Vorking DRA	\FT v1 ∽			
Home Insert	Draw Page Layout Formu	ulas Data Review View .	Automate Acrobat 🔉 Tell me					Comments	년 Share
Paste	Calibri (Body) v 11 v A B I ∐ v I ⊞ v 24 v A	× × ≡≡≡ ≫·	to v General v General v ∰ v \$ v % 9 5%	Conditional	Format Co	v ∰ Insert v ∰ Delete v ell insert v	∑ × A Z v Z v Sort & Find & Select	Analyze Create and Share	
A101 A V	fre =IE/Sten & Innut Data'l &	81<>"" 'Sten 8 Innut Data' 481 "")		Pormatting	as lable by	ies i i i i i i i i i i i i i i i i i i	V Piller Select		<u> </u>
	R	G	н			1	ĸ		
1	Step 10A: Calculate Priority Score	-							
>									
	GARLOCATION	Opportunities (Uproming Projects) SCOPE	Opportunities (Upcoming Projects) WEIGH		Safety SCORE	Safety WEIGHTED SCORE	Existing Conditions SCORE	Existing Conditions WEIGHTED SO	OPE Doman
7 CEN-AT1-1015	UAF LOCATION	0.0	0.0	TED SCORE	0.0	0.0	12.5	75.0	S/
8 STH-AT3-1011		0.0	0.0		12.5	100.0	25.0	150.0	67
9 STH-ATP-2304		0.0	0.0		50.0	400.0	37.5	225.0	50
0 CEN-ATP-2312		50.0	200.0		50.0	400.0	75.0	450.0	75
1 CST-AT3-1007		0.0	0.0		0.0	0.0	37.5	225.0	63
2 STH-AT3-1401		0.0	0.0		12.5	100.0	50.0	300.0	50
3 STH-AT3-1402		0.0	0.0		50.0	400.0	25.0	150.0	5
4 STH-AT2-1019		0.0	0.0		50.0	400.0	37.5	225.0	6
5 CST-AT3-1008		0.0	0.0		12.5	100.0	25.0	150.0	63
6 NTH-AT1-1003		0.0	0.0		25.0	200.0	50.0	300.0	7!
7 CEN-ATP-2322		0.0	0.0		25.0	200.0	25.0	150.0	7
8 CEN-ATP-2311		0.0	0.0		25.0	200.0	25.0	150.0	8
9 CEN-ATP-2317		0.0	0.0		62.5	500.0	37.5	225.0	11
0 NTH-AT2-1903		0.0	0.0		12.5	100.0	25.0	150.0	7
1 STH-AT2-1007		0.0	0.0		12.5	100.0	25.0	150.0	8
2 STH-AT3-1404		0.0	0.0		12.5	100.0	25.0	150.0	8
3 STH-ATP-2303		50.0	200.0		12.5	100.0	25.0	150.0	8
4 NTH-ATP-2342		50.0	200.0		37.5	300.0	62.5	375.0	10
5 STH-AT2-1006		0.0	0.0		12.5	100.0	25.0	150.0	10
6 STH-ATP-2306		0.0	0.0		12.5	100.0	25.0	150.0	10
7 STH-AT3-1403		0.0	0.0		37.5	300.0	25.0	150.0	10
8 NTH-AT3-1008		0.0	0.0		25.0	280.0	25.0	150.0	8
9 CEN-AT3-1007		0.0	0.0		37.5	300.0	75.0	450.0	10
CEN-ATP-2314		50.0	200.0		12.5	100.0	25.0	150.0	10
DI CEN-ATP-2309		100.0	400.0	<u> </u>	62.5	500.0	75.0	450.0	11
2 STH-ATP-2334		0.0	0.0	<u> </u>	50.0	400.0	37.5	225.0	10
3 CEN-ATP-2315		0.0	0.0	-	50.0	400.0	37.5	225.0	12
04 NTH-ATZ-1902		0.0	0.0		125	100.0	50.0	300.0	
05 NTH-AT1-1001		0.0	0.0		12.5	100.0	25.0	150.0	11
NTH-AT2-1903		100.0	400.0		50.0	400.0	25.0	150.0	11
NTH-AT3-1902		100.0	400.0		50.0	400.0	50.0	300.0	13
9 STH-AT2-1901		0.0	400.0		25.0	200.0	50.0	300.0	15
10		0.0	0.0		23.0	200.0	30.0	300.0	
Step 8	Input Data Step 9 Scale Variable	Step 104 Calc Priority Scores	Step 10B Calc Priority Bank	Sheet1	Sheet2	Sheet3 +			
			, the same of the						

The points in this section were multiplied by the stakeholder value of 8 and added with the other 5 factor scores to create the final score. Figure 4-9 shows the final weighted score of 500 points.

5. Existing Conditions

Opportunities

Safety

Introduction > Methodology

Existing conditions scored a "6" with the stakeholder group. The existing conditions factor includes physical conditions that have an impact on pedestrian or bicycle safety, comfort, or demand. This can include whether a sidewalk exists, the number of travel lanes, or the presence of a buffer. The existing conditions factor also includes travel behaviors that influence conditions for walking and bicycling such as motor vehicle volumes and speeds. This is especially relevant when prioritizing with an emphasis on Safety and Demand. In this analysis, existing conditions were evaluated by the presence of bike lanes or sidewalks, Average daily vehicle traffic, and posted speed. They were evaluated consistent with Table 1.

Demand

Connectivity

Equity

Results

Creating the Existing Conditions Layer

Figure 5-1: Adding Average Daily Traffic Data

Step 1: Find the most recent Average Daily Traffic from the traffic model:

H:\GIS\Shapefiles\Transportation\For Will\CombinedLinks2035va1_2 2022-09-07.shp This was provided by GIS for this project and not consistently updated. It would be best to ask for new data.

Lessons

				Existing					Lessons
Introduction	Methodology	Opportunities	Safety	Conditions	Demand	Connectivity	Equity	Results	Learned

Figure 5-2: Finding Speed and Flow for the Corridor

Step 2: Select a section of roadway along the corridor the project is located on and note the posted speed and the total flow. Use Table 1 to determine point values for the variables.

Step 3: Input the project into the PlanDesign_Tools_APT_Programmed_Spreadsheet using the points assigned in the previous step.

Introduction Me	lethodology Op	pportunities	> Safety	Existing Conditions	Demand	Connectivity	Equity	Results	Lessons
-----------------	----------------	--------------	----------	------------------------	--------	--------------	--------	---------	---------

Sample Project CEN-ATP-2309 Existing Conditions Analysis:

Figure 5-3 Sample Project Existing Conditions Analysis (GIS)

Figure 5-3 is the linework for project CEN-ATP-2309 with the with the traffic model data.

Figure 5-4: Sample Project Existing Conditions Analysis (Excel)

