

FINAL DESIGN REPORT

Floating Offshore Wind Turbine Project

LETTER OF TRANSMITTAL

March 17, 2023

Dr. Robb Moss, PE California Polytechnic State University 1 Grand Avenue San Luis Obispo, CA 93405

Dear Dr. Moss,

Wind Wrangler Engineering Services is proud to present our 80% design submittal for the Floating Offshore Wind Farm Project that is to be situated 40 km NW off the coast of Morro Bay, CA. As per the Request for Design, this document contains our 80% design report, drawings, and applicable appendices.

The contents of the design report include our project understanding, scope of work, identified data and design constraints, and sustainability analysis. Additionally, we have included our design approach and recommendations with supporting work available in Appendices A-E. Included in these appendices are our structural and geotechnical calculations, design drawings, Class 2 Cost Estimate, and design schedule which is broken down into two schedules: permitting and construction.

Thank you for this opportunity to work alongside you to transform the Offshore Wind Farm Industry along the West Coast of the United States. If any further questions, comments, or concerns arise, please contact Cormack Williams via email at cwill124@calpoly.edu or via phone at (858) 602-2528.

Sincerely,

Cormack Williams

Cormack Williams Project Manager, Geotechnical Specialist Wind Wrangler Engineering Services

C O N T E N T S ш. 0 **m** 4

PROJECT UNDERSTANDING
Overview4
Site Location4
Project Objectives5
Current Site Conditions5
SCOPE OF WORK7
Structural7
Geotechnical7
Construction7
Environmental Consideration7
DATA AND DESIGN CONSTRAINTS8
Structural8
Geotechnical9
Construction9
DESIGN APPROACH AND RECOMMENDATIONS9
Structural9
Structural
Structural
Geotechnical
Structural
Structural
Structural
DESIGN APPROACH AND RECOMMENDATIONS9 Structural
Structural
DESIGN APPROACH AND RECOMMENDATIONS9 Structural
DESIGN APPROACH AND RECOMMENDATIONS9 Structural Geotechnical 15 Construction 17 SUSTAINABILITY INDEX People Planet 24 Price 24 Price 25 Appendix A: Design Drawings 25 Appendix B: Structural 37 Appendix C: Geotechnical
DESIGN APPROACH AND RECOMMENDATIONS9 Structural Geotechnical 15 Construction 17 SUSTAINABILITY INDEX People Planet 24 Price APPENDICES Appendix A: Design Drawings 25 Appendix B: Structural 37 Appendix C: Geotechnical 113 Appendix D: Cost Estimate
DESIGN APPROACH AND RECOMMENDATIONS9 Structural Geotechnical 15 Construction 17 SUSTAINABILITY INDEX 23 People 23 Planet 24 Price 24 APPENDICES 25 Appendix A: Design Drawings 25 Appendix B: Structural 37 Appendix C: Geotechnical 113 Appendix D: Cost Estimate 125 Appendix E: Design Schedules

PROJECT UNDERSTANDING

Overview

The emergence of new offshore wind energy projects developing for the Central Coast of California introduces the need for preliminary design from a Civil Engineering perspective of offshore floating wind turbines (FOWTs). The water off the Central Coast rapidly increases in depth, therefore, the proposed offshore windfarm contains floating turbines with a tethered mooring system anchored to the ocean floor subsurface. The wind farms will then connect to the power grid at the grid ties in Morro Bay using ocean bottom cabling. The proposed turbines will be of 14 MW nameplate capacity with up to 100 turbines located in the wind farm and interconnected via inter-array cable.

Site Location

The proposed wind farm location is 40 km offshore to the NW of Morro Bay near the NOAA buoy 46028, connecting to a power plant located in Morro Bay (Figure 1).

Figure 1. The current proposed wind farm location is about 40 km offshore to the NW of Morro Bay near NOAA buoy 46028 (Moss, R., 2022).

Project Objectives

The goal of this design project is to perform an 80% preliminary design of a single floating offshore wind platform for a 14 MW turbine. This preliminary design involves recommendations for structural design, geotechnical design, and construction planning. WWES is providing structural recommendations pertaining to the tower and floating platform,

geotechnical recommendations for the mooring system consisting of the tether and anchor, and construction feasibility covering the budgeting, staging, construction, timeline, and delivery logistics from the Port of Hueneme.

Current Site Conditions

The current proposed wind farm location is roughly 40 km offshore to the NW of Morro Bay near NOAA buoy 46028 where consistent wind data has been recorded for over 27 years. The wind at this location has shown an average speed of 8.5 m/s from long term buoy data. The climatic mean and standard deviation plots for wind speed, significant wave height, and dominant wave period at buoy 46028 provided by the National Data Buoy Center (NDBC) and National Oceanic and Atmospheric Administration are displayed below as these site conditions are major influences in the FOWT design.

Figure 2. Station 46028 climatic mean and standard deviation plot for the average wind speed in knots from historical data from 1997-2008 provided by the NOAA (NDBC station page, 2023).

Figure 3. Station 46028 climatic mean and standard deviation plot for the significant wave height from historical data from 1997-2008 provided by the NOAA (NDBC station page, 2023).

Figure 4. Station 46028 climatic mean and standard deviation plot for the dominant wave period from historical data from 1997-2008 provided by the NOAA (NDBC station page, 2023).

The depth of water to the continental shelf is roughly 800 to 1100 m with a slope of 1 km vertical to 10 km horizontal.

SCOPE OF WORK

Structural

Offshore structures are designed with respect to ultimate limit state (ULS) and fatigue limit state (FLS), meaning they must withstand extreme loads and are designed so that fatigue damage will occur only after a certain lifetime. The primary component of the structural work for the project is designing the floating platform and tower to withstand the wind, wave, and current environmental loading. The FOWT system consists of a mooring system, floating platform, tower, and a rotor-nacelle-assembly (RNA) which is a combination of the nacelle, gearbox, and rotor combining the hub and blades. Conceptual and preliminary stages of the FOWT design process were carried out. Buckling, yielding, and stability analyses were conducted on the tower and platform to ensure the structure was designed against the ULS. Fatigue assessment was carried out to analyze the FLS and ensure the structure will fulfill its intended design life of 20 years (DNV-OS-J103, 2013). Natural periods of the structure were compared to wave periods to avoid the negative effects of resonance.

Geotechnical

The geotechnical scope of work involves providing foundation recommendations for mooring the floating offshore wind turbine to the seafloor. The selected foundation type, suction caisson, is designed following Arany and Bhattacharya (2018) to mitigate uplift concerns due to environmental loading. A schedule of recommended caisson dimensions is provided as well as a figure showing caisson embedment depth versus capacity for a range of caisson diameters.

Construction

The construction scope of work includes a Class 2 Cost Estimate, Class 3 Design Schedule, and Project Execution Plan (PEP). The PEP contains an executive summary, execution phasing strategy, public outreach plan, construction safety plan, and quality control and assurance plans. Key construction considerations for this project includes establishing the project cost and schedule, mitigating unforeseen conditions, and ensuring public and construction on-site safety. To ensure these key considerations are properly addressed and construction operations run smoothly and efficiently, WWES will proactively coordinate with onsite and offsite agencies. WWES' proactive coordination also aids in ensuring and maintaining public and job site safety because it can anticipate potential hazards resulting from construction through properly managing concerns such as traffic control, danger zones, and waste areas.

Environmental Consideration

At WWES we aim to provide an environmentally sustainable design and construction plan. The development of floating offshore wind turbine farms has the potential to provide clean energy to millions of Americans and reduce greenhouse gas emission to prevent the impacts of climate change and contribute the Biden-Harris Administration commitment to deploying 30 gigawatts of offshore wind energy by 2030. However, floating offshore wind infrastructure presents risks to the environment off the coast of Morro Bay. Therefore, WWES strongly

believes it is important to develop the proposed wind farm in a way that minimizes environmental impacts. To begin, one risk could be wildlife entanglement in the mooring system and power cables connected to the turbine. To combat this, WWES proposes a single tether system for each wind turbine, likely to pose a low risk because these tethers and cables are large and rigid (Kershaw, 2021). Additionally, the mooring line system may impact marine life at the surface of the ocean bottom because the tether and anchor may disrupt the movement of migratory fish. However, since the turbines will be placed 1 km apart, we believe that the tethers will be far enough from each other to not grossly obstruct marine life patterns.

There is also the potential of introducing non-native and invasive species to the wind turbine farm site because the turbines will be tugged from the Port of Hueneme to their final location off the coast of Morro Bay. However, since the Port of Hueneme recently received the Comprehensive Environmental Management Award, we believe that they have the proper invasive species mitigation measures to prevent these species from latching onto our turbines at port before they are towed to site. Furthermore, research conducted by the Bureau of Ocean Energy Management (BOEM) has shown that "offshore wind foundations may function like artificial reefs by creating new habitats which attracts marine organisms... and potentially increasing the biological diversity of the area" (Bureau of Ocean Energy Management, 2021). As such, the presence of our wind turbines may increase biological resources, if invasive species potential is properly mitigated.

DATA AND DESIGN CONSTRAINTS

Structural

Choosing a suitable FOWT is based on the design constraints of the construction site, installation site, and operating conditions. These involve water depth, environmental conditions, shore distance, and seabed properties. The FOWT is to be constructed in the Port of Hueneme and installed 40 km offshore to the NW of Morro Bay near the NOAA buoy 46028. The spar-type FOWT was chosen as it seemed to be the most suitable concept for the deepwater applications of this site. The lowered center of gravity suppresses pitch and roll motions and the ballast stabilization enables cost reduction by utilizing cheap materials. Furthermore, the spar allows a small waterplane area, reducing wave forces, and has a deep draft that reduces heave motions. Overall, the spar maintains a relatively simple and inexpensive platform geometry (Dinh et. al., 2013).

Environmental conditions were obtained from the National Data Buoy Center (NDBC) of the National Oceanic and Atmospheric Administration (NOAA) historical buoy data. Load combinations were calculated in accordance with DNVGL-ST-0437 (2016): *Loads and Site Conditions for Wind Turbines*. It was found that the combination of the maximum wind load due to extreme operating gust (EOG) at rated wind speed at the 1-year extreme wave height governed the environmental loading. This aligns with the findings of a study by de Souza et. al (2022) which states "load cases associated with the rated windspeed often govern the extreme loads" of larger FOWTs "unlike previous studies with 5 MW and 10 MW FWTs."

Geotechnical

Subsurface exploration is yet to be performed at the site beneath NOAA buoy 46028. However, we assume two general seafloor conditions for foundation design: sandy soil and clayey soil. For the sandy soil condition, we assume an effective friction angle of 26-32 degrees. For the clayey soil condition, we will utilize a boring log from a nearby deepwater site. This boring log shows very soft to soft olive gray clay to a depth of approximately 8.5 meters beneath the seafloor which gives way to firm to stiff olive gray clay until boring termination at a depth of approximately 61.8 meters. The surficial clay yielded a laboratory undrained shear strength of approximately 4.8 kPa, which increased approximately linearly by 1.8 kPa/m (Moss, 2022).

Construction

The construction of these 100 14 MW turbines offshore wind farm project has several constraints including the supply availability of turbine components for a 14 MW turbine, transportation process of turbine components to the onshore construction site and then to the offshore site, and the port size and bearing capacity. To account for the limited supply and manufacturing of 14 MW turbine components, we assumed a more conservative estimate for procurement time in the design schedule. Finding transportation and assembly equipment currently available with the capacity to handle the loads required by the turbine was also a challenge. As such, additional cranes, operating, and transportation equipment were assumed necessary and reflected by more conservative pricing in the cost estimate.

Lastly, port size and bearing capacity were limiting factors for the quantity of turbines that could be stored and assembled at a time. Due to the size constraints of the commercial side of Port Hueneme, WWES was only able to hold the assembly of one (1) turbine and storage of four (4) turbines at a time. Additionally, after consulting with a Port Hueneme Environmental Manager, this port, and all other ports in California, currently does not have the bearing capacity required to support wind turbine construction and will need additional foundation upgrades. According to the port's Environmental Manager, Port Hueneme currently has a bearing capacity of between 6-10 ksi and will likely need around 10 times this amount to support the wind turbine construction loads. However, financing for California port infrastructure upgrade projects is underway to support the US's renewable energy goals. So, by the time this project has passed the years long BOEM permitting approval process, Port Hueneme will likely have the foundation bearing capacity to support wind turbine construction.

DESIGN APPROACH AND RECOMMENDATIONS

Structural

Support Structure Design

WWES is proposing a deep draught spar-type offshore floating wind turbine. The proposed spar design consists of a 160 m long steel cylinder including 10 m of freeboard. The deep-water conditions off the coast of Morro Bay allow the spar's 150 m draft. For this preliminary 80%

FINAL DESIGN REPORT FLOATING OFFSHORE WIND FARM

design, the spar is modeled as an unstiffened cylinder, with a diameter of 25 m, and a constant thickness of 450 mm to sustain the buckling loads from the turbine tower and rotor-nacelleassembly (RNA), while ensuring the floatability of the structure. See Appendix B.5 for calculations regarding buckling of the spar. The spar characteristic buckling stresses were calculated using Load and Resistance Factor Design (LRFD) methodology per DNVGL-RP-C202 (2019): *Buckling Strength of Shells*. The hydrostatic pressure causing circumferential stress governed the buckling stress. Although, this can be attributed to conservative assumptions made regarding the hydrostatic pressure demand. A model of the proposed FOWT is displayed below (Fig. 4),

Figure 5. Model of proposed FOWT

The spar is ballasted with 22,808 tons of high-density concrete enhanced with magnetite, which is an iron ore that is a common ballast material for offshore applications because of its high density. The ballast volume was designed to provide sufficient stability to the FOWT and will be elaborated on. Above the permanent ballast is 4,155 tons of variable ballast made of seawater (open tank to the ocean). The level of the variable ballast is controlled by pumping compressed air to the top of the tank to achieve neutral buoyancy as the operating conditions of the turbine change. The spar linearly tapers off 10 m below the waterline in a conical

transition to connect to the turbine tower and to lessen the wave effects near the waterline. Also, 10 m of freeboard is provided to prevent the turbine tower from being at sea level to protect from corrosion and to protect the maintenance deck from waves. Both the spar and tower are made of S420 steel, which is a common steel used for offshore applications (Igwemezie, 2019). A steel with high yield strength is chosen as the yield strength of hot-rolled steel decreases with the large wall thicknesses of the spar and tower. The main properties of the proposed floating platform are summarized in Table 1 below.

Spar Properties -5420		
Diameter	25	m
Thickness	450	mm
Total Length	160	m
Freeboard	10	m
Draft	150	m
Steel Mass	44497	tons
Permanent Ballast	22808	tons
Variable Ballast	4155	tons
Total Spar Mass	73862	tons

Table 1. Proposed spar floating platform properties

Tower Design

The SG 14-222 14 MW turbine produced by Siemens Gamesa Renewable Energy is used in the design of the proposed wind turbine. Technical specifications for the turbine are displayed below in Table 2 (de Vries, 2019).

Nominal power	14	MW
Blade length	107	m
Rotor diameter	222	m
Swept area	39000	m²
Cut-in wind speed	3.5	m/s
Cut-out wind speed	28	m/s
Blade mass	55	tons
Nacelle height	10.4	m
Nacelle length	20.6	m
Nacelle width	11	m
Nacelle mass	600	tons

Siemens Gamesa 14 MW Turbine: SG 14-222DD

The turbine tower consists of a 125 m taper cylinder supporting the RNA with a nominal capacity of 14 MW. The cylindrical tower tapers from 10 m to 8 m with a constant thickness of 50 mm to support the buckling loads of the RNA. As a conservative measure, the self-weight of the tower was included in the point load for the tower buckling as well as contributions from the P-delta effect. See Appendix B.3 for tower buckling calculations. Tower yielding was analyzed using basic beam theory considering the thrust force acting on the rotor and the P-delta effect from the shift of the tower top under loading that gives rise to a moment arm for the RNA weight (Fredheim, 2022). See Appendix B.4 tower yielding calculations. Overall, the characteristic shell buckling of the tower properties are displayed in Table 3 below.

Tower Properties		
Bottom Diameter	10	m
Top Diameter	8	m
Thickness	50	mm
Tower Height	125	m
Hub Height	135	m
Mass	1494	tons

Table 3. Proposed turbine tower properties

Stability Analysis

The intact stability of the structure is analyzed, however per DNV-OS-J103 (see page 81), for unmanned units, like wind turbines, damaged stability is not a requirement. The stability of the spar-type FOWT is provided by the magnetite enhanced concrete ballast. The stability of offshore structures is typically analyzed through its curve to static stability, which is a plot, shown below in Figure 6, of the righting arm of the FOWT vs the heeling angle caused by the environmental forces.

Figure 6. The Curve of Static Stability of the FOWT plots the righting arm of the structure vs the heeling angle due to environmental forces.

The spar can right itself irrespective of the angle of heel if the center of gravity is kept below the center of buoyancy by the ballast. Because of this attribute, it was determined in Figure 5 that the heeling angle at which a maximum righting arm of 16.89 m occurs is at 90 deg. This means that at this angle, the structure uses the most energy to put it back to its vertical position. However, the created curve of static stability seems to be inaccurate as it gives a very high maximum heeling angle (Bockute, 2019). To continue, offshore structures are also analyzed by their righting moment curves to ensure sufficient stability. The righting moment curve of the proposed FOWT is provided below Figure 7.

Figure 7. Plot of the righting moment and inclining moment vs the heeling angle due to environmental forces

Per DNV-OS-C301 (2001): *Stability and Watertight Integrity* (see page 14), the area under the righting moment curve to the second intercept or down flooding angle, whichever is less, shall not be less than 30% in excess of the area under the wind heeling moment curve to the same limiting angle. Because the spar-type floating platform is difficult to capsize, the graph of the righting and inclining moment does not have a second intercept to allow the stability to be analyzed per DNV code requirements. As shown in Figure 6, the largest restoring capacity is at 90 degrees. In absence of conforming design philosophy from DNV codes, the American Bureau of Shipping (ABS) codes were used to satisfy the stability of the FOWT. As such, *ABS: Guide for Building and Classing Floating Offshore Wind Turbines* (see page 134) states "for the spar-type floating substructure, the righting energy at the inclination angle of 30 degrees is to reach a value of not less than 30% in excess of the area under the overturning curve to the same limiting angle."

The overturning moment is conservatively determined by applying the wind, wave, and current loads as point loads on the structure to obtain the worst-case scenario. DNVGL-OS-C₃01 (2001) reports that the intact inclination angle is limited to 12 degrees for normal operating conditions as the power output of the structure will be seriously reduced for angles above this limit. Our proposed turbine has an inclination angle of 12 degrees which satisfies the provided recommendation. See Appendix B.6 for calculations regarding the stability of the FOWT. For the dimensions of the spar regarding draft and diameter, the stability of the structure governed the geometry of the spar through several iterations adjusting the geometry of the spar and amount of ballast to lower the center of gravity to ensure a sufficient restoring moment and reasonable heeling angle. Then, the hydrostatic pressure governed the wall thickness of the spar to prevent shell buckling.

Natural periods of the FOWT should fall outside of the "energy rich part of the wave spectra from 5-25 seconds" to avoid increased excitation due to resonance " (Johannessen, 2018). This matches the dominant period range of the installation location. The proposed FOWT satisfies this recommendation as it has a heave period of 25.628 s, a pitch period of 43.175 s, and a roll period of 43.175 s. The contribution of mooring lines was ignored for simplicity. See Appendix B.6 for calculations of the natural period.

Fatigue Analysis

FOWTs are highly dynamic due to the cyclic wind, wave, and current motion combined with the rotating turbine. The proposed FOWT is prone to fatigue due to this cycling, causing fatigue damage to be the usual design driving factor. Arany et. al. (2017) cites a study by Kucharczyk et al. (2012) where "it was identified that the fatigue endurance limit of the S355 steel is 260 MPa." According to Arany et. al. (2017) "fatigue endurance limit of the material means that under stress cycles with a magnitude lower than this value, the material can theoretically withstand any number of cycles." Arany et. al. (2017) cites this justification to assume the fatigue life of structural steel is sufficient. The same justification is used for the proposed FOWT as the maximum stress the tower base experiences is about 156.094 MPa, the maximum axial stress experienced in the spar is 13.183 MPa, and the grade of steel for the turbine tower is S420. See Appendix B.7 for fatigue related calculations. Therefore, in lieu of

sophisticated simulation tools that are beyond the scope of this project to estimate the number of load cycles in the FOWT's design life, similar reasoning is used in the preliminary fatigue analysis of the tower. A more precise fatigue analysis will be carried out in the remaining 20% of the design.

Welded tubular joints are considered critical structural components of offshore platforms that function as weak spots for fatigue loading. Their fatigue performance is strongly influenced by the magnitude of the applied cyclic loading. However, fatigue analysis on welds is beyond the scope of 80% preliminary design and will be addressed per DNV-RP-C203 (2014): *Fatigue design of offshore steel structures* in the remaining 20% of the design.

Conclusions

Long term issues with fatigue and cracks propagating in welded structures are especially critical in the design life of large FOWT's. The large wall thickness of the steel shells in the design worsens this problem and there are challenges associated with welding such thick steel plates. Therefore, the utilization of stiffeners to enhance the design would allow thinner shells while maintaining sufficient buckling capacities. A tapered thickness along the spar and tower would aid this issue while a constant thickness was assumed for the purposes of the 80% preliminary design.

The mass of the turbine tower is on par with similar upscaled and existing large FOWTS. However, the proposed spar is significantly heavier than any similar conceptual design. This is likely due to conservative loading assumptions made and can be remedied with the aforementioned design improvements and more precise loading.

Geotechnical

Selection of Anchor Type

To anchor the floating wind turbine to the seafloor, WWES recommends implementation of a suction caisson foundation. Offshore structures utilize several different anchoring systems across a wide range of applications such as floating offshore oil and gas and floating semi-submersible structures. Available mooring systems for deepwater floating offshore structures include drilled shafts, driven piles, drag anchors, suction caissons, suction embedded plate anchors, and dynamically-penetrating or "torpedo" anchors (Randolph and Gourvenec, 2011). However, the suction caisson is quickly becoming the most widely used and studied anchoring system for floating offshore applications with several benefits including increased pullout resistance in both sand and clay relative to traditional piling and foundation techniques.

General Sizing and Installation

Suction caissons differ from traditional driven pile foundations both in their size and in method of installation. Suction caissons are large steel cylinders with one closed end and one open end, typically with an outside diameter ranging from 4 and 20 m. Diameters of traditional driven piles are usually no greater than 3 m. Suction caissons typically have a length-to-diameter ratio no greater than 5, whereas driven piles have a length-to-diameter ratio that can range between 30 and 60 (Iskander et al., 2011). Installation of suction caissons involves allowing the

ww

caisson to sink a short distance into the seafloor under its own self-weight, open-end first, creating a "seal" with soil plugging the inside of the caisson. This is followed by the application of suction as water is pumped out of the closed end of the caisson. This suction creates a pressure differential inside the caisson, pulling it down into the seafloor to full penetration depth without the use of a driving hammer (Iskander et al., 2011). The floating turbine is attached to the caisson via a tether connected to a padeye located on the outside of the caisson, placed at a depth such that soil resistance is mobilized through anchor horizontal translation instead of rotation. This depth is approximately two-thirds of the full caisson length in nearly all cases. (Arany and Bhattacharya, 2018; Randolph and Gourvenec, 2011).

Design Methodology

Arany and Bhattacharya (2018) provide methodology for suction caisson design in soft clay with undrained shear strength values increasing linearly from 15 kPa at a rate of 2 kPa/m and for medium sand with an effective friction angle of 30 degrees. These soil conditions are similar to those assumed to be present at and around NOAA buoy 46028, so we can apply the methods provided in Arany and Bhattacharya (2018) for suction caisson design. One major assumption of the design WWES provides is that the tether load at the mudline is equivalent to the tether load at the anchor. This is a conservative assumption, as the load at the anchor will be slightly less than the load at the mudline because the soil through which the tether travels between the seafloor and the padeye provides resistance to environmental loads. Koh et al. (2019) and Zhu et al. (2018) separately concluded that cyclic loading would have negligible effect on caisson ultimate capacity for moderate load inclination angles such as the one assumed by WWES.

Suction Caisson Recommendations

When designing suction caissons to moor the offshore wind turbine to the seabed, WWES assumes a homogeneous soil profile consisting of either clay or sand with index and strength characteristics as described above. Design drawing G-1 shows a schedule of recommendations for suction caisson dimensions for these two soil profiles. Appendix C contains a sample calculation for design dimensions in both soil types for a length-to-diameter ratio of 2 under the design environmental load of 18.106 MN. Appendix C also contains full tables of calculation parameters for whole length-to-diameter ratios from 2 to 5 under the design loading condition as well as extreme loads of 20, 22 and 24 MN. During installation, there exists the possibility that the caisson encounters an unknown stiff soil layer that is impossible to pass, either during the sinking-by-self-weight phase or the suction phase of installation. If this should occur before the caisson ultimate capacity surpasses the environmental loads, WWES recommends installation of a second caisson located far enough from the first to have negligible effect on its capacity. Figure 8 below shows caisson ultimate capacity versus depth achieved for whole-numbered caisson diameters from 4 to 8 meters.

ww

Construction

Cost Estimate

Scope of Work:

The Scope of Work (SOW) of this project includes designing the specifications, construction staging, and installation of a 14 MW floating offshore wind turbine to be stationed as part of a 100-turbine farm 45 km NW off the coast of Morro Bay. This wind turbine is to be approximately 249 m above sea level at its highest point and have a single spar buoy, anchored by one embedded suction caisson. The water depth in this area is expected to be 800-1000 m deep with a subsurface profile of sandy and clayey soils. The scope of this Class 2 Cost Estimate accounts for the following construction and installation costs including, but not limited to, preconstruction port work, turbine component procurement, two (2) mobilizations, assembly, installation, and utility installation. Exclusions and assumptions can be found below. Additionally, the SOW has been organized within the Cost Estimate by project phase.

Cost Basis:

Most of our unit cost estimates were obtained from Catapult Offshore Renewable Energy's 2019 Wind Turbine Cost Estimates for farms in the United Kingdom. These line items costs were given in £/MW, so we converted to USD using the average 2019 GBP to USD conversion rates and then adjusted for inflation using Historical Consumer Indexes. Other unit costs, such as site assessment, were obtained from consultation with industry professionals and manufacturers, and adjusted for inflation accordingly.

Assumptions:

The Class 2 Cost Estimate values are based on current industry prices for a start date by the end of Quarter 2 of 2023, standard 40-hr daytime work weeks and a seven-month construction timeline for the assembly and installation offshore of a singular 14 MW wind turbine. Since the permitting process may take several years, the costs used may need to be adjusted again for inflation near the projects' projected start date. WWES also assumes that the Port of Hueneme

construction areas have already been acquired or rented by the owner and that all labor is to be supplied locally. Additionally, we assume that no grading, earthwork, or resurfacing for road re-routes is required since the proposed construction areas are already level and drivable due to it being the largest commercial vehicular shipping port in California.

Exclusions

This Class 2 Cost Estimate excludes off-site hauling and disposal fees for demolition and construction waste, post-sunset commercial lighting, security systems, and construction equipment other than the large cranes included. Costs for overtime or schedule delays and night and weekend work are also excluded. Additionally, turbine demobilization, operations, and maintenance costs have been excluded. Furthermore, dampers for Vortex Induced Vibrations (VIV) have been excluded as this requirement may change as the last 20% of the design is refined. This estimate includes the construction costs for only one (1) turbine and excludes costs for the unassembled turbine components laid out on the project site plan; the purpose of those components is to depict proposed storage areas and turbine component quantities that could possibly be stored on site for future construction. Furthermore, safety and pollution mitigation measures beyond erosion control, including fall protection, scaffolding, and sandbags, are not included.

Contingencies

The Cost Estimate includes 20% and 40% contingencies within the soft costs category based on the risk analysis breakdown displayed below. Two contingency prices are offered to reflect the estimate for a typical Class 2 Cost Estimate but also to show a more conservative estimate value due to the possible risk associated with the fluctuating economic market, permitting timeline uncertainty, and changes in the offshore wind turbine component manufacturing industry. The overall risk analysis shown below accounts for financial, design, and technical risks arising from factors such as the economic market uncertainties, procurement and scheduling delays, and WWE's team expertise with the project's design elements.

Risk Analysis:

20% Contingency:

- 14% Cost Risk: Estimate Based Off UK Pricing, Limited Availability of Equipment with Capacity for 14MW Turbines, Fluctuating Economy
- 3% Design Risk: Conceptual Design Phase, Design Re-Working

3% - Technical Risk: Constructability and Stability Design

Total Risk: 20%

40% Contingency:

- 27% Cost Risk: Estimate Based Off UK Pricing, Limited Availability of Equipment with Capacity for 14MW Turbines, Fluctuating Economy
- 5% Design Risk: Conceptual Design Phase, Design Re-Working
- 8% Technical Risk: Constructability and Stability Design
 - Total Risk: 40%

Project Execution Plan:

Executive Summary:

The Floating Offshore Wind Farm Project involves installing a farm of 100 14 MW wind turbines 40 km off the coast of Morro Bay, CA. The purpose of this wind farm is to harness wind energy as a renewable energy source to power and increase the capacity of the State of California's electrical grid. Using wind power as a renewable energy source will reduce the country's carbon footprint and reliance on unsustainable energy sources for electricity such as burning fossil fuels and natural gas. This Project Execution Plan assumes and only applies to the construction of one 14 MW turbine at a time.

Project Deliverables:

The construction portion of the Floating Offshore Wind Farm Project includes the assembly and installation of a singular 14MW offshore wind turbine. Turbine assembly will occur onshore at the Port of Hueneme in Los Angeles, CA and then transported to the offshore site off the coast of Morro Bay, CA. Temporary road-rerouting will also be required for port-side construction.

Outreach Plan:

WWES understands the impact this Floating Offshore Wind Turbine Project could have on the Port of Hueneme and its surrounding businesses, residents, visitors, especially due to construction noise levels and potential traffic congestion. To address the impact on the local community, WWES has compiled a public outreach plan with strategies for mitigating these inconveniences and improving overall safety.

- <u>Public Meetings</u> Hosting public meetings would provide local businesses, residents, and other impacted parties an opportunity to voice their opinions and concerns about the project, ask questions, and review project plans. Public meetings would also allow the project team to describe how the project will function, address any questions and concerns, and explain how they plan to disperse information and updates regarding safety and transportation to the community around the project site.
- <u>Media</u> Publicizing project information through different forms of media such as local and county-wide newspapers, conferences, social media, and television will help maximize audience reach. Using a widespread of media platforms will help the project team provide timely and consistent updates regarding community impact as the project progresses.
- 3. <u>Renewable Energy Education</u> Offering renewable energy lectures and discussion dialogues to the community may also help with gaining public favor for the project in addition to educating people on why harnessing offshore wind energy is a great option

for powering our country from a sustainability standpoint. This educational offering could also inspire more sustainable habits and initiatives in the local community.

Execution Strategy – Rough Phasing:

<u> Phase I – Permitting:</u>

Phase I comprises of the permitting process, prior to construction. The permitting process may last up to a decade, as demonstrated in the Appendix E Permitting Schedule portion of the Design Schedule. The permitting time is dependent on how quickly the BOEM can review and approve of the various plans, site assessment surveys, and other documentation the project team must submit. This timeline may be reduced as offshore wind energy projects and technology become more common in the United States. Currently, there are four major stages to the BOEM project approval process:

Stage 1: NEPA Planning and Analysis (~ 2 years) Stage 2: Lease Issuance (~1 year) Stage 3: NEPA Approval of Site Assessment Plan (~2 years) Stage 4: NEPA Approval of Construction & Operations Plan (~2 years)

Stage 1 consists of identifying port construction and offshore site areas and environmental reviews. Stage 2 involves the publishing of leasing notices, auctioning of leases, and lease issuance. Though project may have a site lease issued, this does not give them authority to begin construction. At the end of this permitting stage, they are only approved to begin site assessments. Stage 3 is the site assessment phase which involves devising a site assessment plan and characterization and conducting site surveys such as Resource and Metocean Assessments, Geological and Hydrological Surveys, and Subsurface Sampling. Once the site assessments in Stage 3 are approved, Stage 4 begins which is the Construction & Operations Plan approval process.

Phase II – Mobilization 1, Site Work, and Procurement at Port Site:

Once the Phase I Permitting Process is complete, Phase II begins which includes Mobilization I, Site Preparation, and Procurement at the port site, Port Hueneme.

Phase II begins with Mobilization I which involves installing traffic road barricades for impacted roads leading to the project site, new traffic redirection signage, temporary construction fencing and temporary sound barriers. Temporary facilities such as the job site trailer and restrooms will also be delivered and placed. A parking area for on-site workers will be established as well.

The Site Preparation aspect of Phase II consists of the demolition, traffic control and site work, and storage warehouse installation. Demolition includes demoing existing warehouse buildings and existing road pavement on the project site, as per the Demolition Plan. The site and traffic control work includes installing temporary road barriers for rerouting traffic around

ww

the site, filling in the areas where the warehouses were demoed with asphalt pavement, and installing more temporary traffic signage. Since the current purpose of the port is to store and ship vehicles, we assume that all existing open areas are acceptable for vehicular movement. So, new pavement will not be needed for the new roads created to reroute existing ones. Additionally, the prefabricated storage warehouse will be installed to complete site preparation.

The Procurement process includes procuring – ordering, manufacturing, and shipping - all onshore and offshore equipment, turbine components, and mooring and anchor system components. WWES assumed a timeline of one (1) year for this process to account for the turbine components being manufactured and shipped from Europe. The timeline may be reduced depending on the status of offshore wind turbine manufacturing technology advanced in both Europe and the United States..

Phase III - Assembly at Port Site:

Once Phase II is completed upon the successful delivery of the required procurement items, Phase III begins which is the turbine assembly. During this phase, the turbine's tower, blades, rotor, nacelle, foundation, and deflated spar buoy are assembled horizontally along the port using onshore cranes and a jackup vessel. Upon completion of this assembly, the turbine undergoes commissioning to ensure all components are without flaws and were assembled per manufacturer specifications.

Phase IV – Mobilization 2:

After the turbine assembly is completed at the port, Phase IV, Mobilization 2, begins. During this phase, trenching will be done for utility line placement and the suction caisson, assembled turbine, spar buoy ballast fill material, and offshore cranes are transported by vessel to the offshore site.

Phase V - Installation & Connections at Offshore Site:

Phase V begins once the components have arrived at the offshore site for the final turbine installation and utility connections. First, the suction caisson will be installed using a suction caisson-specific installation equipment. Then, the suction caisson will be tied to the mooring line. Next, the spar buoy will be filled with the ballast material to right the turbine from a horizontal to vertical position and the fully inflated turbine will be placed on the water above the suction caisson. The mooring line will then be connected to the spar buoy padeye. Simultaneously, the utility lines will be installed and buried from the onshore substation to the offshore turbine site and then connected to the wind turbine.

Phase VI – Commissioning, Demobilization, and Closeout:

After the turbine is installed and utilities connected, commissioning of the MEP and turbine work will occur. Once the commissioning processes are completed, demobilization of the

onshore port site begins. This involves removing the temporary facilities, fencing, road barriers, traffic signage, and equipment. During this phase, closeout documentation will also be collected for the final Turn Over Package (TOP) to be submitted to the project owners. Lastly, a Lessons Learned Session will be conducted among the project team and the project deemed complete.

