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ABSTRACT
This project entails designing, simulating, and verifying analog circuits that can perform essential

computing functions for power systems applications. The project aims to remedy critical challenges associated
with handling calculations digitally, namely, time and power. This project's scope includes creating a library of
circuits in SPICE that can be used to model and simulate complex mathematical equations. From these SPICE
models, the circuit can be constructed physically, where the solution can be generated in less time using less
power than doing the computation digitally. The performance and efficiency of analog computing will be
measured and compared to conventional digital methods.
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I. INTRODUCTION
The basis of this project started in the 1960s as analog computers were first used to calculate complex

algorithms. Over time, digital computation became more favorable due to its accuracy with less noise,
distortion, and interference among its results [1]. Analog circuitry, however, is re-emerging as a solution for
complex calculations. It can present more refined results while consuming less power and bandwidth,
suggesting that analog computing can provide the same results as digital systems but more efficiently [2, 3].

With analog computing, physical circuits can be constructed to perform various mathematical
operations; signals are sent through the circuits to generate results while measuring the speed and power
consumption [5]. The goal is to create a collection of circuits that handle simple arithmetic, like addition, to
complex math, like nonlinear differential equations [1]. The resulting analog computation can then be
transmitted to software where it can be analyzed and applied to applications, particularly power grid emulation
and testing.
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II. BACKGROUND
Analog computation is defined as computations in which the result is derived via measurement from a

continuous quality, such as voltage or current [1]. From this definition, analog computation is favored by
continuous-time systems, which has been seen throughout history. Analog computation in the 1940s generated
many special-purpose machines that handled continuous signals, such as harmonic and power-network
analyzers [1]. The one thing in common with all of these devices is this: they all handle data in real time rather
than using step functions to approximate the continuous data [1]. This makes analog computation a preferred
choice for specific applications, such as power grid simulations or signal processing.

Analog computation ranges from basic to complex mathematical equations, all done with passive and
active circuit configurations [1]. The basic arithmetic handled, such as those seen in Figure 2-1, uses passive
circuits, such as a voltage divider, while active circuits handle addition, subtraction, and multiplication.

(a) (b)

(c) (d)

Figure 2-1. Conceptual Basic Arithmetic Circuits (a) Resistive Divider (b) Inverting Multiplier (c) Voltage
Adder (d) Voltage Subtractor (Differential Amplifier)

In combination with calculus, these circuits can be used to represent complex systems such as linear
differential equations such as the Mathieu, Bessel, and Legendre functions [2]. Figure 2-2 shows an integrator
and differentiator. What is important to note about the differentiator is that the capacitor input configuration
permits too much noise, the second configuration mitigates this issue.

(a) (b) (c)

Figure 2-2. Conceptual Basic Calculus Circuits (a) Integrator (b) Differentiator (c) Noise-Reducing
Differentiator
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These circuits allow for complex analysis of larger-scale systems and provide high-speed solutions for
systems such as power grids [3]. Traditional power grid simulations rely on numerical algorithms, which need
to be faster to handle a real-time power system. Analog computation allows simulators like these to surpass the
limits of numerical (discrete) algorithms as they use the measurement of power to extract data such as damping
power and phase angle [3]. Circuits such as the integrator and differentiator are represented via a control system
and then constructed accordingly to analyze the power grid. This results in simplification with simulation
models.

Analog computation is also being furthered as it is used for power grid emulation. The difference is that
analog microelectronics are used to handle these emulators [4]. In this case, it is being explored to create better
emulations that will handle DC and AC emulations better. By using power as the continuous signal as the
output, these emulators utilize CMOS microelectronic ASIC boards to simulate not only the power grid but
each load attached to the grid as well [4]. This yields a much more comprehensive simulation, benefiting those
who are optimizing and/or repairing the power grid.

The product titled ”The Analog Thing” by the company Anabrid is another example of analog
computation that is further expanded upon, shown in Figure 2-3. It is a low-cost, open-source analog computer
with multiple inputs and connection ports to calculate mathematical functions [5]. This multipurpose analog
computer can be used for applications from education to providing control to circuitry [5]. The computational
analog circuits utilize the basic and calculus circuitry presented above, allowing this device to be multifaceted
and provide solutions to specific problems.

Figure 2-3. “The Analog Thing” Device by Anabrid [5]
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III. DESIGN REQUIREMENTS

Functional Decompositions

The level 0 functional decomposition displays the overall inputs and outputs of a system. For this project, the
main input for the analog circuits system is the desired algorithm to be solved, supplied by the customer. The
main output of the system is the PCB file representation of the desired algorithm so that the customer can
manufacture their PCB-represented algorithm. Figure 3-1 illustrates the level 0 functional decomposition for
this project.

Figure 3-1. Level 0 Functional Decomposition Block Diagram

The level 1 functional decomposition elaborates on the level 0 functional decomposition, showing the internal
modules within the main system as well as secondary inputs and outputs. For the analog circuits system, the
internal modules include the decomposer, library of computational circuits, netlist synthesizer, and PCB layout
generator. The decomposer, netlist synthesizer, and PCB layout generator modules must be done manually by
the customer. The decomposer module entails the customer deconstructing their algorithm into smaller
arithmetic and calculus functions that can be used to determine which circuits from the provided library are
needed to solve the algorithm. The netlist synthesizer allows for open-source modeling and simulation of the
customer’s algorithm, providing a SPICE netlist for their algorithm. The PCB layout generator module entails
customers transferring their modeled algorithm to a PCB layout format for future printing and solving via
hardware testing and measurement. The library of computational circuits will be provided for the customer,
which they can pull from to model their desired algorithm. Figure 3-2 provides a visual of this project's level 1
functional decomposition.

Figure 3-2. Level 1 Functional Decomposition Block Diagram
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The level 2 functional decomposition elaborates on specific modules within the overall system specified in the
level 1 functional decomposition. The decomposer, netlist synthesizer, and PCB layout generator are performed
manually by the customer. Thus, the library of computational circuits is the only module that requires
elaboration. The library of computational circuits comprises the following circuits: voltage adder, non-inverting
multiplier, resistive divider, differentiator, integrator, and inverter. The library circuits selected by the customer
will then be outputted as SPICE netlists to incorporate into their full algorithm model. The visual for the level 2
functional decomposition is shown in Figure 3-3.

Figure 3-3. Level 2 Functional Decomposition Block Diagram

Customer Requirements

The customer requirements for this project are selected to allow for the most inclusivity possible while ensuring
the computational circuits system is highly and properly functional as well as intuitive. The following are the
selected customer requirements, detailing the constraints for the project tailored to the customer:

a) Open-source simulation and hardware files
b) Functions must include a variety of mathematical operations (e.g., arithmetic, calculus, differential

equations)
c) Library must be intuitive to use
d) Circuits must provide results in a short amount of time for power grids
e) Mathematical computations from circuits must be accurate

Table 3-1 elaborates on the chosen customer requirements as well as the engineering specification derived for
each requirement.
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Table 3-1. Analog Circuits for Computing Customer Requirements and Engineering Specifications.

Customer
Requirements Engineering Specification Justification

a Zero closed-source applications An open-source library will ensure it is accessible to anyone
without needing to pay for access and use [6].

b A minimum of 5 mathematical
operations completed

The core function of the computational analog circuits.
Arithmetic and basic calculus will serve as the foundation for
nonlinear computations and systems-of-equation solving. [2]

c
At least 2 hours to become

familiar with the interface and
resources

An intuitive interface will allow easy use of the analog circuits
for the user to carry out their desired task. [7]

d
Computations will take

equivocal or less time to digital
systems (in msec)

A shortened time for computations will allow for improvement
in power grid development, simulation, and maintenance for
the customer. [4]

e Computations are accurate with
a maximum of 10% error

A maximum of 10% error will ensure the validity of the
computations and that it will function correctly in any
application. [1]

Engineering Specifications

Derived from the selected customer requirements, the engineering specifications detail the numerical target and
tolerance values as well as risk and compliance assigned to each requirement. Each of the specifications is
designed with the customer’s needs and wants prioritized. Table 3-2 elaborates on these engineering
specifications below.

Table 3-2. Analog Circuits for Computing Engineering Specifications with Target, Tolerance, and Compliance
Values

Parameter Target Tolerance Risk (H,M,L) Compliance
(A,T,S,I)

1 Accuracy 10 percent error Max M A, T

2 Number of mathematical
operations

5 operations Min M I

3 Closed-Source 0 Max L T

4 Intuitive 2 hrs Min M I

5 Short Computation Time <= to digital in msec Max H A, T, S

7



IV. DESIGN

Component Selection

Individual passive component values differ between the various circuits, but the LM741 operational amplifier is
the fundamental component for most of the mathematical operations. As the circuits are computational circuits,
most require the use of some kind of active component. The LM741 was chosen due to its fairly large range of
operational voltages (±18V), commonality in the market, and low-cost use.

The circuit that is the exception to using the LM741 op-amp is the resistive divider circuit, which consists of
only one potentiometer. The potentiometer selected for this circuit as well as other circuits that required variable
resistance (e.g. integrator and non-inverting multiplier), is the 251B12T104A2NB 100kΩ-knob potentiometer.
This selection is because 100kΩ provides the best ohmic range for the specifications of each circuit while
allowing easy adjustment, unlike other potentiometers that use flat turning mechanisms.

All other passive component values, such as single resistors and capacitors, depend on each circuit and the
tolerances specified. The process for selecting each of these components is discussed in the following sections.

Voltage Adder Component Selection

The voltage adder circuit uses an arbitrary number of components that depends on the desired number of
summing input nodes. Each voltage adder has at least three resistors, two for the two summing input nodes and
one for the feedback resistor. For testing purposes, a minimum of three resistors are used with the system
designed for a gain of 1. The following equation describes the gain for the voltage adder used to determine the
summing input node and feedback resistor values:

−𝑉
𝑜𝑢𝑡

𝑉
𝑖𝑛,1

+𝑉
𝑖𝑛,2

+𝑉
𝑖𝑛,3

+...+𝑉
𝑖𝑛,𝑛( ) =

𝑅
𝐹

𝑅
𝑖𝑛

To ensure a gain of 1, the summing input and feedback resistors are all 10 kΩ. The input signals are arbitrary
and do not affect the operation of the circuit as long as their sum does not exceed the ±18V rails of the LM741
operational amplifier.

Non-Inverting Multiplier Component Selection

The non-inverting multiplier circuit uses two resistors to form an arbitrary multiplication constant represented
by the gain of the LM741 op-amp. The gain of the amplifier is determined using the following equation:

𝑉
𝑜𝑢𝑡

𝑉
𝑖𝑛

= 1 +
𝑅

2

𝑅
1

The gain is dependent on the desired multiplication constant. For testing purposes, an arbitrary gain of 10 was
selected; thus, the resistor values chosen are 100 kΩ and 10 kΩ.

Resistive Divider Component Selection

The components of the resistive divider circuit are two resistors. The two resistors are arbitrary and are dictated
based on the following equation:

𝑉
𝑜𝑢𝑡

= 𝑉
𝑖𝑛

𝑅
2

𝑅
1
+𝑅

2
( )
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Depending on the desired divisor for the division operation, the resistors will be changed accordingly. For
purposes of simulation, resistor values of 1 kΩ for both resistors were chosen to perform division with a divisor
of 2.

Differentiator Component Selection

The differentiator circuit only uses a combination of two capacitors and two resistors. The component values are
chosen based on the time constant equation shown below that dictates the charging characteristics.

τ = 𝑅𝐶

To determine the output voltage of the circuit, the following equation is used:

𝑉
𝑜𝑢𝑡

=− 𝑅
𝐹
𝐶

𝑑𝑉
𝑖𝑛

𝑑𝑡( )
Vin is arbitrary and dependent on the desired input signal. The component values and time constant vary
depending on the type of input signal (i.e., sine wave, square wave, triangle wave, etc.) as well. For testing
purposes, resistor values of 1.5 kΩ and 15 kΩ are used, and capacitor values of 1 pF and 10nF. The traditional
configuration only uses a set of one resistor and capacitor (as represented in the equation). To mitigate gain
increase and account for attenuation at higher frequencies, input resistor Rin and feedback capacitor CF are
added to the design.

Integrator Component Selection

The integrator circuit design uses four resistors and one capacitor. The input resistor, feedback resistor, and
feedback capacitor are determined by the equation:

𝑉
𝑜𝑢𝑡

=− 1
𝑅

𝑖𝑛
𝐶

𝑜

𝑡

∫ 𝑉
𝑖𝑛

𝑑𝑡

The additional two resistors are used as a resistive divider at the end of the integrator circuit as maintaining a
gain of 1 became an issue during the design phase. The resistive divider allows for scaling of the output to
obtain the true, desired integrated output. After trial and error, an input resistor value of 1 kΩ, feedback resistor
value of 470 kΩ, and feedback capacitance value of 10 nF were chosen.

LTspice Circuit Schematics

Voltage Adder Design

The voltage adder circuit is designed based on the traditional voltage adder circuit configuration using a
standard LM741 op-amp. The voltage adder circuit allows for as many summing nodes as desired. For the
project’s purposes, the number of summing nodes will not exceed four nodes. This constraint is not based on the
design’s operation, but rather it is not cost-effective and becomes redundant to add more than four summing
nodes. The traditional configuration requires the input to be fed into the inverting terminal of the op-amp,
resulting in inverted results. Therefore, when the output is probed and results are recorded for this circuit, the
output will always be the inverted value of the real answer. This design can also be configured for subtraction
and negative numbers by applying negative voltages to one or more of the summing inputs. The supply voltages
are set to ±18V to minimize clipping at the output; these supply voltage levels are maintained for all designed
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active circuits. Figure 4-1 shows the finalized voltage adder circuit as simulated in LTspice, configured for only
two summing nodes.

