Paso Robles

Residence

Spring 2022

Author:

Kaylie Di Paola
Advisor:

Allen Estes

Abstract

The Paso Robles Residence is a light framed single family residence. Architectural plans were designed by Nina Nazarov Hambly at Catch Architecture, formerly Hambly Homes. Conclusions made in the soils report by Beacon Geotechnical Inc were used to design the foundation. Structural plans and calculations were made by Kaylie Di Paola and reviewed by licensed engineer Nick McClure. Structural plans include the complete framing and foundation plans and construction details. Calculations were made in accordance with the 2019 CBC, ASCE 7 and NDS. This report with cover the architectural design, structural analysis, and all of the building systems that function in the residence. This report will take a look into how the site influenced the structural system and the various challenges that arose during the design process. To understand the impact of this project, this report will dive into the environmental, global, political, and social implications of this residence.

Table of Contents

ABSTRACT $2-$
INTRODUCTION - 5 -
ARCHITECTURAL DESIGN - 5 -
PROJECT SITE -
STRUCTURAL DESIGN - 10 -
PERMITTING PROCESS - 12 -
OTHER BUILDING SYSTEMS - 13 -
COST EVALUATION - 16 -
IMPACTS - 18 -
Environmental Impacts -18-
Economic Impacts -19-
SOCIAL Impacts -19-
Global Impacts - 20 -
CONCLUSION - 21 -
REFLECTION - 22 -
REFERENCES - 24 -
APPENDIX A: ARCHITECTURAL PLANS 20
APPENDIX B: STRUCTURAL PLANS 35
APPENDIX C: STRUCTURAL CALCS 44
APPENDIX D: TRUSS LAYOUT 87
APPENDIX E: SOILS REPORT 145
APPENDIX F: CIVIL PLANS 186
APPENDIX G: PRESENTATION SLIDE 189

Introduction

The Paso Robles residence is a beautifully designed light framed single family home. The design started in 2020 after the pandemic caused the clients to start traveling more locally and build a vacation home within driving distance from their current residence. Their budget was flexible and allowed for a luxurious home over 3500 square feet. Throughout the lifetime of the project, lumber prices have surged dramatically, discouraging many prospective homeowners. These clients realized the rising cost of construction from the beginning and were willing to pay premium prices for their dream home away from home. The property they inherited was around 300 acres of undeveloped land. A home on their family's land will create a gathering space for generations to come. The residence, shown in Figure 1, is elevated on a hill to capture the breathtaking landscape. The home will feature a large yard with north and south patios for the family to comfortably experience the outdoors.

Architectural Design

Figure 1 : Architectural Rendering

The architect responsible for this residence was Nina Nazarov Hambly, the owner of Catch Architecture. The clients requested her to design a three-bed, three-bath vacation home for them and their two sons. The high square footage allows every room in the house to be large and
comfortable. Every closet is spacious and each bathroom has ample counter space and a large shower. The kitchen has plenty of room for the entire family to cook dinner together and move around with ease. Having an open concept kitchen and living room area was important in creating a gathering space for the family. Each wall surrounding this space features large glass windows to provide natural light and the beautiful view. The clients wanted each of their sons to have his own bathroom so an additional powder room was added adjacent to the great room for guests. The master bedroom was particularly exciting for the clients. They wanted a spacious bathroom for the couple to get ready in the mornings. They also requested a large, wood burning fireplace for a cozy feel. Working with the clients, Nina suggested a partition in the closet to create a separate closet space for each of them. To create privacy from their children, Nina separated the master from the other bedrooms as much as possible. The laundry room is adjacent to the master suite for the couple's convenience since they do the laundry for the family. Because the washer and dryer tend to be loud, the closet and bathroom create a sound barrier between the laundry room and sleeping area of the master.

With a property of 300 acres, choosing the residence location became the clients' first decision. The couple chose an elevated knoll which rose above the oak trees spanning the property.

The orientation of the house is key in highlighting the views and combating the temperature

Figure 2 : North Patio
fluctuations of the area. To create a comfortable outdoor space overlooking the property Nina designed two patios. The "summer patio" was set on the north side of the building (Figure 2). It was blocked from the sun and could capture the pleasant, northern breeze. Located on the south side of the building, the 'winter patio' was

Figure 3 : South Patio protected from the harsh east wind and could soak up the sun (Figure 3).

The clients' second challenge was deciding the aesthetics of the home. To aid the clients' decision, Nina conducted an exercise she calls "tender for architecture." She produces 10 renditions of the home, each with a different architectural facade. Nina spreads the printed renderings out around her office and lets the clients be drawn to different styles. Nina then incorporates all of the features the clients favored into one harmonious design. Allowing the clients to have as much input as possible, Nina created a design which exceeded the clients' expectations. The only exception was the pergola. Initially, the clients agreed on the pergola design for the north patio (Figure 4). After the pergolas were completely engineered, the couple decided the appearance was no longer what they envisioned. After discussing multiple iterations, they could not decide and the pergola design was postponed. Structural plans were submitted without a pergola structure but will be designed by the same architect and engineers in the future.

Figure 4: Initial Pergola Design

Project Site

The entire property spans over 300 acres and has been divided into three parcels. The proposed development is set on the sloping hillside of a 92-acre parcel of land. The residence is at an elevation of 2,000 feet above sea level on a slope ranging from 3:1 to $6: 1$. The hill will be graded to create a flat area for the residence to stand. Unsuitable soil will be excavated so the foundation can rest on uniform competent material per soils report specification (Appendix E). In addition to the residence, the graded area needs to fit the north and south patios, the yard, a large storage
shed, and septic and water tanks. The clients wanted a large front and backyard with room to add a pool in the future. The yard area will be graded at a 5% slope to drain water away from the home. Non-structural concrete flatwork will create a walkway from the driveway to the front door. The residence will sit 20 feet higher than the existing access road.

Figure 5: Site Map The driveway spanning from the road to the residence is almost 300 feet long and at a gentle slope to ensure a comfortable drive up (Figure 5). All grading and sitework is to be done according to the civil engineering plans (Appendix F).

The soil consisted of mainly low expansive, elastic silt. Using ASCE 7-16 site classifications, the site was determined to be Class C, "Very Stiff Soil and Dense Rock." The allowable bearing pressure was determined to be 1500 psf . The site conclusions made by GeoSolutions, Inc were used to design the foundation of the residence (Appendix E). The soils report specifies how to prepare the building pad to maintain moisture content and soil compaction. If either of these recommendations are not followed, the foundation may crack or become damaged.

The site's proximity to fault lines and expected seismic activity is used to design the residence for seismic loads. The spectral response accelerations were found using the SEAOC Seismic

Design Map online tool and the seismic design category was found to be category D. The design speed of the wind is 92 mph and was found using the ASCE 7 Hazard tool. Seismic and wind loads governed different areas of the structure, so both were a vital part of the design.

Figure 6: Truss Layout

Structural Design

The structural system of the Paso Robles Residence is light framed timber. The roof was designed with a 18 psf dead load to account for the standing seam metal roofing and solar panels and a 19 psf live load to account for the $4: 12$ slope. The metal roofing provides a flat, even surface that hand laid shingles cannot replicate. The upper roof framing on the great room as well as the east and west wings consist of trusses. Trusses were chosen for their efficiency and ability to span long distances. The truss types and layout (Figure 6) were calculated by Trusspro (Appendix D). The entry hall and kitchen are framed with Trus Joist I-Joists (TJI) rafters to create a flat roof condition. The different roof types set at varying heights create a unique framing connection. At each change in elevation, the break in the top plate creates a discontinuity. To maintain drag continuity, CS16 straps will be nailed from a beam at the lower roof and wrap around a post at the upper roof. This framing condition is unique to this project and drawn in detail 12/D1 (Appendix B). At horizontal discontinuities the roof diaphragm will be solid blocked.

Plywood shear walls are used to resist the lateral loads from wind and seismic forces. The architectural decision to have tall ceilings and large windows resulted in tall, skinny walls that must resist large loads. Because the widths of the structural walls in several locations were less than half the top plate height, a seismic increase factor was applied according to SDPWS. Lateral forces in each gridline were analyzed in each direction to determine the appropriate shear panel (Appendix C). The shear wall schedule on the roof framing plan specifies the sheathing thickness, edge supports, sill plate, nailing pattern and frequency of anchor bolts and connectors (Appendix B). In order to resist the overturning moment on the wall, holdowns are fastened from the edge of each wall to the foundation. The holdown schedule on the foundation plan specifies the holdown, post, anchor bolt, and embedment length required (Appendix B).

Typical window and door headers, with spans only 3^{\prime} and 6^{\prime} in length, were designed to be Douglas fir beams. At the open concept kitchen to great room transition, the supporting beam must span 24^{\prime}. This beam carries a distributed load from the roof as well as point loads from two girder trusses. In order to account for the large span and heavy loading, a glue laminated beam is used. Both exterior walls in the entry hall are primarily glass and require two 9^{\prime} long LVL (laminated veneer lumber) beams to support the entire room's roof. All beams demands were calculated by hand and capacities were determined in Enercalc (Appendix C).

One structural challenge occurred at the great room end wall. Large glass doors and windows span the wall, leaving little space for shear walls. In order to capture the full length of the walls the door header hung off the sides of the post, eliminating the need for trimmers. An additional
window sits higher up on the wall, flush with the top of the studs. Since there is no room for the window header to sit in the wall, the header is set flush into the trusses. The lack of structural walls in the entry hall created another challenge. The lateral loads on the entry hall needed to be transferred to the surrounding rooms through CS16 straps.

The foundation, designed based on the soils report, is slab on grade. The slab consists of a 4 " concrete layer with \#3 bars at 12 " on center over a $2 "$ sand and $4 "$ gravel layer per. A 15 mil visqueen layer acts a moisture barrier preventing water from the soil from reaching and damaging the concrete. A 12 " wide and 24 " deep footing supports the building perimeter and structural walls. The typical footings are reinforced with $2 \# 5$ bars on the top and bottom. Grade beams at a maximum spacing of 19 " on center are 12 " wide and 18 " deep and reinforced with 2 \#4 bars on the top and bottom. The 24^{\prime} kitchen beam transferred a high point load on the supporting posts that exceeded the capacity of the normal footing. To carry this high load, a 36" square, 24 " deep concrete pad footing was centered under each supporting post. The pad footing is reinforced with 3 \#5 bars each way on the top and bottom. A 8 " thick concrete screen wall was designed for architectural aesthetics and had no structural considerations. Foundations will be constructed per details on sheet S-0.1 and D-2 (Appendix B).

Permitting Process

A grading permit is necessary in San Luis Obispo County when removing or depositing more than 50 cubic yards of soil. A grading permit for the site was obtained when the existing driveway was constructed. In order for construction to begin, the clients must obtain a building permit for the residence. The purpose of the building permit is to ensure the proposed structure
meets safety standards for zoning, construction, and land usage. Nina bundled the architectural and structural plans and calculations and submitted them to San Luis Obispo County for review on behalf of the client. The county looks for errors in the architect or engineer's work for areas of potential hazard or neglect. Plan check corrections are then returned to the architect and engineer so they can make any necessary changes before sending them back for a final submission. Typically plan check corrections take 4-6 weeks to be returned. However, the county office is currently backlogged and cannot handle the amount of work they are receiving. The COVID pandemic created a boom in the construction industry as homeowners are spending more time inside and want to renovate and expand their space. The plans for the Paso Robles residence were submitted two months ago and the first review will most likely take until the deadline of four and a half months. Obtaining a building permit is the just first step in the lengthy construction process.

Other Building Systems

The clients wanted their space to feel as bright and open as possible. The home takes maximum advantage of natural daylight as much as possible. Tall glass windows and doors on every wall of the residence will provide light and a view of the property. The entry hall, the first room one enters in the house, needs to create a smooth transition from outside. The northern and southern walls are almost entirely glass allowing light to flood in. The great room, comprised of the kitchen, living, and dining area, also features large windows to help the room feel more open and create the perfect view for every meal. Natural light ensures a bright and cheery home during the
day, but ample lighting fixtures are necessary to provide the same feeling at night. Recessed downlights fixtures provide a sleek and modern look. Every sink features a wall sconce for extra brightness in the mirror. The garage will receive track lighting fixtures for efficiency and an industrial look. A custom feature the clients requested was strip lighting underneath the kitchen cabinets. The kitchen and dining room will be adorned with pendant fixtures for design aesthetics. Electricity will be provided to each lighting fixture per electrical and utility plan (Appendix A). In case of a power outage, a $18-22 \mathrm{~kW}$ backup generator will be on site. Receptacle outlets will be placed in every room at a maximum of 12 feet apart per electrical code. To prevent electrocution, ground fault circuit interrupter outlets are used in bathrooms, the kitchen, and laundry room. Dedicated receptacles provide 220 volts for appliances requiring more than the standard 110 volts; these appliances include the dryer, stove, and refrigerator. Every room will have vacancy sensors to save energy. Both patios have outlets to service any decorative lighting or outdoor accessories they made add. In accordance with the 2020 California mandate, solar panels will be installed on the roof. Solar panels will produce power for the home efficiently and ultimately save the clients money. PGE will provide the remainder of the energy for the home.

Heating and air conditioning will be done by a split system air handling unit. The air handler consists of heating and cooling coils to change the temperature and a fan to distribute the air. The great room and each bedroom will have their own zone with a thermostat. This allows the bedrooms to be serviced at night without having the heat or cool the unoccupied great room. Each bedroom along with the great room will have a ceiling fan to provide extra cooling and circulation. A liquified petroleum gas (LPG) tank will be installed underground on the western
slope leading up to the yard. A gas line runs from the tank to the two fireplaces and to the outdoor fire pit on the south patio. A 50 -gallon water heater in the garage will supply the family with hot water.

Because the residence is isolated, water and sewage must be handled on site. At the base of the driveway, a well will be drilled 100 feet down, into the ground aquifer. The well will extract water from the water table but will do so at a slow rate. However, showers and faucets require a higher pressure and flowrate than the well can provide. A water tank stores a sufficient supply of water to meet the shower and faucet demand. Water lines will run from the tank to the home to pump in clean running water. The 5000 -gallon water storage tank will be installed on the west end of the property, downhill from the residence. The well will continuously fill and restore the water tank. To handle and dispose of wastewater, sewage lines will run from the residence to a 1500 -gallon septic tank. The septic tank is buried underground, 34 feet from the garage door and stores wastewater in order for solids to settle. The septic tank was designed for a volume of 450 gallons per day based on the size of the home. Liquid wastewater then exits the tank through a 4 " PVC pipe and heads to the distribution box. The distribution box receives wastewater from the sewage lines and re-distributes it to a series of pipes and the leech field. The leach field, located 100' away from the house, safely disposes of the wastewater without contaminating the water table or endangering any animals. The leech field consists of a system of gravel trenches covered by a layer of soil. The required length of each trench was found to be 191 feet based on the volume of wastewater and the infiltration capacity of the soil. Three rock leach trenches and three infiltrator trenches will be 64 feet each (total of 192 feet) and 48 chambers at 4 feet each (total of 192 feet) will be placed. Adequate area was left for a future leech field expansion of up
to 100% of the current size. The septic tank and leech field design drawings can be found in appendix F.

One potential danger in home tucked away in the middle of 300 acres is the distance to the nearest fire station. An access road at the base of the driveway provides the fastest route for firetrucks to enter. A fire hydrant at the top of the driveway allows a hose to be connected from a fire truck and have access to the water storage tank. Water is then pumped in quickly to the sprinkler system. Every space in the home contains a smoke detector and concealed sprinkler to ensure safety. The home also needed to meet the CBC requirements for fire protection. All doors and windows have at least a 20 min fire resistance rating.

Cost Evaluation

The Paso Robles residence is estimated to cost around $\$ 350$ per square foot. At 3680 square feet the estimate for this home comes out to around 1.3 million. However, the average cost of a new single family residence in the area is about $\$ 150-200$ per square foot. The architectural features making this project stand out from a conventional home create expensive engineering and construction challenges. The clients wanted the entrance of their home to feature a high ceiling for a grand and open feel. The great room has a top plate height of $11^{\prime}-6^{\prime \prime}$ which requires more materials and is harder to construct than a typical 8^{\prime} or 9^{\prime} top plate. The $8^{\prime}-6^{\prime \prime}$ kitchen and entry height transitions to the $11^{\prime}-6$ " great room height. At each of these discontinuities there are overlapping framing and extra hardware that doubles the price per square foot. Homes with conventional sized openings and ceiling heights can utilize standard windows and doors at a fixed, budget friendly price. However, this home features large glass doors and windows that
will require a custom order. Increasing the door height by as small as a foot can double the cost of the door. The stone veneer on the building's facade is not only expensive to purchase but is an additional 15 psf dead load the home had to be designed for.

By the time the residence will be constructed, the initial cost estimate will most likely be inaccurate. Increasing material costs, specifically lumber, may raise the price to over $\$ 400$ per square foot or over 1.5 million for the home. The clients had a flexible budget so this new price may not concern them. However, if the price of construction continues to rise, the architect may reconsider some of the more expensive design choices.

Between material and labor, construction costs will make up the great majority of the project cost. The foundation, between excavation, concrete, reinforcing, and formwork, makes up 10$15 \%$ of the construction budget. Framing costs include trusses, walls, and roofing material contribute to around 20% of the construction cost but, with the rising cost of lumber, may be much higher. Plumbing, electrical, HVAC, and septic each make up another 5\% of construction costs. Half of the construction budget falls on the exterior and interior finishes. Finishings include windows and doors, insulation, drywall, appliances, plumbing and lighting fixtures, cabinets, and flooring. In an average home, the architect's fee is only about 5% of the total project cost and the structural engineer's only 1%. In a project this complex, it is difficult to estimate a percentage at this stage of the project. Clients like these, without a cap on their budget, tend to choose pricey finishes and fixtures. Prices for flooring, windows, door, appliances, lighting fixtures, and accessories can range from budget to luxury and will dramatically shift the
cost for the project. Because of the clients ability to upgrade their home, the actual construction costs range greatly.

Impacts

Environmental Impacts

Anytime a new house is constructed there are environmental consequences. This residence will be constructed of timber which is the most environmentally conscious building material. Of all building materials, timber produces the least carbon emissions. Timber is also biodegradable therefore will not have harmful effects at the end of the building's life. Timber is a renewable resource as new trees can be planted regularly. However, if timber is extracted faster than it is replenished, there will be detrimental environmental effects. A surge in the construction industry during the COVID pandemic has greatly increased the demand for lumber. If we continue to consume timber at this rate, our forests will be in danger.

The foundation of the building is reinforced concrete. Concrete is a higher producer of carbon emissions and must undergo a complicated disposal process. Because the residence is isolated from main roads, transporting the materials and equipment to the site will take more time, require more fuel, and emit more greenhouse gasses. Installing this home's own septic, water, electrical, and mechanical systems require energy and resources. The home was designed to be efficient post construction; an abundance of natural light during the day will reduce the use of electricity and solar panels will provide the majority of the home's energy. The 300-acre
property is its own ecosystem which is home to a variety of trees, vegetation, and wildlife. Building the home will disturb the ecosystem and can displace the wildlife living in the site. All existing trees and plants will need to be cleared and excavating the building site will disrupt the soil. Constructing the home will cause noise pollution that may scare and harm the surrounding wildlife.

Economic Impacts

Creating this home will provide jobs at every step of the project. The clients wanted to use local companies to design and build their home. This project will contribute to the San Luis Obispo economy by providing work to local small businesses. Catch Architecture is a five-person architecture firm located in Paso Robles. MSD professional engineering in Atascadero is also a small business with only five employees. GeoSolutions, responsible for the soils and geology report in a small business located in San Luis Obispo. Roberts Engineering provided the civil plans and is another local small business located in Templeton. This project also creates jobs for city workers when obtaining permits and plan check corrections. Construction requires a large team of drivers, contractors, landscapers, electricians, and plumbers. Staying local allows the architects, contractors, and engineers to collaborate and communicate in person if needed. Being close to the site decreases travel time and is easier for workers. Additionally, the clients will pay property taxes on their new home. Property taxes are used to fund schools, parks, infrastructure, sanitation, and public service workers. This home will contribute the local economy by providing work to local businesses and fund vital governmental services.

Social Impacts

This home serves as a gathering space for the clients' family. The land was passed down through the family and will be passed down to their sons. The new home will soon be a place of new memories and a great addition to the property. The clients will be able to pass down the home to their sons for generations to come. The main goal of the project was to create a vacation house within driving distance to the clients' current residence as the COVID pandemic has made travel difficult. The Paso Robles residence is the perfect quarantine destination. The vacation home will be primarily for the family but will also be used by friends and neighbors. The spacious great room will soon host parties and family gatherings, bringing people closer together. The home will bring the family closer to nature as they get to explore their 300 acre backyard. Anyone who stays at the residence will experience the tranquil outdoors as they escape from the city. The clients want to instill their same love of nature in their family for generations.

Global Impacts

Catch architecture incorporates design elements from all over the world in every project. Members of the firm have studied or worked in England, Denmark, Switzerland, and France. Their work serves to bring global designs to San Luis Obispo County and inspire future designs around the world. This home can inspire others to travel locally rather than globally throughout the pandemic. Traveling internationally can contribute to the spread of the virus, putting health at risk. By avoiding planes and exposure to others, the clients are keeping their family safe and doing their part to end the pandemic. Unfortunately, construction on this home will also contribute to the recent lumber shortage and rising construction costs. The pandemic created supply change issues making lumber not only expensive, but more difficult to obtain.

Construction costs are at an all-time high and affordable housing is scarce, especially in San Luis

Obispo County. The clients, who can afford a luxurious secondary residence, are not discouraged by the rising costs of construction. By increasing the demand for resources and labor, the clients are keeping the price of construction high and may be preventing others from affording to build.

Conclusion

This home will provide a gathering space for the family to escape and enjoy the views of nature. The clients were able to design the home they always imagined and had a large hand in the architectural design. The residence was custom designed to fit the family's lifestyle and preferences, making the home feel personal. The home provided work for small businesses in San Luis Obispo County and a rewarding educational experience for me. The timeline of this project still has a long way to go. The clients and architect decided on a new pergola design which will need to be engineered. Plan check corrections were received in April. I will make corrections for the structural plans to be submitted a final time. After final revisions are approved, construction can begin. The driveway from the existing access road to the residence site has already been constructed. The site will be graded and building pad will be prepared first. Next the footings and foundation slab will be poured. Sewage, water, gas, electrical lines will need to be installed in the ground and later in the house. Framing of the home will be comprised of the walls, sheathing, trusses, windows, doors, roofing, and hardware. The construction will undergo multiple inspections before moving on the finishes, appliances, and lighting and water fixtures. The home was predicted to be completed by the end of 2022. However, plan check delays have already taken three months longer than anticipated. The project is currently behind schedule and does not have a new completion date. The finished product will ultimately be worth the wait and be cherished by the family for generations.

Reflection

Throughout my time at Cal Poly, my coursework and labs have provided hand-on experience to prepare me for work in the industry. Completing the structural design for a real home allowed me to combine and apply concepts I learned over the course of four years. This project exemplifies our schools "Learn by Doing" motto and is the perfect way to round out my education.

When I started working at MSD Professional Engineering, I worked on accessory dwelling units and small single-family homes. This project pushed me out of my comfort zone as the home was the largest and most intricate I worked on thus far. There are multiple height changes between the great room and the exterior wings. This was the first time I encountered top plate discontinuities on a project, so I had to learn how to strap and connect these diaphragms together. On the foundation level, I was familiar with slab on grade and designing footings. However, the great room required a pad footing to support a long spanning glulam beam (GLB). I learned how to design a pad footing and identify when it is required. I had also never designed a pergola before this project. I learned how a pergola is framed and connected and I even wrote an excel template for calculations. Ultimately the pergola was postponed and removed from this stage of construction. However, the time and effort I spent will only benefit me as an engineer and will benefit the clients when it is time to revisit the pergola.

Interfacing with new structural intricacies is something I experience everyday at work. Since finishing the structural design for the Paso Robles Residence, I have utilized this knowledge and
worked on more complicated residences. The most rewarding part of this senior project was learning about the nonstructural side of the residence. My work on the structural system is just one part of a much bigger picture. Understanding every step of design and construction will benefit me in my engineering career and help me connect the structural system to the complete project.

Previous to this project, my communication with my project's architect was limited to clarifying discrepancies or recommending changes to improve efficiency. Nina, the architect on this home, was excited to share how she works with her clients to understand their needs and create a place they will love to call home. She walked me through her thought process for choosing the floorplan and orientation of the home. On my future homes I will take this knowledge and be more inquisitive of the architectural decisions.

While I was already familiar with soils and site reports, this project gave me the time to thoroughly read sections I normally skim. I learned about the septic, electrical, and mechanical systems which I rarely consider. Because I had little exposure to these other building systems, I found learning about them the most challenging.

References

2018 National Design Specification for Wood Construction. American Wood Council, 2018.
"ASCE 7 Hazard Tool." ASCE 7 Hazard Tool, ASCE, https://asce7hazardtool.online/.
Building Code Requirements for Structural Concrete (ACI 318) and Commentary (ACI 318). American Concrete Institute.

California Building Code (CBC 2019).
"Latest Wave of Rising Lumber Prices." NAHB, https://www.nahb.org.
Minimum Design Loads and Associated Criteria for Buildings and Other Structures: ASCE/SEI 7-16. American Society of Civil Engineers, 2017.

National Design Specification for Wood Construction. American Wood Council, 2018.
"Planning \& Building." Grading Permit, County of San Luis Obispo, https://www.slocounty.ca.gov.
"U.S. Seismic Design Maps." U.S. Seismic Design Maps, SEAOC, https://seismicmaps.org/.

PASO ROBLES RESIDENCE

APPENDIX A: ARCHITECTURAL PLANS

General notes

west win patios elevation 3 N.S Section 2

APPENDIX B：STRUCTURAL PLANS

suumonc cooreretereaces

${ }^{\text {cosemines cole }}$

sucuren nots anverequeneris

Hataione

9）
10）

13） 1 Seas shiecuarananas tor

 1）

100
10）

ssuctu	serevarovs		
	Aspanc comers	${ }_{\text {cole }}^{\text {cill }}$	gave
	，mineme	noma	coicle
		\％	manmen
	cosem		
			minmemme
		cide	com
（08）	cemm	${ }_{\text {\％}}^{\text {\％rof }}$	
	comat	como	
\％	come		cin
	cein	wo	

2）Ano

on

12）
 cold

Andel

Mon

ster ienvorcementror concarte

And

骨

3）

C．

 and
 Sid

Nene \qquad semen
imeser ramina

角
and

$\frac{\text { DRAG CONN. @ BM CONN. }}{\text { NIS }}$
(17)

ROOF RAFTER TO LILL FRAMNG CONNECTON

$\frac{\text { FLUSH SET BM Q BEARING WALL }}{\text { INTERIOR CONDITION }} 13$

BM TO T.P. SPLICE @ OPENING

$\frac{\text { RAFTER TO WALL FRAMING CONNECTION }}{\operatorname{sCOLEF}=\text { IOT }}$

ROOF JOIST TO WALL FRAMING CONNECTION

(16)
(19)

(5)
$\frac{\text { SHEAR TRANSFER DETAIL }}{\text { SCOEFTNOTO }}$
(9)

(10)

(2)

$8^{\prime}-8^{\prime \prime}$ TALL CONCRETE SCREEN WALL

(2)

GARAGE OPENING
INTERIOR FOOTING

STEP @ GARAGE
(4)

(3)

FOUNDATION EXTENSION @ POP-OUT (8)

hi)

2) Matitese

6)

13) Seas oftesuatipen

10) Westasestan beleto

	Asphalic Concrete	${ }_{\text {gal }}$	GALVANIZED
\%.		orp	
${ }^{\text {Bukg }}$	bocking		
	${ }_{\substack{\text { Beam } \\ \text { gorom } \\ \text { com }}}$		Rer
${ }_{\text {cole }}$	Cenirle	${ }_{\text {a }}^{\text {max }}$	Melal
${ }_{\substack{\text { cos } \\ \text { cos } \\ \text { cos }}}$	contuvo	$\underset{\substack{\text { MrR } \\ \text { MiN }}}{ }$	
	domera	Msc	moctio
	Eac		Notanlicaile
eext	EOXAACR	$\stackrel{\text { PT, }}{\text { P/F. }}$	Orer
¢	Founorion		Remeuin
circ.		$\stackrel{\text { stm }}{\text { s.o.w. }}$	smo
coit		Nick	UN
¢		VERT	
$\xrightarrow{\text { HTGR }}$		wo	
	Caluek		WITHOUT

orcementror concerete

7) Rentocio

PROIECT SPECIIIC CONSTRUCTION CONDITIONS AND DESIGN PARAMETERS prouect solls oficin parameters

A

ssive eastisene Pessusure

Proikct stuuctural desion parametres:
 ${ }_{250}^{2050}$ psi

SATEMENT OF SPECIAL INSPECTIONs

euvers.speail insextions

SCHEDULE OF NSPPECTON, TESTING AGENCIE, AND INSPECTORS

SCHEDULE OF SPECIAL INSPECTIONS
 \qquad

Verificatio and Inspection	C [P P Motes		
-		\times	
		\times	
		\times	
	*		

APPENDIX C: STRUCTURAL CALCS

4555 El Camino Real, Ste. H Atascadero, CA 93422
(805) 462-2282

Structural Design Calculations

For

Proposed Single Family Residence

Paso Robles, California

September 28, 2021

Report \#: 0921-0767

PROJECT STRUCTURAL CODE REFERENCES AND CONSTRUCTION SPECIFICATIONS:

The following engineering calculations apply to this project only. The project contractor shall verify on-site all the conditions and dimensions provided for within these calculations and the associated project plans. The engineer of record is to be notified of any discrepancies prior to proceeding with work.

BUILDING CODE REFERENCES:

Unless otherwise specified below, the most current version of the following codes and standards shall govern the design and construction of the project. All work on the project shall be performed in accordance with the building codes and standards referenced below, the requirements of the local building official, or the specifications of these project plans, whichever is most conservative.

Governing Code:

2019 California Building Code (CBC)

Supporting Code References:

Vertical and Lateral Load Development
Minimum Design Loads for Buildings and Other Structures (ASCE 7)
Lumber and Timber
National Design Specification for Wood Construction (NDS)
Bolts and Nails
National Design Specification for Wood Construction (NDS)
Reinforced Concrete
Building Code Requirements for Structural Concrete (ACI 318)
Structural Plywood Sheathing
Special Design Provisions for Wind and Seismic (SDPWS)
Minimum Material Design Specifications:
Lumber (sawn)
$2 \mathrm{e} \& 4 \mathrm{x}$
6 x

Plywood Sheathing
Structural Steel

Hot Dipped Galvanized
DF-L WCLIB
\#2 Joists/Rafters/Headers/
Beams/Posts (U.O.N.)
\#1 Rafters/Headers/Beams (U.O.N.)
DF-L 24F-V4 (U.O.N.)
$\mathrm{F}_{\mathrm{b}}=2400 \mathrm{psi} \quad \mathrm{E}=1800 \mathrm{ksi}$
DF-L $\quad \mathrm{F}_{\mathrm{b}}=2600 \mathrm{psi} \quad \mathrm{E}=1900 \mathrm{ksi}$
"Panels" shall be plywood (group 1 or 2) APA
performance rated panels conforming to PS 1
ASTM A-36 (compact) : Angles, Sections, Plates
ASTM A-53: Pipes
ASTM A-500: Grade 'B' tubes
ASTM A-123 and ASTM A-153
(All Hardware)
Welding
Bolts
Reinforcing Steel

Epoxy (Rebar to Conc.)
Non-Shrink Grout
AWS D1.1 E70xx Electrodes
Anchor Bolts: ASTM A-36 or better
Machine Bolts : ASTM A-307 or better
ASTM A-615
Grade 40 : \# 4 bars and smaller
Grade 60 : \# 5 bars and larger
ASTM C-881 Type 3 Grade 3
MinWax Por-Rok or approved equal

BUILDING PAD PREPARATION AND FOUNDATION EXCAVATIONS:

1) Prior to performing grading and/or excavation work at the project site, the Contractor shall locate and protect all sub-surface utilities.
2) Any site irregularities, disturbances, groundwater, pumping-soils or sub-surface structures encountered during the grading work shall immediately be brought to the attention of the project soils engineer and MSD Professional Engineering, Inc. for appropriate recommendations and remediation, if necessary.
3) Regardless of any other foundation recommendations specified within these plans, graded sites to be filled twelve (12) inches or more shall require a compaction test provided by the project soils engineer and submitted to the Building Official/Building Inspector for review and approval prior to the foundation inspection.
4) Foundation excavations shall be prepared to the depths and dimensions shown on the following construction plans and details. Excavations shall be cut square and smooth with the base of excavations prepared level and into uniformly firm soil material, unless noted otherwise.
5) Foundation excavations shall be moistened immediately prior to pouring concrete.
6) De-water to maintain stability and clean working conditions when water or sub-surface moisture collects and ponds in foundation excavations.
7) Foundations shall not be poured until all required formwork, reinforcing steel, anchor bolts, holdowns, etc. have been properly placed and verified by the local Building Official/Building Inspector as well as any additional inspections specified on these project documents.
8) No stakes shall be left or abandoned in place following concrete pour. Holes and openings in concrete created by stakes shall be filled with a non-shrink grout.

STEEL REINFORCEMENT FOR CONCRETE:

1) Unless otherwise noted on project plans and details, reinforcing steel shall conform to ASTM A-615 and be of the following grades:
a. \#4 Bars and Smaller -- 40 KSI
b. \#5 Bars and Larger -- 60 KSI
2) Reinforcing steel shall be clean of rust, grease, or other material likely to impair the bond between the steel and concrete.
3) Concrete cover over steel reinforcing is required as follows:
a. 3" Clear - Concrete cast against and permanently exposed to earth
b. 2" Clear - \#6 bars or greater, concrete is exposed to earth or weather (poured against forms)
c. $1 \frac{1}{2 \prime \prime}$ Clear -- \#5 bars or smaller, concrete is exposed to earth or weather (poured against forms)
4) All reinforcing steel shall be securely tied in place and braced prior to inspection from Building Official and/or pouring concrete.
5) All reinforcing steel shall clear form stakes and braces by $2^{\prime \prime}$, minimum.
6) Where reinforcing steel is referenced on the project plans as continuous, splice laps at adjacent bars a minimum of 40 bar diameters or 24 ", whichever is greatest. Stagger splices in adjacent bars a minimum of 24 inches.
7) For no reason shall reinforcing bars be heated in order to aid in bending or placing.