Construction Safety Plan:

The construction industry has among the highest risk rates for worksite injuries and fatalities due to the potential site hazards that surround industry workers daily. As such, public and site-specific safety must be prioritized. The risk associated with these hazards can be alleviated through WWES and its contractors creating Site-Specific Safety Plans (SSSP) prior to stepping foot on site. The SSSP involves identifying site-specific hazards along with implementing safety measures for mitigating them.

All construction work performed on the project sites will be in accordance OSHA safety regulations in addition to complying with the following safety management program:

- <u>General Safety Management Plan</u> This will be a summary of the general methods all on-site personnel must implement and enforce to ensure safety on site. This plan includes general rules of conduct, required personal protection equipment (PPE), and an emergency action plan in the event of an accident. Failure to comply will result in disciplinary action.
- <u>Subcontractor Supplies Site-Specific Safety Plan (SSSP)</u> All subcontractors will be mandated to provide a Site-Specific Safety Plan for their respective trades prior to setting foot on site. These SSSP will then be reviewed by the General Contractor's Safety Lead for approval. Failure to provide this documentation in a timely manner may result in loss of job and back charges should it result in project delays.
- 3. <u>Chain of Command</u> This will be a defined authority structure which allows for a clear understanding of roles, responsibilities, communication line, and hierarchical importance for notification in the event of an emergency or accident.
- 4. <u>Pre-Task Planning</u> All subcontractors will be required to implement pre-task safety plans. These will require subcontractors to analyze their scope of work from a safety standpoint prior to performance and identify the work sequences, hazard trainings, controls, and emergency action plans required to protect all site personnel.
- 5. <u>Housekeeping</u> All site personnel will practice good housekeeping to eliminate hazards such as trash, debris, and accident hazards. Trash and debris will be collected and placed in dumpsters at the end of each day. Objects will be removed from paths of

travel and objects that could result in tripping, impalement, or other hazards must be capped, flagged, and labeled accordingly.

 <u>Accountability</u> – All project personnel are responsible for providing and upkeeping a safe and health work environment. As such, the project will uphold a "see something say something" policy.

Quality Control and Quality Assurance:

All design work will be verified for compliance with the applicable structural and geotechnical codes for offshore wind turbine design prior to construction. All construction work will comply with OSHA, AASHTO, and BOEM requirements and be verified for adherence with the final construction drawings. Should substandard construction work or delivered equipment be identified, back orders will be issued at the subcontractor at fault's expense. Additionally, all subcontractors will be required to submit a Quality Management Plan which will be reviewed and approved by the General Contractor's Senior Project Manager. Furthermore, subcontractors must adhere to the inspection schedule per their contractual obligations to ensure quality control, quality assurance, and compliance with local, state, and federal ordinances. Finally, prior to project commissioning and closeout, all subcontractors must provide a completed and signed Quality Control Punch List to verify that their scope of work has been completed per contract and applicable code standards.

SUSTAINABILITY INDEX

People

Offshore wind is a rapidly growing industry on the central coast, creating new jobs. Our offshore wind turbines will benefit people because the renewable energy harnessed through them will reduce pollutants in our water sources and air supply and preserve our current fossil fuel supply. The rise in childhood and adult asthma cases has been linked to poor indoor air quality as a result from increased natural gas use in homes and off-gassing construction materials. Using renewable

electricity energy from wind turbines can increase indoor air quality by eliminating the use of natural gas as an energy source in homes, therefore decreasing the risk of air quality related illnesses. In relation to public opinion, offshore wind farms that are constructed within view of the coast may be unpopular to residents because of aesthetics and property values. However, offshore farms still have less of a visual impact than onshore wind farms.

Planet

There are various environmental advantages attributed to the FOWT project. Offshore wind turbines provide a clean renewable source of energy that can provide power to the high energy demands of dense coastal communities while reducing CO₂ emissions (Hutchins, 2020). Offshore wind has the benefit of the presence of more frequent and stronger winds, yielding larger energy production as compared to onshore wind farms. Wind turbines also do not require fuel to operate and limiting the burning of fossil fuels will aid in slowing down climate change and protect more of the earth's natural resources and ecosystems from further harm. Additionally, while the effects of offshore wind turbines to marine and avian life are not fully understood and potentially harmful, the use of a floating turbine foundation as opposed to monopile, or jacket foundation is more environmentally friendly to subseafloor and seabed species. This is because the embedded suction caissons are relatively non-disruptive to the seafloor in terms of displacing subsurface organisms and sediment displacement during and after installation (BOEM, 2020). Furthermore, it is unlikely that the turbine and boats installing the turbines will introduce foreign invasive species to the offshore site due to its proximity to the Port of Hueneme.

Price

The proposed floating offshore wind turbine has a high upfront price tag due to its scale and magnitude. A FOWT requires large and complex infrastructure and therefore is more expensive and difficult to construct than onshore wind farms. In addition, the wind farm is difficult to access but needs more maintenance due to damaging winds and sea waves. However, the U.S. government has pledged federal aid to states in support of offshore farms to hit green energy goals in the future. In the long run, as the supply of fossil fuel resources is depleted and the demand for energy increases, the price of oil will increase. Wind, on the other hand, is a constant natural source of energy on earth, so the supply of wind energy will at a minimum stay the same and will increase as we become more adept at harnessing its energy to meet demand.

ww

WIND WRANGLER ENGINEERING SERVICES

Project: Floating Offshore Wind Turbine Engineer: AY Checked by: CW Date: 5/22/2023

APPENDIX A: DESIGN DRAWINGS

THE FLOATING OFFSHORE WIND TURBINE FARM PROJEC

PROJECT DESIGN AND CONSTRUCTION PLANS

DEX ATION 1 PLAN - PORT ION PLAN - PORT RK PLAN - PORT RK PLAN - PORT CONTROL PLAN - PORT CONTROL PLAN - PORT	FLOATING OFFSHORE WIND TURBINE FARM WIND WRANGLER ENGINEERING SERVICES
FILES TIONS N PLAN & PROFILE	SHEET NAME: COVER SHEET
ERING SERVICES TEAM	SHEET NO:
	DATE: NO SCALE DATE: OREATED BY: AY O5.22.2023 ORECRED BY: CH

GENERAL NOTES

- 1. ALL SITE WORK SHALL BE IN ACCORDANCE WITH THE CALIFORNIA CODE OF REGULATIONS, BOEM AND DET NORSKE VERITAS (DNV) DESIGN CODES.
- 2. ALL DRAWINGS SHALL BE USED IN CONCEPT WITH EACH OTHER IF THE CONTRACTOR DISCOVERS ANY DISCREPANCY BETWEEN THE DOCUMENTS, THE CONTRACTOR SHALL REQUEST IN WRITING A CLARIFICATION FROM THE ENGINEER. REFER TO THE ENGINEERING AND CONSTRUCTION DRAWINGS FOR PLACEMENT, ORIENTATION, AND COORDINATION OF WORK. INFORMATION SHOWN IN LARGER SCALE IS INTENDED TO SUPPLEMENT INFORMATION OF SMALLER, PRECEDING REFERENCE DRAWINGS. LARGER SCALE DRAWINGS TAKE PRECEDENCE OVER SMALLER SCALE DRAWINGS.
- 3. EXISTING WORK IS SHOWN FOR REFERENCE ONLY. THE OWNER AND/OR ENGINEER DO NOT GUARANTEE EXISTING CONDITIONS AS SHOWN ON THESE DOCUMENTS.
- 4. THE CONTRACTOR SHALL ASSUME SOLE AND COMPLETE RESPONSIBILITY FOR PROTECTION OF PUBLIC AND PRIVATE PROPERTY ADJACENT TO THE SITE AND HE SHALL, AT HIS EXPENSE, REPAIR OR REPLACE THE ORIGINAL CONDITION ALL EXISTING IMPROVEMENTS WITHIN OR ADJACENT TO THE JOB SITE WHICH ARE NOT DESIGNATED FOR REMOVAL AND WHICH ARE DAMAGED OR REMOVED AS A RESULT OF HIS OPERATIONS
- 5. THE CONTRACTOR SHALL MAINTAIN ALL EXISTING WORK AND SERVICES (MAIL, GARBAGE, UTILITIES, EMERGNECY, ETC. TO LANDOWNERS ADJACENT TO THE PROJECT ARE
- 6. THE CONTRACTOR IS RESPONSIBLE FOR THE PROTECTION OR PROPER RESETTING OF ALL EXISTING MONUMENTS AND OTHER SURVEY MARKERS. ANY SURVEY MONUMENTS DESTROYED BY THE CONTRACTOR SHALL BE REPLACED IN ACCORDANCE WITH THE STATE LAND SURVEYOR'S ACT AT THE CONTRACTOR'S EXPENSE.
- 7. THE CONTRACTOR SHALL COORDINATE CONSTRUCTION WITH THE APPROPRIATE UTILITY COMPANIES AND PRIVATE LANDOWNERS ADJACENT TO THE PROJECT SITE AREA.
- 8. THE CONTRACTOR SHALL EMPLOY ALL LABOR, EQUIPMENT, AND METHODS REQUIRED TO PREVENT THEIR OPERATIONS FROM PRODUCING DUST IN AMOUNTS DAMAGING PROPERTY, CULTIVATED VEGETATION, AND DOMESTIC ANIMALS OR CAUSING A NUISANCE TO PERSONS IN THE VICINITY OF THE JOB SITE. THE CONTRACTOR SHALL BE RESPONSIBLE FOR ANY DAMAGE CAUSED BY DUST RESULTING FROM HIS OPERATION, DUST ABATEMENT MUST COMPLY WITH CONSTRUCTION ACTIVITY MANAGEMENT PLAN.
- 9. THE CONTRACTOR(S) SHALL BE RESPONSIBLE FOR THEIR OWN CLEANUP AS WORK PROGRESSES.

INSURANCE AND SAFETY

- 1. NEITHER THE OWNER, NOR THE ENGINEER OF WORK WILL ENFORCE SAFETY MEASURES OR REGULATIONS AS THEY PERTAIN TO THE CONTRACTOR. THE CONTRACTOR SHALL DESIGN, CONSTRUCT, AND MAINTAIN ALL SAFETY DEVICES, INCLUDING TURBINE STORAGE AND TRANSPORT EQUIPMENT. AND SHALL BE SOLELY RESPONSIBLE FOR CONFORMING TO ALL LOCAL, STATE, AND FEDERAL SAFETY AND HEALTH STANDARDS, LAWS AND REGULATIONS.
- 2. ALL SITE PERSONNEL AND SITE ACTIVITIES SHALL COMPLY WITH OSHA REGULATIONS

CONSTRUCTION NOTES:

- 1. OWNER SHALL BE NOTIFIED AT LEAST 24 HOURS PRIOR TO STARTING CONSTRUCTION. ANY CONSTRUCTION DONE WITHOUT APPROVED PLANS OR PRIOR NOTIFICATION TO OWNER MAY BE REJECTED AND WILL BE AT THE CONTRACTOR'S RISK AND EXPENSE.
- 2. COMPACTION TESTS SHALL BE DONE ON SUBGRADE MATERIAL AND MATERIAL PLACED AS SPECIFIED. SAID TESTS SHALL BE COMPLETED BY A REPRESENTATIVE OF THE PORT OF HUENEME AND APPROVED BY THE SOILS ENGINEER PRIOR TO THE PLACEMENT OF THE NEXT MATERIAL.
- 3. OWNER MAY REQUEST REVISIONS IN THE PLANS TO SOLVE UNFORESEEN PROBLEMS THAT MAY ARISE IN THE FIELD. REVISIONS SHALL BE REVIEWED BY THE DESIGN ENGINEER AND THE OWNER PRIOR TO IMPLEMENTATION. THE INSPECTOR SHALL ALERT THE CONTRACTOR TO DEVIATIONS IN THE WORK FROM THE PLANS. THE CONTRACTOR SHALL REMEDY THE WORK TO COMPLY WITH THE PLANS TO THE SATISFACTION OF THE INSPECTOR.
- 4. THE CONSTRUCTION CONTRACTOR SHALL MAINTAIN A CURRENT, COMPLETE, AND ACCURATE RECORD OF ALL CHANGES WHICH DEVIATE FROM THE CONSTRUCTION AS PROPOSED IN THESE PLANS AND SPECIFICATIONS FOR THE PURPOSE OF PROVIDING THE ENGINEER WITH A BASIS FOR RECORD DRAWINGS. NO CHANGES SHALL BE MADE WITHOUT PRIOR APPROVAL OF THE SOILS ENGINEER, THE DESIGN ENGINEER, AND THE OWNER.
- 5. FIRE PROTECTION IS TO BE PROVIDED PRIOR TO CONSTRUCTION OF ANY BUILDINGS PER THE LATEST EDITION OF THE UNIFORM FIRE CODE WHICH REQUIRES THAT WATER MAINS AND HYDRANTS SHALL BE OPERABLE AND TESTED.A PORTION OR SECTION OF WATER LINES MAY BE PUT INTO OPERATION FOR FIRE PROTECTION.
- 6. RECORD DRAWINGS ARE TO BE PREPARED BY THE CONTRACTOR AFTER CONSTRUCTION IS COMPLETED. THE DESIGN ENGINEER SHALL BE PRESENT WHEN THE FINAL INSPECTION IS CONDUCTED.
- 7. CONTRACTOR SHALL RECYCLE MATERIALS AS FEASIBLE AND IN ACCORDANCE WITH THE CONSTRUCTION ACTIVITIES MANAGEMENT PI AN

TRAFFIC NOTES:

- 1. NO SITE WORK SHALL BEGIN PRIOR TO THE INSTALLATION OF THE APPROPRIATE CONSTRUCTION SIGNAGE AND TRAFFIC CONTROL DEVICES.
- 2. ALL TRAFFIC CONTROL DEVICES SHALL CONFORM TO THE CURRENT EDITION OF THE CALIFORNIA MANUAL ON UNIFORM TRAFFIC CONTROL DEVICES.
- 3. AGGREGATE BASE:
- 3.1. AGGREGATE BASE MATERIAL SHALL CONFORM TO THE APPLICABLE REQUIREMENTS OF SECTION 26 OF THE CALIFORNIA STATE STANDARD SPECIFICATIONS.
- AGGREGATE BASE AND SUBBASE MATERIAL SHALL BE 3.2. COMPACTED TO A MINIMUM RELATIVE COMPACTION OF 95%. THE TOP 12 INCHES OF SUBGRADE BELOW AGGREGATE BASE GRADE SHALL BE COMPACTED TO A MINIMUM RELATIVE COMPACTION OF 95%.

4. ASPHALT:

ASPHALT CONCRETE PACING SHALL CONFORM TO THE 4.1. REQUIREMENTS FOR ₹ "TYPE B" ASPHALT CONCRETE AS SPECIFIED IN THE CURRENT EDITION OF THE STATE OF CALIFORNIA DEPARTMENT OF TRANSPORTATION STANDARD SPECIFICATIONS

STRUCTURAL NOTES:

- VERIFY SUCH DIMENSIONS.
- VERIFIED BY THE ENGINEER.

ENVIRONMENTAL NOTES:

- CONSTRUCTION.
- BUDGET.
- 3. THE CONTRACTOR SHALL USE AN EROSION CONTROL PLAN DURING ALL PORT SITE CONSTRUCTION WORK.
- CONTINUE.

EMERGENCY ACCESS:

- VEHICLES.
- 2. IN THE EVENT OF A FIRE EMERGENCY ON SITE OR ON AN OPERATION FOR FIRE PROTECTION.

1. THE CONTRACTOR SHALL VERIFY ALL SPECIFIED DIMENSIONS AND SPECIFIED ELEVATIONS PRIOR TO CONSTRUCTION AND ASSEMBLY. FIELD MEASUREMENTS AND SURVEYS MUST BE UTILIZED TO

2. ANY ALTERATIONS BETWEEN APPROVED PLAN SET SHALL BE

1. CONTRACTOR SHALL LIMIT DUST AND EXCESSIVE NOISE DURING

2. IN THE EVENT THE SOUND BARRIERS DO NOT PROVIDE SUFFICIENT NOISE PROTECTION FOR THE ADJACENT PROPERTIES, THE DESIGNATED SAFETY MANAGER MAY FORM A REVISED NOISE PROTECTION PLAN. PRIOR TO IMPLEMENTATION OF THE NEW PLAN, CONSULTATION WITH THE OWNER MUST OCCUR IF NEW PLAN EXCEEDS THE COST OF THE EXISTING CONTINGENCY

4. IF ANY ARCHEOLOGICAL RESOURCES ARE DISCOVERED DURING CONSTRUCTION, ALL CONSTRUCTION ACTIVITIES MUST CEASE IMMEDIATELY, THE RESOURCES MUST BE DOCUMENTED, AND THE PROPER AUTHORITIES NOTIFIED. ALL CONSTRUCTION MAY RESUME AFTER THE RESOURCES EXHUMED AND THE PROPER AUTHORITIES HAVE SENT WRITTEN CONSENT THAT CONSTRUCTION MAY

1. IN THE EVENT THAT PROJECT CONSTRUCTION CONTINUES DURING WET WINTER MONTHS, CONTRACTOR SHALL MAKE EVERY EFFORT TO MAINTAIN OR WINTERIZE THE ROADS FOR EMERGENCY

ADJACENT PROPERTY, HYDRANTS MUST REMAIN ACCESSIBLE AND A PORTION OR SECTION OF WATER LINES MAY BE PUT INTO

W	W.
FLOATING OFFSHORE WIND TURBINE FARM	WIND WRANGLER Engineering services
sheet nam GENER NOTES	ie: AL
SHEET NO:	
SCALE: N	O SCALE

SITE PLAN: PORT HUENEME SCALE: 1:7000

FLOATING OFFSHORE	WIND TURBINE FARM	WIND WRANGLER	ENGINEERING SERVICES	
sheet name: SITE PLAN – PORT				
SHEET NO:				
SCALE DATE: 05.22.	-: 1: 2023 -	7000 CREATED BY:	AY	

LEGEND

- Port Hueneme Boundary
- ----- Existing Roads on Port
 - Existing Site Features
- Highway Jersey Barrier
- —— Temporary Construction Fencing
- Job Site Trailer & Restrooms

- 2 Install temporary sound barriers along the construction fencing.
- (3) Install Highway Jersey barriers to block off roads from access to the site prior to road rerouting barriers are installed.
- (4) Install traffic control and road closure signage.

 - Construction fence throughway gate opening for deliveries, equipment, and people.

FLOATING OFFSHORE	WIND IURBINE FARM	WIND WRANGLER	ENGINEERING SERVICES	
SHEET NAME: PHASE 2: MOBILIZATION 1 PLAN – PORT				
SHEET NO:				
SCALE: 1: 3500 DATE: OREATED BY: AY 05.22.2023 ORECARED BY: CH				

PHASE 2: DEMOLITION PLAN - PORT

SCALE: 1:3500

LEGEND

- Existing Road Demolition
- Existing Building Demolition
- Existing Roadway On Site
- Existing Buildings
- Port Hueneme Boundary
- ----- Vicinity Area Roads

- $\begin{pmatrix} 1 \end{pmatrix}$ Existing building to be demolished.
- (2) Existing road to be demolished.
- 3 Existing port roads to remain
- (4) Construction fencing & sound proofing
 - Construction fence throughway gate opening for deliveries, equipment, and people.

	W			
FLOATING OFFSHORE WIND TURBINE FARM	WIND WRANGLER Engineering services			
SHEET NAME: PHASE 2: DEMOLITION PLAN – PORT SHEET NO:				
SCALE: 1: 3500 DATE: OREATED BY: AY				

LEGEND

- Port Hueneme Boundary
- Existing Roads on Port
- ----- Demolished Building Footprint
- Temporary Warehouse
- Highway Jersey Barrier
- —— Temporary Construction Fencing
- Job Site Trailer & Restrooms

- 2 Install Highway Jersey barriers to reroute roads to be around the construction site.

 - Fill in building footprint area of demolished warehouses with asphalt pavement.
- 5 Install prefabricated temporary storage warehouses.
- 6 Construction fence throughway gate opening for deliveries, equipment, and people.

FLOATING OFFSHORE	WIND TURBINE FARM	WIND WRANGLER	ENGINEERING SERVICES	
SHEET NAME: PHASE 2: SITE WORK PLAN – PORT SHEET NO:				
SCALE: 1: 3500 DATE: 05.22.2023				

LEGEND

- —— Temporary Construction Fencing

- Install Highway Jersey barriers to reroute roads to be around the construction site.
- Construction fence throughway gate opening for deliveries, equipment, and people.

FLOATING OFFSHORE	WIND TURBINE FARM	WIND WRANGLER	ENGINEERING SERVICES	
SHEET NAME: PHASE 2: TRAFFIC CONTROL PLAN -PORT				
SHEE	Г NO:		ς)	
SCALE DATE: 05.22.	-: 1: 2023 -	3500 CREATED BY:	AY	

SCALE: 1:3500

LEGEND

- Port Hueneme Boundary
- ----- Existing Roadway On Site
- Job Site Trailer & Restrooms

FLOATING OFFSHORE	WIND TURBINE FARM	WIND WRANGLER	ENGINEERING SERVICES	
SHEET NAME: STRUCTURAL PROFILES				
SHEET NO:				
SCALE: AS SHOWN DATE: OREATED BY: CH 05.22.2023				

800–1	100	m	

Suction	Caisson	Profile
Scale: N/A		

	Suction	on Calsson Desig	n Recomment	dations		
Loading	1/D	Ci	Clay		Sand	
coading	40	Diameter (m)	Length (m)	Diameter (m)	Length (m)	
18.106 MN (Design Load)	2	7.4	14.8	6.7	13.4	
	3	5.9	17.7	5.6	16.8	
	4	5.1	20.4	4.9	19.6	
	5	4.5	22.5	4.5	22.5	
20 MN (Extreme 1)	2	7.7	15.4	6.9	13.8	
	3	6.1	18.3	5.8	17.4	
	4	5.2	20.8	5.1	20.4	
	5	4.7	23.5	4.6	23	
22 MN (Extreme 2)	2	7.9	15.8	7.2	14.4	
	3	6.3	18.9	5.9	17.7	
	4	5.4	21.6	5.2	20.8	
	5	4.8	24	4.8	24	
24 MN	2	8.2	16.4	7.4	14.8	
	3	6.5	19.5	6.1	18.3	
(Extreme 3)	4	5.6	22.4	5.4	21.6	
	5	5	25	4.9	24.5	

Suction Caisson Dimension Schedule Scale: N/A

LEGEND			
L = length D = outer diameter			
 Suction Caisson 			
② Tether			
③ Padeye			

Project: <u>Floating Offshore Wind Turbine</u> Engineer: <u>CH</u> Checked by: <u>CW</u> Date: <u>5/22/2023</u>

APPENDIX B: STRUCTURAL

APPENDIX B.1: ENVIRONMENTAL LOADS APPENDIX B.2: HULL SIZE AND STABILITY APPENDIX B.3: TOWER BUCKLING APPENDIX B.4: TOWER YIELDING APPENDIX B.5: SPAR BUCKLING APPENDIX B.6: STABILITY APPENDIX B.7: FATIGUE

Project: <u>Floating Offshore Wind Turbine</u> Engineer: <u>CH</u> Checked by: <u>CW</u> Date: <u>5/22/2023</u>

B.1: ENVIRONMENTAL LOADS

Project: Floating Offshore Wind Turbine Engineer: CH Checked by: CW Date: 5/22/2023

Note: All wind speed date from NOAA buoy 46028 historical data from NDBC station page

AVERAGE MONTHLY WIND SPEED (KNOTS)

						Mor	nth						
Year	Jan	Feb	Ma	r Ap	or Ma	y Jur	Jul	Aug	Sep	Oct	Nov	/ D	lec
	1997	11.3	15.9	13.9	17.6	15.6	17.6	14.5					
	1998								15.8	10.4	14.2	12.4	13.2
	1999	11.4	12.1	14.6	15.8	19	16.5	13.4	15.1				
	2000				15.7	17	11.3	16.9	14	11.5	11.9	13.1	9.1
	2001	11.1	12.1	14.6	16.4	13.6	16.9	11.9	15.5	12	9.8	11.2	13.4
	2002	13.2	9.7	11.8	12.7	17.1	19.6	12.3	11.8	11.9	9.9	9.3	10.8
	2003	9	12.5	16.2	11.7	17.2	13.8	15.6	12.3	10.7	14.9	11	10.4
	2004	12.6	12.2	13.9	13.1	16.3	17.3	11.4	12	13.9	12	11	9.8
	2005	10.1	11.6	11.6	15.9	15.5	15.1	12.1	10.2	11.7	14	10.7	9.7
	2006	11.9	11.1	11.1	11.6	16.3	15.4	13.3	11.2	10.6	9.1	14.7	10.9
	2007	13.2	13.1	14.7	19.1	15.3	17.3	15.3	14.9	22.8			
	2008			18.8	18	15.6	17.5	14.6	14.2	10.4	13.4	127	12.8

AVERAGE MONTHLY WIND SPEED (m/s)

							Month							
Year	Jan	F	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	AVG
	1997	5.812757202	8.179012346	7.150206	9.053498	8.024691	9.053498	7.458848						7.81893
	1998								8.127572	5.349794	7.304527	6.378601	6.790123	6.790123
	1999	5.864197531	6.224279835	7.510288	8.127572	9.773663	8.487654	6.893004	7.76749					7.581019
	2000				8.076132	8.744856	5.812757	8.693416	7.201646	5.915638	6.121399	6.738683	4.68107	6.887289
	2001	5.709876543	6.224279835	7.510288	8.436214	6.995885	8.693416	6.121399	7.973251	6.17284	5.041152	5.761317	6.893004	6.79441
	2002	6.790123457	4.989711934	6.069959	6.532922	8.796296	10.0823	6.32716	6.069959	6.121399	5.092593	4.783951	5.555556	6.434328
	2003	4.62962963	6.430041152	8.333333	6.018519	8.847737	7.098765	8.024691	6.32716	5.504115	7.664609	5.658436	5.349794	6.657236
	2004	6.481481481	6.275720165	7.150206	6.738683	8.384774	8.899177	5.864198	6.17284	7.150206	6.17284	5.658436	5.041152	6.665809
	2005	5.195473251	5.967078189	5.967078	8.179012	7.973251	7.76749	6.22428	5.246914	6.018519	7.201646	5.504115	4.989712	6.352881
	2006	6.121399177	5.709876543	5.709877	5.967078	8.384774	7.921811	6.841564	5.761317	5.452675	4.68107	7.561728	5.606996	6.310014
	2007	6.790123457	6.738683128	7.561728	9.825103	7.87037	8.899177	7.87037	7.664609	11.7284				8.327618
	2008			9.670782	9.259259	8.024691	9.002058	7.510288	7.304527	5.349794	6.893004	6.532922	6.584362	7.613169
AVG		5.932784636	6.304298125	7.263374	7.837636	8.347363	8.33801	7.075383	6.874299	6.476337	6.241427	6.064243	5.721308	

Project: Floating Offshore Wind Turbine Engineer: CH Checked by: CW Date: 5/22/2023

Average Annual	Wind	Sneed
AVCIDEC AIIIIAUI		

Year

e Annual Win	aspecta		
	Average Wind		Average Wind
	Speed [knot]		Speed [m/s]
1997	. 3	15.2	7.818930041
1998		13	6.687242798
1999	. :	14.7	7.561728395
2000	0 3	13.3	6.841563786
2001		13.2	6.790123457
2002		12.6	6.481481481
2003	(13	6.687242798
2004	L.	13	6.687242798
2005	1 1	12.4	6.378600823
2006		12.3	6.327160494
2007		15.5	7.973251029
2008		14.7	7.561728395

Monthly Average Wind Speed (1997-2998)

	Jan	Feb		Mar	Apr		May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Wind Speed [knot]		11.5	12.3	14	1	15.2	16.2	16.2	13.7	13.2	11.6	12.1	11.9	11.1
Wind Speed [m/s]		5.91563786	6.327160494	7.201646	5 7.8	31893	8.333333	8.333333	7.047325	6.790123	5.967078	6.22428	6.121399	5.709877

Month

Project: Floating Offshore Wind Turbine Engineer: CH Checked by: CW Date: 5/22/2023

Note: The weibull shape parameter is found using an online wind speed distribution tool

Source: https://wind-

data.ch/tools/weibull.php?v0=0.00&v1=0&v2=0&v3=0&v4=5&v5=23&v6=28&v7=19&v8=17&v9=6&v10=1&v11=1&v12=0&v13=0&v14=0&v15=0&v14=0&v15=0&v14=0&v15=0&v14=0&v15=0&v14=0&v15=0&v14=0&v15=0&v14=0&v15=0&v14=0&v15=0

		$ton \coloneqq 1000 \ kg$
2		
Turbine Parameters SG 14	-222 DD	Referneces
NO.		
Nominal Capacity	14 MW	(Siemens Gamesa) SG 14-222 DD
1×1		
Rotor Diameter	D:=222 m	(Siemens Gamesa) SG 14-222 DD
Blade Length	$L_B \coloneqq 107 \ m$	(Siemens Gamesa) SG 14-222 DD
Rated Wind Speed	$U_R \coloneqq 13 \frac{m}{s}$	(Siemens Gamesa) SG 14-222 DD
	2	and a second sec
Nacelle Mass:	$M_{nacelle} \coloneqq 500000 \ kg$	(Siemens Gamesa) SG 14-222DD
Blades Mass x3:	$M_{blades} \coloneqq 165000 \ kg$	(Siemens Gamesa) SG 14-222DD
Mass of RNA:	$M_{RNA}\!\coloneqq\!M_{nacelle}\!+\!M_{blades}$	$M_{RNA} = 665000 \ kg$
Mass of Tower	$m_t \coloneqq 1493729 \ kg$	(Preliminary Turbine Sizing Spreadsheet)
Tower Bottom Diameter	$D_b \coloneqq 10 m$	(Preliminary Turbine Sizing Spreadsheet)
Tower Top Diameter	$D_t := 8 m$	(Preliminary Turbine Sizing Spreadsheet)
Hub Height Above Sea le	evel $z_{hub} \coloneqq 135 m$	(Preliminary Turbine Sizing Spreadsheet)
Hub Radius	$r_{hub} \coloneqq 4 m$	(Siemens Gamesa) SG 14-222 DD
		20
Spar Parameters		·62
Lower Spar Diameter	$D_s \coloneqq 25 m$	(Preliminary Turbine Sizing Spreadsheet)
Coned Spar Diameter	$D_{s_c} \coloneqq 10 \ m$	(Preliminary Turbine Sizing Spreadsheet)
Spar Draft	$B \coloneqq 150 \ m$	(Preliminary Turbine Sizing Spreadsheet)
Total Length	$L_T \coloneqq 160 \ m$	(Preliminary Turbine Sizing Spreadsheet)
Mass of the Ballast	$m_B\!\coloneqq\!2.28\mathrm{E}{+}07~kg$	(Preliminary Turbine Sizing Spreadsheet)
Mass of the Spar Buoy	$m := 4.45E \pm 07 ka$	(Preliminary Turbine Sizing

Center of Buoyancy below sea	a $z_B \coloneqq 75$	(Preliminary Turbine Sizing Spreadsheet)
Volume of displacement	$V := 72060.28 \ m^3$	(Preliminary Turbine Sizing Spreadsheet)
Wind Parameters		
2		
Weibull Distribution Shape Pa	arameter $\kappa \coloneqq 3$	(Environmental Loading spreasheet) *note: site shows constant winds
Mean wind speed at the site	$\lambda \coloneqq 8.5 \ \frac{m}{s}$	(Project Background)
Wind Profile Exponent	$\gamma := \frac{1}{7}$	(typ value)
Surface Terrain	$z_0 = 0.0001$	DNV-RP-C205 (p. 16)- open sea with waves (most conservative case)
Turbulence scale parameter	$\Lambda_1 := 42 m$	IEC 61400 (p. 25) where zhub>60m
Integral scale	$L_k := 8.1 \cdot A_1 = 340.2 \ m$	IEC 61400 (p. 73) *note: most conservative scenerio used
Standard deviation	$\sigma_U \coloneqq 1.371 \frac{m}{s}$	(Environmental Loading spreasheet)
Turbulence Intensity	$I_{15} \coloneqq \frac{\sigma_U}{\lambda} = 0.161$	DNV-RP-C205 (p. 14)
Density of Air	$\rho_a \coloneqq 1.205 \ \frac{kg}{m^3}$	DNV-RP-C205 (p. 123) @ 20 deg Celcius
Kinematic Viscosity of Air	$\nu_{air} \coloneqq 1.50 \cdot 10^{-5} \frac{m}{s}$	DNV-RP-C205 (p. 123)@ 20 deg Celciu
Wave Parameters		1 Cal
Significant Wave Height	$H_{S50} := 10.1 \ m$	(NOAA buoy data)
Peak Wave Period	$T_{S50}\!\coloneqq\!11.7~s$	(NOAA buoy data) (4s-25s)
Density of Sea Water	$\rho_w \coloneqq 1027.432 \ \frac{kg}{m^3}$	@ 6.2 deg Celsius (Ibrahim, p. 6)
Water Depth	$S \coloneqq 1100 m$	(Project Background)
Kinematic Viscosity of Sea wa	ter $\nu_{sea_water} \coloneqq 1.51 \cdot 10^{\circ}$	$-6 \frac{m^2}{s}$ @ 6.2 deg Celsius (Ibrahim, p. 6)

