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Abstract: 

This project aims to use artificial neural networks (ANN) in order to detect Alzheimer’s disease. 

More specifically, convolutional neural networks (CNN) will be utilized as this is the most common ANN 

and has been used in many different image processing applications. The purpose of using artificial neural 

networks as a detect method is so that an intelligent way for image and signal analysis can be used. A 

software that implements CNN will be developed so that users in medical settings can utilize this software 

to detect Alzheimer’s in patients. The input for this software will be the patient’s MRI scans. In addition, 

this is a project that is relevant with the current trends of an increase in development surrounding artificial 

intelligence. As technology has become more advanced, there has been an increase in medical 

developments as well. From the simulation, the hyperbolic tangent activation function provided the best 

results. The performance resulting from the two classifications when using the hyperbolic tangent 

function, on average was validation best accuracy of 81.10%, validation stopped tuning accuracy of 

81.10%, training best accuracy of 100.00%, testing best accuracy of 68.94%, F-1 score of 70.06%, 

precision of 71.00%, and recall of 70.06%. This project will open doors to more applications of this 

detection method. More diseases other than Alzheimer’s disease can utilize artificial neural networks 

(ANN) to detect diseases early on so that lives can be restored and saved.  
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Chapter 1 : Introduction 
The detection of Alzheimer's disease using artificial neural networks (ANNs) is an important 

problem that should be studied because Alzheimer's disease is a major public health challenge that affects 

a growing number of people worldwide.  It is the 7th leading cause of death in the United States 

[1].  Early detection is essential for timely intervention and treatment, as it can help slow the progression 

of the disease and improve patient outcomes. However, the detection of Alzheimer's disease is complex 

and requires the analysis of large amounts of data from medical imaging, cognitive testing, and other 

sources. ANNs have the potential to provide a more accurate and efficient means of detecting Alzheimer's 

disease, as they can process large amounts of data with high accuracy and speed. Moreover, the use of 

ANNs for the detection of Alzheimer's disease can help improve our understanding of the disease and its 

underlying mechanisms, which can lead to the development of more effective treatments. Therefore, the 

detection of Alzheimer's disease using artificial neural networks is an important problem that has the 

potential to significantly impact public health. 

With the rise of the problem, comes an increase in the amount of research development regarding 

this issue. Researchers from all around the world have run many different simulations using a 

combination of the CNN and other neural networks. The varying networks have provided a wide range of 

results from 70-90%. For instance, Marusina’s and Bukhalov’s [16] used both a CNN model and an 

Ensemble Learning algorithm to accurately classify patients. These individuals used the ADNI database 

and saw a low accuracy of around 73%. Another pair of researchers Chaihtra and Shetty [17] approached 

the issue by using various machine learning strategies. They preprocessed their images and were able to 

get a high accuracy level of 91%, which was provided when using the Deep Neural Network 

DenseNet121. Another group of researchers used different feature extraction methods and used the 

Kaggle database for their MRI images. Pranao, Harish, Dinesh, Sasikala and Kumar [18] fell short with 

an accuracy of 75% by using the SVM classifier. There is still much research going on in regards to this 

problem and there are many promising results that show that using CNN to detect Alzheimer’s can help 

patients since early detection is vital.  

Chapter 2 contains the literature review. After extensive literature review, the various advantages, 

and limitations of convolutional neural networks (CNNs) have been studied and examined. Convolutional 

neural networks (CNNs) have shown promise in detecting Alzheimer's disease from medical imaging 

data. Some of the advantages of using CNNs include their ability to automatically learn discriminative 

features from the data and their high accuracy in detecting subtle changes in brain structures. CNNs can 

also be used for automated, rapid, and objective screening, which can save time and reduce inter-observer 

variability. However, there are also some limitations to using CNNs for Alzheimer's disease detection. 
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One limitation is the need for large amounts of training data, which can be difficult to obtain, especially in 

the case of rare subtypes of Alzheimer's disease. Another limitation is that CNNs may not always be able 

to identify subtle changes in the brain that are not easily visible in medical images. Finally, the 

interpretability of CNNs is limited, which can make it difficult to understand how the network is making 

its predictions. In summary, while CNNs have shown promise in detecting Alzheimer's disease, there are 

also some limitations to their use, which need to be addressed to ensure their successful implementation 

in clinical settings. More detailed information and examples will be included in the following literature 

review chapter. 

Chapter 3 provides technical background information on convolutional neural networks (CNNs) 

and training algorithms. CNNs are a type of artificial neural network that are widely used for image 

recognition and other computer vision tasks. The chapter introduces the basic architecture of a CNN, 

including convolutional layers, pooling layers, and fully connected layers, and explains how these 

components work together to extract features from an image and make a prediction. The chapter also 

covers important training algorithms for CNNs, including backpropagation, stochastic gradient descent, 

and batch normalization. These algorithms are essential for training a CNN to accurately recognize 

patterns in images and other visual data. Overall, the background chapter serves as a foundation for the 

reader to understand the technical concepts and terminology that are necessary to grasp the subsequent 

chapters that deal with the applications of CNNs. 

Chapter 4 is the approach and simulation results chapter, which is a crucial component of the 

study. It will outline the entire methodology used in the research. It also explains how the parameters of 

the algorithm were determined, as well as the structure of the neural network used. In this chapter, all test 

conditions, simulations, and plots are presented. The data will be organized into tables and plots, and each 

variable on the axis of the plots will be explained in detail. Rather than simply listing the results, this 

chapter will include thorough explanations and discussions of the meaning of the results. Comparisons 

will also be made between different simulations and tests to draw conclusions about the effectiveness of 

the algorithm and neural network structure. Overall, the approach and simulation results chapter provides 

the reader with a clear understanding of the methodology and findings of the research and will be a 

critical component in evaluating the effectiveness of the proposed approach. 

Chapter 5 is the conclusions and future work chapter, which is an important part of any study, as 

it summarizes the key findings and highlights the significance of the study. In this chapter, the 

methodology and results of the project will be briefly summarized, with a focus on explaining why the 

proposed method is better than other existing methods. The conclusion will draw on the results presented 

in the approach and simulation results chapter and provide a clear evaluation of the effectiveness of the 
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proposed method. The conclusion will also touch upon the limitations of the study and any areas where 

further research is needed to improve the proposed method. The future work section of the chapter will 

provide directions for future research, based on the limitations identified in the study. These directions 

will be focused on improving the proposed method, expanding its scope, or applying it in new domains. 

Overall, the conclusions and future work chapter provides a comprehensive overview of the study and its 

findings, as well as highlighting potential areas for future research. It serves as a guide for researchers 

who wish to build upon the work presented in the study and will help to further advance the field. 
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Chapter 2 : Literature Review 
 This chapter will explain the differences and similarities between different approaches to using 

CNN to detect early onset Alzheimer's Disease. The benefits and weakness will be discussed about each 

design structure and the results of these design structures. 

 In Marusina’s and Bukhalov’s paper [16], they explain their approach and methodology on how 

they constructed their CNN model to achieve their goal of giving an accurate classification on whether a 

patient’s MRI detects early onset Alzheimer's Disease. The MRI images were acquired from the ADNI 

database. They used Python 3.8 and TensorFlow to program their study. The structure of their program 

starts with the dataset going through an image processing where the images will be converted to be the 

same dimensions and resolution and then will be broken into three sets of 2D images. These images will 

then be inputted into both a CNN model and an Ensemble Learning (EL) algorithm. The EL algorithm 

helps recognize highlights and will deliver a weighted vote for classification scores. The outputs from the 

CNN and EL will be delivered to the testing stage which will use a five-fold cross-validation. The results 

from the testing stage will then be compared. The test the quality of the CNN, they used four diverse 

conditions with a variety of different preparation with Alzheimer’s Disease and Normal Cognitive 

patches. They found the CNN received higher accuracy results when prepared with Alzheimer’s Disease 

and Normal Cognitive patches. Using the EL algorithm in parallel with the CNN was interesting choice 

and they should have done more testing to see the difference in accuracy when using the EL algorithm 

and when not. The accuracy of the CNN model, 73%, was fairly low compared with other models done. 

More layers in the CNN might be needed to increase the accuracy of the model. 