CONCRETE AND ANCHORAGE:

1) All new foundations shall be constructed of concrete with a minimum compressive strength f'c of 2500 psi at 28 days. See Project Specific Specs on Sheet S-0.1 for alternative concrete strength requirements.
2) All concrete and concrete work shall be performed in accordance with the latest edition of the California Building Code, Chapter 19 (CBC - Chapter 19), the ACI Building Code (ACl 318) and the ACI Manual of Concrete Practice.
3) The maximum concrete slump shall be:
a. $3^{\prime \prime}\left(+/-1^{\prime \prime}\right)-$ Slabs
b. $4^{\prime \prime}\left(+/-1^{\prime \prime}\right)-$ All other work
4) Cement shall be Portland Cement, Type I or II, low alkali, per ASTM C-150.
5) The maximum water-to-cement ratio shall be $0.45-0.5$ unless otherwise noted on the project plans or preapproved by this office.
6) Mix designs shall be prepared by an approved testing laboratory in order to meet the minimum required compressive strength values shown on these project plans.
7) Aggregate shall conform to ASTM C-33 and shall be limited to the following sizes:
a. $1^{\prime \prime}-1 \frac{1}{2 \prime \prime}$ - Footings and grade beams
b. $3 / 4^{\prime \prime}$ - Slabs-on-grade
8) Minimum aggregate size for concrete placed with pumping equipment shall be $3 / 8^{\prime \prime}$ with no more than 20% of the aggregate proportion being $3 / 8^{\prime \prime}$ in size ($50 / 50 \mathrm{mix}$).
9) Concrete shall not free-fall more than six (6) feet. Use tremie, pump or other approved methods to provide proper placement for heights greater than six (6) feet.
10) Vibrate all concrete (including slabs) as it is placed with a mechanical vibrator. Vibration equipment is to be operated by experienced personnel only. Vibration equipment shall be used to consolidate concrete only, and not for transport. Reinforcing and forms shall not be vibrated.
11) Freshly deposited concrete shall be protected from premature drying and excessively hot or cold temperatures and shall be maintained with minimal moisture loss for the time necessary for the hydration of the cement (typically 7 days). Continual wetting or other approved methods to control curing shall be used.
12) All poured-in-place anchor bolts shall have the minimum total embedments:
a. 5/8" Diameter - 7"
13) The Contractor shall order the necessary anchor bolt lengths to accommodate the embedment depths referenced above and various sill plate thicknesses ($2 x$ or $3 x$) specified on the project plans and shear wall schedule.
14) Anchor bolt spacing shall be five (5) feet maximum on center unless otherwise noted on plans or shear wall schedule. Bolts shall be a maximum of $12^{\prime \prime}$ from sill ends and splices with a minimum of two (2) bolts per splice.
15) Structural anchor bolts shall be full diameter, cut thread, Grade A-36 steel bolts provided by an American Manufacturer.
16) Anchor bolts, fasteners and hardware at pressure-treated wood connections shall be hot-dipped zinc coated galvanized, stainless steel, silicon bronze or copper.
17) Anchor bolt washers at shear and bearing wall sill plates connections to concrete shall be 3 " $\times 3$ " $\times 0.229$ " galvanized steel plate washers. Ok to use Simpson Strong Tie BP 5/8-3 washers for standard conditions and BPS 5/8-3 washers for conditions where a slotted washer is required.
18) The project Contractor is responsible for all concrete formwork design and installation.
19) Concrete forms shall be removed in accordance with the following schedule:
a. 1 day minimum - Edge forms of slab-on-grade panels
b. 2 days minimum - Side forms of footings
c. 10 days minimum - Concrete retaining or stem walls
20) The location of all construction cold joints shall be as shown on the structural details or as approved by the project Engineer. Construction cold joints shall be thoroughly cleaned with compressed air and water and shall be rough with exposed coarse aggregates. Construction cold joints shall be continuously wet at least 3 hours in advance of pouring concrete.
21) The Contractor shall remove and replace any concrete that fails to meet the required compressive strength shown on these project plans and details.

STRUCTURAL DIAPHRAGM SPECIFICATIONS:

1) Horizontal Sheathing:
a. Horizontal diaphragms shall be fully blocked and nailed at all boundary edges.
b. Roof diaphragm ply shall be CDX or OSB Struct II (or better) with Panel ID\# 32/16 and glued and nailed with 10d nails @ 6-6-12" spacing. See roof framing plans for specified thickness.
c. Floor diaphragm ply shall be $23 / 32^{\prime \prime}$ CDX or OSB Stuct II (or better) with Panel ID\# 40/20 and glued and nailed with 10d nails @ 6-6-10" spacing.
d. All horizontal plywood diaphragms to be installed perpendicular to supports and shall be staggered in Case I layout.
e. All boundary blocking shall be solid, full depth blocking with (3) 16 d toe nails for $24^{\prime \prime}$ long and (2) 16 d toe nails for 16 " long blocks (typical each end).
f. Structural design properties for wood structural panels are based on DOC PS-1 and DOC PS-2 or wood structural panel design properties given in the APA SDPDS according to the CBC Section 2306.3.
g. Nail heads shall not be driven through outer laminate of panels. If a nail gun is used it must be equipped with a flush nailer attachment.
h. For trussed roof conditions, provide $2 x$ blocking along all ridge lines.
2) Vertical Sheathing (Shear Wall Construction):
a. Refer to Shear Wall Schedule for material specifications and nail spacing.
b. Where nail guns are used to install nails for shear wall sheathing, care shall be taken to use common sized nail equivalents regarding diameter and length.
c. All edges of plywood shear walls are to be fully blocked and nailed with full perimeter edge nailing. Plywood shall be edge nailed to end posts/studs and any member attached to a holdown.
d. "Panels" shall be structural plywood sheathing Group 1 or 2 or APA performance rated panels.
e. Panels to be applied horizontally or vertically to studs spaced at 16 " or 24 " on center spacing (see plans).
f. Nail heads shall not be driven through outer laminate of panels. If a nail gun is used it must be equipped with a flush nailer attachment.
g. Structural shear walls shall not be penetrated with electrical panels, conduits, plumbing pipes, or other such items unless detailed on the project plans.

TIMBER FRAMING:

1) All framing lumber, timber, and plywood to be grade stamped with a stamp of the association under whose grading rules it was produced.
2) Sawn lumber shall conform to the following minimums:
a. DF-L\#2 - Roof rafters, ceiling joists, floor joists, wall studs
b. DF-L\#2 - Posts and beams $2 x-4 x$ nominal sizes
c. DF-L\#1 - Posts and beams $6 x$ and larger nominal sizes
d. Pressure Treated DF-L\#1 - Lumber in contact with concrete or masonry
e. DF-L Standard or Better - Non-bearing wall studs, sill plates and blocking
3) All fasteners less than $1 / 2^{\prime \prime}$ diameter and all hardware in contact with pressure treated lumber shall be hot dipped galvanized.
4) The maximum moisture content of sawn lumber shall not exceed 19%.
5) All double members to be nailed together with (2) rows of 16 d nails @ $12^{\prime \prime}$ o.c. staggered.
6) All posts shall be as wide as the beam which it supports unless a "Simpson" post cap is used. All posts not framed into walls shall be secured with both post caps and bases.
7) $2 x$ solid blocking shall be placed between joists, rafters and trusses at both ends and all supports. Provide bridging or blocking at intervals of $8^{\prime}-0$ " o.c. at floor joists.
8) No structural members (joists, plates, studs, beams, etc.) shall be notched, cut or drilled (except for those holes required for bolting) unless in conformance with the following code references or specifically noted or permitted in writing by the Engineer.
a. CBC Section 2308.4.2.4 - Notching and boring of horizontal structural members.
b. CBC Section 2308.5.10 - Notching and boring of studs and top plates.
9) Interior non-bearing non-shear walls may be fastened to concrete with Hilti shot pins at 24" maximum on center. Non-bearing non-shear walls may be fasted to wood floor rims or blocking with 16d at $12^{\prime \prime}$ on center.
10) Fire stops shall be provided at all intersections of stud walls at floor, ceiling and roof. Fire stops shall be $2 x$ (min) nominal thickness and shall be placed at maximum spacing of $8^{\prime}-0^{\prime \prime}$ on center vertically.

STRUCTURAL FASTENERS AND CONNECTION HARDWARE:

1) Connection Hardware:
a. All metal framing connectors referenced in the calculations or on the following structural plans and details are "Simpson Strong Tie."
b. Substitutions of equal (must be code listed) connectors are acceptable with written permission of the Engineer.
c. All framing connectors shall be filled or bolted to their full capacity (all holes to be filled) with fasteners as specified the "Simpson Strong Tie".
2) Bolts:
a. All bolts shall be ASTM 307 unless otherwise noted on the project plans and details.
b. Pre-drill holes in lumber and steel $1 / 32^{\prime \prime}-1 / 16^{\prime \prime}$ larger than specified bolt diameter.
c. All bolted connections shall have standard cut washers under the head and nut, unless larger washers are specified on the project plans or details.
d. All bolts shall be re-tightened prior to the application of sheathing or other finish materials.
3) Nails:
a. As a minimum, all nailing shall be performed in accordance with the CBC Nailing Table 2304.10.1 unless otherwise noted on the project plans and structural details.
b. All nails shall conform to "common" sizing unless otherwise noted on plans or details.
c. Installation with pneumatic air gun requires the use of a flush nailer attachment for nailing of all structural shear wall, floor or roof sheathing.
4) Simpson Strong Tie Titen-HD heavy duty screw anchors:
a. Titen-HD screw anchors may be used in-lieu of standard anchor bolts and shall match the diameter of the anchor bolt specified on the project plans.
b. Titen-HD screw anchors shall be installed per all the manufacturer's recommendations.
c. Embedment depth into concrete shall be 4" (minimum) for standard anchor bolt replacement in shear wall bottom plate application.
d. All other applications shall require embedment depth into concrete to be specified by Engineer.
5) Wedge Anchors:
a. Simpson Strong Tie Wedge-All, Red Head Wedge Anchor or other similar code listed wedge anchors may be used in-lieu of standard anchor bolts only at connections of wall bottom plates. No other applications are permitted unless approved in writing by the Engineer.
b. Wedge anchors shall be the same size diameter as the anchor bolts specified on the project plans.
c. Embedment depth into concrete shall be $4^{\prime \prime}$ (minimum) for standard anchor bolt replacement in shear wall bottom plate application.

PROJECT PROFILE

Description: Analysis of a single story single family residence

Building Information:

Roof Pitch 1:
Plate Height 1:
Plate Height 2:
Plate Height 3:
Risk Category:
Importance Facto

4: 12

8.5	ft.
10	ft.
11.5	ft.

$$
\begin{aligned}
& \text { Entry/Kitchen } \\
& \text { E/W Wings } \\
& \text { Great Roon }
\end{aligned}
$$

I = \quad| II | ASCE 7-16 Table 1.5-1 |
| :--- | :--- |
| $\mathbf{1}$ | ASCE 7-16 Table 1.5-2 |

Load Values:

Roof 1:	18	psf Dead
	19.0	psf Dead
	20	psf Live

Walls:

15	psf	Dead
8	psf	Dead

Exterior-Stucco
Interior-Drywall

Additional Structural Loads:

| Stucco Lid: | 10 | psf | Dead | Lid at Eaves |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Veneer: | 15 | psf | Dead | Cultured Stone Veneer |

Site Specific Design Information:

Geographic Coordinates:
$35.624719^{\circ} \mathrm{N}$ \& $120.793501^{\circ} \mathrm{W}$

| Soils Report By:
 Report Dated: | GeoSolutions, Inc.
 June 23,2021 |
| :--- | :--- | :--- | :--- |
| Report Number: | SL12244-1 |

WIND PROFILE

** Design for the MWFRS as Defined by ASCE 7-16: Chapter 26 \& Chapter 28 - Part 1

Velocity Pressure Analysis $\left(q_{z}\right)$:

Velocity Pressure - ASCE7-16 Equation 26.10-1: $\quad q_{z}=(0.00256) V^{2} K_{z} K_{z t} K_{d} K_{e} \quad\left(\# / \mathrm{ft}^{2}\right)$
$\begin{array}{rlrl}\text { Wind Exposure: } & \mathrm{C} & \mathrm{V}=92 & \mathrm{~K}_{\mathrm{d}}=0.85 \\ & =9 \mathrm{From} \text { ASCE7-16 Table 26.6-1 } \\ \mathrm{K}_{\mathrm{zt}}=1.00 & \text { From ASCE7-16 Sect. 26.8.2 } & \mathrm{K}_{\mathrm{e}}=1.00 \text { From ASCE7-16 Table 26.9-1 }\end{array}$
Define $\mathrm{K}_{\mathbf{z}}$ (ASCE 7-16 Table 26.10-1): Heights referenced below rounded up to the nearest multiple of 5

| $\mathrm{Z}_{\text {Roof Level }}$ | $=15 \mathrm{ft}$ | $\mathrm{K}_{\mathrm{z} \text { - Roof Level }}=0.85$ |
| ---: | :--- | ---: | :--- |
| $\mathrm{Z}_{\text {Mean Roof } \mathrm{Ht}}$ | $=20 \mathrm{ft}$ | $\mathrm{K}_{\mathrm{z} \text { - Mean Roof } \mathrm{Ht}}=0.9$ |
| $\mathrm{q}_{\mathrm{z} \text { - Roof Level }}$ | $=15.7\left(\# / \mathrm{ft}^{2}\right)$ | |
| $\mathrm{q}_{\mathrm{z} \text { - Mean Roof } \mathrm{Ht}}$ | $=16.6\left(\# / \mathrm{ft}^{2}\right)$ | |

Design Wind Pressure Analysis (p_{z}):

Design Wind Pressure - ASCE7-16 Equation 28.3-1: $\quad p_{z}=q_{z}\left[\left(G C_{p f-n e t}\right)-\left(G C_{p i}\right)\right] \quad\left(\# / f t^{2}\right)$

$$
\mathrm{GC}_{\mathrm{pf}-\text { net }}=\left[\left(\mathrm{GC}_{\mathrm{pf}-\text { Windward }}\right)-\left(\mathrm{GC}_{\mathrm{pf-L} \text {-eeward }}\right)\right]
$$

Define Building Enclosure Classification - ASCE7-16 Table 26.13-1:

Enclosed or Partially Open Building
x
Partially Enclosed Building
Open Building

$$
\left(\mathrm{GC}_{\mathrm{pi}}\right)= \pm 0.18 \text { Internal Pressure Coefficient }
$$

Define $\mathrm{GC}_{\mathrm{pf-net}}: \Sigma$ Windward and Leeward - ASCE7-16 Figure 28.3-1:
Wall Conditions:
Roof Pitch 1:
4 :12
$\begin{aligned} \mathrm{GC}_{\text {pf-net Walls }} & =1.04 \\ \mathrm{GC}_{\text {pf-net Roof-1 }} & =-0.4\end{aligned}$

Define $\mathrm{p}_{\mathrm{z}} \quad\left(\# / \mathrm{ft}^{2}\right)$:

$$
\begin{aligned}
\mathrm{p}_{\mathrm{z} \text { - Roof Level }} & =19.1 \mathrm{psf} \\
\mathrm{p}_{\mathrm{z} \text { - Roof Area }} & =9.614 \mathrm{psf}
\end{aligned}
$$

Analysis Assumptions:

1) Wind analysis conservatively incorporates external pressure coefficients ($\mathrm{GC}_{\mathrm{pf}}$) for edge/corner conditions across full wall and roof widths
2) Code defined minimum wind pressure of 8 psf is used for roof wind analysis when roof wind pressure < 8 psf (ASCE7-16-28.3.4)

ROOF LEVEL E-W WIND LOADS

Lateral Wind Loads Governing Combination -ASCE7-16 Section 2.4.1, Combination 5: 0.6W
$\frac{\mathbf{W}(\#)=}{W} \frac{\text { Wind Loads Transverse to Building Ridge }\left(\mathbf{W}_{\perp}\right)}{\left[\left(\text { Projected Roof Area)* } \mathrm{P}_{\text {net-Roof Area }}+(\text { Wall Area) })^{*} \mathrm{P}_{\text {net-Roof Level }}\right]\right.}+\frac{\text { Wind Loads to Gable End Wall }\left(\mathbf{W}_{\mathrm{EW}}\right)}{\left[\left(\text { Area of End Wall)* } \mathrm{P}_{\text {net-Roof Level }}\right]\right.}$

Line E:
No Wind Loads into this Line
Plate Height =
8.5 ft

ROOF LEVEL E-W WIND LOADS

ROOF LEVEL N-S WIND LOADS

Lateral Wind Loads Governing Combination -ASCE7-16 Section 2.4.1, Combination 5: 0.6 W
$\frac{\mathbf{W}(\#)=}{W(\#)=} \frac{\text { Wind Loads Transverse to Building Ridge }\left(\mathbf{W}_{\perp}\right)}{\left[(\text { Projected Roof Area) })^{*} \mathrm{P}_{\text {net-Roof Area }}+(\text { Wall Area }) * \mathrm{P}_{\text {net-Roof Level }}\right]}+\frac{\text { Wind Loads to Gable End Wall }\left(\mathbf{W}_{\mathrm{EW}}\right)}{\left[(\text { Area of End Wall }) * P_{\text {net-Roof Level }}\right]}$

ROOF LEVEL N-S WIND LOADS

STRUCTURE WEIGHTS

Roof: Weight of structure into roof diaphragm

Element	Load	\mathbf{x}	Tributary Area (ft^2)	$=$	Weight		
Roofing	19.0	psf	x	5030	$=$	95438	$\#$
Exterior Wall	15	psf	x	2540	$=$	38100	$\#$
Interior Wall	8	psf	x	1060	$=$	8480	$\#$
Porch Lid	10	psf	x	1780	$=$	17800	$\#$
Stone Veneer	15	psf	x	102	$=$	1530	$\#$

SEISMIC PROFILE

** The following equations are from the ASCE 7-16 Section 12.8

Terms:

C_{t}	$=0.02$	$\mathrm{~S}_{\mathrm{DS}}$	$=0.852$	$\mathrm{w}=161348 \quad$ \#	
x	$=0.75$	$\mathrm{~S}_{\mathrm{D} 1}$	$=0.496$	$\mathrm{k}=1$	
$\mathrm{~h}_{\text {tot }}$	$=18$	ft	R	$=6.5$	$\rho=1.3$
$\mathrm{~T}_{\mathrm{L}}$	$=8$	s	(Coast -->8, Inland of Mountains $-->12)$	I	$=1$

Design Base Shear:

Vertical Distribution of Seismic Forces:

$E_{h}=C_{v x} V \quad$ Lateral Seismic Force (EQ. 12.8-11)
$E_{h-A S D}=0.7 E_{h}$
$C_{v x}=\frac{w_{x} h_{x}^{k}}{\sum_{i=1}^{n} W_{i} h_{i}^{k}}$ Vertical Distribution Factor (EQ. 12.8-12)

Level	$\mathbf{w}_{\mathbf{x}}$ (\#)	$\mathbf{h}_{\mathbf{x}}(\mathbf{f t})$	$\mathbf{w}_{\mathbf{x}} \mathbf{h}_{\mathbf{x}}(\#-\mathbf{f t})$	$\mathbf{C}_{\mathbf{v x}}$	$\mathbf{E}_{\mathbf{h}}(\#)$	$\mathbf{E}_{\mathbf{h}} / \mathbf{w}_{\mathbf{x}}$	$\mathbf{E}_{\mathrm{h} \text {-ASD }}$ (\#)
Roof	161348	10	1613475	1.000	27494	0.170	19246
Sum	161348	----	1613475	1	27494	0.170	19246

ROOF LEVEL E-W SEISMIC LOAD ANALYSIS

Line E: Seismic loads at this line distributed into adjacent gridlines

Line F:

Line G: Seismic loads at this line distributed into adjacent gridlines

Line H:

```
Line Shear = Story Shear m ( Tributary Area (ft ') / Story Area )
```


ROOF LEVEL N-S SEISMIC LOAD ANALYSIS

Line 1/2:

```
Line Shear = Story Shear x ( Tributary Area (ft') / Story Area )
```


Line 3:

```
Line Shear = Story Shear x ( Tributary Area (ft')}/\mathrm{ Story Area )
```

Line 4:

```
Line Shear = Story Shear x ( Tributary Area (ft') / Story Area )
```

Line 5:

Line 6:

```
Line Shear = Story Shear m(Tributary Area (ft') / Story Area )
```

Line 7:

Roof E-W Lateral Analysis \& Drag Force

Roof E-W Lateral Analysis \& Drag Force

| Shear Panel: $1 \quad$ Holdown \& Post: | HDU2-SDS2.5 and 4x DF\#2 Posts | Sheathing: (2) 5'-9" walls |
| :--- | :--- | :--- | :--- |

Grade Beam Uplift Check: Use typical footing per concrete note.

									Grade Beam Uplift Check:				Use typical footing per concrete note.			
Walls (ft.):	5.75	13	5.75	0	0	0	0	0	0	0	0	0	0	Maximum Drag =	547	\#
Drag Force:	-547	547	0	0	0	0	0	0	0	0	0	0	0	Provide (4)		

Roof E-W Lateral Analysis \& Drag Force

Shear Panel: 4	Holdown \& Post:	HDU5-SDS2.5 and $4 x$ DF\#2 posts	Sheathing: (1) 3' and (1) 3'-8" wall

$\frac{\text { Note: } \mathrm{H}: \mathrm{W} \text { ratio at shear walls addressed through seismic increase }}{\text { and framing detailing. } \quad \text { Grade Beam Uplift Check: } \quad \text { Use typical footing per concrete note. }}$

Walls (ft.):	3	9	3.6	0	0	0	0	0	0	0	0	0	0	Maximum Drag =	1184
Drag Force:	-987	1184	0	0	0	0	0	0	0	0	0	0	0	Provide (9)	ails

| Shear Panel: 1 Holdown \& Post: | HDU2-SDS2.5 and Dbl $2 x$ Studs | Sheathing: (1) 15' wall |
| :--- | :--- | :--- | :--- |

Grade Beam Uplift Check: \quad Use typical footing per concrete note.

Roof E-W Lateral Analysis \& Drag Force

Roof E-W Lateral Analysis \& Drag Force

Roof N-S Lateral Analysis \& Drag Force

Roof N-S Lateral Analysis \& Drag Force

Roof N-S Lateral Analysis \& Drag Force

Line 7:
Plate Height $=10 \mathrm{ft}$

$\mathbf{M}_{\text {RES }}=(0.6) \times[($ roof load $)+($ wall load $)+($ floor load $)+($ additional loads $)] \times \mathrm{I}_{\text {min }} / 2$
$=-0.6[(18.97 \mathrm{psf} \times 2 \quad \mathrm{x} \quad 12 \quad)+(15 \mathrm{psf} \mathrm{x} \quad 8 \mathrm{x} \quad 5 \quad)$

Shear Panel: 1 Holdown \& Post: HDU2-SDS2.5 and Dbl $2 x$ Studs \quad Sheathing: (1) 12' and (1) 8' wall

Grade Beam Uplift Check: Use typical footing per concrete note.

Roof Level Vertical Analysis

$$
\begin{array}{lllll}
P_{\mathrm{DL}} & = & 665 & \# & \text { at } 3 \\
P_{\mathrm{LL}} & = & \mathrm{ft} .
\end{array}
$$

Reactions:

Roof Level Vertical Analysis

Beam 3:	Kitchen Header-9' Max Span				Simple Span:			9	ft .				386	$\begin{aligned} & \text { plf } \\ & \text { plf } \end{aligned}$	
Uniform Loads:															
$\omega_{\text {DL }}=$	19 psf x		+ 30	psf	$x \quad 4$										$=$
$\omega_{\text {LL }}=$	20 psf x	14										$=$	280		
$\omega_{\text {TL }}=$	$\omega_{\mathrm{DL}}+\omega_{\mathrm{LL}}$		666	plf											
Reactions:															
$\mathrm{R}_{\text {Left }}$	$=\mathrm{R}_{\mathrm{DL}, \mathrm{LT}}$		$\mathrm{R}_{\text {LL, LT }}$	=	1735	\#	+	1260	\#	$=$	2995	\#			
$\mathrm{R}_{\text {RIGHT }}$	$=\mathrm{R}_{\mathrm{DL}, \mathrm{RT}}$		$\mathrm{R}_{\mathrm{LL}, \mathrm{RT}}$	$=$	1735	\#	+	1260	\#	=	2995	\#			
	Use 6x10 DF\#1 Beam						Left Support: Right Support:				Use 4x6 DF\# 2 Use 4x6 DF\# 2				
Beam 4:	Great Room Flush Set Beam				Simple Span:			12	ft .						
Uniform Loads:															
$\omega_{\text {DL }}=$	19 psf x	10	+ 10	psf	$x \quad 4$							=	230	plf	
$\omega_{\text {LL }}=$	20 psf x	10										=	200	plf	
$\omega_{\text {TL }}=$	$\omega_{\text {DL }}+\omega_{L L}$		430	plf											
Reactions:															
$\mathrm{R}_{\text {Left }}$	$=\mathrm{R}_{\mathrm{DL}, \mathrm{LT}}$		$\mathrm{R}_{\text {LL, LT }}$	=	1378	\#	+	1200	\#	=	2578	\#			
$\mathrm{R}_{\text {RIGHt }}$	$=\mathrm{R}_{\mathrm{DL}, \mathrm{RT}}$		$\mathrm{R}_{\mathrm{LL}, \mathrm{RT}}$	=	1378	\#	+	1200	\#	=	2578	\#			
	Use 6x10 DF\#1 Beam						Left Support: Right Support:				Use 4x6 DF\# 2 Use 4x6 DF\# 2				

Roof Level Vertical Analysis

Reactions:

Beam 6: \quad Roof support beam @ Line 5 \quad Simple Span: $\quad 24 \quad \mathrm{ft}$.

Uniform Loads:

Point Loads: (Referenced from the left end of beam)

$$
\begin{array}{lllllllllll}
P_{\mathrm{DL}} & = & 800 & \# & \text { at } 5.5 \mathrm{ft} & \mathrm{P}_{\mathrm{DL}} & = & 800 & \# & \text { at } 19 \mathrm{ft} . \\
\mathrm{P}_{\mathrm{LL}} & = & 800 & \# & P_{\mathrm{LL}} & = & 800 & \# &
\end{array}
$$

Reactions:

$\mathrm{R}_{\text {Left }}$	=	$\mathrm{R}_{\mathrm{DL}, \mathrm{LT}}$	+	$\mathrm{R}_{\text {LL, } \mathrm{LT} \text { (}}$	=	5900	\#	+	5120	\#	=	11020	\#
$\mathrm{R}_{\text {RIGHT }}$	$=$	$\mathrm{R}_{\text {DL, RT }}$	+	$\mathrm{R}_{\mathrm{LL}, \mathrm{RT}}$	=	5900	\#	+	5120	\#	=	11020	\#
	Use 5 1/8" x 21" 24F-V4 DF/DF GLB							Left Support: Right Support:				Use 4x6 Use 4x6	F\# 2 F\# 2

Roof Level Vertical Analysis

Beam 8: \quad Typical Header- Max Span 3' w/ GT Support Simple Span: $\quad 3 \mathrm{ft}$.

Uniform Loads:

ω_{DL}	$=$	19	psf	x	11	+	10	psf	x
ω_{LL}	$=$	20	psf	x	11				
ω_{TL}	$=$	ω_{DL}	$+\omega_{\mathrm{LL}}$	$=$	479	plf			

$=$	259	plf
$=$	220	plf

Point Loads: (Referenced from the left end of beam)

$P_{D L}=$	1250	$\#$	at 1.5 ft.
$P_{L L}=$	1000	$\#$	

Reactions:

$\mathrm{R}_{\text {Left }}$	$=$	$\mathrm{R}_{\mathrm{DL}, \mathrm{LT}}$	+	$\mathrm{R}_{\text {LL, LT }}$	$=$	1013	\#	+	830	\#	$=$	1843		
$\mathrm{R}_{\text {RIGHT }}$	$=$	R DL, RT	+	$\mathrm{R}_{\text {LL, }{ }_{\text {RT }}}$	=	1013	\#	+	830	\#	=	1843	\#	
Use 6x6 DF\#1 Beam								Left Support: Right Support:			Use Single 2x Trimmer Use Single 2x Trimmer			

Beam 9: Great Room Lower Header \quad Simple Span: 12 ft.

Uniform Loads:

Reactions:

$\mathrm{R}_{\text {Left }}$	=	$\mathrm{R}_{\text {DL, LT }}$	+	$\mathrm{R}_{\text {LL, } \mathrm{Lt} \text { }}$	=	1378	\#	+	1200	\#	=	2578
$\mathrm{R}_{\text {RIGHT }}$	=	R DL, RT	+	$\mathrm{R}_{\text {LL, RT }}$	=	1378	\#	+	1200	\#	=	2578

Left Support:	Use 4x6 DF\# 2
Right Support:	Use 4x6 DF\# 2

Beam 10:

Entry/Kitchen Rafters

Simple Span: 29 ft.

Uniform Loads:

```
\begin{tabular}{llllllll}
\(\omega_{\mathrm{DL}}=\) & 19 & psf & x & 2 & & \(=\) & 38 \\
\(\omega_{\mathrm{LL}}=\) & 20 & psf & x & 2 & & plf \\
\hline
\end{tabular}
\(\omega_{\mathrm{TL}}=\omega_{\mathrm{DL}}+\omega_{\mathrm{LL}}=78\) plf
```

Reactions:

Description: Vert Analysis (BM 1-9)
Wood Beam Design : Beam 1- Typical Header 3' Max Span
Calculations per NDS 2018, IBC 2018, CBC 2019, ASCE 7-16

Wood Beam Design : Beam 2- Typical Header 6' Max Span

Calculations per NDS 2018, IBC 2018, CBC 2019, ASCE 7-16
BEAM Size: 6x8, Sawn, Fully Unbraced

Applied Loads
Beam self weight calculated and added to loads
Unif Load: $D=0.2490$, $L r=0.220 \mathrm{k} / \mathrm{ft}$, Trib= 1.0 ft
Point: $D=0.6650, \mathrm{Lr}=0.70 \mathrm{k} @ 3.0 \mathrm{ft}$

Wood Beam Design : Beam 3- Kitchen Header 9' Max Span

Calculations per NDS 2018, IBC 2018, CBC 2019, ASCE 7-16

Wood Beam Design : Beam 4- Great Room Flush Set Beam
Calculations per NDS 2018, IBC 2018, CBC 2019, ASCE 7-16

Wood Beam Design : Beam 5-Garage Door Header

Calculations per NDS 2018, IBC 2018, CBC 2019, ASCE 7-16
$\begin{array}{ll}\text { BEAM Size: } & \text { 5.125x15, GLB, Fully Unbraced }\end{array}$

Wood Species: DF/DF

Species	F/DF				Wood Grad	V4			
Fb - Tension	2,400.0 psi	Fc-Prll	1,650.0 psi	Fv	265.0 psi	Ebend- xx	1,800.0 ksi	Density	31.210 pcf
Fb-Compr	1,850.0 psi	Fc-Perp	650.0 psi	Ft	1,100.0 psi	Eminbend - xx	950.0 ksi		

Wood Grade : $24 \mathrm{~F}-\mathrm{V} 4$

Applied Loads
Beam self weight calculated and added to loads
Unif Load: $D=0.3030, L r=0.240 \mathrm{kft}$, Trib= 1.0 ft
Point: $\mathrm{D}=1.330, \mathrm{Lr}=1.40 \mathrm{k} @ 4.50 \mathrm{ft}$

Wood Beam Design : Beam 6- Roof support beam @ Line 5
Calculations per NDS 2018, IBC 2018, CBC 2019, ASCE 7-16

4555 El Camino Real
Suite H
Atascadero, CA

Wood Beam Design : Beam 7- Entry Cantilever Support Beam

Calculations per NDS 2018, IBC 2018, CBC 2019, ASCE 7-16
BEAM Size:
2-1.75x14, Microllam LVL, Fully Unbraced Using Allowable Stress Design with ASCE 7-16 Load Combinations, Major Axis Bending
Wood Species: iLevel Truss Joist
Wood Grade : MicroLam LVL 2.0 E
Fb - Tension 2,600.0 psi Fc-Prll 2,510.0 psi Fv 285.0 psi Ebend- xx $\quad 2,000.0 \mathrm{ksi}$ Density 42.010 pc
Applied Loads
Beam self weight calculated and added to loads
Unif Load: $D=0.0470, \mathrm{Lr}=0.050 \mathrm{k} / \mathrm{ft}$, Trib= 1.0 ft

Wood Beam Design : Beam 8- Typical Header 3' Max Span w/ GT Support
Calculations per NDS 2018, IBC 2018, CBC 2019, ASCE 7-16
BEAM Size: $\quad \mathbf{6 x 6}$, Sawn, Fully Unbraced Using Allowable Stress Design with ASCE 7-16 Load Combinations, Major Axis Bending

Wood Species	Douglas Fir-La				Wood G	: No. 1			
Fb - Tension	1,350.0 psi	Fc - Pril	925.0 psi	Fv	170.0 psi	Ebend- xx	1,600.0 ksi	Density	31.210 pcf
Fb - Compr	1,350.0 psi	Fc - Perp	625.0 psi	Ft	675.0 psi	Eminbend - xx	580.0 ksi		

Applied Loads

Beam self weight calculated and added to loads
Unif Load: $D=0.2590, L r=0.220 \mathrm{k} / \mathrm{ft}$, Trib= 1.0 ft
Point: $D=1.250, \mathrm{Lr}=1.0 \mathrm{k}$ @ 1.50 ft

4555 El Camino Real
Suite H
Atascadero, CA

Wood Beam Design : Beam 9- Great Room Lower Header

Calculations per NDS 2018, IBC 2018, CBC 2019, ASCE 7-16

BEAM Size :	6x10, Sawn, Using Allowable	Unbra ss Design	SCE		ations,	Axis Bending			
Wood Species	Douglas Fir-Larch				Wood Gr	No. 1			
Fb-Tension	1,350.0 psi	Fc - Pril	925.0 psi	Fv	170.0 ps	Ebend	1,600.0 ksi	Density	31.210 pcf
Fb - Compr	1,350.0 psi	Fc - Perp	625.0 psi	Ft	675.0 psi	Eminbend - xx	580.0 k		

Applied Loads

Beam self weight calculated and added to loads
Unif Load: $D=0.230, L r=0.20 \mathrm{k} / \mathrm{ft}$, Trib= 1.0 ft
Design Summary
Max fb/Fb Ratio fb : Actual : Fb : Allowable
Load Comb:
Max fv/FvRatio = fv: Actual : Fv : Allowable : Load Comb :

$+\mathrm{D}+\mathrm{Lr}+\mathrm{H}$ $\begin{array}{lllll}\underline{D} & \underline{L} & \underline{\mathrm{Lr}} & \underline{S} & \underline{\mathrm{~W}}\end{array}$

Level, Roof: Joist
1 piece(s) 14 " TJ I® 360 @ 16" OC

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	724 @ $21 / 2^{\prime \prime}$	1881 (3.50")	Passed (38\%)	1.25	1.0 D + 1.0 Lr (All Spans)
Shear (lbs)	709 @ 3 1/2"	2444	Passed (29\%)	1.25	1.0 D + 1.0 Lr (All Spans)
Moment (Ft-lbs)	5025 @ 14' $31 / 2^{\prime \prime}$	9169	Passed (55\%)	1.25	1.0 D + 1.0 Lr (All Spans)
Live Load Defl. (in)	0.657 @ 14' 3 1/2"	1.408	Passed (L/514)	--	1.0 D + 1.0 Lr (All Spans)
Total Load Defl. (in)	1.249 @ 14' 3 1/2"	1.878	Passed (L/271)	--	1.0 D + 1.0 Lr (All Spans)

System : Roof Member Type : Joist Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD Member Pitch : 0/12

- Deflection criteria: LL (L/240) and TL (L/180).
- Allowed moment does not reflect the adjustment for the beam stability factor.

Supports	Bearing Length			Loads to Supports (Ibs)			
	Available	Required	Dead	Roof Live	Total	Accessories	
1-Stud wall - DF	$3.50^{\prime \prime}$	$3.50^{\prime \prime}$	$1.75^{\prime \prime}$	343	381	724	Blocking
2 - Stud wall - DF	$3.50^{\prime \prime}$	$3.50^{\prime \prime}$	$1.75^{\prime \prime}$	343	381	724	Blocking

- Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$4^{\prime} 7^{\prime \prime}$ o/c	
Bottom Edge (Lu)	$28^{\prime} 7 \mathrm{o}$ o/c	

-TJI joists are only analyzed using Maximum Allowable bracing solutions.
-Maximum allowable bracing intervals based on applied load.