AutoSave 🔵 ore	- 6 8 7 · ·	C 🛛	💁 PlanDe:	sign_Tools_APT_Prog	rammed_Spreadsheet-	Working DRAFT v1 ~	t.		م ۾
Home Insert	t Draw Page	Layout Formulas Data	Review View	Automate Acrobat	🖓 Tell me				🖵 Comments 🖻 Share
Paste ♂	Calibri (Body) B I <u>U</u> ∽	• 11 • A^ A ■ = = = = = = = = = = = = = = = = = =	≡ = १२ × Ger ≡ = ⊠ • \$ ≅ ≫ • \$	eral ~ ~%.9 %8 -%8	Conditional Formatting Format as Table ~ Cell Styles ~	g v ∰ Insert v ∰ Delete v ∰ Format v	∑ × A Z × Z Sort & Find & Select	Analyze Sensitivity	Create and Share Adobe PDF
A81 🛟 >	$< \sqrt{f_x}$ CEN-A	TP-2309							
A	E	v	AE	AF	BC	DJ	GR	GT	HW
1	Step 8: Input Data								
2 3	Scoring Method:								
4		Opportunities		Safety		Existing Conditions		Demand	Connectivity
6 RTP ID 🔻	Completion Year	Implement w/ Future Construction	Total Bike/Ped Crash	Fatal & Severe Bike/Ped	Crash Crash Traffic Speed	Avg. Daily Vehicle Traf	fic V Population Density	Proximity to Schools	Connects to Existing Facility 🔽 Locat
60 CEN-ATP-2312			50 1	00	0	75	75	75 75	100
61 CST-AT3-1007			0	0	0	50	25	50 75	50
62 STH-AT3-1401			0	25	0	75	25	25 75	50
63 STH-AT3-1402			0	75	25	25	25	25 75	75
64 STH-AT2-1019			0 1	00	0	25	50	50 75	75
65 CST-AT3-1008			0	25	0	25	25	50 75	50
66 NTH-AT1-1003			0	50	0	75	25	50 100	75
67 CEN-ATP-2322			0	50	0	25	25	50 100	50
68 CEN-ATP-2311			0	50	0	25	25	50 125	75
59 CEN-ATP-2317			0 1	00	25	50	25	100 125	100
70 NTH-A12-1903			0	25	0	25	25	25 125	25
72 STH AT3-1404			0	25	0	25	25	50 125	75
73 STH-ATP-2303			50	25	0	25	25	50 125	75
74 NTH-ATP-2342			50	50	25	75	50	75 125	100
75 STH-AT2-1006			0	25	0	25	25	50 150	50
75 STH-ATP-2306			0	25	0	25	25	50 150	75
77 STH-AT3-1403			0	75	0	25	25	50 150	100
78 NTH-AT3-1008			0	50	0	25	25	25 150	50
79 CEN-AT3-1007			0	75	0	75	75	50 150	50
80 CEN-ATP-2314			50	25	0	25	25	50 150	75
81 CEN-ATP-2309			100 1	00	25	75	75	75 150	100
82 STH-ATP-2334			0 1	00	0	50	25	50 150	100
83 CEN-ATP-2315			0 1	00	0	25	50	75 175	100
84 NTH-AT2-1902			0 1	00	25	50	50	50 175	75
85 NTH-AT1-1001			0	25	0	25	25	25 200	50
86 NTH-AT1-1401			0	0	0	25	25	25 200	50
87 NTH-AT3-1902		1	100 1	00	0	50	50	50 225	100
CEN NTH. AT3. 1901		Nan O Casla Visiobles Chan 1	100 1	Chan 10D Cala Da	insity Deals	75 Chanto Cha	25	50 250	75
Ready 🛣 A	ccessibility: Investiga	te	Tory Gale Phoney Scores	Step TOB Calc Pr	iony hank sheeti	Average: 87.5	Count: 11 Sum: 8	75 囲 回 巴 -	———————————————————————— + 110%

Introduction	Methodology	Opportunities	Safety	Existing Conditions	Demand	Connectivity	Equity	Results	Lessons Learned	
--------------	-------------	---------------	--------	------------------------	--------	--------------	--------	---------	--------------------	--

The project CEN-ATP-2309 is located on Los Osos Valley Road which has a speed limit of 45 and has an average daily vehicle traffic flow of 25944 cars. The corridor scored 75 points for the posted speed limit and 75 points for having between 21,000 and 30,000 cars per day.

AutoSave 🔵 on	◎ ⋒ १४८ ₽ …	💁 PlanDesi	gn_Tools_APT_Programmed_Spreadsheet-\	Vorking DR/	NFT v1 ∽			Q &
Home Insert	t Draw Page Layout Formu	ulas Data Review View A	Automate Acrobat 🔉 Tell me				Comments	🖻 Share
Paste V	Calibri (Body) v 11 v A B I U v ⊞ v ∞ A K =IF(Step 8 Input Data'IA	A [×] = = = ऌ Gene = = = ऌ • = = = ऌ • = = = ऌ • = = = ऌ • = = = ऌ • = = = ? • 81 • • 81 • •	ral % ୨ % ⊰% ⊡% Cell Styles ∨	✓ ∰ Inse ∑ Del ∰ For	ert v ∑ v A ete v u v Z V v mat v & Sort & Filter	Find & Analyze Select Data	Sensitivity Create and Share Adobe PDF	
	B	6	н	1	1	ĸ		N
1	Step 10A: Calculate Priority Score							
5 ID	GAP LOCATION	Opportunities (Upcoming Projects) SCORE	Opportunities (Upcoming Projects) WEIGHTED SCORE	Safety SCORE	Safety WEIGHTED SCORE	Existing Conditions SCORE	Existing Conditions WEIGHTED SCOR	E Demand
77 CEN-AT1-1015		0.0	0.0	0.0	0.0	12.5	75.0	50.
78 STH-AT3-1011		0.0	0.0	12.5	100.0	25.0	150.0	62
79 STH-ATP-2304		0.0	0.0	50.0	400.0	37.5	225.0	50.
80 CEN-ATP-2312		50.0	200.0	50.0	400.0	75.0	450.0	75
81 CST-AT3-1007		0.0	0.0	0.0	0.0	37.5	225.0	62.
82 STH-AT3-1401		0.0	0.0	12.5	100.0	50.0	300.0	50.
83 STH-AT3-1402		0.0	0.0	50.0	400.0	25.0	150.0	50.
84 STH-AT2-1019		0.0	0.0	50.0	400.0	37.5	225.0	62.
85 CST-AT3-1008		0.0	0.0	12.5	100.0	25.0	150.0	62.
86 NTH-AT1-1003		0.0	0.0	25.0	200.0	50.0	300.0	75.
87 CEN-ATP-2322		0.0	0.0	25.0	200.0	25.0	150.0	75.
88 CEN-ATP-2311		0.0	0.0	25.0	200.0	25.0	150.0	87.
89 CEN-ATP-2317		0.0	0.0	62.5	500.0	37.5	225.0	112
90 NTH-AT2-1903		0.0	0.0	12.5	100.0	25.0	150.0	75
91 STH-AT2-1007		0.0	0.0	12.5	100.0	25.0	150.0	87.
92 STH-AT3-1404		0.0	0.0	12.5	100.0	25.0	150.0	87.
93 STH-ATP-2303		50.0	200.0	12.5	100.0	25.0	150.0	87.
94 NTH-ATP-2342		50.0	200.0	37.5	300.0	62.5	375.0	100
95 STH-AT2-1006		0.0	0.0	12.5	100.0	25.0	150.0	100
96 STH-ATP-2306		0.0	0.0	12.5	100.0	25.0	150.0	100
97 STH-AT3-1403		0.0	0.0	37.5	300.0	25.0	150.0	100
98 NTH-AT3-1008		0.0	0.0	25.0	200.0	25.0	150.0	87.
55 CEN-AT3-1007		0.0	0.0	37.5	300.0	75.0	450.0	100
101 CEN-ATP-2314		100.0	400.0	62.5	500.0	25.0	150.0	100
102 STH ATP-2309		0.0	400.0	50.0	400.0	27.5	225.0	112
103 CEN-ATP-2315		0.0	0.0	50.0	400.0	37.5	225.0	100
104 NTH-AT2-1902		0.0	0.0	62.5	500.0	50.0	300.0	112
105 NTH-AT1-1001		0.0	0.0	12.5	100.0	25.0	150.0	112
105 NTH-AT1-1401		0.0	0.0	0.0	0.0	25.0	150.0	112
107 NTH-AT3-1902		100.0	400.0	50.0	400.0	50.0	300.0	137
108 NTH-AT3-1901		100.0	400.0	50.0	400.0	50.0	300.0	150
109 STH-AT2-1901		0.0	0.0	25.0	200.0	50.0	300.0	75
110								
▲ ► Step	8 Input Data Step 9 Scale Variable	Step 10A Calc Priority Scores	Step 10B Calc Priority Rank Sheet1	Sheet2	Sheet3 +			
Ready 🛱 A	ccessibility: Investigate		A	erage: 330.2	631579 Count: 21	Sum: 6275 🌐 🗐	·····+	110%

Figure 5-5: Sample Project Existing Conditions Analysis Weighted Score

The project scored a raw 75 points for existing conditions. The points in this section were multiplied by the stakeholder value of 6 and added with the other 5 factor scores to create the final score. Figure 5-5 shows the weighted score of 450 points.

Introduction	Methodology	Opportunities	Safety	Existing	Demand	Connectivity	Equity	Results	Lessons
--------------	-------------	---------------	--------	----------	--------	--------------	--------	---------	---------

6. Demand

The Demand factor scored a "4" with the stakeholders. The demand factor represents existing or potential pedestrian and bicycle activity levels. This is a key factor to consider when one of the goals for this project is aiming to add new AT facilities. Existing demand can be measured by counting the number of people on foot and bike at a given time and location. This did not exist for all active transportation projects, so projects were evaluated based on potential or latent pedestrian or bicycle demand. This was done by considering the proximity of the specific AT project to schools and the population density in the area surrounding the project. Analyzing latent demand enables communities to focus resources and investments on areas with the greatest potential for multimodal trips even if current levels of AT trips are low. When analyzing the proximity to schools, if the project was within ½ a mile they scored 25 points and if it was within ¼ mile they scored 50 points. Projects that were counted for ¼ mile did not double count for ½ mile. To analyze the population density all the residential addresses within 400 meters of a project were counted.