 In Chaihtra’s and Shetty’s 2021 paper [17], details an approach to building their program using 

multiple different Deep Learning Neural Networks. The paper explains all the research done to construct 

their system such as using different machine learning strategies: Logistic Regression (LR), Decision Tree 

(DT), and Support Vector Machines (SVM). The data used for the CNN network was acquired from 

ANDI database.  Their program will have their classification separated into four categories: Mild 

Dementia, Moderate Dementia, Non-Dementia, and Very Mild Dementia. Their proposed system begins 

with pre-processing the MRI images by scaling images as color image channels. The pre-processed 

images will then be inputted into the Deep Neural Networks such as DenseNet121, MobileNet, Xception, 

and Inception-V3 for training. Then the model will be tested, and the classification will be given. After 

experimenting, their results pointed to that Transfer Learning and Fine-tuning generated the best accuracy 

results. The results showed the Deep Neural Network DenseNet121 gave the highest accuracy of 91% on 

test data. By using and testing the accuracy of multiple Deep Neural Networks allowed for them to find 

the highest accuracy Deep Neural Network instead of just using one Deep Neural Network and not 
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knowing whether it will return the most accurate results. The paper did not go into much detail about the 

pre-processing stage of the system, hard to know whether the images’ resolutions were all the same. 

Splitting the input MRI images into multiple 2D images could have resulted into more accurate results. 

 In Pranao’s, Harish’s, Dinesh’s, Sasikala’s and Kumar’s 2022 paper[18], three different 

methodologies constructed and tested. The first methodology used many different types of feature extract 

methods such as: Local Binary Pattern (LBP), Tamura, Gray Level Co-Occurrence Matrix (GLCM), Gray 

Level Run Length Matrix (GLRLM), and Segmentation based Fractal Texture Analysis (SFTA). After 

features are extracted, an initial label name will be given based on the different classifications: mild, 

moderate, very mild and non-demented. The images of the MRI scans were taken from Kaggle. The data 

frames will then be concatenated and converted into a feature. The training of the model will be then 

carried out by four classifier algorithms including SVM, LR, Random Forest (RF), and XG Boost. Then 

the model will be tested. The highest accuracy results of this methodology were 69.7% for Binary and 

62% for Multiclass. The second methodology had similar structure except the images were initially 

converted into vectors and were processed as vectors for the rest of the model. The highest accuracy 

results for this method were 67% for Binary and 73% for Multiclass. For the last methodology, the final 

output layer of the CNN was modified to work as SVM classifier. The highest accuracy result for this 

method was 75%. It can be concluded from these results that the third methodology is the most accurate. 

The feature extraction was helpful in extracting the smaller details of the images and helped the program 

become more accurate. In the preprocessing stage, a filter was used to help get rid of noise within the 

image which can need to more accurate results. 

 This paper explains one methodology that relies more heavily on CNN model and other deep 

learning models [19]. This methodology begins with going through a dataset pre-processing stage where 

images will get resized, noise will be removed, image will be segmented, and morphology (smoothing 

edges) will happen. Then the images will be inputted into either the CNN model or the other deep 

learning models that include ResNet101, DenseNet121, and VGG16. The output of these models will then 

go into a hold-out validation process stage. The results will then be tested, and the results will be 

outputted. After running the different deep learning models, it was found that the CNN model had the 

highest accuracy, AUC, recall and lowest loss. In this paper, they explained how results other than 

accuracy are very important such as AUC and loss function. The AUC measures how well the model 

differentiates between positive and negative classes. A higher value of AUC is wanted. The loss function 

measures the deviation between validation and training values. A smaller value for the loss is better. To 

get these results the Keras python library was used which will be used in extracting these results in our 

structure.  
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 In this paper a description of how the 3D-CNN, HadNet, was developed. The first step of this 

methodology is to send the images through a pre-processing stage. In this pre-processing stage cross-

alignment will be done to all the images to reduce data variability. Next a skull-stripping procedure will 

be done since the skull will not be need in the detection of Alzheimer's Disease. Then the images will be 

inputted into the HadNet for processing of the MRI voxels. In this stage the features will be extracted to 

help make a classification. HadNet is made up of five different types of processing layers. The 

architecture of the HadNet can be separated into three sections: STEM, MAIN, and HEAD. STEM will 

down samples the MRI for heavy processing. The MAIN will acquire the hidden features. The HEAD 

will then implement its classification. Then the output will go into testing stage and will give the results 

of the testing. The final accuracy of this model is 83%. This model was tested with only 530 participants 

MRIs which is significantly less than most programs. Most models will be using around 6000 – 5000 

participants MRIs. This can the accuracy result to be less trustworthy. There were less pre-processing 

steps down such as noise removal, segmenting the images and morphology. This methodology keeps the 

image in a 3D format which most models have converted into a 2D format. 

 In Ganesh’s, Nithi’s, Akshay’s and Rao’s 2022 paper [21], it describes how three different CNN 

models were used to be trained. These three models include VGG-16, Inception V3, and Xception. VGG-

16 is a CNN that is used especially for image classification and object detection. VGG-16 is made up of 

sixteen different convolutional layers. Inception V3 is an image classification model with twelve 

convolutional layers. Xception is a CNN model with seventy-one layers. The first step in this structure is 

pre-processing where data augmentation will be done on the images. Data augmentation is where existing 

images will be augmented in different ways to produce more images to feed the model. These data 

augmented images will then be fed into the different CNN models. Then the MRI will be classified into 

either of the four categories: Mild Dementia, Moderate Dementia, No Dementia, and Very Mild 

Dementia. The next stage will be testing where the results will be given. The types of results that were 

looked at were accuracy and loss. The highest validation accuracy result was 75% for the VGG-16 model. 

Although the data augmentation was able to produce a billion of samples, the model is not actually given 

any new samples and that having less samples but having them be all completely different samples might 

allow for the model to be better trained and give more accurate results. 

 Similarly, the other papers that were reviewed, this paper uses three different CNN models [22]. 

The three CNN model that were used and tested in this paper was VGG-19, Inception V3, and ResNet50. 

The MRI images will be acquired from the ADNI database. The overall model is simple and starts with 

acquiring the MRI files. Then the pre-processing stage where the 3D files will be segmented into 2D 

images. The images will then be extracted, and an image extension will be attached. Then the images will 
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be grouped into three classes: Alzheimer's Disease, Mild Cognitive Image, and Normal Cognitive. The 

classes will then be fed into the three different type of CNN models. Then the classifications will go into 

the testing stage and give the results. Keras which is the high-level API of TensorFlow will be used to 

create and train the models of deep learning. Using VGG-19 CNN model was found to have the highest 

accuracy. After the first five iterations the validation accuracy was 78%, then after the next five iterations 

the validation accuracy was 89% and the last five iterations gave a validation accuracy of 98%. Although 

these validation accuracy rates are very high, the dataset that was fed through the models was only 54 

patients. This is significantly smaller group of samples compared to other projects. This can cause 

misleading accuracy rates and would like to see a higher sample group used. The programs used such as 

Keras will be used by our project too.  

 Many of the design structured used similar methods such as using CNN models such as VGG-19 

and Xception. Some designs decided to use more extract methods for prepping the data than others. All 

these different methodologies had their benefits and weaknesses.  
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Chapter 3 : Background 
Artificial neural networks (ANNs) are a class of machine learning models that are inspired by the 

structure and function of the human brain. ANNs consist of interconnected nodes, or "neurons," which 

perform mathematical operations on the input data to produce output predictions. One popular type of 

ANN is the convolutional neural networks (CNNs), which is particularly well-suited for image and video 

processing tasks. Artificial neural networks have been proven to be efficient and the most used is 

convolutional neural networks (CNNs) [5]. CNNs have a multiple hierarchical network structure and is 

feedforward, which means that the input goes in the forward direction and goes through different layers 

[6]. Afterwards, the output is then outputted into its own layer. The typical structure of convolutional 

neural networks include: input layer, convolution layer, sampling layer (pooling layer), fully connected 

layer and output layer [7]. This is shown in Figure 1 below.  

 
Figure 3.1: Typical structure of convolution neural network [7] 

 

CNNs are designed to process inputs that have a grid-like topology, such as images, and are made 

up of multiple layers of interconnected neurons. The first layer of a CNN performs a set of convolutions, 

which apply a set of filters to the input image to extract features. The output of the convolutional layer is 

then passed through a series of activation functions, such as ReLU, to introduce non-linearity into the 

model. This process is repeated through several layers of the network, with the output of each layer being 

passed as input to the next layer, until the final layer produces a prediction. Since CNN is a feedforward 

network, it can extract topological properties and can recognize different types of patterns [6]. Therefore, 

many use CNN for image processing purposes since it has shown efficient performances for image 

processing and pattern recognition. Previously networks were text based so having this network that can 

process images and videos the usage of this network has increased exponentially such as the application 

of this network in medical settings [6]. In addition, CNNs also have fewer connections and parameters 

which allows for easier learning and training [8]. There are various CNN architectures proposed, such as 
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LeNet, AlexNet, ImageNet and GoogleNet [6]. These architectures have shown success in the medical 

field. For instance, AlexNet has been used to detect lung cancer and both AlexNet and ImageNet have 

been used to detect diabetic retinopathy in blood vessels [9][10]. These architectures are commonly used 

to detect medical conditions and show promising results that CNN can be applied to Alzheimer’s disease 

detection as well. 