Vertical Load	Location	Spacing	Dead $\mathbf{(0 . 9 0)}$	Roof Live (non-snow: 1.25)	Comments
1 - Uniform (PSF)	0 to $28^{\prime} 7 \prime \prime$	$16^{\prime \prime}$	18.0	20.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Nick McClure MS Professional Engineering, Inc. (805) 462-2282 nick@msdpe.com	

Allowable Point Loads on Doug Fir Wood Posts / Columns

Post Size	Height	$\mathrm{L}_{\mathrm{e}} / \mathrm{d}$	$\mathrm{F}_{\text {CE }}$	C_{p}	$F_{c}{ }^{\prime \prime}$	$\mathrm{F}_{\mathrm{c}}{ }^{\prime}$	Area of post	$\mathrm{P}_{\text {Allow }}$
(inches)	(feet)	(in / in)	(psi)		(psi)	(psi)	$\left(\right.$ in ${ }^{2}$)	(lbs)
4×4	8	27.4	638	0.38	1495	568	12.25	6958
	9	30.9	523	0.32	1495	475	12.25	5819
	10	34.3	408	0.26	1495	382	12.25	4680
	11	37.7	346	0.22	1495	327	12.25	4000
	12	41.1	283	0.18	1495	271	12.25	3320
	13	44.6	246	0.16	1495	237	12.25	2897
	14	48.0	208	0.14	1495	202	12.25	2475
4×6	8	27.4	638	0.39	1430	564	19.25	10857
	9	30.9	523	0.33	1430	472	19.25	9086
	10	34.3	408	0.27	1430	380	19.25	7315
	11	37.7	346	0.23	1430	325	19.25	6256
	12	41.1	283	0.19	1430	270	19.25	5198
	13	44.6	246	0.16	1430	236	19.25	4533
	14	48.0	208	0.14	1430	201	19.25	3869
4×8	8	27.4	638	0.41	1365	560	25.38	14210
	9	30.9	523	0.34	1365	470	25.38	11914
	10	34.3	408	0.28	1365	379	25.38	9617
	11	37.7	346	0.24	1365	325	25.38	8234
	12	41.1	283	0.20	1365	270	25.38	6851
	13	44.6	246	0.17	1365	236	25.38	5976
	14	48.0	208	0.15	1365	201	25.38	5100
6×6	8	17.5	1280	0.91	475	431	30.25	13038
	9	19.6	1050	0.87	475	415	30.25	12554
	10	21.8	819	0.84	475	399	30.25	12070
	11	24.0	694	0.79	475	378	30.25	11419
	12	26.2	569	0.75	475	356	30.25	10769
	13	28.4	494	0.70	475	331	30.25	10013
	14	30.5	418	0.64	475	306	30.25	9257
	15	32.7	638	0.59	475	282	30.25	8531
	16	34.9	320	0.54	475	258	30.25	7805
	17	37.1	408	0.50	475	238	30.25	7184
	18	39.3	253	0.46	475	217	30.25	6564
	19	41.5	283	0.42	475	200	30.25	6035
	20	43.6	205	0.38	475	182	30.25	5506
6×8	8	17.5	1280	0.91	475	431	41.25	17779
	9	19.6	1050	0.87	475	415	41.25	17119
	10	21.8	819	0.84	475	399	41.25	16459
	11	24.0	694	0.79	475	378	41.25	15572
	12	26.2	569	0.75	475	356	41.25	14685
	13	28.4	494	0.70	475	331	41.25	13654
	14	30.5	418	0.64	475	306	41.25	12623
	15	32.7	638	0.59	475	282	41.25	11633
	16	34.9	320	0.54	475	258	41.25	10643
	17	37.1	408	0.50	475	238	41.25	9797
	18	39.3	253	0.46	475	217	41.25	8951
	19	41.5	283	0.42	475	200	41.25	8229
	20	43.6	205	0.38	475	182	41.25	7508

Exterior Stud Capacity

CONTINUOUS FOOTING CHECK

Grade Beam Uplift Check:

depth of footing	$=24 \mathrm{in}$.
d^{\prime}	$=21 \mathrm{in}$.
\varnothing	$=0.9$
$\mathrm{f}_{\mathrm{Y} 40}$	$=40$
$\mathrm{f}_{\mathrm{Y} 60}$	$=60 \mathrm{ksi}$
$\mathrm{f}^{\prime} \mathrm{c}$	$=2.5 \mathrm{ksi}$
b	$=12 \mathrm{in}$.

\rightarrow| $\mathbf{A}_{\mathbf{s}}$ | a | $\mathrm{M}(\mathrm{kip} * \mathrm{ft})$ | $\mathrm{L}^{\prime}(\mathrm{ft})$ | $\mathbf{P}_{\text {max }}$ (lbs) |
| :---: | :---: | :---: | :---: | :---: |
| $\mathbf{0 . 3 1}$ | 0.729 | 28.8 | 7.7 | $\mathbf{8 7 9 4 . 3}$ |
| $\mathbf{0 . 6 2}$ | 1.459 | 56.6 | 10.8 | $\mathbf{1 2 3 2 6 . 6}$ |

(1) \# 5 rebar top \& bottom
(2) \# 5 rebar top \& bottom

Point Load Check:

depth of footing	$=$	24 in.	
d^{\prime}	$=$	21	in.
\varnothing		0.9	
$\mathrm{f}_{\mathrm{Y} 40}$	$=$	40	ksi
$\mathrm{f}_{\mathrm{Y} 60}$	$=$	60	ksi
$\mathrm{f}^{\prime}{ }_{\mathrm{c}}$	$=$	2.5 ksi	
b	$=$	12 in.	
f_{B}	$=$	1500 psf	

\rightarrow| $\mathbf{A}_{\mathbf{s}}$ | a | $\mathrm{M}\left(\mathrm{kip} \mathrm{ft}^{\prime}\right)$ | $\mathrm{L}^{\prime}(\mathrm{ft})$ | $\mathbf{P}_{\text {max }}$ (Ibs) |
| :---: | :---: | :---: | :---: | :---: |
| $\mathbf{0 . 3 1}$ | 0.729 | 28.8 | 6.2 | $\mathbf{9 2 9 2 . 9}$ |
| $\mathbf{0 . 6 2}$ | 1.459 | 56.6 | 8.7 | $\mathbf{1 3 0 2 5 . 5}$ |

(1) \# 5 rebar top \& bottom
(2) \# 5 rebar top \& bottom

FOUNDATION PAD CHECK

Foundation Pad Capacity

soil bearing capacity width of footing length of footing depth of footing area of footing			Bar Size	Area (in ${ }^{2}$)
	36	in	\#3	0.11
	36	in	\#4	0.2
	24	in	\#5	0.31
	9	ft^{2}	\#6	0.44
capacity			\#7	0.6
	1500	psf)($9 \mathrm{ft}^{2}$)	\#8	0.79
	13500	\#		
	$\begin{array}{r} 0.00 \\ \hline 1.555 \end{array}$	$\left.\frac{18}{\mathrm{in}^{2}}\right)(36 \mathrm{in})$		

At point load locations with loads $\leq 13,500 \#$, provide 36 " square $\times 24$ " deep concrete pad with (3) \#5 bars each way, top and bottom.

This Wall in File: E:IWork Folder\MSD Engineering Files\Hambly Homes - Anderson Residence\Engineerin

4555 El Camino Real, Ste. H
Atascadero, CA 93422
Title The Anderson Residence
Page: 2
(805) 462-2282

This Wall in File: E:IWork Folder\MSD Engineering Files\Hambly Homes - Anderson Residence\Engineerin

4555 El Camino Real, Ste. H
Atascadero, CA 93422
(805) 462-2282

Job \# :
Dsgnr: See Detail 9/D2
Page: 3
Description....
$8^{\prime}-8$ " Max Ht Conc Screen Wall

This Wall in File: E:\Work Folder\MSD Engineering Files\Hambly Homes - Anderson Residence\Engineerin

Vertical component of active lateral soil pressure IS considered in the calculation of Sliding Resistance.

Vertical component of active lateral soil pressure IS considered in the calculation of Overturning Resistance.

Tilt

Horizontal Deflection at Top of Wall due to settlement of soil

(Deflection due to wall bending not considered)

| Soil Spring Reaction Modulus | 250.0 pci |
| :--- | :--- | :--- |
| Horizontal Defl @ Top of Wall (approximate only) | 0.165 in |

The above calculation is not valid if the heel soil bearing pressure exceeds that of the toe,
because the wall would then tend to rotate into the retained soil.

PRELIMINARY

APPENDIX D: TRUSS LAYOUT

Design Date: 09/22/2021
Revise Date:

Revise Date:

695 Obispo Street / P.O. Box 850
Guadalupe, CA 93434

Phone (805)343-2555
Fax (805)343-2377
www.TrusPro.com

Project name:

Address:
City/State: Paso Robles CA
customer: Owner/Builder

TIMBER PRODUCTS INSPECTION, INC. dba GENERAL TESTING AND INSPECTION AGENCY

105 SE $124^{\text {th }}$ AVENUE VANCOUVER WA 98684

Timber Products Inspection (TP) and General Testing and Inspection (GTI) are code recognized by the International Conference of Building Officials (ICBO E.S.) which as of January 1, 2003 became the International Accreditation Service, Inc. (IAS) with the new assigned number of AA-664.

This is to verify that:

> TRUSPRO GUADALUPE CA $\# 7728$

Is currently an active member in good standing in the TP Third Party Truss Auditing Program and has been since

Brian Hensley
OCTOBER, 2012

Truss Manager- Western Division
Office: 360.449.3840
Cell: 208.818.77869
July 30, 2014

March 6, 2020

Truspro

695 Obispo Street
Guadalupe, CA 93434
To Whom It May Concern,
Timber Products Inspection, Inc. is proud to announce that the following truss manufacturing facility, Truspro is a subscriber to our nationally accredited "Truss Quality Auditing Program".

The TP Truss Quality Auditing Program is accredited under the IAS AA696 Evaluation Report and conforms to requirements for independent inspection of trusses under the International Building Code and International Residential Code.

The TP program involves daily in-plant quality control checks by plant personnel and periodic unannounced inspections by TP personnel for conformance to engineering and industry standards for fabricators. The TP quality stamp on each truss bearing the registered GTI log is your assurance that the trusses were fabricated in accordance with the TP Truss Quality Auditing Program and applicable sections of the IBC and IRC. Specific design loads and installation requirements are not covered by the TP Auditing Program.

Please note that the quality programs are automatically renewed unless requested otherwise. Any questions about this program, the facilities status in the program or the use of the TP registered quality stamps should be directed to Timber Products Inspection, Inc. at (770) 922-8000.

Sincerely,
Timber Products Inspection

Patrick C. Edwards, P.E.
Director of Engineering

ICC
EVALUATION SERVICE
www.icc-es.org \| (800) 423-6587 | (562) 699-0543 A Subsidiary of the International Code Council ${ }^{\circledR}$

DIVISION: 0600 00—WOOD, PLASTICS AND COMPOSITES

Section: 0617 53-Shop-Fabricated Wood Trusses

REPORT HOLDER:

EAGLE METAL PRODUCTS

EVALUATION SUBJECT:

EAGLE METAL PRODUCTS EAGLE 20, EAGLE 18, EAGLE 16, EAGLE 20HS, EAGLE 18HS AND EAGLE 18 HINGE PLATE CONNECTOR TRUSS METAL CONNECTOR PLATES

1.0 EVALUATION SCOPE

Compliance with the following codes:

■ 2018, 2015, 2012, 2009 and 2006 International Building Code ${ }^{\circledR}$ (IBC)
■ 2018, 2015, 2012, 2009 and 2006 International Residential Code ${ }^{\circledR}$ (IRC)

For evaluation for compliance with codes adopted by the Los Angeles Department of Building and Safety (LADBS), see ESR-1082 LABC and LARC Supplement.

Property evaluated:

Structural

2.0 USES

The Eagle Metal Products Eagle 20, Eagle 18, Eagle 16, Eagle 20HS, Eagle 18HS and Eagle 18 Hinge Plate Connector truss metal connector plates are used as joint connectors of light-framed wood roof and floor trusses.

3.0 DESCRIPTION

3.1 Eagle 20:

Eagle 20 truss metal connector plates are manufactured from minimum No. 20 gage [0.0356 inch (0.904 mm) total thickness], ASTM A653, SS designation, Grade 40, structural steel with a G60 galvanization coating [0.0005 inch (0.013 mm) thickness each side] with basemetal thickness of 0.0346 inch (0.878 mm). Each plate has ${ }^{3} / 8$-inch-long (9.5 mm) teeth that are stamped in pairs and bent at right angles from the face of the plate. The teeth are spaced 1 inch $(25.4 \mathrm{~mm})$ on center along the length, and $1 / 4$ inch (6.4 mm) on center along the width, and are staggered ${ }^{3 / 32}$ inch (2.38 mm) off center. Each plate has eight teeth per square inch (1.24 teeth $/ \mathrm{cm}^{2}$). See Figure 2 for details.

3.2 Eagle 18:

Eagle 18 truss metal connector plates are manufactured from minimum No. 18 gage $[0.0466$ inch (1.184 mm) total thickness], ASTM A653, SS designation, Grade 40, structural steel with a minimum G60 galvanization coating [0.0005 inch (0.013 mm) thickness each side] with basemetal thickness of 0.0456 inch (1.158 mm). Eagle 18 truss metal connector plates are stamped identically to the Eagle 20 truss metal connector plates. See Figure 2 for details.

3.3 Eagle 16:

Eagle 16 truss metal connector plates are manufactured from minimum No. 16 gage [0.0575 inch (1.461 mm) total thickness], ASTM A653, SS designation, Grade 40, structural steel with a G60 galvanization coating [0.0005 inch (0.013 mm) thickness each side] with basemetal thickness of 0.0565 inch (1.435 mm). Each plate is stamped with slightly staggered rows of slots, punched to form two teeth in each slot, with one tooth slightly longer than the other. Teeth are ${ }^{7 / 16}$ inch (11.1 mm) and $5 / 16$ inch (7.9 mm) long, and are formed with a slight twist that alternates (twists in the opposite direction) every third row. Slots are $5 / 32$ inch (4 mm) in width and $7 / 16$ inch (11.1 mm) in length. The slots are spaced every 1 inch (25.4 mm) along the plate length and every $1 / 3$ inch (8.5 mm) along the plate width. Every third row of slots is staggered $1 / 8$ inch (3.2 mm). Each plate has six teeth per square inch of plate area (0.93 tooth $/ \mathrm{cm}^{2}$). See Figure 3 for details.

3.4 Eagle 20HS:

Eagle 20 HS truss metal connector plates are manufactured from minimum No. 20 gage [0.0356 inch (0.904 mm) total thickness], ASTM A653, HSLAS designation, Grade 60, structural steel with a G60 galvanization coating [0.0005 inch (0.013 mm) thickness each side] with base-metal thickness of 0.0346 inch $(0.878 \mathrm{~mm})$. Each plate has $3 / 8$-inch-long (9.5 mm) teeth that are stamped in pairs and bent at right angles from the face of the plate. The teeth are spaced 1 inch (25.4 mm) on center along the length, and $1 / 4$ inch (6.4 mm) on center along the width, and are staggered $3 / 32$ inch (2.4 mm) off center. Each plate has six teeth per square inch (1.24 teeth $/ \mathrm{cm}^{2}$), and every fourth row is removed. See Figure 4 for details.

3.5 Eagle 18HS:

Eagle 18 HS truss metal connector plates are manufactured from minimum No. 18 gage [0.0466 inch (1.184 mm) total thickness], ASTM A653, HSLAS designation, Grade 60, structural steel with a G60 galvanization coating [0.0005 inch (0.013 mm) thickness

[^0]4,15

GENERAL NOTES

Trusses are not marked in any way to identify the frequency or location of temporary lateral restraint and diagonal bracing. Follow the recommendations for handling, installing and temporary restraining and bracing of trusses. Refer to BCSI - Guide to Good Practice for Handling, Installing, Restraining. \& Bracing of Metal Plate Connected Wood Trusses*** for more detailed information.
Truss Design Drawings may specify locations of permanent lateral restraint or reinforcement for individual truss members. Refer to the BCSIB3*** for more information. All other permanent bracing design is the responsibility of the building designer.

NOTAS GENERALES

Los trusses no están marcados de ningún modo que identinque la frecuencia olocalización de restriccion lateral yarriostre diagonal temporales. Use las recomendaciones de manejo, instalación, restricción y arriostre temporal de los trusses. Vea el folleto BCSI - Guía de Buena Práctica para el Manejo, Instalación, Restricción y Arriostre de los Trusses de Madera Conectados con Placas de Metal ${ }^{* * *}$ para información más detallada.
Los dibujos de diseño de los trusses pueden especificar las localizaciones de restricción lateral permanente o refuerzo en los miembros individuales del truss. Vea la hoja resumen BCSI-B3*** para más información. EI resto de los disenios de arriostres permanentes son la responsabilidad del diseñador del edificio.

WARNINGI The consequences of improper handling, erecting, installing, restraining and bracing can result in a collapse of the structure, or worse, serious personal injury or death.
IADVERTENCIA! El resultado de un manejo, levantamiento, instalación, restricción y arrisotre incorrecto puede ser la caida de la estructura o aún peor, heridos o muertos.
cantripnan Exercise care when removing banding and handling trusses to avoid damaging trusses and prevent injury. Wear personal protective equipment for the eyes, feet, hands and head when working with trusses.
acelmell Utilice cautela al quitar las ataduras o los pedazos de metal de sujetar para evitar daño a los trusses y prevenir la herida personal. Lleve el equipo protectivo personal para ojos, pies, manos y cabeza cuando trabaja con trusses.

A

HANDLTNG
MANEJO
NOTICE Avoid lateral bending. Evite la flexión lateral.
NOTICE The contractor is responsible for properly receiving, unloading and storing the trusses at the jobsite. Unload trusses to smooth surface to prevent damage.
El contratista tiene la responsabilidad de recibir, descargar y almacenar adecuadamente los trusses en la obra. Descargue los trusses en la tierra liso para prevenir el daño.

V Trusses may be unloaded directly on the ground at the time of delivery or stored temporarily in contact with the ground after delivery. If trusses are to be stored for more than one week, place blocking of sufficient height beneath the stack of trusses at $8^{\prime \prime}(2.4 \mathrm{~m})$ to $10^{\prime}(3 \mathrm{~m})$ on-center (o.c.).
Los trusses pueden ser descargados directamente en el suelo en aquel momento de entrega o almacenados temporalmente en contacto con el suelo después de entrega. Si los trusses estarán guardados para más de una semana, ponga bloqueando de altura suficiente detrás de la pila de los trusses a 8 hasta 10 pies en centro (o.c.).

- For trusses stored for more than one week, cover bundles to protect from the environment.
Para trusses guardados por más de una semana, cubra los paquetes para protegerios del ambiente. Refer to BCSI*** for more detailed information pertaining to handling and jobsite storage of trusses.

Vea el folleto BCSI*** para información más detallada sobre el manejo y almacenado de los trusses en área de trabajo.

HOISTING AND PLACEMENT OF TRUSS BUNDLES

RECOMENDACIONES PARA LEVANTAR PAQUETES DE TRUSSES

(1) DON'T overload the crane.

NO sobrecargue la grúa.
(1) NEVER use banding to lift a bundle,

NUNCA use las ataduras para levantar un paquete.
V A single lift point may be used for bundles of top chord pitch trusses up to $45^{\prime}(13.7 \mathrm{~m})$ and parallel chord trusses up to $30^{\prime}(9.1 \mathrm{~m})$.
Use at least two lift points for bundles of top chord pitch trusses up to $60^{\prime}(18.3 \mathrm{~m})$ and parallel chord trusses up to $45^{\prime}(13.7 \mathrm{~m})$. Use at least three lift points for bundles of top chord pitch trusses $>60^{\prime}(18.3 \mathrm{~m})$ and parallel chord trusses $>45^{\prime}(13.7 \mathrm{~m})$.
Puede usar un solo lugar de levantar para paquetes de trusses de la cuerda superior hasta 45^{\prime} y trusses de cuerdas paralelas de 30^{\prime} o menos. Use por lo menos dos puntos de levantar con grupos de trusses de cuerda superior inclinada
hasta $60^{\prime} y$ trusses de cuerdas paralelas hasta 45'. Use por lo menos dos puntos de levantar con grupos de trusses de cuerda superior inclinada mas de 60^{\prime} y trusses de cuerdas paralelas mas de 45'.

MECHANICAL HOISTING RECOMMENDATIONS FOR SINGLE TRUSSES

 RECOMENDACIONES PARA LEVANTAR TRUSSES INDIVIDUALESNOTICE Using a single pick-point at the peak can damage the truss.
El uso de un solo lugar en el pico para levantar puede hacer daño al truss.

(Hold each truss in position with the erection equipment until top chord temporary lateral restraint is installed and the truss is fastened to the bearing points.

Sostenga cada truss en posición con equipo de grúa hasta que la restricción lateral temporal de la cuerda superior esté instalado y el truss está asegurado en los soportes.

INSTALLATION OF SINGLE TRUSSES BY HAND
 RECOMMENDACCIONES DE LEVANTAMIENTO DE TRUSSES INDIVIDUALES POR LA MANO

Trusses 20^{\prime} (6.1 m) or less, support near peak. Soporte cerca al pico los trusses de 20 pies o menos.

(v) Trusses 30° (9.1 m) or less, support at quarter points. Soporte de los cuartos de tramo los trusses de 30 pies o menos.

TEMPORARY RESTRAINT \& BRACING RESTRICCIÓN Y ARRIOSTRE TEMPORAL

NOTICE \quad Refer to BCSI-B2*** for more information.
Vea el resumen BCSI-B2*** para más información.
V Locate ground braces for first truss directly In line with all rows of top chord temporary lateral restraint (see table in the next column). Coloque los arriostres de tierra para el primer truss directamente en línea con cada una de las filas de restricción lateral temporal de la cuerda superior (vea la tabla en la próxima columna).

Brace first truss securely before erection of additional trusses.

DO NOT walk on unbraced trusses. NO camine en trusses sueltos.

WARNINGI Do not over load supporting structure with truss bundle.
IADVERTENCIAI No sobrecargue la estructura apoyada con el paquete de trusses.
V Place truss bundles in stable position.
Puse paquetes de trusses en una posición estable.
,

cion
capumactil Use special care in windy weather or near power lines and airports.
axturelay Utilice cuidado especial en días ventosos o cerca de cables eléctricoso de aeropuertos.

V Use proper rig- Use equipo apropiado ging and hoisting para levantar e
improvisar.

(1) DO NOT store unbraced bundles upright.
orticalmente trusses sueltos.

Q

NO almacene en tierra

STEPS TO SETTING TRUSSES

LAS MEDIDAS DE LA INSTALACIÓN DE LOS TRUSSES

(V 1) Install ground bracing. 2) Set first truss and attach securely to ground bracing. 3) Set next 4 trusses with short member temporary lateral restraint (see below). 4) Install top chord diagonal bracing (see below). 5) Install web member plane diagonal bracing to stabilize the first five trusses (see below). 6) Install bottom chord temporary lateral restraint and diagonal bracing (see below). 7) Repeat process with groups of four trusses until all trusses are set.

1) Instale los arriostres de tierra. 2) Instale el primero truss y ate seguramente al arriostre de tierra. 3) Instale los próximos 4 trusses con restricción lateral temporal de miembro corto (vea abajo). 4) Instale el arriostre diagonal de la cuerda superior (vea abajo). 5) Instale arriostre diagonal para los planos de los miembros secundarios para estabilice los primeros cinco trusses (vea abajo). 6) Instale la restricción lateral temporal y arriostre diagonal para la cuerda inferior (vea abajo). 7) Repita éste procedimiento en grupos de cuatro trusses hasta que todos los trusses estén instalados.
NOTICE Refer to BCSI-B2*** for more information.
Vea el resùmen BCSI-B2*** para más información.

RESTRAINT/BRACING FOR ALL PLANES OF TRUSSES

RESTRICCIÓN/ARRIOSTRE PARA TODOS PLANOS DE TRUSSES

This restraint \& bracing method is for all trusses except 3×2 and 4×2 parallel chord trusses (PCTs). See top of next column for temporary restraint and bracing of PCTS.
Este método de restricción y arriostre es para todo trusses excepto trusses de cuerdas paralelas (PCTs) 3×2 y 4×2. Vea la parte superior de la columna para la restricción y arriostre temporal de PCTs.

1) TOP CHORD - CUERDA SUPERIOR

Truss Span Longitud de Tramo	Top Chord Temporary Lateral Restraint (TCTLR) Spacing Espaciamiento del Arriostre Temporal de la Cuerda Superior
$\begin{aligned} & \hline \text { Up to } 30^{\prime} \\ & (9.1 \mathrm{~m}) \\ & \hline \end{aligned}$	$10^{\prime}(3 \mathrm{~m})$ o.c. max.
$\begin{aligned} & 30^{\prime}(9.1 \mathrm{~m})- \\ & 45^{\prime}(13.7 \mathrm{~m}) \\ & \hline \end{aligned}$	$8^{\prime}(2.4 \mathrm{~m})$ o.c. max.
$\begin{gathered} 45^{\prime}(13.7 \mathrm{~m})- \\ 60^{\prime}(18.3 \mathrm{~m}) \\ \hline \end{gathered}$	$6^{\prime}(1.8 \mathrm{~m})$ o.c. max.
$\begin{aligned} & 60^{\prime}(18.3 \mathrm{~m})- \\ & 80^{\prime}(24.4 \mathrm{~m})^{*} \\ & \hline \end{aligned}$	$4^{\prime}(1.2 \mathrm{~m})$ o.c. max.

${ }^{*}$ Consult a Registered Design Professional for trusses longer than 60' (18.3 m).
*Consulte a un Professional Registrado de Diseño para trusses más de 60 pies.

See BCSI-B2*** for TCTLR options.
Vea el BCSI-B2*** para las opciones de TCTLR.
NOTICE Refer to BCSI-B3*** for Gable End Frame restraint/bracing/ reinforcement information.
Para información sobre restricción/arriostre/refuerzo para Armazones Hastiales vea el resumen BCSI-B3***
Note: Ground bracing not shown for clarity.
(Repeat diagonal braces for each set of 4 trusses.
Repita los arrisotres diagonales para cada grupo de 4 trusses.
2) WEB MEMBER PLANE - PLANO DE LOS MIEMBROS SECUNDARIOS
 as bottom chord lateral restraint

3) BOTTOM CHORD - CUERDA INFERIOR

Diagonal braces every 10 truss spaces $20^{\prime}(6.1 \mathrm{~m})$ max.

RESTRAINT \& BRACING FOR 3×2 AND 4×2 PARALLEL CHORD TRUSSES
RESTRICCIÓN Y ARRIOSTRE PARA TRUSSES DE CUERDAS PARALELAS 3×2 Y 4×2
NOTICE Refer

'Top chord temporary lateral restraint spacing shall be 10 ' $(3 \mathrm{~m}) \mathrm{occ}$. max. for 3×2 chords and $15^{\prime}(4.6 \mathrm{~m}) 0 . c$. for 4×2 chords.

INSTALLING - INSTALACIÓN

(\mathbf{V} Tolerances for Out-of-Plane.
Tolerancias para Fuera-de-Plano.

\checkmark Tolerances for
Out-of-Plumb.
Tolerancias para
Fuera-de-Plomada.

CONSTRUCTION LOADING
 CARGA DE CONSTRUCCIÓN

(1) DO NOT proceed with construction until all lateral restraint and bracing is securely and properly in place.

NO proceda con la construcción hasta que todas las restricciones laterales y los arriostres estén colocados en forma apropiada y segura.
(1) DO NOT exceed maximum stack heights. Refer to BCSI-B4*** for more information.
NO exceda las alturas máximas de montón. Vea el resumen BCSI-B4*** para más información.

皿

(1) NEVER stack materials near a peak or at mid-span. NUNCA amontone los materiales cerca de un pico.
(1) DO NOT overload small groups or single trusses. NO sobrecargue pequeños grupos o trusses individuales.
(V) Place loads over as many trusses as possible.

Coloque las cargas sobre tantos trusses como sea posible.
(V) Position loads over load bearing walls. Coloque las cargas sobre las paredes soportantes.

ALTERATIONS - ALTERACIONES

NOTICE Refer to BCSI-B5.***

Vea el resumen BCSI-B5.***
(1) DO NOT cut, alter, or drill any structural member of a truss unless specifically permitted by the truss design drawing.
NO corte, altere o perfore ningún miembro estructural de un truss, a menos que esté especificamente permitido en el dibujo del diseño
 del truss.

NOTICE Trusses that have been overloaded during construction or altered without the Truss Manufacturer's prior approval may render the Truss Manufacturer's limited warranty null and void. Trusses que se han sobrecargado durante la construcción o han sido alterados sin la autorización previa del Fabricante de Trusses, pueden hacer nulo y sin efecto la garantía limitada del Fabricante de Trusses.

To view a non-printing PDF of this document, visit wowv.sbcindustry.com/b1.
NOTE: The truss manufacturer and truss designer rely on the presumption that the contractor and crane operator (if applicable) are professionals sith the capability to undertake the work they have agreed to do on any glven project. If the contractor believes it needs
assistance in some aspect of the construction project it should seek assistance from a competent party. The methods and procedures outined in this document are intended to ensure that the overall construction techniques employed will put the trusses into place SAFELY. These recommendations for handling, installing, restraining and bracing trusses are based upon the collective experience of leading personnel involved with truss design, manufacture and instollation, but must, due to the nature of responsibilities involved, be presented Only as a GUIDE for use by a qualified building designer or contractoc. It is not intended that these recommendations be interpreted as use of other Equivalent methods for restrieining/bracing and providing stability for the walls, columns, floors, roofs and all the interrelated structural building components as detemined by the contractor. Thus, SBCA and TPI expressly disclaim any responsibility for damages arising from the use, application, or reliance on the recommendations and information contained herein.

WARNING Disregarding permanent restraintbracing is a major cause of truss field performance problems and has been known to lead to roof or floor system collapse.
IADVERTENCIAI Descuidar el arriostre/restricción permanente es una causa principal de problemas de rendimiento del truss en campo y habia conocido a llevar al derrumbamiento del sistema del techo o piso.
NOTICE
Section 2303.4.1.3 of the International Building Code (IBC) requires the permanen individual truss member restraint/bracing for all trusses with clear spans 60 feet (18.3 m) or greater to be designed by a registered design professional.
Sección 2303.4.1.3 del International Building Code (IBC) requiere que la instalación temporal de restricción/arriostre para todos armazones con lapso libre de 60 pies (18.3 m) o más se diseña por un profesional del diseño registrado.
Restraint/Bracing Materials \& Fasteners
Materiales y Cierres de Restricción/Arriostre
(\downarrow commonly used restraintbracing materials include wood structural panels, gypsum board sheathing, stress-graded lumber, proprietary metal products, and metal purlins and straps.
Materiales comunes de arriostrar/ restringir incluyen paneles estructurales de madera, entablado de yeso, madera graduada por esfuerza, productos de metal patentados, y vigas de soporte y tiras de metal.

| MINIMUM ATTACHMENT REQUIREMENTS FOR LUMBER RESTRAINT/BRACING ${ }^{\prime 2}$ |
| :---: | :---: | :---: |\(\left|\begin{array}{c}Minimum Number of

Lumber Size

Nails per Connection\end{array}\right|\)| Minimum Nail Size |
| :---: | :---: |

1 Other attachment requirements may be speecified by the building designer or truss designer The gradel/size and attachment for bracing materials such as wood structural panest, gypsum board sheathing. proprietary metal restraintbracing products, and metal putins and straps are provided by the bvilding designer.

Permanent Bracing for the Various Planes of a Truss Arriostre Permanente para Varios Plamos de un Truss
\square Permanent bracing is important because it, a) prevents out-of-plane buckling of truss members,
b) helps maintain proper truss spacing, and c) resists and transfers lateral loads from wind and seismic forces.
El arriostre permanente es importante porque. a) impide el torcer fuera-de-plano de los miembros del truss,
b) ayuda en mantener espaciamiento apropiado de los trusses, y
c) resiste y pasa las cargas laterales de viento y fuerzas sismicas aplicadas al sistema del truss.
Trusses require permanent bracing within ALL of the following planes:

1. Top chord plane
2. Bottom chord plane
3. Web member plane

Trusses requieren arriostre permanente dentro de TODOS los siguientes planos
Plano de la cuerda superior
2. Plano de la cuerda inferior
3. Plano del miembro secundario

CNUTMON The truss, or a portion of its members, will buckle (i.e., fail) at loads far less than design without permanent bracing.
REARHITLAKA Sin el arriostre permanente, del truss, o un parte de los miembros, torcerán (ej. fallarán) de cargas muchas menos que las cargas que el truss es diseñado a llevar.

1. Permanent Bracing for the Top Chord Plane

Arriostre Permanente para el Plano de la Cuerda Superior
\square Use plywood, oriented strand board (OSB), or wood or metal structural purlins that are properly braced. Attach to each truss.
Use contrachapado, panel de fibras orientado (OSB), o vigas de soporte de madera o metal que estén arriostrados apropiadamente. Sujete a cada truss.
\checkmark The Truss Design Drawing (TDD) provides information on the assumed support for the top chord. El Dibujo del Diseño de Truss (TDD) provee información sobre el soporte supuesto para la cuerda superior.
\square Fastener size and spacing requirements and grade for the sheathing, purlins and bracing are provided in the building code and/or by the build ing designer.
El tamaño de cierre y requisitos de espaciamien to y grado para el entablado, vigas de soporte y arriostre son provistos en el código del edificio
 y/o por el diseñador del edificio.
2. Permanent Bracing for the Bottom Chord Plane
Arriostre Permanente para el Plano de la Cuerda Inferior

V Use rows of continuous lateral restraint with diagonal bracing, gypsum board sheathing or some other ceiling material capable of functioning as a diaphragm.
Use filas de restricción lateral continua con arriostre diagonal, entablado de yeso o cualquier otro material para techo que pueda funcionar como un diafragma.
$\boxed{\square}$ The TDD provides information on the assumed support for the bottom chord. EI TDD provee información sobre el soporte supuesto para la cuerda inferior.
\checkmark Install bottom chord permanent lateral restraint at the spacing indicated on the TDD and/or by the building designer with a maximum of $10^{\prime}(3 \mathrm{~m})$ on center.
Instale restricción lateral permanente de la cuerda inferior al espaciamiento indicado en el TDD y/o por el diseriador del edificio con un máximo de 10 pies en el centro.

Diagonal bracing required at each end o the building, between each row of latera restraint, and at intervals of $\leq 20^{\prime}(6.1 \mathrm{~m})$
Attach diagonal bracing to each truss.

3. Permanent Bracing for the Web Member Plane

Noro Secundarlo
Web member permanent bracing collects and transfers buckling restraint forces and/or lateral loads from wind and seismic forces. The same bracing can often be used for both functions,
Arriostre permanente de los miembros secundarios recogen y pasan fuerzas de restricción de torcer y/o cargas laterales de viento y fuerzas sismicas. A menudo el mismo arriostre puede ser usado para ambos funciones.

Intluidual Web Member Permanent Restraint \& Bracing

Restriccion y Arriostre Permanente de Miembros Secundarios Individuales
∇ Check the TDD to determine which web members (if any) require restraint to resist buckling.
Revisa el TDD para determinar cuales miembros secundarios
(si algunos) requieren restricción para resistir el forcer.
\square Restrain and brace with,
A. Continuous lateral restraint \& diagonal bracing, or
B. Individual member web reinforcement.

Restrinja y arriostre con,
A. Restricción lateral continua y arriostre diagonal, o
B. Refuerzo de miembros secundarios individuales.
A. Continuous Lateral Restraint (CLR) 8 Dlagonal Bracing
Restricción Lateral Continua (CLR) y Arrlostre Dlagonal
\checkmark Attach each row of CLR at the locations shown on the TDD.
Sujete cada fila de CLR en las ubicaciones mostrados en el TDD.
(A) Install the diagonal bracing at an angle of less-than-or-equal-10 45° to the CLR and position so that it crosses the web in close proximity to the CLR. Attach the diagonal brace as close to the top and bottom chords as possible and to each web it crosses. Repeat every $20^{\prime}(6.1 \mathrm{~m})$ or less.
Instale el arriostre diagonal a un ángulo menos de o igual a 45° al CLR y colóquelo para que cruce la cuerda muy cerca del CLR. Sujete el arriostre diagonal tan próximo a las cuerdas superiores y inferiores como sea posible y a cada cuerda que lo cruza. Repita cada 20 pies (6.1 m) o menos.

EXAMPLES OF DIAGONAL BRACING WITH CONTINUOUS
LATERAL RESTRAINT

\checkmark Lateral restraint \& diagonal bracing can also be used with small groups of trusses (i.e., three or less). Attach the lateral restraint and diagonal brace to each web member.
Restricción lateral y arriostre diagonal también puede ser usado con grupos pequeños de trusses (ej. tres o menos). Sujete la restricción lateral y el arriostre diagonal a cada miembro.

bracinc. Please always consult a Recistered Desicu Professional.

ALWAYS DIAGONALLY BRACE THE CONTINUOUS LATERAL RESTRAINT:

 ¿SIEMPRE ARRIOSTRE LA RESTRICCION LATERAL CONTHMUA DLACOMALMENTE!
8. Individual Web Member Relnforcement

Refuerco de Milembros Secundarios Indhriduales
T-, L-, Scab, l-, U-Reinforcement, proprietary metal reinforcement and stacked web products provide an alternative for resisting web buckling.
T-, L-, costra, I-, U-Refuerzo, refuerzo de metal patentando y productos de miembros secundarios amontonados proveen una alternativa para resistir el torcer de los miembros secundarios.
录
Nersirer
${ }^{\text {T-Reinforcement }}$

Metal

\square The following table may be used unless more specific information is provided.
La siguiente tabla puede ser usada a menos que información más especifica está provisfa.

