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Abstract 

A high percentage of all structure or products failures can be attributed to fatigue and 

fracture. In analysing the behaviour of cracked components, the existence of size effects 

remains a problem in the prediction of the full-scale fatigue response of structures using sub 

scale models. The smaller models appear “stronger” exhibiting a higher fatigue life than the 

prototype. Thus, fatigue tests performed in the laboratory using small specimens cannot be 

reliably used to predict the fatigue behaviour of a larger structure e.g., bridges, aircrafts, 

boiler pressure vessels etc. Experimental testing for fracture mechanics can be expensive, 

especially if the structure/component is large or if the material used is expensive. Scaled 

modelling is a possible method of decreasing experimental costs. Scaling techniques such as 

dimensional analysis are currently used in fracture mechanics and fatigue to design 

meaningful scaled experiments; however, it has several limitations primarily in its inability 

to account for size effects. This necessitates the need for a new method; first order finite 

similitude theory which can offer a cost-effective solution and more reliable results. A novel 

mathematical equation has been formulated in this thesis that establishes a precise analytical 

relationship between fatigue life and scale providing new insights into scaled 

experimentation in fatigue.  Unlike dimensional analysis, the theory of finite similitude 

connects information across scales and links more than one scaled experiment. It is shown 

for the first time that conducting two scaled experiments is the correct scaling approach for 

the analysis of fatigue as the geometric size effects that are present in both mode I and mixed 

mode (mode I/II) fatigue crack growth with a change of scale are eliminated. Several case 

studies commonly employed in laboratory fatigue tests are examined numerically such as 

the ASTM E647 standard specimens and compact tension shear specimen. Practical case 

studies such as pressure vessel, pipe under pressure load, welded t-joint, pin loaded lug 

among others are also investigated numerically. The relevant experimental data and finite 

element models demonstrate clearly that the new rules for predicting fatigue life and crack 

growth rate provide good accuracy. Errors in lifecycle and stress intensity factor predictions 

ranged between 0.1-9% whereas the crack path and shape were predicted with 99% accuracy. 

The hitherto difficult task of achieving complete similarity in Paris law is proven possible in 

this thesis by performing an extra scaled experiment as Paris law constants 𝐶 and 𝑚 are 

predicted with up to 99.9% accuracy. The promising results demonstrated in this thesis 

confirm the value of employing this scaling approach to scaled fatigue experimentation in 

any industrial setting that employs a damage tolerant design approach.  
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𝑃  Load 
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Chapter 1 Introduction 

1.1 Motivation 

Engineering structures such as bridges, power plants, aeroplanes, trains, cars, offshore 

platforms, and others have played an important role in human life since the beginning of the 

industrial revolution [1]. However, these structures can suffer from mechanical failures 

caused by crack propagation leading to catastrophic failures, which could result in loss of 

human lives and significant financial costs. Fatigue failure is a type of failure that occurs in 

structures subjected to sub critical cyclic loads due to damage accumulation [2]. Cracks in 

engineering structures can form as a result of manufacturing defects, design flaws, defects 

in the material, or as a result of cyclic loading. The potential cracks will then propagate under 

monotonic or cyclic applied load ultimately resulting in failure. Fracture mechanics is the 

branch of engineering concerned with the structural response of loaded components with a 

pre-existing defect [3]. It is commonly referred to as the damage tolerance approach. Damage 

tolerant design is the design of engineering components and structures using the principles 

of fracture mechanics. It involves calculating the time it takes for an initial defect of size 𝑎0 

to grow to a critical defect size 𝑎𝑓 where the structure/component experiences a loss of 

function. 

The study of fracture mechanics became prominent after the failure of the Liberty ships 

during the Second World War [4]. The Liberty ships featured fully welded hulls instead of 

the traditional riveted hull. Many of these ships failed during service due to the propagation 

of cracks through the hull, some cases being so severe the ships were split into two. Today, 

fracture mechanics is an indispensable element of solid mechanics analysis and is key in 

calculating the working life and reliability of loaded structures. One of the most well-known 

and often mentioned accidents within fatigue failure is probably the disintegration of two of 

the first commercial jetliners (de Havilland Comet jetliners) during flights in 1953 [5]. The 

first incident resulted in loss of life of the six crew and five passengers on board. Another 

well-known instance of fatigue failure is the capsizing of the Alexander L. Kielland oil 

platform [6] killing 123 people. A fatigue crack emanating from a poor weld on one of the 

six bracings reduced the fatigue strength of the structure leading to eventual collapse. Both 

tragedies highlight the importance of designing a structure to resist fatigue failure through 

its service life. 
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With technological advancements such as rapid prototyping, 3D printing to name a few, 

innovative products are now released to the market quicker than ever before. The fatigue 

strength of the structure is a critical parameter that must be evaluated in the design stage 

before manufacturing can take place [7]. Within the framework of fracture mechanics, the 

fatigue strength refers to the critical or limiting defect (crack) size before the component/ 

structure experiences a loss of function [8]. This is usually when safe working operation of 

structure no longer possible. Currently, full scale experimental testing is still the most 

accurate method of determining fatigue strength of a new material as scaled experimentation 

in fatigue is fraught with issues [7]. Numerical experimentation can be an alternative but 

with new materials, appropriate material models might not exist thus physical testing is the 

recourse. The application of a scaling theory that can deal with size effects would help to 

keep pace with innovation in industry and eliminate the current bottlenecks associated with 

fatigue “certification” in both the design and service stage. It would lead to more accurate 

determination of service inspection intervals and could be of use in the life extension phase 

of ageing assets that are still in operation past their initial design life.   

Fatigue and fracture phenomena have been investigated for more than 150 years. However, 

complete solutions for these issues have not yet been discovered [9]. In the 1900s, many 

failures of structures were recorded. Since then, many researchers started to investigate the 

underlying cause of the problems. For example, Wohler [10] found that metallic components 

could work for a very long time if they were subjected to a constant load below the yield 

point of their material, but that they could fail if subjected to cyclic loading, even if it was 

below the yield point of the material. At that time, due to researchers not being able to see 

the damage on the surface of the components, fatigue was considered a puzzling 

phenomenon as the only indicator of the problem was a hidden crack inside the material. 

Researchers have developed a greater understanding of the different mechanisms by which 

fatigue cracks develop over the last century. The process of fatigue failure can be broadly 

divided into three parts: crack initiation, crack propagation and fast fracture, which leads to 

failure [11]. Different factors such as mechanical, microstructural, or environmental can 

affect the fatigue behaviour of a component.  

Scaled down models have long been an avenue with which service life and behaviour of 

larger models can be predicted since the 19th century by means of similitude theory [12]. 

Similitude theory is a branch of engineering science concerned with establishing the 

necessary and sufficient conditions of similarity among phenomena and has been applied to 
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a multitude of fields such as structural engineering, vibration and impact problems helping 

engineers and scientists to accurately predict the behaviour of the prototype, through scaling 

laws applied to the experimental results of a scale model related to the prototype by similarity 

conditions. 

Currently multiple methods capable of scaling exist; notably dimensional analysis, 

differential equations, fractal methods and energetic methods [13]. All these methods have 

various limitations to their scope of applicability. Within the field of fracture mechanics and 

fatigue, dimensional analysis is the most widely used method but is fraught with several 

limitations. Chief of which being its inability to deal with size/scale effects inherent to 

fatigue. This has resulted in the need for an appropriate similarity theory for scaled fatigue 

experimentation. Figure 1.1 illustrates the framework of similitude theory highlighting how 

predictions of the prototype can be made from scaled tests. 

 

 

Figure 1.1: Sketch for the prediction of the structural behaviour of a prototype, based on 

the experimental results of a scaled model. 

 

Limited work has been done to study the behaviour of propagating fatigue cracks as the scale 

changes. The first contribution to scaling in fatigue was by Bazant in 1991 [14] where he put 

forward a law to address the size dependence of the Paris law constants. This work extended 

the size effect law he proposed earlier for fracture [15]. Further size studies effect in fatigue 

have been undertaken by various researchers mainly employing the dimensional analysis 

approach [16-18] or fractal concepts [19-22]. 

A key consideration, however, is that dimensional analysis in its traditional form does not 

account for scale effects as it is based on invariance of dimensionless groups. However, size 

effects are a type of scale effect thus the presence of them in fatigue means the governing 
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dimensionless groups that control fatigue do in fact change with specimen size. Other studies 

performed simply attempt to show the effect of a change in geometrical dimensions on 

fatigue crack growth rate [23-25] and do not attempt to reconcile the observed differences 

by means of a scaling law in order to make fatigue life predictions of the prototype using the 

scaled models.  

Scaled experimentation is not widely adopted in fatigue due to the lack of a robust scaling 

law that enables meaningful scaled fatigue experiments to be performed. Such a law should 

facilitate full scale predictions using the data obtained from the scaled models. Numerical 

simulations and full-scale testing are the predominant choice for fatigue analysis in academia 

and industry for a few reasons. One is that fatigue is a largely semi empirical science and 

analytical solutions do not exist for most geometries thus full-scale testing and numerical 

simulation is the only option. Full scale testing is expensive and rather time consuming thus, 

to save costs and reduce time to launch of new products numerical simulation is the preferred 

choice. Numerical simulation is not without limitations however, as it is only as reliable as 

the inputs fed in. In the case of new materials where the constitutive relationships are not 

known or unique applications with the boundary conditions unclear, numerical analysis 

cannot be used, and physical experimentation must be performed to make fatigue life 

predictions. 

In light of all the current shortcomings in scaled fatigue experimentation, a robust scaling 

framework is needed that can accommodate size scale effects present in fatigue enabling 

accurate fatigue life predictions to be made using sub scale models. Successful scaled 

experimentation in fatigue would lead to positive outcomes such as reduced costs and time. 

This is the aim of this thesis to apply an alternative scaling theory to fatigue. Finite similitude 

theory is a scaling theory based on the concept of scaling space developed at the University 

of Manchester in 2017 [26]. Transport equations in the physical space (prototype) and trial 

space (scaled down model) are compared and the necessary conditions for achieving 

similitude between both models. This theory would be applied in this work to fatigue within 

the fracture mechanics framework. It is hoped that the successful outcomes of this thesis 

would lead to increased adoption of scaled experimentation in fatigue in both industry and 

academia enjoying the many benefits this tool can offer. 
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1.2 Research Aim and Objectives 

The primary aim of the research is to investigate the efficacy of the first order finite 

similitude theory as applied to fatigue analysis within the linear elastic fracture mechanics 

framework with the view to alleviate the current challenges associated with fatigue life 

predictions using scaled experiments. The first order finite similitude theory can reproduce 

the behaviour of the full scaled model using two scaled down experiments (trial models).  

Scaled experimentation does not feature heavily in fatigue due to the existence of size effects 

creating difficulties in predicting full scale behaviour using scaled experiments. Current 

scaling strategies have been proven inadequate in capturing the size effect thus leading to 

issues in the transferability of laboratory fatigue test data to real full-scale components. The 

ability of the first order similitude theory to account for size effects is examined. If size 

effects present in fatigue can be accounted for by the finite similitude theory, then the 

numerous benefits of scaled experimentation such as reduced cost and time can be realised 

by various industries in evaluating the structural integrity of their products, structures and 

processes. Another benefit would be the lower “lead” time to market for new products 

thereby encouraging rapid innovation as fatigue integrity is a key consideration in the design 

stage. 

Critical physical quantities that describe the fatigue behaviour of the full-scale model within 

a damage tolerant design approach are investigated with a view to examining how they differ 

with scale. These parameters are then predicted by using two smaller scaled models designed 

according to first order similitude rules. Several types of cracks are considered in both the 

low and high cycle fatigue regime. Different types of loading, boundary conditions, materials 

and case studies are investigated to highlight the practicality of the approach. 

The primary objectives to achieve the aim of the study are summarised as follows: 

1. Design and conduct geometrically similar scaled propagating fatigue crack 

experiments within the linear elastic fracture mechanics framework designed 

according to first order similitude rules using commercial CAE software ABAQUS® 

and Ansys®. 

2. Evaluate the relevant physical fracture mechanics quantities within both the linear 

elastic fracture mechanics framework and also pertaining to the cohesive zone model. 

Investigate the predictive capability of the two-experiment theory in replicating the 

full-scale behaviour of the cohesive zone model under low cycle fatigue loading. This 
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objective was achieved by both analytical and 2D numerical studies of fatigue 

experiments conducted according to ASTM E647 standards. Numerical 

experimentation was performed using Abaqus software with the cohesive zone 

model, Paris law and extended finite element method were all used in tandem to 

successfully simulate propagating fatigue cracks. 

3. Apply the first order finite similitude theory to both low and high cycle fatigue with 

a view to establishing a precise analytical relationship between fatigue life and 

change in scale. Investigate if the well documented size effects present in one scaled 

experiment be eliminated by performing an extra sub scale experiment. This 

objective was achieved by applying the similarity laws prescribed by the first order 

similitude theory to relevant experimental data, developing a novel mathematical 

equation for change of fatigue life with scale and scaling the most popular empirical 

fatigue law (Paris law). 3D numerical models were created in ANSYS to further 

validate the efficacy of the theory.  

4. Apply the first order finite similitude theory to practical fatigue problems (mixed 

mode fatigue) to determine if both the crack growth rate and path can be evaluated 

accurately via scaled experiments conforming to first order similitude rules. This 

objective was achieved by considering different practical case studies that are similar 

to those encountered in industry. Outcomes of the research show tremendous 

potential in the transferability of the theory to solving industrial fatigue crack growth 

prediction challenges. 

Successful achievement of these objectives highlights the practicality of the theory. A 

positive consequence is that technological advancements in new designs and materials are 

able to proceed without any bottlenecks in the fatigue life certification stage as full-scale 

fatigue behaviour can be extracted from two properly designed scaled experiments.  

1.3 Research Methodology 

The relevant methods used in this thesis are described in this section. 

1.3.1 Fracture Mechanics Method 

Fracture mechanics method provides a framework for the analysis of structures containing 

an initial defect. It is based on the idea that when a structure containing an initial crack is 

loaded either monotonically or cyclically the crack propagates till final failure. Irwin 
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described the stress state around the crack tip by introducing a new parameter called the 

stress intensity factor [27]. 

The stress intensity factor for any structure is given as [27]: 

𝐾 = 𝑌𝜎√𝜋𝑎 (1.1) 

Where 𝐾 is the stress intensity factor, 𝑌 is the geometry shape factor which is dependent on 

the specimen geometry, 𝜎 is the applied stress, and 𝑎 is the defect (crack) size. 

Material failure of a cracked component occurs when the value of stress intensity factor (𝐾) 

reaches a critical value known as the fracture toughness (𝐾𝐶) of the material which is the 

point where failure occurs. Under cyclic loading, the Paris law [28] can be used to evaluate 

the crack growth rate of a structure as long as the stress intensity factors are known:  

𝑑𝑎

𝑑𝑁
= 𝐶∆K𝑚 

(1.2) 

Paris law provides a simple relation to evaluate the number of cycles taken to propagate an 

initial defect/crack to the critical defect size which informs structural integrity decisions in 

the field. The fatigue crack growth model used in numerical simulations in this thesis is Paris 

law. 

1.3.2 Cohesive Zone Model 

The cohesive zone model was introduced by Dugdale [29] and Barenblatt [30] to overcome 

the limitation of stress singularity (infinite stresses) at the crack tip in the fracture mechanics 

framework. They introduced the fracture process zone (FPZ) which is a small area around 

the crack tip, where the normal stress perpendicular to the crack growth direction is equal to 

the yield stress according to Dugdale but decreases as deformation increases eventually 

vanishing at full separation. Hillerborg [31] was the first to numerically simulate crack 

growth using a bilinear cohesive zone model in conjunction with the Finite element method 

with great success.  

The constitutive relationship describing material damage in the CZM is the traction 

separation law (TSL). The general idea is that material damage begins when the traction 

reaches a critical value called the critical cohesive stress. The crack propagates until the 

displacement jump between the cracked surfaces reaches a critical value, 𝛿𝑐 where the 

cohesive stress becomes zero and all the cohesive energy is dissipated. The main advantage 
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of the CZM over other analysis methods lies in its ability to predict both crack initiation and 

propagation.  

1.3.3 Extended Finite Element Method 

The extended finite element method (XFEM) grounded on the concept of partition of unity 

[32] was first introduced by Belytschko and Black [33] in 2002, to address the short comings 

of the traditional finite element method in dealing with discontinuities such as cracks, voids 

etc. It can be viewed as an extension to the FEM as it adds enrichment functions with 

additional degrees of freedom to the FEM formulation.  

Two enrichment functions are used for crack growth analysis namely the crack-tip 

asymptotic function and discontinuous function. The former represents the stress singularity 

around the crack tip whereas the latter describes the displacement jump- along the crack 

surface. Mathematically, the displacement of a gauss point [32] can be written as: 

𝑢(𝑥) =∑𝑁𝑗(𝑥)𝑢𝑗

𝑛

𝑗=1

+∑𝑁ℎ(𝑥)(𝐻(𝑥) − 𝐻(𝑥ℎ))𝒂ℎ

𝑚ℎ

ℎ=1

+∑𝑁𝑘(𝑥)

𝑚𝑡

𝑘=1

[∑(𝐹𝑙(𝑥) − 𝐹𝑙(𝑥𝑘))𝒃𝑘
𝑙

4

𝑙=1

] 

1.3 

 

Here n is the number of standard finite element nodal, 𝑁𝑖 , 𝑁𝑗 , 𝑁𝑘(𝑥) are continuous shape 

functions, 𝑢𝑗  is the freedom vector of standard finite element nodal,  𝐻(𝑥) is the Heaviside 

function of gauss point x and 𝐻(𝑥ℎ) is the Heaviside function of enrichment nodal h, 𝒂ℎ is 

the freedom vector of sides around the crack, 𝐹𝑙(𝑥) and 𝐹𝑙(𝑥𝑘) are the crack-tip enrichment 

function at gauss point x and enrichment nodal k, and 𝒃𝑘
𝑙  is the freedom vector of crack-tip 

enrichment nodal. The Heaviside function jumps between two discrete values of 1 and -1 

depending on the side of the crack surface.  

The crack-tip asymptotic function is written as:  

{𝐹𝑙(𝑟, 𝜃)}𝑙=1
4 = {√𝑟 sin

𝜃

2
, √𝑟 cos

𝜃

2
, √𝑟 sin 𝜃 sin

𝜃

2
, √𝑟 sin 𝜃 cos

𝜃

2
} 

1.4 

where (𝑟, 𝜃) is the polar coordinate at point x, and 𝜃 = 0 for the tangent direction of crack. 

Fig 1.2 highlights a propagating crack with enrichment nodes where the nodes highlighted 

are enriched with the appropriate functions. 
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Figure 1.2:  Propagating crack with enrichment nodes in XFEM formulation. 

To simulate fatigue crack growth in Abaqus/Standard, XFEM is used in conjunction with 

the CZM and Paris law to simulate crack initiation and propagation. The bi-linear elastic 

traction separation law is used with damage initiation controlled by the maximum principal 

stress and crack propagation described by Paris law. 

1.3.4 Finite Similitude Theory 

In order to perform scaled fatigue experiments such that the results are meaningful and can 

be related back to the full-scale model, an appropriate similarity theory must be employed. 

The similarity theory prescribes scaling factors that are applied to the outputs from the scaled 

experiment to predict the behaviour of the full-size model. The scaling theory used in this 

research is finite similitude theory specifically the first order finite similitude theory [34]. It 

prescribes the set of rules used to design the scaled fatigue crack growth experiments and 

relate the data across scales reconstructing full scale behaviour. The theory is founded on the 

metaphysical concept of space scaling i.e., contracting or expanding space. Evidently, this is 

impossible to achieve practically but if one can think of a large space containing the full-

scale experiment/ model and a small space that holds the scaled down experiment then there 

must exist a link between the two. The concept of control volume describes the movements 

in both spaces where an affine map can be used to link corresponding points in both spaces. 

The transport equations hold true in both spaces. The conservation equations stipulate rules 

for setting parameters such as geometric size, materials, strain, stress, velocity etc for the 

design of experiments by means of scaling factors. These rules simultaneously reveal how 

to combine the outputs of the scaled experiments to accurately recreate the behaviour of the 

full-scale model. One advantage of the finite similitude theory is the ability to choose a 

material for the smaller experiment that differs from the prototype. One obvious benefit 

would be a reduction in experimental cost as a cheaper material could be used for scaled 
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models. In this thesis, the same material is used for the full-scale model and all scaled down 

models (replica scaling). 

1.4 Thesis Outline 

This thesis is organised into seven chapters.  

Chapter 1 introduces the motivation for the research and outlines the aims and objectives of 

this work alongside a brief description of the research methods used to accomplish the aim 

of the research. 

Chapter 2 presents a comprehensive literature review on fatigue. The fundamental 

mechanism of fatigue damage is introduced along with analytical, experimental and 

numerical attempts by researchers to predict fatigue life of structures. Subsequently, the 

concept of scaling and similitude methods are introduced with the most common method 

being dimensional analysis. A review of the works by previous researchers in applying 

dimensional analysis is presented and here it is shown conclusively that dimensional analysis 

cannot deal with the size effect problem in fatigue thus necessitating the need for a new 

scaling theory known as finite similitude theory. 