Figure 4-1. LTspice-Designed Voltage Adder Circuit Schematic

Non-Inverting Voltage Multiplier Design

The non-inverting multiplier circuit is designed based on the traditional non-inverting multiplier circuit
configuration using a standard LM741 op-amp. The non-inverting multiplier circuit allows for multiplication
between a constant (set by the gain of the op-amp) and an input signal. Multiplication can be executed using the
inverting multiplier configuration and non-inverting multiplier configuration. For the project’s purposes, the
non-inverting configuration provided the desired results without the need to invert the measured output to
obtain the true result. This design can also be configured for negative multiplication by applying negative
voltages to one or more of the summing inputs. Figure 4-2 shows the finalized non-inverting multiplier circuit
as simulated in LTspice, configured for a multiplication constant (gain) of 10.

Figure 4-2. LTspice-Designed Voltage Multiplier Circuit Schematic

Resistive Divider Design

The resistive divider circuit is designed based on the resistive divider circuit configuration using standard
resistors. The resistive divider circuit allows for division between a constant set by the two resistors and an
input signal. For future purposes, a single 100 kΩ potentiometer can be used in place for the two resistors set
up. Figure 4-3 shows the finalized resistive divider circuit as simulated in LTspice, configured for a divisor of 2.

10



Figure 4-3. LTspice-Designed Resistive Divider Circuit Schematic

Differentiator Design

The differentiator circuit is designed based on the traditional differentiator circuit configuration using a standard
LM741 op-amp with an added input resistor and feedback capacitor. The addition of the extra resistor and
capacitor is to mitigate gain increase and account for attenuation at higher frequencies. The traditional
configuration requires the input to be fed into the inverting terminal of the op-amp, resulting in inverted results.
Therefore, when the output is probed, and results are recorded for this circuit, the output will always be the
inverted value of the real answer. This design can also be configured for negative signals by applying negative
voltages to the input. Figure 4-4 shows the finalized differentiator circuit as simulated in LTspice, configured for
only sinusoids.

Figure 4-4. LTspice-Designed Differentiator Circuit Schematic

Integrator Design

The integrator circuit is designed based on the traditional integrator circuit configuration using a standard
LM741 op-amp. An additional resistive divider combination is added at the end of the integrator system to
maintain a gain of 1. The traditional configuration requires the input to be fed into the inverting terminal of the
op-amp, resulting in inverted results. Therefore, when the output is probed, and results are recorded for this
circuit, the output will always be the inverted value of the real answer. This design can also be configured for
negative signals by applying negative voltages to one or more of the summing inputs. Figure 4-5 shows the
finalized integrator circuit as simulated in LTspice.
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Figure 4-5. LTspice-Designed Integrator Circuit Schematic

Printed Circuit Board Designs

The printed circuit boards (PCBs) for the individual computational circuits were designed in the PCB software
KiCad. The PCBs are designed to represent specific mathematical operations such as addition, multiplication,
division, differentiation, and integration. The dimensions of each PCB are 19.05 mm x 19.05 mm, with the trace
width chosen to be 0.25mm due to each PCB only needing low power and low frequency. In addition, header
pins were placed on two sides of the board in order to make the PCBs stackable. This allows all of the positive
and negative power supplies, along with the grounds, to be easily connected without additional wiring. With
only one math operation on each PCB, it allows the customer to use the same set of PCBs to model various
equations instead of needing to order a new PCB to represent a singular equation. Figures 4-6 a and b show an
example of the manufactured differentiation PCB and how each of the individual PCBs cascade and stack
together to form a more complex algorithm.

(a) (b)

Figure 4-6. (a) Manufactured Differentiator PCB (b) Three Differentiators, One Inverting Multiplier (Gain of
10), and One Voltage Adder Manufactured and Cascaded to form a 2nd-Order Differential Equation
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V. SIMULATION AND HARDWARE TESTS AND RESULTS
The project required both simulation and hardware testing as each circuit was designed via simulation first and
then tested on breadboards. After confirming that each circuit fully operates, given the specified constraints and
tolerances, the PCBs were designed and tested in the same manner. The testing setup used the same equipment
in each setting: The system is powered by a function generator and DC power supply, where the outputs are
observed using an oscilloscope. Figure 5-1 shows the block diagram that visualizes this process for all
simulation and hardware testing.

Figure 5-1. Block Diagram for Simulation and Hardware Testing

LTspice Design, Testing, and Results

Monte-Carlo Sensitivity Analysis on an Improved Differentiator Op-Amp Circuit
For LTSpice design and testing, each circuit was designed in LTSpice and then simulated. In addition, a

Monte-Carlo analysis was performed to observe the effects of 10% on the entire system. Figure 5-2 shows a
differentiator with an additional capacitor [1] to reduce noise at the sacrifice of bandwidth. This circuit is
specifically designed for a bandwidth of 9kHz (from 1kHz and 10kHz). The following design equations are
used where Cin was chosen as 10nF, and Vin is a 2kHz ramp function with an amplitude of 1V:

(Equation 1: Differentiator Gain)𝑉
𝑜𝑢𝑡

 =  − 𝑅
𝐹
 𝐶

𝑖𝑛
𝑑𝑉𝑖𝑛

𝑑𝑡

Table 5-1: Calculations for the Improved Differentiator Op-Amp Circuit Input and Feedback Resistances

Feedback Resistance Calculation Input Resistance Calculation

(Equation 2: Lower Cutoff Frequency)𝑓
𝐿
 =  1

2π𝑅
𝐹
𝐶

𝑖𝑛

𝑅
𝐹
 =  1

2π𝑓
𝐿
𝐶

1
 = 1

2π*1𝑘𝐻𝑧*10𝑛𝐹 = 15. 9𝑘Ω 

(Standard Resistor Value)𝑅
𝐹
 = 15. 9𝑘Ω ≈ 16𝑘Ω 

(Equation 3: Upper Cutoff Frequency)𝑓
𝑈

 =  1
2π𝑅

𝑖𝑛
𝐶

𝑖𝑛

𝑅
𝑖𝑛

 =  1
2π𝑓

𝑈
𝐶

1
 = 1

2π*10𝑘𝐻𝑧*10𝑛𝐹 = 1. 59𝑘Ω 

(Standard Resistor Value)𝑅
𝑖𝑛

 = 1. 59𝑘Ω ≈ 1. 6𝑘Ω 

Assuming RinCin = RFCF, then CF can be solved  𝐶
𝐹
 =

 𝑅
𝑖𝑛

 𝐶
𝑖𝑛

 𝑅
𝐹

= 1.6𝑘*10𝑛𝐹
16𝑘 = 1𝑛𝐹 

Due to the negative sign in Equation 1, an inverting amplifier with a gain of one has been cascaded to invert the
output again to yield the positive derivative of the signal.
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Figure 5-2. Differentiator Circuit with a Monte-Carlo Analysis Setup [8]

Input, Output, and Derivative Waveforms Nominal Bode Plot

Figure 5-3. Improved Differentiator Op-Amp Circuit Performance with Zero Tolerance at T = 25℃

The plot above shows the input and output waveform of the differentiator. The input is a 1V 2kHz ramp
function. Using cursor measurements, the output waveform amplitude is 640mV on the positive cycle. Equation
1 is used to verify the output waveform and functionality of the circuit. The derivative of the original waveform
is measured to be 4kV/s (dark green).

→𝑉
𝑜𝑢𝑡

 =  − 1 *− 𝑅
𝐹
 𝐶

𝑖𝑛
𝑑𝑉𝑖𝑛

𝑑𝑡

640𝑚𝑉 =  16𝑘Ω *  10𝑛𝐹 * 𝑑𝑉𝑖𝑛
𝑑𝑡

640𝑚𝑉 =  1. 6 * 10−4 * 𝑑𝑉𝑖𝑛
𝑑𝑡

𝑑𝑉𝑖𝑛
𝑑𝑡 = 4𝑘𝑉

𝑠

This equals the actual derivative of the input waveform, verifying the functionality of the circuit. This
shows that the parameters of all passive components will be tested from a -10% to +10% tolerance. The
simulation is run in AC mode to observe the effects of the gain response of the system. As shown, the effects of
the tolerance correlate to the accuracy of the system as it shows a maximum of 10% at the output. Since each
component tolerance varies between -10% to +10%, it is important to observe this behavior in order to
characterize the impact it will have on the output.

Figure 5-4 exhibits the improved differentiator op-amp circuit’s maximum magnitude response for
temperatures from -25°C to 85°C. With this variation in temperature, the maximum gain has a range of
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approximately 12.27 dB to 15.74 dB. The nominal operating temperature range of this circuit is -25°C to 125°C,
which is proven as the maximum gain (peak magnitude response) of this circuit at approximately in the middle
of this temperature range.

Figure 5-4. Gain Response of the Monte-Carlo Analysis of the Differentiator Circuit.

Figure 5-5 reflects the distribution for the improved differentiator op-amp circuit’s maximum gain with respect
to temperatures from -25°C to 85°C. The largest bin in the histogram is a maximum gain between 13.77dB and
14.27dB with a count of 35 simulation steps from a total of 120 simulation steps. This indicates that the most
common maximum gain from the circuit is within this dB range under temperature changes.

Figure 5-5. Histogram of the Gain for the Improved Differentiator Op-Amp Circuit with Respect to Varying
Temperatures from -25°C to 85°C in Intervals of 10°C

Figure 5-6 reflects the distribution for the improved differentiator op-amp circuit’s frequency at 0 dB gain with
respect to temperatures from -25°C to 85°C. The largest bins in the histogram are frequency ranges 930 Hz to
990 Hz and 990 Hz to 1050 Hz with counts of 30 simulation steps each from a total of 120 simulation steps.
This indicates that the most common frequency values from the circuit are within these frequency ranges under
temperature changes.
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Figure 5-6. Histogram of the Frequency at 0dB for the Improved Differentiator Op-Amp Circuit with Respect
to Varying Temperatures from -25°C to 85°C in Intervals of 10°C

Figure 5-7 reflects the distribution for the improved differentiator op-amp circuit’s frequency at 0dB gain with
respect to temperatures from -25°C to 85°C. The largest bins in the histogram are frequency ranges 9.625kHz to
9.9kHz with a count of 32 simulation steps from a total of 120 simulation steps. This indicates that the most
common frequency values from the circuit are within this Hz range under temperature changes.

Figure 5-7. Histogram of the Frequency at Maximum Gain for the Improved Differentiator Op-Amp Circuit
with Respect to Varying Temperatures from -25°C to 85°C in Intervals of 10°C

LTspice Design Simulations
Each of the designed computational circuits is tested with at least one type of input waveform (DC, sine, square,
and/or triangle) with varying amplitudes, frequencies, and phase shifts. This comprehensive simulation testing
is to ensure the designs’ full functionality for a wide range of inputs as well as cascading compatibility with
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other computational circuits. Figure 5-1 reflects the testing setup for each circuit, and the following steps
describe the procedure for simulation testing:

1. Connect +18V, Ground, and -18V to each respective power rail input.
2. Configure a waveform generator (voltage source set to DC, PULSE, or SINE) to the desired input

waveform.
3. Configure the appropriate simulation and time-axis settings, and run the simulation.
4. Probe the input and output waveforms and record measurements.

Voltage Adder Simulation

The voltage adder is capable of performing addition and subtraction by simply changing the phase delay of one
or more of the inputs. The voltage adder circuit is also capable of summing multiple inputs at the same time, but
for simplicity in testing and to prove design functionality, two inputs are added instead. Figure 5-8 demonstrates
the addition function of the voltage adder design adding input waves Vin,1 = -0.05sin(2π1000t) (green waveform)
and Vin,2 = 0.35sin(2π1000t) (blue waveform). The resulting red waveform, Vout = 0.3sin(2π1000t) is shifted
180° due to the adder’s inverting nature, thus the final output is represented by Vout = -0.3sin(2π1000t + 180°).

Figure 5-8. LTspice Voltage Adder Simulation (Addition Test)

The voltage adder’s subtracting capability is demonstrated in Figure 5-9. For the following test performed, the
second adder input is shifted by 180°. The first input (green waveform) is represented by the equation Vin,1 =
-0.1sin(2π1000t + 180°, and the second input (blue waveform) as Vin,2 = 0.7sin(2π1000t). The resulting output
(red waveform) is Vout = -0.6sin(2π1000t + 180°).
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Figure 5-9. LTspice Voltage Adder Simulation (Subtraction Test)

Non-Inverting Multiplier Simulation

The non-inverting multiplier design allows for adjustable gain through the input and feedback resistors.
Different combinations of resistors were used to test different gains. Figure 5-10 shows the input and output for
a non-inverting multiplier with a gain of 2.2. The input (green) waveform is represented by Vin = sin(2π1000t),
and the resulting wave is approximately represented as Vout = 2.2sin(2π1000t). When performing traditional
multiplication, 1 × 2.2 = 2.2, thus the result is as expected and accurate. The calculation below shows the
percent error for this simulation. As this configuration is a non-inverting configuration, the output is the true
result without the extra inversion seen with the voltage adder or an inverting multiplier.