0	Table F-1 Density and viscosity of fresh water, sea water and dry air Temperature Density, ρ_c [kg/m ³] Kinematic viscosity, v_c [m ² /s]
C'	[°C] Fresh water Sea water* Dry air** Fresh water Sea water* Dry air 0 999.8 1028.0 1.293 1.79×10** 1.83×10** 1.32×30**
0	5 1000.0 1027.6 1.270 1.52 1.56 1.36 10 999.7 1026.9 1.247 1.31 1.35 1.41
ç	15 999.1 1025.9 1.226 1.14 1.19 1.45 20 998.2 1024.7 1.205 1.00 1.05 1.50
	25 997.0 1023.2 1.184 0.89 0.94 1.35 30 995.6 1021.7 1.165 0.80 0.85 1.60
	*) Salinity = 35 parts per thousand
	**) The air density applies for a pressure of 1.013 × 10 ² Pa.
[DNV-RP-C205 (see page 123)
Method	lology 🖉
	1
ULS load	d combinations defined in DNVGL-ST-0437
(F 4)	and the second
(E-1) th	e compination of the 50-year extreme wind speed (with the turbine shut down) and the
maximu	m wave load due to the SU-year extreme wave height
(E-2) +h	e combination of the maximum wind load due to Extreme Operating Cust (EOC) at rated wind
sneed a	nd the 1-year extreme wave height
speeu a	
Wind L	oad on the Rotor (Thrust)
	S.
A sir	nolified way to calculate the quasi-static approximation of the wind load is assuming that the wind
spee	d is the sum of a mean wind speed component and a turbulent wind component. U=UR+uEOG
	Č.
	· · · · · · · · · · · · · · · · · · ·
-The	maximum wind load acts when the wind turbine is operating at the rated wind speed UR
whe	re the thrust curve reaches its maximum.
-(F-	2) The maximum wind load is then given by the scenario when the wind turbine is
oper	ating at the rated wind speed and the 50-year extreme operating gust (EQG) when
wind	I speed magnitude uEOG his the rotor.
	Q
	Maximum wind load due to EOG at rated wind speed: $F_{u,EOG} = \frac{1}{2} \rho_{a} A_{R} C_{T} (U_{R} + u_{EOG})^{2}$
	You
	Deter threat according to DNV/ OC 1102
	Kotor thrust according to DINV-US-J103: $F_{thrust} = \frac{1}{2} \cdot \rho \cdot C_T \cdot A_{rotor} \cdot U_{10}^*$
	3 1
	i0-year return period 10-min mean wind speed $U_{10, rous} := \lambda \cdot \left(-\ln\left(1 - 0.98^{\frac{1}{52596}}\right)\right)^{\frac{1}{6}} = 20.856 \frac{m}{10}$
5	50-year return period 10-min mean wind speed $U_{10_{50yr}} \coloneqq \lambda \cdot \left(-\ln\left(1-0.98^{\frac{1}{52596}}\right)\right)^{\frac{1}{s}} = 20.856 \frac{m}{s}$
<u>.</u>	50-year return period 10-min mean wind speed $U_{10_{50yr}} \coloneqq \lambda \cdot \left(-\ln\left(1-0.98^{\frac{1}{52596}}\right)\right)^{\frac{1}{\kappa}} = 20.856 \frac{m}{s}$
	50-year return period 10-min mean wind speed $U_{10_50yr} \coloneqq \lambda \cdot \left(-\ln\left(1-0.98^{\frac{1}{52596}}\right)\right)^{\frac{1}{\kappa}} = 20.856 \frac{m}{s}$
. <u>.</u>	50-year return period 10-min mean wind speed $U_{10_50yr} \coloneqq \lambda \cdot \left(-\ln\left(1-0.98^{\frac{1}{52596}}\right)\right)^{\frac{1}{\kappa}} = 20.856 \frac{m}{s}$ 1-year return period 10-min mean wind speed $U_{10_1yr} \coloneqq 0.8 \cdot U_{10_50yr} = 16.685 \frac{m}{s}$
	50-year return period 10-min mean wind speed $U_{10_50yr} \coloneqq \lambda \cdot \left(-\ln\left(1-0.98^{\frac{1}{52596}}\right)\right)^{\frac{1}{\kappa}} = 20.856 \frac{m}{s}$ 1-year return period 10-min mean wind speed $U_{10_1yr} \coloneqq 0.8 \cdot U_{10_50yr} = 16.685 \frac{m}{s}$ i0-year extreme operating gust speed at the rated wind speed
	50-year return period 10-min mean wind speed $U_{10_50yr} \coloneqq \lambda \cdot \left(-\ln\left(1-0.98^{\frac{1}{52596}}\right)\right)^{\frac{1}{\kappa}} = 20.856 \frac{m}{s}$ 1-year return period 10-min mean wind speed $U_{10_1yr} \coloneqq 0.8 \cdot U_{10_50yr} = 16.685 \frac{m}{s}$ 50-year extreme operating gust speed at the rated wind speed
	50-year return period 10-min mean wind speed $U_{10_50yr} \coloneqq \lambda \cdot \left(-\ln\left(1-0.98^{\frac{1}{52596}}\right)\right)^{\frac{\pi}{s}} = 20.856 \frac{m}{s}$ I-year return period 10-min mean wind speed $U_{10_1yr} \coloneqq 0.8 \cdot U_{10_50yr} = 16.685 \frac{m}{s}$ i0-year extreme operating gust speed at the rated wind speed $U_{10_1yr} \coloneqq 0.8 \cdot U_{10_50yr} = 16.685 \frac{m}{s}$
	50-year return period 10-min mean wind speed $U_{10_50yr} \coloneqq \lambda \cdot \left(-\ln\left(1-0.98^{\frac{1}{52596}}\right)\right)^{\frac{1}{\kappa}} = 20.856 \frac{m}{s}$ 1-year return period 10-min mean wind speed $U_{10_1yr} \coloneqq 0.8 \cdot U_{10_50yr} = 16.685 \frac{m}{s}$ 50-year extreme operating gust speed at the rated wind speed turbulence scale parameter $turb \coloneqq \frac{L_k}{8.1} = 42 m$
	50-year return period 10-min mean wind speed $U_{10_50yr} \coloneqq \lambda \cdot \left(-\ln\left(1-0.98^{\frac{1}{52596}}\right)\right)^{\frac{1}{\kappa}} = 20.856 \frac{m}{s}$ 1-year return period 10-min mean wind speed $U_{10_1yr} \coloneqq 0.8 \cdot U_{10_50yr} = 16.685 \frac{m}{s}$ 50-year extreme operating gust speed at the rated wind speed turbulence scale parameter $turb \coloneqq \frac{L_k}{8.1} = 42 m$

 $u_{EOG} \coloneqq min\left(1.35 \left(U_{10_1yr} - U_R\right), \frac{3.3 \cdot \sigma_{U_c}}{1 + \frac{0.1 \cdot D}{4s_{C}c_{L}}}\right) = 3.962 \frac{m}{s}$ Wind load due to the EOG at the rated wind speed- thrust force generated by wind perpendicular to the swept area of the blades rotor swept area $A_R := \frac{D^2 \pi}{4} = 38707.563 m^2$ thrust coefficient $C_T \coloneqq \frac{3.5\left(2 U_R + 3.5 \frac{m}{s}\right)}{U_R^2} \cdot \frac{m}{s} = 0.611$ $F_{u_EOG} \coloneqq \frac{1}{2} \rho_a \cdot A_R \cdot C_T \cdot \left(U_R + u_{EOG} \right)^2 = 4.099 \ MN$ (E-2) -(E-1) During the 50-year extreme wind speed, the turbine is shut down. Therefore, the thrust load reduces to the wind drag force on the tower, blades and hub. -If the wind speed is assumed to be constant with height (no wind shear) then the wind drag load in the 50-year extreme may be written as **Tower Drag** Wind drag load in 50-year extreme $F_{\mu,U50} = \frac{1}{2}\rho_a(3A_BC_{DB} + A_HC_{DH})U_{10,50\mu}^2 + F_{DT}(U_{10,50\mu})$ $A_B := L_B \cdot 5 \ m = 535 \ m^2$ Face area of a blade $A_{H} := \pi \cdot r_{hub}^{2} = 50.265 m^{2}$ Face area of the hub $C_{DB} := 0.45$ Drag coefficient of the blade *note: maxiumum drag coefficent considered for airfoil type Drag coefficient of the hub $C_{DH}\!\coloneqq\!1.16$ 1.16 0.90 0.70 0.68 0.64 1.0 2.0 4.0 6.0 DNV-RP-C205 Appendix E (see page 121) Drag coefficient of tower circular $C_{DT} = 0.5$ Assume long smooth circular cylinder cross section *note: conseravative value chosen $R_{e_tow} \coloneqq \frac{U_{10_50yr} \cdot D_b}{\nu_{air}} = 1.39 \cdot 10^7$

Wave and current loads Wave Loads Diameter $D_D \coloneqq D_b = 10 \ m$ $D_I \coloneqq D_b = 10 \ m$ 50-Year Extreme: $T_{S50} = 11.7 \ s$ 50-year significant wave period: Number of waves in a 3-h sea state $N_{50} \coloneqq \frac{10800 \ s}{T_{S50}} = 923.077$ $H_{M50} \coloneqq H_{S50} \cdot \sqrt{\frac{1}{2} \ln \left(N_{50} \right)} = 18.661 \ m$ 50-year extreme wave height: Linear (Airy) wave theory is chosen as this floating tubrine will be installed in deep water where the linear approximation is more appropriate. The drag load in highest when the surace elevation is maximal, the inerta load is highest when the surface elevation is zero. Therefore, the maximum drag load and interia load occur at different time instants, although calcualting the maxima seperatley and them summing them to obstain the total wave force is a conservative approach. $\eta_D \coloneqq \frac{H_{M50}}{2} = 9.331 \ m$ $\eta_I \coloneqq 0 \ m$ Surface elevation: $\lambda_{wave} \coloneqq \frac{g \cdot {T_{S50}}^2}{2 \ \pi} \hspace{-0.5mm} = \hspace{-0.5mm} 213.655 \ m$ Wave length: $k \coloneqq \frac{2 \pi}{\lambda_{wave}} = 0.029 \frac{1}{m}$ Wave number: Water depth: $S = 1100 \ m$ Use Morision's equation for wave load calculation $F = \underbrace{
ho C_m V \dot{u}}_{F_T} + \underbrace{\frac{1}{2}
ho C_d A u |u|}_{F_T},$ (the sum of drag and interia force of the wave) The maximum of the drag load for the 50-year extreme wave height $C_{D_spar} \coloneqq 1$ Drag coefficent on the spar: *note: conservative value was chosen $v_{wave} \coloneqq \lambda_{wave} \cdot \frac{1}{T_{S50}} = 18.261 \ \frac{m}{s}$

Project: <u>Floating Offshore Wind Turbine</u> Engineer: <u>CH</u> Checked by: <u>CW</u> Date: <u>5/22/2023</u>

Project: <u>Floating Offshore Wind Turbine</u> Engineer: <u>CH</u> Checked by: <u>CW</u> Date: <u>5/22/2023</u>

B.2: HULL SIZE AND STABILITY

		Hull Size and Stability			W
				- i	
Spar Hull	S420				
Da	25 m	-2			
R.	12.5 m				
t	0.45 m				
D,	24.1 m				
R.	12.05 m				
Area	34.71 m^2				
Total Length	160 m				
Draft	150 m				
Main Spar Volume	4858.94 m^3				
Displacement	68722.34 m^3				
Conical Transition length	10 m				
Conical Transition t	0.45 m				
Top D.	10 m		No No.	Party and a second s	
Top D.	9.1 m		Nacene.	nus (
Top R.	5 m			a second	
Top R	4.55 m				
Conical Transition vol	241.04 m^3				
Displacement	2552.54 m^3				
Freeboard	10 m				
Freeboard volume	135.01 m^3				
Displacement	785,40 m^3				
Total Spar Volume	5234.99 m^3		9	V.	
Total Spar Mass	4449/439.81 kg			1	
Buoyancy Force	7 39E+07 kg				
CoB	-75 m				
2002200			¥ .		
Fixed Ballast	10 m	tests brickt of bellest shoos			
nagnetite neight	12.05 m	through iterative process to			
Mass	22808355 36 kg	ensure sufficent restoring		Sealevel	
CoG	-145 m	moment	1555		
Volume	4561.7 m^3		1.000		
			Void		
Variable Ballart					
Seawater Height	8.89 m	—.			
and the second		"note: length of variable ballast			
r,	12.05	*note: length of variable ballast iterated to achieve neutral		_	
r, Mass	12.05 4154764.227 kg	 note: length of variable ballast iterated to achieve neutral buoancy 	В	2	
r, Mass CoG	12.05 4154764.227 kg -135.5570794 m	 note: length of variable ballast iterated to achieve neutral buoancy 	В	>	
r, Mass CoG Volume	12.05 4154764.227 kg -135.5570794 m 4053.43 m^3	"note: length of variable ballast iterated to achieve neutral buoancy	Air B	\geq	
ri Mass CoG Volume	12.05 4154764.227 kg -135.5570794 m 4053.43 m^3	"note: length of variable ballast iterated to achieve neutral buoancy	Air G	$\overline{\boldsymbol{\lambda}}$	
r, Mass CoG Volume	12.05 4154764.227 kg -135.5570794 m 4053.43 m^3	"note: length of variable ballast iterated to achieve neutral buoancy	Air G	$\overline{\boldsymbol{\nabla}}$	
r, Mass CoG Volume Spar Hull Mass	12.05 4154764.227 kg -135.5570794 m 4053.43 m^3	"note: length of variable ballast iterated to achieve neutral buoancy	Air G Variable Ball	551	
r, Mass CoG Volume Spar Hull Mass Mass	12.05 4154764.227 kg -135.5570794 m 4053.43 m^3 44497439.81 kg	"note: length of variable ballast iterated to achieve neutral buoancy	Air G Variable Ball	hst l	
r, Mass CoG Volume Spar Hull Mass Mass CoG	12.05 4154764.227 kg -135.5570794 m 4053.43 m^3 44497439.81 kg -70 m	"note: length of variable ballast iterated to achieve neutral buoancy	B Air G Variable Balli Feed Balliat	st	
r, Mass CoG Volume Spar Hull Mass Mass CoG	12.05 4154764.227 kg -135.5570794 m 4053.43 m^3 44497439.81 kg -70 m	"note: length of variable ballast iterated to achieve neutral buoancy	Air G Variable Balls Fixed Ballast	>> >>	
r, Mass CoG Volume Spar Hull Mass Mass CoG Mass Spar + Ballast	12.05 4154764.227 kg -135.5570794 m 4053.43 m^3 44497439.81 kg -70 m 67305795 kg	"note: length of variable ballast iterated to achieve neutral buoancy	B Air G Variable Ball Yexed Ballast	No. Contraction of the second se	
r, Mass CoG Volume Spar Hull Mass Mass CoG Mass Spar + Ballast	12.05 4154764.227 kg -135.5570794 m 4053.43 m^3 44497439.81 kg -70 m 67305795 kg	"note: length of variable ballast iterated to achieve neutral buoancy	Air G Variable Ball Fixed Ballast	5420	
r, Mass CoG Volume Spar Hull Mass Mass CoG Mass Spar + Ballast	12.05 4154764.227 kg -135.5570794 m 4053.43 m^3 44497439.81 kg 70 m 67305795 kg	"note: length of variable ballast iterated to achieve neutral buoancy	Air G Variable Balla Fixed Ballast Tower Bottom D _o	5420 10 m	
r, Mass CoG Volume Spar Hull Mass Mass CoG Mass Spar + Ballast Wind Turbine- 14 MW	12.05 4154764.227 kg -135.5570794 m 4053.43 m^3 44497439.81 kg -70 m 67305795 kg	"note: length of variable ballast iterated to achieve neutral buoancy	B Air G Variable Ball Feed Ballast Feed Ballast Bottom D _o Top d _a	5420 10 m 8 m	
r, Mass CoG Volume Mass CoG Mass Spar + Ballast Wind Turbine- 14 MW Rotor and Nacelle	12.05 4154764.227 kg -135.5570794 m 4053.43 m^3 44497439.81 kg -70 m 67305795 kg	"note: length of variable ballast iterated to achieve neutral buoancy	B Air G Variable Ball Recod Ballast Bottom D _o Top d _a Bottom R _o	5420 10 m 8 m 5 m	
r, Mass CoG Volume Spar Hull Mass Mass CoG Mass Spar + Ballast Wind Turbine- 14 MW Rotor and Nacelle Hub Height	12.05 4154764.227 kg -135.5570794 m 4053.43 m^3 44497439.81 kg -70 m 67305795 kg SG 14-222DD 135 m	"note: length of variable ballast iterated to achieve neutral buoancy	B Air G Variable Balls Food Ballast Top d _a Bottom D _o Top d _a Bottom R _o Top r _o	5420 10 m 8 m 5 m 4 m	
r, Mass CoG Volume Spar Hull Mass Mass CoG Mass Spar + Ballast Wind Turbine- 14 MW Rotor and Nacelle Hub Height Nacelle Mass	12.05 4154764.227 kg -135.5570794 m 4053.43 m^3 44497439.81 kg -70 m 67305795 kg SG 14-222DD 135 m 600000 kg	"note: length of variable ballast iterated to achieve neutral buoancy	B Air G Variable Balk Foxed Ballast Foxed Ballast Top d _a Bottom D _o Top d _a Bottom R _o Top r _o Bottom R _i	5420 10 m 8 m 5 m 4 m 4.95 m	
r, Mass CoG Volume Spar Hull Mass Mass CoG Mass Spar + Ballast Wind Turbine- 14 MW Rotor and Nacelle Hub Height Nacelle Mass Blades Mass x3	12.05 4154764.227 kg -135.5570794 m 4053.43 m^3 44497439.81 kg 70 m 67305795 kg SG 14-222DD 135 m 600000 kg 165000 kg	"note: length of variable ballast iterated to achieve neutral buoancy	B Air G Variable Ball Feed Ballast Bottom Do Top da Bottom Ro Top ro Bottom Ri Top ro	5420 10 m 8 m 5 m 4 m 4.95 m 3.95 m	
r, Mass CoG Volume Spar Hull Mass Mass CoG Mass Spar + Ballast Wind Turbine- 14 MW Rotor and Nacelle Hub Height Nacelle Mass Blades Mass x3 RNA Mass	12.05 4154764.227 kg -135.5570794 m 4053.43 m^3 444497439.81 kg -70 m 67305795 kg SG 14-222DD 135 m 600000 kg 165000 kg 765000 kg	"note: length of variable ballast iterated to achieve neutral buoancy	B Air G Variable Ball Feed Ballast Feed Ballast Feed Ballast Food Ballast Food Ballast Food Ballast Food Ballast Food Ballast Food Ballast Food Ballast Food Ballast	5420 10 m 8 m 5 m 4 m 4.95 m 3.95 m 125 m	
r, Mass CoG Volume Mass CoG Mass Spar + Ballast Wind Turbine- 14 MW Rotor and Nacelle Hub Height Nacelle Mass Blades Mass x3 RNA Mass CoG	12.05 4154764.227 kg -135.5570794 m 4053.43 m^3 44497439.81 kg -70 m 67305795 kg 56 14-222DD 135 m 600000 kg 165000 kg 165000 kg 135 m	"note: length of variable ballast iterated to achieve neutral buoancy	B Air G Variable Ball Proof Ballat Bottom Do Top da Bottom Ro Top ra Bottom Ri Top ri Tower Height Tower Thickness	5420 10 m 8 m 5 m 4 m 4.95 m 3.95 m 125 m 0.05 m	
r, Mass CoG Volume Mass CoG Mass Spar + Ballast Wind Turbine- 14 MW Rotor and Nacelle Hub Height Nacelle Mass Blades Mass x3 RNA Mass CoG Nacelle Width	12.05 4154764.227 kg -135.5570794 m 4053.43 m^3 44497439.81 kg -70 m 67305795 kg 5G 14-222DD 135 m 600000 kg 165000 kg 765000 kg 135 m 11 m	"note: length of variable ballast iterated to achieve neutral buoancy	B Air G Variable Balls Freed Ballast Top d _a Bottom R ₀ Top r ₀ Bottom R ₁ Top r ₁ Tower Height Tower Thickness Volume	5420 10 m 8 m 5 m 4 m 4.95 m 3.95 m 125 m 125 m 125 m 125 m	
r, Mass CoG Volume Spar Hull Mass Mass CoG Mass Spar + Ballast Wind Turbine- 14 MW Rotor and Nacelle Hub Height Nacelle Mass Blades Mass x3 RNA Mass CoG Nacelle Width Nacelle Width Nacelle Width Nacelle Width	12.05 4154764.227 kg -135.5570794 m 4053.43 m^3 44497439.81 kg -70 m 67305795 kg 56 14-222DD 135 m 600000 kg 165000 kg 765000 kg 11 m 11 m 10.4 m	"note: length of variable ballast iterated to achieve neutral buoancy	B Air G Variable Ball Preed Ballast Preed Ballast	5420 5420 10 m 8 m 5 m 4 m 4.95 m 3.95 m 1.25 m 0.05 m 1.25 m 1.49	
r, Mass CoG Volume Spar Hull Mass Mass CoG Mass Spar + Ballast Wind Turbine- 14 MW Rotor and Nacelie Hub Height Nacelie Mass Blades Mass x3 RNA Mass CoG Nacelle Width Nacelle Height Nacelie Length	12.05 4154764.227 kg -135.5570794 m 4053.43 m^3 44497439.81 kg .70 m 67305795 kg 5G 14-222DD 135 m 600000 kg 165000 kg 165000 kg 135 m 11 m 10.4 m 20.6 m	"note: length of variable ballast iterated to achieve neutral buoancy	B Air G Variable Ball Freed Ballast Freed Ballast Freed Ballast Bottom D _o Top d _a Bottom R _o Top r _o Bottom R _i Top r _i Tower Height Tower Height Tower Height Tower Height Tower Mass CoG Tower	5420 10 m 8 m 5 m 4 m 4.95 m 125 m 0.05 m 125 m 0.05 m 125 m 3 1493729 kg 72.5 m	

Final Report		Hul	ll Size and Stability				WWES
P	roperties						
s	eawater Density		1025 kg/m^3	N			
N	Agnetite Density		5000 kg/m^3				
S	teel density		8500 kg/m^3		(Escalera Mendoza et al., 2022,	p. 5)	
	Aass Summary						
P	art	Mass. kg	CoG. m		Restoring Moment, kg-m		
İ	iuli	initiality ing	4.45E+07	-70	-3.11E+09		
v	ariable Ballast		4.15E+06	-135.6	-5.63E+08		
F	ixed Ballast		2.28E+07	-145	-3.31E+09		
R	NA		7.65E+05	135	1.03E+08		
T	ower		1.49E+06	72.5	1.08E+08		
N	Aooring		1.43E+05				
т	otal		7.39E+07		-6.77E+09		
т	otal Weight		7.39E+07 kg		7.25E+02 MN		
s	tructure Weight		7.37E+07 kg		7.23E+02 MN		
		Global COG		-91.88	m		
S	tructure w/o ballast		4.68E+07 kg		4.68E+04 ton	5	
B	alance of Mass				÷		
D	isplacement Weight	11	7.39E+07 kg		75		
T	otal Weight		7.39E+07 kg				
N	let		0.00E+00 kg				
S	tability of Hull				3		
c	oG		-91.88 m		3		
c	оВ		-75 m				
B	G		16.88 m				
	Anoring						
	Volaht	1	150 ka/m	-			
	ACIRINE		120 K8/III	tion be	sed on similar FOWTe		
			assump	uori Da	seconsimilar POWIS		

Project: Floating Offshore Wind Turbine Engineer: CH Checked by: CW Date: 5/22/2023

B.3: TOWER BUCKLING

Project: Floating Offshore Wind Turbine Engineer: CH Checked by: CW Date: 5/22/2023

uckling Strength of Tow	<u>rer</u> -ULS	
I nese calculations follow LF	RFD to analyze the ULS of the turbl	ne tower
The second secon		
<i>oad and Resistance Factor</i> lesign (LRFD) is a method for actor and uncertainties in re	<i>Design (LRFD):</i> Per DNVGL-OS-C10 or design where uncertainties in loa esistance (capacity) are represented	01 (see page 11), load and resistance factor ads (demand) are represented with a load d with a with a material.
Ultimate Limit States (ULS): exceedance of load-carrying JLS (DNV-OS-J103, 16). ULS	Failure or collapse of all or part of capacity. Overturning, capsizing, y S corresponds to the ultimate resist	structure due to loss of structural stiffness or vielding, and buckling are typical examples of tance for carrying loads.
2		
Accumptions	<	
-Tower platform assumed -Tower made of S420 ste	d rigid and tower fixed at base and eel, which is common for offshore a	l free at top (Fredheim, 2022) applications (Igwemezie, 2019, p.9)
<u>S420 Steel</u>	TS.	References
	6	
Yield Strength	$f_y \coloneqq 390 \ MPa$	(EN 10025-4, p. 20) *note: yield strength lowered as a function of thickness
Poisson's Ratio	$\nu := 0.3$	(EN 10025-4, p. 20)
Young's Modulus:	$E \coloneqq 210 \ GPa$	(EN 10025-4, p. 20)
Density:	$\rho_s \coloneqq 8500 \frac{kg}{4}$	(Escalera Mendoza et al., 2022, p. 5)
*note: higher density assum secondary structures such a	ned to account for the mass for s bolts and flanges	
Tower Parameters		
Thicknoss	t -= 50 mm	(Tower Buckling Strongth Coles)
Bottom Outer Diametor	d = 10 m	(Tower Buckling Strength Calcs)
Ton Outer Diameter	$a_{0,2} = 10 m$	(Tower Buckling Strength Calcs)
Length:	$u_{0,1} = 0 m$	(Tower Buckling Strength Calcs)
Hub Radius:	r = 120 m	(Sigmons Camera) SC 14-22200
Nacelle Mass	$M_{hub} = 4 m$	(Siemens Camera) SC 14-22200
Blades Mass v2	$M_{nacelle} = 165000 \ kg$	(Siemens Camesa) SC 14-222DD
Mace of DNA.	$M_{blades} = 105000 \text{ kg}$	$M_{\rm m} = 665000 \ ha$
Ton Inner Dismotory	$M_{RNA} := M_{nacelle} + M_{blades}$	$M_{RNA} = 000000 \ \kappa g$
Rottom Inner Diameter:	$a_{i_{-1}} \coloneqq a_{o_{-1}} - 2 \cdot i$	$a_{i_{-1}} = 1.9 m$
Bottom Inner Diameter:	$a_{i_2} \coloneqq a_{o_2} - 2 t$	a _{i_2} =9.9 m
Top Outer Radius:	$r_{o_1} \! \coloneqq \! \frac{d_{o_1}}{2}$	r _{o_1} =4 m
Bottom Outer Padiuc	$r - d_{o_2}$	n -5 m 2.
bottom outer Radius.	1 _{0_2} :=	$T_{0_2} = 0 m$

2

	Π (π)2-	-		
Critical buckling load:	$P_c = (\frac{1}{l_e})^2 E.$			
Moment of Inertia:	$I \coloneqq \frac{\pi}{4} \left(r_{o_e^a} - r \right)$	i_e ⁴)	I = 14.078 r	n ⁴
Radius of gyration:	$r \coloneqq \sqrt{\frac{I}{A}}$		r = 3.164 m	
D.				
For boundary conditons, the	tower is assumed fix	ked at the base an	nd free at the tower to	pp.
Effective length factor:	$k_e := 2$	Tower analyzed	as canteliver (fixed a	t the base)
Critical buckling stress:	$\sigma_{cr} \coloneqq \frac{\pi^2 \cdot E}{\left(\frac{k_e \cdot l}{r}\right)^2}$		$\sigma_{cr} = 332.07$	5 MPa
Yield Stress:	f _g =390 MPa	>	_{cr} = 332.075 MPa	ок
Critical Buckling Load:	$P_{cr_1} \coloneqq \left(\frac{\pi}{k_e \cdot l}\right)^2$	• E • I	$P_{cr_{-}1} = 466.3$	867 MN
the critical buckling load will	be calculated as follo	ows:	D	
the critical buckling load will Critical Buckling Load:	be calculated as follo $P_{cr_2} := f_y \cdot A = 5$	5005: 48.304 MN	$P_{cr_2} = 548.3$	304 MN
the critical buckling load will Critical Buckling Load: According to DNVGL-OS- (γ_M) and is applied to d	be calculated as follow $P_{cr_2} := f_y \cdot A = 5$ C101 (see page 20), etermine the design	ws: 48.304 <i>MN</i> the resistance fac resistance (Rd) as	$P_{cr_2} = 548.3$ stor (ϕ) relates to the stollows:	304 <i>MN</i> e material factor
the critical buckling load will Critical Buckling Load: According to DNVGL-OS- (γ_M) and is applied to d	be calculated as follow $P_{cr_2} := f_y \cdot A = 5$ C101 (see page 20), etermine the design	ows: 48.304 <i>MN</i> the resistance fac resistance (Rd) as	$P_{cr_2} = 548.3$ stor (ϕ) relates to the stollows:	304 <i>MN</i> e material factor
the critical buckling load will Critical Buckling Load: According to DNVGL-OS- (γ_M) and is applied to d The material factor (be calculated as follow $P_{cr_2} := f_y \cdot A = 5$ C101 (see page 20), etermine the design γ_M) is determined for	ows: 48.304 <i>MN</i> the resistance fac resistance (Rd) as ollowing DNVGL-O	$P_{cr_2} = 548.3$ stor (ϕ) relates to the follows: S-C101 (see page 48)	304 <i>MN</i> e material factor
the critical buckling load will Critical Buckling Load: According to DNVGL-OS- (γ_M) and is applied to d The material factor (3.1.3 If DNVGL-RP-C202 is a Table 2 Material factors γ_J	be calculated as follows $P_{cr_2} := f_y \cdot A = 5$ C101 (see page 20), etermine the design γ_M) is determined for applied, the material factor for an applied of the material factor for the material factor for applied of the material factor factor factor for applied of the material factor	bws: 48.304 <i>MN</i> the resistance fac resistance (Rd) as blowing DNVGL-O	$P_{cr_2} = 548.3$ stor (ϕ) relates to the solution of the	304 <i>MN</i> e material factor
the critical buckling load will Critical Buckling Load: According to DNVGL-OS- (γ_M) and is applied to d The material factor (3.1.3 If DNVGL-RP-C202 is a Table 2 Material factors y, Type of structure	be calculated as follows $P_{cr_2} := f_y \cdot A = 5$ C101 (see page 20), etermine the design γ_M) is determined for applied, the material factor for a for buckling $\lambda \le 0.5$	bws: 48.304 <i>MN</i> the resistance fac resistance (Rd) as blowing DNVGL-O shells shall be in accordance $0.5 < \lambda < 1.0$	$P_{cr_2} = 548.3$ stor (ϕ) relates to the s follows: S-C101 (see page 48) ce with Table 2.	304 <i>MIN</i> e material factor
the critical buckling load will Critical Buckling Load: According to DNVGL-OS- (γ_M) and is applied to d The material factor (3.1.3 If DNVGL-RP-C202 is a Table 2 Material factors y) Type of structure Shells of single curvature (cylin conical shells, rings and/or stiffe	be calculated as follows $P_{cr_2} := f_y \cdot A = 5$ C101 (see page 20), etermine the design γ_M) is determined for applied, the material factor for an explicit of the material factor for the material factor for an explicit of the material factor factor for the material factor	bws: 48.304 <i>MN</i> the resistance fac resistance (Rd) as blowing DNVGL-O shells shall be in accordance 0.5 < λ < 1.0 0.85 + 0.60 λ	$P_{cr_2} = 548.3$ ctor (ϕ) relates to the solution of the	304 <i>MIN</i> e material factor
the critical buckling load will Critical Buckling Load: According to DNVGL-OS- (γ_M) and is applied to d The material factor (3.1.3 If DNVGL-RP-C202 is a Table 2 Material factors y Type of structure Shells of single curvature (cylin conical shells, rings and/or stiff Note that the slendermess is bas λ = reduced slendermess $\int_{I_E}^{I_E} \int_{Y}$ = specified minimum yi I_E = elastic buckling stress	be calculated as follows $P_{cr_2} := f_y \cdot A = 5$ C101 (see page 20), etermine the design γ_M) is determined for applied, the material factor for $\frac{\lambda \leq 0.5}{\text{drical shells,}}$ 1.15 sed on the buckling mode under comparameter the buckling mode under comparameter of the buckling	bws: 48.304 <i>MN</i> the resistance fac resistance (Rd) as blowing DNVGL-O shells shall be in accordance 0.5 < λ < 1.0 0.85 + 0.60 λ insideration.	$P_{cr_2} = 548.3$ Stor (ϕ) relates to the stollar store of the stollar store of the store	anaterial factor
the critical buckling load will Critical Buckling Load: According to DNVGL-OS- (γ_M) and is applied to d The material factor (3.1.3 If DNVGL-RP-C202 is a Table 2 Material factors γ_J Type of structure Shells of single curvature (cylinic conical shells, rings and/or stiff Note that the slenderness is bas $\lambda = reduced slenderness$ $\int_{T_E}^{T_E}$ $f_F = elastic buckling stress Reduced Slenderness$	be calculated as follows $P_{cr_2} := f_y \cdot A = 5$ C101 (see page 20), etermine the design γ_M) is determined for applied, the material factor for $\frac{\lambda \leq 0.5}{\text{drical shells}}$. 1.15 sed on the buckling mode under comparameter set of the buckling mode under comparameter set of the buckling mode under comparameter $\lambda \approx 5$ Parameter: $\lambda \approx 5$	bws: 48.304 <i>MN</i> the resistance fac resistance (Rd) as blowing DNVGL-O shells shall be in accordance 0.5 < λ < 1.0 0.85 + 0.60 λ insideration. sideration.	$P_{cr_2} = 548.$	e material factor
the critical buckling load will Critical Buckling Load: According to DNVGL-OS- (γ_M) and is applied to d The material factor (γ_M) and is applied to d The material factor (γ_M) and is applied to d The material factor (γ_M) and is applied to d The material factor (γ_M) and is applied to d The material factor (γ_M) and is applied to d The material factor (γ_M) and is applied to d The material factor (γ_M) and is applied to d Comparison of the material factor (γ_M) and is applied to d The material factor (γ_M) and is applied to d The material factor (γ_M) and is applied to d The material factor (γ_M) and is applied to d The material factor (γ_M) and is applied to d The material factor (γ_M) and is applied to d The material factor (γ_M) and is applied to d The material factor (γ_M) and is applied to d γ_{Fe} of structure γ_{Fe} is specified minimum yi f_E = elastic buckling stress Reduced Slenderness	be calculated as follows $P_{cr_2} := f_y \cdot A = 5$ C101 (see page 20), etermine the design γ_M) is determined for γ_M) is determined for γ_M) is determined for $\lambda \le 0.5$ drical shells, 1.15 sed on the buckling mode under comparameter relations are solved as for the buckling mode under comparameter $\lambda \le 0.5$ and $\lambda \le 0.5$ drical shells, 1.15 sed on the buckling mode under comparameter $\lambda \ge 0.5$ s Parameter: $\lambda \ge 0.5$	bws: 48.304 <i>MN</i> the resistance factors resistance (Rd) as billowing DNVGL-Q shells shall be in accordance $0.5 < \lambda < 1.0$ $0.5 < \lambda < 1.0$ $0.85 + 0.60 \lambda$ insideration. sideration.	$P_{cr_2} = 548.3$ ctor (ϕ) relates to the s follows: S-C101 (see page 48) $\lambda \ge 1.0$ 1.45 $\lambda = 0$	and MN

Material F	actor		a=0.85 + 0.6 \	
Material Fa	actor:		$\gamma_M \coloneqq 0.85 + 0.6 \cdot \lambda$	$\gamma_M = 1.352$
C				
9				
Ti.			1	
Resistance Fac	ctor:		$\phi := \frac{1}{\gamma_{n_i}}$	$\phi = 0.74$
D.			/M	
Design Global	Buckling		$R_d \coloneqq \phi \cdot P_{cr_1}$	$R_d = 345.441 \ MN$
Resistance)			
	17			
	Q.			
Demand:	5			
	8			
Mass of RNA:		2	$M_{RNA} = 665000 \ kg$	(Siemens Gamesa) SG 14 222DD
		0		
Self weight of	tower:	12	$M_{tow} \coloneqq \rho_s \cdot A \cdot l$	$M_{tow} = 1493777.198 \ kg$
			0	
*As a conservative	e measure	the tota	al weight of the tower is inc	cluded in the point load
			9	
			S.	
Characteristic	Load:		$F_k \coloneqq M_{BNA} \cdot g + M_{tow} \cdot g$	$F_k = 21.17 \ MN$
			4	
Per DNVGL-09	5-C101 for	perman	ent loads, the load factor is	s as follows (see page 21). However,
according to D	NV-OS-J10	1 (see	page 70), for global bucklir	ng, the material factor γ_M shall be 1.2 as a
minimum. The	erefore, loa	d comb	ination (a) is used.	
Load Factor:			γ ₁ α = 1.3	
			1 <u>1_</u> G_a	25
Table 2 Load facto	ors γ_f for ULS			0
Combination	Loa	d categories		90
ur besign habs	G Q 1.3 1.3	E 0.7	D 1.0	· C.
	1.0 1.0	1.3	1.0	`O_
a) b)	tload			7
b) Load categories are:	inctional load			- Colored Colo
b) Load categories are: G = permanent Q = variable fu				4
b) Load categories are: G = permanent Q = variable fu E = environme D = deformatio	ntal load In load			3
b) Load categories are: G = permanent Q = variable fu E = environme D = deformatio For description of loa	intal load in load d categories see S	ec.2.		
b) Load categories are: G = permanent Q = variable fu E = environme D = deformatio For description of loa	ental load en load d categories see S	ec.2.		O ₂
b) Load categories are: G = permanent Q = variable fu F = environme D = deformation For description of loa	intal load in load id categories see S State (ULS	ec.2.	$F_d \coloneqq \gamma_{f_G_a} \cdot F_k$	$F_d = 27.521 MN$
b) Load categories are: G = permanent Q = variable fu E = environme D = deformatio For description of loa	intal load In load d categories see S State (ULS	ec.2.	$F_d \coloneqq \gamma_{f_G_a} \cdot F_k$	$F_d = 27.521 MN$
b) Load categories are: G = permanent Q = variable fu F = environme D = deformatio For description of loa	intal load an load d categories see S State (ULS	ec.2.	$F_d \coloneqq \gamma_{f_G_a} \cdot F_k$	$F_d = 27.521 MN$