Training a CNN involves adjusting the weights of the network so that it can accurately classify or 

detect features in the input data. This is typically done using a process called backpropagation, which 

involves computing the error between the predicted output and the true output and adjusting the weights 

of the network to reduce this error. The process of adjusting the weights is often done using an 

optimization algorithm, such as stochastic gradient descent, which iteratively adjusts the weights to 

minimize the error between the predicted and true outputs. 

One of the key advantages of CNNs is their ability to learn and identify complex features in 

images and videos, such as edges, textures, and shapes. This makes them well-suited for a wide range of 

computer vision tasks, such as object detection, image classification, and semantic segmentation. 

Additionally, the ability to train CNNs using large datasets has made them a popular tool for many 

practical applications, such as self-driving cars, medical imaging, and facial recognition. CNNs and other 

ANNs are powerful tools for machine learning, offering the ability to identify complex patterns in large 

datasets and make accurate predictions on new data. As research in the field of machine learning 

continues to advance, we can expect to see even more powerful and effective ANNs being developed and 

applied to a wide range of real-world problems. 

The Alzheimer's Disease Neuroimaging Initiative (ADNI) website, located at 

https://adni.loni.usc.edu/, is a major resource for researchers and clinicians working to understand the 

development and progression of Alzheimer's disease. The ADNI project is a large-scale collaborative 

effort involving multiple institutions, aimed at gathering and analyzing data on the biological, genetic, 

and environmental factors that contribute to Alzheimer's disease. The ADNI database includes a wide 

range of data from over 2,000 participants, including healthy elderly individuals, individuals with mild 

cognitive impairment, and individuals with Alzheimer's disease. Participants were between the ages of 55 

and 90 who were recruited from the United States and Canada. The data is collected from multiple sites 

across the United States, using standardized methods and protocols. The data includes clinical, imaging, 

genetic, and cognitive data, and is made available to qualified researchers and scientists for analysis and 

research purposes. 

The ADNI database is a rich resource for studying the development of Alzheimer's disease and 

related cognitive and neurological changes. The data includes information on various biomarkers, such as 
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brain imaging, cerebrospinal fluid (CSF) biomarkers, and genetic markers. The database also includes 

detailed clinical information, including medical history, medication use, and cognitive test results. The 

imaging data includes various modalities, such as magnetic resonance imaging (MRI), positron emission 

tomography (PET), and diffusion tensor imaging (DTI). One of the strengths of the ADNI database is its 

longitudinal nature, as participants are followed over time, allowing for the examination of disease 

progression and the identification of predictive biomarkers. The data in the ADNI database has been used 

in numerous research studies and clinical trials, aimed at developing new treatments and interventions for 

Alzheimer's disease. For example, the data has been used to identify early predictors of cognitive decline, 

to investigate the impact of lifestyle factors on disease progression, and to develop and test new drugs and 

interventions. In addition to the data in the ADNI database, the ADNI website also provides a wide range 

of resources and tools for researchers and clinicians. These resources include training materials, protocols, 

and standard operating procedures (SOPs) for data collection and analysis, as well as access to the data 

and the ability to request additional data or samples. The website also provides access to various software 

tools and pipelines for data analysis and processing. The ADNI database and website are important 

resources for researchers and clinicians working to understand and treat Alzheimer's disease. The rich and 

diverse data in the database has already led to numerous discoveries and breakthroughs and is likely to 

continue to be a valuable resource for years to come. This specific database was selected because of its 

accessibility, number of subjects and number of classifications.  

Open-source code will be used for this project because it offers several advantages over 

proprietary or closed-source software. One of the primary advantages of open-source code is that it is 

freely available and can be accessed, modified, and distributed by anyone. This allows for greater 

collaboration and sharing of knowledge within the software development community, as well as 

promoting innovation and faster development. Open-source code is also often more reliable and secure 

than closed-source software, as it is reviewed and tested by a large community of developers, who can 

identify and fix bugs and vulnerabilities more quickly. In addition, open-source code often has a larger 

and more active user community, which can provide feedback and support to developers, leading to faster 

and more effective development. Another advantage of open-source code is that it can be customized and 

tailored to specific needs, as developers have access to the underlying code and can modify it as needed. 

This can lead to greater flexibility and cost savings for businesses, as they do not need to rely on 

proprietary software that may be expensive or inflexible. 

Specifically, the open-source code used for this is Tensor Flow and Keras. TensorFlow and Keras 

are both popular open-source software libraries for building and training machine learning models. 

TensorFlow, developed by Google, is a powerful and flexible framework that allows developers to create 
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complex neural network architectures for a variety of tasks, such as image recognition, natural language 

processing, and more. TensorFlow offers a high-level API that allows for easier model construction and 

training, as well as lower-level APIs for more advanced model customization. TensorFlow also offers a 

wide range of tools and resources to support the machine learning development process, such as 

TensorBoard for visualizing model performance and TensorFlow Hub for sharing and discovering pre-

trained models. Keras, on the other hand, is a high-level neural network API that can run on top of 

TensorFlow. It provides a simpler and more intuitive interface for building and training deep learning 

models, making it an excellent choice for beginners or those who want to quickly prototype and test their 

models. Keras offers a wide range of built-in layers, activation functions, and optimizers, and it allows for 

easy customization of neural network architectures. It also supports both CPU and GPU acceleration, 

making it a versatile tool for machine learning development. Overall, TensorFlow and Keras are both 

powerful and flexible tools that are widely used in the machine learning community. While TensorFlow 

provides more flexibility and control over the machine learning development process, Keras offers a 

simpler and more intuitive interface that can help developers get started more quickly. 
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Chapter 4 : Results 
This chapter will go over the general approach to the detection and the results. The process 

includes slice extraction, data labeling, preprocessing, Discrete Wavelet Transform (DWT), CNN model 

creation, and model evaluation. The data used was obtained from the Alzheimer’s Disease Neuroimaging 

Initiative (ADNI) database. ADNI1 consists of 800 participants and there were 2,294 complete brain 

scans provided in the dataset. Within the dataset, 476 scans represented the mild Alzheimer’s disease 

classification, and 705 scans represented cognitively normal subjects. Each brain scan from the dataset 

was originally formatted in the Neuroimaging Informatics Technology Initiative (NifTI) and from each 

brain scan the axial perspective slices were extracted. The labels were provided in a comma-separated 

values (CSV) file with the corresponding image identification number. The images were preprocessed, 

and the CNN was used for classification. All the MRI scans were classified into the following two 

categories: Alzheimer’s Disease (AD) and Normal Controls (NL). The original formatted brain scans 

were sliced and extracted using Python. The slices were saved in a JPEG format for processing, training, 

and testing. The basic methodology that was implemented is shown below in Figure 4.1. As mentioned 

previously, the classifier chosen for this approach is the Convolutional Neural Network. The CNN model 

can be shown below in Figure 4.2.  

 

 

Figure 4.1: Basic Methodology 

2 
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Figure 4.2: Convolutional Neural Network Model 

Table 4.1: Training/Model Parameters for Testing Activation Functions 

Training/Model Parameters 
Epochs 15 
Batch Size 10 
Slices 32 
Slice Start Index 90 
Dropout Rate 10% 
Training/Validation/Testing Split 70/10/20% 
Wavelet Haar 
Coefficients HH2, HL2, LH2 
Input Size per Brain Scan 38x38x3x32 



 19 

 

Table 4.1 shows the parameters that are used to test the various activation functions in table form 

that were all mentioned above. The number of epochs used throughout the testing was set to 15 and the 

batch size was set to 10 for this series of testing. The slice count selected for comparison was 32 slices 

starting at the slice index 90. The training dataset represented 70% of the complete data, the validation set 

represented 10% of the complete dataset, and the testing set represented 20% of the dataset.  