𝑃𝑒𝑟𝑐𝑒𝑛𝑡 𝐸𝑟𝑟𝑜𝑟 = 2.196−2.2
2.2

|| || × 100 = 0. 181%

Figure 5-10. LTspice Non-Inverting Multiplier Simulation (Gain of 2.2)
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Figure 5-11 shows the input and output for a non-inverting multiplier with a gain of 2.2. The input (green)
waveform is represented by Vin = 0.5sin(2π1000t), and the resulting wave is approximately represented as Vout =
3.22sin(2π1000t). When performing traditional multiplication, 0.5 × 6.45 = 3.225, thus the result is as expected
and accurate. The calculation below shows the percent error for this simulation.

𝑃𝑒𝑟𝑐𝑒𝑛𝑡 𝐸𝑟𝑟𝑜𝑟 = 3.221−3.225
3.225

|| || × 100 = 0. 124%

Figure 5-11. LTspice Non-Inverting Multiplier Simulation (Gain of 6.45)

Figure 5-12 shows the input and output for a non-inverting multiplier with a gain of 9.3. The input (green)
waveform is represented by Vin = 0.5sin(2π1000t), and the resulting wave is approximately represented as Vout =
4.65sin(2π1000t). When performing traditional multiplication, 0.5 × 9.3 = 4.65, thus the result is as expected
and accurate. The calculation below shows the percent error for this simulation.

𝑃𝑒𝑟𝑐𝑒𝑛𝑡 𝐸𝑟𝑟𝑜𝑟 = 4.657−4.65
4.65

|| || × 100 = 0. 151%
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Figure 5-12. LTspice Non-Inverting Multiplier Simulation (Gain of 9.3)

Resistive Divider Simulation

The resistive divider is capable of dividing any input signal by a divisor designated by two resistors. Four types
of waveforms (DC, sine, square, and triangle) were tested to verify the circuit design’s functionality. All of the
following resistive divider tests use a divisor of 2 by using two 1 kΩ resistors. Figure 5-13 shows the input
(green) and output (blue) waveforms for the DC waveform test. The input DC wave has a 10V offset, resulting
in an output of 5V. The percent error for this test case is shown in the calculation below.

𝑃𝑒𝑟𝑐𝑒𝑛𝑡 𝐸𝑟𝑟𝑜𝑟 = 5−5
5

|| || × 100 = 0%

Figure 5-13. LTspice Resistive Divider Simulation for DC Waveforms
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Figure 5-14 shows the input (green) and output (blue) waveforms for the sinusoidal waveform test. The input
sinusoid is represented as approximately Vin = 5sin(2π1000t), and with a divisor of 2, the output sinusoid is
represented as approximately Vout = 2.5sin(2π1000t). The percent error for this test case is shown below.

𝑃𝑒𝑟𝑐𝑒𝑛𝑡 𝐸𝑟𝑟𝑜𝑟 = 2.496−2.5
2.5

|| || × 100 = 0. 160%

Figure 5-14. LTspice Resistive Divider Simulation for Sinusoidal Waveforms

Figure 5-15 shows the input (green) and output (blue) waveforms for the sinusoidal waveform test. The input is
a square wave of 10Vpp, 1 kHz, DC offset of 2.5V, and with a divisor of 2, the output square wave is 5Vpp, 1
kHz, DC offset of 1.25V. The percent error for this test case is shown below.

𝑃𝑒𝑟𝑐𝑒𝑛𝑡 𝐸𝑟𝑟𝑜𝑟 = 2.5−2.5
2.5

|| || × 100 = 0%
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Figure 5-15. LTspice Resistive Divider Simulation for Square Waveforms

Figure 5-16 shows the input (green) and output (blue) waveforms for the sinusoidal waveform test. The input is
a triangle wave of 10Vpp, 1 kHz, DC offset of 2.5V, and with a divisor of 2, the output triangle wave is 5Vpp, 1
kHz, DC offset of 1.25V. The percent error for this test case is shown below.

𝑃𝑒𝑟𝑐𝑒𝑛𝑡 𝐸𝑟𝑟𝑜𝑟 = 2.494−2.5
2.5

|| || × 100 = 0. 240%

Figure 5-16. LTspice Resistive Divider Simulation for Triangle Waveforms
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Differentiator Simulation

The differentiator circuit is also capable of performing the derivative of any input signal with DC waveforms as
the exception. The following tests are different types of waveforms (sine, square, and triangle) inputted into the
differentiator design. The output should have a 90° phase shift to the left. Figure 5-17 shows the differentiation
of an input (green) sine wave of Vin = 0.5sin(2π1000t). The resulting (blue) waveform is approximately
represented by Vout = 0.47sin(2π1000t + 90°). The phase difference in degrees is calculated below as well as the
percent error for this test case.

ϕ = 360° 𝑡𝑖𝑚𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒( )
𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 = 360° 1.512−1.250( )×103( )

1000 𝐻𝑧 = 94. 32°

𝑃𝑒𝑟𝑐𝑒𝑛𝑡 𝐸𝑟𝑟𝑜𝑟
ϕ

= 94.32−90
90

|| || × 100 = 4. 80%

𝑃𝑒𝑟𝑐𝑒𝑛𝑡 𝐸𝑟𝑟𝑜𝑟
𝐴𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒

= 2.494−2.5
2.5

|| || × 100 = 0. 240%

Figure 5-17. LTspice Differentiator Simulation for Sinusoidal Waveforms

For square wave differentiation, the output shifts 180° to the left, with the waveform resembling impulses of
alternating sign (positive or negative). Figure 5-18 shows the differentiation of an input (green) square wave of
2Vpp, 1 kHz, and a DC offset of 0.5V. The resulting (blue) waveform has approximately 1.2Vpp, 1 kHz, and a
DC offset of 0V. The phase difference in degrees is calculated below as well as the percent error for this test
case.

ϕ = 360° 𝑡𝑖𝑚𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒( )
𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 = 360° 2.003−1.502( )×103( )

1000 𝐻𝑧 = 180. 63°

𝑃𝑒𝑟𝑐𝑒𝑛𝑡 𝐸𝑟𝑟𝑜𝑟
ϕ

= 180.63−180
180

|| || × 100 = 0. 2%
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Figure 5-18. LTspice Differentiator Simulation for Square Waveforms

For triangle wave differentiation, the output shifts 180° to the left, with the waveform resembling a square
wave. Figure 5-19 shows the differentiation of an input (green) triangle wave of 2Vpp, 1 kHz, and a DC offset of
0.5V. The resulting (blue) waveform has approximately 0.88Vpp, 1 kHz, and a DC offset of 0V. The phase
difference in degrees is calculated below as well as the percent error for this test case.

ϕ = 360° 𝑡𝑖𝑚𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒( )
𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 = 360° 1.762−1.499( )×103( )

1000 𝐻𝑧 = 94. 68°

𝑃𝑒𝑟𝑐𝑒𝑛𝑡 𝐸𝑟𝑟𝑜𝑟
ϕ

= 94.68−90
90

|| || × 100 = 5. 2%

Figure 5-19. LTspice Differentiator Simulation for Triangle Waveforms
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Integrator Simulation

The integrator circuit is able to perform the integral of most inputs, with DC waveforms being the exception.
The following integration tests include sine, square, and triangle wave inputs. The output waveform should have
an approximate 90° phase shift to the right (-90°). Figure 5-20 shows the simulation for an integrated sine wave.
The input (green) wave is represented by Vin = 0.5sin(2π1000t), and the output is approximately represented by
Vout = 0.5sin(2π1000t - 90°). The phase difference for this test case is calculated below as well as its percent
error.

ϕ = 360° 𝑡𝑖𝑚𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒( )
𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 = 360° 1.995−2.248( )×103( )

1000 𝐻𝑧 =− 91. 08°

𝑃𝑒𝑟𝑐𝑒𝑛𝑡 𝐸𝑟𝑟𝑜𝑟
ϕ

= −91.08−(−90)
(−90)

|| || × 100 = 1. 2%

Figure 5-20. LTspice Integrator Simulation for Sinusoidal Waveforms

Figure 5-21 shows the simulation for an integrated square wave. The input (green) wave is 0.5Vpp and 1 kHz
with DC offset of 0V. The triangle wave output is approximately 0.497Vpp and 1 kHz with DC offset of -4.9V.
The phase difference for this test case is calculated below as well as its percent error.

ϕ = 360° 𝑡𝑖𝑚𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒( )
𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 = 360° 0.519329−1.001( )×103( )

1000 𝐻𝑧 =− 173. 402°

𝑃𝑒𝑟𝑐𝑒𝑛𝑡 𝐸𝑟𝑟𝑜𝑟
ϕ

= −173.402−(−180)
(−180)

|| || × 100 = 3. 666%
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Figure 5-21. LTspice Integrator Simulation for Square Waveforms

Figure 5-22 shows the simulation for an integrated triangle wave. The input (green) wave is 0.5Vpp and 1 kHz
with DC offset of 0.25V. The triangle wave output is approximately 0.494Vpp and 1 kHz with DC offset of
-1.15V. The phase difference for this test case is calculated below as well as its percent error.

ϕ = 360° 𝑡𝑖𝑚𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒( )
𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 = 360° 1.235−1.5( )×103( )

1000 𝐻𝑧 =− 95. 4°

𝑃𝑒𝑟𝑐𝑒𝑛𝑡 𝐸𝑟𝑟𝑜𝑟
ϕ

= −95.4−(−90)
(−90)

|| || × 100 = 6%

Figure 5-22. LTspice Integrator Simulation for Triangle Waveforms
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Breadboard Testing and Results

After thoroughly performing simulation testing on the LTspice circuits, the designs were constructed on
breadboards to perform hardware (physical) tests. To perform the breadboard tests, the Rigol Technologies
DP832 power supply, Keysight Technologies EDUX1052A function generator, and Keysight Technologies
DSOX1204A oscilloscope were used to power the circuit and record measurements. The block diagram shown
in Figure 5-1 shows the testing configuration for the hardware testing. The following describes the procedure
for breadboard testing:

1. Construct the circuit based on the simulation-based design schematic.
2. Connect +18V, Ground, and -18V to each respective power rail input.
3. Set the waveform generator to the desired input waveform and set it to a high-impedance output.
4. Turn the power source on.
5. Connect the waveform generator to the circuit and turn it on.
5. Probe the input and output waveforms and record measurements.

Voltage Adder Breadboard Testing Results

Table 5-2 shows the breadboard testing results for the voltage adder circuit. For reference, the cells highlighted
in blue represent DC voltage testing while white cells denote sinusoidal testing unless otherwise noted by signal
type. As expected, DC voltage operations gave accurate output as the highest percent error is 4.17%, which is
well below the design requirement of 10%. However, sinusoidal testing displays high inaccuracy as the highest
percent error is 22%. The explanation that comes to mind is simply loose connections to the breadboard as an
old breadboard used alongside jumper wires that sometimes broke during testing.

Table 5-2. Tabulated Breadboard Data for the Voltage Adder Circuit Test Cases

Operation Resistor Combination Input 1 [Vpp] Input 2 [Vpp] Output [Vpp] Expected [Vpp] Error [%]

Addition

100kΩ, 100kΩ, 100kΩ 0.1 0.7 -0.8 -0.8 0.00%

100kΩ, 100kΩ, 100kΩ 2.0 3 -4.925 -5.0 1.50%

100kΩ, 100kΩ, 100kΩ 10.0 5 -14.825 -15.0 1.17%

100kΩ, 100kΩ, 100kΩ 0.1 0.7 0.72 0.8 10.00%

100kΩ, 100kΩ, 100kΩ 2.0 3 3.9 5.0 22.00%

100kΩ, 100kΩ, 100kΩ 10.0 5 11.7 15.0 22.00%

Subtraction

100kΩ, 100kΩ, 100kΩ -0.1 0.7 -0.575 -0.6 4.17%

100kΩ, 100kΩ, 100kΩ -2.0 3 -1 -1.0 0.00%

100kΩ, 100kΩ, 100kΩ -10.0 5 4.975 5.0 0.50%

100kΩ, 100kΩ, 100kΩ -0.1 0.7 -0.68 -0.6 13.33%

100kΩ, 100kΩ, 100kΩ -2.0 3 -1.12 -1.0 12.00%

100kΩ, 100kΩ, 100kΩ -10.0 5 -4.25 -5.0 15.00%

Non-Inverting Multiplier Breadboard Testing Results

Table 5-3 displays the breadboard testing results for the non-inverting voltage multiplier circuit. The blue cells
indicate the best frequency of operations. While the white cells denote different maximum frequencies of
operation within the 10% error engineering specification mentioned in Chapter 3. DC testing shows the most
accurate results due to the signal lacking frequency. The frequency of the signal plays a major role in accuracy
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due to the LM741’s gain bandwidth product. Since DC does not have a frequency, it generates the most accurate
results. However, the sinusoidal signal used for testing had a frequency of 1kHz, which impacts the gain
bandwidth product and in turn, increases error. In addition, this circuit amplifies the signal and it can also
amplify noise generated by loose connections which also increases error.