Chapter 3 attempts to establish an equivalence between the cyclic cohesive zone model and 

two scaled experiments designed according to first order similitude rules. The cohesive zone 

model is a very common damage model in fracture mechanics with extensive applications in 

both fracture and fatigue. It is shown for the first time that the exact behaviour of cohesive 

zone model under fatigue loads can be replicated using two scaled experiments. Analytical 

relationships are examined and a further 2D fatigue numerical study is undertaken using 

Abaqus XFEM with cohesive segments implementation. This publication presents for the 

first time a two-experiment approach to fatigue experimentation. 

Chapter 4 consists of a publication that attempts to solve the size/ scale effect in fatigue by 

detailing the correct similitude rules for scaling fatigue. A new modified version of the first 

order finite similitude theory is presented for the first time, introducing an additional scaling 

space that facilitates the projection of differential equations in the scaling space. Various 

empirical fatigue laws are tested via means of previous experimental data and numerical 

experimentation using Ansys. A precise analytical relationship is proposed that enables 

fatigue life measurement at different scales to be combined to predict the fatigue behaviour 

at full scale. This is a major milestone in the field of fatigue as previously the number of 
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cycles to failure could not be scaled as it is a dimensionless term, however within the 

framework of the new theory this limitation is overcome. Excellent lifecycle predictions are 

obtained. It is shown that the correct approach to fatigue scaling is by conducting two 

experiments at different scales. Following the successful results in chapter 4 and 

establishment of the correct similitude rules for fatigue, it is of interest to examine if similarly 

promising results can be achieved for more complicated case studies. 

Chapter 5 shows the application of the new scaling theory to more realistic structures/ loads. 

The intention here is to evaluate if this theory can be applied in the industry to determine 

fatigue life of real structures. Mixed mode fatigue is studied via means of a modified compact 

tension specimen. Fatigue crack growth of a through thickness crack in a pin loaded lug is 

examined using two scaled experiments. This case study is chosen as pin loaded lugs are a 

common and critical aerospace part. The ability of the theory to handle propagating mixed 

mode cracks in a realistic structure is examined by means of experimentation on a welded 

T-joint with an inclined semi elliptical crack. Excellent predictions of residual life, critical 

crack length, crack path and equivalent stress intensity factor are achieved affirming that the 

first order theory can be applied to industrial case studies. Paris law parameters 𝐶 and 𝑚 are 

predicted by the virtual models with up to 99.9% accuracy. 

Chapter 6 presents the discussion of the key findings of this research. The numerical 

techniques employed to set up and post process the scaled numerical models are discussed 

in more depth with guidelines provided on how to apply the theory to conduct physical scaled 

fatigue crack growth tests in a laboratory. The impact of this work on industrial fatigue 

testing and structural integrity assessment design codes is highlighted. A novel hypothesis 

demonstrating how the theory can be applied to conduct meaningful scaled down 

stress/strain-based fatigue assessments based on the findings of this work is introduced and 

finally the limitations of the current study are elucidated. 

Chapter 7 presents the overall conclusions of this research. 

Chapter 8 highlights the recommendations for future work. 

This thesis is presented in the alternative journal format thus it is critical to emphasise how 

each publication is connected to and complements one another thus forming a coherent 

thesis. The investigations recorded in the three publications of this thesis were carefully 

designed to be coherent and feed into each other. The first journal publication (chapter 3) 

was an attempt to discover if the stress fields at the tip of a fatigue crack can be replicated 
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exactly using two scaled experiments. The cohesive zone model is commonly used to 

describe fatigue damage in the near crack tip region. Thus, if the cohesive zone behaviour 

can be replicated via scaled experimentation, then crack tip behaviour is expected to be 

implicitly replicated as well. This hypothesis was tested using 2D finite element models for 

a relatively small number of cycles (50) i.e., low cycle fatigue. The importance of this first 

step cannot be understated as the cohesive zone model is implemented in one form or another 

in most commercially available software to predict fatigue life. Once an exact match was 

achieved it was of interest to examine if the promising results achieved still hold true for 

more detailed 3D models and high cycle fatigue. 

This led to the work presented in Chapter 4 and the second journal publication. With 

increased number of cycles, the size effect problem became more pronounced and a solution 

to relate the number of cycles across scales was needed. The hypothesis employed here is 

that the product of the stress intensity factor and number of cycles is a constant. A relatively 

simple relationship relating the number of cycles to a change in scale is proposed. This was 

a major milestone of the research as previously the number of cycles was thought to be a 

dimensionless number, hence no previous relationship existed to quantity the observed 

change with scale. The question of how Paris law constants change with scale is answered 

here. It is proven that Paris law follows exactly the first order rule. 

The next step of the research project was to evaluate if the first order finite similitude theory 

applies to more complicated case studies. That is the basis of the investigation in the final 

journal publication and Chapter 5. The results from the complicated studies in this 

publication demonstrate conclusively that full-scale fatigue behaviour (crack growth rate and 

crack path) can be reconstructed with very high accuracy using two scaled experiments. The 

data from this research conclusively prove that fatigue analysis of practical engineering 

structures can be approached using two scaled models. 
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Chapter 2 Literature Review 

The details of an extensive literature review spanning the different topics relevant to this 

thesis is presented in this chapter. Firstly, a historical overview is given about fatigue in 

section 2.1 detailing the state of the art in fatigue research outlining key incidents that have 

shaped the knowledge base of fatigue in academia and industry. Then the focus shifts to the 

fracture mechanics method in section 2.2 with an explanation about the mechanisms of 

fatigue in section 2.3. Current models available in literature for predicting fatigue crack 

growth are highlighted in section 2.4. Fatigue crack growth models capable of predicting 

mixed mode fatigue crack growth are presented in section 2.5. A description of the numerical 

methods used in this thesis to facilitate fatigue crack growth predictions are highlighted in 

section 2.6. Section 2.7 describes the state of the art of scaled experimentation in fatigue 

with the current similitude laws available. Section 2.8 presents the types of size effects that 

can occur in fatigue with special focus on the geometric size effect that arises in fatigue 

which is the focus of this thesis.  The application of dimensional analysis arguments to Paris 

law is presented in section 2.9. The limitations of the most common scaling method 

(dimensional analysis) in the field of fatigue i.e., the existence of size scale effects are 

demonstrated, necessitating the need for a new scaling theory (first order finite similitude 

theory) which is applied in this thesis to propagating fatigue cracks in subsequent chapters. 

2.1 Introduction 

After the industrial revolution in the early 19th century, machines with either rotating or 

vibrating parts became a staple of human life with its adoption proliferating over the years. 

These machines began to fail due to propagating fatigue cracks necessitating designers to 

provide solutions to mitigate against this. Fatigue failure leads to severe consequences, as 

the structural integrity of the component is compromised. Downtime in machinery is an 

obvious one resulting in reduced profits for companies. Furthermore, fatigue failure in 

critical components can lead to loss of life see for example the railway crash in Hatfield 

caused by fatigue failure of the railway axle [35]. 

This led researchers around the world to concentrate their efforts in studying this hitherto 

unknown subject and provide design solutions. Full scale experimental testing of mechanical 

parts has been performed but it is an expensive process and can be massively time consuming 

In addition to this mix, the variable nature of fatigue requires multiple fatigue tests 

consequently the time and cost associated becomes an even bigger consideration in the 
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design process. The alternatives are employing analytical methods, numerical simulations or 

performing scaled experiments to forecast crack growth. Many of the conventional methods 

for fatigue life predictions are based on linear elastic fracture mechanics which is now well 

developed. One such useful analytical relation based on linear elastic fracture mechanics 

(LEFM) framework, is the Paris law which is the most common empirical fatigue law used 

till this day despite some of the deviations observed experimentally. 

The principle of similitude is used in structural engineering, solid mechanics, fluid 

mechanics and a whole host of other disciplines. Similitude rules are essential to enable 

meaningful sub scale testing that can be used to estimate the performance of larger 

prototypes with confidence. The similitude rules are prescribed by the scaling 

strategy/approach and defines the rules for the design of experiments. Numerous scaling 

techniques have been developed over the years due to the great benefits afforded by sub scale 

testing such as reduced costs, time and ease of understanding variables that affect the full-

scale process/ structure in a timely manner. The first scaling strategy hypothesized is 

dimensional analysis in 1914 by Rayleigh [36] with a formalised approach by Buckingham 

in 1921 [37]. Others such as scaling founded on differential equations, statistical models, 

energetic methods [13] among others have been put forward for the design of sub scale 

experiments in multiple research fields with great success. 

However, scaled experimentation in fatigue is not as developed with the analysis techniques 

appearing in literature mostly limited to dimensional analysis historically and more recently 

fractal concepts. A major drawback to scaled experimentation in fatigue is the existence of 

size effects. This is defined as the observed changes in a process with scale. Thus, accurate 

estimation of the behaviour at the full scale cannot be gleaned from the scaled models. The 

drawback of dimensional analysis lies in its inability to account for these effects.  

In this chapter a comprehensive literature review is undertaken, detailing the fracture 

mechanics framework, fatigue crack mechanisms of initiation and propagation, empirical 

fatigue crack growth laws, mixed mode fatigue, numerical fatigue simulation techniques, 

types of size effects present in fatigue and a historical overview of scaling with a focus on 

dimensional analysis as applied to fatigue. Finally, the limitations of the present scaling 

strategies as applied to fatigue is elucidated demonstrating the necessity for a new scaling 

strategy.  
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2.2 Fracture Mechanics 

Typically, the design and analysis methods available to forecast fatigue damage can be 

broadly split into three categories viz; stress-based approach [38], strain-based approach [39] 

and fracture mechanics approach [40]. Stress based methods examine the stresses in the area 

under fatigue load of interest whereas strain-based methods evaluate the plastic deformation 

in the vicinity of stress raisers such as edges and notches in the structure. The fracture 

mechanics method is limited to structures containing an initial crack or notch. Fatigue 

analysis in this thesis is strictly within the confines of fracture mechanics.   

The origins of fracture mechanics can be traced back to the work of English researcher 

Griffith in World War 1 [41]. He suggested that when a crack in inserted into a stressed plate 

of an elastic material, the decrease in potential energy must be balanced by the increase in 

surface energy caused by the crack. This has now become known as the energetic framework 

of linear elastic fracture mechanics. His explanation solved the puzzling question as to why 

the actual strength of brittle materials such as glass (100 MPa) is lower than the theoretical 

strength [1000 MPa] [42]. The fracture stress can be related to the crack size using the 

famous Griffith relationship: 

𝑈𝑒 =
𝜋𝑐2𝜎2

𝐸
 

(2.1) 

Where 𝑈𝑒 is the elastic strain energy per unit thickness, 𝑎 is the crack length, and 𝜎 is the 

fracture stress and 𝐸 is the elastic modulus of the material. 

Westagaard [43] proposed analytical relations which was modified by Irwin in 1957 [44] 

shaping the framework of fracture mechanics as we know it today. He developed the 

fundamentals of fracture mechanics after his investigation of the stress fields and crack 

driving force at the crack tip. He invented the well-known parameter called the stress-

intensity factor  𝐾 which is the crack driving force and describes the stress state at the crack 

tip. This was significant at the time as it established a clear relationship between the nominal 

stress and the crack length to determine the stress distribution around the crack. Another 

important parameter discovered by Irwin is the fracture toughness denoted by 𝐾𝑐. It 

represents the ability of a material to resist fracture in the presence of cracks as once the 

stress intensity factor of the crack exceeds the fracture toughness value the material fails.  

The crack process can only be accurately described by the stress intensity factor under 

specific conditions. In the first instance, the behaviour of the bulk material must be elastic, 
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in addition the plastic deformation around the crack tip must be significantly small in 

comparison to the crack length (this is known as small –scale yielding). When, the plastic 

zone size is comparable to crack length then the framework of LEFM is no longer suitable 

and elastoplastic fracture mechanics method (EPFM) is needed to accurately model the 

fracture process. In this thesis, the fatigue models employed are within the confines of LEFM 

thus this review is mainly focused on this framework.  

2.2.1 Near Crack Tip Stress Field 

Accurate characterisation of crack growth requires an accurate evaluation of the stress fields 

around the crack tip. Evidently, the stress fields at the crack tip are dependent on the type of 

loading applied to the structure. In fracture mechanics, there are three types (modes) of crack 

growth which are characterised by the different types of loads that can be applied either 

individually or as a combination to the specimen. Figure 2.1 describes all three possible 

modes. The first and most dominant mode in fracture problems is mode I (opening or tensile 

mode). Here the applied load is in a direction perpendicular to the crack surface and causes 

the crack surfaces to move directly apart. The sliding or in plane shear mode (mode II) is the 

second mode with the load applied acting in the same plane as the crack. The crack surfaces 

slide over one another. Finally, the third mode is mode III (tearing or anti-plane shear mode) 

with the load acting out of the plane of the crack direction. The fracture behaviour for each 

mode would be determined by the state of stresses, strains and displacement near the crack 

tip. Furthermore, any fracture can be represented by one of these three modes of fracture or 

superposition of these [45].  

 

Figure 2.1: Schematic of basic fracture modes [46].  

Consider then, a semi elliptical crack of length 2a in an infinite plate with the geometry as 

depicted in Fig. 2.2, 𝑟 and 𝜃, are the distance and orientation angle of an arbitrary point from 

the crack tip respectively.  



34 

 

 

Figure 2.2: Infinite plate with centre crack of length 2a under uniform biaxial traction  

Westegaard [43] published a set of equations describing the stress singularity around the 

crack tip as follows: 
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Irwin [44] noticed a pattern in the published solutions by Westegaard [43] culminating in the 

proposal of a new fracture mechanics parameter called the stress intensity factor. The stress 

intensity factor 𝐾 provides an elegant solution to characterize the strength of the stress field 

near the crack tip. More than one basic mode can be encountered in a structure at the same 

time, but typically mode 1 fracture is the most common. The stress intensity factor depends 

on the applied stresses and geometry, including specimen size and crack configuration. It 

transpires that Eqs. (2.2 - 2.4) can be written in a more general form in 2D as: 
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𝜎𝑖𝑗 =
1

√𝑟
 [𝐾𝐼𝑓𝑖𝑗

𝐼(𝜃) + 𝐾𝐼𝐼𝑓𝑖𝑖𝑗
𝐼𝐼(𝜃)] 

(2.5) 

Where 𝐾𝐼 is the mode I stress intensity factor and 𝐾𝐼𝐼 is the mode II stress intensity factor. 

The stress intensity factors for mode I and mode II loading are defined as: 

𝐾𝐼 = lim
𝑟,𝜃→0

(𝜎𝑦𝑦√2𝜋𝑟)  (2.6) 

𝐾𝐼𝐼 = lim
𝑟,𝜃→0

(𝜎𝑥𝑦√2𝜋𝑟)  (2.7) 

An alternative method to describe cracks within the fracture mechanics frameworks is by 

means of the energy method [45]. Specifically, the parameter known as the strain energy 

release rate; 𝐺 can be used to characterise the crack tip driving force. The strain energy 

release rate is decrease in the total potential energy of a structure per increase in fracture 

surface area [45]. One advantage over empirical formulations containing the stress intensity 

factor is that it can be used to study fatigue crack growth in both elastic materials and 

materials with significant plasticity. The failure point of the material is determined by the 

critical strain energy release rate 𝐺𝑐. A convenient expression exists that relates the strain 

energy release rate to the stress intensity factor in an elastic material and is given by: 

𝐺𝑖 =
𝐾𝐼𝐶
2

𝐸′
  (2.8) 

𝐸′ = 𝐸 (Plane stress condition) (2.9) 

𝐸′ =
𝐸

1−𝑣2
 (Plane strain condition) (2.10) 

Where 𝐺𝑖 is the strain energy release rate for the different modes, 𝐾𝑖 is the fracture toughness 

for different modes, 𝑣 is the Poisson's ratio, 𝐸 is the Young's Modulus.  

Quantitative expressions have been put forward to determine the validity of LEFM 

assumptions and when EPFM might be required for more accurate fatigue analysis. LEFM 

assumptions hold when the yielding zone ahead of the crack tip is within the region of K-

dominance. Within the region of 𝐾-dominance the stress intensity factors provide a unique 

measure of the intensity of the strains. Therefore, LEFM is applicable if small-scale yielding 

conditions prevail. The yielding of the crack tip is assumed to increase the effective crack 

length. The plastic zone radius 𝑟𝑦 under plain stress can be calculated as: 

𝑟𝑦  =  
1

2𝜋
(
𝐾𝐼

𝜎𝑦𝑖𝑒𝑙𝑑
)

2

 
(2.11) 
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Where: 𝑟𝑦 is the plastic zone radius, 𝜎𝑦𝑖𝑒𝑙𝑑 is the yield strength of the material and 𝐾𝐼 is the 

mode I stress intensity factor. According to Stephens et al. [1], under cyclic loading 

conditions, the restriction is defined by 𝑟𝑦  ≤ a/4 where a is the crack size.  

2.3 Mechanism of Fatigue 

The mechanism by which fatigue damage occurs is very complex as it occurs over very 

different scales. However, it is widely accepted that the process of fatigue failure can be 

divided into three stages. The first stage is the formation of an initial flaw due to accumulated 

cyclic damage this is known as crack initiation, subsequently these flaws grow and propagate 

on a macro scale (crack propagation) and finally catastrophic failure where the structure 

loses its load bearing capability completely.  

2.3.1 Fatigue Crack Initiation 

The precursor to fatigue crack initiation is the accumulation of cyclic plastic deformation. 

Fatigue cracks predominantly initiate at the surface or at grain boundaries in the direction of 

local maximum shear [45]. The dislocation movement is critical to fatigue crack initiation. 

If the slip occurs in the loading part of the. When a surface is cyclically loaded, the stress at 

the surface is higher than at the interior causing a stress concentration. Examples of stress 

concentrations in engineering applications on a macro scale would be voids, notches or 

components undergoing bending or twisting which results in stress gradients with the highest 

stress occurring on the surface. Stress concentrators also exist at the micro scale. The stresses 

at the surface are sensitive to the surface topography/ roughness.  Inclusions and precipates 

that possess different elastic properties from the matrix are also potential crack initiation 

points. [46] Repeated cyclic loading causes strain hardening in the slip band under tensile 

loads and greater shear stress in the opposite direction during compression. The 

accumulation of these slips bands forms a stress concentration hotspot. This process is 

highlighted in Fig. 2.3 (a-d)  

In addition, the material surface roughness could play a similar role and lead to crack 

initiation [45]. Microcracks are nucleated at the stress concentration cites at the surface. 

Many micro cracks are generated on the surface which then coalesce into a larger micro 

crack. It is only when these cracks reach a certain size that they begin to propagate till final 

fatigue failure. The critical size depends on the material and is typically around a few tenths 

of a millimetre for low strength materials and in the hundredths of a millimetre for high 

strength materials.  



37 

 

  

Figure 2.3: Fatigue crack initiation and propagation process [45]. 

 

2.3.2 Fatigue Crack Propagation  

Micro cracks that were formed in the crack nucleation phase lie along slips planes with 

maximum shear stress values. The crack propagation phase can be further divided into two 

stages as shown in Fig. 2.3. In stage I (crystallographic propagation), the micro cracks 

propagate along the active slip lanes which tend to be at an angle of 45 degrees to the 

direction of applied stress for uniaxial loads. These micro cracks propagate for only a short 

length approximately two grain sizes. The crack tip plasticity at this stage is heavily 

influenced by the slip characteristics, grain size and load as the crack length is relatively 

small compared to the microstructure size.  

In general, when a crack tip reaches a grain boundary the growth rate decreases, however, it 

will speed up again as soon as the crack passes through the boundary. Once the crack tip 
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propagates through the grain boundary it deviates from the 45-degree orientation and 

propagates in a direction perpendicular to the maximum tensile stress. This is the second 

stage of crack propagation. At this stage, the plastic zone ahead of the crack tip is much 

larger than the material grain size, which makes the crack growth at this stage less sensitive 

to the material microstructure than the first stage. In many engineering structures, fatigue 

crack growth in both the first and second stage represents the largest part of the total material 

life. According to Perez, (2004) [45], the crack propagation stage accounts for 70% of the 

total fatigue life. Therefore, it is important to accurately predict the fatigue crack growth rate 

in these stages to get a good estimation of the total fatigue life. Cracks can also appear in 

mechanical parts due to surface roughness or defects during the production process. 

Fatigue life of engineering structures is usually dominated by the crack propagation phase. 

Hence accurate prediction of the growth rate of cracks is essential to provide a good estimate 

of useful life of a component or structure. Tremendous experimental work has been 

undertaken over the years to understand crack growth rates and path taken in a material. The 

parameters measured typically are the crack extension, number of cycles to failure and the 

stress intensity factor. Typically, this information is depicted on a fatigue crack growth 

(FCG) curve on a log- log scale. The abscissa is the stress intensity factor ∆𝐾 whereas the 

ordinate is the crack growth rate 
𝑑𝑎

𝑑𝑁
 see Figure 2.4. The FCG can be divided into three 

regions. The lower limit of the abscissa is the threshold stress intensity factor 𝐾𝑡ℎ where it is 

assumed that if the stress intensity factor is less than the value of 𝐾𝑡ℎ cracks will not 

propagate. The upper limit is 𝐾𝑐 and corresponds to the fracture toughness of the material. 

At 𝐾𝑐 the material experiences complete failure under the fatigue load. In region I, the crack 

growth rate decreases sharply until 𝐾𝑡ℎ is reached. Region III is the unstable crack growth 

region. Here the crack growth rate speeds up until it the stress intensity factor reaches 𝐾𝑐. 