 

Figure 4.3: Haar Wavelet 

The specific wavelet that was used is the Haar wavelet. This is shown in Figure 4.3. The Haar 

wavelet is the oldest and simplest wavelet. The images already went through preprocessing as DWT was 

used for feature extraction for this approach. The preprocessing changes the dimensions of the original 

image from 150 by 150 to 38 by 38. The coefficients from the second level of decomposition from the 

DWT were used as the inputs for the CNN model. The reasoning for choosing the second level is because 

noise is significantly reduced from the first level approximations coefficients. The coefficients that were 

extracted when using the DWT are the diagonal details (HH2), horizontal details (HL2), and the vertical 

details (LH2). These three coefficients were stacked together to form the three channels of the input. The 

size of the input from the Haar wavelet is 38 by 38. Therefore, the input size of each axial slice was 

38x38x3 and the complete input size is dependent on the activation function that is being tested. These 

three channels provide different views of the MRI brain scan at the different slice indices. The images that 

were used from the dataset ranged from 190 to 256 slices depending on the MRI brain scan. In this 

approach, 190 slices were considered the maximum count. Previous testing done by Nardone [25] 

determined that 32 slices would be the ideal input for the classifier, which is why the initial input size was 

determined to be 38x38x3x32.  
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The performance of the different activation functions was measured. The parameter that is being 

assessed is the activation function (transfer function) of the neurons in the dense layer. The performance 

of three different activation functions will be assessed: ReLu, Hyperbolic Tangent function, and Logistic 

function. ReLu is the Rectified Linear Unit. It is a piecewise linear function that will output the input 

directly if it is positive, otherwise, it will output zero. The hyperbolic tangent function also known as 

Tanh is a function that takes any real value as input and outputs values in the range -1 to 1. The logistic 

function also known as the sigmoid function takes any real value as input and output values in range of 0 

to 1. The activation function is responsible for transforming the summed weighted input from the node 

into the activation of the node or output for that input. The simplest activation function is the linear 

activation, and no transform is applied. A network comprised with linear activation functions are typically 

easy to train. Nonlinear activation functions are usually preferred to learn more complex structures in the 

data. Testing and validation of the performance of these functions can help with the selection process of 

the activation function that will provide the best results.  

Simulations: 

The average performance metrics for each activation function was observed. The accuracy and 

loss were computed during training for each model with two classifications. The loss was minimized 

during training to update the parameters and the accuracy was used to distinguish the best performing 

model. The metrics used to measure the performance of the activation functions include accuracy, 

precision, recall or sensitivity, and the f1-score. The three activation functions went through training, 

validation and testing.  
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ReLu simulation results: 

 

Figure 4.4: The Inputs vs Outputs for the ReLu Activation Function [24] 

 

Figure 4.5: Model Training Accuracy for the ReLu Activation Function & Two Classes 
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Figure 4.6: Modeling Training Loss Graph for the ReLu Activation Function & Two Classes 

 

Table 4.2: Test Confusion Matrix for the ReLu Activation Function & Two Classes 
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Table 4.3: The training Confusion Matrix for the ReLu Activation Function & Two Classes 

 

 

 

Table 4.4: The validation confusion matrix for the ReLu Activation Function & Two Classes 
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Hyperbolic Tangent Activation Function (Tanh): 

 

Figure 4.7: The plot of the Inputs vs. Outputs for the Tanh Activation Function [24] 

 

Figure 4.8: The Model Training Accuracy Graph for the Tanh Activation Function & Two Classes 
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Figure 4.9: The Model Training Loss Graph for the Tanh Activation Function & Two Classes 

 

Table 4.5: The test confusion matrix for the Tanh Activation Function & Two Classes 
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Table 4.6: The training confusion matrix for the Tanh Activation Function & Two Classes 

 

 

 

Table 4.7: The validation confusion matrix for the Tanh Activation Function & Two Classes 
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Logistic Activation Function (Sigmoid): 

 

Figure 4.10: The plot of Inputs vs. Outputs for the Sigmoid Activation Function [24] 

 

Figure 4.11: The Model Training Accuracy Graph for the Sigmoid Activation Function & Two Classes 
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Figure 4.12: The Model Training Loss Graph for the Sigmoid Activation Function & Two Classes 

 

Table 4.8: Testing Confusion Matrix for the Sigmoid Activation Function & Two Classes 
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Table 4.9: The training confusion matrix for the Sigmoid Activation Function & Two Classes 

 

 

Table 4.10: The validation confusion matrix for the Sigmoid Activation Function & Two Classes 
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Table 4.11: Activation Functions Results 

Activation 

Function 

Validation Best 

Accuracy 

Validation Stopped 

Tuning Accuracy 

Training Best 

Accuracy 

Testing Best 

Accuracy 

ReLu 0.810 0.810 0.998 0.6421 

Tanh 0.811 0.811 1.000 0.6894 

Sigmoid 0.743 0.712 0.999 0.6631 

 

Table 4.12: Activation Functions Testing F1-Score, Precision, and Recall/Sensitivity Results 

Activation 

Function 

F1-Score Precision Recall/Sensitivity F1-Score 

ReLu 0.6586 0.6675 0.6579 0.6586 

Tanh 0.7006 0.7100 0.7006 0.7006 

Sigmoid 0.7053 0.7053 0.7053 0.7053 

 

Table 4.2 and 4.3 compare the performance of the three different activation functions (ReLu, 

Hyperbolic Tangent function, and Logistic function). Table 4.2 looks at the different categories of 

accuracy while Table 4.3 shows the F1-score, precision, and recall/sensitivity, which comes from testing. 

Based off the results, the function with the overall best performance is the hyperbolic tangent function 

(Tanh).  

Table 4.13: Tanh Activation Function with Different Batch Sizes Results 

Batch Size Validation Best 

Accuracy 

Validation Stopped 

Tuning Accuracy 

Training Best 

Accuracy 

Testing Best 

Accuracy 

5 0.810 0.810 1.000 0.6789 

10 0.811 0.811 1.000 0.6736 

20 0.743 0.712 0.998 0.6421 
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Table 4.14: Tanh Activation Function with Different Batch Sizes Testing F1-Score, Precision, and 
Recall/Sensitivity Results 

Batch Size Testing F1-Score Testing Precision Testing 

Recall/Sensitivity 

5 0.6586 0.6791 0.6793 

10 0.7006 0.7006 0.7100 

20 0.7053 0.6773 0.6975 

 

The hyperbolic tangent function was rerun with the same training parameters with alterations to 

the batch sizes. The function was run with a batch size of 5 and 20. Table 4.4 and 4.5 showcase the 

difference in the various batch sizes. From the results, it can be concluded that the batch size of 10 

provides the best results. Although there is little to no difference between the testing, training, and 

validation accuracies of the different batch sizes of 5 and 10, there are significant drops in the f1-score, 

precision, and recall/sensitivity. The accuracy levels were much lower for the batch size of 20.  

Table 4.15: Tanh Activation Function with Different Slice Count Sizes 

Slice Count 

Size 
Validation Best 

Accuracy 

Validation 

Stopped Tuning 

Accuracy 

Training Best 

Accuracy 

Testing 

Best 

Accuracy 

16 0.7831 0.7125 0.981 0.6526 

32 0.811 0.811 0.999 0.6947 

64 0.735 0.655 0.997 0.7210 

 

Table 4.16: Tanh Activation Function with Different Slice Count Sizes Testing F1-Score, Precision, and 
Recall/Sensitivity Results 

Slice Count Size Testing F1-Score Testing Precision Testing 

Recall/Sensitivity 

16 0.6469 0.6507 0.6526 

32 0.7006 0.7100 0.7006 

64 0.7218 0.7292 0.7211 
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 Although there was previous testing that was referenced to use the slice count of 32 for the initial 

input. The function was run with a slice count of 16 and 64 as well. Table 4.6 and 4.7 showcase the 

difference in the various slice count size. Table 4.6 shows the different accuracies at testing, validation, 

and training. Table 4.7 provides the testing results of F1-score, precision, and recall/sensitivity. Although 

the F1-score, precision and recall/sensitivity are higher for the slice count of 64, the different types of 

accuracy are best when the slice count is at 32. Therefore, from the results, it can be concluded that the 

slice count size of 32 provides the overall best results. In addition, the higher the slice count the longer it 

will take for the code to run. Overall, the simulation results showcase the difference in performance of the 

three activation functions in the dense layer and provides significant results that the hyperbolic tangent 

function provide the best results. 
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Chapter 5 : Conclusion and Future Work 
Summary 

From the results presented in the section above, there are promising results that show that the 

CNN model can assist with the detection of Alzheimer’s disease. The model was trained to assess two 

classifications. The model parameter that was varied was the activation function used in the dense layer. It 

was found that the hyperbolic tangent activation function provided the best results. The performance 

resulting from the two classifications when using the hyperbolic tangent function, on average was 

validation best accuracy of 81.10%, validation stopped tuning accuracy of 81.10%, training best accuracy 

of 100.00%, testing best accuracy of 68.94%,  f-1 score of 70.06%, precision of 71.00%, and recall of 

70.06%.  