Creating the Demand Layers

Step 1: Find the most recent school data here:

H:\GIS\Shapefiles\LandUseInfo\Schools_point.shp and add to the current map. Note: This is point value data. Polygon data was used in the original evaluation and may cause some discrepancies in scores in recreating this experiment. However, this is the most recently updated data as of this report.

Introduction	Methodology	Opportunities	Safety	Existing Conditions	Demand	Connectivity	Equity	Results	Lessons Learned
--------------	-------------	---------------	--------	------------------------	--------	--------------	--------	---------	--------------------

Figure 6-2: Filtering out Closed Schools

Step 2: Run a definition query to make sure that you are only using the current and open schools in the area.

Figure 6-3: Creating School Buffers

Đ

Histor

Introduction	Methodology	Opportunities	Safety	Existing Conditions	Demand	Connectivity	Equity	Results	Lessons Learned	
--------------	-------------	---------------	--------	------------------------	--------	--------------	--------	---------	--------------------	--

Figure 6-4: Assessing Point Values for Schools

Step 4: Count the number of schools within $\frac{1}{4}$ and $\frac{1}{2}$ miles of the project and assign point values consistent with Table 2-1.

Figure 6-5: Finding Address Data

Step 5: Find the most updated address data on the SLO County website. The address points can be found here: <u>County of San Luis Obispo GIS</u>.

Introduction	Methodology	Opportunities	Safety	Existing Conditions	Demand	Connectivity	Equity	Results	Lessons Learned
--------------	-------------	---------------	--------	------------------------	--------	--------------	--------	---------	--------------------

Figure 6-6: Creating the Active Transportation Buffer

Step 6: After importing the data, create a 400m buffer around all the proposed AT projects.

Figure 6-7: Clipping the Address Points to the Buffer

Step 7: Clip the address points to the 400m AT buffer.

Introduction	Methodology	Opportunities	Safety	Existing Conditions	Demand	Connectivity	Equity	Results	Lessons Learned
--------------	-------------	---------------	--------	------------------------	--------	--------------	--------	---------	--------------------

Figure 6-8: Counting the Addresses within 400m of a Project

Step 8: Use Summarize Within to count the address points in the 400m buffer.

Figure 6-9: Scoring the Projects

Step 9: Score the projects based on the values in Table 2-1.

Introduction	Methodology	Opportunities	Safety	Existing	Demand	Connectivity	Equity	Results	Lessons	
--------------	-------------	---------------	--------	----------	--------	--------------	--------	---------	---------	--

Step 10: Input the project into the PlanDesign_Tools_APT_Programmed_Spreadsheet using the points assigned in the previous step.

Sample Project CEN-ATP-2309 Demand Analysis:

Figure 6-10: Sample Project Demand Analysis (GIS)

Figure 6-10 shows the schools proximity to the project

Figure 6-11 Sample Project Demand Analysis (GIS)

Figure 6-11 shows the total addresses within 400m of the project.

Introduction Methodology Opportunities Safe	y Existing Demand	Connectivity Equity	Results	Lessons Learned
---	-------------------	---------------------	---------	--------------------

Figure 6-12 Sample Project Demand Analysis (Excel)

AutoSave 🔵 or	• 689	C 🗗 …		💁 PlanDesig	1_Tools_APT_Progr	rammed_Spre	eadsheet-Wor	rking DRAFT v1 ~					୦ କ
Home Inser	t Draw Page	e Layout Formulas	Data Revie	ew View Au	tomate Acrobat	🔉 Tell me					1	Comments	🖻 Share
Paste 🗳	Calibri (Body) B I <u>U</u> ✓	• 11 • A^ A` ⊞• <u>∕</u> • <u>A</u> •		eb v Genera v v \$ v		E Conditiona	al Formatting Table s	∰ Insert ✓ ﷺ Delete ✓ ∰ Format ✓	∑ × A Z v Sort & Filter	Find & Analyz Select Data	Sensitivity	Create and Share Adobe PDF	
A81 🌲	\times \checkmark f_x cen-	ATP-2309											•
A		v		AE	AF		BC	IJ		SR	GT	HW	
1	Step 8: Input Data												
2 3	Scoring Method:												
		Opportunitie	. 1		Safaty		Eviet	ting Conditions		Demand		6	nnectivity
6 RTP ID 💌	Completion Year	Implement w/ Future Con	struction 🔽 Tota	I Bike/Ped Crash 💌 I	atal & Severe Bike/Ped G	Crash Crash 🔽 T	raffic Speed	Avg. Daily Vehicle Traffi	c 🔻 Population	Density Proximi	ty to Schools 🔽 Cor	nnects to Existing Fac	ility 🔽 Locat
60 CEN-ATP-2312			50	100		0	75		75	75	75		100
61 CST-AT3-1007			0	0		0	50		25	50	75		50
62 STH-AT3-1401			0	25		0	75		25	25	75		50
63 STH-AT3-1402			0	75		25	25		25	25	75		75
64 STH-AT2-1019			0	100		0	25		50	50	75		75
65 CST-AT3-1008			0	25		0	25		25	50	75		50
65 NTH-AT1-1003			0	50		0	75		25	50	100		75
67 CEN-ATP-2322			0	50		0	25		25	50	100		50
69 CEN-ATP-2311			0	100		25	25		25	100	125		100
70 NTH-AT2-1902			0	25		25	25		25	25	125		25
71 STH-AT2-1007			0	25		0	25		25	50	125		75
72 STH-AT3-1404			0	25		0	25		25	50	125		75
73 STH-ATP-2303			50	25		0	25		25	50	125		75
74 NTH-ATP-2342			50	50		25	75		50	75	125		100
75 STH-AT2-1006			0	25		0	25		25	50	150		50
76 STH-ATP-2306			0	25		0	25		25	50	150		75
77 STH-AT3-1403			0	75		0	25		25	50	150		100
78 NTH-AT3-1008			0	50		0	25		25	25	150		50
79 CEN-AT3-1007			0	75		0	75		75	50	150		50
80 CEN-ATP-2314			50	25		0	25		25	50	150		75
81 CEN-ATP-2309			100	100		25	75		75	75	150		100
82 STH-ATP-2334			0	100		0	50		25	50	150		100
83 CEN-ATP-2315			0	100		0	25		50	75	175		100
84 NTH-AT2-1902			0	100		25	50		50	50	175		75
85 NTH-AT1-1001			0	25		0	25		25	25	200		50
85 NTH-AT1-1401			0	0		0	25		25	25	200		50
67 NTH-AT3-1902			100	100		0	50		20	50	225		100
▲ ► Step	o 8 Input Data	Step 9 Scale Variables	Step 10A Cal	c Priority Scores	Step 10B Calc Pri	ority Rank	Sheet1	Sheet2 Shee	t3 +				
Ready 🕱 A	Accessibility: Investig	gate						Average: 87.5	Count: 11	Sum: 875 🏢	■ ─ -		

The project CEN-ATP-2309 is located within ¹/₄ of a mile of three schools which scores 150. The points for this factor were averaged with the following factor of population density to create the demand score. The project also had between 1953 and 2928 addresses within 400m of the project scoring 75 points.

Introduction	Methodology	Opportunities	Safety	Existing	Demand	Connectivity	Equity	Results	Lessons
	/ 0,	/ 11	/	Conditions		,	/ 1 /	/	/ Learned