Both regions are heavily affected by the microstructure with the mean stress and thickness 

additional factors affecting crack growth in region III. Region II is the steady crack growth 

region.  
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Figure 2.4: Fatigue crack growth curve  

2.4 Fatigue Crack Growth Models 

The focus of this thesis is on propagating cracks thus some light is shed on the various fatigue 

crack propagation models available in the literature in this section. FCG models are empirical 

models based on the fracture mechanics framework that describe data from experiments on 

an empirical curve with fitting parameters of the form: 

𝑑𝑎

𝑑𝑁
= 𝑓(∆𝐾, 𝑅) 

(2.12) 

It is important to appreciate that no “universal law” exists to model fatigue crack growth that 

is suitable for all materials, loading conditions, environments etc as fatigue is very much an 

empirical science [47]. Notwithstanding, a variety of models are available in literature to 

predict crack growth rate and due care must be taken to ensure the model is appropriate for 

the fatigue problem in question.  

The foremost and still most widely used FCG model was postulated by Paris in 1961 [28] 

upon realisation that his experimental fatigue data could be presented in a power law form 

as: 

𝑑𝑎

𝑑𝑁
= 𝐶∆K𝑚 

(2.13) 

Paris law describes the data in region II correctly but cannot describe the data in other regions 

of the FCG curve. Furthermore, the model does not account for the effects of stress ratio, the 

results depend upon the material used and most important Paris law are only for pure mode 
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I loading. Paris' law can be modified to be applicable to mixed mode loading by the use of 

equivalent stress intensity factor, further described in section 2.5.  

Industrial standards for conducting fatigue analysis such as the BS7910 [48] and the API 579 

[49] suggest the use of Paris law for conducting fatigue analysis. Thus, the focus in this thesis 

is primarily on Paris law.  Since Paris law does not include the effect of the stress ratio, the 

Paris law constants used in the analysis must be obtained from experimental tests conducted 

at the same stress ratio for accurate predictions. 

To capture the dependence of FCG rate on the stress ratio 𝑅, Walker [50] proposed an 

improved model of Paris law in 1971 as follows: 

𝑑𝑎

𝑑𝑁
= 𝐶0 (

∆K

(1 − 𝑅)1−𝛾
)
𝑚

 

∆K = 𝐾𝑚𝑎𝑥(1 − 𝑅) 

R = 𝐾𝑚𝑖𝑛/𝐾𝑚𝑎𝑥 

(2.14) 

Where the constants 𝐶0 and 𝑚 are similar to the constants in the Paris model, 𝑅 is the stress 

ratio, 𝐾𝑚𝑖𝑛 is the minimum stress intensity factor and 𝐾𝑚𝑎𝑥  is the maximum stress intensity 

factor. The third curve fitting parameter, γ is a constant for the material. This parameter may 

be obtained from data of various 𝑅 values, linear regression or trial and error. 

Correct modelling of region III of the FCG curve requires a dependence on the fracture 

toughness 𝐾𝐶 in the formulation for the crack growth rate. Forman [51] proposed a FCG 

model that models the unstable crack growth region accurately as: 

𝑑𝑎

𝑑𝑁
=

𝐵∆K𝑚

[(1 − 𝑅) 𝐾𝐶 − ∆𝐾]
 

(2.15) 

Where B and m are constants, 𝑅 is the stress ratio and 𝐾𝐶 is the fracture toughness. 

The NASGRO equation [52] can mathematically represent all the three propagation regions, 

also including the effect of the mean stress and the crack closure. The mathematical 

representation of the NASGRO equation is: 

𝑑𝑎

𝑑𝑁
= 𝐶 (

1 − 𝑓

1 − 𝑅
∆𝐾)

𝑛 (1 −
𝐾𝑡ℎ
∆𝐾)

𝑝

[(1 −
𝐾𝑚𝑎𝑥
𝐾𝐶

)
𝑞

]

 

 

(2.16) 
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where, 𝐶, 𝑛, 𝑝, 𝑞 are empirical coefficients, 𝑅 is the stress ratio, 𝛥𝐾 is the stress-intensity 

factor (SIF) range, 𝐾𝑡ℎ is the threshold stress intensity factor, 𝐾𝑚𝑎𝑥 is maximum stress 

intensity factor and 𝐾𝑐 is the fracture toughness. 𝑓 denotes Newman's function describing 

crack closure [53]. 

Paris law is the most common empirical fatigue law in practice as it fits experimental data 

well and it is easy to implement. However, it has a few limitations as its applications is 

limited to constant amplitude loading, small scale yielding and large cracks [54]. As a result 

of the observed deviations from the Paris law, different modifications have been proposed 

by other researchers to widen its applicability.  

However, all Paris-based models are still limited to large crack growth and, in general, all 

the models founded on the stress-intensity factor are limited to small-scale yielding. If the 

plastic zone at the crack tip is large, LEFM approaches will fail to represent the fracture 

process, so another approach should be adopted to describe the crack driving force. These 

approaches come under the field of elasto-plastic fracture mechanics (EPFM) [55-57].  

2.5 Mixed Mode Fatigue 

The loads experienced by a structure or component in service are often multi directional in 

nature [58]. This means more than one mode of crack growth is present at the same time and 

in some cases all three modes are present. These types of cracks are referred to as mixed 

mode fatigue cracks. When more than one mode of crack growth is involved, the fatigue 

crack growth analysis process is significantly more cumbersome. The primary reason is that 

standard handbook analytical expressions for mixed mode cracks are not readily available 

thus full-scale laboratory tests and numerical experimentation are the only two reliable 

methods to evaluate the fatigue resistance of structures encompassing mixed mode cracks. 

The latter is more commonly used in the industrial settings as sometimes it is impossible to 

conduct full scale testing e.g. (life extension phase of offshore structures past their original 

design safe life) leaving numerical experimentation as the only option.   In this section, the 

models available to accurately model realistic fatigue cases (mixed mode fatigue) are 

explained.  

2.5.1 Crack Growth Rate 

The FCG models described in section 2.4 are only applicable to mode I loading. However, 

in practice structures and components are subjected to more than one type of loading (mixed 

mode fatigue) at the same time thus modifications need to be made to the FCG models to 
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accurately predict the crack growth rate. This is realised by replacing the stress intensity 

factor change with a new expression termed the equivalent stress intensity factor ∆𝐾𝑒𝑞 that 

takes into account the combinations of the different modes of loading. 

Tanaka [59] was the first to propose how the different mixed mode stress intensity factors 

should be combined. He proposed the equivalent stress intensity factor; ∆𝐾𝑒𝑞  to be defined 

as such: 

∆𝐾𝑒𝑞 = [∆𝐾1
4 + 8∆𝐾𝐼𝐼

4]0.25 (2.17) 

Where ∆𝐾𝐼 is the mode I stress intensity factor and ∆𝐾𝐼𝐼 is the mode II stress intensity factor. 

This criterion has been widely used due to its simplicity and is widely supported by numerous 

experimental interventions. Some of the notable works where this criterion has been applied 

successfully can be found in refs. [60,61 & 62].  

The maximum circumferential stress criterion [63] postulates the following relationship:  

∆𝐾𝑒𝑞 =
1

2
cos 𝜃0

2
[∆𝐾𝐼(1 + cos 𝜃0) − 3∆𝐾𝐼𝐼 sin 𝜃0], (2.18) 

Where 𝜃0 is the circumferential stress the constants, ∆𝐾𝐼 is the mode I stress intensity factor 

and ∆𝐾𝐼𝐼 is the mode II stress intensity factor. 

Irwin [44] proposed the following relationship for the equivalent stress intensity factor:  

∆𝐾𝑒𝑞 = [∆𝐾1
2 + ∆𝐾𝐼𝐼

2]0.5 (2.19) 

Richard et. al [64] proposed the following relationship for the equivalent stress intensity 

factor:  

∆𝐾𝑒𝑞 = 0.5∆𝐾𝐼 + 0.5√∆𝐾1
2 + 4(1.155∆𝐾𝐼𝐼

2) 
(2.20) 

The equivalent stress intensity factor from any of the aforementioned criteria can be inserted 

into the Paris law in Eq. (2.13) giving the following expression valid for mixed mode fatigue 

life predictions:  

𝑑𝑎

𝑑𝑁
= 𝐶∆𝐾𝑒𝑞

𝑚 
(2.21) 

 

Evidently, the number of cycles (fatigue life) needed to grow a given crack size 𝑎0 to the 

critical defect size 𝑎𝑓  can be evaluated by integrating Eq. (2.21) as follows:  



43 

 

𝑁 =
1

𝐶
∫ (

1

∆𝐾𝑒𝑞
)

𝑚
𝑎𝑓

𝑎0

 

(2.22) 

  

Once again, no single criterion works for all loading conditions thus sound engineering 

judgement is required to use the appropriate criterion. 

2.5.2 Crack Propagation Direction 

The challenge of mixed mode fatigue is that crack growth ceases to be planar and thus the 

crack path is not obvious. The direction of crack propagation is controlled by the mixed 

mode stress intensity factors. Several criteria have been put forward to evaluate the direction 

of crack growth with different degrees of success when contrasted with experimental data. 

The most common is the maximum tangential stress criterion proposed by Erdogan and Sih 

[65]. They suggested that the crack grows perpendicular to the maximum tangential stress at 

the crack tip. The deflection angle ∅0 is given by the following relation: 

∅0 = −𝑎𝑟𝑐𝑜𝑠 (
3𝐾𝐼𝐼

2 + 𝐾𝐼 √𝐾𝐼
2 + 8𝐾𝐼𝐼

2

𝐾𝐼
2 + 9𝐾𝐼𝐼

2 ) 
 

(2.23) 

Richard’s criterion [63] defines the deflection angle ∅0 according to: 

∅0 = ∓ [155.5°
|𝐾𝐼|

|𝐾𝐼 + 𝐾𝐼𝐼|
] − 83.4° [

|𝐾𝐼|

|𝐾𝐼 + 𝐾𝐼𝐼|
]
2

 
 

(2.24) 

 

2.6 Numerical Methods for Fatigue Crack Growth Analysis 

Fatigue life of a structure containing a propagating crack can be predicted by a variety of 

methods. Experimental full-scale testing is one with the inherent drawbacks associated with 

it. Analytical and numerical methods provide alternative solutions, however analytical 

methods are limited to select geometries and load configurations where analytical 

relationships for the crack tip driving force (stress intensity factor) exist [66]. Subsequently, 

some crack propagation law, usually Paris law can then be used to predict the crack growth 

rate. The process of determining analytical relations for the stress intensity factor is very 

involved and requires multiple iterations of either physical or numerical experimentation. 

Because the shape factors used in the stress intensity factor equations are determined by 

some best fit method, inaccuracies exist in the calculated values thus extensive validation is 
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needed.  For mixed mode fatigue problems, analytical expressions are more complex to 

obtain thus industrial fatigue crack growth problems are assessed numerically to save time 

and costs while still accurately predicting the fatigue resistance of a structure [67]. Numerical 

methods have been of interest for fatigue problems and the last two decades has seen a 

proliferation of different techniques namely the finite element method [68], boundary 

element method [69], extended finite element method [70], meshfree methods [71,72] to 

varying degrees of success. Crack growth analysis numerically is a challenging problem 

because the material response of the bulk material must be resolved first in addition to the 

fatigue crack behaviour. 

This section describes in more depth the numerical techniques used in this thesis to 

successfully simulate fatigue crack growth. The cohesive zone model is treated in more depth 

along with the various traction separation laws that describe damage evolution. The finite 

element method with its specific application in ANSYS for modelling crack growth is 

explained and more light is shed on the extended finite element method as applied to fracture 

mechanics and fatigue.  

2.6.1 Cohesive Zone Model (CZM) 

The cohesive zone model (CZM) has become an important method for modelling fracture 

problems with extensive numerical implementation. The theory was firstly proposed by 

Dugdale [29] and Barenblatt [30]. Fig 2.5 represents Dudgdale’s model. The crack is split 

into two parts, the one is the free surface and the other one is under the cohesion.  Cohesive 

zone model does not represent any physical material but describes the cohesive forces which 

occur when material elements are being pulled apart. 

As the surfaces (known as cohesive surfaces) separate, traction first increases until a 

maximum is reached, and then subsequently reduces to zero which results in complete 

separation. The variation in traction in relation to displacement is plotted on a curve and is 

called the traction-separation curve. Fig 2.6 presents the different types of traction separation 

laws possible. The area under this curve is equal to the energy needed for separation. The 

CZM eliminates the unrealistic stress singularity at the crack tip predicted by LEFM by 

limiting the maximum stress to the cohesive strength of the material. 

The traction-displacement curve provides the constitutive behaviour of the failure process. 

The amount of fracture energy dissipated in the work region depends on the shape of the 

model considered. Dugdale assumes the cohesive stress, 𝜎0 acting on the length of the 
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cohesive zone is constant and is equal to the yield stress. Barenblatt’s model allows the 

cohesive stress to vary as a function of crack opening displacement [30]. A main attraction 

in the use of CZM for fatigue modelling is that it requires the identification of only two of 

the main cohesive parameters if the shape of the traction separation law is known. 

 

 

Figure 2.5: Fracture model of Dugdale [73] 

 
 

Figure 2.6: Various traction separation laws. 
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Hillerborg et al. [31] proposed a model based on Barenblatt [30] cohesive crack in which the 

stress is not constant and is a function of the crack opening. Roth et al. [74] used a cyclic 

cohesive zone model to model fatigue failure in metals. Fatigue behaviour of composites 

was modelled successfully using CZM in the work of Nojavan et al [75]. There is no 

consensus on the ‘best’ traction separation laws but their applicability should be judged on 

a case-by-case basis depending on the material [76]. For numerical reasons, continuously 

differentiable traction separation laws (polynomial, exponential) are preferred [74]. 

2.6.2 Finite Element Method (FEM) 

The finite element method (FEM) is a numerical technique for solving partial differential 

equations. Partial differential equations are of widespread interest as they represent the 

governing equations for problems in economics, science, engineering, finance etc. FEM 

works by dividing the system of interest into smaller parts called elements which are 

connected together by the mesh. FEM has been applied to a whole host of problems in both 

solid and fluid mechanics including fatigue [77-80].  

In FEM, crack propagation problems are resolved computationally in a step-wise manner. 

The crack is advanced a small length in each step and a crack propagation law is used to 

estimate the number of cycles for the next crack increment. According to [81] for a 

computational method to successful simulate FCG, the following tasks need to be 

accomplished within each step: 

1: Calculation of the minimum and maximum stress and displacement fields within the 

cracked component.  

2. Appraisal of the minimum and maximum stress intensity factors for the crack. 

3. Determination of the direction for further crack propagation.  

4. Generation of a representation of the advanced crack.  

This process is repeated until the critical stress intensity factor is reached; 𝐾𝑚𝑎𝑥 = 𝐾𝑐, and 

the number of experienced cycles are summed to obtain the crack propagation life. 

In order to determine the most critical fracture mechanics parameter i.e., stress intensity 

factor several techniques are available in literature with different pros and cons and varying 

degrees of accuracy. Some of these methods are displacement extrapolation method [82], 

domain integral approach [83] among others [84].  
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Many software solutions have been developed to model fatigue crack growth problems, but 

most of the solutions were developed by research groups and not commercially available. 

Examples of commercially available software based on FEM that can simulate fatigue crack 

growth include FRANC3D [85], ADAPCRACK [86], ZENCRACK [87,88], and 

PROCRACK [89,90].  FEM has been used successfully to predict fatigue crack growth in 

structures for several decades. Richard et al. [91] simulated the fatigue crack growth in a 

rubber-sprung railway wheel of a high-speed train involved in an accident using 

ADAPCRACK3D. The fatigue crack growth of twin coplanar elliptical-arc surface cracks 

in round bars under tension was also addressed by Lin and Smith [92].  Hou et al. [93] 

analysed the fatigue crack growth in turbine discs of military aircraft engines using 

ZENCRACK. A review of fatigue modelling techniques and case studies using FEM can be 

found in [81,94].  

Mesh size is closely linked to solution accuracy in FEM thus the sub-modelling technique is 

typically used to create a finer mesh near the crack tip with a denser mesh in the global 

model. For 3D meshing this can become very computationally expensive. Another drawback 

of FEM as applied to fatigue is that the solution accuracy can be affected when mapping the 

outputs from the old to the new mesh. The need for remeshing in traditional FEM makes 

automatic fatigue crack propagation simulation challenging as the mesh must be updated 

after each step. This major bottleneck was removed by the advent of Selective Adaptive 

Remeshing Tool (SMART) solver in the commercial software package ANSYS [95]. The 

software automatically remeshes the crack as it propagates thus eliminating the major 

shortcoming of traditional FEM. Furthermore, the tetrahedral elements are employed using 

the unstructured mesh method that provide similar levels of fidelity to what can be obtained 

using an “ideal” hex mesh but with a significant reduction in computational processing times. 

Hence 3 D fatigue simulations that may otherwise take days can be solved in minutes using 

the ANSYS SMART solver. The solver has been widely used since inception to model 

fatigue problems and also validated against experimental results [96-100]. 

Ansys SMART solver is employed in chapters 4 and 5 of this thesis as the vehicle for fatigue 

experimentation. 

2.6.3 Extended Finite Element Method (XFEM) 

XFEM developed by Belytschko and Black [33] is a finite element method that was designed 

to alleviate the issues faced by traditional FEM in solving problems containing 
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discontinuities. It achieves this, by adding enrichment functions to the spaces of interest 

using the concept of partition of unity [32]. Discontinuities can be divided into either strong 

or weak discontinuities. Strong discontinuity occurs when there is a discontinuity in the 

solution variable of a problem whereas a discontinuity in the derivate of the solution variable 

is classed as a weak discontinuity. In the analysis of structures, the solution variable is 

typically the displacement. Thus, an example of a strong discontinuity would be problems 

containing displacement jumps such as cracks, holes etc. Weak discontinuities can be 

observed in bi-material problems where there is a jump in strain at the transition point of the 

materials.  

The partition of unity concept forms the mathematical basis of XFEM. Partition of unity is 

a set of n function f that satisfies the relationship: 

∑𝑓𝑖(𝑥)𝑔(𝑥)

𝑛

𝑖=1

= 𝑔(𝑥) 
(2.25) 

The interpolation shape functions used in FEM also satisfy the partition of unity as shown 

below: 

∑𝑁𝑖(𝑋)𝑓(𝑋)

𝑛

𝑖=1

= 𝑓(𝑋) 
(2.26) 

Taking advantage of this property, the field in a finite element approximation space can be 

enriched as follows: 

𝑢(𝑥) =∑𝑁𝑖(𝑋)𝑢𝑖

𝑛

𝑖=1

 
(2.27) 

Thus the a priori knowledge of the system can be used to represented mathematically as 

such: 

(𝑥) =∑𝑁𝑖(𝑋)𝑢𝑖 +∑𝑁𝑖(𝑋)𝑢𝑖

𝑛

𝑖=1

𝑛

𝑖=1

∑𝑝𝑗𝑎𝑖𝑗

𝑘

𝑗=1

 

(2.28) 

Where: 

𝑝𝑗 are enrichment functions 

𝑢𝑖 are the FE degrees of freedom, 

𝑎𝑖𝑗 are the extra degrees of freedom  
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The enrichment functions offer a great deal of flexibility to the XFEM method as it allows 

for a variety of problems to be solved depending on the type of enrichment function 

employed. Customising the enrichment function can offer improvements in certain key areas 

for a specific problem e.g., shear strain accuracy. Furthermore, a decision needs to be made 

on the size of the approximation space requiring enrichment. For cracks, the discontinuity in 

the displacement, stress and strain fields only occur at the crack tip or along the crack thus 

local enrichment of only the nodes around the crack would suffice.   

Mathematically, the displacement of a gauss point [32] can be written as: 

𝑢(𝑥) =∑𝑁𝑗(𝑥)𝑢𝑗

𝑛

𝑗=1

+∑𝑁ℎ(𝑥)(𝐻(𝑥) − 𝐻(𝑥ℎ))𝒂ℎ

𝑚ℎ

ℎ=1

+∑𝑁𝑘(𝑥)

𝑚𝑡

𝑘=1

[∑(𝐹𝑙(𝑥) − 𝐹𝑙(𝑥𝑘))𝒃𝑘
𝑙

4

𝑙=1

] 

(2.29) 

 

Here n is the number of standard finite element nodal, 𝑁𝑖 , 𝑁𝑗 , 𝑁𝑘(𝑥) are continuous shape 

functions, 𝑢𝑗  is the freedom vector of standard finite element nodal,  𝐻(𝑥) is the Heaviside 

function of gauss point x and 𝐻(𝑥ℎ) is the Heaviside function of enrichment nodal h, 𝒂ℎ is 

the freedom vector of sides around the crack, 𝐹𝑙(𝑥) and 𝐹𝑙(𝑥𝑘) are the crack-tip enrichment 

function at gauss point x and enrichment nodal k, and 𝒃𝑘
𝑙  is the freedom vector of crack-tip 

enrichment nodal.  

The crack-tip asymptotic function is written as:  

{𝐹𝑙(𝑟, 𝜃)}𝑙=1
4 = {√𝑟 sin

𝜃

2
, √𝑟 cos

𝜃

2
, √𝑟 sin 𝜃 sin

𝜃

2
, √𝑟 sin 𝜃 cos

𝜃

2
} 

(2.30) 

where (𝑟, 𝜃) is the polar coordinate at point x, and 𝜃 = 0 for the tangent direction of crack. 