WEB REINFORCEMENT FOR SINGLE PLY TRUSSES ${ }^{1}$								
Spacilied CLR	\$12a of Truss Web	Type a Size of Web Reinforcament				Grade of Web Relaforcement	MIaimum Length of Wab Alainforcement	Minimum Connection of Web Reinforcement to Web
		T	1	Scab ${ }^{2}$	I or U			
1 Row	2x4	2×4	2×4	2×4		Same species and grade or better than web member	90% of web orextend to within$6^{\circ}(150 \mathrm{~mm})$ of endof web memberwhichever isgreater	16d(0.131 $\times 3.5^{\circ}$) nals@ $6^{*}(150 \mathrm{~mm})$ on center ${ }^{2}$
	2x6	2×6	2×6	2×6				
	2×8	2×8	2×8	2×8				
2 Rows	2x4	---	---	\cdots	2-2x4			
	2×6	--	\cdots	\cdots	2-296			
	2×8	--	\ldots	---	2.2×8			

Maximum web length is 14 feet 14.3 m
${ }^{2}$ Arach Scab Remforcement to web with 2 rows of minimum $10 \mathrm{~d}\left(0.120 \times 3^{\circ}\right)$ nails at $6^{\circ}(150 \mathrm{~mm})$ on center
\square Some truss manufacturers provide additional assistance by using tags to mark the web members that require lateral restraint or reinforcement
Algunos fabricantes de trusses marcan en el truss las ubicaciones de refuerzo o restricción lateral de miembros secundarios con etiquetas similares a las arriba.

\& DIAGOMAL BRACHIG REQURED 	1
 	$1 \frac{\text { mi }}{\frac{m}{2}}$
RESTRICCIÓN LATERAL PERMANENTE Y ARROSTRE DIAGOMAL ES REQUERTDO	1 (6)

Meb Member Plane Permanent Buliding Stability Bracing to Transfer

 Wind 8 Selsmic ForcesArriostre de Establidad Permanente del EdFficio del Plano de Membros Secundarlos para Desplazar Fuerzas de Viento y Fuerzas Sismicas
\checkmark The web member restraint or reinforcement specified on a TDD is required to resist buckling due to axial forces caused by the in-plane loads applied to the truss. Additional restraint and bracing within the web member plane may also be required to transfer lateral forces due to wind and/or seismic loads applied perpendicular to the plane of the trusses. This restraint and bracing is typically specified by the building designer.
La restricción o refuerzo de miembros secundarios especificada en un TDD es requerido para resistir la deformación bajo fuerzas axiales causadas por cargas verticales aplicadas al truss. Restriccion adicional y el aparato ortopedico dentro del plano miembro de banda tambien puede ser necesaria para transferir fuerzas laterales debidas al viento y / o cargas sísmicas aplicadas perpendicular al plano de las cerchas. Esta restricción y arriostre es tipicamente provisto por el diseñador del edificio.

- Some truss designers provide general design tables and details to assist the building designer in determining the bracing required to transfer lateral loads due to wind and/or seismic forces from the gable end frame into the roof and/or ceiling diaphragm.
Algunos diseñadores de trusses proveen tablas y detalles de diseño generales para asistir el diseñador del edificio en determinar el arriostre requerido para pasar cargas laterales debidas a fuerzas de viento y/o fuerzas sismicas del armazón hastial al diafragma del techo.

Gable End Frames and Trusses with Sloped Bettom Chords
Ammarones Hastlales Y Trusses con Cuerdas Inferiores Pendlentes
\checkmark The gable end frame should always match the profile of the adjacent trusses to ensure the top of the end wall aligns with, and can be braced by, the ceiling diaphragm.
El armazón hastial siempre debe encajar el perfil de los trusses contiguous para permitir la instalación de restricción y arriostre apropiada de la cuerda inferior a menos que arriostre especial es diseñado para soportar la pared de extremo.

BQUrnew Using a flat bottom chord gable end frame with adjacent trusses that have sloped bottom chords is prohibited by some building codes as adequate bracing of this condition is difficult and sometimes impossible. Special end wall bracing design considerations are required by the building designer if the gable end frame profile does not match the adjacent trusses.

PCATFMELAE EI uso de un amazón hastial de la cuerda inferior con trusses contiguos cuales tienen cuerdas inferiores pendientes es prohibido por algunos códigos de edificios porque arriostre adecuado de esta condición es diffcil y a veces imposible. Consideraciones especiales de diseño para el arriostre de la pared de extremo son requeridos por el diseñador del edificio si el perfil del armazón hastial no hace juego con los trusses contiguos.

Permanent Bracing for Special Conditions

Arriostre Permanemte Para Condiciones Especiales

Sway Bracing-Arriostre de "Sway"

\square "Sway" bracing is installed at the discretion of the building designer to help stabilize the truss system and minimize the lateral movement due to wind and seismic loads. Arriostre de "sway" está instalado por la discreción del diseñador del edificio para ayudar en estabilizar el sistema de trusses y para minimizar el movimiento lateral debido a cargas de viento y cargas sísmicas.
(V) Sway bracing installed continuously across the building also serves to distribute gravity loads between trusses of varying stiffness.
Arriostre de "sway" que es instalada continuadamente al través del edificio también es usado para distribuir las cargas de gravedad entre trusses de rigidez variando.

Permanent Restralnteracing for the Top Chord In a Plgeytack Assembly
Restricción/Amiostre Permanemte para la Cuerda Superfor en an Ensamblafo de Piggyback
(Provide restraint and bracing by:

- using rows of minimum 4×2 stress-graded lumber CLR and diagonal bracing, or lumber CLR and diagonal bracing, or connecting the CLR into the roof diapt
or
adding structural sheathing or bracing adding stru
frames, or
- some other equivalent means.

Provee restricción y arriostre por: - usando filas de 4×2 CLR de madera graduada por esfuerzo y arriostre diagonal, o - conectando el CLR al diafragma del echo, o - anfadiendo entablado estructural o arm zanes de arriostre, o - algunos otros métodos equivalentes.

\checkmark Refer to the TDD for the maximum assumed spacing between rows of lateral restraint (e.g. purlins) attached to the top chord of the supporting truss.
Consulte el TDD para el espaciamiento máximo supuesto para sujetar la restricción lateral (p. ej., vigas) a la cuerda superior del truss soportante.
(The TDD provides the assumed thickness of the restraint and minimum connection requirements between the cap and the supporting truss or restraint.
El TDD provee el grosor supuesto de la restricción y los requisitos de conexión minimos entre la capa y el truss soportante o la restricción.
∇ If diagonal bracing is used to restrain the CLR(s), repeat at $10^{\prime}(3 \mathrm{~m})$ intervals, or as specified in the construction documents Si arriostre diagonal es usado para restringir el/los CLR(s), repita en intervalos de 10 pies o como especificado en los documentos de construcción.

TrusPro Structural Components Inc
P.O. Box 850

Guadalupe, CA. 93434
Phone: (805) 343-2555 Fax: (805) 343-2377
Steve@TrusPro.com www.TrusPro.com

Customer: _Owner/Builder
Contact:

Bill To		
Name:	_Owner/Builder	
Address:		
City, State, Zip:	, CA	
Phone:		

Qty	Truss ID	Profile	Span	Pitch	Wght.	Overhangs		Heel Heights		Height
						Left	Right	Left	Right	
8	J04A	\bigcirc	3-10-15	4	14			0-6-1	1-9-11	1-9-11
15	J06		5-10-15	4	22			0-6-1	2-5-11	2-5-11
8	J06A	$\%$	5-10-15	4	22			0-6-1	2-5-11	2-5-11
1	J06B		5-10-15	4	23			0-6-1	2-5-11	2-5-11
15	J08		7-10-15	4	28			0-6-1	3-1-11	3-1-11
6	J08A		7-10-15	4	29			0-6-1	3-1-11	3-1-11
2	J08AZ		7-10-15	4	29			0-6-1	3-1-11	3-1-11
1	J08B		7-10-15	4	29			0-6-1	3-1-11	3-1-11
7	J10		9-10-15	4	35			0-6-1	3-9-11	3-9-11
2	J10A		9-10-15	4	35			0-6-1	3-9-11	3-9-11
4	J10AX		5-10-15	4	45	4-0-0		1-10-1	3-9-11	3-9-11
2	J10AZ		9-10-15	4	41			0-6-1	3-9-11	3-9-11
1	J10B		9-10-15	4	41			0-6-1	3-9-11	3-9-11
2	J10C		9-8-4	4	34			0-6-1	3-8-13	3-8-13
7	J12		11-10-15	4	53			0-6-1	4-5-11	4-5-11
2	J12A		11-10-15	4	42			0-6-1	4-5-11	4-5-11
4	J12AX		7-10-15	4	54	4-0-0		1-10-1	4-5-11	4-5-11
2	J12AZ		11-10-15	4	42			0-6-1	4-5-11	4-5-11
1	J12B		11-10-15	4	50			0-6-1	4-5-11	4-5-11
4	J14		13-11-4	4	64			0-6-1	5-1-13	5-1-13
6	J14AX		9-11-4	4	67	4-0-0		1-10-1	5-1-13	5-1-13

WARRANTIES PROVISIONS:
Supplier warrants for one year from date of delivery that its manufactured Products shall be new and of industry standard quality in the trade and within the description set forth in this Agreement. Any items not manufactured by Supplier are warranted only as warranted by the manufacturer of such items, otherwise all such items are sold on an "AS IS" basis. THE FOREGOING WARRANTIES ARE EXCLUSIVE, AND ARE IN LIEU OF ALL OTHER WARRANTIES (WHETHER WRITTEN, ORAL, OR IMPLIED AND INCLUDING ANY REGARDING THE MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE) NOT SPECIFIED HEREIN, RESPECTING THIS CONTRACT. Supplier's warranty shall exclude losses caused by improper operating, storing, handling, installation, and bracing. Supplier's obligations and liabilities under this Contract are expressly and exclusively limited to repair or replacement of defective Products or, at the option of the Supplier, to the refund of the purchase price. IN NO EVENT SHALL THE CONTRACTOR BE ENTITLED TO RECOVER FOR INCIDENTAL, CONSEQUENTIAL, OR SPECIAL DAMAGE, INCLUDING THE LOSS OF PROFITS, OR OTHER COMMERCIAL LOSS.

DEFAULT AND TERMINATION PROVISIONS:

In case of a good faith claim against Supplier for any defect or non-conformity with respect to the Products sold, written notice setting forth such defect or nonconformity must be submitted to Supplier within 30 days of truss delivery. Supplier shall have no less than 7 business days from date of receipt of such notice to either accept such claim or commence any necessary repair or replacement of Product. Upon termination for convenience, Supplier shall be paid for all Products manufactured and delivered.

By signing below, it is agreed that at least one set of bracing and installation instructions have been received with this order.

Date:

All plates shown to be Eagle 20 unless otherwise noted.

Loading (psf)	General	CSI	Deflection	L/	(loc)	Allowed
Carried Loads (psf)	Bldg Code: CBC2019/	TC: 0.15 (7-8)	Vert TL: 0.07 in	L/999	(10-11)	L/240
TCLL: 20	TPI 1-2014	BC: 0.21 (11-12)	VertLL: 0.02 in	L/999	(11-12)	L/360
TCDL: 15(rake)	Rep Mbr: No	Web: 0.24 (3-12)	Cant/OHTL:0.01 in	2L/999	(1-1)	2L/120
BCLL: 0	Lumber D.O.L. :125\%		Cant/OHLL:0.01 in	2L/999	(1-1)	2L/120
BCDL: 10			HorzTL: 0.02 in		9	

Reaction

JT	Brg Combo	Brg Width	Rqd Brg Width	Max React	Max Grav Uplift Max MWFRS UpliftMax C\&C Uplift	Max Uplift	Max Horiz	
12	1	5.5 in	1.50 in	$1,539 \mathrm{lbs}$	\cdot	-296 lbs	\cdot	-296 lbs
9	1	5.5 in	1.50 in	$1,655 \mathrm{lbs}$	\cdot	-321 lbs	-	-321 lbs

Material

TC: DFL \#2 2×6
BC: DFL\#2 2×6
Web: SPF Stud 2×4

Bracing

TC: Sheathed or Purlins at 6-3-0, Purlin design by Others.
BC: Sheathed or Purlins at $10-0-0$, Purlin design by Others.

Loads

1) This truss has been designed for the effects due to 10 psf bottom chord live load plus dead loads.
2) This truss has been designed for the effects of wind loads in accordance with ASCE7-16 with the following user defined input: 110 mph (Factored),

Exposure C, Enclosed, Gable, Risk Category II, $\mathrm{h}=\mathrm{B}=\mathrm{L}=10 \mathrm{ft}$, Not End Zone Truss, Both end webs considered. DOL $=1.60$
3) Minimum storage attic loading has been applied in accordance with IBC 1607.1
4) A moving/sprinkler point load of 300 lbs to the TC and 300 lbs to the BC has been applied concurrent with other dead loads.

Load CaseLr1:StdLiveLoad

Distributed Loads Member	Location 1	Location 2	Direction	Spread	StartLoad	End Load	TribWidth
Top	$0-0-0$	$31-0-0$	Down	Proj	15 plf	15 plf	
Top	$0-0-0$	$12-2-6$	Down	Proj	20 plf	18.67 plf	
Top	$12-2-6$	$13-11-4$	Down	Proj	18.67 plf	1.25 plf	
Top	$17-0-12$	$18-9-11$	Down	Proj	1.25 plf	18.67 plf	
Top	$18-9-11$	$31-0-0$	Down	Proj	18.67 plf	20 plf	

Allplates shown to be Eagle 20 unless otherwise noted.

Loading (psf)	General	$\begin{aligned} & \text { CSI } \\ & \text { TC: } 0.34(6-7) \end{aligned}$	Deflection	L/	(loc)	Allowed
TCLL: 20	Bldg Code: CBC2019/		Vert TL: 0.35 in	L/734	(9-10)	L/240
TCDL: 15(rake)	TPI 1-2014	BC: 0.59 (10-11)	VertLL: 0.14 in	L/999	(9-10)	L/360
BCLL: 0	Rep Mbr: Yes	Web: 0.46 (3-11)	Cant/OHTL: 0.05 in	2L/999	(7-8)	2L/120
BCDL: 10	Lumber D.O.L. : 125 \%		Cant/OHLL:0.02 in	2L/999	(7-8)	2L/120
			Horz TL: 0.04 in		8	

Reaction

JT	Brg Combo	Brg Width	Rqd Brg Width	Max React	Max Grav Uplift Max MWFRS UpliftMax C\&CUplift	Max Uplift	Max Horiz	
11	1	5.5 in	1.49 in	$1,393 \mathrm{lbs}$	\cdot	-79 lbs	-114 lbs	-114 lbs
8	1	5.5 in	1.59 in	$1,490 \mathrm{lbs}$	\cdot	-85 lbs	-145 lbs	-145 lbs

Material

TC: DRL\#2 2×6
BC: DFL\#2 2×4
Web: SPF Stud 2×4

Bracing

TC: Sheathed or Purlins at 6-3-0, Purlin design by Others.
BC: Sheathed or Purlins at $9-1-0$, Purlin design by Others.
Web: One Midpoint Row: 3-11, 5-8

Loads

1) This truss has been designed for the effects due to 10 psf bottom chord live load plus dead loads.
2) This truss has been designed for the effects of wind loads in accordance with ASCE7-16 with the following user defined input: 110 mph (Factored),

Exposure C, Enclosed, Gable, Risk Category II, $\mathrm{h}=\mathrm{B}=\mathrm{L}=10 \mathrm{ft}$, Not End Zone Truss, Both end webs considered. DOL $=1.60$
3) Minimum storage attic loading has been applied in accordance with IBC 1607.1
4) A moving/sprinkler point load of 300 lbs to the TC and 300 lbs to the BC has been applied concurrent with other dead loads.

Member Forces Table indicates: Member ID, max CSI, max axial foree, (max compr. foree if different from max axial foree). Only forres greater than 300lbs are shown in this table.

TC	1-2	0.322	460 lbs	(-153 lbs)	$3-4$	0.175	-1,220 lbs		5-6	0.319	535 lbs)	
	2-3	0.305	436 lbs	(-96 lbs)	4-5	0.174	-1,101 lbs		6-7	0.337	583 lbs	(-180 lbs)	
BC	7-8	0.171	-495 lbs		9-10	0.572	943 lbs		11-1	0.205	-396 lbs		
	8-9	0.536	954 lbs		10-11	0.593	$1,111 \mathrm{lbs}$	(-4 lbs)					
Web	2-11	0.095	-461 lbs		5-8	0.421	-1,569 lbs						
	3-11	0.463	-1,551 lbs		6-8	0.097	-461 lbs						

Notes

1) Unless noted otherwise, do not cut or alter any truss member or plate without prior approval from a Professional Engineer:
2) This truss has been designed using the green service reduction factors.
3) The fabrication tolerance for this roof truss is $20 \%(\mathrm{Cq}=0.80)$.
4) Brace bottom chord with approved sheathing or purlins per Bracing Summary.
5) Lateral bracing shown is for illustration purposes only and may be placed on either edge of truss member:
6) A creep factor of 2.00 has been applied for this truss analysis.
7) \boxtimes Indicates lateral bracing required perpendicular to the plane of the truss at either the midpoint (one shown) or third points (two shown), bracing by others. See BCSI-B3 for additional information. 8) Listed wind uplift reactions based on MWFRS \& C\&C loading.

			TrusPro Inc. 695 Obispo Street Guadalupe, CA 93434 Ph: (805)343-2555 Fax: (805)343-2377					Truss.2B Job: 5433M Date: 09/22/21 10:30:38 Page: 1 of 2 Notes: All connector plates to be Eagle 20 gauge unless otherwise noted	
$\begin{aligned} & \text { SPAN } \\ & 30-0-0 \end{aligned}$	$\begin{gathered} \text { PITCH } \\ 4 / 12 \end{gathered}$	$\begin{gathered} \text { QTY } \\ 1 \end{gathered}$	$\begin{aligned} & \mathrm{OHL} \\ & 0-0-0 \end{aligned}$	$\begin{aligned} & \text { OHR } \\ & 0-0-0 \end{aligned}$	$\begin{gathered} \text { CANTL } \\ 0-0-0 \end{gathered}$	$\begin{gathered} \text { CANTR } \\ 0-0-0 \end{gathered}$	$\begin{gathered} \text { PLYS } \\ 2 \end{gathered}$	SPACING 23.62 in	WGT/PLY 172 lbs
30-0-0									
	3-2-12	5-4-4		5-4-4			5-4-4	- 3-2-12	
	3-2-12	8-7-0		13-11-4			26-9	0-0	

All plates shown to be Eagle 20 unless otherwise noted.

Loading (psf)	General	CSI	Deflection	L/	(loc)	Allowed
Carried Loads (psf)	Bldg Code: CBC2019/	TC: 0.17 (2-3)	Vert TL: 0.19 in	L/999	(10-11)	L/240
TCLL: 20	TPI 1-2014	BC: 0.33 (11-12)	VertLL: 0.05 in	L/999	(11-12)	L/360
TCDL: 15(rake)	Rep Mbr: No	Web: 0.72 (7-10)	Cant/OHTL: 0.01 in	2L/999	(1-1)	2L/120
BCLL: 0	Lumber D.O.L. 125 \%		Cant/OHLL: 0.01 in	2L/999	(8-8)	2L/120
BCDL: 10			Horz TL: 0.04 in		9	

Reaction

JT	Brg Combo	Brg Width	Rqd Brg Width	Max React	Max Grav Uplift Max MWFRS UpliftMax C\&C Uplift	Max Uplift	Max Horiz		
14	1	5.5 in	1.50 in	$2,657 \mathrm{lbs}$	\cdot	-406 lbs	\cdot	-406 lbs	-21 lbs
9	1	5.5 in	1.50 in	$2,669 \mathrm{lbs}$	\cdot	-409 lbs	\cdot	-409 lbs	\cdot

Material

TC: DFL \#2 2×6
BC: DFL\#2 2×6
Web: SPF Stud 2×4

Bracing

TC: Sheathed or Purlins at 6-3-0, Purlin design by Others.
BC: Sheathed or Purlins at 10-0-0, Purlin design by Others.

Loads

1) This truss has been designed for the effects due to 10 psf bottom chord live load plus dead loads.
2) This truss has been designed for the effects of wind loads in accordance with ASCE7-16 with the following user defined input: 110 mph (Factored),

Exposure C, Enclosed, Gable, Risk Category II, $\mathrm{h}=\mathrm{B}=\mathrm{L}=10 \mathrm{ft}$, Not End Zone Truss, Both end webs considered. DOL $=1.60$
3) Minimum storage attic loading has been applied in accordance with IBC 1607.1
4) A moving/sprinkler point load of 300 lbs to the TC and 300 lbs to the BC has been applied concurrent withother dead loads.

Load CaseLr1:StdLiveLoad

Distributed Loads Member	Location 1	Location 2	Direction	Spread	StartLoad	End Load	TribWidth
Top	$0-0-0$	$30-0-0$	Down	Proj	19.37 plf	19.37 plf	
Top	$0-0-0$	$12-2-6$	Down	Proj	20 plf	18.67 plf	
Top	$12-2-6$	$13-11-4$	Down	Proj	18.67 plf	1.25 plf	
Top	$16-0-12$	$17-9-11$	Down	Proj	1.25 plf	18.67 plf	
Top	$17-9-11$	$30-0-0$	Down	Proj	18.67 plf	20 plf	

All plates shown to be Eagle 20 unless otherwise noted.

Loading (psf)	General	CSI	Deflection L	(loc)	Allowed
TCLL: 20	Bldg Code: $\begin{aligned} & \text { CBC2019/ } \\ & \\ & \text { TPI 1-2014 }\end{aligned}$	TC: 0.31 (1-2)	Vert TL: 0.54 in L/513	(9-10)	L/240
TCDL: 15(rake)		BC: 0.73 (10-11)	VertLL: 0.2 in L/999	(9-10)	L/360
BCLL: 0	$\begin{aligned} & \text { Rep Mbr: } \quad \text { Yes } \\ & \text { Lumber D.O.L. }: 125 \% \end{aligned}$	Web: 0.50 (3-11)	Cant/OHTL:0.03 in 2L/999	(1-1)	2L/120
BCDL: 10			Cant/OHLL:0.02 in UP 2L/999	(1-1)	2L/120
			Horz TL: 0.07 in	8	

Reaction

JT	Brg Combo	Brg Width	Rqd Brg Width	Max React	Max Grav Uplift Max MWFRS UpliftMax C\&CUplift	Max Uplift	Max Horiz	
11	1	5.5 in	1.48 in	$1,385 \mathrm{lbs}$	\cdot	-79 lbs	-91 lbs	-91 lbs
8	1	5.5 in	1.48 in	$1,385 \mathrm{lbs}$	\cdot	-79 lbs	-91 lbs	-91 lbs

Material

TC: DFL\#2 2×6
BC: DFL\#2 2×4
Web: SPF Sud 2 x 4

Bracing

TC. Sheathed or Purlins at 6-3-0, Purlin design by Others.
BC: Sheathed or Purlins at $10-0-0$, Purlin design by Others.
Web: One Midpoint Row: 3-11,5-8

Loads

1) This truss has been designed for the effects due to 10 psf bottom chord live load plus dead loads.
2) This truss has been designed for the effects due to a $1,000 \mathrm{lbs}$ (31.6 plf) drag load distributed along the TCrake from each direction.
3) This truss has been designed for the effects of wind loads in accordance with ASCE7-16 with the following user defined input: 110 mph (Factored),

Exposure C, Enclosed, Gable, Risk Category II, $\mathrm{h}=\mathrm{B}=\mathrm{L}=10 \mathrm{ft}$, Not End Zone Truss, Both end webs considered. DOL $=1.60$
4) Minimum storage attic loading has been applied in accordance with IBC 1607.1
5) A moving/sprinkler point load of 300 lbs to the TC and 300 lbs to the BChas been applied concurrent withother dead loads.

M	ber	Forces	Table indicates: Member ID, max CSI, max axial force, (max compr. force if different from max axial force). Only forces greater than 300lbs are shown in this table										
TC	1-2	0.306	310 lbs	$(-110 \mathrm{lbs})$	3-4	0.207	$-1,585 \mathrm{lbs}$		5-6	0.289	$312 \mathrm{lbs}$	$(-158 \mathrm{lbs})$	
	2-3	0.289	315 lbs	(-162 lbs)	$4-5$	0.207	-1,585 lbs		6-7	0.306	$310 \mathrm{lbs}$	$(-110 \mathrm{lbs})$	
BC	$\begin{array}{\|l} \hline 8-9 \\ 9-10 \\ \hline \end{array}$	$\begin{aligned} & \hline 0.730 \\ & 0.696 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 1,468 \mathrm{lbs} \\ & 1,217 \mathrm{lbs} \end{aligned}$	(-31 lbs)	10-11	0.730	1,468 lbs	(-31 lbs)					
Web	2-11 $3-11$	$\begin{aligned} & \hline 0.092 \\ & 0.495 \end{aligned}$	$\begin{array}{r} -452 \mathrm{lbs} \\ -1,712 \mathrm{lbs} \end{array}$		$\begin{array}{\|l\|} \hline 4-10 \\ 4-9 \end{array}$	$\begin{aligned} & \hline 0.148 \\ & 0.148 \end{aligned}$	$\begin{aligned} & 386 \mathrm{lbs} \\ & 390 \mathrm{lbs} \end{aligned}$		$\begin{aligned} & 5-8 \\ & 6-8 \end{aligned}$	$\begin{aligned} & \hline 0.495 \\ & 0.092 \end{aligned}$	$\begin{array}{r} -1,712 \mathrm{lbs} \\ -452 \mathrm{lbs} \end{array}$		

Notes

1) Unless noted otherwise, do not cut or alter any truss member or plate without prior approval from a Professional Engineer:
2) This truss has been designed using the green service reduction factors.
3) The fabrication tolerance for this roof truss is $20 \%(\mathrm{Cq}=0.80)$.
4) Brace bottom chord with approved sheathing or purlins per Bracing Summary.
5) Lateral bracing shown is for illustration purposes only and may be placed on either edge of truss member:
6) A creep factor of 2.00 has been applied for this truss analysis.
7) \triangle Indicates lateral bracing required perpendicular to the plane of the truss at either the midpoint (one shown) or third points (two shown), bracing by others. See BCSI-B3 for additional information. 8) Listed wind uplift reactions based on MWFRS \& C\&C loading.

All plates shown to be Eagle 20 unless otherwise noted.

Loading (psf)	General	CSI	Deflection L/	(loc)	Allowed
TCLL: 20	Bldg Code: CBC2019/	TC: 0.36 (1-2)	VertTL: $\quad 0.77$ in L/328	(11-12)	L/240
TCDL: 15(rake)	TPI 1-2014	BC: 0.90 (11-12)	VertLL: 0.3 in L/834	(11-12)	L/360
BCLL: 0	Rep Mbr: Yes	Web: 0.85 (3-13)	Cant/OHTL:0.08 in 2L/999	(13-1)	2L/120
BCDL: 10	Lumber D.O.L. :125\%		Cant/OHLL:0.04 in UP 2L/999 Horz TL: 0.05 in	$\begin{aligned} & (1-1) \\ & 10 \\ & \hline \end{aligned}$	2L/120

Reaction

JT	Brg Combo	Brg Width	Rqd Brg Width	Max React	Max Grav Uplift Max MWFRS UpliftMax C\&CUplift	Max Uplift	Max Horiz		
13	1	5.5 in	1.67 in	$1,568 \mathrm{lbs}$	\cdot	-54 lbs	-125 lbs	-125 lbs	$-1,003 \mathrm{lbs}$
10	1	5.5 in	1.50 in	$1,319 \mathrm{lbs}$	\cdot	-44 lbs	-52 lbs	-52 lbs	-

Material

TC: DFL \#2 2×6
BC: DFL\#2 2×4
Web: SPF Stud 2×4

Bracing

TC: Sheathed or Purlins at 6-3-0, Purlin design by Others.
BC: Sheathed or Purlins at 8-8-0, Purlin design by Others.
Web: One Midpoint Row: 7-10

Loads

1) This truss has been designed for the effects due to 10 psf bottom chord live load plus dead loads.
2) This truss has been designed for the effects due to a $1,000 \mathrm{lbs}$ (31.6 plf) drag load distributed along the TCrake from each direction.
3) This truss has been designed for the effects of wind loads in accordance with ASCE7-16 with the following user defined input: 110 mph (Factored),

Exposure C, Enclosed, Gable, Risk Category II, h=B=L=10 ft, Not End Zone Truss, Both end webs considered. DOL=1.60
4) Minimum storage attic loading has been applied in accordance with IBC 1607.1
5) A moving/sprinkler point load of 300 lbs to the TC and 300 lbs to the BChas been applied concurrent withother dead loads.

Load Case D1:Std Dead Load
Point Loads

Member	Location	Direction	Load	TribWidth
Bot	$13-0-0$	Down	50 lbs	
Bot	$17-0-0$	Down	50 lbs	

Member Forces Table indicates: Member ID, max CSI, max axial foree, (max compr. forre if different fiom max axial force). Only forres greater than 300lbs are shown in this table.

Notes

1) Unless noted otherwise, do not cut or alter any truss member or plate without prior approval from a Professional Engineer.
2) This truss has been designed using the green service reduction factors.
3) The fabrication tolerance for this roof truss is $20 \%(\mathrm{Cq}=0.80)$.

4) Brace bottom chord with approved sheathing or purlins per Bracing Summary.
5) Lateral bracing shown is for illustration purposes only and may be placed on either edge of truss member.
6) A creep factor of 2.00 has been applied for this truss analysis.
7) Indicates lateral bracing required perpendicular to the plane of the truss at either the midpoint (one shown) or third points (two shown), bracing by others. See BCSI-B3 for additional information. 8) Listed wind uplift reactions based on MWFRS \& C\&Cloading.

All plates shown to be Eagle 20 unless otherwise noted.

Loading (psf)	General	CSI	Deflection	L/	(loc)	Allowed
Carried Loads (psf)	Bldg Code: CBC2019/	TC: 0.15 (1-2)	Vert TL: 0.11 in	L/999	(10-11)	L/240
TCLL: 20	TPI 1-2014	BC: 0.23 (11-12)	VertLL: 0.03 in	L/999	(10-11)	L/360
TCDL: 15(rake)	Rep Mbr: No	Web: 0.48 (7-10)	Cant/OHTL:0.01 in	2L/999	(8-8)	2L/120
BCLL: 0	Lumber D.O.L. 125 \%		Cant/OHLL:0.01 in	2L/999	(8-8)	2L/120
BCDL: 10			Horz TL: 0.02 in		9	

Reaction

JT	Brg Combo	Brg Width	Rqd Brg Width	Max React	Max Grav Uplift Max MWFRS UpliftMax C\&CUplift	Max Uplift	Max Horiz		
14	1	5.5 in	1.50 in	$2,161 \mathrm{lbs}$	\cdot	-494 lbs	\cdot	-494 lbs	-21 lbs
9	1	5.5 in	1.50 in	$1,922 \mathrm{lbs}$	\cdot	-402 lbs	\cdot	-402 lbs	\cdot

Material

TC: DFL\#2 2×6
BC: DFL\#2 2×6
Web: SPF Stud 2×4

Bracing

TC: Sheathed or Purlins at 6-3-0, Purlin design by Others.
BC: Sheathed or Purlins at 10-0-0, Purlin design by Others.

Loads

1) This truss has been designed for the effects due to 10 psf bottom chord live load plus dead loads.
2) This truss has been designed for the effects of wind loads in accordance with ASCE7-16 with the following user defined input: 110 mph (Factored),

Exposure C, Enclosed, Gable, Risk Category II, $\mathrm{h}=\mathrm{B}=\mathrm{L}=10 \mathrm{ft}$, Not End Zone Truss, Both end webs considered. DOL $=1.60$
3) Minimum storage attic loading has been applied in accordance with IBC 1607.1
4) A moving/sprinkler point load of 300 lbs to the TC and 300 lbs to the BC has been applied concurrent with other dead loads.

Load CaseLr1:StdLiveLoad

Distributed Loads							
Member	Location 1	Location 2	Direction	Spread	StartLoad	End Load	TribWidth
Top	$0-0-0$	$12-2-6$	Down	Proj	20 plf	18.67 plf	
Top	$12-2-6$	$13-11-4$	Down	Proj	18.67 plf	1.25 plf	
Top	$16-0-12$	$17-9-11$	Down	Proj	1.25 plf	18.67 plf	
Top	$17-9-11$	$30-0-0$	Down	Proj	18.67 plf	20 plf	
Top	$0-0-0$	$30-0-0$	Down	Proj	19.37 plf	19.37 plf	

All plates shown to be Eagle 20 unless otherwise noted.

Loading (psf)	General	CSI	Deflection	L/	(loc)	Allowed
Carried Loads (psf)	Bldg Code: CBC2019/	TC: 0.11 (1-2)	Vert TL: 0.01 in	L/999	(7-8)	L/240
TCLL: 20	TPI 1-2014	BC: $0.06(7-8)$	VertLL: 0.01 in	L/999	(7-8)	L/360
TCDL: 15(rake)	Rep Mbr: No	Web: 0.06 (4-7)	Cant/OHTL: 0.01 in	2L/999	(1-1)	2L/120
BCLL: 0	Lumber D.O.L. :125\%		Cant/OHLL: 0.01 in	2L/999	(1-1)	2L/120
BCDL: 10			Horz TL: 0 in		6	

Reaction

JT	Brg Combo	Brg Width	Rqd Brg Width	Max React	Max Grav Uplift Max MWFRS UpliftMax C\&C Uplift	Max Uplift	Max Horiz	
8	1	5.5 in	1.50 in	588 lbs	\cdot	-210 lbs	-220 lbs	-220 lbs
6	1	5.5 in	1.50 in	586 lbs	\cdot	-213 lbs	-220 lbs	-220 lbs

Material

TC. DFL\#2 2×6
BC. DFL\#2 2×6
Web: SPF Stud 2 x 4

Bracing

TC: Sheathed or Purlins at 6-3-0, Purlin design by Others.
BC: Sheathed or Purlins at 10-0-0, Purlin design by Others.

Loads

1) This truss has been designed for the effects due to 10 psf bottom chord live load plus dead loads.
2) This truss has been designed for the effects of wind loads in accordance with ASCE7-16 with the following user defined input: 110 mph (Factored),

Exposure C, Enclosed, Gable, Risk Category II, $\mathrm{h}=\mathrm{B}=\mathrm{L}=10 \mathrm{ft}$, Not End Zone Truss, Both end webs considered. DOL $=1.60$
3) Minimum storage attic loading has been applied in accordance with IBC 1607.1
4) A moving/sprinkler point load of 300 lbs to the TC and 300 lbs to the BC has been applied concurrent with other dead loads.

LoadCaseLr1:StdLiveLoad

Distributed Loads Member	Location 1	Location 2	Direction	Spread	StartLoad	End Load	TribWidth
Top	$0-0-0$	$19-6-0$	Down	Proj	13.75 plf	13.75 plf	
Top	$0-0-0$	$8-0-0$	Down	Proj	18.13 plf	18.13 plf	
Top	$8-0-0$	$9-8-4$	Down	Proj	18.13 plf	1.25 plf	
Top	$9-9-12$	$11-6-0$	Down	Proj	1.25 plf	18.13 plf	
Top	$11-6-0$	$19-6-0$	Down	Proj	18.13 plf	18.13 plf	

All plates shown to be Eagle 20 unless otherwise noted.

Loading (psf)	General	CSI	Deflection	L/	(loc)	Allowed
TCLL: 20	Bldg Code: CBC2019/	TC: 0.27 (1-2)	VertTL: 0.08 in	L/999	(6-7)	L/240
TCDL: 15(rake)	TPI 1-2014	BC: 0.24 (7-8)	VertLL: 0.05 in	L/999	(6-7)	L/360
BCLL: 0	Rep Mbr: Yes	Web: 0.28 (4-7)	Cant/OHTL: 0.03 in	2L/999	(5-5)	2L/120
BCDL: 10	Lumber D.O.L. 125 \%		Cant/OHLL:0.01 in HorzTL: 0 in	2L/999	$(5-5)$	2L/120

Reaction

	JT	Brg Combo	Brg Width	Rqd Brg Width	Max React	Max Grav Uplift Max MWFRS UpliftMax C\&C Uplift	Max Uplift	Max Horiz
8	1	5.5 in	1.50 in	911 lbs	\cdot	-51 lbs	-204 lbs	-204 lbs
6	1	5.5 in	1.50 in	911 lbs	\cdot	-51 lbs	-204 lbs	-204 lbs

Material

TC. DFL\#2 2×6
BC: DFL\#2 2×4
Web: SPFStud 2x 4

Bracing

TC: Sheathed or Purlins at 6-3-0, Purlin design by Others.
BC: Sheathed or Purlins at 10-0-0, Purlin design by Others.