AutoSave 🔵 off	- A B ୬ ⋅ C ₽ …	💁 PlanDesi	gn_Tools_A	PT_Programmed_Spr	eadsheet-Working DRAFT v1 ~				Q 8
Home Insert	: Draw Page Layout Formu	las Data Review View /	Automate	Acrobat 🛛 🖓 Tell me				Con	nments 🖻 Share
Paste v	Calibri (Body) v 11 v A B I ⊔ v ⊞ v ☆ v A	▲ ▲ ▲ 本 本 本 本 本 本 本 本 本 本	eral % 9	Condition	al Formatting v 🔠 Insert v Table v 😿 Delete v s v 🔛 Format v	∑ × A Z v ⊗ × Sort & Filter	Find & Analyze Select	Gensitivity Create	-C and Share be PDF
A101 🗘 🛪	$<$ f_x =IF('Step 8 Input Data'!A8	81<>"",'Step 8 Input Data'!A81,"")		-					
A	В	G	1	к	L	м	N	0	Р
1 2 4	Step 10A: Calculate Priority Score								
5 ID	GAP LOCATION	Opportunities (Upcoming Projects) SCORE	Safety SCORE	Existing Conditions SCORE	Existing Conditions WEIGHTED SCORE	Demand SCORE	Demand WEIGHTED SCORE	Connectivity SCORE	Connectivity WEIGHTED
77 CEN-AT1-1015		0.0	0.0	12.5	75.0	50.0	200.0	75.0	525.0
78 STH-AT3-1011		0.0	12.5	25.0	150.0	62.5	250.0	50.0	350.0
79 STH-ATP-2304		0.0	50.0	37.5	225.0	50.0	200.0	87.5	612.5
80 CEN-ATP-2312		50.0	50.0	75.0	450.0	75.0	300.0	100.0	700.0
81 CST-AT3-1007		0.0	0.0	37.5	225.0	62.5	250.0	25.0	175.0
82 STH-AT3-1401		0.0	12.5	30.0	300.0	50.0	200.0	75.0	325.0
84 STH-AT2-1019		0.0	50.0	27.5	225.0	62.5	250.0	97.5	612.5
85 CST-AT3-1008		0.0	12.5	25.0	150.0	62.5	250.0	25.0	175.0
85 NTH-AT1-1003		0.0	25.0	50.0	300.0	75.0	300.0	87.5	612.5
87 CEN-ATP-2322		0.0	25.0	25.0	150.0	75.0	300.0	25.0	175.0
88 CEN-ATP-2311		0.0	25.0	25.0	150.0	87.5	350.0	37.5	262.5
89 CEN-ATP-2317		0.0	62.5	37.5	225.0	112.5	450.0	100.0	700.0
90 NTH-AT2-1903		0.0	12.5	25.0	150.0	75.0	300.0	12.5	87.5
91 STH-AT2-1007		0.0	12.5	25.0	150.0	87.5	350.0	37.5	262.5
92 STH-AT3-1404		0.0	12.5	25.0	150.0	87.5	350.0	37.5	262.5
93 STH-ATP-2303		50.0	12.5	25.0	150.0	87.5	350.0	37.5	262.5
94 NTH-ATP-2342		50.0	37.5	62.5	375.0	100.0	400.0	50.0	350.0
95 STH-AT2-1006		0.0	12.5	25.0	150.0	100.0	400.0	25.0	175.0
96 STH-ATP-2306		0.0	12.5	25.0	150.0	100.0	400.0	87.5	612.5
97 STH-AT3-1403		0.0	37.5	25.0	150.0	100.0	400.0	100.0	700.0
98 NTH-AT3-1008		0.0	25.0	25.0	150.0	87.5	350.0	25.0	175.0
99 CEN-AT3-1007		0.0	37.5	75.0	450.0	100.0	400.0	75.0	525.0
100 CEN-ATP-2314		50.0	12.5	25.0	150.0	100.0	400.0	37.5	262.5
101 CEN-ATP-2309		100.0	62.5	75.0	450.0	112.5	450.0	100.0	700.0
102 STH-ATP-2334		0.0	50.0	37.5	225.0	100.0	400.0	100.0	700.0
103 CEN-ATP-2315		0.0	50.0	37.5	225.0	125.0	500.0	100.0	700.0
104 NTH-AT2-1902		0.0	62.5	50.0	300.0	112.5	450.0	87.5	612.5
105 NTH-AT1-1001		0.0	12.5	25.0	150.0	112.5	450.0	75.0	525.0
105 NTH-AT1-1401		0.0	0.0	25.0	150.0	112.5	450.0	75.0	525.0
107 NTH-AT3-1902		100.0	50.0	50.0	300.0	137.5	550.0	100.0	700.0
105 NTH-AT3-1901		100.0	30.0	50.0	300.0	150.0	300.0	67.5	612.5
105 5TH-ATZ-1901		0.0	25.0	50.0	500.0	75.0	300.0	100.0	700.0
▲ ► Step	8 Input Data Step 9 Scale Variable	s Step 10A Calc Priority Scores	Step 1	0B Calc Priority Rank	Sheet1 Sheet2 She	et3 +			
Ready 🕱 A	ccessibility: Investigate				Average: 330.2631579	Count: 21	Sum: 6275 🌐 🔲	▣	+ 110%

Figure 6-13 Sample Project Demand Analysis Weighted Score

The project scored a raw 112.5 points for demand. The points in this section were multiplied by the stakeholder value of 4 and added with the other 5 factor scores to create the final score. Figure 6-13 shows the weighted score of 450 points.

Introduction	Methodology	Opportunities	Safety	Existing	Demand	Connectivity	Equity	Results	Lessons	
	/	/ · · ·	/	2 1000000	/		· · · · · ·	/	z reamen	-

7. Connectivity

The connectivity factor which scored a "7" with the stakeholder group accounts for the degree to which a project allows pedestrians or bicyclists to travel comfortably and continuously throughout their community. Connectivity is a relevant factor when prioritizing new AT facilities on existing roadways such as new sidewalks and bike lanes. This is particularly important when a new or proposed facility fills in a gap between existing facilities. Points were allocated if projects fell along an active route of regional significance (ARORS). Projects were also evaluated on the number of connections they had with existing AT infrastructure.

Creating the Connectivity Layers

Step 1: Find the Routes of Regional Significance here: H:\GIS\Shapefiles\Transportation\ATPP\2023 RTP\ARORS_2023_RTP.shp

Figure 7-2: Allocating Points for ARORS

Step 2: If the project falls along an Active Route of Regional Significance, give it the points allocated in Table 2-1.

Figure 7-3: Importing Updated Bikeways Data

Step 3: Find the most updated Bikeways data here:

H:\GIS\Shapefiles\Transportation\Bikeways\ Bikeways2021.shp

Step 4: Run a definition query to only include existing bikeway data. Note: there are only planned Class IV projects so those were not included in the analysis. The class of the bikeway also did not play a factor in the analysis.

Figure 7-4: Excluding Planned Bikeway Linework

Introduction	Methodology	Opportunities	Safety	Existing Conditions	Demand	Connectivity	Equity	Results	Lessons Learned	
--------------	-------------	---------------	--------	------------------------	--------	--------------	--------	---------	--------------------	--

Step 5: Count the existing connections that interact with the proposed project and evaluate with Table 2-1.

Step 6: Input the project into the PlanDesign_Tools_APT_Programmed_Spreadsheet using the points assigned in the previous step.

Sample Project CEN-ATP-2309 Connectivity Analysis:

Figure 7-6: Sample Project Connectivity Analysis (GIS)

Figure 7-6 shows the sample project is located along an ARORS.

Introduction	Methodology	Opportunities	Safety	Existing Conditions	Demand	Connectivity	Equity	Results	Lessons Learned	>
--------------	-------------	---------------	--------	------------------------	--------	--------------	--------	---------	--------------------	---

Figure 7-7 shows the existing connections on the corridor.

AutoSave 🔵	ም බ8岁•0	C 🗗 …		💁 PlanDesig	n_Tools_APT_Pro	grammed_Spread	sheet-Working DR	AFT v1 ~			୦ ୫
Home Inse	ert Draw Page	Layout Formulas	Data Review	View A	utomate Acroba	nt 🖓 Tell me				Qo	omments 년 Share
Paste V	Calibri (Body) B I U V	<u>•</u> 11 • A^ A* ⊞ • <u>◇</u> • <u>A</u> •		Gener	al ✓ % ୨ ‰ ⅔%	Conditional Fo	rmatting v 🛛 🕅 In le v 🛛 🚟 Di i Fo	sert v ∑ v Arr elete v III v Zrvv prmat v ⊗ v Sort & Filter	O ▾ IIII Find & Analyze Select Data	Sensitivity Creat	te and Share dobe PDF
A81 🤤	× √ ∫x CEN-A	TP-2309			0000				240		
A	E	AF		BC	DJ	GR	GT	HW	ю	ЈК	LE
1	Step 8: Input Data										
2 3	Scoring Method:										
		Safety		Existing Co	oditions	Der	hand	Conner	thuitu	Equity	
6 RTP ID	Completion Year	Fatal & Severe Bike/Ped Cr	ash Crash 🔽 Traffic :	Speed V Avg. Da	ily Vehicle Traffic 💌 F	Population Density	Proximity to Schools	Connects to Existing Facility	Located on ARORS	Located in DAC	
60 CEN-ATP-2312			0	75	75	75		75	100 10	0 50	i
61 CST-AT3-1007			0	50	25	50	5	75	50	J 75	6
62 STH-AT3-1401			0	75	25	25		75	50 10	0 75	1
63 STH-AT3-1402			25	25	25	25		75	75	3 100	1
64 STH-AT2-1019			0	25	50	50		75	75 10	3 100	1
65 CST-AT3-1008	1		0	25	25	50	1	75	50 75 10	0 125	
67 CEN-ATP-2322			0	25	25	50	10	00	50	0 0	
68 CEN-ATP-2311			0	25	25	50	12	25	75	0 0	j.
69 CEN-ATP-2317			25	50	25	100	13	25	100 10	0 0	i i
70 NTH-AT2-1903	3		0	25	25	25	13	25	25	0 25	5
71 STH-AT2-1007			0	25	25	50	13	25	75	0 25	1
72 STH-AT3-1404			0	25	25	50	13	25	75	J 100	1
73 STH-ATP-2303			0	25	25	50	13	25	75	0 100	l
74 NTH-ATP-2342	2		25	75	50	75	13	25	100	0 475	1
75 STH-AT2-1006			0	25	25	50	1	50	50	J 50	1
76 STH-ATP-2306			0	25	25	50	1:	50	75 10	3 75	1
77 STH-A13-1403			0	25	25	50	1	50	100 10	3 125	
70 CENLAT2 1002			0	25	25	23	1	50	50 10	2	
80 CEN-ATP-2314			0	25	25	50	11	50	75	0 75	
81 CEN-ATP-2309			25	75	75	75	1	50	100 10	0 75	
82 STH-ATP-2334			0	50	25	50	1	50	100 10	0 100	,
83 CEN-ATP-2315			0	25	50	75	1	75	100 10	0 0	() () () () () () () () () ()
84 NTH-AT2-1902	2		25	50	50	50	17	75	75 10	0 125	5
85 NTH-AT1-1001	L		0	25	25	25	20	00	50 10	0 0	1
86 NTH-AT1-1401			0	25	25	25	20	00	50 10	0 50	1
87 NTH-AT3-1902	2		0	50	50	50	22	25	100 10	0 150	
▲ ► Ste	ep 8 Input Data S	Step 9 Scale Variables	Step 10A Calc Pr	riority Scores	Step 10B Calc F	Priority Rank S					
Ready 🕱	Accessibility: Investiga	ite					Ave	rage: 87.5 Count: 11 S	um: 875 🌐 🗐	巴 - ——	+ 110%