The asymptotic crack tip enrichment function models the singularity at the crack tip. The 

analytical solutions for the stresses, strains and displacement are known from LEFM form 

the basis of the asymptotic crack tip function. The near tip enrichment basis functions aid 

greatly with convergence despite the high stress gradients present at the crack tip. All nodes 

in elements whose nodal support contains the crack tip are enriched with this function. 

.  
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The Heaviside function is a discontinuous function that represents the gap in the crack 

surfaces. All nodes in elements whose nodal support are intersected by the crack are enriched 

by this function. The Heaviside function oscillates between 0 and 1.  

Crack modelling in FEM requires explicit modelling of the crack. It is a requirement for the 

nodes to be placed all along the crack and the crack tip. The flexibility offered by the 

enrichment functions has led to its application in unique cases where a priori information 

about localised behaviour can be represented by a basis function.  

XFEM was applied in the work of Singh et al. [101] to study the effect of holes and inclusions 

on the stress intensity factor values. It was then successfully applied to interfacial fatigue 

cracks present in bi-layered functional graded materials in the work of Bhattacharya et al. 

[102]. Pathak et al showed 3D fatigue crack simulations was possible with XFEM [103]. The 

work of Bergara et al [104] showed that fatigue crack propagation in complex stress fields 

can be solved using XFEM by investigating fatigue crack growth in four-point bend 

specimens. The XFEM formulation has been widely used to study crack propagation under 

different conditions [105-108]. 

Despite the widespread success of XFEM for fatigue analysis it is not without drawbacks 

however, as it suffers from poor convergence due to blended elements. Although touted as a 

mesh independent method the work of Ren and Guan [109], clearly shows a direct correlation 

between mesh refinement and accurate representation of a three -dimensional crack.  For 3D 

fatigue crack growth problems, the increase in the DOF compared to 2D case may cause 

computational costs to become prohibitive. Another limitation is that the crack must 

propagate through a whole element at a time this can cause an overestimation of the crack 

growth rate. A state-of-the-art review of XFEM as applied in the fracture mechanics can be 

found in the work of Yazid et al [110].  

Finite element modelling in chapter 3 of this thesis was conducted in ABAQUS, using the 

eXtended Finite Element Method (XFEM) for crack modelling in conjuction with the direct 

cyclic solver and Paris law to simulate fatigue loading. 

2.7 Scaled Experimentation in Fatigue 

This section describes the state of the art in scaled fatigue experimentation. A historical 

review of the evolution of similitude theory is presented with special detail given to 

dimensional analysis. The concept of similitude is introduced with the conditions necessary 

to achieve complete similarity emphasized. The Buckingham pi theorem is the most common 
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method of applying dimensional analysis and the procedure is described here. The 

advantages and limitations associated with dimensional analysis are elucidated as well.   

2.7.1 Historical Overview  

Similitude theory is a branch of engineering science concerned with establishing the 

necessary and sufficient conditions of similarity among phenomena, and has been applied to 

different fields such as structural engineering, vibration and impact problems [13]. Before 

delving into the current state of the art on fatigue scaling it would be prudent to give an 

overview of the various methods available in the literature for scaled testing.  

The first reference to similitude theory dates back to the 18th century. In fact, Galilei and 

Weston stated that size and strength of an object do not decrease in the same ratio: if 

dimensions decrease, the strength increases [111]. The curious aspect of this statement is 

that Galileo in the 18th century, was already facing the problem of size effects. However, 

the first work in which scientific models based on dimensional analysis are discussed is by 

Rayleigh in 1915 [36]. Although Rayleigh's article aimed to emphasize the importance of 

similitude methods, especially in engineering thirty years had to pass before the publication 

of another work in which the usefulness of similitude methods is highlighted: the NACA 

technical report [112] and the book by Goodier [113]. In these publications, dimensional 

analysis was applied for the first time with a systematic procedure to simple and complex 

problems. This resulted in a deep insight on the modelling of materials with nonlinear stress–

strain characteristics, large deflections and buckling. [114] 

Soedel [115] derived similitude conditions for free and forced vibrations of shells from 

Love's equations. The most used method after dimensional analysis is Similitude Theory 

Applied to Governing Equations (STAGE) [13]. Kline, (2012) was the first to introduce this 

method [116]. Similitude theory is applied directly to the field equations of the system, 

including boundary and initial conditions, which characterize the systems behaviour in terms 

of its variables and parameters. Similar models are governed by an equivalent set of field 

equations and conditions; thus similitude conditions may be derived by defining the scale 

factors and comparing the equations of both prototype and model. The derived conditions 

relate geometric (length, width, thickness, etc.), excitation (force amplitude, excitation 

frequency, etc.), and material properties (Young's modulus, Poisson's ratio, density etc.) of 

the system to its response. When all of them are satisfied, then complete similitude is 

achieved, else the model is said to be distorted. 
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De Rosa, (1997) introduced the finite similitude method known as asymptotical scaled modal 

analysis also based on energy [117]. It was developed to solve the prohibitive computational 

cost of high frequency problems solved using FEM. Despite the plethora of similarity laws 

available, the most commonly used by some distance in fatigue scaling is dimensional 

analysis. 

Figure 2.7 shows a summary of the scaling techniques introduced in the literature over the 

years. 

 

Figure 2.7: Timeline of development of similarity techniques [13] 

 

2.7.2 Similitude (Similarity Laws) 

Similitudes can be distinguished according to the parameters taken into account [118]. There 

are three necessary conditions for complete similarity between a model and a prototype.  

Geometric similarity: the model must be the same shape as the prototype, but may be scaled 

by some constant factor.  

𝐿𝑚𝑜𝑑𝑒𝑙
𝐿𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒

= 𝐿𝑟𝑎𝑡𝑖𝑜 
(2.31) 

 

Where 𝐿𝑚𝑜𝑑𝑒𝑙 is simply the length of the scaled model in any direction and 𝐿𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒  is the 

length of the prototype in the same direction. The ratio 𝐿𝑟 is the scaling factor and is the 

same in the x, y and z directions for isotropic scaling. 

 

Kinematic similarity: the velocity at any point in the model flow must be proportional by a 

constant scale factor to the velocity at the homologous point in the prototype flow. (That is, 

the flow streamlines must have the same shape.)  

A formal definition of kinematic similitude, that also introduces the concept of scale factor, 

is given by Westine et al. [118]:  
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The function f′ is similar to function f, provided the ratio f′/f is a constant, when the functions 

are evaluated for homologous points and homologous times. The constant λ = f′/f is called 

the scale factor for the function f. The term homologous is defined as corresponding but not 

necessarily equal values).  

The two main fundamental quantities, which describe the motion of an object are distance 

and time. If the ratios of length and the ratio of time interval for each system is constant, 

then, the velocities of corresponding particles will also be in a fixed ratio and hence 

Kinematic similitude is satisfied. Mathematically, it is expressed as: 

𝑉𝑚
𝑉𝑝
=

𝐿𝑚
𝑇𝑚
⁄

𝐿𝑝
𝑇𝑝
⁄

=
𝐿𝑚
𝐿𝑝
÷
𝑇𝑚
𝑇𝑝
= 
𝐿𝑟
𝑇𝑟

 

(2.32) 

Where  𝑉𝑚 is the velocity of the model (scaled down experiment) and 𝑉𝑝 is the velocity of 

the prototype (full scaled experiment). 

A similar expression for acceleration is: 

𝑎𝑚
𝑎𝑝

=

𝐿𝑚
𝑇2𝑚
𝐿𝑝
𝑇2𝑚

=
𝐿𝑚
𝐿𝑝
÷
𝑇2𝑚
𝑇2𝑝

= 
𝐿𝑟
𝑇2𝑟

 

(2.33) 

Where  𝑎𝑚 is the acceleration of the model (scaled down experiment) and 𝑎𝑝 is the 

velocity of the prototype (full scaled experiment). 

Dynamic similarity: all forces in the model flow must scale by a constant factor to the 

corresponding forces in the prototype flow. In other words, the relative importance of 

different types of forces (e.g., viscous and inertial forces) must be the same for the model 

and prototype. Let 𝑓𝑖 be the force due to inertia and 𝑓𝑣 is the force due to viscosity then: 

𝑓𝑖𝑚𝑜𝑑𝑒𝑙
𝑓𝑖𝑚𝑜𝑑𝑒𝑙

=
𝑓𝑣𝑚𝑜𝑑𝑒𝑙
𝑓𝑣𝑚𝑜𝑑𝑒𝑙

 𝑜𝑟𝐹𝑟 =
𝐹𝑓𝑢𝑙𝑙

𝐹𝑚𝑜𝑑𝑒𝑙
 

(2.34) 

In dimensional analysis, the requirement is that the model and prototype have the same 

dimensionless parameters (e.g., the same Reynolds number), although they may (and usually 

do) have different dimensional variables. Mathematically, for all pi groups that can be 

defined for two different flow situations, dynamic similarity requires that geometric and 

kinematic similarity are necessary but insufficient conditions for dynamic similarity. It is 

possible to have geometric and kinematic similarity, but not dynamic similarity.  
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2.7.3 Dimensional Analysis (Buckingham- Pi Thereom) 

Dimensional analysis is a method whereby the behaviour of a phenomenon can be deduced 

based on the premise that any phenomenon can be represented by a dimensionally consistent 

set of variables [119]. Similarity in physical terms refers to some equivalence that exists 

between two things or phenomena that are actually different. For example, the forces acting 

on a large ship, and the forces acting on an identical small-scale model of the ship are related. 

Mathematically, similarity refers to a transformation of variables that leads to a reduction in 

the number of independent variables that specify the problem. Dimensional analysis is based 

on invariance. 

The fundamental argument of dimensional analysis is that the form of any physically 

significant equation must be such that the relationship between the actual physical quantities 

remains valid independent the magnitudes of the base units. Dimensional analysis can shed 

more light on a particular problem/process. However, it does not give a solution to the 

problem completely. The knowledge gained from dimensional analysis can be a useful tool 

to find a complete solution [120].  

The application of dimensional analysis to any problem assumes that certain variables in the 

problem are independent, in other words they are inconsequential to the problem at hand and 

only the dependent variables (ones affecting the problem) should be considered. The 

Buckingham Pi theorem [37] is commonly used to apply dimensional analysis to scale 

problems. It states that if n number of physical variables (relevant to the phenomena) and 

these variables are expressed in k number of fundamental physical quantities (i.e., 

dimensions), then Pi (π = n - k) dimensionless groups are present for this specific problem 

[121]. This results in decreasing the number of variables involved to smaller (Pi) number of 

dimensionless groups, obtaining a functional relationship between the independent 

dimensionless groups [121].  

A general step by step procedure for the dimensional analysis of a problem is presented 

below, based on the procedure outlined by Zohuri [119]:  

1. List all problem variables (n) (chosen by user).  

2. Select primary dimensions (k).  

3. List dimensions of all variables in terms of primary dimensions.  

4. Select a number of repeating variables equal to the number of primary dimensions 

(k) from list of selected variables.  
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5. Write Pi parameters in terms of unknown exponents and write the equation such that 

the sum of the exponents is equal to zero, solving the equation results in (n-k) number of 

dimensionless groups.  

6. Verify the Pi groups created are dimensionless. If the dimensionless parameters of 

the scaled and unscaled processes match, then the two processes can be denoted as similar.  

Mathematically, consider a set of independent quantities, for example 𝑄1, 𝑄2…𝑄𝑛 that 

determine the value of a target function 𝑄0. 𝑄0 can be expressed as: 

𝑄0 = 𝑓(𝑄1, 𝑄2…𝑄𝑛) (2.35) 

Each independent quantity (𝑄 ) will not influence each other, and the value of the target 

function 𝑄0 is dictated by the independent quantities. Applying step 5 of the aforementioned 

procedure, the number of independent quantities that appear is reduced from n to n-k, 

where 𝑘 is the maximum number of the original n that are dimensionally independent. The 

independent parameters in terms of their basic dimensions can be described as:  

𝑄𝑖 = 𝐿
𝑙𝑖𝑀𝑚𝑖𝑇𝑡𝑖) (2.36) 

where 𝐿,𝑀, 𝑇 are fundamental dimensions in physics, and here 𝑙𝑖 , 𝑚𝑖 , 𝑎𝑛𝑑 𝑡𝑖 are 

dimensionless numbers that follow from each quantity’s definition. Dimensionless forms of 

the 𝑛 − 𝑘 remaining independent variables are defined by dividing each variable with the 

product of powers of 𝑄1, 𝑄2…𝑄𝑘that have the same dimension, and thus: 

Π𝑖 =
𝑄𝑘+𝑖

 𝑄1
𝑁(𝑘+𝑖)1𝑄2

𝑁(𝑘+𝑖)2 …𝑄𝑘
𝑁(𝑘+𝑖)𝑘

 
(2.37) 

where 𝑖 = 1,2, … , 𝑛 − 𝑘 and for the dependent variable  

Π0 =
𝑄0

𝑄1
𝑁01𝑄2

𝑁02 …𝑄𝑘
𝑁0𝑘

 
(2.38) 

Thus, the problem can be made simpler and expressed solely in terms of the dimensionless 

groups as such: 

Π0 = 𝑓(Π1, Π2…Π𝑛−𝑘) (2.39) 

where Π𝑖 represents the different dimensionless groups.  

Despite the advantages offered by dimensional analysis, it still suffers from some limitations. 

The choice of dimensionless groups is not unique and as such might not be “physically 
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meaningful”. Furthermore, similarity of highly complex problems is often not possible with 

dimensional analysis as it does not account for size scale effects.   

2.8 Size Effects in Fatigue 

Extensive research [122-125] has confirmed the existence of size effects in fracture 

mechanics and fatigue regardless of material type.  Broadly speaking, size effects can be 

categorised into three, which are statistical, technological, and geometric [126]. Statistical 

size effect is the observed differences in fatigue strength of same size specimens with 

identical surface finish. Technological size effect is the observed difference in fatigue 

strength of identical components with different surface finish. 

The focus in this thesis is solely on the observed difference in fatigue crack growth (FCG) 

rate with geometry change with replica scaling (i.e., identical materials throughout).  

Geometric size effects are highlighted in the work of Brose and Dowling [24], where they 

examined the fatigue crack growth rate of compact tension (CT) specimens.  An increase in 

the width of the specimen from 25mm to 400mm whilst maintaining constant other 

dimensions resulted in a decrease by a factor of 5 of the FCG rate of AISI 304 steel.  

Similarly, Garr and Hesko confirmed that different sized CT specimens resulted in varying 

FCG rates in Inconel 718 alloy [25].  However, in these studies, they focused on comparing 

showing how a change in any of the geometrical dimensions affects the fatigue behaviour 

with no solution or scaling law proposed to reconcile the size scale effects.  

The pioneering work of Barenblatt and Botvina [127] confirmed, on application of 

dimensional analysis to the Paris law, that complete self-similarity is impossible for a 

material under fatigue loading. The special condition was if the Paris law exponent 𝑚 was 

equal to 2 which is almost never the case. This has not stopped researchers attempting to 

solve the incomplete similarity inherent to fatigue by proposing some scaling laws founded 

majorly on dimensional analysis. Bazant and Xu expressed the change in crack length per 

cycle as a power function of the amplitude of a size-adjusted stress intensity factor [33].  

Manning et al. [128] proposed a scaling law to reconcile the size effects observed 

experimentally in sandstone. Kirane and Bazant [129] extended the work of Manning et al. 

[128] to account for the size effects observed in concrete. Carpinteri proposed a mono-

fractal approach to deal with the dependence of the Paris law exponent on initial crack 

length [19].  Other multifractal approaches have been put forward by different researchers 

[20-22].  However, it should be recognised that adaptions of the Paris law will not satisfy 

the similitude invariance provided by dimensional analysis.  The existence of a size effect 
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in and of itself is sufficient to confirm that dimensionless empirical laws must change with 

scale.  

2.9 Application of Dimensional Analysis to Fatigue  

Barenblatt and Botvina [127] applied dimensional analysis to Paris law to describe its 

inherent incomplete self-similarity. Since then, different researchers have applied the same 

approach extending it to quasi brittle materials [16], short cracks [17] and to characterise the 

many observed deviations from the Paris law regime [130]. They examined Paris law to 

determine if it is a true scaling law that reproduces itself at all scales. Paris law is given in 

Eq. 2.40:  

𝑑𝑎

𝑑𝑁
= 𝐶∆K𝑚 

(2.40) 

Consider a generalised approach, where the crack growth rate 
𝑑𝑎

𝑑𝑁
 is assumed to be a function 

of the stress-intensity-factor amplitude, ∆𝐾 = 𝐾𝑚𝑎𝑥 − 𝐾𝑚𝑖𝑛 , stress-intensity factor 

asymmetry 𝑅 = 𝐾𝑚𝑎𝑥/𝐾𝑚𝑖𝑛 , the characteristic length scale of the specimen ℎ, e.g., its 

diameter, or thickness, the material’s yield stress 𝜎𝑦 ,fracture toughness 𝐾𝐼𝐶, loading 

frequency 𝜔 and time 𝑡. The governing variables of fatigue crack growth and the 

corresponding dimensions are presented in Table 2.1. 

The crack growth rate can be expressed as such: 

𝑑𝑎

𝑑𝑁
= 𝑓(∆𝐾, 𝑅, 𝐾𝐼𝐶 , 𝑡, ℎ, 𝜔, 𝜎𝑦) 

(2.41) 

Considering only the primary variables, in terms of dimensional analysis Eq. 2.41 can be 

written as: 

𝑑𝑎

𝑑𝑁
= (

Δ𝐾

𝜎𝑦
)

2

Φ(
Δ𝐾

𝐾𝐼𝐶
, 𝑅, 𝑍, 𝜔𝑡) 

(2.42) 

where: 

𝑍 =
𝜎𝑦√ℎ

𝐾𝐼𝐶
 

(2.43) 

 

Table 2.1: Governing variables of fatigue crack growth. 

Variable Definition Dimensions 

𝜎𝑦 Tensile yield stress 𝐹𝐿−2 
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𝐾𝐼𝐶 Material fracture toughness 𝐹𝐿−2 

𝜔 Frequency of loading cycle 𝑇−1 

Δ𝐾 Stress intensity range 𝐹𝐿
−3

2⁄  

𝑡 Time  𝑇 

ℎ Characteristic length 𝐿 

𝑅 Load ratio - 

 

In the absence of significant environment effects, the effect of 𝜔𝑡 is negligible, two possible 

modes of similarity exist by considering the asymptotic relations in Eq. 2.51 and Eq. 2.52 

where 
Δ𝐾

𝐾𝐼𝐶
≪ 1 (Paris law regime). They are complete similarity and incomplete similarity. 

Complete similarity means all similarity parameters can be deduced from dimensional 

analysis alone, this is not the case with incomplete similarity.  

Complete similarity as 
Δ𝐾

𝐾𝐼𝐶
≪ 1 would imply that Eq. 2.42 becomes: 

𝑑𝑎

𝑑𝑁
= (

Δ𝐾

𝜎𝑦
)

2

Φ(𝑅, 𝑍) 
(2.44) 

Contrasting this to the form of Paris law in equation 2.49 this would imply that the Paris law 

exponent has to be equal to 2 for complete similarity to be achieved. Experimental evidence 

suggests that this is not reality, for some aluminium alloys 𝑚 is close to 2, but nevertheless 

always larger than 2. For the vast majority of cases 𝑚 is substantially larger than 2. 

Experimentally measured Paris law exponents typically vary between 2 and 4 for ductile 

materials, and can be considerably larger for brittle materials, i.e., approaching 10 in low 

toughness metals [131] and even higher in intermetallics and ceramics [132]. If incomplete 

self-similarity is assumed as 
Δ𝐾

𝐾𝐼𝐶
≪ 1 then: 

Φ = (
Δ𝐾

𝐾𝐼𝐶
)
𝛼

Φ1(𝑅, 𝑍) 
(2.45) 

𝑑𝑎

𝑑𝑁
=
(Δ𝐾)2+𝛼

𝜎𝑦2𝐾𝐼𝐶
𝛼 Φ1(𝑅, 𝑍) 

(2.46) 

Which now represents Paris law with 𝐶 =
Φ1(𝑅,𝑍) 

𝜎𝑦2𝐾𝐼𝐶
𝛼 and 𝑚 = 2 + 𝛼 (𝑅, 𝑍). This clearly 

indicates that the Paris law parameters 𝐶 and 𝑚 are not material properties as the dependence 

on characteristic length is obvious. The fatigue-crack growth data of Heiser and Mortimer 
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[133] on AISI 4340 steel confirm a change in 𝑚 with structural size. ℎ was identified with 

the specimen thickness in their study. 

One key point to make is that although Paris law is limited to the region II of the FCG rate 

curve, 
𝑑𝑎

𝑑𝑁
vs. Δ𝐾 data from tests on small specimens is still widely used to characterize crack-

growth behaviour of larger structures. Thus, observations that the growth rates of fatigue 

cracks may vary with specimen size present a concern as the FCG rate cannot be extrapolated 

from small specimens to large structures. The dimensional analysis approach involves a lot 

of assumptions, thereby making it a tedious and complicated one. Furthermore, the choice 

of dimensionless numbers is not unique and more simplifications are required to extract the 

similarity parameters as they are not readily obtained through dimensional analysis alone 

[134].  

As a consequence of the aforementioned drawbacks associated with dimensional analysis as 

applied to fatigue there is a need for a scaling theory that can accurately capture the size 

scale effect in fatigue with precision. 