Loads

1) This truss has been designed for the effects due to 10 psf bottom chord live load plus dead loads.
2) This truss has been designed for the effects of wind loads in accordance with ASCE7-16 with the following user defined input: 110 mph (Factored),

Exposure C, Enclosed, Gable, Risk Category II, $\mathrm{h}=\mathrm{B}=\mathrm{L}=10 \mathrm{ft}$, Not End Zone Truss, Both end webs considered. DOL $=1.60$
3) Minimum storage attic loading has been applied in accordance with IBC 1607.1
4) A moving/sprinkler point load of 300 lbs to the TC and 300 lbs to the BC has been applied concurrent with other dead loads.

Member Forces Table indicates: Member ID, max CSI, max axial forre, (max compr. forre if different from max axial forre). Only forces greater than 300ibs are shown in this table.

Notes

1) Unless noted otherwise, do not cut or alter any truss member or plate without prior approval from a Professional Engineer:
2) This truss has been designed using the green service reduction factors.
3) The fabrication tolerance for this roof truss is $20 \%(\mathrm{Cq}=0.80)$.
4) Brace bottom chord with approved sheathing or purlins per Bracing Summary.
5) A creep factor of 2.00 has been applied for this truss analysis.
6) Listed wind uplift reactions based on MWFRS \& C\&C loading.

All plates shown to be Eagle 20 unless otherwise noted.

Loading (psf)	General	$\begin{aligned} & \text { CSI } \\ & \text { TC: } 0.33(1-2) \end{aligned}$	Deflection L/	$\begin{aligned} & \hline \text { (loc) } \\ & (6-7) \end{aligned}$	Allowed L/240
TCLL: 20	Bldg Code: CBC2019/		Vert TL: 0.09 in L/999		
TCDL: 15(rake)	TPI 1-2014	BC: 0.25 (6-7)	VertLL: 0.05 in L/999	(6-7)	L/360
BCLL: 0	Rep Mbr: Yes	Web: 0.54 (4-7)	Cant/OHTL:0.1 in 2L/999	(8-1)	2L/120
BCDL: 10	Lumber D.O.L. : 125 \%		Cant/OHLL:0.04 in UP 2L/999	(1-1)	2L/120
			Horz TL: 0.01 in	6	

Reaction

JT	Brg Combo	Brg Width	Rqd Brg Width	Max React	Max Grav Uplift Max MWFRS UpliftMax C\&CUplift	Max Uplift	Max Horiz	
8	1	3.5 in	1.50 in	$1,112 \mathrm{lbs}$	\cdot	-62 lbs	-329 lbs	-329 lbs
6	1	5.5 in	1.50 in	755 lbs	\cdot	-40 lbs	-150 lbs	-150 lbs

Material

TC: DFL\#2 2×6
BC: DFL\#2 2×4
Web: SPF Stud 2×4

Bracing

TC: Sheathed or Purlins at 6-3-0, Purlin design by Others.
BC: Sheathed or Purlins at 4-11-0, Purlin design by Others.

Loads

1) This truss has been designed for the effects due to 10 psf bottom chord live load plus dead loads.
2) This truss has been designed for the effects due to a $1,500 \mathrm{lbs}(73 \mathrm{plf}) \mathrm{drag}$ load distributed along the TCrake from each direction.
3) This truss has been designed for the effects of wind loads in accordance with ASCE7-16 with the following user defined input: 110 mph (Factored),

Exposure C, Enclosed, Gable, Risk Category II, $\mathrm{h}=\mathrm{B}=\mathrm{L}=10 \mathrm{ft}$, Not End Zone Truss, Both end webs considered. DOL $=1.60$
4) Minimum storage attic loading has been applied in accordance with IBC 1607.1
5) A moving/sprinkler point load of 300 lbs to the TC and 300 lbs to the BC has been applied concurrent withother dead loads.

Notes

1) Unless noted otherwise, do not cut or alter any truss member or plate without prior approval from a Professional Engineer:
2) This truss has been designed using the green service reduction factors.
3) The fabrication tolerance for this roof truss is $20 \%(\mathrm{Cq}=0.80)$.
4) Brace bottom chord with approved sheathing or purlins per Bracing Summary.
5) A creep factor of 2.00 has been applied for this truss analysis.
6) Listed wind uplift reactions based on MWFRS \& C\&Cloading.

All plates shown to be Eagle 20 unless otherwise noted.

Loading (psf)	General	CSI	Deflection L/	(loc)	Allowed
Carried Loads (psf)	Bldg Code: CBC2019/	TC: 0.66 (2-3)	Vert TL: 0.15 in UP L/999	(6-7)	L/240
TCLL: 20	TPI 1-2014	BC: 0.43 (7-1)	VertLL: 0.04 in UP L/999	(6-7)	L/360
TCDL: 15(rake)	Rep Mbr: No	Web: 0.83 (2-6)	Cant/OHTL:0.5 in 2L/267	(1-1)	2L/120
BCLL: 0	Lumber D.O.L. 125 \%		Cant/OHLL:0.14 in 2L/932	(1-1)	2L/120
BCDL: 10			Horz TL: 0.04 in	5	

Reaction

JT	Brg Combo	Brg Width	Rqd Brg Width	Max React	Max Grav Uplift Max MWFRS UpliftMax C\&CUplift	Max Uplift	Max Horiz		
7	1	7.778 in	1.57 in	$1,468 \mathrm{lbs}$	\cdot	\cdot	\cdot	\cdot	11 lbs
5	1	1.5 in	---	116 lbs	-47 lbs	-202 lbs	\cdot	-202 lbs	\cdot

Material

Bracing

TC: DFLSS 2×6
TC: Sheathed or Purlins at 6-3-0, Purlin design by Others.
BC: DFLSS 2×6
Web: SPF Stud 2×4 except:
DFL Stud 2 x 4: 2-6
Loads

1) This truss has been designed for the effects due to 10 psf bottom chord live load plus dead loads.
2) This truss has been designed for the effects of wind loads in accordance with ASCE7-16 with the following user defined input: 110 mph (Factored),

Exposure C, Enclosed, Gable, Risk Category II, h=B=L=10 ft, Not End Zone Truss, Both end webs considered. DOL = 1.60
3) Minimum storage attic loading has been applied in accordance with IBC 1607.1
4) A moving/sprinkler point load of 300 lbs to the TC and 300 lbs to the BC has been applied concurrent withother dead loads .

Load CaseLr1:StdLiveLoad

Distributed Loads Member	Location 1	Location 2	Direction	Spread	StartLoad	End Load	TribWidth
Top	$0-0-0$	$0-8-2$	Down	Proj	0 plf	14.14 plf	
Top	$0-8-2$	$2-9-3$	Down	Proj	14.14 plf	0 plf	
Top	$0-0-0$	$0-8-2$	Down	Proj	0 plf	14.14 plf	
Top	$0-8-2$	$2-9-3$	Down	Proj	14.14 plf	0 plf	
Point Loads							
Member	Location	Direction	Load	TribWidth			
Top	$-0-0-1$	Down	440 lbs				

All plates shown to be Eagle 20 unless otherwise noted.

Loading (psf)	General	CSI	Deflection	L/	(loc)	Allowed
Carried Loads (psf)	Bldg Code: CBC2019/	TC: 0.43 (3-4)	Vert TL: 0.32 in	L/552	(5-6)	L/240
TCLL: 20	TPI 1-2014	BC: 0.52 (5-6)	VertLL: 0.07 in	L/999	(5-6)	L/360
TCDL: 15(rake)	Rep Mbr: No	Web: 0.86 (2-6)	Cant/OHTL:0.3 in	2L/338	(1-1)	2L/120
BCLL: 0	Lumber D.O.L. 125 \%		Cant/OHLL:0.09 in	2L/999	(1-1)	2L/120
BCDL: 10			Horz TL: 0.01 in		5	

Reaction

| JT | Brg Combo | Brg Width | Rqd Brg Width | Max React | Max Grav Uplift Max MWFRS UpliftMax C\&C Uplift | Max Uplift | Max Horiz |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 7 | 1 | 7.778 in | 2.05 in | $1,921 \mathrm{lbs}$ | \cdot | \cdot | 11 lbs |

Material

1.5 in $\quad--\quad 943 \mathrm{lbs}$
$-256 \mathrm{lbs}$

Bracing

TC: Sheathed or Purlins at 6-3-0, Purlin design by Others.
BC: Sheathed or Purlins at 5-7-0, Purlin design by Others.
Web: One Midpoint Row: 3-5
BC: DFL SS 2×6
Web: SPF Stud 2×4 except:

DFL Stud 2x 4: 2-6
HF Standard 2 x 4: 3-5

Loads

1) This truss has been designed for the effects due to 10 psf bottom chord live load plus dead loads.
2) This truss has been designed for the effects of wind loads in accordance with ASCE7-16 with the following user defined input: 110 mph (Factored),

Exposure C, Enclosed, Gable, Risk Category II, $\mathrm{h}=\mathrm{B}=\mathrm{L}=10 \mathrm{ft}$, Not End Zone Truss, Both end webs considered. DOL $=1.60$
3) Minimum storage attic loading has been applied in accordance with IBC 1607.1
4) A moving/sprinkler point load of 300 lbs to the TC and 300 lbs to the BC has been applied concurrent withother dead loads.

Load CaseLr1:StdLiveLoad

Distributed Loads							
Member	Location 1	Location 2	Direction	Spread	Start Load	End Load	TribWidth
Top	$0-0-0$	$0-8-2$	Down	Proj	0 plf	14.14 plf	
Top	$0-8-2$	$2-9-3$	Down	Proj	14.14 plf	0 plf	
Top	$0-0-0$	$0-8-2$	Down	Proj	0 plf	14.14 plf	
Top	$0-8-2$	$2-9-3$	Down	Proj	14.14 plf	0 plf	
Point Loads							
Member	Location	Direction	Load	TribWidth			
Top	$-0-0-1$	Down	330 lbs				

Notes

1) Unless noted otherwise, do not cut or alter any truss member or plate without prior approval from a Professional Engineer:
2) This truss has been designed using the green service reduction factors.
3) The fabrication tolerance for this roof truss is $20 \%(\mathrm{Cq}=0.80)$.
4) Hanger is for graphical intrepretation only. Install hanger per manufacturer's recommendation.
5) Brace bottom chord with approved sheathing or purlins per Bracing Summary.
6) Lateral bracing shown is for illustration purposes only and may be placed on either edge of truss member.
7) A creep factor of 2.00 has been applied for this truss analysis.
8) \triangle Indicates lateral bracing required perpendicular to the plane of the truss at either the midpoint (one shown) or third points (two shown), bracing by others. See BCSI-B3 for additional information. 9) Listed wind uplift reactions based on MWFRS \& C\&Cloading.

All plates shown to be Eagle 20 unless otherwise noted.

Loading (psf)	General	CSI	Deflection L/	(loc)	Allowed
Carried Loads (psf)	Bldg Code: CBC2019/	TC: 0.56 (1-2)	Vert TL: $\quad 0.07$ in UP L/999	(7-8)	L/240
TCLL: 20	TPI 1-2014	BC: 0.32 (7-8)	VertLL: 0.02 in UP L/999	(7-8)	L/360
TCDL: 15(rake)	Rep Mbr: No	Web: 0.67 (3-7)	Cant/OHTL:0.61 in 2L/278	(1-1)	2L/120
BCLL: 0	Lumber D.O.L. 125 \%		Cant/OHLL: 0.18 in 2L/967	(1-1)	2L/120
BCDL: 10			Horz TL: 0.04 in	6	

Reaction

JT	Brg Combo	Brg Width	Rqd Brg Width	Max React	Max Grav Uplift Max MWFRS UpliftMax C\&C Uplift	Max Uplift	Max Horiz		
8	1	7.75 in	2.43 in	$2,281 \mathrm{lbs}$	\cdot	\cdot	\cdot	11 lbs	
6	1	1.5 in	N/A	0 lbs	-299 lbs	-336 lbs	-78 lbs	-336 lbs	\cdot

Material

TC: DFLSS 2×6
BC: DFLSS 2×6
Web: SPF Sud 2×4 except:
DFL\#2 2×4 3-7
Loads

1) This truss has been designed for the effects due to 10 psf bottom chord live load plus dead loads.
2) This truss has been designed for the effects of wind loads in accordance with ASCE7-16 with the following user defined input: 110 mph (Factored),

Exposure C, Enclosed, Gable, Risk Category II, $\mathrm{h}=\mathrm{B}=\mathrm{L}=10 \mathrm{ft}, \mathrm{Not}$ End Zone Truss, Both end webs considered. DOL $=1.60$
3) Minimum storage attic loading has been applied in accordance with IBC 1607.1
4) A moving/sprinkler point load of 300 lbs to the TC and 300 lbs to the BChas been applied concurrent withother dead loads.

Load CaseLr1:StdLiveLoad

Distributed Loads Member	Location 1	Location 2	Direction	Spread	StartLoad	End Load	TribWidth
Top	$0-0-0$	$0-8-2$	Down	Proj	0 plf	14.14 plf	
Top	$0-8-2$	$2-9-3$	Down	Proj	14.14 plf	0 plf	
Top	$0-0-0$	$0-8-2$	Down	Proj	0 plf	14.14 plf	
Top	$0-8-2$	$2-9-3$	Down	Proj	14.14 plf	0 plf	
Point Loads							
Member	Location	Direction	Load	TribWidth			
Top	$-0-0-1$	Down	528 lbs				

All plates shown to be Eagle 20 unless otherwise noted.

Loading (psf)	General	CSI	Deflection	L/	(loc)	Allowed
Carried Loads (psf)	Bldg Code: CBC2019/	TC: 0.75 (1-2)	Vert TL: $\quad 0.05$ in UP	L/999	(5-6)	L/240
TCLL: 20	TPI 1-2014	BC: 0.31 (6-1)	VertLL: $\quad 0.05$ in	L/999	(5-6)	L/360
TCDL: 15(rake)	Rep Mbr: No	Web: 0.75 (3-6)	Cant/OHTL:0.22 in	2L/463	(1-1)	2L/120
BCLL: 0	Lumber D.O.L. 125 \%		Cant/OHLL:0.07 in	2L/999	(1-1)	2L/120
BCDL: 10			Horz TL: 0.01 in		5	

Reaction

| JT | Brg Combo | Brg Width | Rqd Brg Width | Max React | Max Grav Uplift Max MWFRS UpliftMax C\&CUplift | Max Uplift | Max Horiz | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 6 | 1 | 7.778 in | 1.75 in | $1,641 \mathrm{lbs}$ | \cdot | \cdot | \cdot | 14 lbs |
| 5 | 1 | 1.5 in | ---165 lbs | -165 lbs | -34 lbs | -165 lbs | \cdot | |

Material

Bracing

TC. DFL\#2 2×6
TC: Sheathed or Purlins at 6-3-0, Purlin design by Others.
BC: DFL\#2 2×6
BC: Sheathed or Purlins at $5-0-0$, Purlin design by Others
Web: SPF Stud 2x 4

Loads

1) This truss has been designed for the effects due to 10 psf bottom chord live load plus dead loads.
2) This truss has been designed for the effects of wind loads in accordance with ASCE7-16 with the following user defined input: 110 mph (Factored),

Exposure C, Enclosed, Gable, Risk Category II, $\mathrm{h}=\mathrm{B}=\mathrm{L}=10 \mathrm{ft}$, Not End Zone Truss, Both end webs considered. DOL $=1.60$
3) Minimum storage attic loading has been applied in accordance with IBC 1607.1
4) A moving/sprinkler point load of 300 lbs to the TC and 300 lbs to the BC has been applied concurrent with other dead loads.

Load CaseLrl:StdLiveLoad

Distributed Loads Member	Location 1	Location 2	Direction	Spread	StartLoad	End Load	TribWidth
Top	$0-0-0$	$0-8-2$	Down	Proj	0 plf	14.14 plf	
Top	$0-8-2$	$2-9-3$	Down	Proj	14.14 plf	0 plf	
Top	$0-0-0$	$0-8-2$	Down	Proj	0 plf	14.14 plf	
Top	$0-8-2$	$2-9-3$	Down	Proj	14.14 plf	0 plf	
Point Loads							
Member	Location	Direction	Load	TribWidth			
Top	$-0-0-1$	Down	330 lbs				

All plates shown to be Eagle 20 unless otherwise noted.

Loading (psf)	General		CSI	Deflection	L/	(loc)	Allowed
TCLL: 20	Bldg Code:	CBC2019/	TC: 0.04(1-2)	Vert TL:	0 in	L/999	$(3-1)$
TCDL: 15(rake)		TPI 1-2014	BC: 0.04(3-1)	VertLL:	0 in	L/999	$(3-1)$
BCLL: 0	Rep Mbr:	Yes	Web: $0.00(1)$	Horz TL:	0 in		2

Reaction

JT	Brg Combo	Brg Width	Rqd Brg Width	Max React	Max Grav Uplift Max MWFRS UpliftMax C\&CUplift	Max Uplift	Max Horiz	
1	1	1.5 in	1.50 in	125 lbs	\cdot	\cdot	-37 lbs	-37 lbs
2	1	1.5 in	1.50 in	99 lbs	\cdot	-15 lbs	-62 lbs	-62 lbs
3	1	1.5 in	1.50 in	63 lbs	\cdot	-1 lbs	-1 lbs	.

Material
TC: DFL\#2 2x 6
Bracing
TC: Sheathed or Purlins at 6-3-0, Purlin design by Others.
BC: Sheathed or Purlins at 10-0-0, Purlin design by Others.

Web:

Loads

1) This truss has been designed for the effects due to 10 psf bottom chord live load plus dead loads.
2) This truss has been designed for the effects of wind loads in accordance with ASCE7-16 with the following user defined input: 110 mph (Factored),

Exposure C, Enclosed, Gable, Risk Category II, h=B=L=10 ft, Not End Zone Truss, Both end webs considered. DOL $=1.60$
3) Minimum storage attic loading has been applied in accordance with IBC 1607.1
4) A moving/sprinkler point load of 300 lbs to the TC and 300 lbs to the BC has been applied concurrent with other dead loads

Member Forces Table indicates: Member ID, max CSI, max axial force, (max compr. fore if different from max axial force). Only forees greater than 300 lbs are shown in this table.

Notes

1) Unless noted otherwise, do not cut or alter any truss member or plate without prior approval from a Professional Engineer:
2) This truss has been designed using the green service reduction factors.
3) The fabrication tolerance for this roof truss is $20 \%(\mathrm{Cq}=0.80)$.
4) Nailing schedule shall be specified by truss manufacturer per NDS.
5) Brace bottom chord with approved sheathing or purlins per Bracing Summary.
6) A creep factor of 2.00 has been applied for this truss analysis.
7) Listed wind uplift reactions based on MWFRS \& C\&Cloading.

All plates shown to be Eagle 20 unless otherwise noted.

Loading (psf)	General		CSI	Deflection	L/	(loc)	Allowed
TCLL: 20	Bldg Code:	CBC2019/	TC: 0.04(1-2)	Vert TL:	0 in	L/999	$(3-1)$
TCDL: 15(rake)		TPI 1-2014	BC: 0.04(3-1)	VertLL:	0 in	L/999	$(3-1)$
BCLL: 0	Rep Mbr:	Yes	Web: $0.00(1)$	Horz TL:	0 in		2

Reaction

JT	Brg Combo	Brg Width	Rqd Brg Width	Max React	Max Grav Uplift Max MWFRS UpliftMax C\&CUplift	Max Uplift	Max Horiz	
1	1	1.5 in	1.50 in	125 lbs	\cdot	\cdot	-37 lbs	-37 lbs
2	1	1.5 in	1.50 in	99 lbs	\cdot	-15 lbs	-62 lbs	-62 lbs
3	1	1.5 in	1.50 in	63 lbs	\cdot	-1 lbs	-1 lbs	.

Material
TC: DFL\#2 2x 6
Bracing
TC: Sheathed or Purlins at 6-3-0, Purlin design by Others.
BC: Sheathed or Purlins at 10-0-0, Purlin design by Others.

Web:

Loads

1) This truss has been designed for the effects due to 10 psf bottom chord live load plus dead loads.
2) This truss has been designed for the effects of wind loads in accordance with ASCE7-16 with the following user defined input: 110 mph (Factored),

Exposure C, Enclosed, Gable, Risk Category II, h=B=L=10 ft, Not End Zone Truss, Both end webs considered. DOL $=1.60$
3) Minimum storage attic loading has been applied in accordance with IBC 1607.1
4) A moving/sprinkler point load of 300 lbs to the TC and 300 lbs to the BC has been applied concurrent with other dead loads

Member Forces Table indicates: Member ID, max CSI, max axial force, (max compr. fore if different from max axial force). Only forees greater than 300 lbs are shown in this table.

Notes

1) Unless noted otherwise, do not cut or alter any truss member or plate without prior approval from a Professional Engineer:
2) This truss has been designed using the green service reduction factors.
3) The fabrication tolerance for this roof truss is $20 \%(\mathrm{Cq}=0.80)$.
4) Nailing schedule shall be specified by truss manufacturer per NDS.
5) Brace bottom chord with approved sheathing or purlins per Bracing Summary.
6) A creep factor of 2.00 has been applied for this truss analysis.
7) Listed wind uplift reactions based on MWFRS \& C\&Cloading.

$0-0-0$	$3-10-15$	$0-0-0$
$3-10-15$		

All plates shown to be Eagle 20 unless otherwise noted.

Loading (psf)	General	CSI	Deflection	L/	(loc)	Allowed
TCLL: 20	Bldg Code: CBC2019/	TC: 0.11 (1-2)	Vert TL: 0.02 in	L/999	(3-1)	L/240
TCDL: 15(rake)	TPI 1-2014	BC: 0.12 (3-1)	VertLL: $\quad 0.01$ in	L/999	(3-1)	L/360
BCLL: 0	Rep Mbr: Yes	Web: 0.00 (1)	Horz TL: 0 in		2	
BCDL: 10	Lumber D.O.L. :125 \%					

Reaction

JT	Brg Combo	Brg Width	Rqd Brg Width	Max React	Max Grav Uplift Max MWFRS UpliftMax C\&CUplift	Max Uplift	Max Horiz	
1	1	1.5 in	1.50 in	194 lbs	\cdot	-0 lbs	-81 lbs	-81 lbs
2	1	1.5 in	1.50 in	154 lbs	\cdot	-33 lbs	-130 lbs	-130 lbs
3	1	1.5 in	1.50 in	108 lbs	\cdot	\cdot	.	

Material

TC: DFL\#2 2×6
Bracing
TC: Sheathed or Purlins at 6-3-0, Purlin design by Others.
BC: Sheathed or Purlins at $10-0-0$, Purlin design by Others.

Web:

Loads

1) This truss has been designed for the effects due to 10 psf bottom chord live load plus dead loads.
2) This truss has been designed for the effects of wind loads in accordance with ASCE7-16 with the following user defined input: 110 mph (Factored),

Exposure C, Enclosed, Gable, Risk Category II, $\mathrm{h}=\mathrm{B}=\mathrm{L}=10 \mathrm{ft}$, Not End Zone Truss, Both end webs considered. DOL $=1.60$
3) Minimum storage attic loading has been applied in accordance with IBC 1607.1
4) A moving/sprinkler point load of 300 lbs to the TC and 300 lbs to the BChas been applied concurrent withother dead loads

Notes

1) Unless noted otherwise, do not cut or alter any truss member or plate without prior approval from a Professional Engineer:
2) This truss has been designed using the green service reduction factors.
3) The fabrication tolerance for this roof truss is $20 \%(\mathrm{Cq}=0.80)$.
4) Nailing schedule shall be specified by truss manufacturer per NDS.
5) Brace bottom chord with approved sheathing or purlins per Bracing Summary.
6) A creep factor of 2.00 has been applied for this truss analysis.
7) Listed wind uplift reactions based on MWFRS \& C\&C loading.

			TrusPro Inc. 695 Obispo Street Guadalupe, CA 93434 Ph: (805)343-2555 Fax: (805)343-2377					TrussJ04A Job: 5433M Date: 09/22/21 10:30:46 Page: 1 of 1 Notes: All connector plates to be Eagle 20 gauge unless otherwise noted	
$\begin{aligned} & \text { SPAN } \\ & 3-10-15 \end{aligned}$	$\begin{gathered} \mathrm{PITCH} \\ 4 / 12 \end{gathered}$	$\begin{gathered} \text { QTY } \\ 8 \end{gathered}$	$\begin{aligned} & \mathrm{OHL} \\ & 0-0-0 \end{aligned}$	$\begin{aligned} & \text { OHR } \\ & 0-0-0 \end{aligned}$	$\begin{gathered} \text { CANTL } \\ 0-0-0 \end{gathered}$	$\begin{gathered} \text { CANTR } \\ 0-00 \end{gathered}$	$\begin{gathered} \text { PLYS } \\ 1 \end{gathered}$	$\begin{aligned} & \hline \text { SPACING } \\ & 24 \text { in } \end{aligned}$	WGT/PLY 14 lbs

$0-0-0$	$3-10-15$	$0-0-0$
$3-10-15$		

All plates shown to be Eagle 20 unless otherwise noted.

Loading (psf)	General	CSI	Deflection	L/	(loc)	Allowed	
TCLL: 20	Bldg Code:	CBC2019/	TC: 0.11(1-2)	Vert TL:	0.02 in	L/999	$(3-1)$
TCDL: 15(rake)		TPI 1-2014	BC: 0.12(3-1)	VertLL:	0.01 in	L/999	$(3-1)$
BCLL: 0	Rep Mbr:	Yes	Web: 0.00(1)	HorzTL:	0 in		2

Reaction

JT	Brg Combo	Brg Width	Rqd Brg Width	Max React	Max Grav Uplift Max MWFRS UpliftMax C\&CUplift	Max Uplift	Max Horiz	
1	1	1.5 in	1.50 in	194 lbs	\cdot	-0 lbs	-81 lbs	-81 lbs
2	1	1.5 in	1.50 in	154 lbs	\cdot	-33 lbs	-130 lbs	-130 lbs
3	1	1.5 in	1.50 in	108 lbs	\cdot	\cdot	\cdot	

Material

TC: DFL\#2 2×6
Bracing
TC: Sheathed or Purlins at 6-3-0, Purlin design by Others.
BC: Sheathed or Purlins at $10-0-0$, Purlin design by Others.

Web:

Loads

1) This truss has been designed for the effects due to 10 psf bottom chord live load plus dead loads.
2) This truss has been designed for the effects of wind loads in accordance with ASCE7-16 with the following user defined input: 110 mph (Factored),

Exposure C, Enclosed, Gable, Risk Category II, $\mathrm{h}=\mathrm{B}=\mathrm{L}=10 \mathrm{ft}$, Not End Zone Truss, Both end webs considered. DOL $=1.60$
3) Minimum storage attic loading has been applied in accordance with IBC 1607.1
4) A moving/sprinkler point load of 300 lbs to the TC and 300 lbs to the BChas been applied concurrent withother dead loads

Notes

1) Unless noted otherwise, do not cut or alter any truss member or plate without prior approval from a Professional Engineer:
2) This truss has been designed using the green service reduction factors.
3) The fabrication tolerance for this roof truss is $20 \%(\mathrm{Cq}=0.80)$.
4) Nailing schedule shall be specified by truss manufacturer per NDS.
5) Brace bottom chord with approved sheathing or purlins per Bracing Summary.
6) A creep factor of 2.00 has been applied for this truss analysis.
7) Listed wind uplift reactions based on MWFRS \& C\&C loading.

			TrusPro Inc. 695 Obispo Street Guadalupe, CA 93434 Ph: (805)343-2555 Fax: (805)343-2377					TrussJ06 Job: 5433M Date: 09/22/21 10:30:47 Page: 1 of 1 Notes: All connector plates to be Eagle 20 gauge unless otherwise noted	
SPAN	PITCH	QTY	OHL	OHR	CANTL	CANTR	PLYS	SPACING	WGT/PLY
5-10-15	4/12	15	000	$0-00$	000	000	1	24 in	22 lbs
			5-10-15						
			$3-2-12$$3-2-12$		$\frac{2-8-3}{5-10-15}$				

All plates shown to be Eagle 20 unless otherwise noted.

Loading (psf)	General	CSI	Deflection	L/	(loc)	Allowed
TCLL: 20	Bldg Code: $\begin{aligned} & \text { CBC2019/ } \\ & \\ & \text { TPI 1-2014 }\end{aligned}$	TC: 0.41 (1-2)	VertTL: 0.01 in UP	L/999	(4-5)	L/240
TCDL: 15(rake)		BC: 0.27 (4-5)	VertLL: $\quad 0.01$ in	L/999	(4-5)	L/360
BCLL: 0	Rep Mbr: \quad YesLumber D.O.L. $: 125 \%$	Web: 0.12 (2-5)	Cant/OHTL: 0.18 in	2L/403	(1-1)	2L/120
BCDL: 10			Cant/OHLL: 0.08 in	2L/911	(1-1)	2L/120
			Horz TL: 0.07 in		3	

Reaction

JT	Brg Combo	Brg Width	Rqd Brg Width	Max React	Max Grav Uplift Max MWFRS UpliftMax C\&CUplift		Max Uplift	Max Horiz	
5	1	5.5 in	1.50 in	600 lbs	-	-5 lbs	-429 lbs	-429 lbs	170 lbs
3	1	1.5 in	1.50 in	46 lbs	-116 lbs	-36 lbs	-8 lbs	-116 lbs	-
4	1	1.5 in	1.50 in	74 lbs	-23 lbs	.	-	-23 lbs	.

Material
TC: DFL\#2 2×6
Bracing
BC: DFL \#2 2×4
Web: SPF Stud 2x 4

TC: Sheathed or Purlins at 6-3-0, Purlin design by Others.
BC: Sheathed or Purlins at 10-0-0, Purlin design by Others

Loads

1) This truss has been designed for the effects due to 10 psf bottom chord live load plus dead loads.
2) This truss has been designed for the effects of wind loads in accordance with ASCE7-16 with the following user defined input: 110 mph (Factored),

Exposure C, Enclosed, Gable, Risk Category II, $\mathrm{h}=\mathrm{B}=\mathrm{L}=10 \mathrm{ft}$, Not End Zone Truss, Both end webs considered. DOL $=1.60$
3) Minimum storage attic loading has been applied in accordance with IBC 1607.1
4) A moving/sprinkler point load of 300 lbs to the TC and 300 lbs to the BC has been applied concurrent withother dead loads

Member Forces Table indicates: Member ID, max CSI, max axial force, (max compr. fore if different from max axial force). Only forees greater than 300 lbs are shown in this table.

Notes

1) Unless noted otherwise, do not cut or alter any truss member or plate without prior approval from a Professional Engineer:
2) This truss has been designed using the green service reduction factors.
3) The fabrication tolerance for this roof truss is $20 \%(\mathrm{Cq}=0.80)$.
4) Nailing schedule shall be specified by truss manufacturer per NDS.
5) Brace bottom chord with approved sheathing or purlins per Bracing Summary.
6) A creep factor of 2.00 has been applied for this truss analysis.
7) Due to negative reactions in gravity load cases, special connections to the bearing surface at joints 3,4 may need to be considered. 8) Listed wind uplift reactions based on MWFRS \& C\&C loading.

Allplates shown to be Eagle 20 unless otherwise noted.

Loading (psf)	General	CSI	Deflection L/	(loc)	Allowed
TCLL: 20	Bldg Code: $\begin{aligned} & \text { CBC2019/ } \\ & \\ & \text { TPI 1-2014 }\end{aligned}$	TC: 0.63 (1-2)	Vert TL: 0.01 in UP L/999	(4-5)	L/240
TCDL: 15(rake)		BC: 0.42 (4-5)	VertLL: 0.01 in L/999	(4-5)	L/360
BCLL: 0	$\begin{aligned} & \text { Rep Mbr: } \quad \text { Yes } \\ & \text { Lumber D.O.L. }: 125 \% \end{aligned}$	Web: 0.18 (2-5)	Cant/OHTL: 0.42 in 2L/228	(1-1)	2L/120
BCDL: 10			Cant/OHLL:0.19 in UP 2L/513	(1-1)	2L/120
			Horz TL: 0.15 in	3	

Reaction

JT	Brg Combo	Brg Width	Rqd Brg Width	Max React	Max Grav Uplift Max MWFRS UpliftMax C\&CUplift	Max Uplift	Max Horiz	
5	1	5.5 in	1.50 in	956 lbs	\cdot	-29 lbs	-733 lbs	-733 lbs
3	1	1.5 in	1.50 in	208 lbs	-363 lbs	-64 lbs	.	-363 lbs
4	1	1.5 in	1.50 in	91 lbs	-105 lbs	-15 lbs	\cdot	-105 lbs

Material

TC: DFL\#2 2×6
Bracing
BC: DFL \#2 2x 4
Web: SPF Stud 2×4
Loads

1) This truss has been designed for the effects due to 10 psf bottom chord live load plus dead loads.
2) This truss has been designed for the effects of wind loads in accordance with ASCE7-16 with the following user defined input: 110 mph (Factored),

Exposure C, Enclosed, Gable, Risk Category II, h=B=L=10 ft, Not End Zone Truss, Both end webs considered. DOL $=1.60$
3) Minimum storage attic loading has been applied in accordance with IBC 1607.1
4) A moving/sprinkler point load of 300 lbs to the TC and 300 lbs to the BC has been applied concurrent with other dead loads

Member Forces Table indicates: Member ID, max CSI, max axial force, (max compr. fore if different from max axial force). Only forces greater than 300 lbs are shown in this table

Notes

1) Unless noted otherwise, do not cut or alter any truss member or plate without prior approval from a Professional Engineer:
2) This truss has been designed using the green service reduction factors.
3) The fabrication tolerance for this roof truss is $20 \%(\mathrm{Cq}=0.80)$.
4) Nailing schedule shall be specified by truss manufacturer per NDS.
5) Brace bottom chord with approved sheathing or purlins per Bracing Summary.
6) A creep factor of 2.00 has been applied for this truss analysis.
7) Due to negative reactions in gravity load cases, special connections to the bearing surface at joints 3,4 may need to be considered. 8) Listed wind uplift reactions based on MWFRS \& C\&C loading.

			TrusPro Inc. 695 Obispo Street Guadalupe, CA 93434 Ph: (805)343-2555 Fax: (805)343-2377					TrussJJ06B Job: 5433M Date: 09/22/21 10:30:48 Page: 1 of 1 Notes: All connector plates to be Eagle 20 gauge unless otherwise noted	
SPAN	PITCH	QTY	OHL	OHR	CANTL	CANTR	PLYS	SPACING	WGT/PLY
5-10-15	4/12	1	0-0 0	0-0-0	000	$0-0$	1	24 in	23 lbs
			5-10-15						
			$\frac{5-2-12}{5-2-12}$			$\frac{0-8-3}{5-10-15}$			

All plates shown to be Eagle 20 unless otherwise noted.

Loading (psf)	General		CSI	Deflection	L/	(loc)	Allowed	
TCLL: 20	Bldg Code:	CBC2019/	TC: 0.16(1-2)	Vert TL:	0.04 in	L/999	(5-1)	L/240
TCDL: 15(rake)		TPI 1-2014	BC: 0.21(4-5)	VertLL:	0.02 in	L/999	$(5-1)$	L/360
BCLL: 0	Rep Mbr: \quad No	Web: 0.13(2-5)	HorzTL:	0 in		3		
BCDL: 10	Lumber D.O.L.: 125%							

Reaction

JT	Brg Combo	Brg Width	Rqd Brg Width	Max React	Max Grav Uplift Max MWFRS UpliftMax C\&CUplift	Max Uplift	Max Horiz	
1	1	3.5 in	1.50 in	204 lbs	\cdot	-	-71 lbs	-71 lbs
5	1	5.5 in	1.50 in	631 lbs	\cdot	-64 lbs	-408 lbs	-408 lbs
3	1	1.5 in	1.50 in	168 lbs	-207 lbs	-8 lbs	\cdot	-207 lbs
4	1	1.5 in	1.50 in	13 lbs	-124 lbs	-24 lbs	\cdot	-124 lbs

Material
TC: DFL \#2 2×6
BC: DFL \#2 2×4
Web: SPF Stud 2x 4

Bracing

TC: Sheathed or Purlins at 6-3-0, Purlin design by Others.
BC: Sheathed or Purlins at $10-0-0$, Purlin design by Others

Loads

1) This truss has been designed for the effects due to 10 psf bottom chord live load plus dead loads.
2) This truss has been designed for the effects of wind loads in accordance with ASCE7-16 with the following user defined input: 110 mph (Factored),

Exposure C, Enclosed, Gable, Risk Category II, h=B=L=10 ft, Not End Zone Truss, Both end webs considered. DOL=1.60
3) Minimum storage attic loading has been applied in accordance with IBC 1607.1
4) A moving/sprinkler point load of 300 lbs to the TC and 300 lbs to the BC has been applied concurrent with other dead loads.