Future Work 

In the future, the performance of the model could be tested using brain scans from different 

datasets. ADNI is not the only dataset that is accessible to the general public. Other examples of datasets 

are NIMH Repository and OASIS. The current inputs are MRI scans, but there are alternative inputs that 

could also be assessed. For instance, other common brain scanning techniques could be used such as PET, 

CT, and EEG. In addition, other wavelets could also be used. The current model used Haar, but there are 

other wavelets such as Coiflet, Biorthogonal, etc.  
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Appendix 
Appendix A: Code 
 

# 
# cnn_model.py 
# Author: Melissa Nardone 
# Description: Creates and trains a CNN model for Alzheimer's detection. 
# Usage: cnn_model.py [test_id] 
# 
 
 
import os 
import pandas as pd 
import tensorflow as tf 
import numpy as np 
import cv2 
import time 
import sys 
 
 
from sklearn.model_selection import train_test_split 
from tensorflow import keras 
from keras.models import Model 
example_model = tf.keras.Sequential() 
BatchNormalization = tf.keras.layers.BatchNormalization 
Conv2D = tf.keras.layers.Conv2D 
MaxPooling2D = tf.keras.layers.MaxPooling2D 
Activation = tf.keras.layers.Activation 
Flatten = tf.keras.layers.Flatten 
Dropout = tf.keras.layers.Dropout 
Dense = tf.keras.layers.Dense 
Concatenate = tf.keras.layers.Concatenate 
Input = tf.keras.layers.Input 
from tensorflow.python.keras import backend as K 
Sequence = tf.keras.utils.Sequence 
from tensorflow.python.keras.callbacks import (ModelCheckpoint) 
from matplotlib import pyplot as plt 
from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay 
from sklearn import metrics 
plot_model = tf.keras.utils.plot_model 
 
 
###### Model and training parameters ##### 
BALANCE_DATA = 1  # equalize the number of brain scans in each category 
 
IMG_SHAPE = (38, 38, 3)  # input coefficient size per slices 
SLICE_COUNT = 32  # slice count 
BATCH_SIZE = 20 
EPOCHS = 15 
INDEX_OFFSET = 15  # 90 # slice initial offset index 
 
SRC_DIR = 'C:\\Users\\miake\\OneDrive\\Desktop\\level2'  # image directory 
pointing to the DWT coefficients 
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# Define the classifications and classification labels 
# label_dict = {'AD': 0, 'MCI': 1, 'NL': 2} 
label_dict = {'AD': 1, 'NL': 0} 
 
classification_labels = list(label_dict.keys()) 
 
 
###### Generate Model ##### 
inputs = [] 
outputs = [] 
 
# CNN Model 
for i in range(SLICE_COUNT): 
    input = Input(IMG_SHAPE) 
    inputs.append(input) 
    conv1 = Conv2D(8, (5, 5), activation='relu')(input) 
    max_pool1 = MaxPooling2D((2, 2))(conv1) 
    conv2 = Conv2D(16, (3, 3), activation='relu')(max_pool1) 
    max_pool2 = MaxPooling2D((2, 2))(conv2) 
    outputs.append(max_pool2) 
 
if SLICE_COUNT == 1: 
    flatten = Flatten()(outputs[0]) 
else: 
    comb = Concatenate()(outputs) 
    flatten = Flatten()(comb) 
 
dense1 = Dense(32, activation='tanh')(flatten) 
dense2 = Dense(16, activation='tanh')(dense1) 
dropout = Dropout(0.3)(dense2) 
 
output = Dense(len(label_dict), activation='softmax')(dropout) 
 
model = Model(inputs=[inputs], outputs=[output]) 
 
print(model.summary()) 
tf.keras.utils.plot_model(model, to_file="test.png", rankdir="TB", 
show_shapes=True) 
 
 
##### Data Generator ##### 
def generate_dataframe(): 
    df = pd.DataFrame(columns=['img_id', 'classification']) 
 
    # loop through all mri images 
    for (dirpath, _, filenames) in os.walk(SRC_DIR): 
        for file in filenames: 
            data = file.rsplit('_') 
            id = int(data[1]) 
            slice = data[2].rsplit('.')[-2] 
            classification = os.path.split(dirpath)[1] 
 
            if int(slice[5]) == 0: 
                if classification in list(label_dict.keys()): 
                    df = df.append({'img_id': id, 'classification': 
classification}, ignore_index=True) 
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    df = df.sort_values(by=['img_id'], ignore_index=True) 
 
    return df 
 
 
df = generate_dataframe() 
 
img_ids = df['img_id'].unique() 
img_ids.sort() 
image_df = df 
 
##### Remove dataset imbalances ##### 
if BALANCE_DATA: 
    class_df_list = [] 
    class_counts = [] 
 
    # get the id count for each classification 
    for label in list(label_dict.keys()): 
        class_df = image_df[image_df['classification'] == label] 
        class_df = class_df.reset_index(drop=True) 
        class_df_list.append(class_df) 
        class_counts.append(class_df.shape[0]) 
 
    min_class_count = min(class_counts) 
    min_class_idx = class_counts.index(min_class_count) 
    min_class_label = list(label_dict.keys())[min_class_idx] 
 
    # generate dataframe with balanced classes 
    balanced_image_df = pd.DataFrame(columns=['img_id', 'classification']) 
    for df in class_df_list: 
        if df.shape[0] > min_class_count: 
            df = df.drop(range(min_class_count, df.shape[0]))  # drop image 
ids to make all classes equivalent 
        print(df['classification'][0] + ': ' + str(df.shape[0])) 
        # add dataframe back 
        balanced_image_df = balanced_image_df.append(df) 
 
    balanced_image_df = balanced_image_df.reset_index(drop=True) 
    print(balanced_image_df) 
 
    image_df = balanced_image_df 
 
# train/test/validation split, 70%, 20%, 10% 
train_images, test_validate_images = train_test_split(image_df, 
test_size=0.3, random_state=42) 
validation_images, test_images = train_test_split(test_validate_images, 
test_size=0.67, random_state=42) 
 
print('\nTraining IDs: ', len(train_images)) 
print('Validation IDs: ', len(validation_images)) 
print('Test IDs: ', len(test_images)) 
 
# save training/validation/test ids and labels to CSV 
train_images.to_csv('training_images.csv', index=False) 
validation_images.to_csv('validation_images.csv', index=False) 
test_images.to_csv('test_images.csv', index=False) 
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# loading images helper 
def load_image(path): 
    if IMG_SHAPE[2] == 1: 
        im = cv2.imread(path, 0)  # greyscale 
    else: 
        im = cv2.imread(path) 
 
    im = np.array(im) / 255  # normalize 
 
    return im 
 
 
##### Data Generator ##### 
class DataGenerator(Sequence): 
    def __init__(self, img_ids, labels, to_fit=True, batch_size=10, 
dim=(IMG_SHAPE[0], IMG_SHAPE[1]), 
                 n_channels=IMG_SHAPE[2], shuffle=True): 
        self.img_ids = img_ids 
        self.num_inputs = SLICE_COUNT 
        self.num_classes = len(label_dict) 
        self.labels = labels 
        self.to_fit = to_fit 
        self.batch_size = batch_size 
        self.dim = dim 
        self.n_channels = n_channels 
        self.shuffle = shuffle 
        self.on_epoch_end() 
 
    def __len__(self): 
        return int(np.floor(len(self.img_ids) / self.batch_size)) 
 
    def __getitem__(self, index): 
        # Generate indexes of the batch 
        indexes = self.indexes[index * self.batch_size:(index + 1) * 
self.batch_size] 
 
        # Locate the list of image _ids 
        img_ids_temp = [self.img_ids[k] for k in indexes] 
 
        # Generate data 
        X = self._generate_X(img_ids_temp) 
 
        if self.to_fit: 
            y = self._generate_y(indexes) 
            return X, y 
        else: 
            return X 
 
    def on_epoch_end(self): 
        self.indexes = np.arange(len(self.img_ids)) 
        if self.shuffle == True: 
            np.random.shuffle(self.indexes) 
 
    def _generate_X(self, img_ids_temp): 
        # list, with an array for each input 
        X = [np.empty((self.batch_size, *self.dim, self.n_channels)) for i 
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in range(self.num_inputs)] 
 
        for i, img_id in enumerate(img_ids_temp): 
            label_idx = np.where((self.img_ids == img_id))[0][0] 
            classification = self.labels[label_idx] 
 