Project: <u>Floating Offshore Wind Turbine</u> Engineer: <u>CH</u> Checked by: <u>CW</u> Date: <u>5/22/2023</u>

Project: Floating Offshore Wind Turbine Engineer: CH Checked by: CW Date: 5/22/2023

Calculate characteristic buckling strength of cylindrical shells According to DNVGL-RP-C202 (see page 19): $\sigma_{a0,Sd} = \begin{cases} 0 & if \ \sigma_{a,Sd} \ge 0 \\ -\sigma_{a,Sd} & if \ \sigma_{a,Sd} < 0 \end{cases}$ $\sigma_{m0,Sd} = \begin{cases} 0 & if \ \sigma_{m,Sd} \ge 0 \\ -\sigma_{m,Sd} & if \ \sigma_{m,Sd} \ge 0 \\ -\sigma_{m,Sd} & if \ \sigma_{m,Sd} < 0 \end{cases}$ $\sigma_{a \ Sd \ a} = -19.467 \ MPa < 0$ therefore $\sigma_{a0_Sd_a} \coloneqq -\sigma_{a_Sd_a}$ $\sigma_{a0_{Sd_a}} = 19.467 MPa$ $\sigma_{a \ Sd \ b} = -14.974 \ MPa < 0$ therefore $\sigma_{a0_Sd_b} \coloneqq -\sigma_{a_Sd_b}$ $\sigma_{a0_Sd_b} = 14.974 MPa$ $\sigma_{m \ Sd \ a} = -118.446 \ MPa$ therefore $\sigma_{m0_Sd_a} := -\sigma_{m_Sd_a} = \sigma_{m0_Sd_a} = 118.446 MPa$ $\sigma_{m \ Sd \ b} = -219.972 \ MPa$ therefore < 0 $\sigma_{m0_Sd_b} := -\sigma_{m_Sd_b} \qquad \sigma_{m0_Sd_b} = 219.972 \; MPa$ a) $\sigma_{j_Sd_a} \coloneqq \sqrt{\left(\sigma_{a_Sd_a} + \sigma_{m_Sd_a}\right)^2}$ Design equivalent $\sigma_{j_Sd_a} = 137.913 \, MPa$ von Mises' stress: b) $\sigma_{j_Sd_b} \coloneqq \sqrt{\left(\sigma_{a_Sd_b} + \sigma_{m_Sd_b}\right)^2}$ $\sigma_{j \ Sd \ b} = 234.946 \ MPa$ a) $\lambda_{s_bar_a}2 \coloneqq \frac{f_y}{\sigma_{j_Sd_a}} \cdot \left(\frac{\sigma_{a0_Sd_a}}{f_{Ea}} + \frac{\sigma_{m0_Sd_a}}{f_{Eaw}}\right)$ Reduced shell $\lambda_{s\ bar\ a}^2 = 0.639$ slenderness: b) $\lambda_{s_bar_b}2 \coloneqq \frac{f_y}{\sigma_{j_Sd_b}} \cdot \left(\frac{\sigma_{a0_Sd_b}}{f_{Ea}} + \frac{\sigma_{m0_Sd_b}}{f_{Em}}\right)$ $\lambda_{s_bar_b}2\,{=}\,0.634$ $f_{ks_a} = 328.564 MPa$ a) $f_{ks_a} \coloneqq \frac{f_y}{\sqrt{1 + \lambda_s \text{ bar } a^2}}$ Characteristic buckling strength: Kolm b) $f_{ks_b} \coloneqq \frac{f_y}{\sqrt{1 + \lambda_{s,bar,b} 2^2}}$ $f_{ks_b} = 329.359 \; MPa$

Project: <u>Floating Offshore Wind Turbine</u> Engineer: <u>CH</u> Checked by: <u>CW</u> Date: <u>5/22/2023</u>

Project: <u>Floating Offshore Wind Turbine</u> Engineer: <u>CH</u> Checked by: <u>CW</u> Date: <u>5/22/2023</u>

11/12

Project: <u>Floating Offshore Wind Turbine</u> Engineer: <u>CH</u> Checked by: <u>CW</u> Date: <u>5/22/2023</u>

B.4: TOWER YIELDING

These calculations foll	ow I RED to analyze the LUS of	the tower			
Children Calculations for					
C.					
S420 Steel		References			
2:					
Yield Strength	$f_y \coloneqq 390 \ MPa$	(EN 10025-4, p. 20)			
0.		*note: yield strength lowered as a function of thickness			
Poisson's Ratio	$\nu := 0.3$	(EN 10025-4, p. 20)			
Young's Modulus:	$E \coloneqq 210 \ GPa$	(EN 10025-4, p. 20)			
Density:	$\mathcal{L} \rho_s \coloneqq 8500 \frac{ng}{m^3}$	(Escalera Mendoza et al., 2022, p. 5)			
*note: higher density asso secondary structures such	umed to account for the mass for a so bolts and flanges				
	í C				
Tower Parameters	80				
	1				
Thickness:	$t \coloneqq 50 mm$	(Tower Buckling Strength Calcs)			
Bottom Outer Diam	eter: $d_{a,a} = 10 m$	(Tower Buckling Strength Calcs)			
Top Outer Diamete	r: $d_{a_1} = 8 m$	(Tower Buckling Strength Calcs)			
Length:	l = 125 m	(Tower Buckling Strength Calcs)			
Hub Radius:	$r_{1,1} = 4 m$	(Siemens Gamesa) SG 14-222DD			
Nacelle Mass:	$M_{mus} = 500000 \ kg$	(Siemens Gamesa) SG 14-222DD			
Blades Mass x3:	$M_{haceue} = 165000 \ ka$	(Siemens Gamesa) SG 14-222DD			
Mass of RNA:	$M_{\text{ondes}} = M_{\text{ord}} + M_{\text{ord}}$	$M_{\rm DNA} = (6.65 \cdot 10^5) kg$			
Top Inner Diameter	$d_{i,j} := d_{i,j} - 2 \cdot t$	$d_{i} = 7.9 m$			
Bottom Inner Diam	eter: $d_{i_1} = d_{i_2} - 2t$	$d_{10} = 9.9 m$			
	-1_2 -0_2				
Top Outer Radius:	$r_{o,1} \coloneqq \frac{d_{o_1}}{d_{o_1}}$	$r_{n} = 4 m$			
	2	<u> </u>			
Bottom Outer Radiu	$us: \qquad r_{o,2} \coloneqq \frac{d_{o,2}}{d_{o,2}}$	$r_{n,2}=5 m$			
	2	°C-			
Top Inner Radius:	$r_{i,1} := \frac{d_{i_1}}{d_{i_1}}$	$r_{i,1} = 3.95 m$			
	°-1 2				
Bottom Outer Radiu	$JS: \qquad r_{i,2} \coloneqq \frac{d_{i,2}}{d_{i,2}}$	$r_{i,2} = 4.95 m$			
	1_2 2				
Area:	$A \coloneqq \pi \cdot r_{a_1}^2 - \pi \cdot r_{i_1}^2$	$A = 1.249 \ m^2$			
	V_1 V_1	976			
Moment of Inertia:	$I := \frac{\pi}{2} (r_{a,1}^4 - r_{i,1}^4)$	$I = 9.866 m^4$			
	4 (0,1,1,1)	25			
Section Modulus:	$S \coloneqq \frac{\pi \cdot (r_{o_{-1}} - r_{i_{-1}})}{2}$	$S = 2.467 m^3$			
	$4 \cdot r_{o_{-1}}$	3			
Environmental Load	is	Dx.			
		8			

	$\gamma_F \coloneqq 1.3$		(DINVGL-OS-	.101, p. 21)	
The second second second the					
In operational condit	ions, the tower w	III be exposed to a	bending momen	t due to the thr	ust force acting
at the tower top. The	caluciated from r	nuing moments m	If considering a	ig on the tower	thrust force
then the moment at	tower base is give	en by force times r	noment arm (Fre	dheim 2022 43	y unuse loice,
and the moment at	tower buse is give	in by force arries i	nomene ann (rie	unenn, 2022, 10	<i>.</i>).
Moment of towar has		T 1		M CCC DT	MAT
Moment at tower bas	Set $M := \gamma_F \cdot I$	1		$M = 666.25 \ r$	n•1VIIN
		M			
Bending stress at tov	ver $\sigma_{thrust} = 0$			$\sigma_{thrust} = 270.$	115 MPa
base:		S			
	2				
The 1/2 (1)	5				7100
The shift of the towe	r top under loadir	ng gives rise to a r	noment arm for t	ne RNA weight.	The
tower will experience	a norizontal disp	acement of the to	wer top when ex	posed to a thru	st force.
This is known as the	P-deita effect (Fr	euneim, 2022, 44)			
		1. 7			
		→ t ⇒ the			
		//			
		4			
		रसेर सीम			
	Figure 4.13: Illustrat	tion of a bottom-fixed wind to	arbine tower bending.		
		S			
Tauran tan dianla sana	sati S N	$I_{RNA} \cdot g \cdot l^3$	5 0.040		
l ower top displacem	ent: $\delta := -$	3. E.I	$\delta = 2.049 m$		
		2			
Bending moment from	m P- M _{P d}	$M_{RNA} \cdot q \cdot \delta$	$M_{P,delta} = 1$	$3.364 \ m \cdot MN$	
delta:	uc	4			
			~		
		Mp datta	3.		
Bending stress due to	o P- σ_{P_del}	$ta := \frac{P_aetta}{Q}$	$\sigma_{P_{delta}} = 5.$	418 MPa	
delta:		S	95		
u citai			6		
delta.					
			Y		
Total bending stress:	$\sigma_b = c$	$\sigma_{thrust} + \sigma_{P_{delta}}$	$\sigma_b\!=\!275.53$	3 MPa	
Total bending stress:	$\sigma_b := c$	$\sigma_{thrust} + \sigma_{P_delta}$	$\sigma_b\!=\!275.53$	3 MPa	
Total bending stress:	$\sigma_b := c$	$\sigma_{thrust} + \sigma_{P_delta}$	$\sigma_b\!=\!275.53$	3 MPa	
Total bending stress:	$\sigma_b = c$	$\sigma_{thrust} + \sigma_{P_delta}$	$\sigma_b\!=\!275.53$	3 MPa	
Total bending stress: For the structure to t	$\sigma_b \coloneqq c$ safe from failu	$\sigma_{thrust} + \sigma_{P_{delta}}$ re, the bending str	σ_b = 275.53 ess is required to	3 <i>MPa</i> be lower than t	the yield
Total bending stress: For the structure to t stress divided by the	$\sigma_b := c$ be safe from failur material factor (F	$\sigma_{thrust} + \sigma_{P_delta}$ re, the bending str Fredheim, 2022, 44	$\sigma_b = 275.53$ ess is required to 4).	3 <i>MPa</i> be lower than t	the yield
Total bending stress: For the structure to t stress divided by the	: $\sigma_b := c$ be safe from failur material factor (F	$\sigma_{thrust} + \sigma_{P_delta}$ re, the bending str -redheim, 2022, 44	$\sigma_b = 275.53$ ess is required to 4).	3 <i>MPa</i> be lower than t	the yield
Total bending stress: For the structure to t stress divided by the	$\sigma_b := c$ be safe from failur material factor (F	$\sigma_{thrust} + \sigma_{P_delta}$ re, the bending str redheim, 2022, 44	$\sigma_b = 275.53$ ess is required to 4).	3 <i>MPa</i> be lower than t	the yield
Total bending stress: For the structure to t stress divided by the According to DNV-OS	ce safe from failur material factor (F G-C101 (see page	$\sigma_{thrust} + \sigma_{P_delta}$ re, the bending str redheim, 2022, 44 13), the material f	σ_b = 275.53 ess is required to 4).	3 <i>MPa</i> be lower than t LS yield check s	the yield hould be
Total bending stress: For the structure to t stress divided by the According to DNV-OS 1.15 for steel.	$\sigma_b := c$ be safe from failur material factor (F S-C101 (see page	$\sigma_{thrust} + \sigma_{P_delta}$ re, the bending str Fredheim, 2022, 44 13), the material f	σ_b = 275.53 ess is required to 4).	3 <i>MPa</i> be lower than t LS yield check s	the yield hould be
Total bending stress: For the structure to t stress divided by the According to DNV-OS 1.15 for steel.	: σ _b := α pe safe from failur material factor (f G-C101 (see page	$\sigma_{thrust} + \sigma_{P_delta}$ re, the bending str Fredheim, 2022, 44 13), the material f	$\sigma_b = 275.53$ ess is required to 4).	3 <i>MPa</i> be lower than t LS yield check s	the yield
Total bending stress: For the structure to t stress divided by the According to DNV-OS 1.15 for steel.	$\sigma_b := c$ be safe from failur material factor (f S-C101 (see page	$\sigma_{thrust} + \sigma_{P_delta}$ re, the bending str Fredheim, 2022, 44 13), the material f	$\sigma_b = 275.53$ ess is required to 4).	3 <i>MPa</i> be lower than t LS yield check s	the yield
Total bending stress: For the structure to t stress divided by the According to DNV-OS 1.15 for steel. Material factor:	: $\sigma_b := c$ be safe from failur material factor (f S-C101 (see page $\gamma_M := 1.15$	$\sigma_{thrust} + \sigma_{P_delta}$ re, the bending str -redheim, 2022, 44 13), the material f	$\sigma_b = 275.53$ ess is required to 4).	3 <i>MPa</i> be lower than t LS yield check s	the yield
Total bending stress: For the structure to t stress divided by the According to DNV-OS 1.15 for steel. Material factor:	: $\sigma_b := c$ be safe from failur material factor (f S-C101 (see page $\gamma_M := 1.15$	$\sigma_{thrust} + \sigma_{P_delta}$ re, the bending str -redheim, 2022, 44 13), the material f	$\sigma_b = 275.53$ ess is required to 4).	3 <i>MPa</i> be lower than t LS yield check s	the yield

Project: Floating Offshore Wind Turbine Engineer: CH Checked by: CW Date: 5/22/2023

B.5: SPAR BUCKLING

These calculations follo	ow LRFD to analyze the ULS of t	he spar hull		
Load and Resistance Fa	<i>actor Design (LRFD):</i> Per DNVGL	-OS-C101 (see page 11), load and resistance factor		
factor and uncertainties	nod for design where uncertaint in resistance (capacity) are rer	ies in loads (demand) are represented with a load		
L:				
16				
Ultimate Limit States (U exceedance of load-carr	/LS): Failure or collapse of all or rving capacity. Overturning, cap	sizing, vielding, and buckling are typical examples of		
ULS (DNV-OS-J103, 16)	. ULS corresponds to the ultima	ite resistance for carrying loads.		
	2			
Spar made of S420 stee	which is common for offshore	e applications (Igwemezie, 2019, p.9)		
	15			
S420 Steel	3	References		
	0			
Yield Strength	$f_y \coloneqq 380 \ MPa$	(EN 10025-4, p. 20)		
	No.	Those: yield strength lowered as a function of thickness		
Poisson's Ratio	$\nu \coloneqq 0.3$	(EN 10025-4, p. 20)		
Vaurala Madulus	E NIG CR	(FN 40005 4 - 20)		
roung's modulus:	$E \approx 210 \text{ GPa}$	(EN 10025-4, p. 20)		
Density:	$a := 8500 \frac{kg}{2}$	(Escalera Mendoza et al. 2022 p. 5)		
*note: higher density assu	med to account for the mass for 4			
secondary structures such	as bolts and flanges	2		
		5		
		·3		
Spar Parameters				
		N.		
Thickness:	$t \coloneqq 450 \ mm$			
Total Length:	$d_o := 25 m$	(Preliminary Turbine Sizing Spreadsheet)		
Freeboard:	$L_T \coloneqq 100 m$	(Preliminal V Turbine Sizing Spreadsheet)		
Variable Ballast Depth:	$L_{rt} := 8.89 \ m$	(Preliminary Turbine Sizing Spreadsheet)		
Inner Diameter:	$d_i \coloneqq d_a - 2 \cdot t$	$d_i = 24.1 \ m$		
Outer Radius:	$r_o \coloneqq \frac{a_o}{2}$	r _o =12.5 m		
	2 d	1		
Inner Radius:	$r_i \coloneqq \frac{a_i}{2}$	r _i =12.05 m		
Area:	$A_s \coloneqq \pi \cdot r_o^2 - \pi \cdot r_i^2$	$A_s = 34.707 \ m^2$		
	I. I.	L = 150 m		
Draft Length:				

Project: <u>Floating Offshore Wind Turbine</u> Engineer: <u>CH</u> Checked by: <u>CW</u> Date: <u>5/22/2023</u>

Salf Weight of Spar	M	м	-4120102626bc
Self weight of Spar.	$M_{spar} \coloneqq V_s \cdot \rho_s$	Mapar	$=41301026.36 \ kg$
8			
Freeboard Parameters			
Outer diameter:	$d_{f_{\alpha}} \coloneqq 10 \ m$		
Thickness:	$t_{t} = 450 \ mm$		
Freeboard	$L_{\Sigma} \coloneqq 10 \ m$		
height:	- <i>F</i>		
Inner diameter:	$d_{f_i} \coloneqq d_{f_o} - 2 \boldsymbol{\cdot} t_f$		$d_{f_{-}i} = 9.1 \ m$
Outer radius:	$r_{f_o} = \frac{d_{f_o}}{d_{f_o}}$		$r_{f_0} = 5 m$
Inner radius:	$r_{f_i} = \frac{d_{f_i}}{2}$		$r_{f_{-i}} = 4.55 \ m$
Area: $A_F :=$	$\frac{\pi}{4} \cdot (d_{f_{-o}})^2 \xrightarrow{\pi}{4} \cdot (d_{f_{-i}})^2$		$A_F = 13.501 \ m^2$
Channes -	0		17
volume:	$V_F \coloneqq A_F \cdot D_F$		$V_F = 135.01 \ m$
Mass:	$M_E := V_E \cdot \rho_E$		$M_{E} = 1147584.526 \ kg$
Conical Transition Paramet	ers 2		
Outer top diameter:	$d_{c_o_1} \coloneqq 10 \ m$	-	
Outer bottom diameter:	$d_{c_{-0-2}} = 25 m$	3	
Thickness:	$t_c \coloneqq 450 \ mm$	O.	
Height:	$h_c \coloneqq 10 \ m$	3	
Inner ton diameter:	d d d	20	d = 0.1 m
Inner top diameter.	$\begin{array}{c} u_{c_i_1} := u_{c_o_1} = 2 \cdot t_c \\ d := d 2 \cdot t \end{array}$		$u_{c,i-1} = 5.1 m$
inner bottom diameter.	$u_{c_i_2} = u_{c_o_2} = 2 \cdot \iota_c$		ac 1.2 - 24.1 m
Outer top radius:	$r_{1} \coloneqq \frac{d_{c_o_1}}{d_{c_o_1}}$		$r_{2} = 5 m$
	2		
Inner top radius:	$r_{c,i,1} \coloneqq \frac{d_{c_i,i_1}}{d_{c_i,i_1}}$		$r_{c,i,1} = 4.55 m$
	2		
Outer bottom radius:	$r_{c,o,2} \coloneqq \frac{d_{c,o,2}}{d_{c,o,2}}$		$r_{c,a,2} = 12.5 m$
	2		No.
Inner bottom radius:	$r_{c_i_2} \coloneqq \frac{a_{c_i_2}}{2}$		$r_{c_{-i_{-}2}} = 12.05 \ m$
Area cone top: A	$=\frac{\pi}{2} \cdot (d_{c,a,1})^2 - \frac{\pi}{2} \cdot (d_{c,a,1})^2$		$A_{c,1} = 13.501 \ m^2$
	4 (Pt.
			0

`		$V_c = 241.039 \ m^3$
Mass of cone:	$M_c\!\coloneqq\!V_c\!\cdot\!\rho_s$	$M_c = 2048828.919 \ kg$
Total Spar Volume:	$V_{S_total} \coloneqq V_s + V_F + V_c$	$V_{S_total} = 5234.993 \ m^3$
Total Spar Mass:	$M_{S_total}\!\coloneqq\!M_{spar}\!+\!M_F\!+\!$	M_c $M_{S_total} = 44497439.806 \ kg$
Tower Parameters		
Nacelle Mass:	$M_{nacelle} \coloneqq 500000 \ kg$	(Siemens Gamesa) SG 14-222DD
Blades Mass x3:	$M_{blades} \coloneqq 165000 \ kg$	(Siemens Gamesa) SG 14-222DD
Mass of RNA:	$M_{RNA} := M_{nacelle} + M_{blades}$	$M_{RNA} = 665000 \ kg$
Mass of Tower:	$M_{tow} \coloneqq 1493729 \ kg$	(Preliminary Turbine Sizing Spreadsheet)
Thickness:	$t_{tow} = 50 \ mm$	(Tower Buckling Strength Calcs)
Bottom Outer Diameter:	$d_{t,a,2} = 10 m$	(Tower Buckling Strength Calcs)
Top Outer Diameter:	$d_{t_{-o_{-1}}} = 8 m$	(Tower Buckling Strength Calcs)
Hub Radius:	r _{hub} := 4 m	(Siemens Gamesa) SG 14-222 DD
Length:	$L_T \coloneqq 125 m$	(Tower Buckling Strength calcs)
Top Inner Diameter:	$d_{t_i_1} \coloneqq d_{t_o_1} - 2 \cdot t_{tow}$	$d_{t_{-i-1}} = 7.9 \ m$
Bottom Inner Diameter:	$d_{t_i_2}\!\coloneqq\!d_{t_o_2}\!-\!2 \ t_{tow}$	$d_{t_i_2} = 9.9 \ m$
Top Outer Radius:	$r_{t_o_1}\!\coloneqq\!\frac{d_{t_o_1}}{2}$	$r_{t_{-0}-1}=4\ m$
Bottom Outer Radius:	$r_{t_o_2} \! \coloneqq \! \frac{d_{t_o_2}}{2}$	$r_{t_{-0}2} = 5 m$
Top Inner Radius:	$r_{t_i_1} := \frac{d_{t_i_1}}{2}$	$r_{Li-1} = 3.95 m$
Bottom Outer Radius:	$r_{t_i_2} \! := \! \frac{d_{t_i_2}}{2}$	$r_{t_{-i-2}} = 4.95 \ m$
Moment of Inertia:	$I_{tow} \coloneqq \frac{\pi}{4} \left(r_{t_{-}o_{-}1}{}^{4} - r_{t_{-}i_{-}1}{}^{4} \right)$	$I_{tow} = 9.866 m^4$
Section Modulus:	$S_{tow} \coloneqq \frac{\pi \cdot (r_{t_{-0}1}^{4} - r_{t_{-1}1}^{4})}{\pi \cdot (r_{t_{-0}1}^{4} - r_{t_{-1}1}^{4})}$	$ S_{taw} = 2.467 m^3$

the tower and circum	erential compression due to the deep set	a water.	
8.			
TG .			
10			
1) Characteristic B	ckling		
- lix.			
According to DNV OS	101 (coo page 60) buckling analysis sh	all be based on the sharasteristic	- buckling
resistance for the mo	unfavorable buckling mode Buckling st	ability of shell structures may be	checked
according to DNV-RP-	202.	ability of shell structures may be	. circeneu
	2		
Per DNVGL-RP-C202	ee page 18), the stability reiquirement f	or shells is subjected to the follo	wing
components:	3		
-axial compression or	ension		
-cirumterential compr	ssion or tension		
is given by:			
	CV.		
	$\sigma_{j,Sd} \le f_{ksd}$		
	~		
	where $\sigma_{i} q_{i}$ = design equivale	ent von Mises' stress	
	fksd = the deisgn shell	l buckling strength	
	S		
	6		
Design equivalent	on Mises' $\sigma_{j,Sd} = \sqrt{(\sigma_{a,Sd} + \sigma_{m,Sd})^2}$	$-\left(\sigma_{a,Sd}+\sigma_{m,Sd}\right)\sigma_{h,Sd}+\sigma_{h,Sd}^{2}+3\tau_{Sd}^{2}$	
stress:	-61		
	4		
	$\sigma_{a,Sd}$ = design axial stress in the shell d	ue to axial forces (tension positive), see	equation (2.2.2)
	$\sigma_{m,Sd}$ = design bending stress in the shell of equation (2.2.3)	lue to global bending moment (tension pos	sitive), see
	$\sigma_{h,Sd}$ = design circumferential stress in the equation (2.2.8), (2.2.9), or (2.2.	a shell due to external pressure (tension po 14)	sitive), see
		6	
		202	
	$f_{had} = \frac{f_{ks}}{f_{had}}$		
Design shell buck	ig strength: $\gamma_{KSA} \gamma_M$	- Co	
		3	
	where fks = the characteristic	buckling strength	
	γ_M = the material	factor	
	$\gamma_M = 1.15$	for $\lambda_s < 0.5$	
	$\gamma_M = 0.85 + 0.60$	$\overline{\lambda}_s$ for $0.5 \le \overline{\lambda}_s \le 1.0$	
	$\gamma_M = 1.45$	for $\overline{\lambda_s} > 1.0$	
		0	
	2		5
Characteristic buc	ing strength: $f_{ks} = \frac{y}{\sqrt{1-4}}$		5
	$\sqrt{1 + \lambda_s^2}$		1
			3
Reduced shell sler	derness: $\overline{\lambda}^2 = \frac{f_y}{\sqrt{\sigma_{a0,Sd}}} + \frac{\sigma_{mi}}{\sqrt{\sigma_{a0,Sd}}}$	$\frac{\sigma_{h0,Sd}}{\sigma_{h0,Sd}} + \frac{\sigma_{h0,Sd}}{\sigma_{h0,Sd}} + \frac{\tau_{Sd}}{\sigma_{h0,Sd}}$	Qx.
	$n_s = \frac{\sigma_{i,Sd}}{\sigma_{i,Sd}} + \frac{f_{Ea}}{f_{Ea}} + \frac{f_{I}}{f_{I}}$	f_{Eh} $f_{E\tau}$	1/2

	f _{Em} = elastic	buckling strength for bendi	ng moment
	f _{Eh} = elastic b compres	uckling strength for hydrostatic p sion	ressure, lateral pressure and circumferential
Q.			
N/X			
6			
°Q'			
Calculate design stresses			
12			
-Design axial stress:			
	2 2 22 2 2 2 2 2		
Per DNVGL-RP-C202	2 (see page 13), the design axis	al stress for a cylindric	cal shell due to axial
forces without longi	itudinal summers is (tension po	siuve):	
0	N _{Sd}		
9	$\sigma_{a,Sd} = \frac{1}{2\pi rt}$		
	C.		
Design avial forces	N - (M IM	+M) a N $-$	457 541 MN
Design axial force.	$M Sd = -(M RNA + M S_{total})$	$+ int_{tow}$ $g = in_{Sd} = -$	
	¥.		
*As a conservat	ive measure the total weight of	the spar is included i	n the point load
	O.N		
Design axial stress:	$\sigma_{a_Sd} := \frac{2 \cdot Sd}{2}$	$\sigma_{a_Sd} =$	-12.946 MPa
	$2 \cdot \pi \cdot r_o \cdot t$		
Per DNVGL-OS-C10	1 (see page 21), two combinati	on of design loads (a	& b) must be
considered in both of	operating and temporary condit	tions	
	3		
Load factors for	ULS: According to DNV-OS-J10	(see page 102), the	point load from RNA and
	tower sen weight is a per	manent lodu (G)	
a) $\gamma_{f_{-}G_{-}G_{-}G_{-}G_{-}G_{-}G_{-}G_{-}G$	a:=1.3	.3	
b) γ_{fGI}	b:=1.0	0.	
		8	
Design axial stresse	es. a) a	C	-16829MPa
Design axial su esse	b) $=$	a_Sd_a	- 12 046 MPa
	$\sigma_{a_Sd_b} \coloneqq \gamma_{f_G_b} \cdot \sigma_{a_Sd}$	$\sigma_{a_Sd_b}$	= -12.940 MPa
		Ó.	
-Design circumferential	stress:	63	,
-Design circumferential	stress:	On	
- <u>Desian circumferential</u> Per DNV-OS-J103 (s	<u>stress:</u> see page 58), in case solid balla	ist is used, the benefi	cial effect of horizontal
- <u>Design circumferential</u> Per DNV-OS-J103 (s pressure set up by t	<u>see page 58), in case solid balla</u> the solid ballast and counteract	ast is used, the benefiing external pressure	cial effect of horizontal shall normally not be
- <u>Design circumferential</u> Per DNV-OS-J103 (s pressure set up by t accounted for in the	<u>stress:</u> see page 58), in case solid balla the solid ballast and counteract buckling checks for vertical sh	ast is used, the benefi ing external pressure ell elements. Howeve	cial effect of horizontal shall normally not be r, the beneficial effect of
-Design circumferential Per DNV-OS-J103 (s pressure set up by t accounted for in the horizontal pressure	Lstress: see page 58), in case solid balla the solid ballast and counteract e buckling checks for vertical sh from ballast water can always	ast is used, the benefi ing external pressure ell elements. Howeve pe considered in these	cial effect of horizontal shall normally not be r, the beneficial effect of e checks.
-Design circumferential Per DNV-OS-J103 (s pressure set up by t accounted for in the horizontal pressure	L stress: see page 58), in case solid balla the solid ballast and counteract e buckling checks for vertical sh from ballast water can always	ast is used, the benefi ing external pressure rell elements. Howeve be considered in these	cial effect of horizontal shall normally not be r, the beneficial effect of e checks.
-Design circumferential Per DNV-OS-J103 (s pressure set up by t accounted for in the horizontal pressure Per DNVGL-RP-C202	Lstress: see page 58), in case solid balla the solid ballast and counteract e buckling checks for vertical sh from ballast water can always b 2 (see page 14), for an unstiffe	ast is used, the benefi ing external pressure ell elements. Howeve be considered in these ned cylinder the circu	cial effect of horizontal shall normally not be r, the beneficial effect of e checks. mferential membrane stress
-Design circumferential Per DNV-OS-J103 (s pressure set up by t accounted for in the horizontal pressure Per DNVGL-RP-C202 may be taken as (te	Lstress: see page 58), in case solid balla the solid ballast and counteract e buckling checks for vertical sh from ballast water can always b 2 (see page 14), for an unstiffe ension is positive):	ast is used, the benefi ing external pressure ell elements. Howeve be considered in these ned cylinder the circu	cial effect of horizontal shall normally not be r, the beneficial effect of e checks. mferential membrane stress
- <u>Design circumferential</u> Per DNV-OS-J103 (s pressure set up by t accounted for in the horizontal pressure Per DNVGL-RP-C202 may be taken as (te	Lstress: see page 58), in case solid balla the solid ballast and counteract e buckling checks for vertical sh from ballast water can always 2 (see page 14), for an unstiffe ension is positive): $p_{Sd}r$	ast is used, the benefi ing external pressure well elements. Howeve be considered in these ned cylinder the circu	cial effect of horizontal shall normally not be r, the beneficial effect of e checks. mferential membrane stress
-Desian circumferential Per DNV-OS-J103 (s pressure set up by t accounted for in the horizontal pressure Per DNVGL-RP-C202 may be taken as (te	L stress: see page 58), in case solid balla the solid ballast and counteract e buckling checks for vertical sh from ballast water can always 2 (see page 14), for an unstiffe ension is positive): $\sigma_{h,Sd} = \frac{p_{Sd}r}{t}$	ast is used, the benefi ing external pressure lell elements. Howeve be considered in these ned cylinder the circu	cial effect of horizontal shall normally not be r, the beneficial effect of e checks. mferential membrane stress
-Design circumferential Per DNV-OS-J103 (s pressure set up by t accounted for in the horizontal pressure Per DNVGL-RP-C202 may be taken as (te	L stress: see page 58), in case solid balla the solid ballast and counteract e buckling checks for vertical sh from ballast water can always 2 (see page 14), for an unstiffe ension is positive): $\sigma_{h,Sd} = \frac{p_{Sd}r}{t}$ $a := 1025 \frac{kg}{t}$	ast is used, the benefi ing external pressure rell elements. Howeve be considered in these ned cylinder the circu	cial effect of horizontal shall normally not be r, the beneficial effect of e checks. mferential membrane stress
-Design circumferential Per DNV-OS-J103 (s pressure set up by t accounted for in the horizontal pressure Per DNVGL-RP-C202 may be taken as (te Seawater Density:	L stress: see page 58), in case solid balla the solid ballast and counteract e buckling checks for vertical sh from ballast water can always 2 (see page 14), for an unstiffe ension is positive): $\sigma_{h,Sd} = \frac{p_{Sd}r}{t}$ $\rho := 1025 \frac{kg}{m^3}$	ast is used, the benefi ing external pressure iell elements. Howeve be considered in thesi ned cylinder the circu	cial effect of horizontal shall normally not be r, the beneficial effect of e checks. mferential membrane stress