Introduction	Methodology	Opportunities	Safety	Existing Conditions	Demand	Connectivity	Equity	Results	Lessons Learned

The project CEN-ATP-2309 is located along an ARORS and therefore gets 100 points. The points for this factor were averaged with the following factor of existing connections to create the connectivity score. CEN-ATP-2309 had over 9 connections to existing bicycle infrastructure. Providing the project with a score of 100.

Averaged between ARORS and connections, the project scored a raw 100 points for connectivity. The points in this section were multiplied by the stakeholder value of 7 and added with the other 5 factor scores to create the final score. Figure 7-9 shows the weighted score of 700 points.

Introduction	Methodology	Opportunities	Safety	Existing	Demand	Connectivity	Equity	Results	Lessons
	/ 0/	7 TT	/	/ Conditions	/	/			/ Learned

8. Equity

Equity scored a "5" with the stakeholder group. The equity factor represents the degree to which opportunities for safe and convenient pedestrian and bicycle travel are distributed evenly to all groups within a community. Taking equity into account can help agencies ensure that pedestrian and bicycle improvements serve the needs of all the users within the transportation system. This includes socioeconomic characteristics. This was assessed using SLOCOG's Disadvantaged Communities (DAC) Dashboard. Points were allocated by the number of DAC's the project interacted with.

Creating the Equity Layer

Figure 8-1: Adding the Equity Analysis

Step 1: Find the Disadvantaged Communities (DAC) Dashboard here: H:\GIS\Shapefiles\Transportation \ATPP\2023 RTP\DisadvantagedCommunities2021.shp

Figure 8-2: Assigning Points for Equity

Step 2: Evaluate the project consistent Table 2-1.

Step 3: Input the project into the PlanDesign_Tools_APT_Programmed_Spreadsheet using the points assigned in the previous step.

(conditions)	Introduction	Methodology	Opportunities	Safety	Existing	Demand	Connectivity	Equity	Results	Lessons	
--------------	--------------	-------------	---------------	--------	----------	--------	--------------	--------	---------	---------	--

Sample Project CEN-ATP-2309 Equity Analysis:

Figure 8-3: Sample Project Equity Analysis (GIS)

Figure 8-3 shows the project running through sections of DACs.

Figure 8-4: Sample Project Equity Analysis (Excel)

,	AutoSave 🌔 or	- 6 8 2、	J 🗗 …		💁 PlanDesign	_Tools_APT_Prog	ammed_Spread	sheet-Working DRA	FT v1∨			୦ ୫
н	ome Inser	t Draw Pagel	Layout Formulas	Data Review	v View Aut	omate Acrobat	🔉 Tell me					mments 🖻 Share
ļ	∼ ↓ Paste &	Calibri (Body) B I <u>U</u> → [• 11 • A^ A` ⊞• <u>&</u> • A •	= = <u>=</u> ₹ = = = ≡ ₹ = = = ≫	by v General v v \$ v %		 Conditional Fo Format as Tab Cell Styles ~ 	rmatting v 🔠 Inse e v 🏂 Dele 🏥 Forr	rt v ∑ × A v v v te v ↓ v Z v v v nat v ⊗ v Filter Sel) v III d & Analyze S act Data	ensitivity Creat	e and Share obe PDF
A8	a 🛟 🖯	\times \checkmark f_x cen-at	rP-2309									•
	۸	E	AF		BC	DJ	GR	GT	HW	ю	JK	LE
1		Step 8: Input Data										
2		Scoring Method:										
4			Safety		Existing Cond	itions	Den	and	Connectivit	ly	Equity	
6 60	CEN-ATP-2312	Completion Year	Fatal & Severe Bike/Ped C	Traffic	c Speed Y Avg. Daily 75	Vehicle Traffic Pop	oulation Density 75	Proximity to Schools 75	Connects to Existing Facility 100	Located on ARORS 100	Located in DAC 50	
61	CST-AT3-1007			0	50	25	50	75	50	0	75	
62	STH-AT3-1401			0	75	25	25	75	50	100	75	
63	STH-AT3-1402			25	25	25	25	75	75	0	100	
64	STH-AT2-1019			0	25	50	50	75	75	100	100	
65	CST-AT3-1008			0	25	25	50	75	50	0	125	
66	NTH-AT1-1003			0	75	25	50	100	75	100	0	
67	CEN-ATP-2322			0	25	25	50	100	50	0	0	
68	CEN-ATP-2311			0	25	25	50	125	75	0	0	
69	CEN-ATP-2317			25	50	25	100	125	100	100	0	
70	STH.AT2-1903			0	25	25	23	125	23	0	25	
72	STH-AT3-1404			0	25	25	50	125	75	0	100	
73	STH-ATP-2303			0	25	25	50	125	75	0	100	
74	NTH-ATP-2342			25	75	50	75	125	100	0	475	
75	STH-AT2-1006			0	25	25	50	150	50	0	50	
76	STH-ATP-2306			0	25	25	50	150	75	100	75	
77	STH-AT3-1403			0	25	25	50	150	100	100	125	
78	NTH-AT3-1008			0	25	25	25	150	50	0	0	
79	CEN-AT3-1007			0	75	75	50	150	50	100	25	
80	CEN-ATP-2314			0	25	25	50	150	75	0	75	
81	CEN-ATP-2309			25	75	75	75	150	100	100	75	
82	CENLATD 2215			0	35	25	50	150	100	100	100	
84	NTH-AT2-1902			25	50	50	75	175	100	100	125	
85	NTH-AT1-1001			0	25	25	25	200	50	100	0	
86	NTH-AT1-1401			0	25	25	25	200	50	100	50	
87	NTH-AT3-1902			0	50	50	50	225	100	100	150	
•	> Step	o 8 Input Data S	tep 9 Scale Variables	Step 10A Calc F	Priority Scores	Step 10B Calc Pri	ority Rank SI	neet1 Sheet2	Sheet3 +			
	Pondu St. A	conscibility: Investiga	10						00: 975 Count: 11 Cum	. 975 FR m	m	110%

Introduction Methodology Opportunities Safety Conditions Demand Connectivity Equity Results Leas	Introduction	Methodology	lology Opportunities	Safety	Existing Conditions	Demand	Connectivity	Equity	Results	Lessons
--	--------------	-------------	----------------------	--------	---------------------	--------	--------------	--------	---------	---------

CEN-ATP-2309 runs through 3 (hexagons) designated as a DAC. The project scored a raw 75 points for equity.