2.10 Microstructural Size Effects in Fatigue 

Microstructure plays a role in both fatigue crack initiation and predominantly early stages of 

fatigue crack growth propagation. Whenever a metallic component experiences deformation, 

the grain boundaries block the dislocation slip, and as a consequence, the dislocations pile 

up leading to build up of stress concentrations in the component. Nevertheless, there are 

some other grain boundaries that allow dislocations to transmit across them. Micro cracks 

initiate at the grain and then propagate across the grain. Thus, grain size is a critical parameter 

that determines mechanical properties of a metal. Reduction in grain size improves 

mechanical properties as it means more boundaries reduces dislocation movement within the 

microstructure. The effect of the grain size on the fatigue behaviour of aluminium was 

investigated by Turnbull et al. [135] experimentally. An increase in the fatigue strength was 

observed with the decrease in grain size. 

Microstructure parameters such as grain boundary, grain orientation, and interaction between 

adjacent microscopic cracks precipitation all affect fatigue crack initiation and small crack 

fatigue crack growth. The work of Suresh & Ritchie [136] showed how short cracks defined 

according to the crack length proportional to grain size dimensions propagate faster than 

long cracks under the same applied stress intensity factor range. This is known as material 

based size effect. Similar observations have been made by other researchers see the work of 
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Mughrabi [137,138], McEvily et al. [139] among others [140-142]. The Tanaka-Mura 

relation is most commonly empirical law used to relate microstructure properties such as the 

shear stress of the slip band and grain size to predict crack initiation life [143]. 

Experimental work by Zhu et al. [144] on fatigue crack growth of single edge notched tensile 

specimens made from nickel superalloy show how when the crack length is comparable to 

the grain size the fatigue crack growth rates are heavily influenced by the microstructural 

factors. Increase in grain sizes resulted in an increase in both crack initiation life and total 

fatigue life. More rapid stage I crack growth is observed in materials with an increase in 

grain size. 

From the literature, it is clearly seen that the microstructure effects are the dominant factor 

controlling short crack fatigue growth. In this work, long crack fatigue growth is the focus 

thus microscopic effects are ignored as the crack length of the smallest scale models are 

several magnitudes higher than the grain size dimensions. Material based size effect is not a 

considered as the scale separation conditions are satisfied. 

 

Summary 

This chapter attempts to give a holistic understanding of the many topics of relevance to this 

thesis with the aim to give the reader a better understanding of the concepts necessary to aid 

comprehension of subsequent sections containing the research publications of this PhD 

project. A historical overview of scaling techniques in general was presented with greater 

depth given to the most common scaling theory; dimensional analysis. The existence of size 

effect in fatigue and LEFM in particular are explained with the different types of size effects 

possible explained. The focus of this work is narrowed down to the type of size effect that 

occurs in geometrically similar structures under fatigue loads due to changes in stress 

gradient. The pioneering work of Barenblatt and Botvina [127] is explained in greater detail 

where the current short comings associated with scaled experimentation in fatigue are 

completely demonstrated. By means of applying dimensional analysis to Paris law 

arguments, they discovered that Paris law does not reproduce itself at all scales. In simple 

terms, fatigue data obtained using small scale experiments cannot be reliably used to predict 

full scale behaviour. In addition, the Paris law constants 𝐶 and 𝑚 are shown to not be material 

constants as once believed and do in fact change with a geometric sizing update.  

From the extensive literature review it is made abundantly clear that the observed change in 

behaviour of the fatigue process with scale (geometric size effect) cannot be captured by 
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dimensional analysis. Thus, there exists a need for a scaling theory that can capture such 

effects by effectively designing scaled fatigue experiments that can be related to the full-

scale prototype effectively capturing all the fracture mechanics parameters of interest 

relevant to fatigue. Due to the limitations of dimensional analysis a different approach to 

scaled experimentation using the first order finite similitude theory [34] would be used to 

study fracture and fatigue response. The uniqueness and subsequently advantage of this 

scaling theory is that it is not limited by the requirement of proportional fields between the 

scaled model and prototype like the dimensional analysis approach (and zeroth order finite 

similitude theory). Instead, it allows for divided differences in the fields of the scaled 

experiments and then reconstructs the full-scale behaviour from the scaled experimental 

output parameters. The first order finite similitude theory is applied in the subsequent 

sections to design and conduct fatigue testing at smaller scales to evaluate the predictive 

ability of the scaling theory. The outcomes of the investigations show that two appropriately 

designed scaled experiments better recreate the fatigue behaviour of a defect laden 

component under fatigue loading. 
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Chapter 3 Scaled Cohesive Zone Models for Fatigue Crack Propagation 

 

3.1 Introduction 

Reports indicate that fatigue failure accounts for approximately 90% of all mechanical 

failures in engineering components during their service life [1].  Although fatigue failures 

cannot be completely eradicated, knowledge of crack growth rates and paths taken through 

a component, provides a means for the evaluation and monitoring of structural integrity. 

The remaining life of a component under normal service conditions can consequently be 

estimated along with the establishment of inspection and maintenance protocols.  There are 

situations where monitoring is not feasible however and consequently there is a continual 

need for experimental and theoretical developments.  Experiments can be performed on 

standard test specimens or on full-sized components but testing on scaled models is also a 

possibility if the data obtained can be related to the full-size component.  The situation 

presently is that scaled experimentation does not feature heavily because of the issues 

associated with relating data across the scales [134].  Problems are also a facet of full-scale 

testing however, which include the expense of time, computation, and human resources.  

To a certain degree, modern numerical approaches mitigate some of these difficulties 

although other challenges arise related to representation, with possible disparities between 

outputs from models and experimental data.  A particularly convenient example of a 

modern approach for the modelling and analysis of fatigue crack growth is the extended 

finite element method (XFEM).  This is based on the partition of unity concept and 

employing enrichment functions around the crack tip [32,33]. These functions improve the 

description of stress and displacement fields around the crack tip and consequently reduce 

the need for mesh refinement.  The XFEM formulation has been widely used to study crack 

propagation under different conditions see refs. [103,104, 145-150].  Farukh et al. (2015) 

predicted the crack growth of a three-point bend specimen under thermo-mechanical 

fatigue conditions using XFEM, making use of an accumulated strain criterion [150]. 

Scaled experimentation is a solution to the time and cost problem however its widespread 

applicability has been hampered by the existence of scale and size effects.  Scale effects are 

the observed changes in behaviour of a process with varying scale that consequently leads 

to an inability to predict the behaviour of processes occurring at the full scale.  An early 

reference to similitude theory is by Galilei and Weston [151], where the problem of size 

effect is noted. They observed that the size and strength of an object do not change with the 
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same ratio.  Scaled models based on dimensional analysis were first introduced by Rayleigh 

[36], where similitude-based rules were applied to a variety of problems. The work of Kline 

& Radbill (1966) was the first to combine dimensional analysis with governing equations to 

achieve similitude [152].  It is well appreciated in the scientific literature that size effects are 

a particular concern in fracture mechanics (see for example the works refs. [127-134,153). 

This is further compounded by the unique challenge faced in performing fatigue analysis 

experimentally whereby specimens with the same geometry and surface finish exhibit 

different fatigue crack growth rates due to inherent inhomogeneity at the micro scale as 

shown in the work of Virkler et al. (1978) [154].  Barenblatt and Botvina [127] confirmed 

that incomplete self-similarity is inherent in Paris law, which explains why efforts to perform 

scaled experiments have been met with relatively little success.  They showed that the Paris 

law exponent 𝑚 would have to equal 2 for the Paris law to have complete similarity.  

However, analysis of experimental data reveals that 𝑚 varies and is invariably larger than 2, 

thus similarity is not typically a feature of the Paris law. Different power law empirical 

formulations based on some form of Paris law exist, but they suffer from the same limitation 

[155]. Notwithstanding, there have been various attempts by different authors to achieve 

similitude in fatigue. Carpinteri et al. (2002) [156] proposed a fractal approach to deal with 

the dependence of the Paris law exponent on initial crack length.  Tomaszweski et al. (2014) 

proposed a multifractal scaling law for high cycle fatigue of an aluminium alloy [157]. They 

described phenomenologically, the observed phenomenon whereby the fatigue strength of 

material decreases with an increase in cross sectional area by applying the fractal dimension.  

In the work of Ray & Kishen (2012) [158] they used dimensional analysis to predict fatigue 

crack growth rate of a three-point bend specimen due to overloads. They were able to achieve 

good agreement with experimental data (within 10%) for the number of cycles to failure. 

However, the exponents of the dimensionless groups could not be determined solely by 

dimensional analysis and needed experimental calibration therefore restricting the usability 

of the approach. 

Overall, there does not exist a unique or universal scaling approach for fatigue and this gap 

in literature is the focus here.  Attention is directed towards the combined use of cohesive 

zone models with the application of a scaling theory known as finite similitude first 

introduced in the reference Al-Tamimi et al. (2016) [159]. Although this publication is 

limited to one scaled experiment applied to metal forming processes it provided the starting 

point for the similitude theory (now termed zeroth-order finite similitude).  Zeroth-order 

finite similitude is equivalent to dimensional analysis in the sense that both approaches 
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involve proportional fields.  This and a two-experiment formulation have subsequently been 

applied to different areas such as impact mechanics in refs. [160-163], earthquake [164-165], 

bioengineering [166-167] and fracture mechanics [168].   

The work presented here for the first time, applies first order finite similitude (involving two 

scaled experiments) to fatigue crack propagation processes.  The principal advantage of the 

finite-similitude formulation over dimensional analysis is that it is not limited to a specific 

invariance, and it is of interest to discover therefore whether fatigue analysis and 

experimentation can benefit from a two-experiment approach.  Although the investigation 

here is principally analytical and numerical involving cohesive zone models the wide success 

of these approaches for fatigue analysis (see ref. [169]) indicates such an investigation has 

merit.  The finite-similitude theory for the sake of readability is re-examined in Section 3.2, 

where the peculiar metaphysical concept of space scaling is introduced.  Scaling in finite 

similitude is viewed as a continuous process involving either the expansion or contraction of 

space.  Although space scaling cannot be achieved practically it nevertheless provides the 

mathematical foundation for a calculus of scaling and the route to representing scale effects.  

Another feature peculiar to the finite similitude theory discussed in Section 3.2 is that 

governing equations are represented in integral transport form.  The physics of interest is 

captured on moving control volume to reflect the immediacy between space, a region of 

space (i.e., control volume) and the governing equations (i.e., transport equations).  A generic 

form of transport equation is also introduced in Section 3.2 and the effect space scaling has 

on it is examined. The projection of trial space physics onto the physical space is shown, 

which is a critical step as it reveals all scale dependencies in fatigue.  Proportional 

relationships typical to dimensional analysis are revealed in this section on application of the 

simple assumption that the projected transport equations do not change with scale. The 

possibility of transport equations changing with scale is then considered with the first-order 

finite similitude rule, where two scaled experiments can be combined to eliminate certain 

scale effects, which is simply not possible with dimensional analysis. Analytical applications 

are examined in Section 3.3 for a range of 1-D cohesive zone models, where exact 

representations of full-scale behaviours are returned using the first-order finite similitude 

rule.  The application of the theory is the focus of Section 3.4 where an analytical example 

is considered to illustrate the ease of implementation the theory.  Numerical studies are 

presented in Section 3.5 to demonstrate the practical benefits of the new scaling approach 

for fatigue, where exact behaviours (within numerical error) are again returned on 
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application of the commercial code Abaqus employing XFEM cohesive zone methods. The 

paper concludes with a conclusions’ section. 

3.2 Recap on Finite Similitude 

Finite similitude theory can be found in references [159-163] but it is fitting to go over the 

concepts here prior to advancing the theory in the field of fatigue analysis. The scaling theory 

is unusual in that it is founded on a metaphysical concept, where the idea is that space can 

be expanded or contracted for the purpose of scaled experimentation.  Evidently there exists 

no practical means to distort space in this manner, but what is possible is the ability to assess 

the impact of a space-scaling operation on the underpinning physics dictating the fatigue 

behaviour of a part in an experiment.  This process provides a means to assess in an intuitive 

manner how scaling influences behaviour and consequently provides the backdrop for 

designing experiments. 

 

3.2.1. The metaphysics of space scaling 

Newtonian mechanics is founded on the concepts of inertial frames and absolute time and to 

enact the space-scaling concept therefore requires two inertial frames and two clocks.  One 

frame resides in the physical space where the full-scale process sits and the other resides in 

the trial space which houses the scaled experiment.  The characterisation of space is achieved 

through an affine map 𝒙𝑝𝑠 ↦ 𝒙𝑡𝑠, which in differential terms is 𝒅𝒙𝑡𝑠 = 𝐹𝒅𝒙𝑝𝑠, where F is 

both temporally and spatially invariant.  This is equivalent to 𝑑𝑥𝑡𝑠
𝑖 = 𝐹𝑖𝑗𝑑𝑥𝑝𝑠

𝑗
 when 

expressed in coefficient form with 𝐹𝑖𝑗 = 𝜕𝑥𝑡𝑠
𝑖 𝜕𝑥𝑝𝑠

𝑗
⁄ , and where 𝑥𝑝𝑠

𝑖  and 𝑥𝑡𝑠
𝑖  are coordinate 

functions in the physical space (full-sized process) and the trial space (scaled-sized process), 

respectively.  The matrix F characterises the nature of the scaling process and depending on 

the form F takes both anisotropic and isotropic scaling is representable.  The work presented 

here is limited to isotropic and for this case 𝐹 = 𝛽𝐼 or in coefficient terms 𝐹𝑖𝑗 = 𝛽𝛿𝑗
𝑖, where 

the Kronecker delta symbol 𝛿𝑗
𝑖 is either one or zero.  The extent of linear scaling is quantified 

by the parameter 𝛽, which is positive and should 0 < 𝛽 < 1 then the space is contracted; no 

space scaling takes place for 𝛽 = 1 and expansion is the result for 𝛽 > 1. Space scaling is 

pictorially presented in Fig. 3.1 along with its impact on a cyclically loaded rod for isotropic 

scaling with contraction, expansion and no scaling depicted.  Observe the clocks in Fig. 3.1 

labelled with 𝑡𝑡𝑠 and 𝑡𝑝𝑠 to reflect the possibility that time runs at different rates in the 

highlighted spaces.  This feature allows for processes to run over different time intervals and 
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it is assumed here that 𝑑𝑡𝑡𝑠 = 𝑔𝑑𝑡𝑝𝑠, which is a differential identity with 𝑔 being a positive 

scalar that quantifies the extent of the difference in rate at which processes proceed in the 

two spaces.  Note that the differential map 𝒅𝒙𝑡𝑠 = 𝛽𝒅𝒙𝑝𝑠 provides all the necessary 

information needed to relate differential volumes and areas in the physical and trial spaces.  

Nanson’s identities [159] provide 𝑑𝑉𝑡𝑠 = 𝛽
3𝑑𝑉𝑝𝑠 and 𝒅𝚪𝑡𝑠 = 𝛽

2𝒅𝚪𝑝𝑠, where 𝒅𝚪𝑡𝑠 =

𝒏𝑡𝑠 𝑑Γ𝑡𝑠, 𝒅𝚪𝑝𝑠 = 𝒏𝑝𝑠 𝑑Γ𝑝𝑠 and 𝒏𝑡𝑠 and 𝒏𝑝𝑠 are unit normal vectors.  The quantities 𝑑𝑉𝑡𝑠 and 

𝑑𝑉𝑝𝑠 are differential measures of volume and similarly for 𝑑Γ𝑡𝑠 and 𝑑Γ𝑝𝑠, which are 

differential measures of area. 

 

 

Figure 3.1: Space scaling and its geometrical effect on a cyclically loaded rod modelled as 

a combined spring-cohesive element. 

 

3.2.2. Moving control volumes 

Space scaling provides the backdrop but to understand the behaviour of systems when scaled 

it is necessary for the physics involved to be correctly represented.  The most appropriate 

formulation for fatigue analysis is possibly unexpectedly a control-volume approach.  

Control volumes are no more than regions of space and therefore capture any change 

resulting from space scaling, which is a feature absent from point-based formulations.  A 

control-volume can move, distort, and can be reduced to be arbitrarily small and hence 

facilitates the focus of any analysis on any region of space of interest.  In mathematical terms 

a control volume takes the form of a continuous open domain 𝛺𝑡𝑠
∗  (in the trial space) whose 
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closure contains the orientable boundary 𝛤𝑡𝑠
∗  with outward pointing unit normal 𝒏𝑡𝑠.  In 

scaling the focus is invariably on two regions of space (i.e., physical and trial) and evidently 

therefore the exact same apparatus applies to the physical space.  It can be anticipated that 

the movement of 𝛺𝑝𝑠
∗  and 𝛺𝑡𝑠

∗  is synchronised in some manner.  The arrangement is depicted 

in Fig. 3.2, where the movement of 𝛺𝑡𝑠
∗  is related to the velocity field 𝒗𝑡𝑠

∗  using the identity 

𝒗𝑡𝑠
∗ = 𝐷∗𝒙𝑡𝑠

∗ /𝐷∗𝑡𝑡𝑠
∗ .  The temporal derivative 𝐷∗/𝐷∗𝑡𝑡𝑠

∗  is a partial derivative that holds 

constant points in a reference control volume 𝛺𝑡𝑠
∗𝑟𝑒𝑓

, i.e. 𝐷∗/𝐷∗𝑡𝑡𝑠
∗ ≡ 𝜕/𝜕𝑡𝑡𝑠

∗ |
𝝌𝑡𝑠

, where 𝝌𝑡𝑠 ∈

𝛺𝑡𝑠
∗𝑟𝑒𝑓

.  This description of control volume motion provides a precise mathematical 

formularisation with movement of a coordinate point defined by the solution of the 

differential equation 𝒗𝑡𝑠
∗ = 𝐷∗𝒙𝑡𝑠

∗ /𝐷∗𝑡𝑡𝑠
∗  (with 𝒗𝑡𝑠

∗  known) or the map 𝛺𝑡𝑠
∗𝑟𝑒𝑓

→ 𝛺𝑡𝑠
∗  (i.e. 

𝝌𝑡𝑠 ↦ 𝒙𝑡𝑠
∗ ).  As illustrated in Fig. 3.2 the exact same apparatus applies in the physical space 

with the identity 𝒗𝑝𝑠
∗ = 𝐷∗𝒙𝑝𝑠

∗ /𝐷∗𝑡𝑝𝑠
∗ .  The assumed synchronous motion suggests a 

relationship between 𝒙𝑡𝑠
∗  and 𝒙𝑝𝑠

∗  in the form of a map 𝒙𝑝𝑠
∗ ↦ 𝒙𝑡𝑠

∗ .  It can be readily shown 

that the differential identity 𝒅𝒙𝑡𝑠
∗ = 𝛽𝒅𝒙𝑝𝑠

∗  holds and in view of the temporal 

relationship𝑑𝑡𝑡𝑠 = 𝑔𝑑𝑡𝑝𝑠, the velocities 𝒗𝑡𝑠
∗  and 𝒗𝑝𝑠

∗  are related by 𝒗𝑡𝑠
∗ = 𝛽𝑔−1𝒗𝑝𝑠

∗ ).  Note 

that thus far no reference is made to the physical processes in the two spaces, which is an 

important aspect as it provides the foundations for a generic approach. 

 

3.2.3. Projected Transport Equations  

The key step in the finite-similitude theory is the projection of the governing trial-space 

physics represented by transport equations onto the physical space.  It is through this 

projection that scale dependencies are revealed in a form that is either explicit in the case of 

geometrical measures or implicit as is the case for most other fields.  This step is important 

as it transforms scaling into a procedure where the objective is the discovery of hidden 

(implicit) scale dependencies.  It is fair to say in transport equations are somewhat neglected 

due to the relative dominance of variational methods in solid mechanics (see ref. [170]).  

Some application of control-volume theory to fracture mechanics underpins the concept of 

configurational forces and additionally shock physics make use of them in the capture of 

discontinuous behaviour but otherwise their application is limited.  Consider then a transport 

equation in its most generic form in the trial space, which takes the form [159] 
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𝐷∗

𝐷∗𝑡𝑡𝑠
∫ 𝜌𝑡𝑠𝜳𝑡𝑠
𝛺𝑡𝑠
∗

𝑑𝑉𝑡𝑠
∗ +∫ 𝜌𝑡𝑠𝜳𝑡𝑠(𝒗𝑡𝑠 − 𝒗𝑡𝑠

∗ ) ∙ 𝒏𝑡𝑠
Г𝑡𝑠
∗

𝑑Г𝑡𝑠
∗

= −∫ 𝑱𝑡𝑠
𝛹

Г𝑡𝑠
∗

∙ 𝒏𝑡𝑠𝑑Г𝑡𝑠
∗ +∫ 𝜌𝑡𝑠𝒃𝑡𝑠

𝛹𝑑𝑉𝑡𝑠
∗

𝛺𝑡𝑠
∗

 

(3.1) 

where 𝜌𝑡𝑠, 𝜳𝑡𝑠, 𝒗𝑡𝑠, 𝑱𝑡𝑠
𝛹 , 𝒃𝑡𝑠

𝛹 , 𝒏𝑡𝑠 are material density, a physical field, material velocity, a 

boundary flux, a source term and the unit normal to boundary Гps
∗  of the control volume 𝛺𝑝𝑠

∗ .  