No.						
6	Hydrostatic ocean:	pressure from	P_{ocear}	$a := -\rho \cdot g \cdot L_s$	$P_{ocean} = -1.407 MPa$	
	9,					
	The .					
	variable ba	llast:	$P_{vb} \coloneqq$	$\rho \cdot g \cdot L_{vb}$	$P_{vb} = 0.089 MPa$	
	~	2				
	Overall hyd	Irostatic pressure	: p _{Sd} :=	$P_{ocean} + P_{vb}$	$p_{Sd} = -1.318 \ MPa$	
		17.		$p_{Sd} \cdot r_o$	and many second	
	Design circ	umferential stress	$\sigma_{h_{-}Sd}$:= <u>t</u>	$\sigma_{h_Sd} = -36.608 MPa$	
		2				
	Load fa perman	ctors for ULS: Acc ent loads, like hy	cording to drostatic	DNVGL-OS-C101 (pressure, are well o	see page 21), the load factors for w lefined are as follows:	/hen
	a)	$\gamma_{f,G,a} = 1.2$	5			
	b)	$\gamma_{f,C,k} = 1$	to			
		1J_G_0	N'A			
	Design circ	umferential	2) 20		$\sigma = -42.02 MDc$	
	stresses:	umerenda	b) $-$	$a = f_G_a \cdot O_{h_Sd}$	$\sigma_{h_{Sd_a}} = -43.93 MP_a$	
			D) σ_{h_Sd}	$_{b} := \gamma_{f_G_b} \cdot \sigma_{h_Sd}$	$\sigma_{h_Sd_b} = -30.608 MPa$	
				S.		
				0		
				2		
alcul	late elastic bi	uckling strengths:		2		
				2		
- <u>E</u>	lastic bucklin	a strenath for axi	al force:	.0		
				1)	
	From DNVC	GL-RP-C202 (see)	page 21)	the axial elastic buc	ckling strength of unstiffened circula	ir
	cylinder ch	ci is given by equ	3.4		6	
	cylinder she					
	cylinder she		6	$C = \pi^2 E (t)^2$	10	
	cylinder she		$f_E =$	$C\frac{\pi^2 E}{12(1-v^2)} \left(\frac{t}{l}\right)^2$. C.	
	cylinder she		<i>f</i> _{<i>E</i>} =	$C\frac{\pi^2 E}{12\left(1-v^2\right)} \left(\frac{t}{t}\right)^2$.0n	
	cylinder she		$f_E =$ when is uns	$C \frac{\pi^2 E}{12(1-\nu^2)} \left(\frac{t}{l}\right)^2$ e I the distance bet stiffened, I is the lea	ween ring frames. However, since t ngth of the entire spar draft.	he shell
	cylinder she		$f_E =$ when is uns	$C \frac{\pi^2 E}{12(1-\nu^2)} \left(\frac{t}{l}\right)^2$ e I the distance bet stiffened, I is the left	ween ring frames. However, since t ngth of the entire spar draft.	he shell
	cylinder she	-1	f _E = where is uns	$C \frac{\pi^2 E}{12(1-\nu^2)} \left(\frac{t}{l}\right)^2$ e I the distance bet stiffened, I is the lea	ween ring frames. However, since t ngth of the entire spar draft.	he shell
	cylinder she ψ_a =	=1	f _E = when is un	$C \frac{\pi^2 E}{12(1-v^2)} \left(\frac{t}{l}\right)^2$ e I the distance bet stiffened, I is the left	ween ring frames. However, since t ngth of the entire spar draft.	he shell
	cylinder she ψ_a :=	=1	f _E = when is uns	$C \frac{\pi^2 E}{12(1-\nu^2)} \left(\frac{t}{l}\right)^2$ e I the distance bet stiffened, I is the lef Table 3-2	ween ring frames. However, since t ngth of the entire spar draft. Buckling coefficients for unstiffened shells (see page 21)	he shell
	cylinder she $\psi_a \coloneqq \rho_a \coloneqq$	$= 1$ $= 0.5 \cdot \left(1 + \frac{r_o}{150 t}\right)$	$f_E =$ where is uns	$C \frac{\pi^2 E}{12(1-\nu^2)} \left(\frac{t}{l}\right)^2$ e I the distance bet stiffened, I is the lease Table 3-2 cylindrical	ween ring frames. However, since t ngth of the entire spar draft. Buckling coefficients for unstiffened shells (see page 21)	he shell
	cylinder she $\psi_a \coloneqq \rho_a \coloneqq$	$= 1$ $= 0.5 \cdot \left(1 + \frac{r_o}{150 t}\right)$	$f_E =$ where is uns $^{-0.5} = 0.43$	$C \frac{\pi^2 E}{12(1-\nu^2)} \left(\frac{t}{l}\right)^2$ e I the distance bet stiffened, I is the len Table 3-2 cylindrical	ween ring frames. However, since t ngth of the entire spar draft. Buckling coefficients for unstiffened shells (see page 21)	he shell
	cylinder she $\psi_a \coloneqq \rho_a \coloneqq$	$= 1$ $= 0.5 \cdot \left(1 + \frac{r_o}{150 t}\right)$	$f_E =$ where is unsolution $f_E = 0.45$	$C \frac{\pi^{2}E}{12(1-v^{2})} \left(\frac{t}{l}\right)^{2}$ e I the distance bet stiffened, I is the least Table 3-2 cylindrical	ween ring frames. However, since t ngth of the entire spar draft. Buckling coefficients for unstiffened shells (see page 21)	he shell
	cylinder she $\psi_a \coloneqq$ $\phi_a \coloneqq$	$= 1$ $= 0.5 \cdot \left(1 + \frac{r_o}{150 t}\right)$	$f_E =$ where is uns -0.5 $= 0.45$	$C \frac{\pi^2 E}{12(1-v^2)} \left(\frac{t}{l}\right)^2$ e I the distance bet stiffened, I is the lef Table 3-2 cylindrical	ween ring frames. However, since t ngth of the entire spar draft. Buckling coefficients for unstiffened shells (see page 21)	he shell
	cylinder she $\psi_a \coloneqq \rho_a \coloneqq$	= 1 = $0.5 \cdot \left(1 + \frac{r_o}{150 t}\right)$ vature Parameter	$f_E =$ where is uns $^{-0.5} = 0.43$	$C \frac{\pi^{2}E}{12(1-v^{2})} \left(\frac{t}{l}\right)^{2}$ e I the distance bet stiffened, I is the left Table 3-2 cylindrical $Z_{l,a} \coloneqq \frac{L_{d}^{2}}{2} \cdot \sqrt{1}$	ween ring frames. However, since t ngth of the entire spar draft. Buckling coefficients for unstiffened shells (see page 21) $\overline{-\nu^2}$ $Z_{l,a} = 3815.757$	he shell
	cylinder she $\psi_a \coloneqq \rho_a \coloneqq \rho_a$	= 1 = $0.5 \cdot \left(1 + \frac{r_o}{150 t}\right)$ vature Parameter	$f_E =$ where is uns $-0.5 = 0.41$	$C \frac{\pi^{2}E}{12(1-\nu^{2})} \left(\frac{t}{l}\right)^{2}$ e I the distance bet stiffened, I is the len Table 3-2 cylindrical $Z_{l_{a}} \coloneqq \frac{L_{d}^{2}}{r_{o} \cdot t} \cdot \sqrt{1}$	ween ring frames. However, since the ngth of the entire spar draft. Buckling coefficients for unstiffened shells (see page 21) $\overline{-\nu^2}$ $Z_{l_a} = 3815.757$	he shell

Reduced Buckling Coefficie	ent: $C_a \coloneqq \psi_a \cdot \sqrt{1 + \left(\frac{\rho_a \cdot \xi_a}{\psi_a}\right)^2}$	$C_a = 1230.254$
Shell Buckling Strength:	$f_{Ea} \coloneqq C_a \cdot \frac{\pi^2 E}{12 \cdot \left(1 - \nu^2\right)} \left(\frac{t}{L_d}\right)$	$f_{Ea} = 2101.521 MPa$
T3		
-Elastic buckling strength for lateral/h	hydrostatic pressure	
According to DNVGL-RP-C202 (se	e page 21), for hydrostatic pressure	e if
$\frac{L_s}{r_o} = 11.2$	$> \qquad 2.25 \cdot \sqrt{\frac{r_o}{t}} = 11.859$	NO
then the elastic buckling strength	may be calculated as:	
Elastic Buckling Strength:	$f_{Eh_1} \coloneqq 0.25 \cdot E \cdot \left(\frac{t}{r_o}\right)^2$	$f_{Eh_{-1}} = 68.04 \; MPa$
According to DNVGL-RP-C202 (se	e page 21), for hydrostatic pressure	e if
$\frac{L_s}{r_o} = 11.2$	< $2.25 \cdot \sqrt{\frac{r_o}{t}} = 11.859$	ок
then the elastic buckling strength	may be calculated as:	
From DNVGL-RP-C202 (see page cylinder shell is given by equation	21) the axial elastic buckling streng 3.4.1:	th of unstiffened circular
	$f_E = C \frac{\pi^2 E}{12(1 - v^2)} \left(\frac{t}{l}\right)^2$	
	where I the distance between ring fr s unstiffened, I is the length of the e	ames. However, since the shell entire spar draft.
		3
$\psi_h \coloneqq 2$	Table 3-2 Buckling co	efficients for unstiffened
$ \rho_h \coloneqq 0.6 $	cylindrical shells (see	page 22)
Curvature Parameter:	$Z_l \coloneqq \frac{{L_s}^2}{r_o \cdot t} \cdot \sqrt{1 - \nu^2}$	$Z_l = 3323.948$
s 1 04 - 17	Table 2-2 Buckling co.	afficients for unstiffened
$\varsigma_h \leftarrow 1.04 \cdot \sqrt{\omega_l}$	cylindrical shells (see	page 21)
	$\int (a \cdot c)^2$	0

C120 Charl		
S420 Steel		
Yield Strength	$f_y \coloneqq 360 \ MPa$	(EN 10025-4, p. 20) *note: vield strength lowered as a function of
·9		thickness
Parameters		
Outer top diameter:	$d_{c_o_1} \coloneqq 10 \ m$	
Outer bottom diameter:	$d_{c_o_2} \coloneqq 25 \ m$	
Thickness:	$t_c \coloneqq 450 \ mm$	
Height:	$h_c \coloneqq 10 m$	
Inner top diameter:	$d_{c_i_1} := d_{c_o_1} - 2 \cdot t_c$	$d_{c_{-i_{-}1}} = 9.1 m$
Inner bottom diameter:	$d_{c_i_2}\!\coloneqq\! d_{c_o_2}\!-\!2 \cdot t_c$	$d_{c_i_2}\!=\!24.1\;m$
Outer top radius:	$r_{c_o_1} \coloneqq \frac{d_{c_o_1}}{2}$	$r_{c_{-}o_{-}1} = 5 m$
Inner top radius:	$r_{c,i_1} \coloneqq \frac{d_{c_{-i1}}}{2}$	$r_{c_{-1}-1} = 4.55 m$
Outer bottom radius:	$r_{c_{-o_{-}2}} = \frac{d_{c_{-o_{-}2}}}{2}$	$r_{c_o_2} = 12.5 \ m$
Inner bottom radius:	$r_{c_i_2} \coloneqq \frac{d_{c_i_2}}{2}$	$r_{c_i_2} = 12.05 \ m$
Area cone top: $A_{c_1} :=$	$\frac{\pi}{4} \cdot (d_{c_o_1})^2 - \frac{\pi}{4} \cdot (d_{c_1_1})^2$	$A_{c_1} = 13.501 \ m^2$
Volume of cone: $V_c := \begin{pmatrix} \\ \\ \end{pmatrix}$	$\frac{1}{3} \boldsymbol{\cdot} \boldsymbol{\pi} \boldsymbol{\cdot} \boldsymbol{h}_{c} \bigg) \left(\left(\boldsymbol{r}_{c_o_1}^{2} + \boldsymbol{r}_{c_o_2}^{2} \right) + \boldsymbol{r}_{c_o_2}^{2} \right) + \boldsymbol{r}_{c_o_2}^{2} + $	$(r_{c_o_1} \cdot r_{c_o_2}) - (r_{c_i_1}^2 + r_{c_i_2}^2 + r_{c_i_1} \cdot r_{c_i_2}))$
		$V_c = 241.039 \ m^3$
Mass of cone: $M_c := 1$	$V_c \cdot \rho_s$	$M_c = 2048828.919 \ kg$
		· Com Co.

Q.	a)	$\gamma_{i,\alpha} = 1.3$								
(Vx	b)	$f_{G_a} = 1.0$								
·C2	0)	$\gamma_{f_G_b} = 1.0$								
Des	ian avial s	tresses a)	σ	··· ~ ~ · ·	σ		σ	1 735 /	IPa	
Deg		hi cosco. d)	o a	$_Sd_a \leftarrow If_G_a$	o a_Sd_c		∂ a_Sd_a	-1.7301	MDa	
	3	0)	0 a	_Sd_b •= /f_G_b •	0 a_Sd_c		0 a_Sd_b	1.3341	ar a	
	10,									
	1	5								
-Design	circumfe	rential stress.								
Design	r circumie	lendar stress.								
Dor		P-C202 (see n	ane	14) for an ur	octiffonor		r the circu	mforontial	membrane	stress
may	/ be taken	as (tension is	pos	sitive):	istinchet	i cynnuc		merendar	memorane	30 033
		80	-							
		ľ.	~	n	r					
			4	$\sigma_{h,Sd} = \frac{r_{Sd}}{t}$	<u>r</u>					
			~	~						
Sea	water Der	nsity.		a:= 1025 kg	1					
Jea	Mater Der	iory.		pm	3					
Der	th of cone	<u>.</u>		h = 10						
Dep				1.0 10	5					
The	value for	the hydrostat	ic pr	ressure on the	bottom	of the c	one used a	s a conser	vative assu	Imption
	Turue Ior	and my arobad	с р.		2	or and c	used o	o a comoo		, pair
Hvo	lrostatic p	ressure from		$p_{cd} := -\rho \cdot c$	1.h. 2		$p_{ed} =$	-0.101 M	Pa	
oce	an:			134_0 1 5	*	2	1 34_0			
						3				
Des	ian circum	nferential stres	s:	$\sigma_h = \frac{p_{Sd_{-}}}{p_{Sd_{-}}}$	r_e	100	$\sigma_{h,s,d} =$	-2.443 M	Pa	
	5			t_i	c	1	2 1.34			
	Load facto	ors for ULS: Ad	cord	ding to DNVGI	-OS-C10	1 (see p	bage 21), t	he load fac	tors for wh	nen
	permanen	t loads, like h	/dro	static pressur	e, are we	ell define	ed are as fo	ollows:		
	a)	$\gamma_{f,G,a} \coloneqq 1.2$					2			
	b)	$\gamma_{f,G,b} = 1$					-	5		
		,1_0_0						0.		
Des	ign circun	nferential	a)	$\sigma_h s_{d,a} \coloneqq \gamma_f$	$\sigma_a \cdot \sigma_b s$	4	$\sigma_{h,Sd,a}$	= -2.9321	MPa	
stre	sses:		b)	$\sigma_{h,Sd,h} \coloneqq \gamma_{f,f}$	$\sigma_{h} \cdot \sigma_{h} s$,	$\sigma_{h \ Sd \ h}$	=-2.443 1	MPa	
								Ŷ,	2	
									2r	
Calcula	te elastic l	buckling strend	aths						0,	
425									1	3
- <u>Ela</u>	stic buckli	ng strength fo	r ax	tial force:						Qx.
										6

S420 Steel		
Yield Strength	$f_y \coloneqq 360 \ MPa$	(EN 10025-4, p. 20)
`Q',		thickness
Parameters		
Outer diameter:	$d_{f_o} \coloneqq 10 \ m$	
Thickness:	$t_f \coloneqq 450 \ mm$	
Freeboard height:	$L_F \coloneqq 10 \ m$	
Inner diameter:	$d_{f_i} \coloneqq d_{f_o} - 2 \cdot t_f$	$d_{f_{,i}}\!=\!9.1\;m$
Outer radius:	$r_{f_o} \coloneqq \frac{d_{f_o}}{2}$	$r_{f_{-}o} = 5 m$
Inner radius:	$r_{f_i} \coloneqq \frac{d_{f_i}}{2}$	$r_{f_{-}i} = 4.55 \ m$
Area: A _F	$\coloneqq rac{\pi}{4} \cdot (\overline{d_{f_o}})^2 - rac{\pi}{4} \cdot (d_{f_{-i}})^2$	$A_F \!=\! 13.501 \; m^2$
Volume:	$V_F \coloneqq A_F \cdot L_F$	$V_F = 135.01 \ m^3$
Mass:	$M_F \coloneqq V_F \cdot \rho_s$	$M_c = 2048828.919 \ kg$
Calculate design stresses	<u>.</u>	
-Design axial stress:	12	×
Per DNVGL-RP-C202 forces without longit	(see page 13), the design axial stress udinal stiffeners is (tension positive):	for a cylindrical shell due to axial
		.0
	$\sigma_{a,Sd} = \frac{N_{Sd}}{2\pi rt}$	03
Design axial force:	$N_{Sd_c}\!\coloneqq\!-\!\left(\!M_{RNA}\!+\!M_F\!+\!M_{tow}\!\right)g$	$N_{Sd_c} = -32.424 MN$
*As a conservativ load	ve measure the total weight of the free	board is included in the point
Design axial stress	σ $a_{i} := \frac{N_{Sd_c}}{N_{Sd_c}}$	$\sigma_{\rm ex} = -12.946 MPa^{-1}$
Design and Sucss.	$\sigma_{a_Sd_c} \cdot = \frac{1}{2 \cdot \pi \cdot r_{f_o} \cdot t_f}$	0 a_Sd = -12.540 MI 0
Per DNVGL-OS-C101 considered in both o	(see page 21), two combination of desperating and temporary conditions	sign loads (a & b) must be
		10

- C				
(a)	$\gamma_{f,E,a} \coloneqq 0.7$			
(b)	$\gamma_{f,F,h} \coloneqq 1.3$			
4	, <i>J_2_0</i>			
Design ben	ding a) $\sigma_{-\alpha} = \gamma_{\alpha}$	ε. • σ . ει	$\sigma_{-\alpha} = -4$	4.36 MPa
stresses:	b) $\sigma_{m_s} = \gamma_s$	$E_a \cdot \sigma_{a}$	$\sigma_{m_a} = -8$	2 383 MPa
		$E_{b} \circ m_{sd}$	0 m_Sd_b - 0	21000 111 0
	6			
	1			
Calculate el	actic buckling strengths			
<u>calculate el</u>	astic buckling strengths.			
Flactic	huckling strongth for avial for			
- <u>EldSUC</u>	DUCKING SUPPLICATION AXIAI TOR	<u>.e</u> .		
12				of unatificanad simular
cylin	n DNVGL-RP-C202 (see page a der shell is given by equation	(1) the axial elastic $3.4.1$	buckling strengt	n of unstiffened circular
Cym	act she is given by equation	_2_		
	5	$f_E = C \frac{\pi^2 E}{12(1-2)}$	$\left(\frac{t}{l}\right)^2$	
	1	$12(1-v^{-})$		
		0		
	w	here I the distance	between ring fra	mes. However, since the shel
	IS	unstiffened, I is the	e length of the er	itire spar draft.
		2		
	$\psi_a \coloneqq 1$	4		
	/) =0.5	Table	3-2 Buckling coel	ficients for unstiffened
	$\rho_a := 0.5 \cdot \left(1 + \frac{r_{f_o}}{1 - r_{f_o}}\right)^{-1} =$	0.482 cylindr	rical shells (see p	age 21)
	$(150 t_f)$		2	
			3	
	Curvature Parameter:	$Z_{l_{r}} := \frac{L_{F}^{2}}{2}$	$\sqrt{1-\nu^2}$	$Z_{l_{1}} = 42.397$
		$r_{f_o} \cdot t_f$	YO I	1_u
			10	
			0	
	6 := 0 702 Z	Tablo	3-2 Buckling	ficients for unstiffened
	$\xi_a \coloneqq 0.702 \; Z_{l_a}$	Table	3-2 Buckling coel	ficients for unstiffened
	$\xi_a\!\coloneqq\!0.702\;Z_{l_a}$	Table cylindr	3-2 Buckling coe rical shells (see p	ficients for unstiffened age 21)
	$\xi_a \coloneqq 0.702 \ Z_{l_a}$	Table cylindr	3-2 Buckling coercical shells (see p $(\rho_a \cdot \xi_a)^2$	ficients for unstiffened age 21)
	$\xi_a \coloneqq 0.702 \ Z_{l_a}$ Reduced Buckling Coefficie	Table cylindr $C_a \coloneqq \psi_a \cdot \sqrt{1 - 1}$	3-2 Buckling coercical shells (see p + $\left(\frac{\rho_a \cdot \xi_a}{\psi_a}\right)^2$	ficients for unstiffened age 21) $C_a = 14.394$
	$\xi_a \coloneqq 0.702 \ Z_{l_a}$ Reduced Buckling Coefficie	Table cylindr \mathbf{r}	3-2 Buckling coefficient of the set of the	ficients for unstiffened age 21) $C_a = 14.394$
	$\xi_a \coloneqq 0.702 \ Z_{l_a}$ Reduced Buckling Coefficie	Table cylindr $\mathbf{T}_a:=\psi_a\cdot\sqrt{1-1}$ nt: $C_a:=\psi_a\cdot\sqrt{1-1}$	3-2 Buckling coefficient of the set of the	fficients for unstiffened age 21) $C_a = 14.394$
	$\xi_a := 0.702 Z_{l_a}$ Reduced Buckling Coefficie Shell Buckling Strength:	Table cylindr nt: $C_a \coloneqq \psi_a \cdot \sqrt{1 - f_{Ea}} = C_a \cdot \frac{1}{12}$	3-2 Buckling coefficient of the set of the	ficients for unstiffened age 21) $C_a = 14.394$ $f_{Ea} = 5532.23 \ MPa$
	$\xi_a := 0.702 Z_{l_a}$ Reduced Buckling Coefficie Shell Buckling Strength:	Table cylindi $\mathbf{f}_{Ea} \coloneqq \psi_a \cdot \sqrt{1-1}$ $f_{Ea} \coloneqq C_a \cdot \frac{1}{12}$	3-2 Buckling coefficient of the set of the	fficients for unstiffened age 21) $C_a = 14.394$ $f_{Ea} = 5532.23 \ MPa$
	$\xi_a := 0.702 Z_{l_a}$ Reduced Buckling Coefficie Shell Buckling Strength:	Table cylindi $\mathbf{f}_{Ea} \coloneqq \psi_a \cdot \sqrt{1-1}$ nt: $f_{Ea} \coloneqq C_a \cdot \frac{1}{12}$	3-2 Buckling coefficient of the set of the	fficients for unstiffened age 21) $C_a = 14.394$ $f_{Ea} = 5532.23 \ MPa$
-Elastic	$\xi_a := 0.702 Z_{l_a}$ Reduced Buckling Coefficie Shell Buckling Strength: buckling strength for bending	Table cylindi nt: $C_a \coloneqq \psi_a \cdot \sqrt{1 - f_{Ea}} \coloneqq C_a \cdot \frac{12}{12}$ moment:	3-2 Buckling coefficients of the set of the	fficients for unstiffened age 21) $C_a = 14.394$ $f_{Ea} = 5532.23 \ MPa$

0.	$f_E = C \frac{1}{12(1 - v^2)}$	(7)	
ared	where I the c is unstiffened	listance between ring fran I, I is the length of the en	mes. However, since the shell tire tower.
Tis to 1-1			
$\varphi_m = 1$	V=0.5	Table 3-2 Buckling coef	ficients for unstiffened
<i>p_m</i> := 0.5 ⋅	$1 + \frac{r_{f_o}}{300 t_f} \bigg)^{aa} = 0.491$	cylindrical shells (see pa	age 21)
Curvettite	Parameter: 7	$L_F^2 = \sqrt{1-v^2}$	7 - 49 207
Cuivature	Z_{l_m}	$=\frac{1}{r_{f_o}\cdot t_f}\cdot \sqrt{1-\nu}$	$Z_{l_m} = 42.397$
$\xi_m \coloneqq 0.702$	Zim	rable 3-2 Buckling coef cylindrical shells (see pa	ficients for unstiffened age 21)
Reduced B	uckling Coefficient: $C_m :=$	$\psi_m \cdot \sqrt{1 + \left(\frac{\rho_m \cdot \xi_m}{2}\right)^2}$	$C_{\rm m} = 14.647$
		$\psi_m = (\psi_m)$	
Shell Buckl	ing Strength: $f_{Em} =$	$C_m \cdot \frac{\pi^2 E}{10 (1 - t^2)} \left(\frac{t_f}{L}\right)^2$	$f_{Em} = 5629.685 \ MPa$
	C	$12 \cdot (1-\nu) (L_F)$	
	1	25	
Calculate characteristic b	uckling strength of cylindric	al shells	
		D.	
According to DNVGL-F	RP-C202 (see page 19):	20	
$\sigma_{-} = -2.982 MPc$	< 0 therefore	To suite To suite	$\sigma_{construct} = 2.982 MPa$
- a_3a_a		- au_sa_a	- a0_5a_a
$\sigma_{a_Sd_b} = -2.294 MPa$	a < 0 therefore	$\sigma_{a0_Sd_b} \coloneqq -\sigma_{a_Sd_b}$	$\sigma_{a0_Sd_b} = 2.294 \ MPa$
		1	Ô,
$\sigma_{m_Sd_a} = -44.36 MP$	a < 0 therefore	$\sigma_{m0_Sd_a} \coloneqq -\sigma_{m_Sd_a}$	$\sigma_{m0_Sd_a} = 44.36 MPa$
$\sigma_{m \ Sd \ b} = -82.383 \ Ml$	Pa < 0 therefore	$\sigma_{m0 \ Sd \ b} := -\sigma_m \ Sd \ b}$	$\sigma_{m0~Sd~b} = 82.383 MPa$
			13-
Design aquivalant	a) $\sigma_{j_Sd_a} \coloneqq \sqrt{\left(\sigma_{a_Sd_a} - \sqrt{\left(\sigma_{a} - \sqrt{\left(\sigma_{a_Sd_a} - \sqrt{\left(\sigma_{a} - \sqrt{\left(\sigma_{a} - \cos} - \sqrt{\left(\sigma_{a} - \cos} $	$+\sigma_{m_Sd_a})^2$	$\sigma_{j_Sd_a} = 47.341 \ MPa$
von Mises' stress:			
von Mises' stress:	b) $\sigma_{j_sSd_b} \coloneqq \sqrt{(\sigma_{a_sSd_b} + $	$-\sigma_{m_{sd_{b}}}^{2}$	$\sigma_{j_Sd_b} = 84.676 MPa$

Project: <u>Floating Offshore Wind Turbine</u> Engineer: <u>CH</u> Checked by: <u>CW</u> Date: <u>5/22/2023</u>

B.6: STABILITY

	Environmental load	factor	1.30 (DNVGL-OS-C101, pg. 21)
	Environmer	ital Loads	Factored Loads
Wind Load	Fwind	4.10 MN	5.33 MN
Wave Load	F _{wave}	11.91 MN	15.48 MN
Current Load	Fcurrent	2.10 MN	2.72 MN
Significant Wave Height	H _s	10.10 m	NOAA buoy data
	Environmental Eo	rcas Paramaters	
Wind Moment Arm	dword	210.00 m	
Current Moment Arm	d	75.00 m	
Wave moment Arm	duran	85.10 m	
*note: turbine assumed to rota	ite about CoB (Johanne	ssen, 2018, p. 55)	
Manufan Line Antine Cound	Vertical Co	ordinates	
Mooring Line Action Coord	ZMLA	0.00 m	
Environmental Force Coord	Zenv	289.00 m	
Center of Buoyancy Coord	Z _{CB}	75.00 m	hand and a second se
Center of Gravity Coord	ZCG	58.12 m	
	Structure P	arameters	_
Mass of Spar	m _{spar}	67305795.17 kg	
Weight of Spar	W _{spar}	660.27 MN	
Moment of Waterplane Area	1,	490.87 m ⁴	·
Buovancy Force	F	73861788.53 kg	
0. 0.0		724.58 MN	diam.
Total Weight of Turbine	W _T	723.19 MN	
Volume of Displaced Water	Vs	72060.28 m ³	* ••••
Mass of Mooring	m _{moor}	142500.00 kg	
Weight of Mooring	Wm	1.40 MN	
	(7.2 m)		e Feuriere
	Restoring Mome	nt Parameters	
	BG	16.88 m	
Metacentric Radius	BM	0.01 m	
Metacentric Height	GM	16.89 m	
	KG	58.12 m	
	KM	75.01 m	

Project: Floating Offshore Wind Turbine Engineer: CH Checked by: CW Date: 5/22/2023

		Restoring Moment: M.	KN=KMsin6	A + KMsinA*W		
M [MN-m]	Θ [deg]	M [MN-m]	KN [m]	M _{moo}	, [MN-m]	M _R [MN-m]
	12315.58	0.00	0.00	0.00	0.00	0.00
	12315.58	5.00	1073.37	6.54	9.14	1082.51
	12315.58	10.00	2138.58	13.02	18.21	2156.79
	12315.58	15.00	3187.51	19.41	27.14	3214.64
	12315.58	20.00	4212.18	25.65	35.86	4248.04
	12315.58	25.00	5204.79	31.70	44.31	5249.10
	12315.58	30.00	6157.79	37.50	52.43	6210.22
	12315.58	35.00	7063.92	43.02	60.14	7124.07
	12315.58	40.00	7916.30	48.21	67.40	7983.70
	12315.58	45.00	8708.43	53.04	74.14	8782.57
	12315.58	50.00	9434.28	57.46	80.32	9514.60
	12315.58	55.00	10088.33	61.44	85.89	10174.22
	12315.58	60.00	10665.60	64.96	90.81	10756.41
	12315.58	65.00	11161.70	67.98	95.03	11256.73
	12315.58	70.00	11572.86	70.48	98.53	11671.39
	12315.58	75.00	11895.93	72.45	101.28	11997.22
	12315.58	80.00	12128.48	73.87	103.26	12231.74
	12315.58	85.00	12268.71	74.72	104.45	12373.17
	12315.58	90.00	12315.58	75.01	104.85	12420.43

Inclining Moment: MI= (Fwind*dwind + Fwave*dwave + Fcurrent*dcurrent)cose				
M[MN-m]	O [deg]	M _I [MN-	m]	
	2641.00	0.00	2641.00	
	2641.00	5.00	2630.95	
	2641.00	10.00	2600.88	
	2641.00	15.00	2551.01	
	2641.00	20.00	2481.73	
	2641.00	25.00	2393.56	
	2641.00	30.00	2287.18	
	2641.00	35.00	2163.38	
	2641.00	40.00	2023.13	
	2641.00	45.00	1867.47	
	2641.00	50.00	1697.60	
	2641.00	55.00	1514.82	
	2641.00	60.00	1320.50	
	2641.00	65.00	1116.14	
	2641.00	70.00	903.28	
	2641.00	75.00	683.54	
	2641.00	80.00	458.61	
	2641.00	85.00	230.18	
	2641.00	90.00	0.00	

1.3 x Heeling Energy to restore 30 deg Restoring Energy to restore 30 deg 93142.59

93153.23 OK

Project: Floating Offshore Wind Turbine Engineer: CH Checked by: CW Date: 5/22/2023

GZ [m]	O [deg]	KN [m]	GZ [m]	
n 100 - 100	0.00	0.00	0.00	0.00
	1.47	5.00	6.54	1.47
	2.93	10.00	13.02	2.93
	4.37	15.00	19.41	4.37
	5.78	20.00	25.65	5.78
	7.14	25.00	31.70	7.14
	8.45	30.00	37.50	8.45
	9.69	35.00	43.02	9.69
	10.86	40.00	48.21	10.86
	11.94	45.00	53.04	11.94
	12.94	50.00	57.46	12.94
	13.84	55.00	61.44	13.84
	14.63	60.00	64.96	14.63
	15.31	65.00	67.98	15.31
	15.87	70.00	70.48	15.87
	16.32	75.00	72.45	16.32
	16.63	80.00	73.87	16.63
	16.83	85.00	74.72	16.83
	16.89	90.00	75.01	16.89
	16.83	95.00	74.72	16.83
	16.63	100.00	73.87	16.63
	16.32	105.00	72.45	16.32
	15.87	110.00	70.48	15.87
	15.31	115.00	67.98	15.31
	14.63	120.00	64.96	14.63
	13.84	125.00	61.44	13.84
	12.94	130.00	57.46	12.94
	11.94	135.00	53.04	11.94
	10.86	140.00	48.21	10.86
	9.69	145.00	43.02	9.69
	8.45	150.00	37.50	8.45
	7.14	155.00	31.70	7.14
	5.78	160.00	25.65	5.78
	4.37	165.00	19.41	4.37
	2.93	170.00	13.02	2.93
	1.47	175.00	6.54	1.47
	0.00	180.00	0.00	0.00

From this graph, it can be seen that the heeling angle at which a maximum righting arm happens is 90 deg. This means that the strucutre at this angle uses the most energy to put it back to its initial position. The value of the maximum righting arm appears to be 16.89 m. The created curve of static stability seems to we wrong as it gives a very high maximum heeling angle (Bockute, 2019, 33).