            # load images 
            for slice in range(SLICE_COUNT): 
                path = os.path.join(SRC_DIR, classification, 
                                    'img_' + str(img_id) + '_slice' + 
str(slice + INDEX_OFFSET) + '.jpg') 
                image = load_image(path) 
                X[slice][i,] = image.reshape(IMG_SHAPE) 
 
        return X 
 
    def _generate_y(self, indexes): 
        y = np.empty((self.batch_size, self.num_classes), dtype=int) 
        # Generate data 
        for i, index in enumerate(indexes): 
            # Store sample 
            y[i,] = label_dict[self.labels[index]] 
 
        y = y.T 
 
        # perform one-hot encoding 
        return (keras.utils.to_categorical(y[0], 
num_classes=len(classification_labels))) 
 
 
def split_classification_data(data): 
    x = data['img_id'].to_numpy() 
    y = data['classification'].to_numpy() 
 
    return x, y 
 
 
X_train, y_train = split_classification_data(train_images) 
X_test, y_test = split_classification_data(test_images) 
X_valid, y_valid = split_classification_data(validation_images) 
 
train_generator = DataGenerator(X_train, y_train, batch_size=BATCH_SIZE) 
validation_generator = DataGenerator(X_valid, y_valid, 
batch_size=BATCH_SIZE) 
 
##### Train Model ##### 
training_metrics = ['categorical_accuracy'] 
 
# compile model 
opt = tf.keras.optimizers.Adam() 
 
model.compile(loss='categorical_crossentropy', 
              optimizer=opt, 
              metrics=training_metrics) 
 
start = time.time() 
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# Test ID 
test_id = 'tanh batch size 20' 
 
# for saving only the model with the best performance 
model_path = 'model_' + test_id 
checkpoint = ModelCheckpoint(model_path, monitor='categorical_accuracy', 
verbose=1, save_best_only=True, mode='max') 
callbacks_list = [checkpoint] 
 
print("Batch_size:", BATCH_SIZE, " \tStart time:", time.strftime("%H:%M:%S", 
time.gmtime(start))) 
 
# train the model 
H = model.fit( 
    train_generator, 
    steps_per_epoch=len(train_generator), 
    validation_data=validation_generator, 
    validation_steps=len(validation_generator), 
    epochs=EPOCHS, 
    callbacks=callbacks_list) 
 
end = time.time() 
total_time = end - start 
print("Training Complete. \tTotal Time: ", time.strftime("%H:%M:%S", 
time.gmtime(total_time))) 
 
# Model testing 
history = H 
print(history.history.keys()) 
 
# summarize history for accuracy 
plt.figure() 
plt.plot(history.history['categorical_accuracy'], 'ok-') 
plt.plot(history.history['val_categorical_accuracy'], 'ok--') 
plt.title('Model Training Accuracy') 
plt.ylabel('accuracy') 
plt.xlabel('epoch') 
plt.legend(['training', 'validation'], loc='upper left') 
plt.savefig('model_accuracy_' + test_id + '.png') 
 
# summarize history for loss 
plt.figure() 
plt.plot(history.history['loss'], 'ok-') 
plt.plot(history.history['val_loss'], 'ok--') 
plt.title('Model Training Loss') 
plt.ylabel('loss') 
plt.xlabel('epoch') 
plt.legend(['training', 'validation'], loc='lower left') 
plt.savefig('model_loss_' + test_id + '.png') 
 
# Get the best saved model 
model = tf.keras.models.load_model('model_' + test_id) 
 
train_generator = DataGenerator(X_train, y_train, batch_size=BATCH_SIZE, 
shuffle=False) 
validation_generator = DataGenerator(X_valid, y_valid, 
batch_size=BATCH_SIZE, shuffle=False) 
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test_generator = DataGenerator(X_test, y_test, batch_size=BATCH_SIZE, 
shuffle=False) 
 
##### Model Testing ##### 
 
##### Generate Test Confusion Matrix ##### 
# generate predictions for test set for confusion matrix 
y_pred = model.predict(test_generator) 
 
y_pred = [classification_labels[y[0]] for y in (y_pred > 0.5).astype(int)] 
metrics_dict = metrics.classification_report(y_test[0:len(y_pred)], y_pred, 
target_names=classification_labels, 
                                             digits=4, output_dict=True) 
print(metrics.classification_report(y_test[0:len(y_pred)], y_pred, 
target_names=classification_labels, digits=4)) 
 
matrix = confusion_matrix(y_test[0:len(y_pred)], y_pred, 
labels=classification_labels) 
 
accuracy = metrics_dict['accuracy'] 
f1_score = metrics_dict['weighted avg']['f1-score'] 
precision = metrics_dict['weighted avg']['precision'] 
recall = metrics_dict['weighted avg']['recall'] 
 
# save confusion matrix 
plt.figure() 
disp = ConfusionMatrixDisplay(confusion_matrix=matrix, 
display_labels=classification_labels) 
disp = disp.plot(cmap=plt.cm.Greys, colorbar=False) 
plt.savefig('test_confusion_matrix_' + test_id + '.png') 
 
##### Generate Validation Confusion Matrix ##### 
y_pred = model.predict(validation_generator) 
 
y_pred = [classification_labels[y[0]] for y in (y_pred > 0.5).astype(int)] 
 
matrix = confusion_matrix(y_valid[0:len(y_pred)], y_pred, 
labels=classification_labels) 
 
# save confusion matrix 
plt.figure() 
disp = ConfusionMatrixDisplay(confusion_matrix=matrix, 
display_labels=classification_labels) 
disp = disp.plot(cmap=plt.cm.Greys, colorbar=False) 
plt.savefig('validation_confusion_matrix_' + test_id + '.png') 
 
##### Generate Training Confusion Matrix ##### 
y_pred = model.predict(train_generator) 
 
 
y_pred = [classification_labels[y[0]] for y in (y_pred > 0.5).astype(int)] 
 
matrix = confusion_matrix(y_train[0:len(y_pred)], y_pred, 
labels=classification_labels) 
 
# save confusion matrix 
plt.figure() 
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disp = ConfusionMatrixDisplay(confusion_matrix=matrix, 
display_labels=classification_labels) 
disp = disp.plot(cmap=plt.cm.Greys, colorbar=False) 
plt.savefig('training_confusion_matrix_' + test_id + '.png') 
 
# save the test performance in a CSV 
test_performance_dict = {'training time': [time.strftime("%H:%M:%S", 
time.gmtime(total_time))], 'accuracy': [accuracy], 
                         'f1_score': [f1_score], 'precision': [precision], 
'recall': [recall]} 
test_peformance_df = pd.DataFrame(test_performance_dict) 
test_peformance_df.to_csv('test_performance_' + test_id + '.csv') 
 
print('TEST ID: ' + test_id) 
 

 

#  
# extract_slices.py 
# Author: Melissa Nardone 
# Description: Extracts the MRI slices from the ADNI dataset. 
# 
 
import os 
import numpy as np 
import nibabel as nib 
import cv2 
 
from matplotlib import pyplot as plt 
 
SRC_DIR = '' 
DEST_DIR = '' 
 
 
def extract_slices(): 
    print('Extracting and saving slices...') 
    total_slices = 0 
 
    # loop through all mri images 
    files = list() 
    for (dirpath, dirnames, filenames) in os.walk(SRC_DIR): 
        files += [os.path.join(dirpath, file) for file in filenames] 
 
    for file in files: 
        img = nib.load(file) 
        data = img.get_fdata() 
 
        # get filename 
        dirname, fname = os.path.split(file) 
        fname = fname.replace('.nii', '') 
 
        # get diagnosis directory 
        diagnosis = os.path.split(dirname)[1] 
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        # axial slices 
        for idx in range(75, 176, 1): 
            slice = data[idx, :, :] 
 
            # normalize image data 
            if (np.max(slice) != 0): 
                slice = 255 * ((slice - np.min(slice)) / (np.max(slice) 
- np.min(slice))) 
 
            # convert image to jpeg 
            dest_dir = os.path.join(DEST_DIR, diagnosis, fname + 
'_axial_slice' + str(idx) + '.jpg') 
            cv2.imwrite(dest_dir, slice)   
            total_slices += 1 
 
        # sagittal slices 
        for idx in range(33, 134, 1): 
            slice = data[:, idx, :] 
 
            # normalize image data 
            if (np.max(slice) != 0): 
                slice = 255 * ((slice - np.min(slice)) / (np.max(slice) 
- np.min(slice))) 
 