ome Insert	Draw Page Lavout Form									
S∎ X	Brain Fage Layout Forma	ulas Data Review	v View Automate Acro	obat 🔉 Tell	me				Comments	년 Share
aste 🗳	Calibri (Body) v 11 v A B I U v ⊞ v ☆ v A	× a* = = = 8 = = = = • • • • • • • • • • • • • • • •	E ~ General	Cond	tional Formatting v at as Table v tyles v [Insert v ∑ v Delete v ⊽ v Format v v v	Arriver Select Analyze		Create and Share Adobe PDF	
01 🛟 🗙	$<$ $<$ f_X =IF('Step 8 Input Data'!A	81<>"",'Step 8 Input Dat	a'!A81,"")							
A	в	к	L	м	N	0	Р	Q	R	
	Step 10A: Calculate Priority Score									
ID	GAP LOCATION	Existing Conditions SCORE	Existing Conditions WEIGHTED SCORI	Demand SCORE	Demand WEIGHTED SCO	RE Connectivity SCORE	Connectivity WEIGHTED SCORE	E Equity SCORE	Equity WEIGHTED SCO	RE Prioritiz
CEN-AT1-1015		12.5	75.0	50.0	200.0	75.0	525.0	25.0	125.0	9
STH-AT3-1011		25.0	150.0	62.5	250.0	50.0	350.0	50.0	250.0	1
STH-ATP-2304		37.5	225.0	50.0	200.0	87.5	612.5	50.0	250.0	1
CEN-ATP-2312		75.0	450.0	75.0	300.0	100.0	700.0	50.0	250.0	2
CST-AT3-1007		37.5	225.0	62.5	250.0	25.0	175.0	75.0	375.0	1
STH-AT3-1401		50.0	300.0	50.0	200.0	75.0	525.0	75.0	375.0	1
STH-AT3-1402		25.0	150.0	50.0	200.0	37.5	262.5	100.0	500.0	1
STH-AT2-1019		37.5	225.0	62.5	250.0	87.5	612.5	100.0	500.0	1
CST-AT3-1008		25.0	150.0	62.5	250.0	25.0	175.0	125.0	625.0	1
NTH-AT1-1003		50.0	300.0	75.0	300.0	87.5	612.5	0.0	0.0	1
CEN-ATP-2322		25.0	150.0	75.0	300.0	25.0	175.0	0.0	0.0	8
CEN-ATP-2311		25.0	150.0	87.5	350.0	37.5	262.5	0.0	0.0	-
CEN-ATP-2317		37.5	225.0	112.5	450.0	100.0	700.0	0.0	0.0	1
NTH-AT2-1903		25.0	150.0	75.0	300.0	12.5	87.5	25.0	125.0	
STH-A12-1007		25.0	150.0	87.5	350.0	37.5	262.5	25.0	125.0	
STH-AT3-1404		25.0	150.0	87.5	350.0	37.5	262.5	100.0	500.0	1
STH-ATP-2303		25.0	150.0	87.5	350.0	37.5	262.5	100.0	500.0	
NTH-ATP-2342		62.5	375.0	100.0	400.0	30.0	350.0	4/5.0	2375.0	4
STH-A12-1006		25.0	150.0	100.0	400.0	25.0	1/5.0	50.0	250.0	
STH-ATP-2306		25.0	150.0	100.0	400.0	87.5	612.5	/5.0	375.0	1
NTH AT2 1008		25.0	150.0	97.5	400.0	25.0	175.0	123.0	02510	
CEN 473 1003		25.0	150.0	87.5	530.0	25.0	525.0	25.0	10.0	
CEN-ATS-1007		75.0	450.0	100.0	400.0	75.0	525.0	25.0	125.0	
CEN-ATP-2314		25.0	150.0	100.0	400.0	37.5	202.5	75.0	375.0	
CEN-ATP-2305		27.5	430.0	100.0	400.0	100.0	700.0	100.0	575.0	1
CENLATD 2215		37.5	225.0	125.0	500.0	100.0	700.0	0.0	300.0	4
NTH-AT2-1902		50.0	225.0	1125.0	450.0	97.5	612.5	125.0	625.0	1
NTH-AT1-1001		25.0	150.0	112.5	450.0	75.0	525.0	125.0	025.0	1
NTH-AT1-1401		25.0	150.0	112.5	450.0	75.0	525.0	50.0	250.0	1
NTH-AT3-1902		50.0	300.0	137.5	550.0	100.0	700.0	150.0	750.0	3
NTH-AT3-1901		50.0	300.0	150.0	600.0	87.5	612.5	25.0	125.0	2
STH-AT2-1901		50.0	300.0	75.0	300.0	100.0	700.0	100.0	500.0	2
5AIL-1501		50.0	500.0	75.0	500.0	100.0	700.0	100.0	500.0	
Sten	8 Input Data Step 9 Scale Variable	es Step 10A Calc F	Priority Scores Step 10B Ca	lc Priority Bank	Sheet1 Sh	eet2 Sheet3	+			

Figure 8-5: Sample Project Equity Analysis Weighted Score

The points in this section were multiplied by the stakeholder value of 5 and added with the other 5 factor scores to create the final score. Figure 8-5 shows the weighted score of 375 points.

9. Results

Final Ranking and Prioritization List

The Final Ranking and Prioritization list has been used to support the 2023 RTP, as well as SLOCOG's funding programs by indicating a priority level and fiscal constraint cut-line which was determined to be approximate 52 projects totaling \$184M over 25 years. The final ranking combines data from the six factors to create a priority score. This table ranks projects by their composite priority score.

Project	Durainant ID	Duriant Name	Duciant Sama
	NTLL ATD 2242	The Cread Lear	4000
1	NIH-AIP-2342	The Grand Loop	4000
2	NTH-AT3-1902	Niblick Rd. Corridor enhancements, operational improvements, Complete Street	3100
3	CEN-ATP-2309	Los Osos Valley Road Protected Bike Lanes	2875
4	CEN-ATP-2316	Higuera Protected Bike Lanes	2825
5	NTH-AT2-1902	State Route 41 (El Camino Real to San Gabriel Rd.) Complete Streets Improvements	2487.5
6	NTH-AT3-1901	Creston Rd. Complete Streets Improvements	2437.5
7	CEN-ATP-2312	South Broad-Santa Barbara Protected Bike Lanes	2300
8	STH-ATP-2334	Arroyo Grande Creek Trail - Phase 2	2225
9	STH-AT3-1403	South Oak Park Blvd. pedestrian improvements: West Grand Ave. to The Pike	2175
10	CEN-AT3-1006	Broad St Medians Orcutt Rd. to SLO County Regional Airport (Phase 2)	2100
11	STH-AT2-1901	Halcyon Rd. Complete Streets Improvements	2000
12	STH-AT2-1019	Grand Ave. street enhancements: between 4th St. and 8th St.	1987.5
13	CEN-ATP-2318	Madonna Road Bikeways	1937.5
14	CEN-ATP-2317	Foothill Boulevard Protected Bike Lanes	1875
15	CEN-ATP-2315	Marsh-Higuera Complete Streets	1825
16	CEN-AT3-1007	Los Osos Valley Rd. medians: Prefumo Canyon - Madonna (Ph2)	1800
17	STH-AT3-1014	SR 1/Front St. sidewalks, traffic calming and streetscape: Bellridge St. to 22nd St.	1712.5

Table 9-1: Final Ranking and Prioritization List

Interalization	Mathadalam		Cafata	Existing	Domond	Commentivity	Carrier.	Desults	Lessons	
introduction	Internodology	Opportunities	Salety	Conditions	Demand	Connectivity		Results	Learned	1