The equations of interest to fatigue in the frame of continuum mechanics are conservation 

equations for volume, mass, and momentum along with a non-conservation equation for 

movement, which are: 

𝐷∗

𝐷∗𝑡𝑡𝑠
∫ 𝑑𝑉𝑡𝑠

∗

𝛺𝑡𝑠
∗

−∫ 𝒗𝑡𝑠
∗ ∙ 𝒏𝑡𝑠

Г𝑡𝑠
∗

𝑑Г𝑡𝑠
∗ = 0 

(3.2a) 

𝐷∗

𝐷∗𝑡𝑡𝑠
∫ 𝜌𝑡𝑠
𝛺𝑡𝑠
∗

𝑑𝑉𝑡𝑠
∗ +∫ 𝜌𝑡𝑠(𝒗𝑡𝑠 − 𝒗𝑡𝑠

∗ ) ∙ 𝒏𝑡𝑠
Г𝑡𝑠
∗

𝑑Г𝑡𝑠
∗ = 0 

(3.2b) 

𝐷∗

𝐷∗𝑡𝑡𝑠
∫ 𝜌𝑡𝑠𝒗𝑡𝑠
𝛺𝑡𝑠
∗

𝑑𝑉𝑡𝑠
∗ +∫ 𝜌𝑡𝑠𝒗𝑡𝑠(𝒗𝑡𝑠 − 𝒗𝑡𝑠

∗ ) ∙ 𝒏𝑡𝑠
Г𝑡𝑠
∗

𝑑Г𝑡𝑠
∗

= −∫ 𝝈𝑡𝑠
Г𝑡𝑠
∗

∙ 𝒏𝑡𝑠𝑑Г𝑡𝑠
∗ +∫ 𝜌𝑡𝑠𝒃𝑡𝑠

𝑣 𝑑𝑉𝑡𝑠
∗

𝛺𝑡𝑠
∗

 

(3.2c) 

𝐷∗

𝐷∗𝑡𝑡𝑠
∫ 𝜌𝑡𝑠𝒖𝑡𝑠
𝛺𝑡𝑠
∗

𝑑𝑉𝑡𝑠
∗ +∫ 𝜌𝑡𝑠𝒖𝑡𝑠(𝒗𝑡𝑠 − 𝒗𝑡𝑠

∗ ) ∙ 𝒏𝑡𝑠
Г𝑡𝑠
∗

𝑑Г𝑡𝑠
∗ = ∫ 𝜌𝑡𝑠𝒗𝑡𝑠𝑑𝑉𝑡𝑠

∗

𝛺𝑡𝑠
∗

 
(3.2d) 

where 𝝈𝑡𝑠 is Cauchy stress and 𝒃𝑡𝑠
𝑣  is a body force. 

Although Eq. (3.2c) plays a prominent role in fracture mechanics other equations are 

required in finite-similitude theory.  Eq. (3.2a) is typically absent from fracture mechanics 

as it has no field associated with it but its role in finite similitude is the enforcement of the 

synchronous control volume relationship 𝒗𝑡𝑠
∗ = 𝛽𝑔−1𝒗𝑝𝑠

∗ .  The continuity equation Eq. 

(3.2b) is usually absent also as density is typically fixed in fracture theory but with physical 

modelling a consideration density change is a feature albeit with scale.  The equation for 

movement Eq. (3.2d) was introduced by Davey and Darvizeh (2016) [170] to make transport 

equations more relevant to solid mechanics.  The movement equation brings the 

displacement field 𝒖𝑡𝑠 into the family of transport equations and since displacement is a 

critical field in fracture mechanics (providing a description for distortion) it has its place.  To 

project Eq. (3.1) (and subsequently Eqs. (3.2)) into the physical space it is first necessary to 

substitute the identities 𝑑𝑉𝑡𝑠
∗ = 𝛽3𝑑𝑉𝑝𝑠

∗ , 𝒅𝚪𝑡𝑠
∗ = 𝛽2𝒅𝚪𝑝𝑠

∗ , 𝑑𝑡𝑡𝑠 = 𝑔𝑑𝑡𝑝𝑠, and multiply 
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throughout by g and scalar 𝛼0
𝛹; this gives rise to the critically important scaled transport 

equation as following 

 

Figure 3.2: Synchronous moving-control volumes in trial space and physical spaces 

tracking a moving cyclically loaded rod. 

𝛼0
𝛹𝛵0

𝛹(𝛽) =
𝐷∗

𝐷∗𝑡𝑝𝑠
∫ 𝛼0

𝛹𝜌𝑡𝑠𝛽
3𝜳𝑡𝑠

𝛺𝑝𝑠
∗

𝑑𝑉𝑝𝑠
∗

+∫ 𝛼0
𝛹𝜌𝑡𝑠𝛽

3𝜳𝑡𝑠(𝛽
−1𝑔𝒗𝑡𝑠 − 𝛽

−1𝑔𝒗𝑡𝑠
∗ ) ∙ 𝒏𝑝𝑠

Г𝑝𝑠
∗

𝑑Г𝑝𝑠
∗

+∫ 𝛼0
𝛹𝛽2𝑔𝑱𝑡𝑠

𝛹

Г𝑝𝑠
∗

∙ 𝒏𝑝𝑠𝑑Г𝑝𝑠
∗ −∫ 𝛼0

𝛹𝜌𝑡𝑠𝛽
3𝑔𝒃𝑡𝑠

𝛹𝑑𝑉𝑝𝑠
∗

𝛺𝑝𝑠
∗

= 0 

(3.3) 

which is effectively Eq. (3.1) represented on the physical space; the role of the scalar 𝛼0
𝛹 is 

of critical importance and along with 𝑔 are assumed to be smooth functions of 𝛽. 

This equation is of fundamental importance to finite-similitude theory because in one form 

or another (explicitly or implicitly) it captures all scale dependencies.  The assumed 

dependence on 𝛽 of the fields, fluxes and sources provide the relationships: 𝜌𝑡𝑠(1) = 𝜌𝑝𝑠, 

𝒗𝑡𝑠(1) = 𝒗𝑝𝑠, 𝜳𝑡𝑠(1) = 𝜳𝑝𝑠, 𝑱𝑡𝑠(1) = 𝑱𝑝𝑠 and 𝒃𝑡𝑠(1) = 𝒃𝑝𝑠, i.e., for 𝛽 = 1 the obvious 

requirement is that trial-space physics matches what transpires in the physical space.  This 
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requirement also imposes the identities 𝛼0
𝛹(1) = 1 and 𝑔(1) = 1.  It is important to 

appreciate that 𝛼0
𝛹𝛵0

𝛹(𝛽) = 0 is not an approximation as it is fully representative of the trial-

space physics but projected onto the physical space.  Note how all 𝛽 − dependencies are 

revealed through this projection with those arising from geometrical measures being revealed 

in an explicit form (i.e., 𝛽3 and 𝛽2 terms) and others are hidden but expressed a functions of 

 𝛽, nevertheless in the form 𝜌𝑡𝑠(𝛽), 𝒗𝑡𝑠(𝛽), 𝜳𝑡𝑠(𝛽),  𝑱𝑡𝑠(𝛽) and 𝒃𝑡𝑠(𝛽).  

Eq. (3.3) is a generic form that is useful in the abstract but with regards to Eqs. (3.2) and 

fracture mechanics the following projected equations are revealed: 

𝛼0
1𝛵0

1(𝛽) =
𝐷∗

𝐷∗𝑡𝑝𝑠
∫ 𝛼0

1𝛽3

𝛺𝑝𝑠
∗

𝑑𝑉𝑝𝑠
∗ −∫ 𝛼0

1𝛽3(𝛽−1𝑔𝒗𝑡𝑠
∗ ∙ 𝒏𝑝𝑠)

Г𝑝𝑠
∗

𝑑Г𝑝𝑠
∗ = 0 

 

(3.4a) 

𝛼0
𝜌
𝛵0
𝜌(𝛽) =

𝐷∗

𝐷∗𝑡𝑝𝑠
∫ 𝛼0

𝜌
𝜌𝑡𝑠𝛽

3

𝛺𝑝𝑠
∗

𝑑𝑉𝑝𝑠
∗

+∫ 𝛼0
𝜌
𝜌𝑡𝑠𝛽

3(𝛽−1𝑔𝒗𝑡𝑠 − 𝛽
−1𝑔𝒗𝑡𝑠

∗ ) ∙ 𝒏𝑝𝑠
Г𝑝𝑠
∗

𝑑Г𝑝𝑠
∗ = 0 

 

 

(3.4b) 

𝛼0
𝑣𝛵0

𝑣(𝛽) =
𝐷∗

𝐷∗𝑡𝑝𝑠
∫ [𝛼0

𝑣𝑔−1𝛽𝜌𝑡𝑠𝛽
3](𝛽−1𝑔𝒗𝑡𝑠)

𝛺𝑝𝑠
∗

𝑑𝑉𝑝𝑠
∗

+∫ [𝛼0
𝑣𝑔−1𝛽𝜌𝑡𝑠𝛽

3](𝛽−1𝑔𝒗𝑡𝑠)(𝛽
−1𝑔𝒗𝑡𝑠

Г𝑝𝑠
∗

− 𝛽−1𝑔𝒗𝑡𝑠
∗ ) ∙ 𝒏𝑝𝑠 𝑑Г𝑝𝑠

∗ +∫ 𝛼0
𝑣𝛽2𝑔𝝈𝑡𝑠

Г𝑝𝑠
∗

∙ 𝒏𝑝𝑠𝑑Г𝑝𝑠
∗

−∫ 𝛼0
𝑣𝜌𝑡𝑠𝛽

3𝑔𝒃𝑡𝑠
𝑣 𝑑𝑉𝑝𝑠

∗

𝛺𝑝𝑠
∗

= 0 

 

 

 

(3.4c) 

𝛼0
𝑢𝛵0

𝑢(𝛽) =
𝐷∗

𝐷∗𝑡𝑝𝑠
∫ 𝛼0

𝑢𝛽𝜌𝑡𝑠𝛽
3(𝛽−1𝒖𝑡𝑠)

𝛺𝑝𝑠
∗

𝑑𝑉𝑝𝑠
∗

+∫ 𝛼0
𝑢𝛽𝜌𝑡𝑠𝛽

3(𝛽−1𝒖𝑡𝑠)(𝛽
−1𝑔𝒗𝑡𝑠 − 𝛽

−1𝑔𝒗𝑡𝑠
∗ ) ∙ 𝒏𝑝𝑠

Г𝑝𝑠
∗

𝑑Г𝑝𝑠
∗

−∫ 𝛼0
𝑢𝛽𝜌𝑡𝑠𝛽

3(𝛽−1𝑔𝒗𝑡𝑠)𝑑𝑉𝑝𝑠
∗

𝛺𝑝𝑠
∗

= 0 

 

 

 

(3.4d) 

where a possible role for 𝛼0
𝛹 has materialised, which is the attempted removal of 𝛽 terms. 

The simplest assumption to make is that the physics of the problem do not change in the trial 

space when contrasted with the physical space this is zeroth order similitude same as the 

invariance associated with dimensional analysis and is termed zeroth order finite similitude. 
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The projected transport equation does not change with scale 𝛽. This is mathematically 

represented by the zeroth order identity: 

𝑑

𝑑𝛽
(𝛼0

𝛹𝛵0
𝛹) ≡ 0 (3.5) 

Application of Eq. (3.5) to the transport equations produces the zeroth order identities. 

 

Table 3.1. Necessary and sufficient zeroth order identities 

Eq. No Field Scalars Flux Source 

(3.4a) 𝒗𝑝𝑠
∗ = 𝛽−1𝑔𝒗𝑡𝑠

∗  𝛼0
1𝛽3 = 1   

(3.4b) 𝜌𝑝𝑠 = 𝛼0
𝜌
𝜌𝑡𝑠𝛽

3 𝛼0
𝜌(1) = 1 

𝑔(1) = 1 

  

(3.4c) 𝒗𝑝𝑠 = 𝛽1
−1𝑔1𝒗𝑡𝑠 𝛼0

𝜌
= 𝛼0

𝑣𝑔−1𝛽 𝝈𝑝𝑠

= 𝛼01
𝑣 𝑔1𝛽1

2𝝈𝑡𝑠 

𝒃𝑝𝑠
𝑣

= 𝑔1
2𝛽1

−1𝒃𝑡𝑠
𝑣  

(3.4d) 𝒖𝑝𝑠 = 𝛽1
−1𝒖𝑡𝑠 𝛼0

𝜌
= 𝛼0

𝑢𝛽  𝒗𝑝𝑠

= 𝛽1
−1𝑔1𝒗𝑡𝑠 

 

Table 3.1 presents those identities in a system where scale effects are absent. The role of Eq. 

(3.4a) is the determination of the identity 𝒗𝑝𝑠 = 𝛽1
−1𝑔1𝒗𝑡𝑠 , which is required so that control-

volume movement in the trial space at any scale can be described in the physical space. In 

links the behaviour of the trial space system is played out on the physical space enabling 

differences to be gauged. In order to satisfy Eq. (3.5) for Eq. (3.4b) it is necessary and 

sufficient to set 𝛽−1𝑔𝒗𝑡𝑠
∗ = 𝒗𝑝𝑠

∗ ,  𝛼0
𝜌
𝜌𝑡𝑠𝛽

3 = 𝜌𝑝𝑠, 𝒗𝑝𝑠 = 𝛽1
−1𝑔1𝒗𝑡𝑠, 𝛼0

𝜌(1) = 1 and  𝒗𝑝𝑠 =

𝒗𝑡𝑠(1). 

Although continuity plays little part in fracture mechanics it is needed for similitude to 

establish a relationship for density with scale (i.e. 𝛼0
𝜌
𝜌𝑡𝑠𝛽

3 = 𝜌𝑝𝑠), which opens up the 

possibility of selecting different materials for a scaled experiment. Note that the velocity 

relationship 𝒗𝑝𝑠 = 𝛽1
−1𝑔1𝒗𝑡𝑠 is particularly constraining as it effectively restricts all scaled 

experiments to the same pattern of deformation, which is unrealistic in practice.  

The momentum transport Eq. (3.4c) has a critical role in fracture mechanics and in order to 

satisfy Eq. 3.5 with 𝒗𝑝𝑠 = 𝛽1
−1𝑔1𝒗𝑡𝑠 it is necessary and sufficient to set 𝛼0

𝑣𝑔−1𝛽 = 𝛼0
𝜌

 as 
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well as 𝒗𝑝𝑠 = 𝛽1
−1𝑔1𝒗𝑡𝑠, 𝒗𝑝𝑠

∗ = 𝛽−1𝑔𝒗𝑡𝑠
∗ ,  𝝈𝑝𝑠 = 𝛼01

𝑣 𝑔1𝛽1
2𝝈𝑡𝑠, 𝒃𝑝𝑠

𝑣 = 𝑔1
2𝛽1

−1𝒃𝑡𝑠
𝑣  and 

𝛼0
𝑣(1) = 1. In order for the movement equation, Eq. (3.4d) to satisfy 𝛼0

𝜌
𝜌𝑡𝑠𝛽

3 = 𝜌𝑝𝑠, it is 

necessary and sufficient to set 𝛼0
𝑢𝛽 = 𝛼0

𝜌
 and ( 𝒗𝑝𝑠 = 𝛽1

−1𝑔1𝒗𝑡𝑠, 𝒗𝑝𝑠
∗ = 𝛽−1𝑔𝒗𝑡𝑠

∗ , 𝒖𝑝𝑠 =

𝛽1
−1𝒖𝑡𝑠 𝒖𝑝𝑠 = 𝒖𝑡𝑠(1), 𝛼0

𝑢(1) = 1).  

Overall, it is fairly evident that identity Eq. (3.5) is very restrictive on the behaviour of the 

trial-space systems and unlikely to be satisfied for realistic problems. The reality in practice 

therefore is that the inequality: 

𝑑

𝑑𝛽
(𝛼0

𝛹𝛵0
𝛹) ≢ 0 (3.6) 

which of course provides scale effects, and these can be expected to change with scale, i.e. 

be dependent on 𝛽.  

Eq. (3.5) provides the framework for the analysis of scale dependence but contains hidden 

dependencies that require information on such things such as material behaviour (e.g. size 

dependence) and boundary conditions (e.g. surface conditions) to uncover them. However, 

an alternative (and the approach adopted here) is to simply enforce a global 𝛽 − invariant 

condition and apply this in the design of experiments.  

3.2.4. First-order finite similitude theory 

The principal advantage of the finite-similitude formulation over dimensional analysis is that 

it is not limited to a specific invariance. A simple assumption to make is that the physics in 

the trial spaces do not change with scale, mathematically this can be represented by the 

identity: 

𝑑

𝑑𝛽
(𝛼0

𝛹𝛵0
𝛹) ≡ 0 (3.7) 

which when satisfied is termed zeroth-order finite similitude.  

However, since scale effects are present in fatigue, higher-order similitude conditions are 

required involving higher derivatives by enforcing a suitably defined global 𝛽 − invariant 

condition. Higher order finite similitude examines an alternative to Eq. (3.7) that involves 

additional scaled experiment(s) to shed additional light on changes that are taking place and 

to add extra flexibility The concept of kth-order finite similitude is defined by the lowest 

derivative that satisfies: 

𝛵𝑘+1
𝛹 =

𝑑

𝑑𝛽
(𝛼𝑘

𝛹𝛵𝑘
𝛹) ≡ 0 (3.8) 
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∀𝛽 > 0, with α0
ΨΤ0

Ψ defined by Eq. (3.3) and scalars 𝛼𝑘
𝛹 are functions of β with 𝛼𝑘

𝛹(1) = 1. 

The scaling theory corresponding to this definition is termed kth-order finite similitude and 

under this notation zeroth-order finite similitude (i.e., Eq. (3.5)) is the identity 𝛵1
𝛹 ≡ 0.  The 

focus in this thesis is the identity 𝛵2
𝛹 ≡ 0, i.e., first-order finite similitude and takes the form: 

𝛵2
𝛹 =

𝑑

𝑑𝛽
(𝛼1

𝛹𝛵1
𝛹) =

𝑑

𝑑𝛽
(𝛼1

𝛹
𝑑

𝑑𝛽
(𝛼0

𝛹𝛵0
𝛹)) ≡ 0 (3.9) 

To apply the first order identity (Eq. 3.9) to the transport equations of momentum, mass, 

displacement, it is useful to substitute the zeroth order identities first into the projected 

transport equations Eq. (3.4 b) to Eq. (3.4d).  

𝛼0
𝜌
𝛵0
𝜌(𝛽) =

𝐷∗

𝐷∗𝑡𝑝𝑠
∫ 𝜌𝑝𝑠
𝛺𝑝𝑠
∗

𝑑𝑉𝑝𝑠
∗ +∫ 𝜌𝑝𝑠(𝑽𝑝𝑠 − 𝒗𝑝𝑠

∗ ) ∙ 𝒏𝑝𝑠
Г𝑝𝑠
∗

𝑑Г𝑝𝑠
∗ = 0 

(3.10a) 

𝛼0
𝑣𝛵0

𝑣(𝛽) =
𝐷∗

𝐷∗𝑡𝑝𝑠
∫ 𝜌𝑝𝑠
𝛺𝑝𝑠
∗

𝑽𝑝𝑠𝑑𝑉𝑝𝑠
∗ +∫ 𝜌𝑝𝑠𝑽𝑝𝑠(𝒗𝑝𝑠 − 𝒗𝑝𝑠

∗ ) ∙ 𝒏𝑝𝑠
Г𝑝𝑠
∗

𝑑Г𝑝𝑠
∗

+∫ Σ𝑝𝑠
Г𝑝𝑠
∗

∙ 𝒏𝑝𝑠𝑑Г𝑝𝑠
∗ −∫ 𝑩𝑝𝑠𝑑𝑉𝑝𝑠

∗

𝛺𝑝𝑠
∗

= 0 

(3.10b) 

𝛼0
𝑢𝛵0

𝑢(𝛽) =
𝐷∗

𝐷∗𝑡𝑝𝑠
∫ 𝜌𝑝𝑠
𝛺𝑝𝑠
∗

𝑼𝑝𝑠𝑑𝑉𝑝𝑠
∗ +∫ 𝜌𝑝𝑠𝑼𝑝𝑠(𝒗𝑝𝑠 − 𝒗𝑝𝑠

∗ ) ∙ 𝒏𝑝𝑠
Г𝑝𝑠
∗

𝑑Г𝑝𝑠
∗

−∫ 𝜌𝑝𝑠
𝛺𝑝𝑠
∗

𝑽𝑝𝑠𝑑𝑉𝑝𝑠
∗ = 0 

(3.10c) 

Where 𝑽𝑝𝑠
∗ = 𝛽1

−1𝑔1𝒗𝑡𝑠
∗ , 𝑽𝑝𝑠 = 𝛽1

−1𝑔1𝒗𝑡𝑠, 𝚺𝑝𝑠 = 𝛼01
𝑣 𝑔1𝛽1

2𝝈𝑡𝑠, 𝑩𝑝𝑠
𝑣 = 𝛼0

𝜌
𝜌𝑡𝑠𝛽

3𝑔𝒃𝑡𝑠
𝑣 , 𝑼𝑝𝑠 =

𝛽1
−1𝑔1𝒖𝑡𝑠. 