There as a low law	a along with the Ctability same data	at to manife more information or any horiz
These calculations g	o along with the Stability spreadshe	et to provide more information on analysis
These calculations e	ensure the intact stability of the struc	ture. Per DNV-OS-J103 (see page 81), for
unmanned units, like	e a wind turbine, damaged stability i	s not a requirement.
3		
S420 Steel		References
VILLO II		
Yield Strength	$f_y \coloneqq 360 MPa$	(EN 10025-4, p. 20)
Poisson's Ratio	$\nu = 0.3$	(EN 10025-4, p. 20)
Young's Modulus:	E = 210 GPa	(EN 10025-4, p. 20)
Density:	$\rho_s \approx 8500 \frac{1}{m_s^3}$	(Escalera Mendoza et al., 2022, p. 5)
*note: higher density a structures such as bolt	assumed to account for the mass for second sound flanges	ondary
T	4	
Tower Parameters	io,	
Paco Diamatori	d - 10 m Co	(Towar Budding Strength Calca)
Thicknoss	$a_{b_tow} \approx 10 \ m$	(Tower Buckling Strength Cales)
Top Diameter		(Tower Buckling Strength Calcs)
Lopath:	$u_{t_tow} \approx 8 m$	(Tower Buckling Strength Calcs)
Lengui. Hub Padius:	$L_{tow} \coloneqq 125 m$	(Tower Buckling Strength Calcs)
Hub Haight:	$r_{hub} = 4 m$	(Siemens Gamesa) SG 14-222 DD
nub height.	$z_{hub} = 135 \ m$	G (Tower Buckning Strength Calcs)
Outer Diameter:	d d	$\frac{1}{2}d = 10 m$
outer Diameter.	$a_{o_tow} = a_{b_tow}$	
Inner Diameter:	d = = d = -2t	d = 9.9 m
	ai_tow = ao_tow = vtow	at tow - 5.5 m
Inner Radius:	$r := \frac{d_{o_tow}}{d_{o_tow}}$	r = 5 m
	2	· o_tow = 0
Outer Radius:	$r_{i} \dots := \frac{d_{i_tow}}{d_{i_tow}}$	$r_{1} = 4.95 m$
	2	· r_tow
Area:	$A_{tom} \coloneqq \pi \cdot r_{o,tom}^2 - \pi \cdot r_{i,tom}^2$	$A_{tow} = 1.563 \ m^2$
	1000 0_0000 1_0000	
Spar Parameters		2
		U.S.
Thickness:	$t_{snar} \coloneqq 450 \ mm$	(Spar Buckling Strength Calcs)
Outer Diameter:	$d_{a \ soar} \coloneqq 25 \ m$	(Spar Buckling Strength Calcs)
Total Length:	$L_T _{spar} \coloneqq 160 m$	(Preliminary Turbine Sizing Spreadsheet)
Freeboard:	$L_F \coloneqq 10 m$	(Preliminary Turbine Sizing Spreadsheet)
Maviable Dallast	I := 8 80 m	(Preliminary Turbine Sizing Spreadsheet)

é la		
Outer Radius:	$r_{o_spar} \coloneqq \frac{d_{o_spar}}{2}$	$r_{o_spar} = 12.5 \ m$
Inner Radius:	$r_{i_spar} \coloneqq \frac{d_{i_spar}}{2}$	$r_{i_spar} = 12.05 \ m$
Area:	$A_{spar} \coloneqq \frac{\pi}{4} \cdot d_{o_spar}^2 - \frac{\pi}{4} \cdot d_{i_spa}$	$A_{spar} = 34.707 \ m^2$
Draft Length:	$L_d \coloneqq L_{T_spar} - L_F$	$L_d = 150 \ m$
Self Weight of Spar:	$M_{spar} \coloneqq A_{spar} \cdot L_{T_spar} \cdot \rho_s$	$M_{spar} = 47201172.983 \ kg$
Moment of Inertia:	$I_{spar} \coloneqq \frac{\pi}{4} \left(r_{o_spar}^{4} - r_{i_spar}^{4} \right)$	$I_{spar} = 2615.609 \ m^4$
Waterplane moment of inertia:	$I_w \coloneqq \frac{\pi}{64} \cdot d_{b_tow}^4$	$I_w = 490.874 \ m^4$
Total mass of structure:	M _T := 7.37E+07 kg	(Preliminary Turbine Sizing Spreadsheet)
Ballast Parameters:	(magentite)	
Magentite Density:	$\rho_{mag} \coloneqq 5000 \ \frac{kg}{m^3}$	> 6
Inner area:	$A_{inner} := \pi (r_{i snar})^2 = 456.167$	m ² /2
Depth of ballast: Mass of ballast:	$L_{ballast} := 10 m$ $M_{ballast} := A_{inner} \cdot L_{ballast} \cdot \rho_{mag} = 228083$	(Preliminary Turbine Sizing Spreadsheet) *note: length of ballast chosen through iterative process to ensure sufficent restoring moment
Seawater Parameter	s.	(A)
		40
Seawater density:	$\rho_w \coloneqq 1025 \frac{kg}{m^3}$.02
Water depth:	$d_w \coloneqq 1100 \ m$	26.
Waterline $A_{wl} \coloneqq$ area:	$\pi \cdot (r_{o_spar})^2 = 490.874 \ m^2$	no

Environmental Force	<u>s:</u>	
8		
The angle of heel the case is usually assume	at the buoy may be assumed to resu ned when the moments produced by	It from wind, wave, and current loads. The worst the wave, current, and wind forces are all trying to
neel the buoy in the	same direction.	
15		
Wave force:	$F_{wave} \coloneqq 11.91 \ MN$	(Environmental load calcs)
Thrust force:	$F_{thrust} := 4.10 MN$	(Environmental load calcs)
Current force:	$F_{current} \approx 2.10 MN$	(Environmental load calcs)
Significant wave heig	ght: $H_{maxe} \coloneqq 10.1 \ m$	(NOAA historical buoy data)
	105	
	í C	
Stated in DNV-OS-11	03 (see page 81), for deep draught	floaters such as spars, the metacentric height GM
shall be equal to or o	greater than 1.0 m.	
The metacentric heig	tht GM is defined as the difference b	etween the vertical level of the metacentre and the
vertical level of the c	entre of gravity and shall be calculate	ted on the basis of the maximum vertical centre of
gravity VCG	(Co	
	ŝ	
Inclining Moment		
moment caused by	environmental forces and moment a	rms to create a neel of the structure
	0	
Assumptions	e co e segue a lege sand lo de o charles	and and the the though found on the nation and and
Assumptions the force from the c	Irag on the turbine tower is small co	mpared to the thrust force on the rotor and can
Assumptions the force from the c herefore be neglect	Irag on the turbine tower is small co ed	mpared to the thrust force on the rotor and can
Assumptions the force from the c herefore be neglect rotation of the struct	Irag on the turbine tower is small co ed ture is about the center of buoyancy	(CoB) (Johannessen, 2018, p. 55)
Assumptions the force from the c herefore be neglect rotation of the struc thrust force applied	drag on the turbine tower is small co ed ture is about the center of buoyancy at the center of the hub (zhub) as a at significant wave beight as a point	 (CoB) (Johannessen, 2018, p. 55) point load conservatively load conservatively
Assumptions the force from the c herefore be neglect rotation of the struc thrust force applied wave force applied current load applied	drag on the turbine tower is small co ed ture is about the center of buoyancy at the center of the hub (zhub) as a at significant wave height as a point as a point load at the bottom of the	(CoB) (Johannessen, 2018, p. 55) point load conservatively load conservatively hull conservatively
Assumptions the force from the c herefore be neglect rotation of the struc thrust force applied wave force applied current load applied	drag on the turbine tower is small co ed ture is about the center of buoyancy at the center of the hub (zhub) as a at significant wave height as a point as a point load at the bottom of the	(CoB) (Johannessen, 2018, p. 55) point load conservatively load conservatively hull conservatively
Assumptions the force from the c herefore be neglect rotation of the struc thrust force applied wave force applied current load applied	drag on the turbine tower is small co ed ture is about the center of buoyancy at the center of the hub (zhub) as a at significant wave height as a point as a point load at the bottom of the	(CoB) (Johannessen, 2018, p. 55) point load conservatively load conservatively hull conservatively
Assumptions the force from the c herefore be neglect rotation of the struc thrust force applied wave force applied current load applied	drag on the turbine tower is small co ed ture is about the center of buoyancy at the center of the hub (zhub) as a at significant wave height as a point as a point load at the bottom of the	(CoB) (Johannessen, 2018, p. 55) point load conservatively load conservatively hull conservatively
Assumptions the force from the c herefore be neglect rotation of the struc- thrust force applied wave force applied current load applied	drag on the turbine tower is small co ed ture is about the center of buoyancy at the center of the hub (zhub) as a at significant wave height as a point I as a point load at the bottom of the	(CoB) (Johannessen, 2018, p. 55) a point load conservatively load conservatively a hull conservatively
Assumptions the force from the c herefore be neglect rotation of the struc thrust force applied wave force applied current load applied	drag on the turbine tower is small co ed ture is about the center of buoyancy at the center of the hub (zhub) as a at significant wave height as a point I as a point load at the bottom of the	(CoB) (Johannessen, 2018, p. 55) point load conservatively load conservatively e hull conservatively
Assumptions the force from the c herefore be neglect rotation of the struc thrust force applied wave force applied current load applied	drag on the turbine tower is small co ed ture is about the center of buoyancy at the center of the hub (zhub) as a at significant wave height as a point I as a point load at the bottom of the	(CoB) (Johannessen, 2018, p. 55) point load conservatively load conservatively hull conservatively
Assumptions the force from the o herefore be neglect rotation of the struc- thrust force applied wave force applied current load applied	drag on the turbine tower is small co ed :ture is about the center of buoyancy at the center of the hub (zhub) as a at significant wave height as a point I as a point load at the bottom of the	y (CoB) (Johannessen, 2018, p. 55) a point load conservatively load conservatively e hull conservatively
Assumptions the force from the c herefore be neglect rotation of the struc thrust force applied wave force applied current load applied	drag on the turbine tower is small co ed ture is about the center of buoyancy at the center of the hub (zhub) as a at significant wave height as a point I as a point load at the bottom of the	(CoB) (Johannessen, 2018, p. 55) a point load conservatively load conservatively a hull conservatively

buoyancy:	$d_{CB} \coloneqq 75 \ m$			(Preliminary Turbine Si *note: measured from	zing Spreadsheet) waterline
č.	$z_{CB}\!\coloneqq\!L_d\!-\!d$	СВ	$z_{CB} = 75 m$	*note: measured from	keel
"o					
Location of center of gravity:	$d_{CG} \coloneqq 91.88$	m		(Preliminary Turbine Si *note: measured from	zing Spreadsheet) waterline
20,	$z_{CG} \coloneqq L_d - d$	lcg	$z_{CG} = 58.12 \ m$	*note: measured from	keel
0					
Buoyancy force:	$F_B \coloneqq 7.39 \mathrm{E}$	+07 kg •g	1	(Preliminary Turbine Si	zing Spreadsheet)
				$F_B = 724.711$	MN
Total mass of support	$m_{spar} \coloneqq M_{spar}$	$ar + M_{balle}$	ist	$m_{spar} = 70009$	9528.347 kg
structure:	S				
Total mass of structure:	$M_T = 737000$	000 <i>kg</i>		(Preliminary Turbine Si	zing Spreadsheet)
The inclining moment i	is calculated by	(Johann	essen, 2018, p. 55):		
		20			
Inclining Moment: A	$A_I \coloneqq F_t \cdot \left(z_{hub} + \right)$	d_{CB} + F	$G_w \cdot \left(H_{wave} + d_{CB}\right) + h$	$F_c \cdot \left(L_d - d_{CB}\right) M_I = 2$	2641.653 m • MN
			0		
Volume of fluid displac	ed: $V=7$	2060.28	m	(Preliminary Turbine Si	zing Spreadsheet)
			9		
			2		
Distance between cent gravity and center of	er of <u>BG</u> =	= 16.88 <i>n</i>	2.77	(Preliminary Turbine Si	zing Spreadsheet)
Distance between cent gravity and center of buoyancy:	er of <u>BG</u> =	= 16.88 <i>n</i>	N.Malt	(Preliminary Turbine Si	zing Spreadsheet)
Distance between cent gravity and center of buoyancy:	er of BG =	= 16.88 <i>n</i>	N.maine	(Preliminary Turbine Si	zing Spreadsheet)
Distance between cent gravity and center of buoyancy:	er of BG =	= 16.88 <i>n</i>	N. Maine	(Preliminary Turbine Si	zing Spreadsheet)
Distance between cent gravity and center of buoyancy: Metacentric radius:	er of BG = BM :	$= \frac{16.88 \ n}{V}$ $= \frac{I_w}{V}$	N.Mathor	(Preliminary Turbine Si $BM = 0.007 \ m$	zing Spreadsheet)
Distance between cent gravity and center of buoyancy: Metacentric radius:	er of BG = BM :	$= \frac{16.88 n}{V}$ $= \frac{I_w}{V}$	N. Malhos	(Preliminary Turbine Si $BM = 0.007 \ m$	zing Spreadsheet)
Distance between cent gravity and center of buoyancy: Metacentric radius:	er of BG = BM =	$= \frac{I_w}{V}$ $= \frac{BM + I}{V}$	2 maine	(Preliminary Turbine Si $BM = 0.007 \ m$	zing Spreadsheet)
Distance between cent gravity and center of buoyancy: Metacentric radius: Metacentric height:	er of BG = BM : GM :	$= \frac{I_w}{V}$ $= BM + I$	a There are a second se	(Preliminary Turbine Si $BM = 0.007 \ m$ $GM = 16.887 \ m$	zing Spreadsheet)
Distance between cent gravity and center of buoyancy: Metacentric radius: Metacentric height:	er of BG = BM : GM :	$= \frac{I_w}{V}$ $= BM + I$	3G	(Preliminary Turbine Si $BM = 0.007 \ m$ $GM = 16.887 \ m$	zing Spreadsheet)
Distance between cent gravity and center of buoyancy: Metacentric radius: Metacentric height: The DNV-OS-J103 give (Spar), which are: "For	er of <u>BG</u> = BM : GM : cs the intact star deep draught	$= \frac{I_w}{V}$ $= BM + I$ ability req floaters s	a 3G uirements for Deep such as spars, the m	(Preliminary Turbine Si $BM = 0.007 \ m$ $GM = 16.887 \ m$ Draught Floaters etacentric height GM s	zing Spreadsheet) hall be equal
Distance between cent gravity and center of buoyancy: Metacentric radius: Metacentric height: The DNV-OS-J103 give (Spar), which are: "For to or greater than 1.0	er of <u>BG</u> = BM = GM = control BM = control	$= \frac{I_w}{V}$ $= BM + I$ bility req floaters s lefined as	BG uirements for Deep such as spars, the m the difference betw	(Preliminary Turbine Si $BM = 0.007 \ m$ $GM = 16.887 \ m$ Draught Floaters etacentric height GM s veen the vertical level of	zing Spreadsheet) hall be equal
Distance between cent gravity and center of buoyancy: Metacentric radius: Metacentric height: The DNV-OS-J103 give (Spar), which are: "For to or greater than 1.0 metacenter and the ve	er of BG = BM = GM = construction constructi	$= \frac{I_w}{V}$ $= BM + I$ bility req floaters s lefined as ne center	a BG uirements for Deep such as spars, the m s the difference betw of gravity and shall	(Preliminary Turbine Si BM = 0.007 m GM = 16.887 m Draught Floaters retacentric height GM s veen the vertical level of be calculated on the b	zing Spreadsheet) hall be equal of the asis of the
Distance between cent gravity and center of buoyancy: Metacentric radius: Metacentric height: The DNV-OS-J103 give (Spar), which are: "For to or greater than 1.0 metacenter and the ve maximum vertical cent	er of BG = BM = GM = control BM	$= \frac{I_w}{V}$ $= BM + I$ ability req floaters s lefined as he center CG."	a BG uirements for Deep such as spars, the m is the difference betw of gravity and shall	(Preliminary Turbine Si BM = 0.007 m GM = 16.887 m Draught Floaters retacentric height GM s veen the vertical level of be calculated on the b	zing Spreadsheet) hall be equal of the asis of the
Distance between cent gravity and center of buoyancy: Metacentric radius: Metacentric height: The DNV-OS-J103 give (Spar), which are: "For to or greater than 1.0 metacenter and the ve maximum vertical cent	er of BG = BM = GM = constant r deep draught m. The GM is d rtical level of th er of gravity VC	$= \frac{I_w}{V}$ $= BM + I$ ability req floaters she center CG."	a a a a a a a a a a a a a a	(Preliminary Turbine Si $BM = 0.007 \ m$ $GM = 16.887 \ m$ Draught Floaters etacentric height GM s veen the vertical level of be calculated on the b	zing Spreadsheet) hall be equal of the asis of the

Project: Floating Offshore Wind Turbine Engineer: CH Checked by: CW Date: 5/22/2023

The equation used to calculate the restoring moment includes the contribition of the ballast and the mooring forces (Ng et. al., 2020, p. 360) $M_{\rm R,roll} = \left(\underbrace{\rho g I_{xx}}_{\alpha} + \underbrace{F_{\rm B} \cdot z_{\rm CB} - mg \cdot z_{\rm CG}}_{\beta} + \underbrace{C_{44,\rm moor}}_{\gamma}\right) \sin(\phi)$ $M_{\rm R,pitch} = \left(\underbrace{\rho g I_{yy}}_{\gamma} + \underbrace{F_{\rm B} \cdot z_{\rm CB} - mg \cdot z_{\rm CG}}_{\beta} + \underbrace{C_{55,\rm moor}}_{\gamma}\right) \sin(\theta)$ The standard DNVGL-OS-C301 reports that intact inclination angle is limited to 6° and 12° for normal operating conditions and survival conditions or output of the structure will be seriously reduced for angles above this limit $\theta_e \coloneqq 12 \ deg$ OK 12 deg = (Preliminary Turbine Sizing Spreadsheet) Conclusions: For the dimensions of the spar regarding length and diameter, the stability of the structure governed the geometry of the spar through several iterations adjusting the geometry of the spar and amount of ballast to lower the center of gravity to ensure a sufficent restoring moment and reasonable heeling angle. Then the lateral/hydrostatic pressure governed the thickness of the spar to prevent shell buckling.

Project: Floating Offshore Wind Turbine Engineer: CH Checked by: CW Date: 5/22/2023

Per DNV-OS-C301 (see page 14), The area under the righting moment curve to the second intercept or downflooding angle, whichever is less, shall be not less than 30% in excess of the area under the wind heeling moment curve to the same limiting angle. The righting moment curve shall be positive over the entire range of angles from upright to the second intercept.

Per ABS (see page 134), for the Spar-type floating substructure, the righting energy (area under the righting moment curve) at the inclination angle of 30 degrees is to reach a value of not less than 30% in excess of the area under the overturning moment curve to the same limiting angle (safety factor 1.3). In all cases, the righting moment curve is to be positive over the entire range of angles from upright and all downflooding angles are to be greater than 30 degrees.

ynamic Analysis									
×	~								
Hydrostatic Stifi	ness								
-01							1	MN	
Heave stiffn	ess (Z):	$C_{33}\!\coloneqq\!\rho_w\!\cdot\!$	$g \cdot A_{wl}$			C_3	$_3 = 4.934$	m	
2									
"Spar platfor	rms have xz and	yz symme	try and t	heir res	toring ca	apabilitie	s are equa	l in both	roll and
pitch (C44 =	C55), as well a	s drag in s	urge and	sway. I	Pitch sta	bility is r	mainly achi	eved by t	he position
why spar pla	afforms have so	deep draue	ht" (loh	annesse	n. 2018	14).	possible.	inis is ui	e reason
iiii) opai pie	12	ucop uluu	, (SO.		, 2010	,,.			
Roll stiffness	s (X):	$C_{44} \coloneqq \rho_m \cdot$	$q \cdot V \cdot G$	M		C_{4}	4 = 12231.7	738 MN -	m
	195	-11 <i>i</i> w				- 1	•		rad
Pitch stiffnes	ss (Y).	$C_{m} = C_{m}$				C.	= 12231	738 MN	m
i iteri stimite		0 55 - 0 44				5	5-12201.1	00 1111	rad
		\land							
Undractatio	stiffnoss matrix	[C	₃ 0 0		34 0		0	MN	
Hydrostatic :	sunness matrix.		C_{44} C		12231	.738 m ⁻	0 12231.738 m	2 m	
		C	6	20 J L -	100				
		S							
		*	0.						
Added Mass			SO.						
For heave, the a	dded mass is as	ssumed as	half of th	ne dispa	Iced ma	ss of the	volume of	f a sphere	e with
the same raduis	as the bottom (de Souza,	2022, p.	4) (wis	dem).				
	10		<u>`</u>	2					
Heave:	$A_{33} \coloneqq \left(\frac{8}{c}\right)$	$\pi \cdot r_{o_spar}^{3}$	$\cdot \rho_w$	2		$A_{33} = 8$	8385761.64	4 kg	
	(0		/		3				
Surge:	$A_{11} \coloneqq \rho_w \cdot$	$\pi \cdot V$			0-	$A_{11} = 2$	232043647	.42 kg	
			* 3		95				
Pitch:	$A_{55} \coloneqq \rho_{w}$.	$\pi \cdot r_{a \text{ spar}}^2$	$\cdot \underline{L_d}^{\sigma}$		10	$A_{55} = 3$	566038910	729.802	$kg \cdot m^2$
		o Johna	3		~	0			
Roll:	$A_{ij} \coloneqq A_{irr}$					AQ=	566038910	729.802	$ka \cdot m^2$
	4435					- *			- J
Mass mome	nt of inertia	I N	1 r	2		I -1	151562500	0 ka.m	2
Fid35 momen		1 xx	T [•] o_sp	ar		1 xx - 1	0.	50 kg • m	
Mace Matrix							1		
Plass Plaula	6						3		
Hannar	N N					26		2	
neave:	$M_{33} \coloneqq M_T$					$M_{33} =$	13100000	Kg .	
								. 3.	
Surge:	$M_{11} \coloneqq M_T$					$M_{11} =$	73700000	kg	
									2
						M -	115156250	100 ha.m	
Pitch:	$M_{55} \coloneqq I_{xx}$					1155-	110100200	00 kg • II	2
Pitch:	$M_{55} \coloneqq I_{xx}$					11155-	110100200	00 kg • n	Dr.

Natural Period:		
"Natural peri seconds" (Jo NOAA buoy o	ods of the structure should be outside o hannessen, 2018, 15). This matches the lata.	f the energy rich part of the wave spectra from 5- period range for the proposed location from the
The heave na than the hea	atural period must be longer than 25 s. ve natural period to avoid coupling effec	The pitch natural period must be always 5.0 s long ts (de Souza, 2022, 3)
For simplifica et al., 2013,	tion, the restoring force of the mooring 36)	lines in heave motion is ignored (Attwood
Heave:	$T_{n33} = 2 \pi \sqrt{rac{M_{33} + A_{33}}{C_{33}}}$	${T}_{n33}\!=\!25.628\;s$
The contribu	tion of mooring lines was ignored for pit	ch (Attwood et al. 1013, 36)
Pitch:	$T_{55} \coloneqq 2 \ \pi \ \sqrt{\frac{M_{55} + A_{55}}{C_{55}}}$	$T_{55}\!=\!43.175\;s$
Roll:	$T_{44} \coloneqq 2 \pi \sqrt{\frac{M_{55} + A_{44}}{C_{44}}}$	$T_{44} = 43.175 \ s$
The design is	maintains the heave, pitch, and roll per	riods outside of the wave period spectrum
(5 255)		TRUE CONTRACTOR
		Cad.
		ON CON
		0,

Project: Floating Offshore Wind Turbine Engineer: CH Checked by: CW Date: 4/27/2023

B.7: FATIGUE

Fatigue Analysis		
8		
These calculations includ	e the assessment of the fatigue of	the tower material and spar material. Fatigue
analysis of welded joints	are not included as they are beyor	nd the scope of the project.
6		
S420 Steel		References
SILO SILCI		<u>Neter en ess</u>
Viold Strongth	f . 200 MB-	
rield Strength	$f_y \approx 390 MPa$	(EN 10025-4, p. 20) *note: yield strength lowered as a function of thickness
Poisson's Ratio	$\nu := 0.3$	(EN 10025-4, p. 20)
Young's Modulus:	$E \coloneqq 210 \ GPa$	(EN 10025-4, p. 20)
Density:	$\rho_s = 8500 \frac{ng}{m^3}$	(Escalera Mendoza et al., 2022, p. 5)
*note: higher density assum	ned to account for the mass for	
secondary structures such a	s bolts and flanges	
	$\langle \mathcal{O} \rangle$	
Tower Parameters	5	
	- Vr	
Thickness:	$t_{i} = 50 mm$	(Tower Buckling Strength Calcs)
Bottom Outer Diameter:	$d_{i} = 10 m$	(Tower Buckling Strength Calcs)
Ton Outer Diameter:	d = 8 m	(Tower Buckling Strength Calcs)
longth:	$u_{t_0} = 105 \text{ m}$	(Tower Buckling Strength Calcs)
Lengur:	$l_t \approx 125 \ m$	
Hub Radius:	$r_{hub} = 4 m$	(Siemens Gamesa) SG 14-222DD
Nacelle Mass:	$M_{nacelle} \coloneqq 500000 \ kg$	(Siemens Gamesa) SG 14-222DD
Blades Mass x3:	$M_{blades} \coloneqq 165000 \ kg$	(Siemens Gamesa) SG 14-222DD
Mass of RNA:	$M_{RNA}\!\coloneqq\!M_{nacelle}\!+\!M_{blades}$	$M_{RNA} = (6.65 \cdot 10^5) \ kg$
Freeboard:	$L_F \coloneqq 10 \ m$	(Hull Size and Stability Spreadsheet)
		5
Top Inner Diameter:	$d_{t,i,1} \coloneqq d_{t,i,1} - 2 \cdot t_t$	$d_{t,i,1} = 7.9 \ m$
Bottom Inner Diameter:	$d_{t,i,2} := d_{t,i,2} - 2 t_t$	$d_{1,2} = 9.9 m$
		- <u>S</u> -
Top Outer Radius:	$r_{t-1} = \frac{d_{t_0-1}}{d_{t_0}}$	$r \rightarrow 4 m$
Top outer radius.	2	11_0_1 = 1
Pottom Outor Padius	$d_{t_{-o_{-2}}}$	
Bollom Ouler Radius.	$r_{t_o_2} = \frac{1}{2}$	$r_{t_{-}0_{-}2} = 5 m$
	$d_{t \ i \ 1}$	3
Top Inner Radius:	$r_{t_{i_1}} = \frac{1}{2}$	$r_{t_{-i-1}} = 3.95 \ m_{$
	di i a	Ó
Bottom Inner Radius:	$r_{t_i_2} := \frac{-i_i_2}{2}$	$r_{t_{-1}2} = 4.95 \ m$
		10
Area:	$A_t \coloneqq \pi \cdot r_{t_0_2}^2 - \pi \cdot r_{t_1_2}^2$	$A_t = 1.563 \ m^2$
	and property and the second se	3
Tower Mass:	$M_{tau} := 1493729 \ kg$	(Hull Size and Stability Spreadsheet)
	1000	

Spar Parameters		
2		
Thickness:	$t \coloneqq 450 \ mm$	
Outer Diameter:	$d_o \coloneqq 25 \ m$	(Preliminary Turbine Sizing Spreadsheet)
Total Length:	$L_T := 160 \ m$	(Preliminary Turbine Sizing Spreadsheet)
Freeboard:	$L_F := 10 \ m$	(Preliminary Turbine Sizing Spreadsheet)
Variable Ballast Depth:	$L_{vb} := 8.89 \ m$	(Preliminary Turbine Sizing Spreadsheet)
Inner Diameter:	$d_i \coloneqq d_o - 2 \cdot t$	$d_i = 24.1 \ m$
Outer Radius:	$r_o \coloneqq \frac{d_o}{2}$	$r_o = 12.5 m$
Inner Radius:	$r_i := \frac{d_i}{2}$	$r_i = 12.05 \ m$
Area:	$\boldsymbol{A}_{s} \coloneqq \boldsymbol{\pi} \boldsymbol{\cdot} \boldsymbol{r}_{o}^{\ 2} - \boldsymbol{\pi} \boldsymbol{\cdot} \boldsymbol{r}_{i}^{\ 2}$	$A_s = 34.707 \ m^2$
Draft Length:	$L_d\!:=\!L_{\widetilde{T}}\!-\!L_F$	$L_d = 150 \ m$
Spar Length:	$L_s := 140 m$	
Volume:	$V_s := A_s \cdot L_s$	$V_s = (4.859 \cdot 10^3) m^3$
Self Weight of Spar:	$M_{spar} \coloneqq V_s \cdot \rho_s$	$M_{spar} = \left(4.13 \cdot 10^7\right) kg$
Freeboard Parameters	4	2
Outer diameter:	$d_{f_{\alpha}} \coloneqq 10 \ m$	70.
Thickness:	$t_f = 450 \ mm$	CS .
Freeboard	$L_E \coloneqq 10 \ m$	1C
height:	F	40
Inner diameter:	$d_{f_i} \coloneqq d_{f_o} - 2 \boldsymbol{\cdot} t_f$	$d_{f_i} = 9.1 m$
Outer radius:	$r_{f_o} \coloneqq \frac{d_{f_o}}{2}$	$r_{f_{-o}} = 5 m$
Inner radius:	$r_{f_i} \coloneqq \frac{d_{f_i}}{2}$	r_{f_i} = 4.55 m
Area: A_F :	$=rac{\pi}{4}ullet ig(d_{f_o}ig)^2-rac{\pi}{4}ulletig(d_{f_i}ig)^2$	$A_F = 13.501 \ m^2$
Volume:	$V_F \coloneqq A_F \cdot L_F$	$V_F = 135.01 \ m^3$
Mass:	$M_F \coloneqq V_F \boldsymbol{\cdot} \rho_s$	$M_F = (1.148 \cdot 10^6) \ kg$

Project: Floating Offshore Wind Turbine Engineer: CH Checked by: CW Date: 5/22/2023

	1 10	
Outer top diameter:	$d_{c_o_1} \coloneqq 10 \ m$	
outer bottom diameter:	$a_{c_o_2} \coloneqq 25 \ m$	
I hickness:	$t_c \coloneqq 450 \ mm$	
Height:	$h_c \coloneqq 10 \ m$	
2:		
Inner top diameter:	$d_{c_i_1} \coloneqq d_{c_o_1} - 2 \cdot t_c$	$d_{c_{_i_1}} = 9.1 \ m$
Inner bottom diameter:	$d_{c_i_2} \coloneqq d_{c_o_2} - 2 \cdot t_c$	$d_{c_{-i_{-}2}} = 24.1 \ m$
Outer top radius:	$r_{c_o_1} \coloneqq \frac{a_{c_o_1}}{2}$	$r_{c_{-}o_{-}1} = 5 m$
Inner top radius:	$r_{c_{-i-1}} := \frac{d_{c_{-i-1}}}{2}$	$r_{c_{-i-1}} = 4.55 m$
Outer bottom radius:	$r_{c_0 2} := \frac{d_{c_0 2}}{2}$	$r_{c_{-0,2}} = 12.5 \ m$
Inner bottom radius:	$r_{c_i_2} = \frac{d_{c_i_2}}{2}$	$r_{c_i_2} \!=\! 12.05 \ m$
Area cone top: A_{c}	$a_1 := \frac{\pi}{4} \cdot (d_{c_o_1})^2 - \frac{\pi}{4} \cdot (d_{c_i_1})^2$	$A_{c_1} = 13.501 \ m^2$
Volume of cone: V_c :	$= \left(\frac{1}{3} \cdot \pi \cdot h_{c}\right) \left(\left(r_{c_o_1}^{2} + r_{c_o_2}^{2} + r_{c_o_1} \cdot r_{c_o_1}\right)\right)$	$(r_{c_{-1}}) - (r_{c_{-1}}^{2} + r_{c_{-1}}^{2} + r_{c_{-1}} \cdot r_{c_{-1}}))$
	C C	
	0	$V_c = 241.039 \ m^3$
Mass of cone:	$M_c \coloneqq V_c \cdot \rho_s$	$V_c = 241.039 \ m^3$ $M_c = (2.049 \cdot 10^6) \ kg$
Mass of cone:	$M_c \coloneqq V_c \cdot \rho_s$	$V_c = 241.039 \ m^3$ $M_c = (2.049 \cdot 10^6) \ kg$
Mass of cone: Total Spar Volume:	$M_c \coloneqq V_c \cdot \rho_s$ $V_{S_total} \coloneqq V_s + V_F + V_c$	$V_c = 241.039 \ m^3$ $M_c = (2.049 \cdot 10^6) \ kg$ $V_{S_total} = (5.235 \cdot 10^3) \ m^3$
Mass of cone: Total Spar Volume: Total Spar Mass:	$\begin{split} M_c &\coloneqq V_c \cdot \rho_s \\ V_{S_total} &\coloneqq V_s + V_F + V_c \\ M_{S_total} &\coloneqq M_{spar} + M_F + M_c \end{split}$	$V_{c} = 241.039 \ m^{3}$ $M_{c} = (2.049 \cdot 10^{6}) \ kg$ $V_{S_total} = (5.235 \cdot 10^{3}) \ m^{3}$ $M_{S_total} = (4.45 \cdot 10^{7}) \ kg$
Mass of cone: Total Spar Volume: Total Spar Mass: Environmental Parameter	$M_c \coloneqq V_c \cdot \rho_s$ $V_{S_total} \coloneqq V_s + V_F + V_c$ $M_{S_total} \coloneqq M_{spar} + M_F + M_c$ IS	$V_{c} = 241.039 \ m^{3}$ $M_{c} = (2.049 \cdot 10^{6}) \ kg$ $V_{S_total} = (5.235 \cdot 10^{3}) \ m^{3}$ $M_{S_total} = (4.45 \cdot 10^{7}) \ kg$
Mass of cone: Total Spar Volume: Total Spar Mass: Environmental Parameter Wind:	$M_c := V_c \cdot \rho_s$ $V_{S_total} := V_s + V_F + V_c$ $M_{S_total} := M_{spar} + M_F + M_c$ TS $F = \omega := 4.099 \text{ MN}$	$V_{c} = 241.039 \ m^{3}$ $M_{c} = (2.049 \cdot 10^{6}) \ kg$ $V_{S_total} = (5.235 \cdot 10^{3}) \ m^{3}$ $M_{S_total} = (4.45 \cdot 10^{7}) \ kg$ (Environmental Load Calcs)
Mass of cone: Total Spar Volume: Total Spar Mass: Environmental Parameter Wind: Wave:	$M_c := V_c \cdot \rho_s$ $V_{S_total} := V_s + V_F + V_c$ $M_{S_total} := M_{spar} + M_F + M_c$ IS $F_{wind} := 4.099 MN$ $F_{wind} := 11.911 MN$	$V_{c} = 241.039 \ m^{3}$ $M_{c} = (2.049 \cdot 10^{6}) \ kg$ $V_{S_total} = (5.235 \cdot 10^{3}) \ m^{3}$ $M_{S_total} = (4.45 \cdot 10^{7}) \ kg$ (Environmental Load Calcs) (Environmental Load Calcs)
Mass of cone: Total Spar Volume: Total Spar Mass: Environmental Parameter Wind: Wave: Current:	$M_c := V_c \cdot \rho_s$ $V_{S_total} := V_s + V_F + V_c$ $M_{S_total} := M_{spar} + M_F + M_c$ $F_{wind} := 4.099 MN$ $F_{wave} := 11.911 MN$ $F_{wave} := 12.905 MN$	$V_{c} = 241.039 \ m^{3}$ $M_{c} = (2.049 \cdot 10^{6}) \ kg$ $V_{S_total} = (5.235 \cdot 10^{3}) \ m^{3}$ $M_{S_total} = (4.45 \cdot 10^{7}) \ kg$ (Environmental Load Calcs) (Environmental Load Calcs) (Environmental Load Calcs)
Mass of cone: Total Spar Volume: Total Spar Mass: Environmental Parameter Wind: Wave: Current:	$M_c := V_c \cdot \rho_s$ $V_{S_total} := V_s + V_F + V_c$ $M_{S_total} := M_{spar} + M_F + M_c$ $F_{wind} := 4.099 MN$ $F_{wave} := 11.911 MN$ $F_{current} := 2.095 MN$	$V_{c} = 241.039 \ m^{3}$ $M_{c} = (2.049 \cdot 10^{6}) \ kg$ $V_{S_total} = (5.235 \cdot 10^{3}) \ m^{3}$ $M_{S_total} = (4.45 \cdot 10^{7}) \ kg$ (Environmental Load Calcs) (Environmental Load Calcs) (Environmental Load Calcs)
Mass of cone: Total Spar Volume: Total Spar Mass: Environmental Parameter Wind: Wave: Current:	$M_c := V_c \cdot \rho_s$ $V_{S_total} := V_s + V_F + V_c$ $M_{S_total} := M_{spar} + M_F + M_c$ IS $F_{wind} := 4.099 MN$ $F_{wave} := 11.911 MN$ $F_{current} := 2.095 MN$	$V_c = 241.039 \ m^3$ $M_c = (2.049 \cdot 10^6) \ kg$ $V_{S_total} = (5.235 \cdot 10^3) \ m^3$ $M_{S_total} = (4.45 \cdot 10^7) \ kg$ (Environmental Load Calcs) (Environmental Load Calcs) (Environmental Load Calcs)

Project: <u>Floating Offshore Wind Turbine</u> Engineer: <u>CH</u> Checked by: <u>CW</u> Date: <u>5/22/2023</u>

A wind turbine under the cylic loadings from wind and wave is expected to operate for a design life of 20 years. During the design period, fatigue damage is known to be a critical problem. The key component is the connection detail of the wind turbine dower to the floating platform (Li et. al., 2018, p.10).