Project			D C
	NTU ATD 2240	Project Name	Project Score
18	NTH-ATP-2340	Beechwood Specific Plan	1087.5
19	SIH-AIP-2304	Major street rehab 11th to Oak Park Blvd	1687.5
20	CEN-AT3-1005	Install landscaped medians, lighting, street trees on Broad (South to Orcutt) South St. to Orcutt Rd. (Phase 1)	1637.5
21	STH-ATP-2306	S Oak Park Blvd Phase 2	1637.5
22	STH-ATP-2303	The Pike restriping	1562.5
23	CEN-ATP-2324	Froom Ranch Frontage & Streetscape Improvements	1550
24	CST-AT4-1405	LOVR Monarch Elem: SRTS improvements	1550
25	STH-AT3-1402	North 4th St. pedestrian improvements: West Grand Ave. to Pismo Beach city limits	1512.5
26	STH-AT3-1401	Thompson Ave. Olde Towne improvements (Phase 2)	1500
27	CEN-ATP-2314	Oceanaire Neighborhood Greenways	1487.5
28	STH-ATP-2305	S Oak Park Blvd Phase 1	1450
29	CEN-ATP-2313	Tank Farm Road Complete Street	1425
30	NTH-AT1-1003	Atascadero Railroad Multi-Use Path	1412.5
31	NTH-AT1-1401	Centre St. streetscape	1375
32	STH-AT3-1013	Shell Beach Road Multimodal Improvements	1362.5
33	STH-AT3-1404	Farroll Rd. pedestrian improvements: 4th St. to Oak Park Blvd.	1362.5
34	CEN-ATP-2320	Santa Rosa (Hwy 1) / Highland Intersection Crossing Improvements	1325
35	CEN-AT1-1003	Bob Jones Trail: Phase 1- Octagon Barn to Clover Ridge Ln.; Phase 2-Clover Ridge Ln. to San Luis Bay Dr.; Phase 3-San Luis Bay Dr. to existing trailhead	1312.5
36	CEN-ATP-2319	South Street Complete Street Improvements	1312.5
37	CST-AT3-1008	Burton Dr. pedestrian improvements: corridor-wide	1300
38	REG-AT1-1901	Chorro Valley Trail Phase I: Cal Poly to Cuesta College	1250
39	NTH-AT1-1001	Templeton-Atascadero Bikeway Connector	1225
40	CEN-AT1-1403	SR 1 at Boysen Ave.: bike and pedestrian crossing safety issues	1187.5
41	STH-AT2-1004	El Camino Real bike lanes: Pismo Beach to Arroyo Grande	1175
42	STH-AT4-1401	Dana Elementary School Safe Routes to School Infrastructure Project	1125

Introduction	Mathadalam		Cafate	Existing	Domond	Commontivity	Caultan.	Desults	Lessons
introduction	Internodology	Opportunities	Salety	Conditions	Demand	Connectivity		Results	Learned

Project	Droiget ID	Droject Name	Draigat Sagra
Kalik	Floject ID	17th St and 10th St nedestrian improvements: Wilmar Ave to	Floject Scole
43	STH-AT3-1011	Front St.	1100
44	STH-AT2-1006	Elm St. improvements: Ash St. to Grand Ave. (Phase 1)	1075
45	STH-ATP-2331	Farroll @ S Halcyon	1075
46	CST-AT3-1006	State Park Rd. bike improvements	1062.5
47	STH-AT3-1004	Huasna Rd. non-motorized improvements: E. Branch St. to city limits	1037.5
48	CST-AT3-1007	Santa Ysabel Ave. Pathway (Phase 2)	1025
49	STH-ATP-2332	Midblock crosswalk E Grand Ave	1012.5
50	STH-AT2-1001	Atlantic City Ave. bike lanes: 4th St. to Oak Park Blvd.	987.5
51	STH-AT2-1007	Elm St. improvements: Farroll Ave. to city limits (Phase 2)	987.5
52	CST-AT1-1004	Morro Bay-Cayucos Multi-Use Connector	975
53	CEN-ATP-2311	Mill Street Greenway	962.5
54	CEN-AT1-1005	Bob Jones Trail: Los Osos Valley Rd. to Octagon Barn	950
55	CEN-ATP-2321	Foothill/Patricia/La Entrada SRTS Improvements	950
56	CEN-AT1-1015	Francis Avenue bike/pedestrian bridge	925
57	CEN-AT1-1016	Railroad Safety Trail: bike bridge crossing at Industrial Way	925
58	CEN-AT1-1901	Bob Jones Trail Crossing at Los Osos Valley Road	912.5
59	CST-AT4-1404	El Moro Ave.: SRTS improvements	912.5
60	NTH-ATP-2338	Olsen Ranch Trail Network	912.5
61	CEN-AT1-1004	Railroad Safety Trail: Sinsheimer feeder route	887.5
62	STH-ATP-2330	S Halcyon Rd @ Sandalwood	887.5
63	CEN-ATP-2310	Railroad Safety Trail (Tiburon Wy to Orcutt)	875
64	CFN-ATP-2323	Augusta Neighborhood Traffic Management	875
	CLIV-A11-2323		615
65	CST-AT3-1005	Main St. / Morro Bay Blvd. street enhancements	875
66	NTH-AT3-1008	Downtown streetscape improvements (Phase 4)	875
67	STH-ATP-2333	Railroad Street Bicycle and Sidewalk Improvements	862.5
68	STH-AT3-1408	Paulding MS bike/ped improvements (Phase 1)	850
69	CEN-ATP-2322	Ramona Neighborhood Traffic Management	825
70	NTH-AT2-1903	Atascadero Ave Mall Connector	762.5

Introduction	Methodology	Opportunities	Safety	Existing	Demand	Connectivity	Equity	Results	Lessons	
	/	/		/ Conditions	/		/		Learned	1

Project			
Rank	Project ID	Project Name	Project Score
71	CST-AT3-1004	Embarcadero Complete Streets: lateral access improvements	750
72	NTH-ATP-2341	N. River Road	662.5
73	STH-ATP-2335	Arroyo Grande Creek Trail - Phase 3	637.5
74	NTH-AT2-1401	Huer Huero Creek Trail	612.5
75	STH-ATP-2327	Ocean View Elementary SRTS Improvements	562.5
76	STH-AT1-1001	Meadow Creek Path	537.5
77	STH-ATP-2307	Mattie Road Pedestrian Improvements	525
78	CEN-ATP-2344	CA Coastal Trail - Central County Segment	162.5
/ 0	CEN-A11-2344		402.3
79	CEN-AT1-1012	Farm Rd.	412.5
80	STH-ATP-2329	Tally Ho Road Multimodal Improvements	387.5
81	STH-ATP-2326	Over Meadow Creek	337.5
82	STH-AT3-1409	Paulding MS bike/ped improvements (Phase 2)	250
83	STH-ATP-2325	Over Arroyo Grande Creek	250

Sample Project Results

The following is an analysis of the sample project first shown in Figure 1-2: First, point values were assigned in accordance with the table, the average amount of the points for each criterion were taken and multiplied with the stakeholder score and added to the scores of all other criteria to create the final score of the project. For project CEN-ATP-2309 the scores were as follows:

<i>Table 9-2:</i>	Scores for	Sample Project	<i>CEN-ATP-2309</i>
-------------------	------------	----------------	---------------------

Criteria	Raw Score	Weighted Score
Opportunities	100	400
Safety	62.5	500
Existing Conditions	75	450
Demand	112.5	450

Introduction	Methodology	Opportunities	Safety	Existing	Demand	Connectivity	Equity	Results	Lessons
	/,	/	/ • ,		/	· · .	/	· .	Learned

Criteria	Raw Score	Weighted Score
Connectivity	100	700
Equity	75	375
Total	525	2875

The project CEN-ATP-2309, a Class IV bike lane along Los Osos Valley Road between Diablo and S. Higuera, ranked 3rd among all constrained projects in this analysis. This was conducted for all 88 projects with an existing timeframe.

10. Lessons Learned

There were a few things that were noticed in the process that may be beneficial to change in future analysis. One thing that may have skewed data was the fact that the DAC scores did not have a cap. They were given 25 points for every hexagon the project touched which led to projects scoring upwards of 475 points. This may have caused physically longer projects to score higher than otherwise equal projects. This may unintentionally cause some projects to score higher than others. One of the ways that this can be mitigated is by dividing the final project score by the length of projects thereby evaluating projects on a point per foot basis.

In this analysis, all factors except opportunities and equity had two data inputs they were evaluated on. In calculating factor scores, the data was averaged to give the overall score for the factor. The factors of opportunities and equity did not get averaged. This created an issue during the weighting process of potentially doubling the weight of those two factors. For example, a project whose opportunity factor includes a necessitated project definition could score 400 points when multiplied by the stakeholder score but, a project with 11+ crashes (100 points) without a fatality would only score 400 points with the stakeholder multiplier of 8 after the weighting step because the safety score of total crashes (100 points) is averaged with the fatality score of 0 points. This unintentionally weighs certain factors higher than others. One of the ways this can be mitigated is by using at least two data sources to evaluate every factor.

Future criteria for the opportunities factor may include factors that may make an active transportation project more competitive for grants or supplemental funding. One example of this may be proximity to schools. Future criteria for the equity factor may include adequate access to alternative transportation within the historically disadvantaged communities. A factor to consider when evaluating Demand may be the surrounding land uses as well. Certain land uses or significant nodes may be destinations for people commuting via AT. In the future, it may be beneficial to automate part of the process. The analysis was conducted manually for the entirety of the project.

Another potential metric is the "risk register" ...a relatively simple qualitative metric Caltrans has adopted, that's regularly used across numerous industries, and is part of the Project Management Professional certification. For example, each of the categories below would be qualitatively scored 1 thru 3 for probability of delivery impacts and 1 thru 3 for significance of delivery impacts. Multiply probability score by significance score for each one with a multiplier to scale for how significant of a factor it is in the overall priority/ranking list.