Eq. (3.4a) is not included here since it satisfies the zeroth-order condition Eq. (3.5) and 

evidently automatically satisfies Eq. (3.9). The first order transport equations are obtained 

by differentiating Eqs. (3.10a to 3.10c) as follows: 

𝛼1
𝜌
𝛵1
𝜌(𝛽) = ∫ 𝛼1

𝜌
𝜌𝑝𝑠𝑽𝑝𝑠

′ − 𝒗𝑝𝑠
∗ ) ∙ 𝒏𝑝𝑠

Г𝑝𝑠
∗

𝑑Г𝑝𝑠
∗ = 0 

(3.11a) 

𝛼1
𝑣𝛵1

𝑣(𝛽) =
𝐷∗

𝐷∗𝑡𝑝𝑠
∫ 𝜌𝑝𝑠
𝛺𝑝𝑠
∗

𝑽𝑝𝑠
′ 𝑑𝑉𝑝𝑠

∗ +∫ 𝜌𝑝𝑠𝑽𝑝𝑠
′ (𝒗𝑝𝑠 − 𝒗𝑝𝑠

∗ ) ∙ 𝒏𝑝𝑠
Г𝑝𝑠
∗

𝑑Г𝑝𝑠
∗

+∫ 𝚺𝑝𝑠
′

Г𝑝𝑠
∗

∙ 𝒏𝑝𝑠𝑑Г𝑝𝑠
∗ −∫ 𝑩𝑝𝑠

′ 𝑑𝑉𝑝𝑠
∗

𝛺𝑝𝑠
∗

= 0 

(3.11b) 
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𝛼1
𝑢𝛵1

𝑢(𝛽) =
𝐷∗

𝐷∗𝑡𝑝𝑠
∫ 𝜌𝑝𝑠
𝛺𝑝𝑠
∗

𝑼𝑝𝑠
′ 𝑑𝑉𝑝𝑠

∗ +∫ 𝜌𝑝𝑠𝑼𝑝𝑠
′ (𝒗𝑝𝑠 − 𝒗𝑝𝑠

∗ ) ∙ 𝒏𝑝𝑠
Г𝑝𝑠
∗

𝑑Г𝑝𝑠
∗

−∫ 𝜌𝑝𝑠
𝛺𝑝𝑠
∗

𝑽𝑝𝑠
′ 𝑑𝑉𝑝𝑠

∗ = 0 

(3.11c) 

Where the dash “ ′ ” signifies derivative with respect to 𝛽 and note that these equations have 

a similar appearance to their corresponding counterparts in Eqs. (3.9). Zeroth-order finite 

similitude requires that the integrands in Eqs. (3.10) do not vary with 𝛽 and similarly for first 

order the integrands in Eqs. (3.11) are required to be invariant of 𝛽.  

An alternative but equivalent approach is the direct integration of identity Eq. (3.9) which 

links two scaled experiments to the full-scale prototype.  This achieved by forming a divided-

difference table for 𝛼0
𝛹𝛵0

𝛹 with three distinct pivot points {𝛽2, 𝛽1, 𝛽0}.  A mean-value 

theorem is applied to return exact identities in the divided-difference table.  As defined above 

𝛵1
𝛹 =

𝑑(𝛼0
𝛹𝛵0

𝛹)

𝑑𝛽
, which in the form of a divided difference gives  

𝛼1
𝛹|�̂�21

𝛼0
𝛹𝛵0

𝛹(𝛽1) − 𝛼0
𝛹𝛵0

𝛹(𝛽2)

𝛽1 − 𝛽2
= 𝛼1

𝛹|�̂�21𝛵1
𝛹(𝛽2

1) (3.12a) 

𝛼1
𝛹|�̂�1𝑜

𝛼0
𝛹𝛵0

𝛹(𝛽0) − 𝛼0
𝛹𝛵0

𝛹(𝛽1)

𝛽0 − 𝛽1
= 𝛼1

𝛹|�̂�1𝑜𝛵1
𝛹(𝛽1

𝑜) (3.12b) 

where 𝛽𝑖 ≤ 𝛽𝑖
𝑖−1 ≤ 𝛽𝑖−1 and recall that first order satisfies 

𝑑(𝛼1
𝛹𝛵1

𝛹)

𝑑𝛽
≡ 0, then any 

subsequent divided differences return zero and in particular 

𝛼1
𝛹|�̂�1𝑜𝛵1

𝛹(𝛽1
𝑜) − 𝛼1

𝛹|�̂�21𝛵1
𝛹(𝛽2

1)

𝛽1
𝑜 − 𝛽2

1 ≡ 0 (3.13) 

where substitution of Eqs (3.9) returns an exact first-order similitude identity for transport 

equations i.e., 

𝛼0
𝛹𝛵0

𝛹(𝛽0) ≡ 𝛼0
𝛹𝛵0

𝛹(𝛽1) + 𝑅1
𝛹(𝛼0

𝛹𝛵0
𝛹(𝛽1) − 𝛼0

𝛹𝛵0
𝛹(𝛽2)) (3.14) 

where the scaling parameter 𝑅1
𝛹 is 

𝑅1
𝛹 = (

𝛼1
𝛹|�̂�21

𝛼1
𝛹|�̂�1𝑜

) (
𝛽0 − 𝛽1
𝛽1 − 𝛽2

) (3.15) 

Eq. (3.14) reveals that the first-order finite similitude is about proportional relationships 

between the differences in the transport equations at different scales. Eq. (3.14) is now 
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applied to the transport equations pertinent to fracture mechanics (Eqs. 3.4) to produce the 

first order identities: 

𝒗𝑝𝑠 = 𝛽1
−1𝑔1𝒗𝑡𝑠(𝛽1) + 𝑅1

𝜌
(𝛽1

−1𝑔1𝒗𝑡𝑠(𝛽1) − 𝛽2
−1𝑔2𝒗𝑡𝑠(𝛽2)) (3.16a) 

𝒗𝑝𝑠 = 𝛽1
−1𝑔1𝒗𝑡𝑠(𝛽1) + 𝑅1

𝑣(𝛽1
−1𝑔1𝒗𝑡𝑠(𝛽1) − 𝛽2

−1𝑔2𝒗𝑡𝑠(𝛽2)) (3.16b) 

𝝈𝑝𝑠 = 𝛼01
𝑣 𝑔1𝛽1

2𝝈𝑡𝑠(𝛽1) + 𝑅1
𝑣 (𝛼01

𝑣 𝑔1𝛽1
2𝝈𝑡𝑠(𝛽1) − 𝛼02

𝑣 𝑔2𝛽2
2𝝈𝑡𝑠(𝛽2)) (3.16c) 

𝒃𝑝𝑠
𝑣 = 𝑔1

2𝛽1
−1𝒃𝑡𝑠

𝑣 (𝛽1) + 𝑅1
𝑣(𝑔1

2𝛽1
−1𝒃𝑡𝑠

𝑣 (𝛽1) − 𝑔1
2𝛽1

−1𝒃𝑡𝑠
𝑣 (𝛽1)) (3.16d) 

𝒖𝑝𝑠 = 𝛽1
−1𝒖𝑡𝑠(𝛽1) + 𝑅1

𝑢(𝛽1
−1𝒖𝑡𝑠(𝛽1) − 𝛽2

−1𝒖𝑡𝑠(𝛽2)) (3.16e) 

𝒗𝑝𝑠 = 𝛽1
−1𝑔1𝒗𝑡𝑠(𝛽1) + 𝑅1

𝑢(𝛽1
−1𝑔1𝒗𝑡𝑠(𝛽1) − 𝛽2

−1𝑔2𝒗𝑡𝑠(𝛽2)) (3.16f) 

where a consistent velocity requires that 𝑅1 = 𝑅1
𝜌
= 𝑅1

𝑢 = 𝑅1
𝑣, where it is assumed that the 

zeroth-order conditions: 𝛼0
1𝛽3 = 1, 𝛽−1𝑔𝒗𝑡𝑠

∗ = 𝒗𝑝𝑠
∗ , 𝛼0

𝜌
𝜌𝑡𝑠𝛽

3 = 𝜌𝑝𝑠, 𝛼0
𝑣𝑔−1𝛽 = 𝛼0

𝜌
 and 

𝛼0
𝑢𝛽 = 𝛼0

𝜌
 .The first order identities that arise as a result of applying Eq. (3.14) to the 

conservations equations of mass momentum and movement are necessary to account for 

variations in fields of interest such as velocity, displacement and body forces in the sub 

scaled model spaces (trial space). Hence physical experiments can be designed without being 

limited to the invariance prescribed by dimensional analysis. Table 3.2 presents the 

necessary and sufficient first order identities. The Eq. no column in the table highlights the 

relevant conservation transport equation that generates the first order identity.  

 

Table 3.2. Necessary and sufficient first order identities. 

Eq. 

No 

Field Scalars Flux Source 

(3.4a) 𝒗𝑝𝑠
∗ = 𝛽−1𝑔𝒗𝑡𝑠

∗  𝛼0
1𝛽3 = 1   

(3.4b) 𝜌𝑝𝑠 = 𝛼0
𝜌
𝜌𝑡𝑠𝛽

3 𝛼0
𝜌(1)

= 1 

𝑔(1) = 1 
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(3.4c) 

𝒗𝑝𝑠
= 𝛽1

−1𝑔1𝒗𝑡𝑠(𝛽1)

+ 𝑅1
𝑣(𝛽1

−1𝑔1𝒗𝑡𝑠(𝛽1)

− 𝛽2
−1𝑔2𝒗𝑡𝑠(𝛽2)) 

𝛼0
𝜌

= 𝛼0
𝑣𝑔−1𝛽 

𝝈𝑝𝑠

= 𝛼01
𝑣 𝑔1𝛽1

2𝝈𝑡𝑠(𝛽1)

+ 𝑅1
𝑣 (𝛼01

𝑣 𝑔1𝛽1
2𝝈𝑡𝑠(𝛽1)

− 𝛼02
𝑣 𝑔2𝛽2

2𝝈𝑡𝑠(𝛽2)) 

𝒃𝑝𝑠
𝑣

= 𝑔1
2𝛽1

−1𝒃𝑡𝑠
𝑣 (𝛽1)

+ 𝑅1
𝑣(𝑔1

2𝛽1
−1𝒃𝑡𝑠

𝑣 (𝛽1)

− 𝑔1
2𝛽1

−1𝒃𝑡𝑠
𝑣 (𝛽1)) 

(3.4d) 𝒖𝑝𝑠

= 𝛽1
−1𝒖𝑡𝑠(𝛽1)

+ 𝑅1
𝑢(𝛽1

−1𝒖𝑡𝑠(𝛽1)

− 𝛽2
−1𝒖𝑡𝑠(𝛽2)) 

𝛼0
𝜌
= 𝛼0

𝑢𝛽  𝒗𝑝𝑠

= 𝛽1
−1𝑔1𝒗𝑡𝑠(𝛽1)

+ 𝑅1
𝑣(𝛽1

−1𝑔1𝒗𝑡𝑠(𝛽1)

− 𝛽2
−1𝑔2𝒗𝑡𝑠(𝛽2)) 

 

The first-order finite-similitude theory as revealed in Eqs. (3.16) is about proportional 

differences between experiments.  Note that application of the identities 𝒅𝒙𝑡𝑠(𝛽1) = 𝛽1𝒅𝒙𝑝𝑠 

and 𝒅𝒙𝑡𝑠(𝛽2) = 𝛽2𝒅𝒙𝑝𝑠 to Eq. (3.15e) provides the small strain relationship: 

𝜺𝑝𝑠 = 𝜺𝑡𝑠(𝛽1) + 𝑅1 (𝜺𝑡𝑠(𝛽1) − 𝜺𝑡𝑠(𝛽2)) (3.17) 

which confirms that strain can be unequal in the trial and physical spaces, which is the reality 

in most physical experiments. First order finite similitude identity is a less constrained 

similitude relationship that allows more flexibility and accommodates scale effects in 

different trial spaces by enforcing a global invariance. Thus, standalone sub scale 

experiments can be designed with more flexibility. 

3.3 One-Dimensional Cohesive Elements 

This section is concerned with the application of the new scaling concepts to cohesive zone 

models.  A cohesive zone model represents damage that results in fatigue by means of a 

cohesive failure in the form of separating surfaces typically along a predefined path or along 

element edges in any finite element analysis.  This type of damage takes place incrementally 

because of cyclic loading and the most rudimentary cohesive model is identified by a 

traction-separation curve consisting of only three properties, which are critical stress 𝜎𝑐, 

critical separation 𝛿𝑐 and the area under the curve 𝐺𝑐, which is the cohesive fracture energy.  

The three properties are related and for the simplest linear case 𝐺𝑐 = 0.5𝜎𝑐𝛿𝑐, which 

confirms the nature of this relationship.  A 2-D depiction of cohesive zone model is provided 

in Fig. 3.3 for the simplest traction separation law along with loading and unloading paths.  

The linear cohesive zone model (LCZM) is one of several possible forms and it is of interest 
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to explore the effect scaling has on some relatively simple models and the ones considered 

are presented in Fig. 3.4. 

 

 

Figure 3.3: Cohesive zone model for a crack and its associated traction-separation curve. 

 

 

Figure 3.4: Stress-separation and strain envelopes for simple models for bulk material 

(BM) and cohesive element (CE). 
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3.3.1 The scaling of Model A-a 

The model in this section is an elastic rod of length ℓ0  and area 𝐴0  subjected a displacement 

𝛿 at the free end with its lower end fixed.  The rod has the potential to crack if the stress level 

reaches the critical stress 𝜎𝑐  and this feature is modelled by means of a linear cohesive zone 

model (LCZM). The total extension of the rod consists of two parts therefore, i.e.  𝛿 = 𝛿𝑒𝑙 +

𝛿𝑐𝑜ℎ with applied stress 𝜎 = 𝜎𝑒𝑙 = 𝜎𝑐𝑜ℎ, where 𝜎𝑒𝑙 =
𝐸𝛿𝑒𝑙

ℓ0

 with 𝜎𝑐𝑜ℎ = 𝜎𝑐 (1 −
𝛿𝑐𝑜ℎ

𝛿𝑐
) 

(Salih et al. 2016) [171].  Note that 𝐸 is young’s modulus of the bulk material, 𝛿𝑒𝑙 and 𝛿𝑐𝑜ℎ 

are extensions arising from the spring and cohesive element, respectively.  The equilibrium 

condition 𝜎𝑒𝑙 = 𝜎𝑐𝑜ℎ provides the displacement-loading envelope, 

𝜎

𝜎𝑐
=

{
 
 

 
  𝛿

𝛿𝑐
𝑒𝑙 if     0 ≤ 𝛿 ≤ 𝛿𝑐

𝑒𝑙

(1 −
𝛿𝑐
𝑒𝑙

𝛿𝑐
)

−1

(1 −
𝛿

𝛿𝑐
) if    𝛿𝑐

𝑒𝑙 < 𝛿 ≤ 𝛿𝑐

 (3.18) 

which is the expected bilinear behaviour depicted in Fig. 3.4 (see Model (b)), where 𝛿𝑐
𝑒𝑙 =

𝜎𝑐 ℓ0
𝐸

.   

 

Figure 3.5: Scaling procedure of a rod represented by a spring and cohesive element. 
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The process of unloading and reloading can be assumed to be reversible and the two 

unloading paths depicted in Fig. 3.3 are constraints of the form 𝜎𝑐𝑜ℎ =
𝜎𝑙𝑜𝑎𝑑

(𝛿𝑐𝑜ℎ)
𝑙𝑜𝑎𝑑 𝛿

𝑐𝑜ℎ or 

𝛿𝑐𝑜ℎ = (𝛿𝑐𝑜ℎ)
𝑙𝑜𝑎𝑑

, where 𝛿𝑙𝑜𝑎𝑑 and 𝜎𝑙𝑜𝑎𝑑  are the extension and stress reached by the 

system at the point of unloading with 𝛿𝑙𝑜𝑎𝑑 = (𝛿𝑒𝑙)
𝑙𝑜𝑎𝑑

+ (𝛿𝑐𝑜ℎ)
𝑙𝑜𝑎𝑑

 and (𝛿𝑒𝑙)
𝑙𝑜𝑎𝑑

=

ℓ0 𝜎
𝑙𝑜𝑎𝑑

𝐸
.  The former constraint is typically applied in commercial codes as it has the practical 

advantage of facilitating crack closure, whereupon a contact algorithm can be applied.  The 

latter constraint is from the viewpoint of material damage with the assertion that damage 

cannot be undone by a reversal of load.  The application of the first-order scaling theory for 

this setup is depicted in Fig. 3.5 where ℓ0  takes up values of ℓ𝑝𝑠, 𝛽1ℓ𝑝𝑠, and 𝛽2ℓ𝑝𝑠 for each 

of the lengths of the rods.  Observe how space scaling brings the scaled experiments to the 

size of the full-scale system and note the effects on length and stress.  Consider first zeroth-

order scaling with 𝜎𝑝𝑠 = 𝛼01
𝑣 𝑔1𝛽1

2𝜎𝑡𝑠1 and 𝑢𝑝𝑠 = 𝛽1
−1𝑢𝑡𝑠1; it can be deduced that 

displacements and stress terms in Eq. (3.16) behave like 𝛿𝑝𝑠 = 𝛽1
−1𝛿𝑡𝑠1 and 𝜎𝑝𝑠 = 𝛽1 𝜎𝑡𝑠1 

(i.e. 𝛼01
𝑣 𝑔1 = 𝛽1

−1) to ensure that 𝐺𝑐 𝑡𝑠 = 𝐺𝑐 𝑝𝑠.  This is problematic for replica scaling (i.e., 

identical material) since there is no expectation that 𝜎𝑐  and 𝛿𝑐  should change yet alone 

satisfy 𝜎𝑐 𝑝𝑠 = 𝛽1 𝜎𝑐 𝑡𝑠1 and 𝛿𝑐 𝑝𝑠 = 𝛽1
−1𝛿𝑐 𝑡𝑠1.  These relationships could possibly be 

satisfied in a physical modelling scenario with a suitable material substitution available.  Can 

first-order finite similitude provide any solution to this predicament, which arises from the 

inherent size effect in fracture mechanics?  The equations of interest in this case stem from 

Eqs. (3.16c) and (3.16e), which are 

𝜎𝑝𝑠 = 𝛼01
𝑣 𝑔1𝛽1

2𝜎𝑡𝑠1 + 𝑅1 (𝛼01
𝑣 𝑔1𝛽1

2𝜎𝑡𝑠1 − 𝛼02
𝑣 𝑔2𝛽2

2𝜎𝑡𝑠2) (3.19a) 

𝛿𝑝𝑠 = 𝛽1
−1𝛿𝑡𝑠1 + 𝑅1 (𝛽1

−1𝛿𝑡𝑠1 − 𝛽2
−1𝛿𝑡𝑠2) (3.19b) 

which for identical materials throughout and on setting 𝛿𝑝𝑠 = 𝛿𝑡𝑠1 = 𝛿𝑡𝑠2 = 𝛿𝑐, 𝜎𝑝𝑠 =

𝜎𝑡𝑠1 = 𝜎𝑡𝑠2 = 𝜎𝑐 and 𝐸𝑝𝑠 = 𝐸𝑡𝑠1 = 𝐸𝑡𝑠2 = 𝐸 (Young’s modulus) provides 

1 = 𝛼01
𝑣 𝑔1𝛽1

2 + 𝑅1 (𝛼01
𝑣 𝑔1𝛽1

2 − 𝛼02
𝑣 𝑔2𝛽2

2) (3.20a) 

휀𝑝𝑠 = 𝛼01
𝑣 𝑔1𝛽1

2휀𝑡𝑠1 + 𝑅1 (𝛼01
𝑣 𝑔1𝛽1

2휀𝑡𝑠1 − 𝛼02
𝑣 𝑔2𝛽2

2휀𝑡𝑠2) (3.20b) 

1 = 𝛽1
−1 + 𝑅1 (𝛽1

−1 − 𝛽2
−1) (3.20c) 
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which are three equations (two algebraic and one field identity) with five unknowns 𝛼01
𝑣 𝑔1, 

𝛼02
𝑣 𝑔2, 𝑅1 , 𝛽1  and 𝛽2  and on setting 𝛽1 = 0.50 and 𝛽2 = 0.25 provides 𝑅1 = 0.50 from 

Eq. (3.20c). 

For Eqs. (3.20b) and (3.17) to match the zeroth-order conditions 1 = 𝛼01
𝑣 𝑔1𝛽1

2, (i.e., 

𝛼01
𝑣 𝑔1 = 4) and 𝛼01

𝑣 𝑔1𝛽1
2 = 𝛼02

𝑣 𝑔2𝛽2
2 (i.e., 𝛼02

𝑣 𝑔2 = 16) apply, which also ensures Eq. 

(3.20a) is satisfied.  Note that 𝑔1 and 𝑔2 play no part in this analysis as quasi-static loading 

is assumed.  This simple analysis reveals the benefits of an extra experiment with greater 

flexibility provided and reveals the potential for making use of the extra freedom offered by 

expediently selected scales 𝛽1  and 𝛽2 ; this feature was not needed for this case.  Eqs. (3.19) 

for this case are 

𝜎𝑝𝑠 = 𝜎𝑡𝑠1 + 0.50(𝜎𝑡𝑠1 − 𝜎𝑡𝑠2) (3.21a) 

𝛿𝑝𝑠 = 2𝛿𝑡𝑠1 + 0.50(2𝛿𝑡𝑠1 − 4𝛿𝑡𝑠2) (3.21b) 

which provide the analytical behaviours in Fig. 3.6, where it is revealed that despite the non-

proportional behaviour in the scaled experiments, the virtual model predicts the full-scale 

behaviour exactly.  Regarding fatigue, provided the cyclic loading in the scaled models are 
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synchronised, then fatigue behaviour in both the real and virtual models can be readily made 

to coincide. 