Table 5-3. Tabulated Breadboard Data for the Non-Inverting Voltage Multiplier Circuit Test Cases

Gain
Resistor

Combination
Frequency
[kHz]

Phase Difference
[ns]

Phase Difference
[°]

Input
[Vpp]

Output
[Vpp]

Expected
[Vpp]

Error
[%]

2.2 10kΩ, 12kΩ 40 -357 -5.14080 2 4.42 4.4 0.45%

2.2 10kΩ, 12kΩ 10 -105 -0.37800 10 22.2 22 0.91%

2.2 10kΩ, 12kΩ 8 -256 -0.73728 12 26.9 26.4 1.89%

2.2 10kΩ, 12kΩ 80 -1000 -28.80000 2 4.02 4.4 8.64%

2.2 10kΩ, 12kΩ 16 -3297 -18.99072 10 21.4 22 2.73%

2.2 10kΩ, 12kΩ 14.75 -5300 -28.14300 12 23.7 26.4 10.23%

6.45 3.3kΩ, 18kΩ 23.8 -1087 -9.31342 1 6.47 6.45 0.31%

6.45 3.3kΩ, 18kΩ 6 -165 -0.35640 3 19.5 19.35 0.78%

6.45 3.3kΩ, 18kΩ 6 -1392 -3.00672 5 32.4 32.25 0.47%

6.45 3.3kΩ, 18kΩ 4.685 -1650 -2.78289 1 5.87 6.45 8.99%

6.45 3.3kΩ, 18kΩ 19 -4200 -28.72800 3 17.5 19.35 9.56%

6.45 3.3kΩ, 18kΩ 11.58 -7256 -30.24881 5 29.1 32.25 9.77%

9.3 1.2kΩ, 10kΩ 11.58 -1757 -7.32458 1 9.5 9.3 2.15%

9.3 1.2kΩ, 10kΩ 10 -3150 -11.34000 2 18.8 18.6 1.08%

9.3 1.2kΩ, 10kΩ 8 -3650 -10.51200 3 28.87 27.9 3.48%

9.3 1.2kΩ, 10kΩ 34 -2684 -32.85216 1 8.4 9.3 9.68%

9.3 1.2kΩ, 10kΩ 18.8 -5050 -34.17840 2 16.9 18.6 9.14%

9.3 1.2kΩ, 10kΩ 12.9 -7562 -35.11793 3 25.4 27.9 8.96%
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Resistive Divider Breadboard Testing Results

As shown in Table 5-4, the resistive divider is verified to work across various waveforms. Accuracy is well
within design requirements. However, the issue with using a potentiometer is that it is very sensitive to
adjustments and the resistance always varies when tuning to the right divisor. This causes errors in the output
due to tolerance and the sensitivity of the potentiometer, which may explain why there are varying levels of
error among the results.

Table 5-4 Tabulated Breadboard Data for the Resistive Divider Circuit Test Cases

Wave Type Resistor Combination Input [Vpp] Divisor Output [Vpp] Expected [Vpp] Error [%]

DC

1kΩ, 1kΩ 10 2 5.1 5.000 2.00%

1kΩ, 3.9kΩ 10 4.9 2.1 2.041 2.90%

1kΩ, 10kΩ 10 11 0.979 0.909 7.69%

Sine

1kΩ, 1kΩ 10 2 5.3 5.000 6.00%

1kΩ, 3.9kΩ 10 4.9 2.17 2.041 6.33%

1kΩ, 10kΩ 10 11 0.96 0.909 5.60%

Square

1kΩ, 1kΩ 10 2 5.3 5.000 6.00%

1kΩ, 3.9kΩ 10 4.9 2.21 2.041 8.29%

1kΩ, 10kΩ 10 11 0.96 0.909 5.60%

Triangle

1kΩ, 1kΩ 10 2 5.1 5.000 2.00%

1kΩ, 3.9kΩ 10 4.9 2.13 2.041 4.37%

1kΩ, 10kΩ 10 11 0.92 0.909 1.20%

Differentiator Breadboard Testing Results

As shown in Table 5-5, the differentiator operated as expected with the output and phase difference error never
exceeding the requirement of ±10% tolerance. The frequency also shows that this circuit (and all others tested)
will be in a low-frequency range. This also satisfies the requirement for the customer as the frequency of a
standard US power grid of 50 Hz. This ensures that these circuits will be suitable for power grid computations.

Table 5-5. Tabulated Breadboard Data for the Differentiator Circuit Test Cases

Input Resistor
Combination

Frequency
[kHz]

Phase
Difference [°] Expected Phase Difference

Error [%]
Input
[Vpp]

Output
[Vpp]

Expected
Output [Vpp]

Output
Error [%]

Sine

1.5kΩ, 15kΩ 1 97.79 90 8.66% 1 1.05 1 5.00%

1.5kΩ, 15kΩ 0.93 97.69 90 8.54% 6 6.3 6 5.00%

1.5kΩ, 15kΩ 0.89 98.85 90 9.83% 12 12.7 12 5.83%

Square

1.5kΩ, 1kΩ 1 179.79 180 0.12% 1 1.27 1.21 4.96%

1.5kΩ, 820Ω 1 178.21 180 0.99% 6 7 7.2 2.78%

1.5kΩ, 1.2kΩ 1 176.51 180 1.94% 12 13.1 14.5 9.66%

Triangle

1.5kΩ, 22kΩ 1 94.42 90 4.91% 1 1.01 1 1.00%

1.5kΩ, 22kΩ 1 95.62 90 6.24% 6 6.5 6 8.33%

1.5kΩ, 18kΩ 1 95.75 90 6.39% 12 11.3 12 5.83%
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Integrator Testing Results

Table 5-6 below displays the collected data for the various test cases performed on the integrator circuit. When
testing, the potentiometer could not be probed when the circuit was active as this caused distortion on the
output. To solve this issue, the potentiometer was tuned first and then the circuit was activated. Additionally, the
potentiometer needed to be adjusted for different sine wave amplitudes due to the gain of the circuit. Another
issue is that any resistance value of RF below 470 kΩ would cause the phase difference to increase. However,
when comparing the input and output amplitudes, the design requirement of a ±10% tolerance was met
successfully.

Table 5-6. Tabulated Breadboard Data for the Integrator Circuit Test Cases

Wave
Type

Resistor
Combination

Potentiometer
Resistance [kΩ]

Frequency
[kHz]

Expected
Phase

Difference [°]

Actual Phase
Difference [°]

Error
[%]

Expected
Input
[Vpp]

Input
[Vpp]

Output
[Vpp]

Error
[%]

Sine

1kΩ, 470kΩ 97.1 1 -90.000 -91.090 1.21% 0.5 0.51 0.51 0.00%

1kΩ, 470kΩ 97.1 1 -90.000 -93.400 3.78% 1 1.01 0.96 4.95%

1kΩ, 470kΩ 95.6 1 -90.000 -92.470 2.74% 2 2.01 2.01 0.00%

Square

1kΩ, 470kΩ 97.47 1 -90.000 -93.200 3.56% 0.5 0.59 0.59 0.00%

1kΩ, 470kΩ 97.47 1 -90.000 -94.580 5.09% 1 1.15 1.15 0.00%

1kΩ, 470kΩ 97.47 1 -90.000 -93.990 4.43% 1.8 2.09 2.09 0.00%

Triangle

1kΩ, 470kΩ 94.5 1 -90.000 -91.770 1.97% 0.5 0.5 0.54 8.00%

1kΩ, 470kΩ 94.5 1 -90.000 -90.940 1.04% 1 0.98 1.05 7.14%

1kΩ, 470kΩ 94.5 1 -90.000 -94.570 5.08% 2 2.01 2.01 0.00%

Printed Circuit Board Tests and Results

After testing the designed computational circuits on breadboards and confirming their functionality and
compatibility with each other, the circuits were manufactured as PCBs. The appropriate components, both
passive and active previously used in the breadboard testing, were soldered onto the PCBs. Once conductivity
was confirmed among each of the circuits, each were tested using the same test cases used in the breadboard
testing. The same aforementioned Rigol Technologies power supply, Keysight Technologies function generator,
and Keysight Technologies oscilloscope were used to power the circuits and obtain data. The PCB testing
apparatus is visualized in Figure 5-1, and the following describes the procedure for PCB testing:
.

1. Connect +18V, Ground, and -18V to each respective power rail input.
2. Set the waveform generator to the desired input waveform and set it to a high-impedance output.
3. Turn the power source on.
4. Connect the waveform generator to the circuit and turn it on.
5. Probe the input and output waveforms and record measurements.

Voltage Adder PCB Testing Results

Table 5-7 shows the test cases for the PCB voltage adder. For reference, the cells highlighted in blue represent
DC voltage testing while white cells denote sinusoidal testing unless otherwise noted by signal type. Comparing
these results to the breadboard testing shows massive improvements in accuracy as operations on sinusoids are
well below the requirement. This also confirms the explanation for the source of error as soldering components
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provide a rigid connection between components. However, the accuracy of operations with DC signals
decreased as the breadboard testing showed percent errors below 5%. This displays a tradeoff as in order to
improve accuracy with sinusoids, the PCB provides the best result at the cost of accuracy with DC signals.

Table 5-7. Tabulated PCB Data for the Voltage Adder Circuit Test Cases

Operation Resistor Combination Input 1 [Vpp] Input 2 [Vpp] Output [Vpp] Expected [Vpp] Error [%]

Addition

100kΩ, 100kΩ, 100kΩ 0.1 0.7 -0.75 -0.8 6.25%

100kΩ, 100kΩ, 100kΩ 2.0 3 -4.72 -5.0 5.60%

100kΩ, 100kΩ, 100kΩ 10.0 5 -14.5 -15.0 3.33%

100kΩ, 100kΩ, 100kΩ 0.1 0.7 0.76 0.8 5.00%

100kΩ, 100kΩ, 100kΩ 2.0 3 4.78 5.0 4.40%

100kΩ, 100kΩ, 100kΩ 10.0 5 15.3 15.0 2.00%

Subtraction

100kΩ, 100kΩ, 100kΩ -0.5 1 -0.473 -0.5 5.40%

100kΩ, 100kΩ, 100kΩ -2.0 3 -0.95 -1.0 5.00%

100kΩ, 100kΩ, 100kΩ -10.0 5 5.075 5.0 1.50%

100kΩ, 100kΩ, 100kΩ -0.1 0.7 -0.61 -0.6 1.67%

100kΩ, 100kΩ, 100kΩ -2.0 3 -0.95 -1.0 5.00%

100kΩ, 100kΩ, 100kΩ -10.0 5 -5.075 -5.0 1.50%
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Non-Inverting Multiplier PCB Test Results

Table 5-8 shows the PCB Testing results for the voltage multiplier. The blue cells indicate the best frequency of
operations. While the white cells denote different maximum frequencies of operation within the 10% error
engineering specification mentioned in Chapter 3. The tests show that design requirements are still met, but
barely so in the case of maximum operating frequencies. This is due to the gain bandwidth product of the
LM741 as at higher frequencies, there is a loss of available gain. This causes inaccuracies in the output, which
is clearly demonstrated in the maximum operating frequencies.

Table 5-8. Tabulated PCB Data for the Non-Inverting Voltage Multiplier Circuit Test Cases

Gain Resistor
Combination

Frequency
[kHz]

Phase Difference
[ns]

Phase Difference
[°]

Input
[Vpp]

Output
[Vpp]

Expected
[Vpp]

Error
[%]

2.2 10kΩ, 12kΩ 81 -837 -24.36 2 4.4 4.4 0.00%

2.2 10kΩ, 12kΩ 17.5 -3484 -21.93 10 22.1 22 0.45%

2.2 10kΩ, 12kΩ 15 -3520 -19.01 12 26.5 26.4 0.38%

2.2 10kΩ, 12kΩ 99.5 -1011 -36.31 2 3.9 4.4 11.36%

2.2 10kΩ, 12kΩ 20.6 -3968 -29.43 10 20.1 22 8.64%

2.2 10kΩ, 12kΩ 17.6 -5200 -32.90 12 23.7 26.4 10.23%

6.45 3.3kΩ, 18kΩ 24 -1304 -11.27 1 6.5 6.45 0.78%

6.45 3.3kΩ, 18kΩ 19 -2848 -19.50 3 19.3 19.35 0.26%

6.45 3.3kΩ, 18kΩ 6 -1696 -3.66 5 32.6 32.25 1.09%

6.45 3.3kΩ, 18kΩ 56.5 -1714 -34.82 1 5.8 6.45 10.08%

6.45 3.3kΩ, 18kΩ 22.5 -3928 -31.90 3 17.7 19.35 8.53%

6.45 3.3kΩ, 18kΩ 13.5 -6752 -32.87 5 29.3 32.25 9.15%

9.3 1.2kΩ, 10kΩ 24 -2296 -19.84 1 9.4 9.3 1.08%

9.3 1.2kΩ, 10kΩ 17.5 -4512 -28.45 2 18.5 18.6 0.54%

9.3 1.2kΩ, 10kΩ 11.9 -6712 -28.71 3 27.7 27.9 0.72%

9.3 1.2kΩ, 10kΩ 36 -2996 -38.90 1 8.4 9.3 9.68%

9.3 1.2kΩ, 10kΩ 20 -5084 -36.60 2 16.9 18.6 9.14%

9.3 1.2kΩ, 10kΩ 14 -7960 -40.12 3 25.3 27.9 9.32%
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Resistive Divider PCB Testing Results

Table 5-9 shows the PCB testing for the resistive divider. Comparing these results to the breadboard testing, the
percent error decreased drastically as the percent error never goes above 1%. This further confirms the
hypothesis of the breadboard connections being faulty as the percent error improved with the PCB circuits.
However, the issue with the sensitivity of the potentiometers remains as the potentiometers needed to be tuned
precisely to generate the results desired.