Member Forces Table indicates: Member ID, max CSI, max axial force, (max compr. foree if different fiom max axial fore). Only forres greater than 300lbs are shown in this table.

Notes

1) Unless noted otherwise, do not cut or alter any truss member or plate without prior approval from a Professional Engineer.
2) This truss has been designed using the green service reduction factors.
3) The fabrication tolerance for this roof truss is $20 \%(\mathrm{Cq}=0.80)$.
4) Nailing schedule shall be specified by truss manufacturer per NDS.
5) Brace bottom chord with approved sheathing or purlins per Bracing Summary.
6) A creep factor of 2.00 has been applied for this truss analysis.
7) Due to negative reactions in gravity load cases, special connections to the bearing surface at joints 3,4 may need to be considered.
8) Listed wind uplift reactions based on MWFRS \& C\&C loading.

All plates shown to be Eagle 20 unless otherwise noted.

Loading (psf)	General	CSI	Deflection	L/	(loc)	Allowed
TCLL: 20	Bldg Code: CBC2019/	TC: 0.40 (1-2)	Vert TL: 0.03 in	L/999	(4-5)	L/240
TCDL: 15(rake)	TPI 1-2014	BC: 0.29 (5-1)	VertLL: 0.03 in	L/999	(4-5)	L/360
BCLL: 0	Rep Mbr: Yes	Web: 0.11 (2-5)	Cant/OHTL:0.18 in	2L/410	(1-1)	2L/120
BCDL: 10	Lumber D.O.L. 125 \%		Cant/OHLL: 0.1 in Horz TL: 0.07 in	2L/692	$\begin{aligned} & (1-1) \\ & 3 \\ & \hline \end{aligned}$	2L/120

Reaction

JT	Brg Combo	Brg Width	Rqd Brg Width	Max React	Max Grav Uplift Max MWFRS UpliftMax C\&CUplift	Max Uplift	Max Horiz	
5	1	5.5 in	1.50 in	615 lbs	-	-5 lbs	-351 lbs	-351 lbs
3	1	1.5 in	1.50 in	123 lbs	-15 lbs	-55 lbs	-103 lbs	-103 lbs
4	1	1.5 in	1.50 in	113 lbs

Material

TC: DRL\#2 2×6

Bracing

TC: Sheathed or Purlins at 6-3-0, Purlin design by Others.
BC: Sheathed or Purlins at 10-0-0, Purlin design by Others.
BC: DFL\#2 2×4

Web: SPF Stud 2×4
Loads

1) This truss has been designed for the effects due to 10 psf bottom chord live load plus dead loads.
2) This truss has been designed for the effects of wind loads in accordance with ASCE7-16 with the following user defined input: 110 mph (Factored),

Exposure C, Enclosed, Gable, Risk Category II, $\mathrm{h}=\mathrm{B}=\mathrm{L}=10 \mathrm{ft}$, Not End Zone Truss, Both end webs considered. DOL $=1.60$
3) Minimum storage attic loading has been applied in accordance with IBC 1607.1
4) A moving/sprinkler point load of 300 lbs to the TC and 300 lbs to the BC has been applied concurrent withother dead loads.

Notes

1) Unless noted otherwise, do not cut or alter any truss member or plate without prior approval from a Professional Engineer.
2) This truss has been designed using the green service reduction factors.
3) The fabrication tolerance for this roof truss is $20 \%(\mathrm{Cq}=0.80)$.
4) Nailing schedule shall be specified by truss manufacturer per NDS.
5) Brace bottom chord with approved sheathing or purlins per Bracing Summary.
6) A creep factor of 2.00 has been applied for this truss analysis.
7) Due to negative reactions in gravity load cases, special connections to the bearing surface at joint 3 may need to be considered. 8) Listed wind uplift reactions based on MWFRS \& C\&C loading.

All plates shown to be Eagle 20 unless otherwise noted.

Loading (psf)	General	CSI	Deflection	L/	(loc)	Allowed
TCLL: 20	Bldg Code: $\begin{aligned} & \text { CBC2019/ } \\ & \\ & \text { TPI 1-2014 }\end{aligned}$	TC: 0.63 (1-2)	VertTL: 0.03 in UP	L/999	(4-5)	L/240
TCDL: 15(rake)		BC: 0.41 (4-5)	VertLL: 0.02 in	L/999	(4-5)	L/360
BCLL: 0	Rep Mbr: \quad YesLumber D.O.L. $: 125 \%$	Web: 0.13 (2-5)	Cant/OHTL: 0.51 in	2L/188	(1-1)	2L/120
BCDL : 10			Cant/OHLL: 0.19 in	2L/509	(1-1)	2L/120
			Horz TL: 0.19 in		3	

Reaction

JT	Brg Combo	Brg Width	Rqd Brg Width	Max React	Max Grav Uplift Max MWFRS UpliftMax C\&C Uplift	Max Uplift	Max Horiz	
5	1	5.5 in	1.50 in	782 lbs	\cdot	-8 lbs	-485 lbs	-485 lbs
3	1	1.5 in	1.50 in	49 lbs	-121 lbs	-48 lbs	-15 lbs	-121 lbs
4	1	1.5 in	1.50 in	85 lbs	-18 lbs	\cdot	\cdot	

Material
TC: DFL\#2 2×6
Bracing
TC: Sheathed or Purlins at 6-3-0, Purlin design by Others.
BC: Sheathed or Purlins at 10-0-0, Purlin design by Others
BC: DFL\#2 2×4

Web: SPF Stud 2 x 4
Loads

1) This truss has been designed for the effects due to 10 psf bottom chord live load plus dead loads.
2) This truss has been designed for the effects of wind loads in accordance with ASCE7-16 with the following user defined input: 110 mph (Factored),

Exposure C, Enclosed, Gable, Risk Category II, $\mathrm{h}=\mathrm{B}=\mathrm{L}=10 \mathrm{ft}$, Not End Zone Truss, Both end webs considered. DOL $=1.60$
3) Minimum storage attic loading has been applied in accordance with IBC 1607.1
4) A moving/sprinkler point load of 300 lbs to the TC and 300 lbs to the BC has been applied concurrent withother dead loads

Member Forces Table indicates: Member ID, max CSI, max axial force, (max compr. force if different from max axial force). Only forees greater than 300 lbs are shown in this table.

Notes

1) Unless noted otherwise, do not cut or alter any truss member or plate without prior approval from a Professional Engineer:
2) This truss has been designed using the green service reduction factors.
3) The fabrication tolerance for this roof truss is $20 \%(\mathrm{Cq}=0.80)$.
4) Nailing schedule shall be specified by truss manufacturer per NDS.
5) Brace bottom chord with approved sheathing or purlins per Bracing Summary.
6) A creep factor of 2.00 has been applied for this truss analysis.
7) Due to negative reactions in gravity load cases, special connections to the bearing surface at joints 3,4 may need to be considered. 8) Listed wind uplift reactions based on MWFRS \& C\&C loading.

All plates shown to be Eagle 20 unless otherwise noted.

Loading (psf)	General	CSI	Deflection L/	(loc)	Allowed
TCLL: 20	Bldg Code: $\begin{aligned} & \text { CBC2019/ } \\ & \\ & \text { TPI 1-2014 }\end{aligned}$	TC: 0.99 (1-2)	Vert TL: 0.04 in UP L/818	(4-5)	L/240
TCDL: 15(rake)		BC: 0.61 (4-5)	VertLL: 0.02 in L/999	(4-5)	L/360
BCLL: 0	$\begin{aligned} & \text { Rep Mbr: } \quad \text { No } \\ & \text { Lumber D.O.L. }: 125 \% \end{aligned}$	Web: 0.17 (2-5)	Cant/OHTL: 0.89 in 2L/129	(1-1)	2L/120
BCDL: 10			Cant/OHLL:0.35 in UP 2L/328	(1-1)	2L/120
			Horz TL: 0.32 in	3	

Reaction

JT	Brg Combo	Brg Width	Rqd Brg Width	Max React	Max Grav Uplift Max MWFRS UpliftMax C\&CUplift	Max Uplift	Max Horiz	
5	1	5.5 in	1.50 in	996 lbs	\cdot	-24 lbs	-650 lbs	-650 lbs
3	1	1.5 in	1.50 in	99 lbs	-258 lbs	-57 lbs	\cdot	-258 lbs
4	1	1.5 in	1.50 in	68 lbs	-63 lbs	-4 lbs	\cdot	-63 lbs

Material
TC: DFL\#2 2×6
Bracing
TC: Sheathed or Purlins at 6-3-0, Purlin design by Others.
BC: Sheathed or Purlins at 10-0-0, Purlin design by Others
BC: DFL\#2 2x 4

Web: SPF Stud 2 x 4
Loads

1) This truss has been designed for the effects due to 10 psf bottom chord live load plus dead loads.
2) This truss has been designed for the effects of wind loads in accordance with ASCE7-16 with the following user defined input: 110 mph (Factored),

Exposure C, Enclosed, Gable, Risk Category II, $\mathrm{h}=\mathrm{B}=\mathrm{L}=10 \mathrm{ft}$, Not End Zone Truss, Both end webs considered. DOL $=1.60$
3) Minimum storage attic loading has been applied in accordance with IBC 1607.1
4) A moving/sprinkler point load of 300 lbs to the TC and 300 lbs to the BC has been applied concurrent with other dead loads.

Member Forces Table indicates: Member ID, max CSI, max axial force, (max compr. fore if different from max axial force). Only forces greater than 300 lbs are shown in this table

Notes

1) Unless noted otherwise, do not cut or alter any truss member or plate without prior approval from a Professional Engineer:
2) This truss has been designed using the green service reduction factors.
3) The fabrication tolerance for this roof truss is $20 \%(\mathrm{Cq}=0.80)$.
4) Nailing schedule shall be specified by truss manufacturer per NDS.
5) Brace bottom chord with approved sheathing or purlins per Bracing Summary.
6) A creep factor of 2.00 has been applied for this truss analysis.
7) Due to negative reactions in gravity load cases, special connections to the bearing surface at joints 3,4 may need to be considered. 8) Listed wind uplift reactions based on MWFRS \& C\&C loading.

Allplates shown to be Eagle 20 unless otherwise noted.

Loading (psf)	General	CSI	Deflection L/	(loc)	Allowed
TCLL: 20	Bldg Code :	TC: 0.96 (1-2)	Vert TL: $\quad 0.03$ in UP L/833	(4-5)	L/240
TCDL: 15(rake)		BC: 0.51 (5-1)	VertLL: 0.02 in L/999	(4-5)	L/360
BCLL: 0	Rep Mbr: No	Web: 0.18 (2-5)	Cant/OHTL:0.94 in 2L/128	(1-1)	2L/120
BCDL: 10	Lumber D.O.L. 125 \%		Cant/OHLL: 0.38 in UP 2L/319	(1-1)	2L/120
			Horz TL: 0.34 in	3	

Reaction

JT	Brg Combo	Brg Width	Rqd Brg Width	Max React	Max Grav Uplift Max MWFRS UpliftMax C\&CUplift	Max Uplift	Max Horiz	
5	1	5.5 in	1.50 in	$1,073 \mathrm{lbs}$	\cdot	-29 lbs	-708 lbs	-708 lbs
3	1	1.5 in	1.50 in	138 lbs	-307 lbs	-64 lbs	\cdot	-307 lbs
4	1	1.5 in	1.50 in	81 lbs	-83 lbs	-9 lbs	\cdot	-83 lbs

Material

TC. DFL\#1 2×6
Bracing
BC: DFL\#1B 2×4
Web: SPF Stud 2x 4
Loads

1) This truss has been designed for the effects due to 10 psf bottom chord live load plus dead loads.
2) This truss has been designed for the effects of wind loads in accordance with ASCE7-16 with the following user defined input: 110 mph (Factored),

Exposure C, Enclosed, Gable, Risk Category II, $\mathrm{h}=\mathrm{B}=\mathrm{L}=10 \mathrm{ft}$, Not End Zone Truss, Both end webs considered. DOL $=1.60$
3) Minimum storage attic loading has been applied in accordance with IBC 1607.1
4) A moving/sprinkler point load of 300 lbs to the TC and 300 lbs to the BC has been applied concurrent withother dead loads.

Notes

1) Unless noted otherwise, do not cut or alter any truss member or plate without prior approval from a Professional Engineer.
2) This truss has been designed using the green service reduction factors.
3) The fabrication tolerance for this roof truss is $20 \%(\mathrm{Cq}=0.80)$.
4) Nailing schedule shall be specified by truss manufacturer per NDS.
5) Brace bottom chord with approved sheathing or purlins per Bracing Summary.
6) A creep factor of 2.00 has been applied for this truss analysis.
7) Due to negative reactions in gravity load cases, special connections to the bearing surface at joints 3,4 may need to be considered. 8) Listed wind uplift reactions based on MWFRS \& C\&C loading.

Notes

1) Unless noted otherwise, do not cut or alter any truss member or plate without prior approval from a Professional Engineer.
2) This truss has been designed using the green service reduction factors.
3) The fabrication tolerance for this roof tuuss is $20 \%(\mathrm{Cq}=0.80)$.
4) Nailing schedule shall be specified by truss manufacturer per NDS.
5) Brace bottom chord with approved sheathing or purlins per Bracing Summary.
6) A creep factor of 2.00 has been applied for this truss analysis.
7) Listed wind uplift reactions based on MWFRS \& $C \& C$ loading.

All plates shown to be Eagle 20 unless otherwise noted.

Loading (psf)	General	CSI	Deflection	L/	(loc)	Allowed
TCLL: 20	Bldg Code: $\begin{aligned} & \text { CBC2019/ } \\ & \\ & \text { TPI 1-2014 }\end{aligned}$	TC: 0.71 (1-2)	Vert TL: 0.06 in	L/999	(4-5)	L/240
TCDL: 15(rake)		BC: 0.50 (5-1)	VertLL: 0.05 in	L/999	(4-5)	L/360
BCLL: 0	$\begin{aligned} & \text { Rep Mbr: } \quad \text { No } \\ & \text { Lumber D.O.L. }: 125 \% \end{aligned}$	Web: 0.13 (2-5)	Cant/OHTL:0.52 in	2L/186	(1-1)	2L/120
BCDL: 10			Cant/OHLL:0.23 in	2L/409	(1-1)	2L/120
			Horz TL: 0.19 in		3	

Reaction

JT	Brg Combo	Brg Width	Rqd Brg Width	Max React	Max Grav Uplift Max MWFRS UpliftMax C\&CUplift	Max Uplift	Max Horiz		
5	1	5.5 in	1.50 in	794 lbs	-	-7 lbs	-400 lbs	-400 lbs	221 lbs
3	1	1.5 in	1.50 in	138 lbs	-24 lbs	-67 lbs	-97 lbs	-97 lbs	.
4	1	1.5 in	1.50 in	120 lbs	.	.	.		

Material

TC. DFL\#2 2×6

Bracing

BC. DFL \#2 2×4
Web: SPF Stud 2x 4
Sheathed or Purlins at 6-3-0, Purlin design by Others.

Loads

1) This truss has been designed for the effects due to 10 psf bottom chord live load plus dead loads.
2) This truss has been designed for the effects of wind loads in accordance with ASCE7-16 with the following user defined input: 110 mph (Factored),

Exposure C, Enclosed, Gable, Risk Category II, $\mathrm{h}=\mathrm{B}=\mathrm{L}=10 \mathrm{ft}$, Not End Zone Truss, Both end webs considered. DOL $=1.60$
3) Minimum storage attic loading has been applied in accordance with IBC 1607.1
4) A moving/sprinkler point load of 300 lbs to the TC and 300 lbs to the BChas been applied concurrent withother dead loads

Notes

1) Unless noted otherwise, do not cut or alter any truss member or plate without prior approval from a Professional Engineer.
2) This truss has been designed using the green service reduction factors.
3) The fabrication tolerance for this roof truss is $20 \%(\mathrm{Cq}=0.80)$.
4) Nailing schedule shall be specified by truss manufacturer per NDS.
5) Brace bottom chord with approved sheathing or purlins per Bracing Summary.
6) A creep factor of 2.00 has been applied for this truss analysis.
7) Due to negative reactions in gravity load cases, special connections to the bearing surface at joint 3 may need to be considered. 8) Listed wind uplift reactions based on MWFRS \& C\&C loading.

All plates shown to be Eagle 20 unless otherwise noted.

Loading (psf)	General		CSI	Deflection	L/	(loc)	Allowed	
TCLL: 20	Bldg Code:	CBC2019/	TC: 0.69(5-1)	Vert TL:	0.08 in	L/801	$(3-4)$	L/240
TCDL: 15(rake)		TPI 1-2014	BC: 0.31(3-4)	VertLL:	0.05 in	L/999	$(3-4)$	L/360
BCLL: 0	Rep Mbr:	Yes	Web: $0.06(1-4)$	Horz TL:	0 in		3	
BCDL: 10	Lumber D.O.L.: 125%							

Reaction

JT	Brg Combo	Brg Width	Rqd Brg Width	Max React	Max Grav Uplift Max MWFRS UpliftMax C\&CUplift	Max Uplift	Max Horiz	
1	1	5.5 in	1.50 in	698 lbs	\cdot	-121 lbs	-534 lbs	-534 lbs
2	1	1.5 in	1.50 in	137 lbs	-46 lbs	-19 lbs	-27 lbs	-46 lbs
3	1	1.5 in	1.50 in	164 lbs	\cdot	\cdot	.	

Material

TC: DFL\#2 2×6

Bracing

TC: Sheathed or Purlins at 6-3-0, Purlin design by Others.
BC: Sheathed or Purlins at $10-0-0$, Purlin design by Others.

Web: SPF Stud 2 x 4

Loads

1) This truss has been designed for the effects due to 10 psf bottom chord live load plus dead loads.
2) This truss has been designed for the effects of wind loads in accordance with ASCE7-16 with the following user defined input: 110 mph (Factored),

Exposure C, Enclosed, Gable, Risk Category II, $\mathrm{h}=\mathrm{B}=\mathrm{L}=10 \mathrm{ft}$, Not End Zone Truss, Both end webs considered. DOL $=1.60$
3) Minimum storage attic loading has been applied in accordance with IBC 1607.1
4) A moving/sprinkler point load of 300 lbs to the TC and 300 lbs to the $B C$ has been applied concurrent withother dead loads

Member Forces Table indicates: Member ID, max CSI, max axial force, (max compr. force if different from max axial force). Only forees greater than 300 lbs are shown in this table

Notes

1) Unless noted otherwise, do not cut or alter any truss member or plate without prior approval from a Professional Engineer:
2) Unlabeled plates are $1.5 \times 320 \mathrm{ga}$.
3) This truss has been designed using the green service reduction factors.
4) The fabrication tolerance for this roof truss is $20 \%(\mathrm{Cq}=0.80)$.
5) Nailing schedule shall be specified by truss manufacturer per NDS.
6) Brace bottom chord with approved sheathing or purlins per Bracing Summary.
7) A creep factor of 2.00 has been applied for this truss analysis.
8) Horizontal clearance between inside face of bearing and where the outside edge of the end web meets the bottom side of the top chord shall not exceed 0.5 "
9) Due to negative reactions in gravity load cases, special connections to the bearing surface at joint 2 may need to be considered. 10) Listed wind uplift reactions based on MWFRS \& C\&Cloading.

All plates shown to be Eagle 20 unless otherwise noted.

Loading (psf)	General	CSI	Deflection L/	(loc)	Allowed
TCLL: 20	$\begin{array}{ll}\text { Bldg Code: } & \text { CBC2019/ } \\ & \text { TPI 1-2014 }\end{array}$	TC: 0.36 (1-2)	Vert TL: 0.03 in L/999	(4-5)	L/240
TCDL: 15(rake)		BC: 0.19 (5-1)	VertLL: 0.02 in L/999	(4-5)	L/360
BCLL: 0	$\begin{aligned} & \text { Rep Mbr: } \quad \text { No } \\ & \text { Lumber D.O.L. }: 125 \% \end{aligned}$	Web: 0.21 (2-4)	Cant/OHTL:0.07 in 2L/999	(5-1)	2L/120
BCDL: 10			Cant/OHLL:0.04 in UP 2L/999	(5-1)	2L/120
			Horz TL: 0.02 in	3	

Reaction

JT	Brg Combo	Brg Width	Rqd Brg Width	Max React	Max Grav Uplift Max MWFRS UpliftMax C\&CUplift	Max Uplift	Max Horiz		
5	1	5.5 in	1.50 in	937 lbs	\cdot	-9 lbs	-503 lbs	-503 lbs	221 lbs
3	1	1.5 in	1.50 in	140 lbs	\cdot	-41 lbs	-91 lbs	-91 lbs	\cdot
4	1	1.5 in	1.50 in	109 lbs	-165 lbs	-20 lbs	.	-165 lbs	.

Material

TC: DFL\#2 2×6
Bracing
BC. DFL \#2 2×4
Web: SPF Stud 2×4

Loads

1) This truss has been designed for the effects due to 10 psf bottom chord live load plus dead loads.
2) This truss has been designed for the effects of wind loads in accordance with ASCE7-16 with the following user defined input: 110 mph (Factored),

Exposure C, Enclosed, Gable, Risk Category II, h=B=L=10 ft, Not End Zone Truss, Both end webs considered. DOL $=1.60$
3) Minimum storage attic loading has been applied in accordance with IBC 1607.1
4) A moving/sprinkler point load of 300 lbs to the TC and 300 lbs to the BC has been applied concurrent with other dead loads

Member Forces Table indicates: Member ID, max CSI, max axial force, (max compr. fore if different from max axial force). Only forces greater than 300 lbs are shown in this table

TC	1-2	0.360	588 lbs	(-384 lbs)						
BC	4-5	0.192	-503 lbs		5-1	0.192	- 503 lbs			
Web	2-5	0.170	-809 lbs		2-4	0.215	542 lbs	(-193 lbs)		

Notes

1) Unless noted otherwise, do not cut or alter any truss member or plate without prior approval from a Professional Engineer:
2) This truss has been designed using the green service reduction factors.
3) The fabrication tolerance for this roof truss is $20 \%(\mathrm{Cq}=0.80)$.
4) Nailing schedule shall be specified by truss manufacturer per NDS.
5) Brace bottom chord with approved sheathing or purlins per Bracing Summary.
6) A creep factor of 2.00 has been applied for this truss analysis.
7) Due to negative reactions in gravity load cases, special connections to the bearing surface at joint 4 may need to be considered. 8) Listed wind uplift reactions based on MWFRS \& C\&C loading.

All plates shown to be Eagle 20 unless otherwise noted.

Loading (psf)	General	CSI	Deflection L/	(loc)	Allowed
TCLL: 20	Bldg Code: $\begin{aligned} & \text { CBC2019/ } \\ & \\ & \text { TPI 1-2014 }\end{aligned}$	TC: 0.37 (1-2)	Vert TL: 0.04 in L/999	(4-5)	L/240
TCDL: 15(rake)		BC: 0.21 (4-5)	VertLL: 0.03 in L/999	(4-5)	L/360
BCLL: 0	$\begin{aligned} & \text { Rep Mbr: } \quad \text { No } \\ & \text { Lumber D.O.L. }: 125 \% \end{aligned}$	Web: 0.22 (2-4)	Cant/OHTL:0.08 in 2L/999	(5-1)	2L/120
BCDL: 10			Cant/OHLL:0.04 in UP 2L/999	(5-1)	2L/120
			Horz TL: 0.02 in	3	

Reaction

JT	Brg Combo	Brg Width	Rqd Brg Width	Max React	Max Grav Uplift Max MWFRS UpliftMax C\&CUplift	Max Uplift	Max Horiz	
5	1	5.5 in	1.50 in	965 lbs	\cdot	-11 lbs	-523 lbs	-523 lbs
3	1	1.5 in	1.50 in	134 lbs	\cdot	-39 lbs	-82 lbs	-82 lbs
4	1	1.5 in	1.50 in	114 lbs	-177 lbs	-24 lbs	.	

Material

TC: DFL\#2 2×6
Bracing
BC. DFL \#2 2×4
Web: SPF Stud 2×4

Loads

1) This truss has been designed for the effects due to 10 psf bottom chord live load plus dead loads.
2) This truss has been designed for the effects of wind loads in accordance with ASCE7-16 with the following user defined input: 110 mph (Factored),

Exposure C, Enclosed, Gable, Risk Category II, $\mathrm{h}=\mathrm{B}=\mathrm{L}=10 \mathrm{ft}$, Not End Zone Truss, Both end webs considered. DOL $=1.60$
3) Minimum storage attic loading has been applied in accordance with IBC 1607.1
4) A moving/sprinkler point load of 300 lbs to the TC and 300 lbs to the BC has been applied concurrent withother dead loads.

Member Forces Table indicates: Member ID, max CSI, max axial force, (max compr. fore if different from max axial force). Only forces greater than 300 lbs are shown in this table

TC	1-2	0.370	613 lbs	(-407 lbs)						
BC	4.5	0.211	-521 lbs		5-1	0.211	-521 lbs			
Web	2-5	0.176	-830 lbs		2-4	0.222	561 lbs	(-218 lbs)		

Notes

1) Unless noted otherwise, do not cut or alter any truss member or plate without prior approval from a Professional Engineer:
2) This truss has been designed using the green service reduction factors.
3) The fabrication tolerance for this roof truss is $20 \%(\mathrm{Cq}=0.80)$.
4) Nailing schedule shall be specified by truss manufacturer per NDS.
5) Brace bottom chord with approved sheathing or purlins per Bracing Summary.
6) A creep factor of 2.00 has been applied for this truss analysis.
7) Due to negative reactions in gravity load cases, special connections to the bearing surface at joint 4 may need to be considered. 8) Listed wind uplift reactions based on MWFRS \& C\&C loading.

All plates shown to be Eagle 20 unless otherwise noted.

Loading (psf)	General	CSI	Deflection	L/	(loc)	Allowed
TCLL: 20	Bldg Code: CBC2019/	TC: 0.44 (1-2)	Vert TL: 0.12 in	L/593	(4-5)	L/240
TCDL: 15(rake)	TPI 1-2014	BC: 0.42 (4-5)	VertLL: 0.07 in	L/946	(4-5)	L/360
BCLL: 0	Rep Mbr: No	Web: 0.11 (2-5)	Cant/OHTL:0.16 in	2L/443	(1-1)	2L/120
BCDL: 10	Lumber D.O.L. 125 \%		Cant/OHLL: 0.13 in	2L/567	(1-1)	2L/120
			Horz TL: 0.06 in		3	

Reaction

JT	Brg Combo	Brg Width	Rqd Brg Width	Max React	Max Grav Uplift Max MWFRS UpliftMax C\&CUplift	Max Uplift	Max Horiz	
5	1	5.5 in	1.50 in	668 lbs	\cdot	-6 lbs	-313 lbs	-313 lbs
3	1	3.5 in	1.50 in	192 lbs	\cdot	-72 lbs	-146 lbs	-146 lbs
4	1	5.5 in	1.50 in	137 lbs	\cdot	\cdot	.	

Material

TC: DFL\#2 2×6
BC. DFL $\# 2 \times 4$
Web: SPF Sud 2x 4

Bracing

TC: Sheathed or Purlins at 6-3-0, Purlin design by Others.
BC: Sheathed or Purlins at 10-0-0, Purlin design by Others.

Loads

1) This truss has been designed for the effects due to 10 psf bottom chord live load plus dead loads.
2) This truss has been designed for the effects of wind loads in accordance with ASCE7-16 with the following user defined input: 110 mph (Factored),

Exposure C, Enclosed, Gable, Risk Category II, $\mathrm{h}=\mathrm{B}=\mathrm{L}=10 \mathrm{ft}, \mathrm{Not}$ End Zone Truss, Both end webs considered. DOL $=1.60$
3) Minimum storage attic loading has been applied in accordance with IBC 1607.1
4) A moving/sprinkler point load of 300 lbs to the TC and 300 lbs to the BC has been applied concurrent withother dead loads.

Notes

1) Unless noted otherwise, do not cut or alter any truss member or plate without prior approval from a Professional Engineer.
2) This truss has been designed using the green service reduction factors.
3) The fabrication tolerance for this roof truss is $20 \%(\mathrm{Cq}=0.80)$.
4) Nailing schedule shall be specified by truss manufacturer per NDS.
5) Brace bottom chord with approved sheathing or purlins per Bracing Summary.
6) A creep factor of 2.00 has been applied for this truss analysis.
7) Listed wind uplift reactions based on MWFRS \& C\&C loading.

All plates shown to be Eagle 20 unless otherwise noted.

Loading (psf)	General	$\begin{aligned} & \text { CSI } \\ & \text { TC: } 0.15(3-4) \end{aligned}$	Deflection	L/	(loc)	Allowed
TCLL: 20	Bldg Code: CBC2019/		Vert TL: 0.4 in	L/267	(5-6)	L/240
TCDL: 15(rake)	TPI 1-2014	BC: 0.75 (5-6)	VertLL: 0.2 in	L/531	(5-6)	L/360
BCLL: 0	$\begin{aligned} & \text { Rep Mbr: } \quad \text { Yes } \\ & \text { Lumber D.O.L. }: 125 \% \end{aligned}$	Web: 0.24 (3-6)	Cant/OHTL: 0.01 in UP 2L/999		(6-1)	2L/120
BCDL: 10			Cant/OHLL:0.01 in 2L/999		(1-1)	2L/120
					5	

Reaction

JT	Brg Combo	Brg Width	Rqd Brg Width	Max React	Max Grav Uplift Max MWFRS UpliftMax C\&CUplift	Max Uplift	Max Horiz	
6	1	5.5 in	1.50 in	700 lbs	\cdot	-7 lbs	-240 lbs	-240 lbs
4	1	1.5 in	1.50 in	160 lbs	\cdot	-47 lbs	-105 lbs	-105 lbs
5	1	1.5 in	1.50 in	246 lbs	\cdot	-8 lbs	-54 lbs	-54 lbs

Material
TC: DFL\#2 2×6
BC: DFL \#2 2x 4
Web: SPF Stud 2 x 4

Bracing

TC: Sheathed or Purlins at 6-3-0, Purlin design by Others.
BC: Sheathed or Purlins at $10-0-0$, Purlin design by Others.

Loads

1) This truss has been designed for the effects due to 10 psf bottom chord live load plus dead loads.
2) This truss has been designed for the effects of wind loads in accordance with ASCE7-16 with the following user defined input: 110 mph (Factored),

Exposure C, Enclosed, Gable, Risk Category II, $\mathrm{h}=\mathrm{B}=\mathrm{L}=10 \mathrm{ft}$, Not End Zone Truss, Both end webs considered. DOL $=1.60$
3) Minimum storage attic loading has been applied in accordance with IBC 1607.1
4) A moving/sprinkler point load of 300 lbs to the TC and 300 lbs to the $B C$ has been applied concurrent withother dead loads

Member Forces Table indicates: Member ID, max CSI, max axial force, (max compr. force if different from max axial force). Only forees greater than 300 lbs are shown in this table. | | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| TC | | | | | | | | |
| BC | $5-6$ | 0.746 | 350 lbs | $(-214 \mathrm{lbs})$ | | | | |
| Web | $3-6$ | 0.240 | -450 lbs | | $3-5$ | 0.227 | -386 lbs | |

Notes

1) Unless noted otherwise, do not cut or alter any truss member or plate without prior approval from a Professional Engineer.
2) This truss has been designed using the green service reduction factors.
3) The fabrication tolerance for this roof truss is $20 \%(\mathrm{Cq}=0.80)$.
4) Nailing schedule shall be specified by truss manufacturer per NDS.
5) Brace bottom chord with approved sheathing or purlins per Bracing Summary.
6) A creep factor of 2.00 has been applied for this truss analysis.
7) Listed wind uplift reactions based on MWFRS \& C\&C loading.

Allplates shown to be Eagle 20 unless otherwise noted.

Loading (psf)	General	CSI	Deflection	L/	(loc)	Allowed
TCLL: 20	$\begin{array}{ll}\text { Bldg Code: } & \text { CBC2019/ } \\ & \text { TPI 1-2014 }\end{array}$	TC: 0.71 (1-2)	Vert TL: 0.2 in	L/438	(4-5)	L/240
TCDL: 15(rake)		BC: 0.65 (4-5)	VertLL: 0.13 in	L/697	(4-5)	L/360
BCLL: 0	$\begin{aligned} & \text { Rep Mbr: } \quad \text { No } \\ & \text { Lumber D.O.L. }: 125 \% \end{aligned}$	Web : 0.14 (2-5)	Cant/OHTL: 0.42 in	2L/229	(1-1)	2L/120
BCDL: 10			Cant/OHLL: 0.28 in	2L/340	(1-1)	2L/120
			Horz TL: 0.15 in		3	

Reaction

JT	Brg Combo	Brg Width	Rqd Brg Width	Max React	Max Grav Uplift Max MWFRS UpliftMax C\&CUplift	Max Uplift	Max Horiz	
5	1	5.5 in	1.50 in	848 lbs	\cdot	-8 lbs	-348 lbs	-348 lbs
3	1	1.5 in	1.50 in	221 lbs	\cdot	-86 lbs	-141 lbs	-141 lbs
4	1	1.5 in	1.50 in	147 lbs	\cdot	\cdot	\cdot	

Material

TC: DFL\#2 2×6
BC: DFL \#2 2x 4
Web: SPF Stud 2x 4

Bracing

TC: Sheathed or Purlins at 6-3-0, Purlin design by Others.
BC: Sheathed or Purlins at $10-0-0$, Purlin design by Others.

Loads

1) This truss has been designed for the effects due to 10 psf bottom chord live load plus dead loads.
2) This truss has been designed for the effects of wind loads in accordance with ASCE7-16 with the following user defined input: 110 mph (Factored),

Exposure C, Enclosed, Gable, Risk Category II, $\mathrm{h}=\mathrm{B}=\mathrm{L}=10 \mathrm{ft}, \mathrm{Not}$ End Zone Truss, Both end webs considered. DOL $=1.60$
3) Minimum storage attic loading has been applied in accordance with IBC 1607.1
4) A moving/sprinkler point load of 300 lbs to the TC and 300 lbs to the BC has been applied concurrent withother dead loads .

Notes

1) Unless noted otherwise, do not cut or alter any truss member or plate without prior approval from a Professional Engineer.
2) This truss has been designed using the green service reduction factors.
3) The fabrication tolerance for this roof truss is $20 \%(\mathrm{Cq}=0.80)$.
4) Nailing schedule shall be specified by truss manufacturer per NDS.
5) Brace bottom chord with approved sheathing or purlins per Bracing Summary.
6) A creep factor of 2.00 has been applied for this truss analysis.
7) Listed wind uplift reactions based on MWFRS \& C\&C loading.

Allplates shown to be Eagle 20 unless otherwise noted.

Loading (psf)	General		CSI	Deflection	L/	(loc)	Allowed	
TCLL: 20	Bldg Code:	CBC2019/	TC: 0.69(5-1)	Vert TL:	0.24 in	L/374	$(3-4)$	L/240
TCDL: 15(rake)		TPI 1-2014	BC: 0.51(3-4)	VertLL:	0.12 in	L/721	$(3-4)$	L/360
BCLL: 0	Rep Mbr:	Yes	Web: $0.07(1-4)$	Horz TL:	0 in		2	
BCDL: 10	Lumber D.O.L.: 125%							

Reaction

JT	Brg Combo	Brg Width	Rqd Brg Width	Max React	Max Grav Uplift Max MWFRS UpliftMax C\&CUplift	Max Uplift	Max Horiz	
1	1	5.5 in	1.50 in	752 lbs	\cdot	-113 lbs	-496 lbs	-496 lbs
2	1	1.5 in	1.50 in	219 lbs	\cdot	-51 lbs	-109 lbs	-109 lbs
3	1	1.5 in	1.50 in	189 lbs	\cdot	\cdot	\cdot	

Material

TC: DFL\#2 2×6

Bracing

TC: Sheathed or Purlins at 6-3-0, Purlin design by Others.
BC: Sheathed or Purlins at $10-0-0$, Purlin design by Others.