            # convert image to jpeg 
            dest_dir = os.path.join(DEST_DIR, diagnosis, fname + 
'_sagittal_slice' + str(idx) + '.jpg') 
            cv2.imwrite(dest_dir, slice)   
            total_slices += 1 
 
        # coronal slices 
        for idx in range(75, 176, 1): 
            slice = data[:, :, idx] 
 
            # normalize image data 
            if (np.max(slice) != 0): 
                slice = 255 * ((slice - np.min(slice)) / (np.max(slice) 
- np.min(slice))) 
 
            # convert image to jpeg 
            dest_dir = os.path.join(DEST_DIR, diagnosis, fname + 
'_coronal_slice' + str(idx) + '.jpg') 
            cv2.imwrite(dest_dir, slice)   
            total_slices += 1 
     
    print('\tTotal slices: ' + str(total_slices)) 
 
extract_slices('') 
 

 

#  
# extract_slices.py 
# Author: Melissa Nardone 
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# Description: Extracts the MRI slices from the ADNI dataset. 
# 
 
import os 
import shutil 
 
SRC_DIR = 'ADNI/' 
DEST_DIR = '' 
 
def extract_source_files(base_dir): 
    print('Extracting source files...') 
    total_src_files = 0 
 
    img_dir = os.path.join(base_dir, SRC_DIR) 
    dst_dir = os.path.join(base_dir, DEST_DIR) 
 
    # loop through all mri images 
    files = list() 
    for (dirpath, dirnames, filenames) in os.walk(img_dir): 
        files += [os.path.join(dirpath, file) for file in filenames] 
 
    for file in files: 
        _, fname = os.path.split(file) 
        dest_file = os.path.join(dst_dir, fname) 
        shutil.copyfile(file, dest_file) 
        total_src_files += 1 
     
    print('\tTotal files: ' + str(total_src_files)) 
 

 

#  
# wavelet_transform.py 
# Author: Melissa Nardone 
# Description: Performs feature extraction using the wavelet transform. 
# 
 
import os 
import cv2 
import pywt  
 
import numpy as np 
 
WAVELET = 'haar' 
SRC_DIR = ''  
DEST_DIR = '' 
 
def wavelet_transform(): 
    print('Performing the discrete wavelet transform...') 
 
    count = 0 
    wavelet_type = WAVELET 
 
    # loop through all mri images 
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    files = list() 
    for (dirpath, _, filenames) in os.walk(SRC_DIR): 
        files += [os.path.join(dirpath, file) for file in filenames] 
 
    count = 0 
    for file in files: 
        img_data = cv2.imread(file, 0) # read in grayscale image 
        img_resized = cv2.resize(img_data, (150, 150), interpolation = 
cv2.INTER_AREA) 
 
        # wavelet transform [LH, HL, HH] 
        coeffs = pywt.wavedec2(img_resized, level=2, 
wavelet=wavelet_type) 
 
        classification = file.rsplit("\\")[-2] 
        _, fname = os.path.split(file) 
        fname = fname.replace('.jpg', '') 
 
        # extract the approximation coefficients 
        # path = os.path.join(DEST_DIR, 'LL', 'level2', classification, 
fname + '.jpg') 
        # cv2.imwrite(path, coeffs[0]) 
 
        for level in range(1, 3): 
            # form an image with the 3 channels representing the detail 
coefficients 
            path = os.path.join(DEST_DIR, 'level' + str(3-level), 
classification, fname + '.jpg') 
            data = np.array([coeffs[level][0], coeffs[level][1], 
coeffs[level][2]]) 
            cv2.imwrite(path, data.T) 
 
        count = count + 1 
     
    print('\tTotal images: ' + str(count)) 
 
wavelet_transform() 
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Appendix B: Mia Keegan’s ABET Analysis 
 

Detecting Alzheimer’s Disease using Artificial Neural Networks 

ABET Analysis 

By: Mia Keegan 

Advisor: Professor Helen Yu 

 

 The goal of our project is to be able to build a software program that will detect early onset 
Alzheimer's disease from a Magnetic Resonance Image (MRI) scan. The program will take an input of 
MRI scan and will use artificial neural networks to determine the probability of early onset Alzheimer's 
disease. The program will output a document filled with percentages of the different patterns seen in the 
MRI and probability of the disease being detected. 

 One of the engineering specifications for this project is to have an accuracy rate of 90%. This is a 
high percentage and can be difficult since there can be false positives or false negatives in the database 
that will be used to train the program. These false positives or false negatives can lead to inaccuracies 
with the program results. Another constraint to the project is that the MRI scans in the database will be in 
Nifiti file format. This is a 3D file format. This file format is not very common so determining how to 
handle the file will be important. Another difficulty was making sure all the files from the MRI database 
are the same size file. The program takes in a specific size file type so making sure the file size is accurate 
is important. Inaccuracy in file size can cause the program to not run and give out a result. 

 This project will be fully on the computer. There will be no direct need for natural resources. The 
only required equipment will be a computer. The program will be installed onto an already preexisting 
computer at the hospital. The only human labor will be the coders of the program and any doctor or 
hospital employee who uses the program. There should be no need for cash capital since a lot of the 
coding will be done on python and all the open-source code is free. The cost of the product will start 
accruing as technology start improving which means the program will need to be revised to keep up with 
the improvements. Since this product is software base, there will need to be updates made either yearly or 
in a shorter period. Computers will have updates, so the software program must be able to keep up with 
those updates. The estimated development time was 150 hours. That results in about $3,000.00 in labor 
cost. There will be additional labor cost as maintenance has to be done on the software program. 

 There are about six thousand hospitals located in the US. There are about thirty-three health 
centers that specialize in Alzheimer’s Disease. I expect that in the first year there will be about fifty 
software packages that are sold. But as different hospitals use the software and proves the product’s 
reliability there will be more products sold every year. The manufacturing cost for each device will be 
mostly due to labor cost from the programmers. But the majority of the labor cost was done in the 
development stage of the project. Since there will be little to no cost for commercial manufacturing, the 
product will be free to download. The profit will come from advertising. There will be no specific cost to 
operate the program itself, but the power used by the computer to run the program will be what costs the 
customer. This program will be run in hospitals who have equipment that consumes a lot more power 
than the computer will to run the program. So, the cost to the customer to run the program will be 
negligible. 
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 One environmental concern is the effect that desktop computers power consumption has on 
omission levels. An average desktop computer uses on average 200 Watts per hour. So an computer that 
is on for eight hours a day will use around 600 kW and that will result in 175 kg of C𝑂! per a year [1]. 
Global warming is a very important issue around the world and there needs to be a quick reduction in 
emissions to reduce the effects. So, by having our program run on a desktop computer at a hospital will 
only increase the 𝐶𝑂! emissions. The program will not be run every day at each hospital but will increase 
the emissions. 

 Unlike other products, there will be no actual physical manufacturing of the product. The product 
will instead be all programmed. This means that it is very important that the code for the programs gets 
copied correctly. A slight change in the code can cause issues with the results of the product. The results 
of this product can be very sensitive to whomever is receiving them. So, if there was code that was 
changed that can cause inaccurate results and can affect the end user. It is very important that the code of 
the product is copied exactly over.  

 As time goes on, technology improves and evolves. This means that software programs will need 
to be able to keep up with the change in technology. This means that has computers improved, there 
might need to be changes to the software to be compatible with the newest technology. This means that 
constant updates will need to be made and this can be difficult to keep up with. This can also be difficult 
for the customers since they will need these updates installed or will need the program reinstalled if the 
computers get switched out. These programs will run off computers that use electricity. Not all electricity 
is from renewable sources, such as oil or gas. The continued use of these resources is not sustainable. An 
upgrade that would help increase the sustainability of the product is making the program’s power 
consumption as low as possible. This will reduce the consumption of non-renewable energy sources.  

 Since the results of our product will determine whether someone has a serious disease, it is 
important that the patient knows all the information about the program and the results that are output. This 
program does not have a 100% accuracy rate which means that there could be false positives or negatives. 
The program will have a 90% accuracy rate which means most results will be correct, but it is important 
to let the patient know that it is not 100% accurate. If the doctor or hospital employee were not to give 
this information to the patient this will being going against the IEEE Code of Ethics promise to uphold 
the highest standards of integrity [2]. This can affect the health of the public. 