Table 5-9. Tabulated PCB Data for the Resistive Divider Circuit Test Cases

Wave Type Resistor Combination Input [Vpp] Divisor Output [Vpp] Expected [Vpp] Error [%]

DC

1kΩ, 1kΩ 10 2 5 5.000 0.00%

1kΩ, 3.9kΩ 10 4.9 2.05 2.041 0.45%

1kΩ, 10kΩ 10 11 0.91 0.909 0.10%

Sine

1kΩ, 1kΩ 10 2 5.03 5.000 0.60%

1kΩ, 3.9kΩ 10 4.9 2.05 2.041 0.45%

1kΩ, 10kΩ 10 11 0.9 0.909 1.00%

Square

1kΩ, 1kΩ 10 2 5 5.000 0.00%

1kΩ, 3.9kΩ 10 4.9 2.03 2.041 0.53%

1kΩ, 10kΩ 10 11 0.91 0.909 0.10%

Triangle

1kΩ, 1kΩ 10 2 5.03 5.000 0.60%

1kΩ, 3.9kΩ 10 4.9 2.03 2.041 0.53%

1kΩ, 10kΩ 10 11 0.91 0.909 0.10%

Differentiator PCB Testing Results

Table 5-10 shows the PCB differentiator test cases. Compared to the breadboard testing, only sine waves were
tested due to hardware limitations. The PCB design was only compatible with a sine wave, whereas square and
triangle waves required different resistor values to work properly. Besides this, the PCB differentiator works
with high accuracy for the output as the percent error never goes above 4%. However, the phase difference error
is quite high as the percent error is close to the maximum 10% imposed by design requirements.

Table 5-10. Tabulated PCB Data for the Differentiator Circuit Test Cases

Type of Sine
Derivative

Resistor
Combination

Frequency
[kHz]

Actual Phase
Difference [°]

Expected Phase
Difference [°]

Error
[%]

Input
[Vpp]

Output
[Vpp]

Expected
Output [Vpp]

Output
Error [%]

First-Order

1.5kΩ, 15kΩ 1 97.60 90 8.44% 1 1.01 1 1.00%

1.5kΩ, 15kΩ 0.93 97.41 90 8.23% 6 5.9 6 1.67%

1.5kΩ, 15kΩ 0.89 98.53 90 9.48% 12 11.9 12 0.83%

Second-Order

2 x (1.5kΩ, 15kΩ) 1 165.52 180.00 8.04% 1 0.98 1 2.00%

2 x (1.5kΩ, 15kΩ) 0.93 164.63 180.00 8.54% 6 5.9 6 1.67%

2 x (1.5kΩ, 15kΩ) 0.89 162.64 180.00 9.64% 12 11.9 12 0.83%

Third-Order

3 x (1.5kΩ, 15kΩ) 1 251.77 270.00 6.75% 1 1.01 1 1.00%

3 x (1.5kΩ, 15kΩ) 0.93 255.60 270.00 5.33% 6 6.2 6 3.33%

3 x (1.5kΩ, 15kΩ) 0.89 255.85 270.00 5.24% 12 11.9 12 0.83%
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Integrator PCB Testing Results

Table 5-11 shows the testing data for the PCB integrator. From the results, the accuracy of this design is well
within design requirements as percent errors rarely go above 5%. In addition, additional test cases of double and
triple integration were added to observe the effects of cascading. The error does increase when the integrators
are cascaded as the error is amplified with each cascade.

Table 5-11. Tabulated PCB Data for the Integrator Circuit Test Cases

Input Resistor
Combination

Frequency
[kHz]

Expected Phase
Difference [°]

Actual Phase
Difference [°] Error [%] Expected

Input [Vpp]
Input
[Vpp]

Output
[Vpp]

Error
[%]

Sine

1kΩ, 470kΩ 1 -90.000 -91.610 1.79% 0.5 0.5 0.48 4.00%

1kΩ, 470kΩ 1 -90.000 -90.940 1.04% 1 1.01 0.98 2.97%

1kΩ, 470kΩ 1 -90.000 -92.100 2.33% 2 2.09 2.09 0.00%

Sine (Double
Integration)

1kΩ, 470kΩ 1 180.000 173.660 3.52% 0.5 0.535 0.531 0.75%

1kΩ, 470kΩ 1 180.000 174.450 3.08% 1 1.05 1.09 3.81%

1kΩ, 470kΩ 1 180.000 172.640 4.09% 2 2.05 2.07 0.98%

Sine (Triple
Integration)

1kΩ, 470kΩ 1 270.000 286.090 5.96% 0.5 0.56 0.52 7.14%

1kΩ, 470kΩ 1 270.000 262.960 2.61% 1 1.07 1.07 0.00%

1kΩ, 470kΩ 1 270.000 261.490 3.15% 2 2.07 2.03 1.93%

Square

1kΩ, 470kΩ 1 -90.000 -93.580 3.98% 0.5 0.52 0.52 0.00%

1kΩ, 470kΩ 1 -90.000 -90.400 0.44% 1 1.05 1.03 1.90%

1kΩ, 470kΩ 1 -90.000 -90.550 0.61% 2 2.13 2.05 3.76%

Triangle

1kΩ, 470kΩ 1 -90.000 -89.440 0.62% 0.5 0.52 0.52 0.00%

1kΩ, 470kΩ 1 -90.000 -91.800 2.00% 1 1.05 1.03 1.90%

1kΩ, 470kΩ 1 -90.000 -91.090 1.21% 2 2.09 2.05 1.91%

Breadboard and PCB Testing Summary

As shown in Figure 5-23, the average accuracy of each test performed on the individual breadboards and
PCBs did not exceed 10.00%, which conforms to the tolerances designated for the project. Another inferred
conclusion is that accuracy overall decreased when testing the PCB circuits compared to the breadboard
circuits. The noticeable difference in error between the breadboard circuits and PCB circuits can be attributed to
the metal within the breadboards. As the long pieces of metal are aligned similarly to that of a capacitor,
breadboards tend to have parasitic capacitances and higher probabilities of crosstalk when testing circuits.
Furthermore, breadboards form less reliable connections as they rely on contact between the internal metal and
the component, whereas PCB connections are soldered and form complete connections.

In addition to the aforementioned potentials for error, the mathematical circuits with the highest percent
error (voltage adder and differentiator) tend to be slightly more inaccurate as they do not have potentiometers
that help to “tune” the output so that the circuit works for almost all inputs. Circuits that use these
potentiometers like the resistive divider and integrator have significantly lower average percent errors (0.37%
and 1.56% respectively).
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Figure 5-23. Graphical Representation of the Breadboard Data Accuracy versus the PCB Data Accuracy

Execution Time Testing

To measure the execution, or performance, time of the analog circuits, the cursors are placed at the start
of the output waveform and at the end of the transient response. This measurement reveals the amount of time it
takes to begin generating the output wave that gives the solution(s) to the input algorithm. The testing
methodology for the analog execution was the following:

1. Connect the power rails accordingly.
2. Assemble PCB to represent desired equation.
3. Connect inputs and outputs of each PCB to each other to properly represent the equation.
4. Connect a scope probe at the input and output. Ensure that the waveform generator is not turned on for

the input.
5. Set the trigger of the scope to trigger off of source one (the input).
6. Turn on the input and capture the transient response.
7. Measure the time between the input turning on and the output waveform to appear.

The oscilloscope trace shown in Figure 5-24 shows the transient response of the second-order
differential equation that was measured to obtain the performance time of the cascaded analog circuits. For this
tested second-order differential equation, , the execution time was measured as 82.000 µs.𝑦'' − 10𝑦' − 𝑦
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Figure 5-24. Oscilloscope Trace of the Execution Time for Test Equation, 𝑦’’ −  10𝑦’ −  𝑦

Each of the execution times for the individual computational circuits was measured, and the measured
times can be seen in Table 5-12. The table also displays the digitally measured execution times for mathematical
operations and functions executed in MATLAB®. The selected mathematical operations were tested in a digital
medium like MATLAB® to use as a benchmark for the analog circuits’ execution times. To obtain the digital
execution times, the “tic toc” function was used, measuring the time it takes to generate the output or output
waveform. Each test case’s execution time was measured 100 times and averaged to obtain the most accurate
time measurement as there is typically variability with digital execution times.

Each of the measured digital execution times was in the microsecond range, however, functions
involving calculus like integral(), diff(), trapz(), cumtrapz(), etc. have much longer execution times, entering the
thousands of microseconds, due to the complexity of those operations. As expected, the analog circuits’
execution times were much smaller compared to the digital execution times, demonstrating that these analog
circuits can perform the same mathematical functions and operations with more efficiency.
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Table 5-12.MATLAB® Function Execution Time Results

Function Tested Average Digital
Execution Time [µs]

Analog Execution
Time [µs]

Digital to Analog Execution
Time Ratio

0. 5𝑠𝑖𝑛(2π1000𝑡) + 0. 35𝑠𝑖𝑛(2π1000𝑡) 4.712 3.200 1.473

0. 05𝑠𝑖𝑛(2π1000𝑡) + 0. 035𝑠𝑖𝑛(2π1000𝑡 10.160 7.500 1.355

− 1. 5𝑠𝑖𝑛(2π1000𝑡) + 1𝑠𝑖𝑛(2π1000𝑡) 33.784 5.400 6.256

𝑠𝑖𝑛(2π81000𝑡) × 2. 2 11.060 5.240 2.111

0. 5𝑠𝑖𝑛(2π24000𝑡) × 6. 45 12.132 12.000 1.011

0. 5𝑠𝑖𝑛(2π24000𝑡) × 9. 3 10.793 8.650 1.248
5𝑠𝑖𝑛(2π1000𝑡)

4.9 8.889 4.000 2.222

10𝑠𝑔𝑛(𝑠𝑖𝑛(2π1000𝑡))
2 10.332 3.800 2.719

10 2 2 𝑡
𝑝 −⌊ 𝑡

𝑝 + 1
2 ⌋( )|| ||−1( )

11
8.702 4.200 2.072

𝑑
𝑑𝑡 (0. 5𝑠𝑖𝑛(𝑡)) 6964.116 98.382 70.786

𝑑
𝑑𝑡 𝑠𝑔𝑛(𝑠𝑖𝑛(2π1000𝑡)( ) 6497.709 342.382 18.978

𝑑
𝑑𝑡 2 2 𝑡

𝑝 − ⌊ 𝑡
𝑝 + 1

2 ⌋( )|| || − 1( ) 6143.135 113.500 54.125

−∞

+∞

∫ 𝑠𝑖𝑛(𝑡)𝑑𝑡 4577.318 99.000 46.236

−∞

+∞

∫ 𝑠𝑔𝑛(𝑠𝑖𝑛(2π1000𝑡))𝑑𝑡 5824.736 107.000 54.437

−∞

+∞

∫ 2 2 𝑡
𝑝 − ⌊ 𝑡

𝑝 + 1
2 ⌋( )|| || − 1( )𝑑𝑡 6917.272 106.000 65.257

− 1 × 𝑠𝑖𝑛(𝑡) 736.565 107.600 6.845

− 1. 5 × 𝑠𝑔𝑛(𝑠𝑖𝑛(2π1000𝑡)) 1784.996 167.000 10.689

− 2 × 2 2 𝑡
𝑝 − ⌊ 𝑡

𝑝 + 1
2 ⌋( )|| || − 1( ) 2356.305 108.000 21.818

𝑦'' + 10𝑦' + 𝑦 2283.542 82.000 27.8481

The aforementioned second-order differential equation was also tested in MATLAB®. As the execution
time resulted in approximately 2283.542 µs, the averaged digital execution time was approximately 27.8481
times longer than that of the measured analog execution time for the same equation.

Figure 5-25 shows a graphical representation of the analog execution times versus the averaged digital
execution times for the basic arithmetic test cases that include operations like addition, subtraction,
multiplication, and division. As expected, the execution times for these test cases, both digital and analog, were
on the tens of microseconds. However, analog was faster for each computational test case, though much closer
in value to digital compared to that of the more complex calculus functions.

37



Figure 5-25. Graphical Representation of the MATLAB® Execution Time and PCB Execution Time (Basic
Arithmetic Circuits)

Figure 5-26 shows a graphical representation of the analog versus averaged digital execution times for
the more complex, calculus-based functions such as differentiation, integration, and inversion as well as
differential equations. Contrasting the performance of the basic arithmetic computations, the averaged digital
execution times were each on the scale of thousands of microseconds. The analog computations, however, were
much faster, none of them exceeding 100 µs.

Function 5-26. Graphical Representation of the MATLAB® Execution Time and PCB Execution Time (Basic
Calculus Circuits)
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From the analog versus averaged digital execution timing results, it can be concluded that for basic
arithmetic computations, the performance time is on a similar scale with the analog systems executing slightly
faster than a digital system for each operation. However, for more complex, calculus-based operations, and thus
algorithms, analog systems can perform much faster than that of digital systems while maintaining fairly low
error in the output (solution).

Calculation Accuracy

The PCB circuitry represents the output of the equation as a real-time signal. To find a𝑦'' − 10𝑦' − 𝑦
solution, one must simply set the equation to the desired value. For this example, let , and𝑦'' − 10𝑦' − 𝑦 = 3
relating this to the PCB output means that at every instance 3V occurs, which is a solution for this differential
equation. Placing a y-cursor at 3V in the waveform will give every instance of the time it occurs. The PCB
testing showed a time value of 392 µs for the first instance of 3V. This value then has 82 µs subtracted from it to
account for execution time. From this, the final result is 310 µs.