Web: HF Standard 2×4 except:
SPF Stud 2 x 4: 1-4

Loads

1) This truss has been designed for the effects due to 10 psf bottom chord live load plus dead loads.
2) This truss has been designed for the effects of wind loads in accordance with ASCE7-16 with the following user defined input: 110 mph (Factored),

Exposure C, Enclosed, Gable, Risk Category II, h=B=L=10 ft, Not End Zone Truss, Both end webs considered. DOL = 1.60
3) Minimum storage attic loading has been applied in accordance with IBC 1607.1
4) A moving/sprinkler point load of 300 lbs to the TC and 300 lbs to the BC has been applied concurrent withother dead loads .

Member Forces Table indicates: Member ID, max CSI, max axial fore, (max compr. fore if different from max axial foree). Only forrees greater than 300ibs are shown in this table.

Notes

1) Unless noted otherwise, do not cut or alter any truss member or plate without prior approval from a Professional Engineer:
2) Unlabeled plates are $1.5 \times 320 \mathrm{ga}$.
3) This truss has been designed using the green service reduction factors.
4) The fabrication tolerance for this roof truss is $20 \%(\mathrm{Cq}=0.80)$.
5) Nailing schedule shall be specified by truss manufacturer per NDS.
6) Brace bottom chord with approved sheathing or purlins per Bracing Summary.
7) A creep factor of 2.00 has been applied for this truss analysis.
8) Horizontal clearance between inside face of bearing and where the outside edge of the end web meets the bottom side of the top chord shall not exceed $0.5 "$
9) Listed wind uplift reactions based on MWFRS \& C\&C loading.

All plates shown to be Eagle 20 unless otherwise noted.

Loading (psf)	General	CSI	Deflection	L/	(loc)	Allowed
TCLL: 20	Bldg Code: $\begin{aligned} & \text { CBC2019/ } \\ & \\ & \text { TPI 1-2014 }\end{aligned}$	TC: 0.89 (1-2)	Vert TL: $\quad 0.09$ in	L/827	(4-5)	L/240
TCDL: 15(rake)		BC: 0.55 (5-1)	VertLL: 0.08 in	L/933	(4-5)	L/360
BCLL: 0	$\begin{aligned} & \text { Rep Mbr: } \quad \text { No } \\ & \text { Lumber D.O.L. }: 125 \% \end{aligned}$	Web : 0.15 (2-5)	Cant/OHTL: 0.94 in	2L/123	(1-1)	2L/120
BCDL: 10			Cant/OHLL: 0.38 in	2L/303	(1-1)	2L/120
			Horz TL: 0.34 in		3	

Reaction

JT	Brg Combo	Brg Width	Rqd Brg Width	Max React	Max Grav Uplift Max MWFRS UpliftMax C\&CUplift	Max Uplift	Max Horiz	
5	1	5.5 in	1.50 in	946 lbs	\cdot	-9 lbs	-415 lbs	-415 lbs
3	1	1.5 in	1.50 in	171 lbs	-14 lbs	-81 lbs	-103 lbs	-103 lbs
4	1	1.5 in	1.50 in	130 lbs	\cdot	\cdot	\cdot	

Material

TC: DFL\#1 2×6

Bracing

BC. DFL\#1B 2×4
Web: SPF Stud 2 x 4
Sheathed or Purlins at 6-3-0, Purlin design by Others.

Loads

1) This truss has been designed for the effects due to 10 psf bottom chord live load plus dead loads.
2) This truss has been designed for the effects of wind loads in accordance with ASCE7-16 with the following user defined input: 110 mph (Factored),

Exposure C, Enclosed, Gable, Risk Category II, $\mathrm{h}=\mathrm{B}=\mathrm{L}=10 \mathrm{ft}$, Not End Zone Truss, Both end webs considered. DOL $=1.60$
3) Minimum storage attic loading has been applied in accordance with IBC 1607.1
4) A moving/sprinkler point load of 300 lbs to the TC and 300 lbs to the BC has been applied concurrent withother dead loads .

Notes

1) Unless noted otherwise, do not cut or alter any truss member or plate without prior approval from a Professional Engineer.
2) This truss has been designed using the green service reduction factors.
3) The fabrication tolerance for this roof truss is $20 \%(\mathrm{Cq}=0.80)$.
4) Nailing schedule shall be specified by truss manufacturer per NDS.
5) Brace bottom chord with approved sheathing or purlins per Bracing Summary.
6) A creep factor of 2.00 has been applied for this truss analysis.
7) Due to negative reactions in gravity load cases, special connections to the bearing surface at joint 3 may need to be considered. 8) Listed wind uplift reactions based on MWFRS \& C\&C loading.

All plates shown to be Eagle 20 unless otherwise noted.

Loading (psf)	General	CSI	Deflection L/	(loc)	Allowed
TCLL: 20	Bldg Code: $\begin{aligned} & \text { CBC2019/ } \\ & \\ & \text { TPI 1-2014 }\end{aligned}$	TC: 0.47 (1-2)	Vert TL: 0.09 in L/806	(4-5)	L/240
TCDL: 15(rake)		BC: 0.35 (4-5)	VertLL: 0.06 in L/999	(4-5)	L/360
BCLL: 0	$\begin{aligned} & \text { Rep Mbr: } \quad \text { No } \\ & \text { Lumber D.O.L. }: 125 \% \end{aligned}$	Web: 0.20 (2-4)	Cant/OHTL: 0.08 in 2L/999	(1-1)	2L/120
BCDL: 10			Cant/OHLL: 0.04 in UP 2L/999	(5-1)	2L/120
			Horz TL: 0.02 in	3	

Reaction

JT	Brg Combo	Brg Width	Rqd Brg Width	Max React	Max Grav Uplift Max MWFRS UpliftMax C\&CUplift	Max Uplift	Max Horiz	
5	1	5.5 in	1.50 in	981 lbs	\cdot	-10 lbs	-442 lbs	-442 lbs
3	1	1.5 in	1.50 in	195 lbs	\cdot	-58 lbs	-119 lbs	-119 lbs
4	1	1.5 in	1.50 in	84 lbs	-92 lbs	-1 lbs	\cdot	-92 lbs

Material

TC: DRL\#2 2×6
Bracing
BC. DFL \#2 2×4
Web: SPF Stud 2x 4
Loads

1) This truss has been designed for the effects due to 10 psf bottom chord live load plus dead loads.
2) This truss has been designed for the effects of wind loads in accordance with ASCE7-16 with the following user defined input: 110 mph (Factored),

Exposure C, Enclosed, Gable, Risk Category II, $\mathrm{h}=\mathrm{B}=\mathrm{L}=10 \mathrm{ft}$, Not End Zone Truss, Both end webs considered. DOL $=1.60$
3) Minimum storage attic loading has been applied in accordance with IBC 1607.1
4) A moving/sprinkler point load of 300 lbs to the TC and 300 lbs to the BC has been applied concurrent withother dead loads .

Member Forces Table indicates: Member ID, max CSI, max axial fore, (max compr. fore if different from max axial force). Only forees greater than 300 lbs are shown in this table.

TC	1-2	0.471	589 lbs	(-351 lbs)						
BC	4.5	0.346	-491 lbs		5-1	0.286	491 lbs			
Web	2-5	0.176	-834 lbs		2-4	0.203	513 lbs	(-129 lbs)		

Notes

1) Unless noted otherwise, do not cut or alter any truss member or plate without prior approval from a Professional Engineer.
2) This truss has been designed using the green service reduction factors.
3) The fabrication tolerance for this roof truss is $20 \%(\mathrm{Cq}=0.80)$.
4) Nailing schedule shall be specified by truss manufacturer per NDS.
5) Brace bottom chord with approved sheathing or purlins per Bracing Summary.
6) A creep factor of 2.00 has been applied for this truss analysis.
7) Due to negative reactions in gravity load cases, special connections to the bearing surface at joint 4 may need to be considered. 8) Listed wind uplift reactions based on MWFRS \& C\&C loading.

All plates shown to be Eagle 20 unless otherwise noted.

Loading (psf)	General	CSI	Deflection	L/	(loc)	Allowed
TCLL: 20	Bldg Code: CBC2019/	TC: 0.20 (1-2)	VertTL: 0.09 in	L/999	(5-6)	L/240
TCDL: 15(rake)	TPI 1-2014	BC: 0.33 (5-6)	VertLL: 0.05 in	L/999	(5-6)	L/360
BCLL: 0	Rep Mbr: Yes	Web: 0.47 (3-5)	Cant/OHTL: 0.02 in	2L/999	(1-1)	2L/120
BCDL: 10	Lumber D.O.L. 125 \%		Cant/OHLL:0.01 in HorzTL: 0.01 in	2L/999	$(1-1)$	2L/120

Reaction

JT	Brg Combo	Brg Width	Rqd Brg Width	Max React	Max Grav Uplift Max MWFRS UpliftMax C\&C Uplift	Max Uplift	Max Horiz	
7	1	5.5 in	1.50 in	787 lbs	\cdot	-8 lbs	-216 lbs	-216 lbs
4	1	1.5 in	1.50 in	174 lbs	\cdot	-47 lbs	-95 lbs	-95 lbs
5	1	1.5 in	1.50 in	324 lbs	\cdot	-18 lbs	-67 lbs	-67 lbs

Material

TC: DFL\#2 2×6
BC: DFL\#2 2×4
Web: SPF Stud 2x 4

Bracing

TC: Sheathed or Purlins at 6-3-0, Purlin design by Others.
BC: Sheathed or Purlins at $10-0-0$, Purlin design by Others.

Loads

1) This truss has been designed for the effects due to 10 psf bottom chord live load plus dead loads.
2) This truss has been designed for the effects of wind loads in accordance with ASCE7-16 with the following user defined input: 110 mph (Factored),

Exposure C, Enclosed, Gable, Risk Category II, h=B=L=10 ft, Not End Zone Truss, Both end webs considered. DOL = 1.60
3) Minimum storage attic loading has been applied in accordance with IBC 1607.1
4) A moving/sprinkler point load of 300 lbs to theTC and 300 lbs to the BC has been applied concurrent withother dead loads.

Member Forces Table indicates: Member ID, max CSI, max axial force, (max compr. foree if different from max axial fore). Only forces greater than 300 lbs are shown in this table

Notes

1) Unless noted otherwise, do not cut or alter any truss member or plate without prior approval from a Professional Engineer.
2) This truss has been designed using the green service reduction factors.
3) The fabrication tolerance for this roof truss is $20 \%(\mathrm{Cq}=0.80)$.
4) Nailing schedule shall be specified by truss manufacturer per NDS.
5) Brace bottom chord with approved sheathing or purlins per Bracing Summary.
6) A creep factor of 2.00 has been applied for this truss analysis.
7) Listed wind uplift reactions based on MWFRS \& C\&C loading.

All plates shown to be Eagle 20 unless otherwise noted.

Loading (psf)	General	CSI	Deflection	L/	(loc)	Allowed		
TCLL: 20	Bldg Code:	CBC2019/	TC: 0.69(7-1)	VertTL:	0.05 in	L/999	$(4-5)$	L/240
TCDL: 15(rake)		TPI 1-2014	BC: 0.26(4-5)	VertLL:	0.03 in	L/999	$(4-5)$	L/360
BCLL: 0	Rep Mbr:	Yes	Web: 0.24(2-4)	HorzTL:	0 in		4	
BCDL: 10	Lumber D.O.L.: 125%							

Reaction

JT	Brg Combo	Brg Width	Rqd Brg Width	Max React	Max Grav Uplift Max MWFRS UpliftMax C\&CUplift	Max Uplift	Max Horiz	
1	1	5.5 in	1.50 in	832 lbs	\cdot	-103 lbs	-428 lbs	-428 lbs
3	1	1.5 in	1.50 in	173 lbs	\cdot	-50 lbs	-140 lbs	-140 lbs
4	1	1.5 in	1.50 in	239 lbs	\cdot	\cdot	\cdot	

Material

TC: DFL\#2 2×6
BC: DFL \#2 2x 4
Web: SPF Stud 2x 4

Bracing

TC: Sheathed or Purlins at 6-3-0, Purlin design by Others.
BC: Sheathed or Purlins at $10-0-0$, Purlin design by Others.

Loads

1) This truss has been designed for the effects due to 10 psf bottom chord live load plus dead loads.
2) This truss has been designed for the effects of wind loads in accordance with ASCE7-16 with the following user defined input: 110 mph (Factored),

Exposure C, Enclosed, Gable, Risk Category II, h=B=L=10 ft, Not End Zone Truss, Both end webs considered. DOL = 1.60
3) Minimum storage attic loading has been applied in accordance with IBC 1607.1
4) A moving/sprinkler point load of 300 lbs to the TC and 300 lbs to the BChas been applied concurrent withother dead loads

Member Forces Table indicates: Member ID, max CSI, max axial foree, (max compr. force if different from max axial foree). Only forces greater than 300 lbs are shown in this table

TC	$1-2$	0.522	-363 lbs			
BC	$4-5$	0.264	302 lbs			
Web	$1-5$	0.127	321 lbs	$2-4$	0.238	-357 lbs

Notes

1) Unless noted otherwise, do not cut or alter any truss member or plate without prior approval from a Professional Engineer:
2) Unlabeled plates are $1.5 \times 320 \mathrm{ga}$.
3) This truss has been designed using the green service reduction factors.
4) The fabrication tolerance for this roof truss is $20 \%(\mathrm{Cq}=0.80)$.
5) Nailing schedule shall be specified by truss manufacturer per NDS.
6) Brace bottom chord with approved sheathing or purlins per Bracing Summary.
7) A creep factor of 2.00 has been applied for this truss analysis.
8) Horizontal clearance between inside face of bearing and where the outside edge of the end web meets the bottom side of the top chord shall not exceed 0.5 "
9) Listed wind uplift reactions based on MWFRS \& C\&C loading.

APPENDIX E: SOILS REPORT

SOILS ENGINEERING REPORT PASO ROBLES AREA SAN LUIS OBISPO COUNTY, CALIFORNIA
PROJECT SL12244-1
Prepared by
GeoSolutions, Inc.
220 HIGH STREET
SAN LUIS OBISPO, CALIFORNIA 93401
(805) 543-8539

©

June 23, 2021

SOILS ENGINEERING REPORT

DATE:
June 23, 2021

PROJECT NUMBER:
SL12244-1

220 High Street
San Luis Obispo CA 93401 805.543.8539

1021 Tama Lane, Suite 105 Santa Maria, CA 93455 805.614.6333

201 S. Milpas Street, Suite 103 Santa Barbara, CA 93103 805.966.2200
info@geosolutions.net
sbinfo@geosolutions.net

This Soils Engineering Report has been prepared for the proposed single-family residence to be located at [removed] in the Paso Robles area of San Luis Obispo County, California. Geotechnically, the site is suitable for the proposed development provided the recommendations in this report for site preparation, earthwork, foundations, slabs, retaining walls, and pavement sections are incorporated into the design.

It is anticipated that all foundations for the proposed residence will be excavated into the competent formational material encountered at a depth of 2.0 to 3.0 feet below ground surface during the field investigation. As an alternative, a graded pad may be developed for the proposed residence with all foundations excavated into engineered fill. All foundations are to be excavated into uniform material to limit the potential for distress of the foundation systems due to differential settlement. If cuts steeper than allowed by State of California Construction Safety Orders for "Excavations, Trenches, Earthwork" are proposed, a numerical slope stability analysis may be necessary for temporary construction slopes.

Thank you for the opportunity to have been of service in preparing this report. If you have any questions, please contact the undersigned at (805) 543-8539.

TABLE OF CONTENTS

1.0 INTRODUCTION 1
1.1 Site Description 1
1.2 Project Description 1
2.0 PURPOSE AND SCOPE 2
3.0 FIELD AND LABORATORY INVESTIGATION 2
4.0 SEISMIC DESIGN CONSIDERATIONS 4
5.0 LIQUEFACTION HAZARD ASSESSMENT 5
6.0 GENERAL SOIL-FOUNDATION DISCUSSION 5
7.0 CONCLUSIONS AND RECOMMENDATIONS 5
7.1 Preparation of Building Pad 6
7.2 Conventional Foundations 7
7.3 Slab-On-Grade Construction 8
7.4 Exterior Concrete Flatwork 10
7.5 Retaining Walls 10
7.6 Preparation of Paved Areas 13
7.7 Pavement Design 14
8.0 ADDITIONAL GEOTECHNICAL SERVICES 14
9.0 LIMITATIONS AND UNIFORMITY OF CONDITIONS 15
REFERENCES
APPENDIX A
Field InvestigationSoil Classification Chart
Trench Logs
Classification Data With Soil Behavior Types
APPENDIX B
Laboratory Testing
Soil Test Reports
APPENDIX C
Seismic Hazard AnalysisDesign Map Summary (SEAOC, 2019)APPENDIX DPreliminary Grading SpecificationsKey and Bench with Backdrain

LIST OF FIGURES

Figure 1: Site Location Map .. 1
Figure 2: Site Plan... 2
Figure 3: Field Investigation.. 3
Figure 4: Regional Geologic Map .. 3
Figure 5: Setback Dimensions - Slope Gradients Between 3-to-1 and 1-to-1 ... 8
Figure 6: Sub-Slab Detail ... 9
Figure 7: Retaining Wall Detail .. 11
Figure 8: Retaining Wall Active and Passive Wedges.. 12

LIST OF TABLES
Table 1: Engineering Properties .. 4
Table 2: Seismic Design Parameters... 5
Table 3: Minimum Footing and Grade Beam Recommendations.. 7
Table 4: Minimum Slab Recommendations .. 9
Table 5: Retaining Wall Design Parameters .. 11
Table 6: Required Special Inspections and Tests of Soils... 15

SOILS ENGINEERING REPORT

PASO ROBLES AREA SAN LUIS OBISPO COUNTY, CALIFORNIA

PROJECT SL12244-1

1.0 INTRODUCTION

This report presents the results of the geotechnical investigation for the proposed single-family residence to be located at [removed]in the Paso Robles area of San Luis Obispo County, California. See Figure 1: Site Location Map for the general location of the project area. Figure 1: Site Location Map was obtained from the program GIS Surfrider 1.8 (Elfelt, 2016).

1.1 Site Description

[removed] degrees west longitude at a general elevation of 2,000 feet above mean sea level. The parcel is irregularly shaped and 92 acres in size. The proposed development is to be limited to the southeast portion of the parcel. The site is access from a paved roadway to the north. See Figure 2: Site Plan for the general layout of the Site.

Figure 1: Site Location Map

The Site is situated on a hill top that drops
to the east, south and west at varying slope gradients from $3: 1$ to $6: 1$ (horizontal to vertical). Surface drainage follows the topography to the east, west and south towards existing slopes. Annual grasses currently vegetate the Site.

1.2 Project Description

A single-family residence and associated driveway are proposed on the hilltop in the southeast portion of the parcel. Grading quantities are anticipated to consist of 1,000 cubic yards of cut and 800 cubic yards of fill. At the time of the preparation of this report, the proposed single-family residence is to be constructed using light wood framing. The proposed development area will hereafter be referred to as the "Site."

It is anticipated that the proposed single-family residence will utilize a slab-on-grade and/or raised wood lower floor system. Dead and sustained live loads are currently unknown, but they are anticipated to be relatively light with maximum continuous footing and column loads estimated to be approximately 1.5 kips per linear foot and 15 kips, respectively.

2.0 PURPOSE AND SCOPE

The purpose of this study was to explore and evaluate the surface and sub-surface soil conditions at the Site and to develop geotechnical information and design criteria. The scope of this study includes the following items:

1. A literature review of available published and unpublished geotechnical data pertinent to the project site including geologic maps, and available on-line or in-house aerial photographs.
2. A field study consisting of site

Figure 2: Site Plan reconnaissance and subsurface exploration including exploratory trenches in order to formulate a description of the sub-surface conditions at the Site.
3. Laboratory testing performed on representative soil samples that were collected during our field study.
4. Engineering analysis of the data gathered during our literature review, field study, and laboratory testing.
5. Development of recommendations for site preparation and grading as well as geotechnical design criteria for building foundations, retaining walls, pavement sections, underground utilities, and drainage facilities.

3.0 FIELD AND LABORATORY INVESTIGATION

The field investigation was conducted on May 6, 2021 using a mini excavator with a twelve-inch bucket. Three exploratory trenches were advanced to a maximum depth of 6 feet below ground surface (bgs) at the approximate locations indicated on Figure 3: Field Investigation.

Data gathered during the field investigation suggest that the soil materials at the Site consist of colluvial soil overlying competent formational material. The surface material at the Site generally consisted of dark olive brown sandy elastic SILT (MH) with cobbles encountered in a dry to slightly moist condition. The sub-surface materials consisted of light brown sandy SILT (MH), interpreted as shale and encountered in a highly fractured, thinly bedded, moderately hard and moderately weathered and dry condition.

Regional site geology was obtained from United States Geological Survey MapView internet application (USGS, 2013) which compiles existing geologic maps. Figure 4: Regional Geologic Map presents the geologic conditions in site vicinity as mapped on the Geologic Map of the Adelaida Quadrangle (Dibblee, 2006). The majority of all underlying material at the Site was interpreted as Monterey Shale and will hereafter be referred to as competent formational material.

Groundwater was not encountered in any of the trenches. It should be expected that groundwater elevations may vary seasonally and with irrigation practices.

Figure 3: Field Investigation

ADELAIDA MAP (DF-218) LEGEND

Qa Alluvial gravel, sand and clay

MONTEREY SHALE
Marive biogenic moderately Fithifieds age, late θ middle Miocene Tm Upper or main part, sillceoous shale, white, weathered, thin bedded, platy to porcelaneous, britte, locally cherty, includes scattered thn layers and nodules of dolomite: age, upper Miccems (Mohnian Stage)
Tml Lower part (Sandholdt member of Durham, 1988), shale cream-white to tan, thin-bedded, semisiliceous, platy, fissile, includes thin layers and nodules of light gray to yellow-tan dolomite, contains locally abundant foraminiara micro shells and fish scales; age middie Miocene (Lwisian and Rellizian Stages - Smith and Jurham, 1968) Miocene (Saucesian? Stage)

Figure 4: Regional Geologic Map
During the trenching operations the soils encountered were continuously examined, visually classified, and sampled for general laboratory testing. A project engineer has reviewed a continuous log of the soils encountered at the time of field investigation. See Appendix A for the Trenching Logs from the field investigation.

Laboratory tests were performed on soil samples that were obtained from the Site during the field investigation. The results of these tests are listed below in Table 1: Engineering Properties. Laboratory data reports and detailed explanations of the laboratory tests performed during this investigation are provided in Appendix B.

Table 1: Engineering Properties

	Sample Description							
A	Dark Olive Brown Sandy Elastic SILT	MH	23	Low	86.5	27.8	$\stackrel{26}{\text { Medium }}$	66.3
B	Pale Brown Elastic SILT	MH	-	-	-	-	$\begin{gathered} 16 \\ \text { Low } \end{gathered}$	-

4.0 SEISMIC DESIGN CONSIDERATIONS

Estimating the design ground motions at the Site depends on many factors including the distance from the Site to known active faults; the expected magnitude and rate of recurrence of seismic events produced on such faults; the source-to-site ground motion attenuation characteristics; and the Site soil profile characteristics. According to section 1613 of the 2019 CBC (CBSC, 2019), all structures and portions of structures should be designed to resist the effects of seismic loadings caused by earthquake ground motions in accordance with the ASCE 7: Minimum Design Loads for Buildings and Other Structures, hereafter referred to as ASCE 7-16 (ASCE, 2016). The Site soil profile classification (Site Class) can be determined by the average soil properties in the upper 100 feet of the Site profile and the criteria provided in Table 20.3-1 of ASCE 7-16.

Spectral response accelerations and peak ground accelerations, provided in this report were obtained using the computer-based Seismic Design Maps tool available from the Structural Engineers Association of California (SEAOC, 2019). This program utilizes the methods developed in ASCE 7-16 in conjunction with user-inputted Site location to calculate seismic design parameters and response spectra (both for period and displacement) for soil profile Site Classes A through E.

Site coordinates of 35.624819 degrees north latitude and -120.793501 degrees east longitude were used in the web-based probabilistic seismic hazard analysis (SEAOC, 2019). Based on the results from the insitu tests performed during the field investigation, the Site was defined as Site Class C, "Very Stiff Soil and Dense Rock" profile per ASCE7-16, Chapter 20. Relevant seismic design parameters obtained from the program are summarized in Table 2: Seismic Design Parameters.

Table 2: Seismic Design Parameters

Site Class	C "Very Dense Soil \& Soft Rock"
Seismic Design Category	D
1-Second Period Design Spectral Response Acceleration, SD1	(See Note 1)
Short-Period Design Spectral Response Acceleration, Sos	0.854 g
Site Specific MCE Peak Ground Acceleration, PGAM	0.551 g

Note 1: It is assumed that this design-period acceleration will not be required for the project.

5.0 LIQUEFACTION HAZARD ASSESSMENT

Liquefaction occurs when saturated cohesionless soils lose shear strength due to earthquake shaking. Ground motion from an earthquake may induce cyclic reversals of shear stresses of large amplitude. Lateral and vertical movement of the soil mass combined with the loss of bearing strength can result from this phenomenon. Liquefaction potential of soil deposits during earthquake activity depends on soil type, void ratio, groundwater conditions, the duration of shaking, and confining pressures on the potentially liquefiable soil unit. Fine, poorly graded loose sand, shallow groundwater, high intensity earthquakes, and long duration of ground shaking are the principal factors leading to liquefaction.

As the underlying material encountered at the Site was weathered rock rather than soil, there is no potential for liquefaction, seismically induced settlement or differential settlement. Rock material differs from soil in that it cannot be saturated, cohesion is considered infinite and relative density is not applicable. Assuming the rock material encountered at the Site accurately represents these conditions, liquefaction potential does not apply.

6.0 GENERAL SOIL-FOUNDATION DISCUSSION

It is anticipated that all foundations for the proposed residence will be excavated into the competent formational material encountered at a depth of 2.0 to 3.0 feet below ground surface during the field investigation. As an alternative, a graded pad may be developed for the proposed residence with all foundations excavated into engineered fill. All foundations are to be excavated into uniform material to limit the potential for distress of the foundation systems due to differential settlement. If cuts steeper than allowed by State of California Construction Safety Orders for "Excavations, Trenches, Earthwork" are proposed, a numerical slope stability analysis may be necessary for temporary construction slopes.

7.0 CONCLUSIONS AND RECOMMENDATIONS

The Site is suitable for the proposed development provided the recommendations presented in this report are incorporated into the project plans and specifications.

The primary geotechnical concerns at the Site are:

1. The presence of potentially expansive material. Influx of water from irrigation, leakage from the residence, or natural seepage could cause expansive soil problems. Foundations supported by expansive soils should be designed by a Structural Engineer in accordance with the 2019 California Building Code.
2. The potential for differential settlement occurring between foundations supported on two soil materials having different settlement characteristics, such as native soil and engineered fill or competent formational material. Therefore, it is important that all of the foundations are founded in equally competent uniform material in accordance with this report.

7.1 Preparation of Building Pad

1. It is anticipated that the foundations for the proposed residence will be excavated into the uniform competent formational material encountered approximately 2.0 to 3.0 below ground surface during the field investigation, as observed and approved by a representative of GeoSolutions, Inc. Deepened footings may be required in certain areas to achieve the required embedment depth in uniform competent formational material. As an alternative, a graded pad may be developed for the proposed residence with foundations excavated into engineered fill.
2. For slab-on-grade construction with footings founded a minimum of 12 inches into uniform competent formational material, the pad area to receive slab-on-grade construction should be graded such that all slabs are supported on uniform competent material. The native material should be over-excavated beneath the slab at least 10 inches below finished floor elevation, or to competent (dense) material; whichever is greatest. The exposed surface should be scarified to a depth of 6 inches, moisture conditioned to slightly above optimum moisture content, and compacted to a minimum relative density of 90 percent (ASTM D1557-12). Refer to Figure 6: Sub-Slab Detail for under-slab drainage material and Appendix \mathbf{D} for more details on fill placement.
3. For the development of an engineered fill pad, the native material should be overexcavated at least 12 inches below existing grade, 12 inches below the bottom of the footings, to competent (dense) material, or to two-thirds the depth of the deepest fill (measured from the bottom of the deepest footing); whichever is greatest. The limits of over-excavation should extend a minimum of 5 feet beyond the perimeter foundation, to property lines, or existing improvements, whichever is least. The exposed surface should be scarified to a depth of 6 inches; moisture conditioned to 3% over optimum moisture content, and compacted to a minimum relative density of 90 percent (ASTM D1557-12). The over-excavated material may then be processed as engineered fill. Onsite soil and rock material is suitable as fill material provided it is processed to remove concentrations of organic material, debris, and oversize particles. Refer to Figure 6: Sub-Slab Detail for under-slab drainage material and Appendix \mathbf{D} for more details on fill placement.
4. The ground immediately adjacent to the foundation shall be sloped away from the building at a slope of not less than one unit vertical in 20 units horizontal (5 percent slope) for a minimum distance of 10 feet measured perpendicular to the exterior of the structure per Section 1804.3 of the 2019 CBC.
5. If fill areas are constructed on slopes greater than 10-to-1 (horizontal-to-vertical), we recommend that benches be cut every four (vertical) feet as fill is placed. Each bench shall be a minimum of 10 feet wide with a minimum of two percent gradient into the slope. If fill areas are constructed on slopes greater than 5-to-1, we recommend that the toe of all areas to receive fill be keyed a minimum of 24 inches into underlying dense material. Sub-drains shall be placed in the keyway and benches as required. See Appendix D, Detail A, Key and Bench with Backdrain for details on key and bench construction.
6. The recommended soil moisture content should be maintained during construction and following construction of the proposed development. Where soil moisture content is not maintained, desiccation cracks may develop which indicate a loss of soil compaction, leading to the potential for damage to foundations, flatwork, pavements, and other improvements. Soils that have become cracked due to moisture loss should be removed sufficient depth to repair the cracked soil as observed by the soils engineer, and the removed materials should then be moisture conditioned to approximately 3 percent over optimum value, and compacted.

Conventional Foundations

1. Conventional continuous and spread footings with grade beams may be used for support of the proposed structure. Isolated pad footings are not permitted. Spread footings should be a minimum of 2 feet square and connected to the perimeter foundation by grade beams.
2. Minimum footing and grade beam sizes and depths in engineered fill or uniform competent formational material should conform to the following table, as observed and approved by a representative of GeoSolutions, Inc.

Table 3: Minimum Footing and Grade Beam Recommendations

	Perimeter Footings	Grade Beams
Minimum Width	12 inches (one or two story)	12 inches
Minimum Depth	24 inches	18 inches
Minimum Embedment into Competent Formational Material	12 inches	--
Minimum Reinforcing*	4 \#5 bars $(2$ top / 2 bottom)	4 \#4 bars (2 top / 2 bottom)
Spacing	-	19 feet on-center each way

* Steel should be held in place by stirrups at appropriate spacing to ensure proper positioning of the steel (see WRI Design of Slab-on-Ground Foundations and ACI 318, Section 26.6.6 Placing Reinforcement).

3. Minimum reinforcing for footings should conform to the recommendations provided in Table 3: Minimum Footing and Grade Beam Recommendations which meets the specifications of Section 1808.6 of the 2019 California Building Code for the soil conditions at the Site. Reinforcing steel should be held in place by stirrups at appropriate spacing to ensure proper positioning of the steel in accordance with WRI Design of Slab-on-Ground Foundations, and ACl 318, Section 26.6.6 - Placing Reinforcement.
4. A representative of this firm should observe and approve all foundation excavations for required embedment depth prior to the placement of reinforcing steel and/or concrete. Concrete should be placed only in excavations that are free of loose, soft soil and debris that have been maintained in a moist condition with no desiccation cracks present.
5. An allowable dead plus live load bearing pressure of $\mathbf{1 , 5 0 0}$ psf may be used for the design of footings founded in engineered fill or uniform competent formational material.
6. Allowable bearing capacities may be increased by one-third when transient loads such as wind and/or seismicity are included.
7. A total settlement of less than 1 inch and a differential settlement of less than 1 inch in 30 feet are anticipated.
8. Lateral forces on structures may be resisted by passive pressure acting against the sides of shallow footings and/or friction between the engineered fill or uniform competent formational material and the bottom of the footings. For resistance to lateral loads, a friction factor of $\mathbf{0 . 3 5}$ may be utilized for sliding resistance at the base of footings extending a minimum of 24 inches into engineered fill or 24 inches deep with a minimum embedment of 12 inches into uniform competent formational material. A passive pressure of 250 -pcf equivalent fluid weight may be used against the side of shallow footings in engineered fill or uniform competent formational material. If friction and passive pressures are combined to resist lateral forces acting on shallow footings, the lesser value should be reduced by 50 percent.
9. Foundation excavations should be observed and approved by a representative of this firm prior to the placement of formwork, reinforcing steel and/or concrete.
10. Foundation design should conform to the requirements of Chapter 18 of the latest edition of the CBC (CBSC, 2019).
11. The base of all grade beams and footings should be level and stepped as required to accommodate any change in grade while still maintaining the minimum required footing embedment and slope setback distance.
12. The minimum footing setback distance from ascending or descending slope steeper than 3-to-1 (horizontal-to-vertical) but less than 1-to-1 must be maintained. See Figure 5: Setback Dimensions - Slope Gradients Between 3-to-1 and 1-to-1 Setback Dimensions Slope Gradients Between 3-to-1 and 1-to-1 for the minimum horizontal setback distances from ascending and descending slopes steeper than 3-to-1 but not steeper than 1-to-1.

Figure 5: Setback Dimensions - Slope Gradients Between 3-to-1 and 1-to-1

7.3 Slab-On-Grade Construction

1. Concrete slabs-on-grade and flatwork should not be placed directly on unprepared native materials. Preparation of sub-grade to receive concrete slabs-on-grade and flatwork should be processed as discussed in the preceding sections of this report. Concrete slabs should be placed only over sub-grade that is free of loose, soft soil and debris and that has been maintained in a moist condition with no desiccation cracks present.
2. Concrete slabs-on-grade should be in conformance with the recommendations provided in Table 4: Minimum Slab Recommendations. Reinforcing should be placed on-center both ways at or slightly above the center of the structural section. Reinforcing bars should
have a minimum clear cover of 1.5 inches. Where lapping of the slab steel is required, laps in adjacent bars should be staggered a minimum of every five feet (see WRI Design of Slab-on-Ground Foundations, Steel Placement). The recommended reinforcement may be used for anticipated uniform floor loads not exceeding 200 psf. If floor loads greater than 200 psf are anticipated, a Structural Engineer should evaluate the slab design.

Table 4: Minimum Slab Recommendations

Minimum Thickness	4 inches
Reinforcing*	\#3 bars at 12 inches on-center each way
* Where lapping of the slab steel is required, laps in adjacent bars should be staggered a minimum of every five feet (see WRI/CSRI-81 recommendations for Steel Placement, Section 2).	

3. Concrete for all slabs should be placed at a maximum slump of less than 5 inches. Excessive water content is the major cause of concrete cracking. If fibers are used to aid in the control of cracking, a water-reducing admixture may be added to the concrete to increase slump while maintaining a water/cement ratio, which will limit excessive shrinkage. Control joints should be constructed as required to control cracking.
4. Where concrete slabs-on-grade are to be constructed for interior conditioned spaces, the slabs should be underlain by a minimum of four inches of clean free-draining material, such as a $3 / 4$ inch coarse aggregate mix, to serve as a cushion and a capillary break. Where moisture susceptible storage or floor coverings are anticipated, a 15-mil Stego Wrap membrane (or equivalent installed per manufacturer's specifications) should be placed between the free-draining material and the slab to minimize moisture condensation under the floor covering. See Figure 6: Sub-Slab Detail for the placement of under-slab drainage material. It is suggested, but not required, that a two-inch thick sand layer be placed on top of the membrane to assist in the curing of the concrete, increasing the depth of the under-slab material to a total of six inches. The sand should be lightly moistened prior to placing concrete.