Categories: Scope; Environmental and R/W impacts; Utility conflicts and impacts; Political/community sensitivity; Project location; Sponsor's sensitivity to cost and/or schedule; Stakeholders of the project; Duration of the project; New type of design or innovative technology; Alternative project delivery methods.

11. Top Projects by Factor

The final table ranks projects by their composite priority score, but projects can also be considered by each factor individually depending on agency priorities. In this section, projects are ranked by highest score in each respective factor. If a project has the same score in the factor, the composite overall rank determines their place in the top five.

Project	Project Name	Weighted Score	Overall Rank
1. NTH-AT3-1902	Niblick Rd. Corridor enhancements, operational improvements, Complete Street	400	2
2. CEN-ATP-2309	Los Osos Valley Road Protected Bike Lanes	400	3
3. NTH-AT3-1901	Creston Rd. Complete Streets Improvements	400	6
4. NTH-ATP-2342	The Grand Loop	200	1
5. CEN-ATP-2312	South Broad-Santa Barbara Protected Bike Lanes	200	7

Table	11-1:	Top 5	Opporti	unity	Projects
-------	-------	-------	---------	-------	----------

Table 11-2: Top 5 Safety Projects

Project	Project Name	Weighted Score	Overall Rank
1. CEN-ATP-2309	Los Osos Valley Road Protected Bike Lanes	500	3
2. CEN-ATP-2316	Higuera Protected Bike Lanes	500	4
3. NTH-AT2-1902	State Route 41 (El Camino Real to San Gabriel Rd.) Complete Streets Improvements	500	5
4. CEN-ATP-2318	Madonna Road Bikeways	500	13
5. CEN-ATP-2317	Foothill Boulevard Protected Bike Lanes	500	14

Project	Project Name	Weighted Score	Overall Rank
1. CEN-ATP-2309	Los Osos Valley Road Protected Bike Lanes	450	3
2. CEN-ATP-2312	South Broad-Santa Barbara Protected Bike Lanes	450	7
3. CEN-AT3-1006	Broad St Medians Orcutt Rd. to SLO County Regional Airport (Phase 2)	450	10
4. CEN-AT3-1007	Los Osos Valley Rd. medians: Prefumo Canyon - Madonna (Ph2)	450	16
5. CEN-ATP-2324	Froom Ranch Frontage & Streetscape Improvements	450	24

Table 11-3: Top 5 Existing Conditions Projects

Table 11-4: Top 5 Demand Projects

Project	Project name	Weighted Score	Overall Rank
1. NTH-AT3-1901	Creston Rd. Complete Streets Improvements	600	6
2. NTH-AT3-1902	Niblick Rd. Corridor enhancements, operational improvements, Complete Street	550	2
3. CEN-ATP-2315	Marsh-Higuera Complete Streets	500	15
4. CEN-ATP-2309	Los Osos Valley Road Protected Bike Lanes	450	3
5. NTH-AT2-1902	State Route 41 (El Camino Real to San Gabriel Rd.) Complete Streets Improvements	450	5

Table 11-5: Top 5 Connectivity Projects

Project	Project Name	Weighted Score	Overall Rank
1. NTH-AT3-1902	Niblick Rd. Corridor enhancements, operational improvements, Complete Street	700	2
2. CEN-ATP-2309	Los Osos Valley Road Protected Bike Lanes	700	3
3. CEN-ATP-2316	Higuera Protected Bike Lanes	700	4
4. CEN-ATP-2312	South Broad-Santa Barbara Protected	700	7

	Bike Lanes		
5. STH-ATP-2334	Arroyo Grande Creek Trail - Phase 2	700	8

Table 11-6: Top 5 Equity Projects

Project	Project Name	Weighted Score	Overall Rank
1. NTH-ATP-2342	The Grand Loop	2375	1
2. CEN-ATP-2316	Higuera Protected Bike Lanes	1000	4
3. NTH-ATP-2340	Beechwood Specific Plan	875	18
4. NTH-AT3-1902	Niblick Rd. Corridor enhancements, operational improvements, Complete Street	750	2
5. NTH-AT2-1902	State Route 41 (El Camino Real to San Gabriel Rd.) Complete Streets Improvements	625	5

Works Cited

- American Public Transportation Association. (2017). Who Rides Public Transportation. Retrieved February 24, 2023, from<u>https://www.apta.com/wp-</u> <u>content/uploads/Resources/resources/reportsandpublications/Documents/APTA-Who-Rides-</u> <u>Public-Transportation-2017.pdf</u>
- American Society of Landscape Architects. (2017). Designing Walkable Urban Thoroughfares: A Context Sensitive Approach: An ITE Recommended Practice. John Wiley & Sons.
- Cha, P. (2022). Health Care Access among California's Farmworkers. Retrieved March 22, 2023, from <u>https://www.ppic.org/publication/health-care-access-among-californias-farmworkers/</u>
- Gehl, J. (2011, January 1). *Life between buildings*. Island Press. Retrieved October 14, 2022, from <u>https://islandpress.org/books/life-between-buildings</u>
- Guide Dogs. (n.d.). Cities Unlocked. Retrieved January 28, 2023, from https://www.guidedogs.org.uk/cities-unlocked/
- Litman, T. (2023). Evaluating Transportation Equity Guidance for Incorporating Distributional Impacts in Transport Planning. Retrieved June 5, 2023, from https://www.vtpi.org/equity.pdf

Barajas, J. (2011). Biking where Black: Connecting transportation planning and infrastructure to disproportionate policing. Retrieved June 5, 2023, from https://doi.org/10.1016/j.trd.2021.103027

- Tight, M. (2016). Sustainable urban transport the role of walking and cycling. Retrieved June 5, 2023, from <u>https://www.icevirtuallibrary.com/doi/10.1680/jensu.15.00065</u>
- National Association of City Transportation Officials. (2016). Urban Bikeway Design Guide, Second Edition. Retrieved February 12, 2023, from <u>https://nacto.org/publication/urban-bikeway-design-guide/</u>
- Ogilvie, F., Panter, J., Guell, C., Jones, A., & Mackett, R. (2016). Evaluating the travel, physical activity and carbon impacts of a 'natural experiment' in the provision of new walking and cycling infrastructure: methods for the core module of the iConnect study. Journal of Transport & Health, 3(2), 215-226., from https://bmjopen.bmj.com/content/2/1/e000694
- Oregon Department of Transportation. (2012). Portland Bicycle Plan for 2030. Retrieved January 30, 2023, from <u>https://www.portland.gov/sites/default/files/2020-04/portland_bicycle_plan_for_2030_as-adopted.pdf</u>

- SLOCOG. (2021). Active Transportation Plan. Retrieved June 5, 2023, from <u>https://slocogatp.org/wp-content/uploads/2021/05/SLOCOG-ATP-Draft-5-20-21-Optimized-150ppi.pdf</u>
- SLOCOG. (2022). Transportation Efficiency Analysis. Retrieved June 5, 2023, from https://storymaps.arcgis.com/stories/a3133a5bf8ca449e974a7cdaff7bc4fe
- SLOCOG. (2023). Regional Transportation Plan, Retrieved June 5, 2023, from https://slocog.org/programs/regional-planning/2023-rtp
- Urban Land Institute. (2016). Active Transportation and Real Estate: The Next Frontier. Retrieved February 2, 2023, from <u>http://uli.org/wp-content/uploads/ULI-Documents/Active-Transportation-and-Real-Estate-The-Next-Frontier.pdf</u>
- Avila-Palencia, I. et. al (2017). The relationship between bicycle commuting and perceived stress: a cross-sectional study. Retrieved June 5, 2023, from https://pubmed.ncbi.nlm.nih.gov/28645948/
- Urban Institute. (2020). The Unequal Commute. Retrieved March 22, 2023, from <u>https://www.urban.org/features/unequal-commute</u>
- US Department of Transportation. (n.d.). Active Transportation and Demand Management. Retrieved January 15, 2023, from <u>https://www.transportation.gov/mission/health/active-transportation</u>
- Walk With a Doc. (2023). Retrieved March 22, 2023, from https://walkwithadoc.org/
- Warburton, D. E., Nicol, C. W., & Bredin, S. S. (2006). Health benefits of physical activity: the evidence. CMAJ: Canadian Medical Association Journal. Retrieved January 15, 2023, from <u>https://doi.org/10.1503/cmaj.051351</u>
- World Health Organization (WHO). (2022). Physical activity and health. Retrieved February 1, 2023, from <u>https://www.who.int/news-room/fact-sheets/detail/physical-activity</u>