Using MATLAB®, the X value of the sinusoidal signals used to represent y(x) is solved to be at around
1.875 when the equation is set to 3. The following relation is then used to calculate the time value

𝐿𝑒𝑡 𝑥 =  2000π𝑡
1. 875 =  2000π𝑡

1.875
2000π   = 𝑡

𝑡 =  294. 52 µ𝑠

The true solution to this differential equation is 294.52 µs while the PCB gives a value of 310 µs. The
percent error is 4.99%, which verifies that the design and implementation of this project are working as
intended.

VI. CONCLUSION
Analog computation is shown to be a viable option for computing algorithms due to the speed and

power consumption. When the PCBs and test algorithm were constructed, they were shown to be around 27
times faster than MATLAB® while only drawing 0.180 W of power as measured for the power source. As
shown throughout testing, the accuracy is mainly determined by the component tolerances and hardware. Once
the proper hardware is designed and constructed, any algorithm can be constructed as a circuit. This saves on
time and power when compared to the speed and power draw of digital computational programs, such as
MATLAB®, as they can take long periods of time to solve. To further improve the design of this project,
smaller component tolerances such as 1% can be used in order to achieve higher accuracy. Another
improvement that can be made is choosing higher-quality op-amps so a large range of frequencies can be
handled due to a better gain bandwidth product.
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Summary of Functional Requirements

The analog circuits for computing are able to perform mathematical operations such as addition,
subtraction, multiplication, division, differentiation, and integration, which can also be applied to solve systems
of equations and differential equations. To execute the mathematical computations, the desired algorithms are
decomposed and the appropriate mathematical operations needed to solve are applied. From the required
mathematical operation circuits, a SPICE netlist and corresponding PCB layout needed to derive the solution to
the algorithm can be generated based on the modeled algorithm. After manufacturing the appropriate PCBs, the
results of the mathematical computations are produced with no greater than 10% error and a computation time
less than that of the same operations performed using an equivalent digital system such as MATLAB®.

Primary Constraints

The primary constraint for planning the design of the computational analog circuits system typical for
most design projects is the maximum 10% error constraint. When actually designing each computational circuit,
the differentiator and integrator systems created the most challenges in implementation. During the LTspice
design phase, it was difficult to find a resistor-capacitor combination that would result in an appropriate time
constant for the circuit while maintaining a gain that would not significantly amplify the output and result in
clipping. Switching to the improved differentiator configuration, which involves adding an input resistor and a
feedback capacitor to mitigate gain increase and account for attenuation at higher frequencies. The integrator
also induced challenges due to the limitation that unity gain cannot be maintained while obtaining the output.
Adding a potentiometer (resistive divider) at the output of the integrator helped provide the desired gain of the
system while maintaining the integrity of the output’s phase shift.

One of the final major challenges was determining the most efficient and effective method of measuring
and comparing the execution times of the analog systems to a comparable digital computational system. After
much experimentation with microcontrollers and oscilloscope capabilities, the analog execution times were
obtained using the “Single” feature on the oscilloscope, allowing for easy measurement of the elapsed time
between the signal entering the input of the PCB to the output signal leaving the output of the PCB. Resolving
the challenge of obtaining digital computation times, MATLAB® script was generated and measured execution
times using the “tic toc” function.
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Economic

There is power consumption that is used towards all phases of the project’s lifecycle. The design and
simulation phase requires power consumption as design and simulation software via computers was used to
research and design each of the computational circuits available in the library. The testing and manufacturing
phase also had slight power consumption as that phase required a power source to power the circuits and
perform the extensive breadboard and PCB testing necessary to validate each circuit’s functionality and
compatibility with each other. This power consumption provides demand to power providers.

The physical instruments used during the project’s lifecycle were used primarily in the testing and
manufacturing phase of the project. These aforementioned instruments include the Rigol Technologies power
supply, Keysight Technologies function generator, and Keysight Technologies oscilloscope as well as various
soldering equipment used to attach the components to the PCBs. The use of these equipment supplies the
demand for equipment like these and economically benefits the companies that provide these instruments.

The external resources used in the project include the use of design and simulation programs such as
LTspice, KiCAD, and MATLAB®, which provide business to them and further fuels the demand for design and
simulation programs such as these. Furthermore, to construct the physical circuits and manufacture the PCBs,
companies such as DigiKey and JLCPCB were used as component and PCB providers. Providing business to
their companies as well as the component manufacturers that use DigiKey as a platform for their products also
fuels the demand for circuit components and the PCB manufacturing industry.

The use of physical components throughout the manufacturing and testing phase of the project
contributes to the need for components and PCBs. As these components are produced from natural materials
such as metals, metal alloys, ceramics, polymers, and other materials that come from natural harvesting, the
demand for those resources is sustained.

The overall materials cost for the product is minimal as most of the main circuit components such as
resistors, capacitors, and ICs are already previously owned by the product designers. The full cost breakdown
for the project can be seen in Table B-1 which shows the Bill of Materials. Factors such as materials cost and
human labor can be considered with the assumption that the starting salary for an electrical engineer is
approximately $90,000. The manufacturing cost for the PCBs totaled $115.09, and the total cost of the project
materials, manufacturing, soldering, and testing, was $363.15. The original estimation of project costs is in
Table A-1 below. The customer would be responsible for covering the manufacturing costs once they have
created the model for their algorithm.
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Table A-1. Initial Cost Estimates for the Analog Circuits for Computing Project

Parts Part Cost Comments Starting Engineer Salary Factors

Resistors (±5%) $0.10 Students have a variety of resistors
and capacitor, but for additional or
specific components they must be
purchased

From research and personal
references, the starting salary

is $90,000. 3 Group
Members, 10 hrs / week per

person

People 3

Capacitors (±10%) $0.50 to $2.00 Hours 10

OpAmp (LM741) $0.90 Both op-amp models are needed to
either save on space or computation
time when necessary

Wage $43.27

OpAmp (LM358P) $0.44 Duration
(Weeks) 20

PCB Manufacturing $250 This is a maximum provided range
for PCB manufacturing.

COST $25,962.00

IC Chips $0.50 to $30
Ranges from $0.50 for simple IC's to
$30 for complex IC's like an analog
multiplier

Solder $20 A spool of soldering contains enough
for applications

Soldering Iron $0 Students have a soldering iron

Solder Paste $20 A tub of solder paste is enough for
applications

Total Parts Cost $291.44

TOTAL COST $26,285.44

One of the main benefits of the project is its use of open-source software for circuit design and
simulation. By using these open-source materials, any cost towards circuit design and simulation was mitigated
with the only remaining costs towards manufacturing. The manufacturing costs include the cost of components
used to construct the physical computational circuits and manufacture the actual PCBs (if the customer is
outsourcing). The actual costs of the manufacturing process are discussed in the following section “If
Manufactured on a Commercial Basis”.

The total design time for the customer’s desired algorithm depends on the complexity of their algorithm
and what library circuits they decide to include in their system. Once at the manufacturing stage, should they
choose to outsource, the manufacturing time is dependent on the company they choose to use for
manufacturing. This manufacturing time can take anywhere from approximately a week to two weeks or more.
Once the customer manufactures their PCBs, if they chose not to have the manufacturer also solder the
corresponding components, the time it takes to solder the components on will need to be incorporated into the
final production time. When the PCBs have been completely manufactured and soldered, they can last, typically
for 50-70 years if kept in good condition properly [9]. Little to no maintenance is required after manufacturing
as long as only the proper, low-voltage inputs are sent through the circuit and the PCBs are kept in an
environment that will not harm the electronics.

The initial project timeline is visualized in Figures A-1 through A-3 below with the project lifespan as
30 weeks. The project timeline spans phases such as the initial project planning, conceptual design, and
manufacturing. The final list of milestones and task completions can be seen in Table B-2 of Appendix B.
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Figure A-1. Gantt Chart for Analog Circuits for Computing Project (Project Planning Phase)

Figure A-2. Gantt Chart for the Analog Circuits for Computing Project (Conceptual Design and Simulation Phase)
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Figure A-3. Gantt Chart for the Analog Circuits for Computing Project (Manufacturing and Testing Phase)

There is room for improvement and expansion on this project that can be implemented, which includes
using components of higher quality and tolerance to improve the accuracy of the analog circuits. Another area
of expansion is adding more mathematical functions to the library of circuits such as analog multiplication,
analog division, exponents, square roots, matrices, and many other operations. Having more available
mathematical functions in the computational circuits library allows for a wider range of possible, solvable
algorithms that can be applied to the system.

If Manufactured on a Commercial Basis

The customer population has much variation as it includes anyone who has the need to perform
large-scale and/or time-consuming computations. The size of this population has a direct correlation to the
number of analog computational systems that would be sold per year. Assuming that the analog computational
system will be primarily used by the power industries, it is appropriate to estimate 1,000 units sold per year.

The manufacturing cost will vary per customer as it is dependent on the algorithm they plan to model.
The manufacturing cost depends on which computational circuits the customer decides to use from the provided
library as well as how many of each computational circuit are required to model their desired algorithm. The
total manufacturing cost for each PCB will also vary depending on if they outsource their PCBs and soldering
for components or if they manufacture everything themselves. If they decide to solder manually, the
manufacturing cost will also depend on which components they use in their final system.

If using the exact materials, designs, components, and manufacturers used to produce the example PCBs
for this project, the approximate production cost for each PCB will be as follows:

Voltage Adder: $5.04
Inverting Voltage Multiplier: $5.01
Non-Inverting Multiplier: $5.01
Resistive Divider: $13.08
Differentiator: $3.08
Integrator: $7.60

46



The following production costs listed for each computational circuit do not include the shipping and tax
fees that come with outsourcing PCB manufacturing and will be dependent on the customer’s location and
shipping requirements. Assuming the starting salary for an electrical engineer is $90,000 and the project
duration is 30 weeks, the total labor cost is estimated at around $25,962.

To create a profit, especially in large-scale production, retail markup is essential. Marking up the value
of the product ensures fair wages and other essential services such as social security and any provided insurance
to those designing and manufacturing the product. Retail markup also ensures the success of the overall project,
product, and its manufacturers in the long run. A typical retail markup for businesses is 50% [10], and thus,
would be an appropriate price indicator for the analog computational circuits system. While the total
manufacturing cost is heavily dependent on the algorithm the customer chooses to model, assuming that the
customer will have all circuits in the library at their disposal and that the 50% markup applies, an appropriate
market price would be $60.00.

Again, the customer base is very broad as well as diverse and the production cost is very dependent on
the customer’s desired algorithm. Given the estimated market price of $60.00 and the estimated 1,000 units sold
per year, the estimated profit per year would be $60,000, not including other fixed and variable costs involved
in the manufacturing process. Once the user obtains access to the analog computational circuits library, the
modeling of their desired algorithm is free through the use of open-source circuit design and simulation
programs. The only cost to operate the analog computational circuits system will come from manufacturing
should they choose to proceed with that step, which the costs are elaborated on earlier.

Environmental

The product life cycle begins at the production stage where the required materials such as metals, metal
alloys, and plastics are harvested from the earth and developed. This harvesting and developing process come
with a carbon footprint that negatively impacts the air, the earth they harvest, and the health of the people,
directly and indirectly, involved in the process. There is also a carbon footprint involved in the manufacturing of
the individual circuit components needed to build and fabricate the circuits themselves like the air pollution and
waste emitted and produced by factories. The carbon emissions and waste produced by the PCB manufacturing
process further contribute to these negative environmental impacts. Furthermore, the energy required to run the
harvesting and developing process, the manufacturing factories, and the computers and programs to design the
product may be produced by nonrenewable and unclean energy sources that contribute to environmental
consequences as well. The negative impacts of this manufacturing process include health issues for harvesters
and manufacturers, air pollution from the use of toxic chemicals, and ground and water pollution from the toxic
chemicals released during the harvesting and production process. Air, ground, and water pollution, in turn, can
cause harm to other animal species and people that use those resources for consumption and daily living.

The analog circuits for computing will be designed to mitigate these negative environmental impacts by
using variable passive components if possible. This will promote reusable circuits as PCBs and other circuit
components do not recycle well and can be detrimental to the environment. Designing and building circuits with
these consequences in mind is vital as every part of the project and product life cycle has some environmental
effect; sometimes even the smallest actions have the greatest impacts. Promoting sustainability and
environmental preservation is essential in the electrical engineering field as resources are becoming more
limited and technology and society are advancing faster than ever before. The analog circuits for computing
project aims to contribute to this advancing society, but also prioritize prolonging the environment as much as
possible.

Manufacturability

From the computational analog circuits system, the customer will receive an open-source SPICE netlist
that will help generate PCB files to manufacture a model for and solve their desired algorithm. The netlist and
PCB files will be generated using computer simulation programs, thus only a computer is required for them
during the design process. Should they decide to manually manufacture the PCBs and solder the necessary
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components, the customer will be responsible for obtaining the components and equipment necessary to do so.
The materials required to manufacture and construct the analog circuits system are metals like copper,
aluminum, iron, and metal alloys as well as other nonmetals like silicon, fiberglass, epoxy laminate, and Teflon.
These metals and nonmetals are the materials typically found in circuit components like resistors, capacitors,
and ICs as well as PCBs. Component tolerances are important in the computational analog circuits as they
impact the behavior and accuracy of the system output. As accuracy is key for the anticipated power grid
simulations application. It is vital that components with high tolerance and quality are selected to ensure proper
functionality that meets the customer’s standards and expectations. Since the analog circuits should be designed
with higher-quality components, if it is not an offered component and/or option by the manufacturer, the
product designers will order the necessary components and solder the PCBs manually.