"Fatigue analysis based on DNV-RP-C203, which reccomends bi-linear S-N curves for offshore structures subjected to wind and wave loads. The accumulated damange is calculated at different sections of the platform and tower. All conditions are analyzed assume aligned wind and wave loads. The 1-hour fatigue damage accumulation on D1h is estimated from the average axial stress time-series of the 4 realizations, which are obtained from each section's axial force Nx and fore-aft bending moment M": (de Souza et. al., 2022, p. 10)

$$\sigma_x = \frac{N_x}{A} + \frac{Mr}{I_y} \,,$$

where A is the annular section area, r is the section radius, and Iy is the section modulus around the bending axis

Tower

Stress in Tower

Axial Load

		2
Load factor:	$\gamma_{\rm r} \coloneqq 1.0$	-12

Material factor: $\gamma_M \approx 1.1$ DNV-OS-J101 p. 62

 $N_x \coloneqq \gamma_F \cdot \left(M_{RNA} + M_{tow} \right) \cdot g \qquad \qquad N_x = 21.17 \text{ MN}$

Self weight of tower included as a conservative measure to estimate maximum stress

 $A_t := \pi \cdot r_{t_0}^2 - \pi \cdot r_{t_1}^2$ $A_t = 1.249 \ m^2$ Area:

Section radius:

Moment: $M := 538.265 \ (m \cdot MN)$

(Tower Buckling Strength Calcs)

Reference

DNV-OS-J101 p. 62

Moment of inertia:	$I_{y} \coloneqq \frac{\pi}{4} \cdot r_{t_{-0,2}}^{4} - \frac{\pi}{4} \cdot r_{t_{-1,2}}^{4}$	$I_y = 19.342 \ m^4$	OLD.
Stress in Tower:	$\sigma_x \! \coloneqq \! \frac{N_x}{A_t} \! + \! \frac{M \! \cdot \! r_{t_o_2}}{I_y}$	$\sigma_x = 156.094 MPa$	ation

 $r_{t \ o \ 2} = 5 \ m$

Project: <u>Floating Offshore Wind Turbine</u> Engineer: <u>CH</u> Checked by: <u>CW</u> Date: <u>5/22/2023</u>

In a study by Kucharczyk et al. (2012) it was identified that the fatigue endurance limit of the S355 steel is 260 *MPa*. Fatigue endurance limit of the material means that under stress cycles with a magnitude lower than this value, the material can theoretically withstand any number of cycles. A graphic of this concept is shown below. In Arany et. al. (2017) this justification is cited to assume that the fatigue life of the structural steel is sufficient.

Project: Floating Offshore Wind Turbine Engineer: Checked by: Date: 5/22/2023

APPENDIX C: GEOTECHNICAL

SOIL DESIGN PARAMETERS							
Sa	nd	Clay					
ϕ ' (degrees)	26	s _u at toe (kPa)	4.8 + 1.8*L				
γ' (kN/m ³)	9.43	γ' (kN/m ³)	5.5				
K	0.5616	s _{u,avg} (kPa)	(9.6 + 1.8*L)/2				

ENVIRONMENTAL LOADS					
Load Case	Load (MN)				
Design (per Structural)	18.106				
Extreme 1	20				
Extreme 2	22				
Extreme 3	24				

CAISSON DESIGN PARAMETERS					
γ_{steel} (kN/m ³)	78.5				
interface friction angle (degrees)	17				
interface friction coefficient	0.36				
N _c (reverse end bearing factor)	9				
tether angle at anchor (degrees)	20				

Geotechnical Wind Wrangler ES Environmental Loads per Structural: (E-1) F = 17.01 MN (E-2) FE-2 = 18.106 MN <- controls Failure Plane of caisson following Randolph and Gourvener (2011) and Supachawarote et al. (2004): $FP = \left(\frac{H_u}{H_m}\right)^a + \left(\frac{V_u}{V_c}\right)^b \angle |$ where Hy and Vy = horizontal and vertical components of the applied tether load at padeye Hm and Vm = horizontal and vertical anchor capacities a = 1 + 0.5 b= + 4.5 L = caisson penetration depth D= caisson diameter Caisson Parameters for L/D= 2: Delay = 7.4 m wall thickness (E) is calculated with a diameter - well ratio L day = 14.8 m of 70 (Arany and Bhattecharge 2018); t clay = 7.9 = 0.106 m Dsand = 6.7 t sand = 6.7m = 0.096 m L sand = 13.4m

Wind Wrangler ES Geotechnical Calculation of horizontal capacity - in clay following Randolph and Gourvener (2011) Hm = LDNp Ju where L = penetration depth = 14.8m D = caisson diameter = 7.4m Np = lateral bearing capacity factor = 105 per Table 2, Arany and Bhattacharya (2018) Su = average undrained shear strength over embedded length of caisson = 17,94 kla per boring log Hm=(148-)(10.5)(17.94 kPa) Hm = 20.84 MN in Sand Hm = LQav where Law = = D No Y'L2 and No= e tan + tan (45 + +) per DNV (1992) where \$= 26° -> Ne = e "tan 20" tan (45"+ 26") Ng = 7.41 -> LQ = = = (6.7m) (7.41) (9.43 +N/~3) (13.4m)2 LQ ... = 42.02 MN Hm = 42.02 MN

Wind Wrangler ES Geo technical Calculation of vertical capacity in sand following Houlsby et al. (2005) and Houlsby et al. (2005b): $V_{m_{\text{sond}}} = W + \chi' Ze^2 + (\frac{L}{Ze})(K \tan \delta)_e \pi D + \chi' Zi^2 + (\frac{L}{Ze})(K \tan \delta)_i \pi (D - 2(107))$ where W= caisson weight = 2338.93 +N 8' = submerged sand unit weight = 9.43 KN/m3 (assumed) S = interface friction angle, assumed to be 17" $K = 1_{\text{steral earth pressure coefficient}} = 1 - \sin \phi = 1 - \sin a \sigma^2 = .56a$ Z = D/(4Ktanb) 3(=)=e-(1/2)-1+= eli = external or internal partion of calison Ze= De = 6.7m = 9.75m Z: = D-at = 6.7-2(016) = 9.62 m $V_{n_{\text{Sand}}} = 2338.93 \text{ kN} + 9.43 \text{ kN/n^3} (9.75n)^2 \left(e^{-\frac{13.4}{0.75n}} - 1 + \frac{13.4}{0.75n}\right) (.562 \tan 17^0)(T)(57n) + (9.43 \text{ kN/n^3})(9.52)^2 \left(e^{-\frac{13.4}{0.75n}} - 1 + \frac{13.4}{0.55n}\right) (.562 \tan 17)(T)(0.7n) - 2(.096))$ Vm sand = 6423.52 KN = 6.423 MN

Project: <u>Floating Offshore Wind Turbine</u> Engineer: <u>CW</u> Checked by: <u>CH</u> Date: 5/22/2023

Wind Wrangher ES Geotechnical Calculation of vertical capacity in clay (Randolph and Gourvenec 2011): Vn = W+ Ase are Su + Nesu Are) where WE caison weight Vng= W+ Ase are Su + Asia: Su Southers Ase = external shaft Sulface area Vms = W+ Ase one SJ + Wplug As: = internal shaft surface area $W = (X_{s+eel}) \left(\frac{\pi D^{2}}{M} L - \frac{\pi (D-2t)^{2}}{M} (L-t) \right)$ de = external interface Friction Orefficient W=(18.5 kN/m3)(T(7.1 (14.5) - TT (74-2(100) =0.36 or: = internal interface friction coefficient W= 3151.28. KN Nc= 9 = reverse end bearing Eactor Ase no 50 = (TTDL) (36) (7.9468.) Su = 31.08 kpg = Ase Ke 5 = T (7.4.)(14.5.)(.36)(17.94 th) undrained shear strends at cation toe A= x. = = 2244.42 KN Su = 17.94 kla = average Nc su Ae = (9) (31.08 + Pa) TT (7.4.)2 S. across embedment depth of Dissu Ne s. Ae = 12030.31 KN Wphy = effective Soil As: N: Tu = TT (D-24)(L)(36)(17.94 2A) ying weight At = external cross-As; a: Su = TT (7.4 (2(106))(14.8)(.36)(17.94 200) Sectional wrea Arin: Su = aala. 36 KN TT D3 Wplug = Not (TT (D-2t)2) (L-t) 8 clay = 5.5 KN/m3 Wphy= 5.5 EN/m3 (TT (7.4-.106) Stel = 78.5 =N/m3 (14.1-106) Vrlug= 3280.09 EN Jm = 3151.28 + 2244.42 + 12030.31 Vm = 17565.36 WN = 17.565 MN Vm = 3151.28 + 2244.42 + 2212.30 Vn = 7608.06 KN = 7.608 MN \ Vn = 7.608 MN Vm = 3151.28 + 2244.42 + 3280.09 Controls Vm = 8675.79 KN = 8.676 AN

Wind Wrangler ES Geotechnical Assuming Lether load at anchor is equal to Lether load at mulline and tether angle at anchor $\theta_A = 20^\circ$ Hy= Ferz cos BA and Vy= Ferz sin BA Hy = (18.106 MN) cos 20" Vy = (18.106 MN) sin 20" Vu= 6.193 MN Hu= 17.014 MN FP check in clay: $\left(\frac{H_{y}}{H_{m_{clay}}}\right)^{\frac{L}{D}+0.5} + \left(\frac{V_{y}}{V_{n_{clay}}}\right)^{\frac{L}{3D}} + 4.5$ $\left(\frac{17.014 \text{ MV}}{20.84 \text{ MV}}\right)^{2+0.5} + \left(\frac{6.193 \text{ AV}}{7.005 \text{ MV}}\right)^{\frac{9}{3}+4.5} = 0.948 \text{ L}$ A caisson with D=7.4 m and L=14.8 m is STABLE in clay under the design load of 18.106 MN. FP check in sand: $\left(\frac{H_{u}}{H_{u}}\right)^{\frac{1}{2}+0.5} + \left(\frac{V_{u}}{V_{m}}\right)^{\frac{1}{3D}+4.5} \leq 1$ $\left(\frac{17.014 \text{ MW}}{42.02 \text{ MW}}\right)^{2.5} + \left(\frac{6.193 \text{ MW}}{6.423 \text{ MW}}\right)^{\frac{2}{3}+45} = 0.932 \text{ L}$ A caisson with D=6.7m and L=13.7m is STABLE in sand under the design load of 18,105 MN

Fra (MN)	18.106	MN					
Ha	17.014	MIN	· · · · · · · · · · · · · · · · · · ·				
Vu	6 103	MN					
vu	0.193	ININ					
	Caisson Desi	gn for $L/D = 2$	2		Caisson Desi	gn for L/D = 3	
CL	AY	SA	ND	a	AY	SA	ND
L/D	2	L/D	2	L/D	3	L/D	3
D	7.4	D	6.7	D	5.9	D	5.6
L	14.8	L	13.4	L	17.7	L	16.8
t _{wall}	0.1057143	t _{wall}	0.09571429	t _{est}	0.08428571	t _{wall}	0.08
a	2.5	а	2.5	а	3.5	а	3.5
b	5.167	b	5.167	b	5.500	b	5.500
Np	10.5	Ng	7.407	Np	10.5	Ng	7.407
H _{m,day} (MN)	20.84	H _{m,sand} (MN)	42.02	H _{m,day} (MN)	22.73	H _{m,sand} (MN)	55.20
	122221212				-		
W _{caisson}	3151.28	Wcaisson	2338.93	Wcalsson	2310.39	Wcaisson	1975.57
A _{se}	2244.42	Ze	9.75	A _{se}	2448.37	Ze	8.15
A _{si}	2212.36	Zi	9.62	A _{si}	2413.39	Zi	8.04
W _{plug}	3280.09	$y_e (L/Z)$	0.63	Wphag	2499.65	$y_e (L/Z)$	1.19
Vm1	17565.36	yi (L/Z)	0.64	Vmi	13779.22	yi (L/Z)	1.21
V _{m2}	7608.06	Vm and (MN)	6.42	V _{m2}	7172.15	Vm.sand (MN)	6.49
Vml	8675.79			V _{m3}	7258.40		
V _{m,day} (MN)	7.61			V _{m,clay} (MN)	7.17		
	0.0475715		0.03300551		0.00071043	-	0 70007433
Stable?	0.94/6/15	Stable?	VES	FFday	0.808/1042 VES	FP sand	0.78807432 VES
orea one i		second 1					100
	Caisson Desi	gn for L/D = 4			Calsson Desi	gn for L/D = 5	
1/0	AY A	SA L/D	ND	1/0	AT	SA L/D	ND
φ υ	51	D	40	L/D	45	D	3
1	20.4	1	19.6	i i	9.5	1	9.5
- -	0.0728571		0.07	•	0.06428571	t	0.06428571
3	45	3	45	2	5.001205/1	3	5.00 1205/1
b	5.833	b	5.833	b	6 167	b	6.167
-	5.633				0.201	-	
Np	10.5	Ng	7.407	Np	10.5	Ng	7.407
H _{m,day} (MN)	25.30	H _{m,sand} (MN)	65.74	H _{m,day} (MN)	26.63	H _{m,sand} (MN)	79.56
Wcalisson	1952.90	Wcalisson	1732.04	Wcaltson	1658.01	Wcalsson	1658.01
A _{se}	2725.16	Ze	7.13	A _{se}	2868.50	Ze	6.55
A _{si}	2686.22	Zi	7.03	A _{si}	2827.52	Zi	6.46
W _{plug}	2155.22	$y_e (L/Z)$	1.81	Wplug	1851.99	$y_e (L/Z)$	2.47
Vm1	12311.67	yi (L/Z)	1.85	Vm1	11010.70	yi (L/Z)	2.51
V _{m2}	7364.28	Vm,sand (MN)	6.34	V _{m2}	7354.03	Vm,sand (MN)	6.52
V _{m3}	6833.28			Vml	6378.50		t tott a da
Vm day (MN)	6.83			Verder (MN)	6.38		
and a second				- in carry (
FPday	0.7308252	FP	0.87249101	FP	0.91835525	FPoort	0.72997321

F _{E-2} (MN)	20	MN					
Hu	18.794	MN					
Vu	6.840	MN					
	Caisson Dasi	en for 1 /D = 2			Caircon Deci	an for 1 /D = 3	
a	AY	gn for L/D = 2 SA	ND	a	AY	gn for L/D = 3 SA	ND
L/D	2	L/D	2	L/D	3	L/D	
D	7.7	D	6.9	D	6.1	D	
L	15.4	L	13.8	L	18.3	L	1
Lwall	0.11	t _{wall}	0.09857143	L _{wall}	0.08714286	t _{wall}	0.08285
a	2.5	a	2.5	a	3.5	a	
b	5.167	b	5.167	b	5.500	b	5.5
Np	10.5	Na	7.407	Np	10.5	Na	7.6
H _{m day} (MN)	23.23	H _{m cand} (MN)	45.89	H _{m day} (MN)	24.93	Hm and (MN)	61
Wcaisson	3550.29	Wcaisson	2554.70	Wcaisson	2553.40	W _{calsson}	2194
Ase	2502.51	Ze	10.05	A _{se}	2685.35	Ze	8
A _{si}	2466.76	Zi	9.90	Au	2646.99	Zi	8
W _{plug}	3695.42	$y_e (L/Z)$	0.63	Wpilag	2762.56	$y_e (L/Z)$	1
Vml	19681.81	yi (L/Z)	0.64	Vml	15165.20	yi (L/Z)	1
V _{m2}	8519.56	V _{m,sand} (MN)	7.02	V _{m2}	7885.73	V _{m,sand} (MN)	7
V _{m3}	9748.22			V _{m3}	8001.31		
V _{m,day} (MN)	8.52			V _{m,day} (MN)	7.89		
FPday	0.91020341	FPsand	0.98450228	FPday	0.82936329	FPsand	0.763577
Stable?	YES	Stable?	YES		YES		YES
	Caisson Desi	gn for $L/D = 4$			Caisson Desi	gn for L/D = 5	
CL	AY	SA	ND	α	AY	SA	ND
L/D	4	L/D	4	L/D	5	L/D	
D	5.2	D	5.1	D	4.7	D	
L •	20.8	L .	20.4	L	23.5	L .	0.00571
Lwall	0.0/4285/1	Lwaii	0.07285714	Lwall	0.06/14286	Gwall	0.065714
a b	5.833	a b	5.833	b	6.167	a b	6.1
-	5.655	-	5.055		0.207	-	
Np	10.5	Nq	7.407	Np	10.5	Nq	7.4
H _{m,day} (MN)	26.71	H _{m,sand} (MN)	74.13	H _{m,day} (MN)	30.09	H _{m,sand} (MN)	84
Wcainson	2070.05	W _{calinon}	1952.90	Watter	1889.05	Waisson	1771
A _{se}	2877.11	Ze	7.43	A _{se}	3241.57	Ze	6
A	2836.01	Zi	7.32	A _{st}	3195.26	Zi	6
Wplue	2284.50	y _e (L/Z)	1.81	Wplue	2110.06	y _e (L/Z)	2
Vm1	13020.68	yi (L/Z)	1.85	Vml	12485.05	yi (L/Z)	2
V _{m2}	7783.17	Vm,sand (MN)	7.15	V _{m2}	8325.88	Vm,sand (MN)	6
V _{m3}	7231.65			V _{m3}	7240.68		
V _{m,clay} (MN)	7.23			V _{m,day} (MN)	7.24		
FPclay	0.92848566	FPsand	0.77408638	FPday	0.77925847	FPsand	0.89776
m		A	1.100.00	ALC: 1 1	A 400 TO 10	A	A 1000 M

F _{E-2} (MN)	22	MN					
Hu	20.6/3	MN					
vu	7.524	IVIN					
	Caisson Desi	gn for L/D = 2	1		Caisson Desi	gn for $L/D = 3$	1
CL	AY	SA L/D	ND	CL	AY	SA	ND
0	79	D	7.2	L/D	63	D	5
L	15.8	L	14.4	L	18.9	L	17
Leal	0.11285714	Last	0.10285714	Level	0.09	Leat	0.084285
a	2.5	a	2.5	a	3.5	a	3
ь	5.167	b	5.167	b	5.500	b	5.50
No	10.5	No	7.007	No	10 5	No	7.4
H _{m day} (MN)	24.93	H _{m and} (MN)	52.14	H _m day (MN)	27.27	Han samet (MN)	64.5
···m,bay (·····)	21.00	······································		······································	27127	······································	
W _{calisson}	3834.19	Wceiseon	2902.62	W _{caisson}	2812.87	Wcaisson	2310.3
A	2685.02	Z,	10.48	A	2937.04	Z,	8.5
A	2646.66	Z,	10.33	A	2895.09	Z,	8.4
Walar	3990.91	$y_e(L/Z)$	0.63	Wolug	3043.30	y _e (L/Z)	1.1
Vml	21183.04	yi (L/Z)	0.64	Vml	16640.95	yi (L/Z)	1.2
V _{m2}	9165.86	Vm.sand (MN)	7.97	V _{m2}	8645.00	Vm.sand (MN)	7.5
V _{m3}	10510.12			V _{m3}	8793.21		
V _{m,day} (MN)	9.17			V _{m,day} (MN)	8.65		
50	0.09710410	50	0 94107195	ED	0 94547390	50	0.0710727
Stable?	VES	Stable?	VES	r r day	VES	r r sand	VES
Stopic:	Colores Deel	states 1 /D = 4			Calcone Deal		
	Caisson Desi	gn for L/D = 4	ND	Classon Design for L/D = 5		ND	
L/D	4	L/D	4	L/D	5	L/D	
D	5.4	D	5.2	D	4.8	D	4
L	21.6	L	20.8	L	24	L	2
t _{wall}	0.07714286	t _{wall}	0.07428571	twall	0.06857143	t _{wall}	0.0685714
a	4.5	a	4.5	а	5.5	a	5
b	5.833	b	5.833	b	6.167	b	6.16
Np	10.5	Ng	7.407	Np	10.5	Ng	7.40
H _{m,day} (MN)	29.69	H _{m,sand} (MN)	78.57	H _{m,day} (MN)	31.93	H _{m,sand} (MN)	96.5
	2210.20	14/	2070.05	14/	2012.01	14/	2012.2
vv _{calsson}	2318.20	W calson	2070.05	Waitson	2012.21	W calsson	2012.1
A ₅₀	3197.66	2.0	7.57	A _{se}	3439.61	2.0	6.5
A _g	3151.98	4	7.46	A _a	3390.47	4	6.8
Wplug	2558.36	Ye (L/Z)	1.81	Wplug	2247.63	ye (L/Z)	2.4
Vml	14519.18	yi (L/Z)	1.85	Vml	13269.10	yi (L/Z)	2.5
V _{m2}	8667.85	Vm,sand (MN)	7.58	V _{m2}	8842.28	v _{m,sand} (MN)	7.9
V _{m3}	8074.23			V _{m3}	7699.45		
V _{m,day} (MN)	8.07			V _{m,day} (MN)	7.70		
FPday	0.8589773	FPsand	0.96074924	FPday	0.95930516	FPsand	0.7353201

F _{E-2} (MN)	24	MN					
Hu	22.553	MN					
vu	0.200	IVIIV					
	Caisson Desi	gn for L/D = 2			Caisson Desi	gn for L/D = 3	
	AY 2	SA L/D	ND 2		AY 3.0	SA L/D	ND
D	82	D	74	D	6.5	D	6
L	16.4	L	14.8	L	19.5	L	18
t _{anl}	0.11714286	t _{anti}	0.10571429	twall	0.09285714	t _{wall}	0.087142
a	2.5	a	2.5	а	3.5	a	3
ь	5.167	b	5.167	b	5.500	ь	5.5
Np	10.5	Na	7,407	Np	10.5	Na	7.4
H _{m,day} (MN)	27.62	H _{m,sand} (MN)	56.61	H _{m.day} (MN)	29.39	Hm.sand (MN)	71.3
Wcaisson	4287.79	Wcaisson	3151.28	W _{caisson}	3089.36	Wcaisson	2553.4
Ase	2974.94	Ze	10.77	A _{se}	3165.19	Ze	8.1
Asi	2932.45	Zi	10.62	A _{si}	3119.97	Zi	8.
Wplug	4463.06	$y_e (L/Z)$	0.63	Wplug	3342.43	$y_e (L/Z)$	1.
V _{m1}	23574.74	yi (L/Z)	0.64	Vml	18009.32	yi (L/Z)	1.
V _{m2}	10195.18	Vm.sand (MN)	8.65	V _{m2}	9374.52	V _{m,sand} (MN)	8.
V _{m3}	11725.80			V _{m3}	9596.98		
V _{m,clay} (MN)	10.20			V _{m,clay} (MN)	9.37		
ED.	0 97881994	ED .	0 86096126	ED.	0 87766017	ED	0 904532
Stable?	VES	Stable?	VES	r r day	VES	rrsand	VES
Stable		static i	105			1.10.0	125
	Caisson Desi	gn for L/D = 4	ND		Caisson Design for L/D = 5		ND
L/D	4	L/D	4	L/D	5	L/D	
D	5.6	D	5.4	D	5	D	4
L	22.4	L	21.6	L	25	L	24
twait	0.08	t _{eal}	0.07714286	t _{wall}	0.07142857	twall	0.0
a	4.5	a	4.5	a	5.5	а	5
b	5.833	b	5.833	b	6.167	b	6.16
Np	10.5	Nq	7.407	Np	10.5	Ng	7.40
H _{m,day} (MN)	32.88	H _{m,sand} (MN)	87.99	H _{m,day} (MN)	35.83	H _{m,sand} (MN)	102.7
Waima	2585.44	Westman	2318.20	Warran	2274.36	Westman	2140.6
Ace	3541.06	Z,	7.86	A.	3859.45	Z,	7.1
A	3490.47	Z	7.75	A.	3804.31	Z	7.0
Walar	2853.28	y. (L/Z)	1.81	Weine	2540.46	y. (L/Z)	2.4
V _{ml}	16128.28	yi (L/Z)	1.85	Vmt	14934.19	yi (L/Z)	2.5
V _{m2}	9616.97	Vm sant (MN)	8.49	Vm	9938.12	Vm sand (MN)	8.4
Vml	8979.78	couplined (Vma	8674.26	in and the state	
V _{m,day} (MN)	8.98			V _{m,day} (MN)	8.67		
FP _{clay}	0.77565191	FP _{sand}	0.82461372	FPday	0.7898896	FP _{sand}	0.8586956
Sec. 1.1. 3	No.	Ctable 7	VEC	Ctable 7	VEC	Ctoble 2	1.000

Ultimate Capacity vs. Achieved Embedment Depth for Diameters of 4m, 5m, 6m, 7m, and 8m

Capacity	vs. Depth for 4 n	n Diameter	Capacity	vs. Depth for 5 n	n Diameter	Capacity	vs. Depth for 6 n	n Diameter
	Clay	Sand		Clay	Sand		Clay	Sand
Depth (m)	Capacity (MN)	Capacity (MN)	Depth	Capacity (MN)	Capacity (MN)	Depth	Capacity (MN)	Capacity (MN
1	0.29	0.19	1	0.40	0.28	1	0.53	0.39
2	0.63	0.61	2	0.82	0.79	2	1.04	1.00
3	1.05	1.31	3	1.35	1.67	3	1.69	2.05
4	1.55	2.30	4	1.98	2.90	4	2.45	3.53
5	2.13	3.57	5	2.71	4.49	5	3.33	5.43
6	2.78	5.11	6	3.54	6.43	6	4.33	7.76
7	3.49	6.94	7	4.47	8.71	7	5.45	10.51
8	4.28	9.04	8	5.48	11.35	8	6.69	13.67
9	5.15	11.43	9	6.57	14.33	9	8.05	17.26
10	6.09	14.09	10	7.75	17.67	10	9.50	21.26
11	7.11	17.03	11	9.03	21.35	11	11.04	25.68
12	8.20	20.26	12	10.41	25.38	12	12.70	30.53
13	9.37	23.76	13	11.87	29.76	13	14.46	35.79
14	10.62	27.53	14	13.44	34.49	14	16.35	41.46
15	11.94	31.59	15	15.09	39.59	15	18.34	47.56
16	13.34	35.93	16	16.84	44.99	16	20.45	54.08
17	14.81	40.55	17	18.69	50.76	17	22.67	61.01
18	16.36	45.44	18	20.63	56.88			
19	17.98	50.61	19	22.66	63.36			
20	19.68	56.07	20	24.79	70.18			
21	21.46	61.80						
22	23.31	67.81						
23	25.24	74.10						
24	27.24	80.67						
25	29.32	87.52						

Capacity	vs. Depth for 7 n	n Diameter	Capacity vs. Depth for 8 m Diamet				
	Clay	Sand		Clay	Sand		
Depth	Capacity (MN)	Capacity (MN)	Depth	Capacity (MN)	Capacity (MN)		
1	0.69	0.55	1	0.90	0.74		
2	1.30	1.24	2	1.59	1.52		
3	2.05	2.45	3	2.46	2.89		
4	2.95	4.18	4	3.49	4.86		
5	3.98	6.40	5	4.68	7.40		
6	5.16	9.12	6	6.03	10.50		
7	6.47	12.32	7	7.54	14.17		
8	7.92	16.02	8	9.21	18.39		
9	9.52	20.21	9	11.03	23.18		
10	11.25	24.88	10	13.02	28.53		
11	13.12	30.05	11	15.17	34.44		
12	15.09	35.70	12	17.47	40.91		
13	17.16	41.84	13	19.93	47.93		
14	19.36	48.47	14	22.50	55.52		
15	21.70	55.59					

Project: Floating Offshore Wind Turbine Engineer: AY Checked by: CW Date: 5/22/2023

APPENDIX D: COST ESTIMATE

CLASS 2 COST ESTIMATE

PROJECT: FLOATING OFFSHORE WIND TURBINE

DATE: 05.22.2023

HARD COSTS											
SCOPE	DESCRIPTION		UNIT	UNIT COST	TOTAL	INFLATION ADJUSTMENT	SOURCE				
PRECONSTRUCTION											
SITE ASSESSMENT					SECTION SUBTOTAL	\$772,079.07					
Environmental Impact Assessments Surveys	Impact assessments, benthic fish and shellfish, ornithological, marine mamammal, etc, per 14	1.00	EA	\$204,520.68	\$204,520.68	\$252,859.00	Catapult*				
Resource and Metocean Assessment	Structure, sensors, maintenance, per 14 MW Turbine	1.00	EA	\$12,173.56	\$12,173.56	\$15,050.77	Catapult*				
Geological and Hydrological Surveys	Geophysical, geotechnical, hydrographic surveys, per 14 MW Turbine	1.00	EA	\$204,520.68	\$204,520.68	\$252,859.00	Catapult*				
Site Survey (Port)	Topographical, conventional, avg	42.39	Acre	\$1,637.09	\$69,400.08	\$92,373.01	02 21 13.09				
Boundary Survey Markers (Port)	Lot Location and lines, avg	42.39	Acre	\$1,095.49	\$46,440.39	\$61,813.16	02 21 13.13**				
Subsurface Drilling & Sampling	Borings, drawings, report & recommendations, mobilization & demobilization	32.00	EA	\$2,280.30	\$72,969.60	\$97,124.11	02 32 13**				
DEMOLITION					SECTION SUBTOTAL	\$155,142.88					
Building Demolition	Single-story buildings, no salvage included, wood	349,604.31	CF	\$0.26	\$90,897.12	\$120,986.03	02 41 16**				
Pavement Removal	Pavement Removal, bituminous roads, 3" thick	1,200.57	SY	\$4.04	\$4,850.32	\$6,455.88	02 41 13.17**				
Curb Removal	curbs, concrete, plain	5,862.48	LF	\$3.55	\$20,811.81	\$27,700.97	02 41 13.16**				
ROAD RE-ROUTING					SECTION SUBTOTAL	\$1,892,593.56					
Striping	Acrylic waterborne, white or yellow, 4" wide	2,931.24	LF	\$0.32	\$938.00	\$1,159.69	32 17 23.13**				
Asphalt Pavement Fill	Asphalt pavement, 3"	349,604.31	SF	\$5.00	\$1,748,021.55	\$1,890,060.14	HomeServe******				
Traffic Directional Signage	24"x24" stock signs, reflectorized, steel post 10'	8.00	EA	\$138.89	\$1,111.12	\$1,373.73	10 14 53.20**				
					PHASE SUBTOTAL	\$2,819,815.51					

VORT SITE CONSTRUCTION										
TEMPORARY CONSTRUCTION		SECTION SUBTOTAL	\$54,834,199.07							
Port Marshaling	Port Marshaling, 18-24 months construction	1.00	EA	\$50,000,000.00	\$50,000,000.00	\$54,062,838.57	Energy Policy*********			
Temporary Sound Barriers	Noise Barrier, 50' high	276,208.80	SF	\$34.00	\$187,821.98	\$249,995.12	U.S. DOT***			
Temporary Construction Fencing	Chain link, 6' high, 11 ga.	5,524.18	LF	\$7.13	\$39,387.37	\$52,425.45	01 56 26**			
Temporary Road Barriers	Highway Jersey Barrier, Portable, 60"x21"	1,172.50	EA	\$399.95	\$468,939.93	\$468,939.93	Seton****			
PREFABRICATED BUILDINGS					SECTION SUBTOTAL	\$3,305,453.12				
Storage Warehouse	Modular warehouse	59,997.98	SF	\$55.00	\$3,299,888.82	\$3,299,888.82	Green Building Elements****			
Jobsite Trailer	Trailer, furnished, 32'x8', buy	1.00	EA	\$1,025.00	\$1,025.00	\$1,364.30	01 52 13**			
Restrooms	Standard Porta-Potty, buy	6.00	EA	\$700.00	\$4,200.00	\$4,200.00	FusionSite*****			
TURBINE COMPONENTS PROCUREMENT					SECTION SUBTOTAL	\$23,172,226.45				
Nacelle					PART SUBTOTAL	\$6,976,439.13				
Bedplate	Bedplate, per 14 MW Turbine	1.00	EA	\$336,882.00	\$336,882.00	\$416,503.83	Catapult*			
Main bearing	Main bearing, per 14 MW Turbine	1.00	EA	\$336,882.00	\$336,882.00	\$416,503.83	Catapult*			
Main shaft	Main shaft, per 14 MW Turbine	1.00	EA	\$336,882.00	\$336,882.00	\$416,503.83	Catapult*			
Gearbox	Gearboxm per 14 MW Turbine	1.00	EA	\$1,179,087.00	\$1,179,087.00	\$1,457,763.40	Catapult*			
Generator	Generator, per 14 MW Turbine	1.00	EA	\$1,684,410.00	\$1,684,410.00	\$2,082,519.14	Catapult*			
Power take-off	Power take-off, per 14 MW Turbine	1.00	EA	\$117,908.70	\$117,908.70	\$145,776.34	Catapult*			
Control System	Control Systemm, per 14 MW Turbine	1.00	EA	\$421,102.50	\$421,102.50	\$520,629.79	Catapult*			
Yaw system	Yaw system, per 14 MW Turbine	1.00	EA	\$286,349.70	\$286,349.70	\$354,028.25	Catapult*			
Yaw bearing	Yaw bearing, per 14 MW Turbine	1.00	EA	\$117,908.70	\$117,908.70	\$145,776.34	Catapult*			
Nacelle auxiliary systems	Nacelle auxiliary systems, per 14 MW Turbine	1.00	EA	\$117,908.70	\$117,908.70	\$145,776.34	Catapult*			
Nacelle cover	Nacelle cover, per 14 MW Turbine	1.00	EA	\$168,441.00	\$168,441.00	\$208,251.91	Catapult*			
Small engineering componenets	Small engineering componenets, per 14 MW Turbine	1.00	EA	\$421,102.50	\$421,102.50	\$520,629.79	Catapult*			
Structural fasteners	Structural fasteners, per 14 MW Turbine	1.00	EA	\$117,908.70	\$117,908.70	\$145,776.34	Catapult*			
Rotor	· · ·				PART SUBTOTAL	\$4,081,737.52				
Blades	Blades, per 14 MW Turbine	1.00	EA	\$2,189,733.00	\$2,189,733.00	\$2,707,274.89	Catapult*			
Hub casting	Hub casting, per 14 MW Turbine	1.00	EA	\$252,661.50	\$252,661.50	\$312,377.87	Catapult*			
Blade bearings	Blade bearings, per 14 MW Turbine	1.00	EA	\$336,882.00	\$336,882.00	\$416,503.83	Catapult*			
Pitch system	Pitch system, per 14 MW Turbine	1.00	EA	\$168,441.00	\$168,441.00	\$208,251.91	Catapult*			
Spinner	Spinner, per 14 MW Turbine	1.00	EA	\$33,688.20	\$33,688.20	\$41,650.38	Catapult*			
Rotor auxiliary systems	Rotor auxiliary systems, per 14 MW Turbine	1.00	EA	\$67,376.40	\$67,376.40	\$83,300.77	Catapult*			
Fabricated steel components	Fabricated steel components, per 14 MW Turbine	1.00	EA	\$134,752.80	\$134,752.80	\$166,601.53	Catapult*			
Structural Fasteners	Structural Fasteners, per 14 MW Turbine	1.00	EA	\$117,908.70	\$117,908.70	\$145,776.34	Catapult*			
Tower					PART SUBTOTAL	\$2,195,025.32				
Steel	Steel - S355, 2550 tons/turbine	1.00	EA	\$1,657,500.00	\$1,657,500.00	\$2,049,248.98	Catapult*			
Tower internals	Tower internals, per 14 MW Turbine	1.00	EA	\$117,908.70	\$117,908.70	\$145,776.34	Catapult*			
Spar Buoy					PART SUBTOTAL	\$4,823,369.57				
Steel	Steel - S355, 2900 tons/turbine	1.00	EA	\$1,885,000.00	\$1,885,000.00	\$2,330,518.45	Catapult*			
Magnetite Ballast	Magnetite Ballast, 12220 tons/turbine	1.00	EA	\$2,016,300.00	\$2,016,300.00	\$2,492,851.12	Catapult*			
Turbine Foundation		,			PART SUBTOTAL	\$4,625,974.90				
Transition Piece	Transition Piece, per 14 MW Turbine	1.00	EA	\$1,704,339.00	\$1,704,339.00	\$2,107,158.35	Catapult*			
Corrosion Protection	Corrosion Protection, per 14 MW Turbine	1.00	EA	\$340,867.80	\$340,867.80	\$421,431.67	Catapult*			
Scour Protection	Scour Protection, per 14 MW Turbine	1.00	EA	\$1,696,433.90	\$1,696,433.90	\$2,097,384.88	Catapult*			
Embedded Suction Caisson		,			PART SUBTOTAL	\$469,680.00				
Suction Caisson	(1) 6mx15m suction caisson, per 14 MW Turbine	1.00	EA	\$469,680.00	\$469,680.00	\$469,680.00	Deep Foundations Conference******			
TURBINE COMPONENT SHIPMENT TO PORT SITE					SECTION SUBTOTAL	\$15,420,000.00				
Blade Transport	Blade transport from Europe to Port Site, incl. racks	3.00	EA	\$870,000.00	\$2,610,000.00	\$2,610,000.00	NREL*********			
Nacelle Transport	Nacelle transport from Europe to Port Site, incl. transport frames	1.00	EA	\$5,350,000.00	\$5,350,000.00	\$5,350,000.00	NREL*********			
Tower Transport	Tower transport from Europe to Port Site, incl. cradles	1.00	EA	\$3,150,000.00	\$3,150,000.00	\$3,150,000.00	NREL*********			
Spar Buoy Transport	Spar Buoy transport from Europe to Port Site, incl. transport frames	1.00	EA	\$2,870,000.00	\$2,870,000.00	\$2,870,000.00	NREL*********			
Transition Piece Transport	Transition piece transport from Europe to Port Site, incl. transport frames	1.00	EA	\$1,440,000.00	\$1,440,000.00	\$1,440,000.00	NREL*********			
ASSEMBLY & EQUIPMENT					SECTION SUBTOTAL	\$50,546,312.39				
On-Shore Cranes	Liebherr LR 11350	4.00	EA	\$10,830,540.00	\$43,322,160.00	\$43,322,160.00	Lectura Specs******			
Boom Lift	Snorkel 2100SJ	6.00	MONTH	\$9,969.00	\$59,814.00	\$59,814.00	Fork Lift America*******			
Assembly	Assembly labor, wind turbine supplier aspects of installation, commissioning, per 14 MW Turbi	1.00	EA	\$5,794,752.60	\$5,794,752.60	\$7,164,338.39	Catapult*			
					DHASE SUBTOTAL	\$147 278 101 02				