 Continuing about the product not being 100% accurate, if there is a false positive or negative this 
can mislead the next steps. If there was a false positive, the patient might start treatment to help slow the 
pace of the disease. The problem is that the patient does not actually have the disease and could end up 
having had side effects to the treatment that was not needed. For false negatives, this means treatment 
might be delayed until the disease is in later stages. This means that the disease might progress into worst 
symptoms when it could have been treated and delay those symptoms. The product is 90% accurate, 
meaning that the majority of the time their results will be correct. As improvement get made the accuracy 
rate will increase and reduce the number of false positives and negatives. 

 This product will mainly impact individuals who are believed to have early stages of Alzheimer’s 
disease. Some other stakeholders include doctors and hospital employees since this can help give their 
patients more information. But this also means that the doctors and hospital employees’ reputation rely on 
how the product being accurate. Some social concern could be that such an important diagnosis should be 
made by a doctor and not a computer whose accuracy rate is not 100%.  There are many people who 
believe that computers are not to be trusted and that they are taking jobs away from humans. This product 
will not replace anyone job but more aid doctors and save doctors time by them not having to hand look at 
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MRI to find the diagnosis. Overall, there are a lot of positive effects the product will have on society. This 
product allows patients who test positive for Alzheimer’s disease to start treatment that will manage their 
symptoms and hopefully prevent some cognitive decline from the disease.  

 After doing some independent research, there were open-source databases known as AlexNet, 
ImageNet and GoogLeNet. ImageNet is a large database with images that AlexNet and GoogLeNet use. 
These databases are convolutional neural networks architecture with layers that help detect patterns 
within images. ImageNet organizes challenges where architectures like AlexNet and GoogLeNet can 
compete and prove the accuracy of their architecture. These architectures allowed for easier coding.  
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Appendix C: Sally Lee’s ABET Analysis 
 

Sally Lee 

 

ABET Analysis of Senior Project Design 

 

The project is aimed to use artificial neural networks (ANN) to detect Alzheimer’s disease. More 

specifically, convolutional neural networks (CNN) will be utilized since this is the most used ANN. The 

main function of the software program is to take an input, which is the patient’s MRI scans and then 

output the classification of those scans. Within this main function, there are three smaller functions. These 

functions include converting the input file, processing the image, and classifying it, and then finally the 

function that displays the information in an output file. The purpose of using artificial neural networks as 

the detection method is to provide an intelligent way to analyze images and signals, specifically in 

medical applications. This project is designed to be used in medical settings and the user is expected to be 

someone working the field with little to no knowledge on the specifics of how the neural network works. 

Therefore, the software program will be straightforward and user friendly for this application.   

When initially starting this project, there was a significant challenge with understanding the 

basics of artificial neural networks. This information was not learned in a classroom setting, which 

required all outside research and learning to fully understand the concept. Furthermore, there were also 

limitations surrounding the medical information pertaining to Alzheimer’s disease. Much research was 

needed to get a grasp on information surrounding the MRI scan and its specifications. Since this is project 

that is focused on software and open-source code is going to be used, there were limitations surrounding 

the type of language that would be used to code the program.  Since the purpose of the project is to use 

artificial neural networks and use it in an image processing application, the direction of the approach of 

the project was very straightforward. When choosing a specific network and understanding what needs to 

be done, the project goal limited the options as certain networks are more commonly used for these types 

of applications.  

The project results in various economic impacts. In terms of human capital, the knowledge 

gathered regarding artificial neural networks, Alzheimer’s disease and MRI scans assist in the 

development of the project. The knowledge gained from this project can pass between individuals. In 

addition, there is not much human capital since the project aims to have a computer classify MRI scans in 
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place of a human. Regarding financial capital, since there were no physical components of the project the 

only financial capital would be the necessary labor costs and the singular material cost for MATLAB. For 

manufactured or real capital, the project needs certain tools and technology ensuring completion, such as 

MATLAB. However, the program itself should be able to run on any computer. In terms of natural 

capital, this is limited to the current usage of the Earth’ resources in computers that have already been 

built and are in use. Costs and benefits accrue during various portions of the project’s lifecycle. Costs 

accrue during the development of the project because of the labor going into it as well the acquisition of 

software to develop the project. The only input to the system is the MRI scans of a patient. The only cost 

accrued during this project was purchasing MATLAB with the neural network toolbox. The student 

edition costs roughly $100. This project does not earn any profit, but the goal of this project is to assist in 

patient care of Alzheimer’s disease since early detection is vital to treating the patient. The final product 

will emerge once and will last for however long it is needed to use since the user determines the life of the 

use of the software in their workplace. No additional maintenance or operation costs occur apart from 

regular computer maintenance. The total time spent on the project from beginning planning stages is nine 

months. The original estimated development time and the actual development time of the project will be 

roughly six months. To be more specific, the time spent on the development of this project will be around 

20 weeks. After the project ends, future work can be done to improve the results or add more features to 

the program.  

 Since this project has an outcome of a software program, there is no manufacturing involved with 

the program. This means that the project would not be manufactured on the commercial basis. Therefore, 

there are no estimates and specifics regarding the manufacturing of the project on a commercial basis. In 

addition, software distribution typically has little to no cost. Many different software programs are readily 

available to download on any computer.  

 There are little to no environmental impacts associated with the use of this project. The only 

natural resource needed is electricity to run a computer because that is the sole source of power required 

to run a software program. Thus, this project only uses natural resources indirectly to generate power 

(e.g., coal, oil, natural gas). In addition, the amount of energy used should not be substantial enough to 

have any significant effects on the environment. The project does not harm or improve any of the natural 

resources and ecosystem species. The detection of Alzheimer’s disease through a neural network does not 

impact other species other than humans.  

 As mentioned previously, the product that comes out of this project is a software program. This 

means that there is no physical component to the project and “manufacturability” is limited to software 
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distribution. The only issue that could arise with software distribution is issues with the installation of the 

software program. Therefore, there are no major issues or challenges associated with manufacturing.  

 Regarding the topic of sustainability, the project has no direct impacts on the sustainable use of 

resources. The project is a software program, which requires no physical maintenance since there are no 

actual physical parts. Again, the only manufacturing is the distribution of the software. Therefore, there 

are no issues or challenges associated with keeping this system sustainable. In terms of indirect impacts, 

the only concern would be the disposal of a computer after the product end life. In terms of upgrades for 

the design, there is always ways to configure the hidden layers of the network. This is a challenge since 

this means that there are endless possibilities to upgrade the design.   

According to IEEE Code of Ethics Section II, an engineer is required "to treat all persons fairly 

and with respect, to not engage in harassment or discrimination, and to avoid injuring others." This is 

particularly crucial concerning the development of the neural network to detect Alzheimer’s disease. The 

network is classifying an image (MRI scan) that is has processed.  The validity of the neural network 

classification of the patient’s MRI scan must be well known to all users of the system. If a wrong 

classification is made, the safety of the patient can be put at risk. In these situations, the ethical 

framework, Utilitarianism, applies. This framework is relevant because the project’s ability to detect 

Alzheimer’s disease encourages the safety for large groups of people, which complies with the 

Utilitarianism concept of “greatest good for the greatest number”.  The project and this concept share a 

common interest in treating everyone equally and making decisions to ensure the safety of the public.  

In terms of the design itself and the distribution of the software, there are no health and safety 

concerns. The only concern is the risks that come with the actual outcome after the use of the project. In 

particular, the issue of a false positive or false negative is a concern. This is an issue since if a patient is 

misdiagnosed, a problem could arise since early detection is vital for treatment of Alzheimer’s disease.  

 The project impacts society since anyone is susceptible to having Alzheimer’s disease. A social 

and political issue with the use of this project could be that people are not open to this method of 

detection since it might be viewed as inadequate, and some people could have strong opinions about a 

computer analyzing their scans instead of a medical professional. The direct stakeholders of this are 

anyone who is looking to get diagnosed via this project as well as the intended users of the project. 

Therefore, the project can harm stakeholders if inaccurate classifications are provided. On other hand, the 

project can benefit stakeholders by properly detecting the disease, which allows the patient to get the help 

they need. Indirect stakeholders are those who are also looking at ways to use artificial neural networks to 
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detect Alzheimer’s disease. The stakeholders should benefit equally if the project proves to be successful. 

The project does not create any inequities.  

 Throughout these ten weeks, there was an extensive list of new tools and techniques that were 

learned and used to assist in the progress of the course of the project. For instance, the ADNI database is 

very useful in the development of the project. This database includes various datasets of patient files. In 

addition, there was a lot of information regarding techniques that deal with implementing artificial neural 

networks through MATLAB. There are many different toolboxes and resources within MATLAB that 

were learned that will help with the development of the project as well.  

 