Sustainability

As the final product, if the customer decides to continue with manufacturing, is a system of PCBs, the
only challenge with maintaining them would be to ensure that the circuits are kept in a safe place as they can be
delicate. Another measure to maintain the completed PCB system to ensure only the appropriate inputs are sent
through the circuits; the current computational circuits are designed for low-voltage inputs, thus any
high-voltage inputs would cause damage to the components as well as the PCB itself.

The open-source aspect of the product design process promotes accessibility and ease of testing without
the need to manufacture circuits (breadboard or PCBs), thus eliminating the carbon footprint of using physical
circuits to simulate designs. The power consumption from running the open-source simulations, however, is a
considered negative environmental impact. The manufacturing of PCBs needed to create the analog circuits
contains non-recyclable material and will be manufactured using toxic chemicals, which negatively impact the
environment. The carbon footprint from shipping the PCBs as well as the solder waste and fumes from
soldering components onto the PCBs (manufactured or at home) further contribute to the negative impacts on
the environment from the product manufacturing process. Furthermore, if variable passive components are used
in the design, the library of circuits will allow the PCBs manufactured to be reused. The only positive economic
impacts include providing business for the circuit design and simulation programs used as well as the PCB
manufacturing and component distribution industry. Having an analog system that can perform mathematical
computations more efficiently than that of an equivalent digital system, especially in the power grid simulations
field, can have great positive societal impacts depending on the product’s application.

Some upgrades that can improve the design of the final product would be the use of higher-quality
components that use much lower tolerances. Using components with lower tolerances will reduce the amount of
error present in the output (solution), thus “upgrading” the final system the customer models. The only
challenges posed to performing upgrades like these are the cost of the higher-quality, lower-tolerance
components. If customers are able to afford resistors, capacitors, potentiometers, and op-amps with higher
performance capabilities and tolerance, than it can serve as a significant improvement to their overall final
system.

Ethical

The moral dilemma lies in that the product designers want the PCBs manufactured at the lowest
expense, which means manufacturing PCBs internationally. Another moral dilemma lies in that time can be
saved and quality can be improved if the PCB manufacturers solder on the components as well, but more risks
and health implications come with that as the solder fumes and waste can be dangerous to the human body,
especially to those who are constantly exposed to it.

Despite the negative environmental and health implications that are involved with these dilemmas and
the manufacturing process, all cannons within the IEEE Code of Ethics are abided by. This code of ethics is
highly considered to ensure that, not only is the product fabricated with high-quality materials for accurate
results, but with as many negative sustainability impacts mitigated as possible as well. Furthermore, the
standards held by the IEEE Code of Ethics also help to ensure the safety of those involved in the design and

48



manufacturing process, thus following these cannons can mitigate the safety risks as well. The computational
analog circuits will be designed intending to improve large-scale, time-consuming simulation systems that
provide a better alternative to current digital systems; however, the application of such a system will, ultimately,
be decided by the customer regardless of if the application is ethical or unethical.

Health and Safety

The computational analog circuits should not require or generate any input or output within the high
voltage range, thus there is minimal risk of injury. The system was designed through simulation tools and
thoroughly tested before implementation on breadboards and PCBs. These tests included checks to ensure the
power required does not enter the high-voltage range, the current distribution is regulated, and each circuit fully
operates as desired.

The disposal of PCBs raises health concerns, however, regarding the toxic fumes that arise from said
disposal. Those directly involved with the disposal process are constantly exposed to those toxic fumes resulting
in many health implications. Understanding these consequences of the analog circuits system’s use of PCBs, the
customer’s final, modeled algorithm should be designed to minimize the number of PCBs required for its full
operation.

Social and Political

The computational analog circuits will have an emphasis on industries that require complex and
large-scale simulation applications, thus stakeholders include, not only those investing in the project’s success
but the customers who use the product in the future. There are social implications involved with manufacturing
the final product; however, the social implications that come with PCB manufacturing are not new and,
unfortunately, a societal norm. Therefore, these social implications would not pose much of a risk to the
stakeholders and customers.

PCB manufacturing uses non-recyclable materials, resulting in pollution emissions during the
manufacturing process and during shipping. The PCB manufacturers that are used for the project are all located
internationally, which implies that the pollution from the manufacturing will create health, social, and
potentially even political, implications for them in the long run. Regardless of if it is small- or large-scale
manufacturing for this product, there will be a carbon footprint that contributes to the degradation of the
environment and the people, directly and indirectly, involved with the manufacturing process.

The project and product promote equality as all the analog circuits will be designed using open-source
software. The customer will also be provided with the netlist from the open-source design and the generated
PCB files so that they may redesign and simulate the analog circuits themselves as needed. The open-source
aspect promotes equity among customers with the only requirement being access to technology that can run the
open-source and PCB design and simulation tools. As the computational analog circuits aim to match or be
more efficient than equivalent digital systems, the product allows for social improvement in areas of industries
such as power grid simulations.

Development

Background knowledge in calculus, linear algebra, and circuit analysis is essential as the project
involves designing circuits that carry out mathematical operations of varying complexity. These computational
circuits were also designed primarily in LTspice, thus experience with this open-source software is vital. As the
customer’s final modeled algorithm using the computational circuits will need to be manufactured as a PCB,
knowledge of PCB layout design is also required. Should the customer choose to add the components onto their
PCBs manually, soldering skills are also necessary to implement their manufactured, modeled algorithm. Prior
knowledge of these fundamental electrical engineering and mathematical concepts as well as experience with
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circuit design, simulation, and manufacturing should have been learned from previous courses in their Electrical
Engineering curriculum but can be self-taught with enough discipline and maturity.

B. Bill of Materials and Time Schedule Allocation

Table B-1 shows the bill of materials for the Analog Circuits for Computing project. Not all materials were used
in the final product as some were damaged during the production process or were extra parts after the final
product was manufactured. While not all materials were used in the end, the number of materials shown is the
amount of each order for the project.

Table B-1. Analog Circuits for Computing Project Bill of Materials

Count Value Description Size Part Number Manufacturer Per Unit Cost ($)

20 100 kΩ Potentiometer, 10% Tolerance 12mm Shaft, 4mm Shaft Diameter
10.1mm Height, 10mm Length 251B12T104A2NB CTS Electronic

Components $2.56

20 LM741 Operational Amplifier 3.3mm x 9.27mm x 6.35mm LM741CN/NOPB Texas Instruments $0.90

128 8-pin Wire Wrap Female Header Pins 2.54mm 8Fx1L-254mm Gravitech $0.50

20 10 SIL Horizontal Pin Header Tin 2.54mm M20-9751046 Harwin $0.47

5 Voltage Adder Printed Circuit Board 1.5in x 1.5in JLCPCB $2.22

5 Voltage Multiplier Printed Circuit
Board 1.5in x 1.5in JLCPCB $2.62

5 Resistive Divider Printed Circuit Board 1.5in x 1.5in JLCPCB $2.62

5 Differentiator Printed Circuit Board 1.5in x 1.5in JLCPCB $2.62

5 Integrator Printed Circuit Board 1.5in x 1.5in JLCPCB $2.62

5 Inverter Printed Circuit Board 1.5in x 1.5in JLCPCB $2.62

Table B-2 shows the timeline of tasks and milestones for the Analog Circuits for Comptuing Project. This
timeline marks tasks performed from the initial project planning to the conceptual design process to the
manufacturing of the final product.
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Table B-2. Timeline of Tasks and Milestones for the Analog Circuits for Computing Project

Date of Completion Task

09/27/22 Literature Review

09/28/22 Abstract

10/11/22 Customer Requirements

10/11/22 Stakeholders

10/21/22 Specifications

11/01/22 Functional Decomposition

11/29/22 Work Breakdown Schedule

11/29/22 Gantt Chart

11/29/22 Cost Breakdown

12/02/22 Assemble PRD and PDR

01/13/23 Adder/Subtractor Simulation(LTspice) Testing and Verification

01/20/23 Non-Inverting Multiplier Simulation(LTspice) Testing and Verification

01/27/23 Divider Simulation(LTspice) Testing and Verification

02/03/23 Assembled Parts List

02/10/23 Arrival of Ordered Parts

02/15/23 Differentiator Simulation(LTspice) Testing and Verification

02/22/23 Integrator Simulation(LTspice) Testing and Verification

3/9/32 Adder/Subtractor Breadboard Testing and Verification

3/9/23 Non-Inverting Multiplier Breadboard Testing and Verification

3/9/23 Divider Breadboard Testing and Verification

3/9/23 Differentiator Breadboard Testing and Verifcation

3/9/23 Differentiator PCB Layout

3/10/23 Connections Compatibility Simulations (Fundamental Circuits)

4/7/23 Adder/Subtractor PCB Layout

4/8/23 Non-Inverting Multiplier PCB Layout

4/9/23 Integrator Breadboard Testing and Verification

4/9/23 Divider PCB Layout

4/19/23 Integrator PCB Layout

4/19/23 PCBs Ordered

5/10/23 PCBs Soldered

5/14/23 PCBs Tested

5/19/23 Test Cases/Equations to Use for Breadboard and PCB Testing Chosen

5/24/23 PCB Execution Times Measured

5/24/23 MATLAB Script for Digital Execution Times

5/26/23 First Draft of Final Report

5/27/23 Senior Project Expo Board PDF

6/2/23 Senior Project Expo

6/5/23 Final Draft of Final Report
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C. IC Location Diagram

The only IC used throughout each of the analog computational circuits is the LM741 operational amplifier. The
pinout for this IC is shown in Figure C-1 below.

Figure C-1: LM741 Pinout Diagram [11]

D. Printed Circuit Board Artwork

Figures D-1 through D-6 show the PCB layouts generated for each individual computational circuit. Each of
these PCB layouts is the final design sent out for manufacturing with JLCPCB.

Figure D-1: Voltage Adder PCB Figure D-2: Non-Inverting Voltage Multiplier PCB
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Figure D-3: Inverting Voltage Multiplier PCB Figure D-4: Resistive Divider PCB

Figure D-5: Differentiator PCB Figure D-6: Integrator PCB
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E. Program Listing - MATLAB® Simulation Code
% -------------------------------------------------------------------------
% MATLAB Script for Testing Digital Computational Timing
% EE 462 - Analog Circuits for Computing
% Project Members: Lauren Chun, Dillon Nguyen, Nicole Pickett
%
% Script written by Lauren Chun
% -------------------------------------------------------------------------

clear;
clc;
close;

%% ADDITION AND SUBTRACTION TESTS

temp_times = zeros(1,100); % Array to store temporary execution time samples
times_add_sub = zeros(1,3); % Array to store final, averaged execution times for each
test case

% Basic Addition Test (DC Signal Addition)

% Perform the test case 100 times, and take average execution time of the
% 100 samples
for i = 1:100

tic
x = 1 + 7;
temp_times(i) = toc;

end

add_sub_result = x; % Save test case result
times_add_sub(1) = mean(temp_times); % Average 100 execution time samples
temp_times = zeros(1,100); % Clear the temporary execution times for the next
test case

% Sinusoidal Addition (Sine Wave Addition)

t = 0:(1/50000):0.005; % Make 0.1 seconds sampled every 1/1000 of a second
sine1 = (0.05 * sin(2*pi*1000*t)); % 0.1Vpp, 1 kHz Sine Wave
sine2 = (0.035 * sin(2*pi*1000*t)); % 0.7Vpp, 1 kHz Sine Wave

% Perform the test case 100 times, and take average execution time of the
% 100 samples
for i = 1:100

tic
x = sine1 + sine2;
temp_times(i) = toc;

end

% Plot the original sine wave against result of the operation
figure(1);
plot(t,sine1);
hold on
plot(t,sine2);
hold on
plot(t,x);
title("Sinusoidal Addition Waveforms");
xlabel('Time [s]');
ylabel('Voltage [V]');
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legend("Sinusoid 1","Sinusoid 2","Sinusoid 1 + Sinusoid 2");

times_add_sub(2) = mean(temp_times); % Average 100 execution time samples
temp_times = zeros(1,100); % Clear the temporary execution times for the next
test case

% -------------------------------------------------------------------------
% Basic Subtraction (DC Signal Subtraction)

% Perform the test case 100 times, and take average execution time of the
% 100 samples
for i = 1:100

tic
x = (-1.5 * sin(2*pi*1000*t)) + (1 * sin(2*pi*1000*t));;
temp_times(i) = toc;

end

times_add_sub(3) = mean(temp_times); % Average 100 execution time samples
temp_times = zeros(1,100); % Clear the temporary execution times for the next
test case

%% MULTIPLICATION TESTS

% Multiplier = 2.2

times_mult = zeros(1,3); % Array to store final, averaged execution times

t = 0:(1/1000000):0.0001; % Make 0.1 seconds sampled every 1/1000000 of a second

% Perform the test case 100 times, and take average execution time of the
% 100 samples
for i = 1:100

tic
x = (sin(2*pi*81000*t)) * 2.2;
temp_times(i) = toc;

end

times_mult(1) = mean(temp_times); % Average 100 execution time samples
temp_times = zeros(1,100); % Clear the temporary execution times for the next test
case

% Plot the original sine wave against result of the operation
figure(2);
plot(t,sin(2*pi*81000*t));
hold on
plot(t,x);
hold on
title("Sinusoidal Multiplication Waveforms");
xlabel('Time [s]');
ylabel('Voltage [V]');
legend("2Vpp, 81 kHz Sinusoid","(2Vpp, 81 kHz Sinusoid) x 2.2");