OFF-SHORE SITE CONSTRUCTION									
TRANSPORT					SECTION SUBTOTAL	\$3,859,925.93			
Offshore Heavy Lift Crane	Svanen Heavy Lift Vessel, >100m water depth, 8700 ton capacity, 5 days	1.00	EA	\$3,111,680.00	\$3,111,680.00	\$3,802,925.93	DECOMTOOLS*******		
Tug boats	Pull capacity: 60 tons	3.00	Day	\$19,000.00	\$57,000.00	\$57,000.00	Deep Foundations Conference******		
INSTALLATION					SECTION SUBTOTAL	\$3,188,457.52			
Turbine Installation	Turbine Installation at Off-Shore Wind Farm Location, per 14 MW Turbine	1.00	EA	\$852,169.50	\$852,169.50	\$1,053,579.17	Catapult*		
Foundation Installation	Foundation Installation at Off-Shore Wind Farm Location, per 14 MW Turbine	1.00	EA	\$1,704,339.00	\$1,704,339.00	\$2,107,158.35	Catapult*		
Embedded Suction Caisson Install	Medium AHV (150 ton pulling capacity), 1.26 days for install per turbine	1.00	EA	\$27,720.00	\$27,720.00	\$27,720.00	Deep Foundations Conference******		
					PHASE SUBTOTAL	\$7,048,383.46			

UTILITIES								
CABLES		SECTION SUBTOTAL	\$3,518,954.36					
Utility Cables	Export cable, array cable, cable protection, per 14 MW Turbine	1.00	EA	\$2,846,246.06	\$2,846,246.06	\$3,518,954.36	Catapult*	
SUBSTATIONS		SECTION SUBTOTAL	\$4,593,605.03					
Offshore Substation	Installation, electrical System, facilities, structure, per 14 MW Turbine	1.00	EA	\$2,726,942.26	\$2,726,942.26	\$3,371,453.19	Catapult*	
Onshore Substation	Construction, buildings, access and security, electrical equipment and systems, per 14 MW Tur	Construction, buildings, access and security, electrical equipment and systems, per 14 MW Tur 1.00 EA \$937,386.52				\$1,158,937.18	Catapult*	
Operations Base	Operations, per 14 MW Turbine	\$51,130.10	\$51,130.10	\$63,214.66	Catapult*			
INSTALLATION					SECTION SUBTOTAL	\$4,585,326.19		
Utility trenching	Offshore cable burial, per 14 MW Turbine	1.00	EA	\$340,867.80	\$340,867.80	\$421,431.67	Catapult*	
Onshore Cable Installation	Onshore export cable installation, per 14 MW Turbine	1.00	EA	\$85,216.88	\$85,216.88	\$105,357.83	Catapult*	
Offshore Cable Installation	Offshore cable pull-in, electrical testing and termination, cable-laying vessel, survey works, rou	1.00	EA	\$3,282,678.00	\$3,282,678.00	\$4,058,536.69	Catapult*	
						A40 COR 005 ER		,

HARD COSTS SUBTOTAL \$169,844,275.57

SOFT COSTS (20% Contingency)										
LINE ITEM	PERCENTAGE	TOTAL								
GC Overhead	12.00%	\$20,381,313.07								
GC Profit	3.00%	\$5,095,328.27								
Regulatory Fees & Permits	8.00%	\$13,587,542.05								
Bonds & Insurance	1.50%	\$2,547,664.13								
Taxes	8.00%	\$13,587,542.05								
Contingency	20.00%	\$33,968,855.11								
	SOFT COSTS SUPTOTAL	\$99 169 244 67								

SOFT COSTS (40% Contingency)									
LINE ITEM	PERCENTAGE	TOTAL							
GC Overhead	12.00%	\$20,381,313.07							
GC Profit	3.00%	\$5,095,328.27							
Regulatory Fees & Permits	8.00%	\$13,587,542.05							
Bonds & Insurance	1.50%	\$2,547,664.13							
Taxes	8.00%	\$13,587,542.05							
Contingency	40.00%	\$67,937,710.23							
	SOFT COSTS SUBTOTAL	\$123,137,099,79							

TOTAL PROJECT COST \$259,012,520.24

TOTAL PROJECT COST \$292,981,375.35

REFERENCES

*Catapult Offshore Renewable Energy <https://guidetoanoffshorewindfarm.com/wind-farm-costs>

**RSMeans 2011 Cost Data

*** U.S. Department of Transportation, Federal Highway Administration https://www.fhwa.dot.gov/Environment/noise/noise_barriers/inventory/summary/stable712.cfm

****Seton <https://www.seton.com/portable-traffic-barrier-

sp322.html?utm_campaign=%5BNB%5D_TC_Catch+All_PLA-

S_High_All_PC-

*****Green Building Elements <https://greenbuildingelements.com/modular-buildings/warehouses/>

******FusionSite <https://fusionsiteservices.com/how-much-do-

porta-potties-for-construction-sites-

*******45th Annual Deep Foundations Conference <https://www.researchgate.net/publication/345682287_COST_ANALYSIS_OF_MULTILINE_RING_ANCHOR_SYSTEMS_FOR_OFFSHORE_WIND_FARM>

********Lectura Specs <https://www.lectura-specs.com/en/model/cranes/crawler-cranes-lattice-boom-liebherr/lr-11350-1049556#reviews>

********Fork Lift America <https://www.forkliftamerica.com/product/snorkel-2100sj-rough-terrain-mega-telescopic-boom-lift-210-work-height-w-jib/>

********DECOMTOOLS <https://northsearegion.eu/media/19936/cost-modelling_final_2022.pdf>

*********Energy Policy <https://offshorewindhub.org/sites/default/files/resources/Marshaling%20ports%20requred%20to%20meet%20US%20policy%20targets%20for%20offshore%20power.pdf>

***********HomeServe <https://www.homeserve.com/en-us/blog/cost-guide/asphalt-driveway-installation/>

*************NREL <https://www.nrel.gov/docs/fy23osti/84710.pdf>

https://www.renews.biz/69701/new-feeder-vessel-design-launches/

Project: Floating Offshore Wind Turbine Engineer: AY Checked by: CW Date: 5/22/2023

APPENDIX E: DESIGN SCHEDULES

Activity Name Original 1	Name Districts				May 22, 2023							
Durabit	san Pinish	Total Flo	loat 4 Q1	2024 2025 2026 2027 2028 2029	2030 2031 2032 2033 2034 04 01 02 03 04 01 02 03 04 01 02 03 04 01 02 03 04 01 02 03 04	2035						
Offshore Wind Design Schedule 120m0.20w (03-Jul-23 23-May-33	з с	0m		23-May-33, OSW Offshore WindDesi	sign Schedule						
W1 Preconstruction 120m0.20w ()3-Jul-23 23-May-33	з с	0m		23-Way-33, OSW.1 Preconstruction							
SW 11 Permiting 120m0 20w /	3-Jul-23 23-May-33	3 0	0m : : : : :		23-Mav-33. OSW 1.1. Permitting							
PER1000 BOEM-NEPA Planning and Analysis 24m (13-Jul-23 23-Jun-25	5 0	0m	BOEM - NEPAPlanning and Analysis:	· · · · · · · · · · · · · · · · · · ·							
PER1010 BOEM-Lease Issuance 12m 1	24-Jun-25 18-Jun-26	3 0	0m	BOEM - Léaselissuarice								
PER1020 BOEM - NEPA Approval of Site Assessment Plan 24m	19-Jun-26 09-Jun-28	3 0	0m	BQEM- NEPA: Approval of Si	sAssessment Plan	*****						
PER1030 BOEM - NEPA Approval of Construction & Operations Plan 24m (2-Jun-31 23-May-33	3 0	0m	F	BOEM - NEPA Approval of Constructio	on & Operations Plan						
JSW.1.2 Site Assessment 36m0.20w 1	12-Jun-28 30-May-31	1 0	0m									
SA1000 Environmental ImpactAssessmen tSurveys 16m 1	12-Jun-28 04-Oct-29	C	0m		Environmental ImpactAssessmentSurveys							
SA1010 Resource and Metocean Assessment 8m (05-Oct-29 03-Jun-30) 8	8m		Resource and Metocean Assessment							
SA1020 Geological and Hydrological Surveys 16m (05-Oct-29 29-Jan-31	C	0m	· · · · · · · · · · · · · · · · · · ·	Geological and Hydrological Surveys							
SA1030 Subsurface Drilling & Sampling (Offshore Site) 3m 3	30-Jan-31 30-Apr-31	C	0m		Subsurface Drilling & Sampling (Offshore Sife)							
, SA1040 Site Survey (Port Site) 1m 3	30-Apr-31 29-May-31	1 0	0m : : : : :		Site:Survey (PartSite)							
SA1050 Boundary Survey Markers (Port Site) 0m0.20w 3	30-May-31 30-May-31	1 0	0m		🛏 Boundary Servey Markers (PortSite)							
JSW.1.3 Final Design & Buyout 0m 2	23-May-33 23-May-33	3 0	<mark>0m</mark>		▼ 23-May-33, OSW/1.3 Finial/Design & B	Buybut						
. FD1000 Final Design Completion 0m	23-May-33	з с	0m									
W.2 Mobilization 1 - Port Site 0m		C	0m									
W.3 Demolition - Port Site 0m		C	0m									
W.4 Site Work - Port Site		C	0m									
DSW.41 Traffic Control 0m		C	0m									
OSW.42 Prefabricated Buildings Om		C	0m									
W.5 Procurement 0m		C	0m									
OSW.51 Onshore Equipment 0m		C	Om									
DSW.52 Turbine Components 0m		C	0m									
DSW.5.3 Anchor Components 0m		C	0m									
DSW.54 Offshore Equipment 0m		C	0m									
W.6 Assembly 0m		C	0m									
W12 Mobilization 2 - Offshore Site		C	0m									
		0	0m									
20W 74 Utility Lines Installation		-	0									
SW.72 Anchor Installation 0m			0									
ISW 73 Turbine Installation 0m			0m									
We Hillity Connections		0	0m									
City of the second seco		-	000									
SW.82 Electrical Lifetities			Om									
SW 83 Power Utilities 0m		0	Om									
We Commissioning		0	0m									
W40 Demokilization			0m									
W.11 Closeout		C	Om			<u> </u>						
SW 51 Omnore Equipment Omnore SW 52 Auchor Components Omnore SW 53 Anchor Components Omnore SW 54 Othorse Equipment Omnore W12 Mobilization 2 - Offshore Site Omnore W11 Mobilization Omnore SW 14 Mobilization Omnore SW 15 Julies Installation Omnore SW 15 Auchor Installation Omnore SW 16 Comnore Omnore SW 16 Momonia Omnore SW 16 Demobilization Omnore W10 Demobilization Omnore W11 Closeout Omnore			0m									

Actual Work

Remaining Work Actual Level of Effort

Critical Remaining ...

Page 1 of 1

Wind Wrangler Engineering Services

Offshore Wind Design Sc	chedule				May 22, 2023								
Advisy Name	Duraton Finsh	15 22 29 05 12 19 26 03 10 17 24	August September 31 07 14 21 28 04 11 18 25	October November 02 09 16 23 30 06 13 2	December January	February March 22 29 05 12 19 26 05 12 19 26 0	April May 12 09 16 23 30 07 14	June 21 28 04 11 18 2	July 25 02 09 16 23	August 30 06 13 20 27	September 03 10 17 24	Odober November 01 08 15 22 29 05 12 19 25	December 03 10 17
SW Offshore Wind Design Schedule	17m3.10w 244May-33 07-Nov-34 Om Om	Cm C										♥ 07-Nov-34,OSW Dff	shore Wind Design
CSW.1.2 Ste Assessment	Om Om	Om Om											
OSW.2 Mobilization 1 - Port Site MO1000 InstalTemporaryRoad Barriers	1m0.10w 24-May-33 22-Jun-33 0m0.40w 24-May-33 25-May-33	8m380w 22-Jan-33, OSW2 Mobilization 1 J 8m380w E Instal TemporaryRoad Barriers	PartSile										
M01010 InstallTemporaryConstructionFencing	0m2.00w 26-May-33 08-Jun-33	8m380w InstalTemporaryConstructionFerring											
MO1030 Establish Temporary ParkingAreas	0m0.20w 09-Jun-33 09-Jun-33	9m0.30w el Establish Tempospry ParkingAreas											
MO1040 InstalTemporaryJobSite Trailer & Restrooms MO1050 InstalTemporarySound Barriers	0m1.00w 09-Jun-33 15-Jun-33 0m1.00w 16-Jun-33 22-Jun-33	8m380w Instal TemporarySound Barriers	ms										
MO1050 Mobilization 1 Complete OSW.3 Demolition - Port Site	0m 22-Jun-33 0m3.40w 23-Jun-33 15-Jul-33	8m380w efficibilization 1 Complete, 8m380w 15-Juli33,Op	W3 Demolition- Port Sile										
DE 1000 Building Demolition	0m3.00w 23-Jun-33 13-Jul-33	8m380w Building Demok	bn marail							ļ			
DE1020 CubRemoval	0m0.20w 15-Jul-33 15-Jul-33	8m380w Cub Remova	d .	_									
SWA1 Traffic Control	1m1.30w 18-Jul33 24-Aug-33 0m2.60w 18-Jul33 03-Aug-33	8m380w 8m380w	 24-Aug-33, OSW 4 Ste Work -F 03-Aug-33, OSW 4 1 Traffic Control 	brtSite									
SW1000 Filin Pavement Where Buildings Demoed	0m1.00w 18-Jul-33 22-Jul-33 0m1.00w 25-Jul-33 29-Jul-33	8m380w FiinPa	wernerit Where Buildings Demoed										
SW1020 InstalTemporaryTraffs Strage	0m0.40w 01-Aug.33 02-Aug.33 02-0 02 02 02 02 02 02 02 02 02 02 02 02 02	8m380w	Instal Temporary Traffic Signage										
SW 1030 PainFoldwyseping	0m3.00w 04-Aug33 24-Aug33	8m380w	24-Aug-33, OSW A 2 Prefabicat	ed Buildings									
PB2000 InstallStorageWarehouse OSW.5 Procurement	0m3.00w 04-Aug-33 24-Aug-33 12m 24-May-33 18-May-34	8m380w	rista sonage warerbuse				•	18-May-34, OSW.5 Procurement					
OSW&1 Onshore Equipment E01000 Procer On-Shore Cares	1m 24-May-33 22-Jun-33 1m 24-May-33 22-Jun-33	11m 22.Jun-33, OSW5.1 Orahore Equ 11m Provine On-Shore Cranes	prient										
EQ1010 Procee On-Shore Lifts	1m 24-May-33 22-Jun-33	11m Proope On-Shore Lifts	8 Took										
SW.52 Turbine Components	12m 24-May-33 18-May-34	0m						18-May-34, OSW 5.2 Turbine Cor	rpdnents				
TC1000 Procee Tower	12m 24-May-33 18-May-34 12m 24-May-33 18-May-34	Om Com						Procure Nacelle					
TC1020 Procure Blades	12m 24-May-33 18-May-34 12m 24-May-33 18-May-34	0m 0m						Procure Blades Procure Spar Buoy					
TC1040 Procer Turbine Foundation	12m 24-May-33 18-May-34 12m 24-May-33 18-May-34	Om Com						Procure Turbine Foundation 18-May-34, OSW 5.3 Anchor Cor	noments	[]			
AC1000 Processicion Calsson AC1010 Processicion Calsson	12m 24-May-33 18-May-34		1.000	Mandan Line Takan				Procure Suction Calisson					
SW.84 Offshore Equipment	4m 24-May-33 20-Sep-33 12m 24-May-33 18-May-34	sm Om	Procurp	Mooring Line letter				18-May-34, OSW.5.4 Offshore Ex	µipment				
EQ2000 Procure Offshore Heavy Lift Crane EQ2010 Procure Suction Calsson Installation Equipment	12m 24-May-33 18-May-34 6m 24-May-33 18-Nov-33	0m 6m		P	cure Suction Calisson Installation Equipment			Procure Offshore Heavy Lift Crans					
CO2020 Procer Tugloat	4m 24-May-33 20-Sep-33 1m1.00w 19-May-34 26-Jun-34	8m	Prourb	Tugio ats					26-Jun-34, OSW/6 Assembly				
A1000 Asemble Tubine Components (at PortSile)	1m 19-May-34 19-Jun-34	Om						Asse	mble TurbineComponents (atP	artSile)			
OSW.12 Mobilization 2 - Offshore Site	0m1.00w 19Jun-34 26Jun-34 0m3.80w 26Jun-34 21-Jul-34	0m 0m							CommissionPortAssembled 21-Jul	4, OSW 12 Mobilization 2-0	ffshore Site		
M02000 Trench for Utity Lines M02010 Transport Suction Calesons from Portio Offshore Site	0m2.00w 26Jun-34 10Jul-34 0m0.80w 10Jul-34 14Jul-34	0m 0m						L-8	Trench for Utility TranspotSu	lines tionCaissons from Portto Offs	hore Site		
M02020 Transpot Turbine from Portto Offshore Site	0m0.80w 14-Juli34 20-Jul-34	0m020w							Transp	at Turbine from Portto Offshore	Ste		
SW.7 Installation	0m3.60w 10-Jul34 03-Aug-34	Om060w								C3-Aug-34,OSW.7 hsta	lation		
SW.7.1 Utility Lines Installation	0m3.00w 10-Jul34 31-Jul-34 0m1.00w 10-Jul34 17-Jul-34	0m120w 0m120w							- Instal Utik	31-Jul-34, OSW 7.1 Utility6 Lines	nes instablion		
N1010 BackliforUtlyLines	0m1.00w 24-Jul-34 31-Jul-34 0m0.60w 21-Jul-34 25-Jul-34	0m120w								Backfilfor Utility Lines	lation		
N1020 InstalSuction Calsson	0m0.40w 21.Jul/34 25.Jul/34	0m								alSuction Caisson			
SW.7.3 Turbine Installation	0m120w 25Jul34 25Jul34 03-Aug-34 0m120w 26Jul34 03-Aug-34	0m								 03-Aug-34,OSW.7.3 Tor 	bine Installation		
Initial Tutkine Initial Tutkine Initial Tutkine Mooring Line	0m1.00w 26-Jul/34 02-Aug-34 0m0.20w 02-Aug-34 03-Aug-34	0m 0m								Install Turbine Connect Turbine to Mooki	ng Line		
SW.8 Utility Connections	0m2.00w 31Juli34 14-Aug-34	Om								14-Aug34, OS	W8 UtiltyConnections		
ME1000 InstalMechanicalEquipment	0m1.00w 03-Aug-34 10-Aug-34	Om								InstalMechanicalE	quipment		
SW82 Bedrical Utilities E1000 ConnectElectrical Utily Lines to Turbine and Substations	0m0.40w 31-Juli34 02-Aug-34 0m0.40w 31-Juli34 02-Aug-34	0m120w 0m120w								Connect Electrical Utility Lin	trical Utilities res to Turbine and Substatio	5	
OSW&3 Power Utilities P1000 ConnectPower Utily Lines to Turtine and Substations	0m0.40w 10-Aug-34 14-Aug-34 0m0.40w 10-Aug-34 14-Aug-34	0m 0m								ConnectPowe	W.8.3 PowerU titles rUtilityLines to Turbine and	ubsta tons	
GSW.9 Commissioning	1m0.70w 14-Aug-34 18-Sep-34	Om									18-Sep-3	, OSW9 Commissioning	
COM1010 Commission Electrical Work	0m1.00w 28-Aug-34 04-Sep-34	Om								¢,	Commission Electrical	Vork	
COM1020 Commission Power Work COM1030 Commission Mechanical Work	0m1.00w 04-Sep34 11-Sep34 0m1.00w 11-Sep34 18-Sep34	0m 0m								1	Commission Por	verWork on Mechanical Work	
OSW.10 Demobilization DM01000 Berger Tempory Sections	0m2.80w 18-Sep-34 06-Oct-34 0m1.00w 18-Sep-34 25-Sep-34	Om									Bá	06-Oct-34,OSW:10 Demobilization	
DMO1010 Remove Temporary Fending, Sound Proofing & R and Barriers	0m1.00w 25-Sep-34 02-Oct-34	0m								††		Remove Temporary Fending Sound Proofing & Road B	arriers
DMO1020 Remove ierpoary transsignage DMO1030 Return Rented Offshore an Onshore Equipment	0m0.40w 02-0d:34 04-0d:34 06-0d:34	0m									1	Return Rented Offshore an Onshore Equipment	
OSW.11 Closeout Osecut Osecut	1m0.20w 06-Oct-34 07-Nov-34 1m 06-Oct-34 06-Nov-34	Om										Prepare & Submit Final	Close out /Turn Over Package
CL1010 ConductLessors Learned Session	0m0.20w 07-Nov-34 07-Nov-34	0m 0m								†		ConductLessorsLea	medSession
Actual Level of Actual Work	Effort	Remaining Work Critical Remaining		F	Page 1 of 1		w	Wind	Wrang	gler Er	igine	ering Service	es
L													

Project: Floating Offshore Wind Turbine Engineer: AY Checked by: CW Date: 5/22/2023

APPENDIX F: REFERENCES

Project: Floating Offshore Wind Turbine Engineer: AY Checked by: CW Date: 5/22/2023

American Bureau of Shipping (2020). Guide for Building and Classing Floating Offshore Wind Turbines.

Arany, L., and Bhattacharya, S. (April, 2018). Simplified Load Estimation and sizing of Suction Anchors for Spar Buoy Type Floating Offshore Wind Turbines." Ocean Engineering, vol. 159, pp. 348-357., https://doi.org/10.1016/j.oceaneng.2018.04.013.

Arany, L., Bhattacharya, S., Macdonald, J., & Hogan, S. J. (2017). Design of monopiles for offshore wind turbines in 10 steps. Soil Dynamics and Earthquake Engineering, 92, 126–152. https://doi.org/10.1016/j.soildyn.2016.09.024

Attwoood, A., Benjaminsdottir, M., Diptan, P., & Kilbride, J. (2013). (tech.). FloMet – Floating Removable Meteorological Mast. Research Gate.

Beiter, P., et al. (2020, November). The cost of floating offshore wind energy in California between 2019 and 2032. National Renewable Energy Laboratory. Retrieved April 26, 2023, from http://www.nrel.gov/docs/fy21osti/77384.pdf

Bockute, I. (2019). Buoyancy and Stability Analysis of Floating Offshore Wind Turbines (thesis).

Bureau of Ocean Energy Management. (2021). Comparison of Environmental Effects from Different Offshore Wind Turbine Foundations. ICF Incorporated, Fairfax, VA.

Bureau of Ocean Energy Management (BOEM). (2021, May). Wind energy commercial leasing process – fact sheet. BOEM.gov. https://www.boem.gov/sites/default/files/documents/about-boem/Wind-Energy-Comm-Leasing-Process-FS-01242017Text-052121Branding.pdf

BOEM. (2020). Comparison of environmental effects from different offshore wind turbine foundations, U.S. Department of Interior: Bureau of Ocean Energy Management, Office of Renewable Energy Programs. Retrieved January 24, 2023, from https://www.boem.gov/sites/default/files/documents/environment/Wind-Turbine-Foundations-White%20Paper-Final-White-Paper.pdf

De Souza, C. E. S., & Bachynski-Polic, E. E. (2022). Design, structural modeling, control, and performance of 20 MW spar floating wind turbines. Marine Structures. https://doi.org/10.1016

De Vries, E. (2019, November 5). Haliade-X uncovered: GE aims for 14MW. Windpower Monthly. https://www.windpowermonthly.com/article/1577816/haliade-x-uncovered-ge-aims-14mw

Det Norske Veritas. (2019). Buckling Strength of Shells (Offshore Standard DNVGL-RP-C202).

Det Norske Veritas. (2013). Design of Floating Wind Turbine Structures (Offshore Standard DNV-OS-J103).

Det Norske Veritas (2007). Design of Offshore Wind Turbine Structures (Offshore Standard DNV-OS-J101).

Det Norske Veritas (2019). Design of Offshore Steel Structures, General – LRFD Method (Offshore Standard DNVGL-OS-C101).

Det Norske Veritas (2010) Environmental Conditions and Environmental Loads (Offshore Standard DNV-RP-C205).

Project: Floating Offshore Wind Turbine Engineer: AY Checked by: CW Date: 5/22/2023

Det Norske Veritas (2001). Stability and Watertight Integrity (Offshore Standard DNV-OS-C301).

- Det Norske Veritas (2001). Structural Design of Deep Draught Floating Units (LRFD Method) (Offshore Standard DNV-OS-C106).
- Dinh, V.-N., & Basu, B. (2013). On The Modeling of Spar-type Floating Offshore Wind Turbines. Key Engineering Materials. https://doi.org/https://www.scientific.net/KEM.569-570.636

Escalera Mendoza, A. S., Todd Griffith, D., Qin, C., Loth, E., & Johnson, N. (2022). Rapid approach for structural design of the Tower and monopile for a series of 25 MW offshore turbines. Journal of Physics: Conference Series, 2265(3). https://doi.org/10.1088/1742-6596/2265/3/032030

- Fredheim, R. O. (2022). Tower design for very large floating wind turbines (thesis). Geometry. Geometry – WISDEM 2.0 documentation. (n. d.). Retrieved April 25, 2023, from https://wisdem.readthedocs.io/en/latest/wisdem/floatingse/geometry.html
- Friedl, N. (2019, August 14). Finite life fatigue strength. CAE Simulation Solutions. https://www.cae-simsol.com/en/limit-stress-evaluation/finite-life-fatigue-strength
- Ghingo, A., Cottura, L., Caradonna, R., Bracco, G., & Mattiazzo, G. (2020). Platform Optimization and Cost Analysis in a Floating Offshore Wind Farm. Journal of Marine Science and Engineering. https://doi.org/10.3390
- HDR. (2022, June 14). Construction & Operations Plan: Ocean Wind Offshore Wind Farm. Bureau of Ocean Energy Management (BOEM). https://www.boem.gov/sites/default/files/documents/renewable-energy/stateactivities/OCW01_COP%20Volume%20I_20220614.pdf
- Houlsby, G., Kelly, R., Byrne, B. (2005). The tensile capacity of suction caissons in sand under rapid loading. Front. Offshore Geotech 405–410. https://doi.org/10.1201/ NOE0415390637.ch40.
- Houlsby, G.T., Ibsen, L.B., Byrne, B.W. (2005). Suction caissons for wind turbines. In: Gourvenec, Cassidy (Ed.), Front. Offshore Geotech. ISFOG 2005-Gourvenec Cassidy. Taylor & Francis Group, London, UK, pp. 75–94.
- Hutchins, D. (2020, January 6). The risks and opportunities of offshore wind energy. Global Risk Intel. Retrieved January 24, 2023, from https://www.globalriskintel.com/insights/risks-and-opportunitiesoffshore-windenergy#:~:text=Offshore%20wind%20farms%20face%20a,political%20considerations%2C%20and%20resi dential%20complaints.
- Iberdrola. (n.d.). Construction of an offshore wind farm. Iberdrola. https://www.iberdrola.com/documents/20125/1946291/Contruccion-parques-eolicos-marinos-EN.pdf
- Igwemezie, V., Mehmanparast, A., & Kolios, A. (2019). Current trend in offshore wind energy sector and material requirements for fatigue resistance improvement in large wind turbine support structures – a review. Renewable and Sustainable Energy Reviews, 101, 181–196. https://doi.org/10.1016/j.rser.2018.11.002

Iskander, M., El-Gharbawy, S., Olson, R. (2011). Performance of suction caissons in sand and clay. Canadian Geotechnical Journal, January 2011. Retrieved April 29, 2023 from https://www.researchgate.net/profile/Magued-Iskander/publication/237371388_Performance_of_suction_caissons_in_sand_and_clay/links/58b1df2c45 851503be9b14a2/Performance-of-suction-caissons-in-sand-and-clay.pdf

- Jalili, S., Maheri, A., Ivanoic, A. (2022). Cost modeling for offshore wind farm decommissioning. DecomTools. Retrieved April 26, 2023, from https://northsearegion.eu/media/19936/cost-modeling_final_2022.pdf.
- Johannessen, M. (2018). Concept Study and Design of Floating Offshore Wind Turbine Support Structure.
- KUCHARCZYK, P., RIZOS, A., MÜNSTERMANN, S., & BLECK, W. (2012). Estimation of the endurance fatigue limit for structural steel in load increasing tests at low temperature. Fatigue & Fracture of Engineering Materials & Structures, 35(7), 628–637. https://doi.org/10.1111/j.1460-2695.2011.01656.x
- Koh, K. X., Kim, Y., & Hossain, M. S. (2019). Cyclic Response of a Stiffened Suction Caisson Anchor in Calcareous Silt. Centre for Offshore Foundation Systems, The University of Western Australia. https://api.researchrepository.uwa.edu.au/ws/portalfiles/portal/73438275/KIMmanuscript_2nd_revised_CL_1_.pdf
- Li, H., Hu, Z., Wang, J., & Meng, X. (2017). Short-term fatigue analysis for tower base of a spar-type wind turbine under stochastic wind-wave loads. International Journal of Naval Architecture and Ocean Engineering, 10(1), 9–20. https://doi.org/10.1016/j.ijnaoe.2017.05.003
- MEADinfo. (2015, August 23). Material properties of S355 steel an overview. MEADinfo.

Retrieved April 25, 2023, from https://www.meadinfo.org/2015/08/s355-steel-properties.html

- Moss, R. (2022). Offshore Wind Senior Project Prompt and Project Info.
- Miedema, S.A., Lagers, G.H.G., Kerkvliet, J., 2007. An overview of drag embedded anchor holding capacity for dredging and offshore applications. In: Randall, R.E.P. (Ed.), Proc. 18th World Dredg. Congr. (WODCON XVIII). Newman Printing Company, Lake Buena Vista, FL, USA, pp. 245–274.
- National Oceanic and Atmospheric Administration. (2023, November 8). NDBC station page. National Data Buoy Center. https://www.ndbc.noaa.gov/station_page.php?station=46028
- Ng., C., Ran, L., Collu, M., & Borg, M. (2020). Design of floating offshore wind turbines. In Offshore Wind Farms: Technologies, Design, and Operation (pp. 359-385). Essay, Woodhead Publishing is an imprint of Elsevier.
- Orr, T., Wood, S., Drunsic, M., & Perkins, G. (2016). (rep.). Development of Guidance for Lighting of Offshore Wind Turbines Beyond 12 Nautical Miles. Sterling, Virginia: US Department of the Interior Bureau of Ocean Energy Management Office of Renewable Energy Progreams.

- Randolph, M., Gourvenec, M.R.S., 2011. Offshore Geotechnical Engineering. Spon Press (Taylor & Francis), New York, USA.
- Rowe, J., Payne, A., Williams, A., O'Sullivan, D., & Morandi, A. (2017). Phased Approaches to Offshore Wind Developments and Use of Project Design Envelope: Final Technical Report. Bureau of Ocean Energy Management (BOEM). https://www.boem.gov/sites/default/files/environmentalstewardship/Environmental-Studies/Renewable-Energy/AT-15-01-Endangered-Atlantic-Sturgeon-Habitat-Use-in-Mid-Atlantic-Wind-Energy-Area.pdf
- RPS Group. (2021, June 24). U.S. offshore wind permitting: the SAP, the COP, and the regulatory process in between. RPS. https://www.rpsgroup.com/insights/energy/us-offshore-wind-permitting-the-sap-thecop-and-the-regulatory-process-in-between/
- Shields, M., Stefek, J., Oteri, F., & Kreider, M. (2023, January). A Supply Chain Road Map for Offshore Wind Energy in the United States. National Renewable Energy Laboratory (NREL). https://www.nrel.gov/docs/fy23osti/84710.pdf
- Siemens Gamesa Renewable Energy. (n.d.). The SG 14-222 DD. Zamudio, Vizcaya; Siemens Gamesa Renewable Energy. Retrieved May 5, 2023, from https://www.siemensgamesa.com/products-andservices/offshore/wind-turbine-sg-14-222-dd.
- Supachawarote, C., Randolph, M., Gourvenec, S., 2004, January 1. Inclined pull-out capacity of suction caissons. Int. Soc. Offshore Polar Eng.
- US Dept of Commerce: (2022, November 8). NDBC Station history page. National Data Buoy Center. Retrieved April 25, 2023), from https://www.ndbc.noaa.gov/station_history.php?station=46028
- US Dept of Energy. (2022). Offshore wind market report: 2022 edition. Office of Energy Efficiency & Renewable Energy. Retrieved April 26, 2023, from https://www.energy.gov/sites/default/files/2022-08/offshore_wind_market_report_2022.pdf
- Weibull Calculator. The Swiss Wind Power Data Website. (n.d.). https://winddata.ch/tools/weibull.php?v0=0.00&v1=0&v2=0&v3=0&v4=5&v5=23&v6=28&v7=19&v8=17&v9=6&v10= 1&v11=1&v12=0&v13=0&v14=0&v15=0&v16=0&v17=0&v18=0&v19=0&abfrage=Refresh

What is a SN-Curve. Siemens DISW. (2019, August 29). https://community.sw.siemens.com/s/article/what-is-a-sncurve

Zhu, F., Bienen, B., O'Loughlin, C., Morgan, N., & Cassidy, M. J. (2018). The response of suction caissons to multidirectional lateral cyclic loading in sand over clay. *Ocean Engineering*, 170, 43-54. https://doi.org/10.1016/j.oceaneng.2018.09.005