Figure 6: Sub-Slab Detail
5. It should be noted that for a vapor barrier installation to conform to manufacturer's specifications, sealing of penetrations, joints and edges of the vapor barrier membrane are typically required. As required by the California Building Code, joints in the vapor barrier should be lapped a minimum of 6 inches. If the installation is not performed in accordance with the manufacturer's specifications, there is an increased potential for water vapor to affect the concrete slabs and floor coverings.
6. The most effective method of reducing the potential for moisture vapor transmission through concrete slabs-on-grade would be to place the concrete directly on the surface of the vapor barrier membrane. However, this method requires a concrete mix design specific to this application with low water-cement ratio in addition to special concrete finishing and curing practices, to minimize the potential for concrete cracks and surface defects. The contractor should be familiar with current techniques to finish slabs poured directly onto the vapor barrier membrane.
7. Moisture condensation under floor coverings has become critical due to the use of watersoluble adhesives. Therefore, it is suggested that moisture sensitive slabs not be constructed during inclement weather conditions.

7.4 Exterior Concrete Flatwork

1. Due to the presence of expansive surface soils within the proposed development areas, there is a potential for considerable soil movement and distress to reinforced concrete flatwork if conventional measures are used, such as the placement of 4 to 6 inches of imported sand materials placed beneath concrete flatwork. Heaving and cracking are anticipated to occur. To reduce the potential for movement associated with expansive soils, we recommend the placement of a minimum of 12 inches of approved nonexpansive import material placed as engineered fill beneath the flatwork.
2. Minimum flatwork for conventional pedestrian areas should be a minimum of 4 inches thick and consist of No. 3 (\#3) rebar spaced at 24 inches on-center each-way at or slightly above the center of the structural section.
3. Flatwork should be constructed with frequent joints to allow for movement due to fluctuations in temperature and moisture content in the adjacent soils. Flatwork at doorways, driveways, curbs and other areas where restraining the elevation of the flatwork is desired, should be doweled to the perimeter foundation by a minimum of No. 3 reinforcing steel dowels, spaced at a maximum distance of 24 inches on-center.
4. As an alternative, interlocking concrete pavers may be utilized for exterior improvements in lieu of reinforced concrete flatwork. Concrete pavers, when installed in accordance with manufacturers' recommendations and industry standards (ICPI), allow for a greater degree of soil movement as they are part of a flexible system. If interlocking concrete pavers are selected for use in the driveway area, the structural section should be underlain by a woven geotextile fabric, such as Mirafi HP570 or equivalent, to function as a separation layer and to provide additional support for vehicle tire loads.

7.5 Retaining Walls

1. Retaining walls should be designed to resist lateral pressures from adjacent soils and surcharge loads applied behind the walls. We recommend using the lateral pressures presented in Table 5: Retaining Wall Design Parameters and Figure 7: Retaining Wall Detail for the design of retaining walls at the Site. The Active Case may be used for the design of unrestrained retaining walls, and the At-Rest Case may be used for the design of restrained retaining walls.

Table 5: Retaining Wall Design Parameters

Lateral Pressure and Condition	Equivalent Fluid Pressure, pcf
Static, Active Case, Native ($\gamma^{\prime} K_{A}$)	50
Static, At-Rest Case, Native ($\left.\mathrm{y}^{\prime} \mathrm{Ko}_{\mathrm{o}}\right)$	65
Static, Passive Case, Engineered Fill or Uniform Competent Formational Material ($\mathrm{Y}^{\prime} \mathrm{K}$ P $)$	250

2. The above values for equivalent fluid pressure are based on retaining walls having level retained surfaces, having an approximately vertical surface against the retained material, and retaining granular backfill material or engineered fill composed of native soil within the active wedge. See Figure 7: Retaining Wall Detail and Figure 8: Retaining Wall Active and Passive Wedges for a description of the location of the active wedge behind a retaining wall.

3. Proposed retaining walls having a retained surface that slopes upward from the top of the wall should

Figure 7: Retaining Wall Detail be designed for an additional equivalent fluid pressure of 1 pcf for the active case and 1.5 pcf for the at-rest case, for every degree of slope inclination.
4. We recommend that the proposed retaining walls at the Site have an approximately vertical surface against the retained material. If the proposed retaining walls are to have sloped surfaces against the retained material, the project designers should contact the Soils Engineer to determine the appropriate lateral earth pressure values for retaining walls located at the Site.

Figure 8: Retaining Wall Active and Passive Wedges
5. Retaining wall foundations should be founded a minimum of 24 inches below lowest adjacent grade in engineered fill or founded a minimum of 24 inches below lowest adjacent grade with a minimum embedment of 12 inches in uniform competent formational material as observed and approved by a representative of GeoSolutions, Inc. A coefficient of friction of $\mathbf{0 . 3 5}$ may be used between engineered fill or uniform competent formational material and concrete footings. Project designers may use a maximum toe pressure of $\mathbf{1 , 5 0 0}$ psf for the design of retaining wall footings founded in engineered fill or uniform competent formational material.
6. For earthquake conditions, retaining walls greater than 6 feet in height should be designed to resist an additional seismic lateral soil pressure of $\mathbf{2 5}$ pcf equivalent fluid pressure for unrestrained walls (active condition). The pressure resultant force from earthquake loading should be assumed to act a distance of $1 / 3 H$ above the base of the retaining wall, where H is the height of the retaining wall. Seismic active lateral earth pressure values were determined using the simplified dynamic lateral force component (SEAOC 2010) utilizing the design peak ground acceleration, PGAM, discussed in Section 4.0 (PGAm $=\mathbf{0 . 5 5 1 g}$). The dynamic increment in lateral earth pressure due to earthquakes should be considered during the design of retaining walls at the Site. Based on research presented by Dr. Marshall Lew (Lew et al., 2010), lateral pressures associated with seismic forces should not be applied to restrained walls (at-rest condition).
7. Seismically induced forces on retaining walls are considered to be short-term loadings. Therefore, when performing seismic analyses for the design of retaining wall footings, we recommend that the allowable bearing pressure and the passive pressure acting against the sides of retaining wall footings be increased by a factor of one-third.
8. In addition to the static lateral soil pressure values reported in Table 5: Retaining Wall Design Parameters, the retaining walls at the Site should be designed to support any design live load, such as from vehicle and construction surcharges, etc., to be supported by the wall backfill. If construction vehicles are required to operate within 10 feet of a retaining wall, supplemental pressures will be induced and should be taken into account in the design of the retaining wall.
9. The recommended lateral earth pressure values are based on the assumption that sufficient sub-surface drainage will be provided behind the walls to prevent the build-up of hydrostatic pressure. To achieve this we recommend that a granular filter material be
placed behind all proposed walls. The blanket of granular filter material should be a minimum of 12 inches thick and should extend from the bottom of the wall to 12 inches from the ground surface. The top 12 inches should consist of moisture conditioned, compacted, clayey soil. Neither spread nor wall footings should be founded in the granular filter material used as backfill.
10. A 4-inch diameter perforated or slotted drainpipe (ASTM D1785 PVC) should be installed near the bottom of the filter blanket with perforations facing down. The drainpipe should be underlain by at least 4 inches of filter type material and should daylight to discharge in suitably projected outlets with adequate gradients. The filter material should consist of a clean free-draining aggregate, such as a coarse aggregate mix. If the retaining wall is part of a structural foundation, the drainpipe must be placed below finished slab subgrade elevation.
11. The filter material should be encapsulated in a permeable geotextile fabric. A suitable permeable geotextile fabric, such as non-woven needle-punched Mirafi 140 N or equal, may be utilized to encapsulate the retaining wall drain material and should conform to Caltrans Standard Specification 88-1.03 for underdrains.
12. For hydrostatic loading conditions (i.e. no free drainage behind retaining wall), an additional loading of $45-\mathrm{pcf}$ equivalent fluid weight should be added to the active and atrest lateral earth pressures. If it is necessary to design retaining structures for submerged conditions, the allowed bearing and passive pressures should be reduced by 50 percent. In addition, soil friction beneath the base of the foundations should be neglected.
13. Precautions should be taken to ensure that heavy compaction equipment is not used adjacent to walls, so as to prevent undue pressure against, and movement of the walls.
14. The use of water-stops/impermeable barriers should be used for any basement construction, and for building walls that retain earth. Damproofing and waterproofing shall meet the minimum standards of Section 1805 of the 2019 California Building Code.

7.6 Preparation of Paved Areas

1. Pavement areas should be excavated to approximate sub-grade elevation or to competent material; whichever is deeper. The exposed surface should be scarified an additional depth of 12 inches, moisture conditioned to slightly above optimum moisture content, and compacted to a minimum relative density of 95 percent (ASTM D1557-12 test method).
2. The top 12 inches of sub-grade soil under all pavement sections should be compacted to a minimum relative density of 95 percent based on the ASTM D1557-12 test method at slightly above optimum.
3. Sub-grade soils should not be allowed to dry out or have excessive construction traffic between moisture conditioning and compaction, and placement of the pavement structural section.
4. Due to the expansive potential of the soils at the Site, the base courses beneath unreinforced pavement sections may fail, causing cracking of the pavement surfaces, as the sub-grade materials move laterally during expansive shrink-swell cycles.
5. Therefore, in order to minimize the potential for the failure of pavement sections at the Site, GeoSolutions, Inc. recommends that a Type 2 laterally-reinforcing geotextile grid, such as Tensar BX1200, Syntec SBX12, ADS BX124GG, or equivalent, be installed between the prepared sub-grade and base materials at the Site.
6. GeoSolutions, Inc. should be contacted prior to the design and construction of pavement sections at the Site in order to assist in the selection of an appropriate laterally-reinforcing biaxial geogrid product and to provide recommendations regarding the procedures for the installation of geogrid products at the Site.

7.7 Pavement Design

1. All pavement construction and materials used should conform to Sections 25, 26 and 39 of the latest edition of the State of California Department of Transportation Standard Specifications (State of California, 1999).
2. As indicated previously in Section 7.6, the top 12 inches of sub-grade soil under pavement sections should be compacted to a minimum relative density of 95 percent based on the ASTM D1557-12 test method at slightly above optimum moisture content. Aggregate bases and sub-bases should also be compacted to a minimum relative density of 95 percent based on the aforementioned test method.
3. A minimum of six inches of Class II Aggregate Base is recommended for all pavement sections. All pavement sections should be crowned for good drainage.
4. In order to minimize the potential for cracking of the pavement surfaces at the Site due to lateral movement of the base courses during expansive shrink-swell cycles of the subgrade materials, GeoSolutions, Inc. recommends that a Type 2 laterally-reinforcing geotextile grid, such as Tensar BX1200, Syntec SBX12, ADS BX124GG, or equivalent, be installed between the prepared sub-grade and base materials at the Site.
5. GeoSolutions, Inc. should be contacted prior to the design and construction of the pavement sections to provide recommendations regarding the selection of and installation of an appropriate laterally-reinforcing biaxial geogrid product.

8.0 ADDITIONAL GEOTECHNICAL SERVICES

The recommendations contained in this report are based on a limited number of trenches and on the continuity of the sub-surface conditions encountered. GeoSolutions, Inc. assumes that it will be retained to provide additional services during future phases of the proposed project. These services would be provided by GeoSolutions, Inc. as required by the County of San Luis Obispo, the 2019 CBC, and/or industry standard practices. These services would be in addition to those included in this report and would include, but are not limited to, the following services:

1. Consultation during plan development.
2. Plan review of grading and foundation documents prior to construction and a report certifying that the reviewed plans are in conformance with our geotechnical recommendations.
3. Consultation during selection and placement of a laterally-reinforcing biaxial geogrid product.
4. Construction inspections and testing, as required, during all grading and excavating operations beginning with the stripping of vegetation at the Site, at which time a site meeting or pre-job meeting would be appropriate.
5. Special inspection services during construction of reinforced concrete, structural masonry, high strength bolting, epoxy embedment of threaded rods and reinforcing steel, and welding of structural steel.
6. Preparation of construction reports certifying that building pad preparation and foundation excavations are in conformance with our geotechnical recommendations.
7. Preparation of special inspection reports as required during construction.
8. In addition to the construction inspections listed above, section 1705.6 of the 2019 CBC (CBSC, 2019) requires the following inspections by the Soils Engineer for controlled fill thicknesses greater than 12 inches as shown in Table 6: Required Special Inspections and Tests of Soils:

Table 6: Required Special Inspections and Tests of Soils

Verification and Inspection Task	Continuous During Task Listed	Periodically During Task Listed
1. Verify materials below footings are adequate to achieve the design bearing capacity.	-	X
2. Verify excavations are extended to proper depth and have reached proper material.	-	X
3. Perform classification and testing of controlled fill materials.	-	X
4. Verify use of proper materials, densities and lift thicknesses during placement and compaction of controlled fill.	X	-
5. Prior to placement of controlled fill, observe sub-grade and verify that site has been prepared properly.	-	X

9.0 LIMITATIONS AND UNIFORMITY OF CONDITIONS

1. The recommendations of this report are based upon the assumption that the soil conditions do not deviate from those disclosed during our study. Should any variations or undesirable conditions be encountered during the development of the Site, GeoSolutions, Inc. should be notified immediately and GeoSolutions, Inc. will provide supplemental recommendations as dictated by the field conditions.
2. This report is issued with the understanding that it is the responsibility of the owner or his/her representative to ensure that the information and recommendations contained herein are brought to the attention of the architect and engineer for the project, and incorporated into the project plans and specifications. The owner or his/her representative is responsible to ensure that the necessary steps are taken to see that the contractor and subcontractors carry out such recommendations in the field.
3. As of the present date, the findings of this report are valid for the property studied. With the passage of time, changes in the conditions of a property can occur whether they are due to natural processes or to the works of man on this or adjacent properties. Therefore, this report should not be relied upon after a period of 3 years without our review nor should it be used or is it applicable for any properties other than those studied. However many events such as floods, earthquakes, grading of the adjacent properties and building and municipal code changes could render sections of this report invalid in less than 3 years.

REFERENCES

Geo

REFERENCES

American Concrete Institute (ACI). Building Code Requirements for Structural Concrete (318-08), Chapter 7, Section 7.5, Placing Reinforcement, ACI Committee 318, 2008.

American Society of Civil Engineers (ASCE). Minimum Design Loads and Associated Criteria for Buildings and Other Structures (7-16). 2017.

California Building Standards Commission (CBSC). 2019 California Building Code, California Code of Regulations. Title 24. Part 2. Vol. 2. California Building Standards Commission: July 2019.

County of Luis Obispo. Assessor's Map Book: 026, Page 331. September 17, 2018. http://www.sbcvote.com/assessor/AssessorParcelMap.aspx.

DeLorme. Topo USA 8.0. Vers.8.0.0 Computer software. DeLorme, 2009.
Dibblee, Thomas W., Jr.. Geologic Map of the Adelaida Quadrangle. Dibblee Geologic Center Map Number DF-218. Santa Barbara Museum of Natural History: May 2006.

Elfelt. GIS Surfer 1.8. Vers.1.8.0 Computer software. Elfelt, 2016.
Lew, M., Sitar, N., Al Atik, L., Paourzanjani, M., and Hudson, M. "Seismic Earth pressure on Deep Building Basements," SEAOC 2010 Convention Proceedings, 2010.

State of California. Department of Industrial Relations. California Code of Regulations. 2001 Edition. Title 8. Chapter 4: Division of Industrial Safety. Subchapter 4, Construction Safety Orders. Article 6: Excavations. http://www.dir.ca.gov/title8/sub4.html.

State of California, Department of Transportation. Standard Specifications, California Department of Transportation, 2015.

Structural Engineers Association of California (SEAOC), Seismic Design Maps, accessed June 23, 2021. https://seismicmaps.org/.

United States Geological Survey. MapView - Geologic Maps of the Nation. Internet Application. USGS, accessed June 23, 2021. http://ngmdb.usgs.gov/maps/MapView/.

Wire Reinforcement Institute, Design of Slab-on-Ground Foundations, A Design, Construction \$ Inspection Aid for Consulting Engineers, TF 700-R-03 Update, dated 2003.

APPENDIX A

Field Investigation
Soil Classification Chart
Trench Logs

Geo

FIELD INVESTIGATION

The field investigation was conducted May 6, 2021 using a backhoe. The surface and sub-surface conditions were studied by advancing three exploratory trenches. This exploration was conducted in accordance with presently accepted geotechnical engineering procedures consistent with the scope of the services authorized to GeoSolutions, Inc.

The mini excavator advanced three exploratory trenches near the approximate locations indicated on Figure 3: Field Investigation. The drilling and field observation were performed under the direction of the project engineer. A representative of GeoSolutions, Inc. maintained a log of the soil conditions and obtained soil samples suitable for laboratory testing. The soils were classified in accordance with the Unified Soil Classification System. See the Soil Classification Chart in this appendix.

Disturbed bulk samples are obtained from cuttings developed during trenching operations. The bulk samples are selected for classification and testing purposes and may represent a mixture of soils within the noted depths. Recovered samples are placed in transport containers and returned to the laboratory for further classification and testing.

Logs of the trenches showing the approximate depths and descriptions of the encountered soils, applicable geologic structures, and the results of laboratory tests are presented in this appendix. The logs represent the interpretation of field logs and field tests as well as the interpolation of soil conditions between samples. The results of laboratory observations and tests are also included in the trenching logs. The stratification lines recorded in the trenching logs represent the approximate boundaries between the surface soil types. However, the actual transition between soil types may be gradual or varied.

SOIL CLASSIFICATION CHART

MAJOR DIVISIONS			LABORATORY CLASSIFICATION CRITERIA		GROUP SYMBOLS	PRIMARY DIVISIONS

*Fines are those soil particles that pass the No. 200 sieve. For gravels and sands with
between 5 and 12% fines, use of dual symbols is required (I.e. GW-GM, GW-GC, GP-GM, or GP-GC).
**If the plasticity index is between 4 and 7 and it plots above the "A" line, then dual symbols (I.e. CL-ML) are required. the "A" line, then dual symbols (I.e. CL-ML) are required.

CONSISTENCY
CONSISTENCY

CLAYS AND PLASTIC SILTS	STRENGTH TON/SQ. FT ++	BLOWS FOOT +
VERY SOFT	$0-1 / 4$	$0-2$
SOFT	$1 / 4-1 / 2$	$2-4$
FIRM	$1 / 2-1$	$4-8$
STIFF	$1-2$	$8-16$.
VERY STIFF	$2-4$	$16-32$
HARD	Over 4	Over 32

RELATIVE DENSITY	
SANDS, GRAVELS AND NON-PLASTIC SILTS	BLOWS $/$ FOOT +
VERY LOOSE	$0-4$
LOOSE	$4-10$
MEDUM DENSE	$10-30$
DENSE	$30-50$
VERY DENSE	Over 50

+ Number of blows of a 140 -pound hammer falling 30inches to drive a 2 -inch O.D. ($1-3 / 8$-inch I.D.) split spoon (ASTM D1586).
++ Unconfined compressive strength in tons/sq.ft. as determined by laboratory testing or approximated by the standard penetration test (ASTM D1586), pocket penetrometer, torvane, or visual observation.

CLASSIFICATIONS BASED ON PERCENTAGE OF FINES

Less than 5\%, Pass No. $200(75 \mathrm{~mm})$ sieve) More than 12% Pass N. $200(75 \mathrm{~mm})$ sieve $5 \%-12 \%$ Pass No. $200(75 \mathrm{~mm}$) sieve

GW, GP, SW, SP
GM, GC, SM, SC
Borderline Classification

Drilling Notes:

1. Sampling and blow counts
a. California Modified - number of blows per foot of a 140 pound hammer falling 30 inches
b. Standard Penetration Test - number of blows per 12 inches of a 140 pound hammer falling 30 inches requiring use of dual symbols

Types of Samples: X-Sample
SPT - Standard Penetration
CA - California Modified
N - Nuclear Gauge
PO - Pocket Penetrometer (tons/sq.ft.)

APPENDIX B

Laboratory Testing
Soil Test Reports

Geo

LABORATORY TESTING

This appendix includes a discussion of the test procedures and the laboratory test results performed as part of this investigation. The purpose of the laboratory testing is to assess the engineering properties of the soil materials at the Site. The laboratory tests are performed using the currently accepted test methods, when applicable, of the American Society for Testing and Materials (ASTM).

Undisturbed and disturbed bulk samples used in the laboratory tests are obtained from various locations during the course of the field exploration, as discussed in Appendix A of this report. Each sample is identified by sample letter and depth. The Unified Soils Classification System is used to classify soils according to their engineering properties. The various laboratory tests performed are described below:

Expansion Index of Soils (ASTM D4829) is conducted in accordance with the ASTM test method and the California Building Code Standard, and are performed on representative bulk and undisturbed soil samples. The purpose of this test is to evaluate expansion potential of the site soils due to fluctuations in moisture content. The sample specimens are placed in a consolidometer, surcharged under a $144-\mathrm{psf}$ vertical confining pressure, and then inundated with water. The amount of expansion is recorded over a 24 -hour period with a dial indicator. The expansion index is calculated by determining the difference between final and initial height of the specimen divided by the initial height.

Laboratory Compaction Characteristics of Soil Using Modified Effort (ASTM D1557) is performed to determine the relationship between the moisture content and density of soils and soil-aggregate mixtures when compacted in a standard size mold with a 10-lbf hammer from a height of 18 inches. The test is performed on a representative bulk sample of bearing soil near the estimated footing depth. The procedure is repeated on the same soil sample at various moisture contents sufficient to establish a relationship between the maximum dry unit weight and the optimum water content for the soil. The data, when plotted, represents a curvilinear relationship known as the moisture density relations curve. The values of optimum water content and modified maximum dry unit weight can be determined from the plotted curve.

Liquid Limit, Plastic Limit, and Plasticity Index of Soils (ASTM D4318) are the water contents at certain limiting or critical stages in cohesive soil behavior. The liquid limit (LL or W_{L}) is the lower limit of viscous flow, the plastic limit (PL or W_{P}) is the lower limit of the plastic stage of clay and plastic index (PI or IP) is a range of water content where the soil is plastic. The Atterberg Limits are performed on samples that have been screened to remove any material retained on a No. 40 sieve. The liquid limit is determined by performing trials in which a portion of the sample is spread in a brass cup, divided in two by a grooving tool, and then allowed to flow together from the shocks caused by repeatedly dropping the cup in a standard mechanical device. To determine the Plastic Limit a small portion of plastic soil is alternately pressed together and rolled into a $1 / 8$-inch diameter thread. This process is continued until the water content of the sample is reduced to a point at which the thread crumbles and can no longer be pressed together and re-rolled. The water content of the soil at this point is reported as the plastic limit. The plasticity index is calculated as the difference between the liquid limit and the plastic limit.

Particle Size Analysis of Soils (ASTM D422) is used to determine the particle-size distribution of fine and coarse aggregates. In the test method the sample is separated through a series of sieves of progressively smaller openings for determination of particle size distribution. The total percentage passing each sieve is reported and used to determine the distribution of fine and coarse aggregates in the sample.

GeoSolutions, Inc.	LABORATORY SUMMARY REPORT SHEET	(805) 543-8539
Project:	5100 Peachy Canyon Road	
Client:	Doug and Judy Anderson	Lab \#:
Job \#:	SL12244-1	Date:

Sample ID			Material Description				$\begin{aligned} & \text { ed } \\ & \text { ī } \\ & \text { ī } \\ & \text { o } \end{aligned}$	Atterberg Limits		Compaction Test		Direct Shear		Compressive Strength			$\xrightarrow{\frac{0}{5}}$
Boring Hole	Depth (ft)	Sample No.						LL	PI	$\begin{array}{\|l\|l} Y_{\text {d_max }} \\ \text { (pcf) } \end{array}$	$\begin{gathered} \omega_{c_{c_{\text {_opt }}}}^{(\%)} \end{gathered}$	$\underset{(\mathrm{psf})}{\mathrm{c}}$	$\begin{gathered} \varnothing \\ \text { (deg) } \end{gathered}$	$\begin{gathered} \mathrm{q}_{\mathrm{u}} \\ \text { (psf) } \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{u}}(\mathrm{psf}) \end{gathered}$		
T-1	1'	A	Dark Olive Brown Sandy Elastic SILT	MH			66.3	61	26	86.5	27.8					23	
T-1	4'	B	Pale Brown Elastic SILT	MH				63	16								

APPENDIX C

Seismic Hazard Analysis
Design Map Summary (SEAOC, 2019)

Geo

SEISMIC HAZARD ANALYSIS

According to section 1613 of the 2019 CBC (CBSC, 2019), all structures and portions of structures should be designed to resist the effects of seismic loadings caused by earthquake ground motions in accordance with the ASCE 7: Minimum Design Loads for Buildings and Other Structures, hereafter referred to as ASCE7-16 (ASCE, 2016). Estimating the design ground motions at the Site depends on many factors including the distance from the Site to known active faults; the expected magnitude and rate of recurrence of seismic events produced on such faults; the source-to-site ground motion attenuation characteristics; and the Site soil profile characteristics. As per section 1613.2.2 of the 2019 CBC, the Site soil profile classification is determined by the average soil properties in the upper 100 feet of the Site profile and can be determined based on the criteria provided in Table 20.3-1 of ASCE7-16.

ASCE7-16 provides recommendations for estimating site-specific ground motion parameters for seismic design considering a Risk-targeted Maximum Considered Earthquake ($\mathrm{MCE}_{\mathrm{R}}$) in order to determine design spectral response accelerations and a Maximum Considered Earthquake Geometric Mean (MCEG) in order to determine probabilistic geometric mean peak ground accelerations.

Spectral accelerations from the MCE_{R} are based on a 5% damped acceleration response spectrum and a 1% probability of exceedance in 50 years. Maximum short period (S_{s}) and 1-second period (S_{1}) spectral accelerations are interpolated from the M_{R}-based ground motion parameter maps for bedrock, provided in ASCE7-16. These spectral accelerations are then multiplied by site-specific coefficients (F_{a}, F_{v}), based on the Site soil profile classification and the maximum spectral accelerations determined for bedrock, to yield the maximum short period (S_{MS}) and 1-second period ($\mathrm{S}_{\mathrm{M} 1}$) spectral response accelerations at the Site. According to section 11 of ASCE7-16 and section 1613 of the 2019 CBC, buildings and structures should be specifically proportioned to resist design earthquake ground motions. Section 1613.2.4 of the 2019 CBC indicates the site-specific design spectral response accelerations for short (Sos) and 1 -second ($\mathrm{S}_{\mathrm{D} 1}$) periods can be taken as two-thirds of maximum ($\mathrm{S}_{\mathrm{Ds}}=2 / 3^{*} \mathrm{~S}_{\mathrm{ms}}$ and $\mathrm{S}_{\mathrm{D} 1}=$ $2 / 3^{*} S_{M 1}$).

Per ASCE7-16, Section 21.5, the probabilistic maximum mean peak ground acceleration (PGA) corresponding to the MCE $_{G}$ can be computed assuming a 2% probability of exceedance in 50 years (2475-year return period) and is initially determined from mapped ground accelerations for bedrock conditions. The site-specific peak ground acceleration $\left(P G A_{м}\right)$ is then determined by multiplying the PGA by the site-specific coefficient F_{h} (where F_{h} is a function of Site Class and PGA).

Spectral response accelerations and peak ground accelerations, provided in this report were obtained using the computer-based Seismic Design Maps tool available from the Structural Engineers Association of California (SEAOC, 2019). This program utilizes the methods developed in ASCE 7-16 in conjunction with user-inputted Site location to calculate seismic design parameters and response spectra (both for period and displacement) for soil profile Site Classes A through E.

DISCLAIMER
While the information presented on this website is believed to be correct, SEAOC /OSHPD and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in this web application should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. SEAOC / OSHPD do not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the seismic data provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the search results of this website.

APPENDIX D

Preliminary Grading Specifications
Key and Bench with Backdrain

Geo

PRELIMINARY GRADING SPECIFICATIONS

A. General

1. These preliminary specifications have been prepared for the subject site; GeoSolutions, Inc. should be consulted prior to the commencement of site work associated with site development to ensure compliance with these specifications.
2. GeoSolutions, Inc. should be notified at least 72 hours prior to site clearing or grading operations on the property in order to observe the stripping of surface materials and to coordinate the work with the grading contractor in the field.
3. These grading specifications may be modified and/or superseded by recommendations contained in the text of this report and/or subsequent reports.
4. If disputes arise out of the interpretation of these grading specifications, the Soils Engineer shall provide the governing interpretation.

B. Obligation of Parties

1. The Soils Engineer should provide observation and testing services and should make evaluations to advise the client on geotechnical matters. The Soils Engineer should report the findings and recommendations to the client or the authorized representative.
2. The client should be chiefly responsible for all aspects of the project. The client or authorized representative has the responsibility of reviewing the findings and recommendations of the Soils Engineer. During grading the client or the authorized representative should remain on-site or should remain reasonably accessible to all concerned parties in order to make decisions necessary to maintain the flow of the project.
3. The contractor is responsible for the safety of the project and satisfactory completion of all grading and other operations on construction projects, including, but not limited to, earthwork in accordance with project plans, specifications, and controlling agency requirements.

C. Site Preparation

1. The client, prior to any site preparation or grading, should arrange and attend a meeting which includes the grading contractor, the design Structural Engineer, the Soils Engineer, representatives of the local building department, as well as any other concerned parties. All parties should be given at least 72 hours' notice.
2. All surface and sub-surface deleterious materials should be removed from the proposed building and pavement areas and disposed of off-site or as approved by the Soils Engineer. This includes, but is not limited to, any debris, organic materials, construction spoils, buried utility line, septic systems, building materials, and any other surface and subsurface structures within the proposed building areas. Trees designated for removal on the construction plans should be removed and their primary root systems grubbed under the observations of a representative of GeoSolutions, Inc. Voids left from site clearing should be cleaned and backfilled as recommended for structural fill.
3. Once the Site has been cleared, the exposed ground surface should be stripped to remove surface vegetation and organic soil. A representative of GeoSolutions, Inc. should determine the required depth of stripping at the time of work being completed. Strippings may either be disposed of off-site or stockpiled for future use in landscape areas, if approved by the landscape architect.

D. Site Protection

1. Protection of the Site during the period of grading and construction should be the responsibility of the contractor.
2. The contractor should be responsible for the stability of all temporary excavations.
3. During periods of rainfall, plastic sheeting should be kept reasonably accessible to prevent unprotected slopes from becoming saturated. Where necessary during periods of rainfall, the contractor should install check-dams, de-silting basins, sand bags, or other devices or methods necessary to control erosion and provide safe conditions.

E. Excavations

1. Materials that are unsuitable should be excavated under the observation and recommendations of the Soils Engineer. Unsuitable materials include, but may not be limited to: 1) dry, loose, soft, wet, organic, or compressible natural soils; 2) fractured, weathered, or soft bedrock; 3) nonengineered fill; 4) other deleterious materials; and 5) materials identified by the Soils Engineer or Engineering Geologist.
2. Unless otherwise recommended by the Soils Engineer and approved by the local building official, permanent cut slopes should not be steeper than 2:1 (horizontal to vertical). Final slope configurations should conform to section 1804 of the 2019 California Building Code unless specifically modified by the Soil Engineer/Engineering Geologist.
3. The Soil Engineer/Engineer Geologist should review cut slopes during excavations. The contractor should notify the Soils Engineer/Engineer Geologist prior to beginning slope excavations.

F. Structural Fill

1. Structural fill should not contain rocks larger than 3 inches in greatest dimension, and should have no more than 15 percent larger than 2.5 inches in greatest dimension.
2. Imported fill should be free of organic and other deleterious material and should have very low expansion potential, with a plasticity index of 12 or less. Before delivery to the Site, a sample of the proposed import should be tested in our laboratory to determine its suitability for use as structural fill.

G. Compacted Fill

1. Structural fill using approved import or native should be placed in horizontal layers, each approximately 8 inches in thickness before compaction. On-site inorganic soil or approved imported fill should be conditioned with water to produce a soil water content near optimum moisture and compacted to a minimum relative density of 90 percent based on ASTM D155712 e 1 .
2. Fill slopes should not be constructed at gradients greater than 2-to-1 (horizontal to vertical). The contractor should notify the Soils Engineer/Engineer Geologist prior to beginning slope excavations.
3. If fill areas are constructed on slopes greater than 10-to-1 (horizontal to vertical), we recommend that benches be cut every 4 feet as fill is placed. Each bench shall be a minimum of 10 feet wide with a minimum of 2 percent gradient into the slope.
4. If fill areas are constructed on slopes greater than 5 -to-1, we recommend that the toe of all areas to receive fill be keyed a minimum of 24 inches into underlying dense material. Key depths are to be observed and approved by a representative of GeoSolutions, Inc. Sub-drains shall be placed in the keyway and benches as required.

H. Drainage

1. During grading, a representative of GeoSolutions, Inc. should evaluate the need for a sub-drain or back-drain system. Areas of observed seepage should be provided with sub-surface drains to release the hydrostatic pressures. Sub-surface drainage facilities may include gravel blankets, rock filled trenches or Multi-Flow systems or equal. The drain system should discharge in a nonerosive manner into an approved drainage area.
2. All final grades should be provided with a positive drainage gradient away from foundations. Final grades should provide for rapid removal of surface water runoff. Ponding of water should not be allowed on building pads or adjacent to foundations. Final grading should be the responsibility of the contractor, general Civil Engineer, or architect.
3. Concentrated surface water runoff within or immediately adjacent to the Site should be conveyed in pipes or in lined channels to discharge areas that are relatively level or that are adequately protected against erosion.
4. Water from roof downspouts should be conveyed in solid pipes that discharge in controlled drainage localities. Surface drainage gradients should be planned to prevent ponding and promote drainage of surface water away from building foundations, edges of pavements and sidewalks. For soil areas we recommend that a minimum of 2 percent gradient be maintained.
5. Attention should be paid by the contractor to erosion protection of soil surfaces adjacent to the edges of roads, curbs and sidewalks, and in other areas where hard edges of structures may cause concentrated flow of surface water runoff. Erosion resistant matting such as Miramat, or other similar products, may be considered for lining drainage channels.
6. Sub-drains should be placed in established drainage courses and potential seepage areas. The location of sub-drains should be determined after a review of the grading plan. The sub-drain outlets should extend into suitable facilities or connect to the proposed storm drain system or existing drainage control facilities. The outlet pipe should consist of a non-perforated pipe the same diameter as the perforated pipe.
I. Maintenance
7. Maintenance of slopes is important to their long-term performance. Precautions that can be taken include planting with appropriate drought-resistant vegetation as recommended by a landscape architect, and not over-irrigating, a primary source of surficial failures.
8. Property owners should be made aware that over-watering of slopes is detrimental to long term stability of slopes.

J. Underground Facilities Construction

1. The attention of contractors, particularly the underground contractors, should be drawn to the State of California Construction Safety Orders for "Excavations, Trenches, Earthwork." Trenches or excavations greater than 5 feet in depth should be shored or sloped back in accordance with OSHA Regulations prior to entry.
2. Bedding is defined as material placed in a trench up to 1 foot above a utility pipe and backfill is all material placed in the trench above the bedding. Unless concrete bedding is required around utility pipes, free-draining sand should be used as bedding. Sand to be used as bedding should be tested in our laboratory to verify its suitability and to measure its compaction characteristics. Sand bedding should be compacted by mechanical means to achieve at least 90 percent relative density based on ASTM D1557-12e1.
3. On-site inorganic soils, or approved import, may be used as utility trench backfill. Proper compaction of trench backfill will be necessary under and adjacent to structural fill, building foundations, concrete slabs, and vehicle pavements. In these areas, backfill should be conditioned with water (or allowed to dry), to produce a soil water content of about 2 to 3 percent above the optimum value and placed in horizontal layers, each not exceeding 8 inches in thickness before compaction. Each layer should be compacted to at least 90 percent relative density based on ASTM D1557-12e1. The top lift of trench backfill under vehicle pavements should be compacted to the requirements given in report under Preparation of Paved Areas for vehicle pavement sub-grades. Trench walls must be kept moist prior to and during backfill placement.

K. Completion of Work

1. After the completion of work, a report should be prepared by the Soils Engineer retained to provide such services. The report should including locations and elevations of field density tests, summaries of field and laboratory tests, other substantiating data, and comments on any changes made during grading and their effect on the recommendations made in the approved Soils Engineering Report.
2. Soils Engineers shall submit a statement that, to the best of their knowledge, the work within their area of responsibilities is in accordance with the approved soils engineering report and applicable provisions within Chapter 18 of the 2019 CBC.

FILL OVER SLOPE

DRAIN DETAIL
*BACKDRAIN AS RECOMMENDED BY GEOTECHNICAL PER DETAIL

[^0]: ICC-ES Evaluation Reports are not to be construed as representing aesthetics or any other attributes not specifically addressed, nor are they to be construed as an endorsement of the subject of the report or a recommendation for its use. There is no warranty by ICC Evaluation Service, LLC, express or implied, as to any finding or other matter in this report, or as to any product covered by the report.