% Multiplier = 6.45

% Perform the test case 100 times, and take average execution time of the
% 100 samples
for i = 1:100

tic
x = (sin(2*pi*24000*t)) * 6.45;
temp_times(i) = toc;
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end

times_mult(2) = mean(temp_times); % Average 100 execution time samples
temp_times = zeros(1,100); % Clear the temporary execution times for the next test
case

% Plot the original sine wave against result of the operation
plot(t,sin(2*pi*24000*t));
hold on
plot(t,x);
hold on
legend("2Vpp, 81 kHz Sinusoid","(2Vpp, 81 kHz Sinusoid) x 2.2","1Vpp, 24 kHz
Sinusoid","(1Vpp, 24 kHz Sinusoid) x 6.45");

% Multiplier = 9.3

% Perform the test case 100 times, and take average execution time of the
% 100 samples
for i = 1:100

tic
x = (sin(2*pi*24000*t)) * 9.3;
temp_times(i) = toc;

end

times_mult(3) = mean(temp_times); % Average 100 execution time samples
temp_times = zeros(1,100); % Clear the temporary execution times for the next test
case

% Plot the original sine wave against result of the operation
plot(t,x);
legend("2Vpp, 81 kHz Sinusoid","(2Vpp, 81 kHz Sinusoid) x 2.2","1Vpp, 24 kHz
Sinusoid","(1Vpp, 24 kHz Sinusoid) x 6.45","(1Vpp, 24 kHz Sinusoid) x 9.3");

%% DIVISION TESTS

times_div = zeros(1,4); % Array to store final, averaged execution times

% DC Signal Division

% Perform the test case 100 times, and take average execution time of the
% 100 samples
for i = 1:100

tic
x = 10 / 2;
temp_times(i) = toc;

end

div_result = x; % Store the operation result
times_div(1) = mean(temp_times); % Average 100 execution time samples
temp_times = zeros(1,100); % Clear the temporary execution times for the next test
case

% Sinusoidal Division (Sine Wave Division)

t = 0:(1/50000):0.005; % Make 0.1 seconds sampled every 1/1000 of a second

sine = 5 * sin(2*pi*1000*t); % 10Vpp, 1 kHz, 0V Offset

% Perform the test case 100 times, and take average execution time of the
% 100 samples

56



for i = 1:100
tic
x = sine / 4.9;
temp_times(i) = toc;

end

% Plot the original sine wave against result of the operation
figure(3);
plot(t,sine);
hold on
plot(t,x);
title("Sinusoidal Division Waveforms");
xlabel('Time [s]');
ylabel('Voltage [V]');
legend("Sinusoid","Sinusoid/2");

times_div(2) = mean(temp_times); % Average 100 execution time samples
temp_times = zeros(1,100); % Clear the temporary execution times for the next test
case

% Square Wave Division

t = linspace(0,3*pi)';
square_wave = 10 * square(t);

% Perform the test case 100 times, and take average execution time of the
% 100 samples
for i = 1:100

tic
x = square_wave / 2;
temp_times(i) = toc;

end

% Plot the original square wave against result of the operation
figure(4);
plot(t/pi,square_wave);
hold on
plot(t/pi,x);
title("Square Wave Division Waveforms");
xlabel('Time [s]');
ylabel('Voltage [V]');
legend("Square Wave","Square Wave/2");

times_div(3) = mean(temp_times); % Average 100 execution time samples
temp_times = zeros(1,100); % Clear the temporary execution times for the next test
case

% Triangle Wave Division

t = 0:(1/50000):0.005; % Make 0.1 seconds sampled every 1/1000 of a second

triangle = 10 * sawtooth(2*pi*1000*t, 1/2);

% Perform the test case 100 times, and take average execution time of the
% 100 samples
for i = 1:100

tic
x = triangle / 11;
temp_times(i) = toc;

end
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% Plot the original triangle wave against result of the operation
figure(5);
plot(t,triangle);
hold on
plot(t,x);
title("Triangle Wave Division Waveforms");
xlabel('Time [s]');
ylabel('Voltage [V]');
legend("Triangle Wave","Triangle Wave/2");

times_div(4) = mean(temp_times); % Average 100 execution time samples
temp_times = zeros(1,100); % Clear the temporary execution times for the next test
case

%% DERIVATIVE TESTS

times_diff = zeros(1,3); % Array for final, averaged execution times
t = 0:(1/50000):15; % Make 0.1 seconds sampled every 1/1000 of a second

% Sinusoid Differentiation (Sine Wave Derivative)

sine = 0.5 * sin(t); % 1Vpp Sine Wave

% Perform the test case 100 times, and take average execution time of the
% 100 samples
for i = 1:100

tic
x = diff(sine)./diff(t);
temp_times(i) = toc;

end

times_diff(1) = mean(temp_times); % Average 100 execution time samples
temp_times = zeros(1,100); % Clear the temporary execution times for the next test
case

% Plot the original sine wave against result of the operation
figure(6);
plot(t(2:end),sine(2:end));
hold on
plot(t(2:end),x);
title("Sinusoid Differentiation Waveforms");
xlabel("Time [s]");
ylabel("Voltage [V]");
legend("Sinusoid","First Derivative of Sinusoid");

% Square Wave Diferentiation

square_wave = square(t);

% Perform the test case 100 times, and take average execution time of the
% 100 samples
for i = 1:100

tic
x = diff(square_wave)./diff(t);
temp_times(i) = toc;

end

times_diff(2) = mean(temp_times); % Average 100 execution time samples
temp_times = zeros(1,100); % Clear the temporary execution times for the next test
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case

% Plot the original square wave against result of the operation
figure(7);
yyaxis left
plot(t,square_wave);
hold on
yyaxis right
plot(t(2:end),x);
title("Square Wave Differentiation Waveforms");
xlabel("Time [s]");
ylabel("Voltage [V]");
legend("Square Wave","First Derivative of Square Wave");

% Triangle Wave Differentiation

% t = 0:(1/50000):0.005; % Make 0.1 seconds sampled every 1/1000 of a second
triangle = 10 * sawtooth(t, 1/2);

% Perform the test case 100 times, and take average execution time of the
% 100 samples
for i = 1:100

tic
x = diff(triangle) ./ diff(t);
temp_times(i) = toc;

end

% Plot the original triangle wave against result of the operation
figure(8);
yyaxis left
plot(t,triangle);
hold on
yyaxis right
plot(t(2:end),x);
title("Triangle Wave Differentiation Waveforms");
xlabel('Time [s]');
ylabel('Voltage [V]');
legend("Triangle Wave","First Derivative of the Triangle Wave");

times_diff(3) = mean(temp_times); % Average 100 execution time samples
temp_times = zeros(1,100); % Clear the temporary execution times for the next test
case

%% INTEGRATION TESTS

% Sinusoid Integration (Sine Wave Integral)

times_int = zeros(1,3); % Array for storing final, averaged execution times
syms t

% Perform the test case 100 times, and take average execution time of the
% 100 samples
for i = 1:100

tic
y = int(sin(t),t);
temp_times(i) = toc;

end

times_int(1) = mean(temp_times); % Average 100 execution time samples
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temp_times = zeros(1,100); % Clear the temporary execution times for the next test
case

% Plot the original sine wave against result of the operation
figure(9);
t = 0:(1/10000):15; % Make 0.1 seconds sampled every 1/1000 of a second
plot(t, sin(t));
hold on
plot(t,-cos(t));
title("Sinusoidal Integration Waveforms");
xlabel('Time [s]');
ylabel('Voltage [V]');
legend("Sinusoid","First Integral of the Sinusoid");

% Square Wave Integration

t = 0:(1/10000):15; % Make 0.1 seconds sampled every 1/1000 of a second

% Perform the test case 100 times, and take average execution time of the
% 100 samples
for i = 1:100

tic
y = cumtrapz(t,square(t));
temp_times(i) = toc;

end

times_int(2) = mean(temp_times); % Average 100 execution time samples
temp_times = zeros(1,100); % Clear the temporary execution times for the next test
case

% Plot the original square wave against result of the operation
figure(10);
plot(t, square(t));
hold on
plot(t,y);
title("Square Wave Integration Waveforms");
xlabel('Time [s]');
ylabel('Voltage [V]');
legend("Square Wave","First Integral of the Square Wave");

% Triangle Wave Integration

% Perform the test case 100 times, and take average execution time of the
% 100 samples
for i = 1:100

tic
y = cumtrapz(t,sawtooth(t,1/2));
temp_times(i) = toc;

end

times_int(3) = mean(temp_times); % Average 100 execution time samples
temp_times = zeros(1,100); % Clear the temporary execution times for the next test
case

% Plot the original triangle wave against result of the operation
figure(11);
plot(t, sawtooth(t,1/2));
hold on
plot(t,y);
title("Triangle Wave Integration Waveforms");
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xlabel('Time [s]');
ylabel('Voltage [V]');
legend("Triangle Wave","First Integral of the Triangle Wave");

%% INVERSION

times_inversion = zeros(1,3); % Array for storing final, averaged execution times
t = 0:(1/10000):15; % Make 0.1 seconds sampled every 1/1000 of a second

% Sinusoid Inversion

% Perform the test case 100 times, and take average execution time of the
% 100 samples
for i = 1:100

tic
x = (sin(t)) * -1;
temp_times(i) = toc;

end

times_inversion(1) = mean(temp_times); % Average 100 execution time samples
temp_times = zeros(1,100); % Clear the temporary execution times for the next
test case

% Plot the original sine wave against result of the operation
figure(12);
plot(t,sin(t));
hold on
plot(t,x);
title("Inversion on Sinusoids");
xlabel('Time [s]');
ylabel('Voltage [V]');
legend("Original Sinusoid","Inverted Sinusoid");

% Square Wave Inversion

% Perform the test case 100 times, and take average execution time of the
% 100 samples
for i = 1:100

tic
x = (1.5 * square(t)) * -1;
temp_times(i) = toc;

end

times_inversion(2) = mean(temp_times); % Average 100 execution time samples
temp_times = zeros(1,100); % Clear the temporary execution times for the next
test case

% Plot the original square wave against result of the operation
figure(13);
plot(t,(1.5 * square(t)));
hold on
plot(t,x);
title("Inversion on Square Waves");
xlabel('Time [s]');
ylabel('Voltage [V]');
legend("Original Square Wave","Inverted Square Wave");

% Triangle Wave Inversion

% Perform the test case 100 times, and take average execution time of the

61



% 100 samples
for i = 1:100

tic
x = (2 * sawtooth(t,1/2)) * -1;
temp_times(i) = toc;

end

times_inversion(3) = mean(temp_times); % Average 100 execution time samples
temp_times = zeros(1,100); % Clear the temporary execution times for the
next test case

% Plot the original triangle wave against result of the operation
figure(14);
plot(t,(2 * sawtooth(t,1/2)));
hold on
plot(t,x);
title("Inversion on Triangle Waves");
xlabel('Time [s]');
ylabel('Voltage [V]');
legend("Original Triangle Wave","Inverted Triangle Wave");

%% EQUATIONS

% Equation: y''+ 10y'+ y = 3

t = 0:(1/10000000):0.01; % Make 0.1 seconds sampled every 1/1000 of a second
y = sin(2000*pi*t); % 2Vpp Sine Wave

% Perform the test case 100 times, and take average execution time of the
% 100 samples
for i = 1:100

tic

a = diff(diff(y)./diff(t))./diff(t(2:length(t)));
a(100000) = 0; a(100001) = 0;

b = 10 * (diff(y)./diff(t));
b(100001) = 0;

z = a + b + y;

temp_times(i) = toc;
end

times_equations = mean(temp_times); % Average 100 execution time samples

% Plot the result of the operation
figure(15);
plot(t,z);
title("Second-Order Differential Equation");
xlabel('Time [s]');
ylabel('Voltage [V]')
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F. Hardware Configuration/Layout

Figure F-1 shows the hardware layout for the voltage adder circuit. This setup applies to the LTspice simulation,
breadboard, and PCB testing.

Figure F-1. Hardware Layout for the Voltage Adder (Designed for a Gain of 1)

Figure F-2 shows the hardware layout for the non-inverting voltage multiplier circuit. For this configuration, the
multiplier is set to a gain of 2.2 via the combination of resistors. This setup applies to the LTspice simulation,
breadboard, and PCB testing.

Figure F-2. Hardware Layout for the Non-Inverting Voltage Multiplier (Designed for a Gain of 2.2)
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Figure F-3 shows the hardware layout for the resistive divider circuit. This setup applies to the breadboard and
PCB testing. This configuration does not apply to the LTspice simulation configuration as two resistors were
used rather than one potentiometer in LTspice.

Figure F-3. Hardware Layout for the Resistive Divider

Figure F-4 shows the hardware layout for the differentiator circuit. This setup applies to the LTspice simulation,
breadboard, and PCB testing.

Figure F-4. Hardware Layout for the Differentiator
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Figure F-1 shows the hardware layout for the integrator circuit. This setup applies to the breadboard and PCB
testing layouts, but not the LTspice layout. This is because the LTspice configuration uses two resistors rather
than one potentiometer for the resistive divider setup.

Figure F-5. Hardware Layout for the Integrator

Figure F-6 shows the hardware layout for the second-order differential equation circuit. This setup applies to
breadboard and PCB testing configurations.

Figure F-6. Hardware Layout for the Tested Second-Order Differential Equation
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