Figure 3.6: The construction of a virtual cohesive model for the same-material scaling. 

 

3.3.2. The scaling of Model A-b 

In this model the bulk material is elastic as above but additionally an elastic component is 

added to the cohesive element, which is a common feature found in commercial finite 

element software.  In this case the total extension has three components  𝛿 = 𝛿𝑒𝑙 + 𝛿𝑒𝑙
𝑐𝑜ℎ +

𝛿𝑠𝑜𝑓𝑡
𝑐𝑜ℎ  with applied stress 𝜎 = 𝜎𝑒𝑙 = 𝜎𝑒𝑙

𝑐𝑜ℎ = 𝜎𝑠𝑜𝑓𝑡
𝑐𝑜ℎ , where 𝜎𝑒𝑙 =

𝐸𝛿𝑒𝑙

ℓ0

, 𝜎𝑒𝑙
𝑐𝑜ℎ = 𝐾𝑐𝑜ℎ𝛿𝑒𝑙

𝑐𝑜ℎ with 

𝜎𝑠𝑜𝑓𝑡
𝑐𝑜ℎ = 𝜎𝑐 (1 −

𝛿𝑠𝑜𝑓𝑡
𝑐𝑜ℎ

𝛿𝑐
).  The constant 𝐾𝑐𝑜ℎis the “stiffness” of the cohesive element and in 

practice under tensile loading is set equal to 𝐸

ℎ𝑐𝑜ℎ
, where ℎ𝑐𝑜ℎ is the thickness of the cohesive 

element and note that the total separation of the cohesive element is 𝛿𝑐𝑜ℎ = 𝛿𝑒𝑙
𝑐𝑜ℎ + 𝛿𝑠𝑜𝑓𝑡

𝑐𝑜ℎ .  

The equilibrium condition provides the loading envelope described by Eq. (3.19) apart from 

one significant change, i.e., the term 𝛿𝑐
𝑒𝑙 changes to  

𝛿𝑐
𝑒𝑙 = 𝜎𝑐 (

ℓ0
𝐸
+

1

𝐾𝑐𝑜ℎ
) =

𝜎𝑐
𝐸
(ℓ0 + ℎ

𝑐𝑜ℎ) (3.22) 

which confirms that length scaling is dependent on ℎ𝑐𝑜ℎ. 

The setting of 𝐾𝑐𝑜ℎ is discussed in the open literature [172] but an additional consideration 

is the way it changes with scale.  There are two possibilities, and both are shown here to 

satisfy the first-order finite similitude rule.  Consider first the geometric view where ℎ𝑐𝑜ℎ 

scales with the geometry so that ℎ𝑡𝑠1
𝑐𝑜ℎ = 𝛽1ℎ𝑝𝑠

𝑐𝑜ℎ and ℎ𝑡𝑠2
𝑐𝑜ℎ = 𝛽2ℎ𝑝𝑠

𝑐𝑜ℎ, then the behaviour in 

Fig. 3.6 for replica scaling applies.  Consider second that ℎ𝑐𝑜ℎ is a material constant and for 

replica scaling it remains unchanged.  In this case  

𝛿𝑐 𝑡𝑠1
𝑒𝑙 =

𝜎𝑐
𝐸
(𝛽1 ℓ𝑝𝑠 + ℎ𝑝𝑠

𝑐𝑜ℎ) (3.23a) 

𝛿𝑐 𝑡𝑠2
𝑒𝑙 =

𝜎𝑐
𝐸
(𝛽2 ℓ𝑝𝑠 + ℎ𝑝𝑠

𝑐𝑜ℎ) (3.23b) 

But direct substitution of these equations into Eq. (3.19b) provides 𝛿𝑝𝑠 =
𝜎𝑐

𝐸
(ℓ𝑝𝑠 + ℎ𝑝𝑠

𝑐𝑜ℎ), 

which is as required and confirms that first-order scaling is exactly satisfied. 
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This relatively simple analysis confirms that even with the addition of cohesive stiffness the 

behaviour of the cohesive element transforms under the rules of the first-order finite 

similitude theory. 

 

3.3.3. The scaling of Model A-c 

In this model a plateau is added to the shape of the traction separation law and can be 

considered as the representative of localised plasticity at the crack tip, which is a feature of 

many materials.  In mathematical terms the cohesive element is described as 

𝜎

𝜎𝑐
= {

1 if     0 ≤ 𝛿𝑐𝑜ℎ ≤ 𝛿2

𝛿𝑐 − 𝛿𝑐𝑜ℎ

𝛿𝑐 − 𝛿2
if    𝛿2 < 𝛿𝑐𝑜ℎ ≤ 𝛿𝑐

 (3.24) 

where 𝛿2  marks the end of the plateau as shown in Fig. 4, and the behaviour of the system 

is readily shown to be 

𝜎

𝜎𝑐
=

{
  
 

  
  𝛿

𝛿𝑐
𝑒𝑙 if             0 ≤ 𝛿 ≤ 𝛿𝑐

𝑒𝑙

1 if                     𝛿𝑐
𝑒𝑙 < 𝛿 ≤ 𝛿𝑐

𝑒𝑙 + 𝛿2

(1 −
𝛿𝑐
𝑒𝑙 + 𝛿2

𝛿𝑐
)

−1

(1 −
𝛿

𝛿𝑐
) if 𝛿𝑐

𝑒𝑙 + 𝛿2 < 𝛿 ≤ 𝛿𝑐

 (3.25) 

where 𝛿𝑐
𝑒𝑙 = 𝜎𝑐 ℓ0

𝐸
 and it is interest to ascertain whether this system satisfies the rules of first-

order finite similitude theory. 

The situation is portrayed in Fig. 3.7, where again first-order theory exactly represents the 

behaviour at full scale.  The reason why the theory can reproduce cohesive behaviour in an 

elastic medium is clear from Figs. 3.6 and 3.7 with the ability to correctly interpret the three 

types of abscissae appearing on the separation coordinate axis, i.e., points that are constant 

and proportional to 𝛽 and combinations thereof.  More fundamentally this property arises 

from the nesting of zeroth-order relationships in first-order ones and highlights the 

importance of this feature.  Model A-d offers no surprises, so it is of interest to examine the 

situation where dissipation is a feature of the surrounding bulk material. 



83 

 

 

Figure 3.7: Local plasticity captured exactly for replica scaling in first-order theory. 

 

3.3.4. The scaling of Model B-a 

The spring-slider system in Model B is assumed to satisfy the power law relationship typical 

to HRR theory introduced in reference (Hutchinson, 1968) [173] 

𝜎𝑒𝑝

𝜎𝑌
= (

휀𝑒𝑝

휀𝑌
)

1
𝑛

 
(3.26) 

where 휀𝑌 =
𝜎𝑌

𝐸
, 𝜎𝑌  is reference yield stress, 휀𝑌  is reference yield strain, and it is assumed 

here that damage as represented by the cohesive initiates at the point of necking, which is 

identified by the condition 𝜎 =
𝑑𝜎

𝑑
𝑒𝑝, which provides 휀𝑐

𝑒𝑝 =
1

𝑛
 and 𝜎𝑐 = 𝜎𝑌 (𝑛휀𝑌 )

−
1

𝑛. 

The response of system can be considered to consist of three parts in the form 𝛿 = 𝛿𝑒𝑝 +

𝛿𝑐𝑜ℎ, with 𝛿𝑒𝑝 = 𝛿𝑝𝑙 + 𝛿𝑒𝑙, where 𝛿𝑝𝑙 is the permanent plastic extension that remains on 

elastic unloading (Salih et al. 2016) [171]. Note that 𝛿𝑒𝑝 is related to true strain in Eq. (3.18) 

by the relationship 휀𝑒𝑝 = 𝑙𝑛 (1 +
𝛿
𝑒𝑝

ℓ0
) and 𝛿𝑒𝑙 =

𝜎ℓ0

𝐸
.  Moreover, unloading of the bulk 
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material is elastic and described by the relationship 𝛿
𝑒𝑝
= 𝛿𝑐

𝑝𝑙
+ 𝛿𝑒𝑙 and the equilibrium 

condition 𝜎 = 𝜎𝑒𝑝 = 𝜎𝑐𝑜ℎ provides 

𝐸

ℓ0
𝛿𝑒𝑙 = 𝜎𝑐 (1 −

𝛿𝑐𝑜ℎ

𝛿𝑐
) = 𝜎 (3.27) 

where 𝛿 = 𝛿𝑐
𝑝𝑙 + 𝛿𝑒𝑙 + 𝛿𝑐𝑜ℎ or equivalently 

𝛿 − 𝛿𝑐
𝑝𝑙  = 𝜎

ℓ0
𝐸
+ 𝛿𝑐 (1 −

𝜎

𝜎𝑐
)  (3.28) 

and consequently, the displacement-loading envelope is 

𝜎

𝜎𝑐
=

{
 
 
 

 
 
 

𝜎𝑌

𝜎𝑐

(

 
 
𝑙𝑛 (1 +

𝛿

ℓ0
)

휀𝑌

)

 
 

1
𝑛

if       0 ≤ 𝛿 ≤ 𝛿𝑐
𝑒𝑝           

(1 −
𝛿𝑐
𝑒𝑙

𝛿𝑐
)

−1

(1 −
𝛿 − 𝛿𝑐

𝑝𝑙

𝛿𝑐
) if    𝛿𝑐

𝑒𝑝 < 𝛿 ≤ 𝛿𝑐
𝑝𝑙 + 𝛿𝑐

 (3.29) 

where 𝛿𝑐
𝑒𝑙 =

𝜎𝑐ℓ0

𝐸
. 

It is of interest to examine whether this loading envelope scales exactly for replica scaling 

under first-order theory.  The behaviour is presented in Fig. 3.8, where again it is revealed 

that first-order scaling provides the correct description.  Note that the critical aspect to exact 

scaling is how the points 𝛿𝑐
𝑒𝑝

 and 𝛿𝑐
𝑝𝑙 + 𝛿𝑐  are related across the scales; the following 

relationships apply:𝛿𝑐 𝑝𝑠
𝑒𝑝 = 𝛽1

−1 𝛿𝑐 𝑡𝑠1
𝑒𝑝 = 𝛽2

−1 𝛿𝑐 𝑡𝑠2
𝑒𝑝

, 𝛿𝑐 𝑝𝑠
𝑝𝑙 = 𝛽1

−1 𝛿𝑐 𝑡𝑠1
𝑝𝑙 = 𝛽2

−1 𝛿𝑐 𝑡𝑠2
𝑝𝑙

 and 𝛿𝑐  

remains constant. 
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Figure 3.8: Non-linear bulk and LCZM captured exactly for replica scaling in first-order 

theory. 

 

3.3.5. The scaling of Model B-b 

The inclusion of a spring into the cohesive element adds no new difficulties for the first-

order theory.  The analysis to a large part follows that provided above where for 휀𝑐
𝑒𝑝 ≤

1

𝑛
 and 

𝜎 ≤ 𝜎𝑐 = 𝜎𝑌 (𝑛휀𝑌 )
−
1

𝑛 the total extension has two components  𝛿 = 𝛿𝑒𝑝 + 𝛿𝑒𝑙
𝑐𝑜ℎ (although 

𝛿𝑒𝑝 = 𝛿𝑝𝑙 + 𝛿𝑒𝑙) with applied stress 𝜎 = 𝜎𝑒𝑝 = 𝜎𝑒𝑙
𝑐𝑜ℎ, where 𝜎𝑒𝑝 is constrained to follow 

Eq. (3.26) and 𝜎𝑒𝑙
𝑐𝑜ℎ = 𝐾𝑐𝑜ℎ𝛿𝑒𝑙

𝑐𝑜ℎ.  Once material softening is initiated then 𝛿 = 𝛿𝑐
𝑝𝑙
+

(𝛿𝑒𝑙 + 𝛿𝑒𝑙
𝑐𝑜ℎ)+𝛿𝑠𝑜𝑓𝑡

𝑐𝑜ℎ , where 𝛿𝑠𝑜𝑓𝑡
𝑐𝑜ℎ , = 𝜎𝑐 (1 −

𝜎𝑠𝑜𝑓𝑡
𝑐𝑜ℎ

𝜎𝑐
) and the situation is effectively that for 

Model B-a but with 𝛿𝑒𝑙 + 𝛿𝑒𝑙
𝑐𝑜ℎ replacing 𝛿𝑒𝑙. 

 

3.3.6. The scaling of Model B-c 

The bulk material and the material in the cohesive zone are assumed to differ in their plastic 

response with the bulk material constrained to follow Eq. (3.26) and a perfectly plastic 
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response in the cohesive zone.  The initial loading is all about the bulk material with 

𝛿 = 𝛿𝑒𝑝 = 𝛿𝑝𝑙 + 𝛿𝑒𝑙 and 휀𝑐
𝑒𝑝 = 𝑙𝑛 (1 +

𝛿
𝑒𝑝

ℓ0
) ≤

1

𝑛
.  Softening is not initiated at 𝛿𝑐

𝑒𝑝
 since 

cohesive plastic behaviour takes place and 𝛿 = 𝛿𝑐
𝑝𝑙 + 𝛿𝑐

𝑒𝑙 + 𝛿𝑝𝑙
𝑐𝑜ℎ for 𝛿𝑝𝑙

𝑐𝑜ℎ ≤ 𝛿2  after which 

softening occurs and 𝛿 = 𝛿𝑐
𝑝𝑙 + 𝛿𝑐

𝑒𝑙 + 𝛿𝑠𝑜𝑓𝑡
𝑐𝑜ℎ , where 𝛿𝑐

𝑒𝑙 =
𝜎𝑐ℓ0

𝐸
 and 𝛿𝑠𝑜𝑓𝑡

𝑐𝑜ℎ , = 𝜎𝑐 (1 −
𝜎𝑠𝑜𝑓𝑡
𝑐𝑜ℎ

𝜎𝑐
).  

Thus, the displacement loading profile behaves as 

𝜎

𝜎𝑐
=

{
 
 
 
 

 
 
 
 

𝜎𝑌

𝜎𝑐

(

 
 
𝑙𝑛 (1 +

𝛿

ℓ0
)

휀𝑌

)

 
 

1
𝑛

if    0 ≤ 𝛿 ≤ 𝛿𝑐
𝑒𝑝

1 if            𝛿𝑐
𝑒𝑝 < 𝛿 ≤ 𝛿𝑐

𝑒𝑝 + 𝛿2

(1 −
𝛿𝑐
𝑒𝑙 + 𝛿2

𝛿𝑐
)

−1

(1 −
𝛿 − 𝛿𝑐

𝑝𝑙

𝛿𝑐
) if 𝛿𝑐

𝑒𝑝
+ 𝛿2 < 𝛿 ≤ 𝛿𝑐

𝑝𝑙
+ 𝛿𝑐

 (3.30) 

and again, replica scaling can readily be shown to be exact under first-order theory and the 

same is true of Model B-d. 

3.4 General Applicability of First Order Scaling 

In the previous section it was demonstrated that under quasistatic loading, for a variety of 1-

D cohesive elements and material types, that exact replication was possible with the first-

order finite similitude rule. A question remains however about the general applicability of 

the approach to more complex situations in practical settings.  Under quasistatic loading the 

first-order rule of Eq. (3.9), on application to the transport equations for momentum and 

movement, gives 

𝛼1
𝑣𝛵1

𝑣(𝛽) = ∫ 𝛼1
𝑣𝚺𝑝𝑠

′

Г𝑝𝑠
∗

∙ 𝒏𝑝𝑠𝑑Г𝑝𝑠
∗ = 0 

(3.31a) 

𝛼1
𝑢𝛵1

𝑢(𝛽) =
𝐷∗

𝐷∗𝑡𝑝𝑠
∫ 𝛼1

𝑢𝜌𝑝𝑠𝑼𝑝𝑠
′

𝛺𝑝𝑠
∗

𝑑𝑉𝑝𝑠
∗ −∫ 𝛼1

𝑢𝜌𝑝𝑠𝑼𝑝𝑠
′ (𝒗𝑝𝑠

∗ ∙ 𝒏𝑝𝑠)
Г𝑝𝑠
∗

= 0 
(3.31b) 

where 𝚺𝑝𝑠 = 𝛼0
𝑣𝛽2𝑔𝝈𝑡𝑠 and  𝑼𝑝𝑠 = 𝛽−1𝒖𝑡𝑠, and where the dash “ ′ ” signifies derivative 

with respect to 𝛽, and where the body force is not included. 

Consider then the desired scale invariances 𝝈𝑡𝑠
′ ≡ 0 and 𝒖𝑡𝑠

′ ≡ 0 that feature in the cohesive 

elements considered in the previous section and note that 𝑼𝑝𝑠
′ = (𝛽−1𝒖𝑡𝑠)

′ = (𝛽−1)′𝒖𝑡𝑠 =

(𝛽−1)′𝛽𝑼𝑝𝑠 and 𝚺𝑝𝑠
′ = (𝛼0

𝑣𝛽2𝑔𝝈𝑡𝑠)
′
= (𝛼0

𝑣𝛽2𝑔)′𝝈𝑡𝑠.  Consequently setting 𝛼1
𝑢 = 𝛽2 
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ensures Eq. (3.30b) is independent of 𝛽 and gives 𝛼1
𝑢𝛵1

𝑢(𝛽) = 𝛽2(𝛽−1)′𝛽𝛼0
𝑢𝛵0

𝑢(𝛽) = 0 (see 

Eq. (3.4d)).  Similarly, setting 𝛼0
𝑣𝑔 = 𝛽−2 provides 𝛼1

𝑣𝛵1
𝑣(𝛽) ≡ 0 confirming that Eqs. 

(3.30) are satisfied and independent of 𝛽 under the conditions of quasistatic loading and 

under the invariances 𝝈𝑡𝑠
′ ≡ 0 and 𝒖𝑡𝑠

′ ≡ 0 pertinent to cohesive elements.  Moreover, the 

zeroth-order relationship 𝒖𝑡𝑠 = 𝛽𝒖𝑝𝑠 (which featured in Sec. 3) provides 𝑼𝑝𝑠
′ =

(𝛽−1𝒖𝑡𝑠)
′ = (𝒖𝑝𝑠)

′
= 𝟎 and therefore 𝛼1

𝑢𝛵1
𝑢(𝛽) ≡ 0, confirming as expected that any 

zeroth-order relationship is contained within first order.  Note additionally, that although 

constitutive laws do not directly feature in finite similitude theory the stress condition 𝚺𝑝𝑠
′ ≡

𝟎 invariably ensures that a vast array of laws can be catered for.  The elastic constitutive 

relationship 𝝈𝑡𝑠 = 𝑪𝑡𝑠: 𝜺𝑡𝑠 (with elasticity tensor 𝑪𝑡𝑠) for example gives 𝝈𝑡𝑠
′ = 𝑪𝑡𝑠

′ : 𝜺𝑡𝑠 +

𝑪𝑡𝑠: 𝜺𝑡𝑠
′  but 𝝈𝑡𝑠

′ ≡ 0, and with no change in material 𝑪𝑡𝑠
′ ≡ 0, so it follows that 𝜺𝑡𝑠

′ ≡ 0 is a 

requirement.  In the case of small deflection theory both the conditions 𝒖𝑡𝑠
′ ≡ 0 and 𝒖𝑡𝑠 =

𝛽𝒖𝑝𝑠 ensure 𝜺𝑡𝑠
′ ≡ 0 confirming that linear elasticity poses no difficulty for the theory.  

Indeed, a nonlinear stress dependence of the form 𝝈𝑡𝑠(𝑪𝑡𝑠, 𝜺𝑡𝑠) follows the same pattern and 

consequently it can be concluded that the first-order rules are generally applicable to fracture 

mechanics and fatigue.  It can be anticipated that good replication of full-scale behaviour is 

possible and expected.  

3.4.1. Analytical study detailing the application of finite similitude rules 

Despite the complexity involved in deriving the first-order finite similitude rules, its practical 

application is relatively straightforward and is outlined in the following steps: 

(i) Specify the geometry, material properties, loading and boundary conditions of the 

full-scale model. 

(ii) Specify the geometric scaling factors 𝛽1 and 𝛽2, and material properties for the scaled 

models.  Identical materials are applied to all models in this work. 

(iii) Calculate the dimensional scaling factors for scaled models by using the zeroth order 

setting 𝛼01
𝑣 𝑔1 = 𝛽1

−2 and 𝛼02
𝑣 𝑔2 = 𝛽2

−2. 

(iv) Calculate the scaling factor 𝑅1 using Eq. (3.20c). 

(v) Calculate the applied loads and boundary conditions for the scaled models. If the 

loading condition of the full-scale model is an applied stress, then the same stress is 

applied to all scaled models. For the case of applied force or displacement, the 

dimensional scaling factors are used to calculate the suitable load for scaled models. 

(vi) Perform experimental tests on the scaled models. 
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(vii) Combine the results of the desired outputs returned from the scaled model using the 

appropriate field equations (i.e., Eq. (3.16)).  

 

To illustrate the application of the theory the procedure outlined is applied to an analytical 

approach for calculating the stress intensity factor in a compact tension (CT) specimen as 

provided in the ASTM E647 guideline [174]. The formula involved was validated 

experimentally and numerically by Farahani et al. (2017) [175], and the geometry and 

loading conditions are replicated here. The geometry for a typical CT specimen can be found 

in Fig. 3.11a; in this case the width 𝑊 = 40 mm and the thickness 𝐵 = 2 mm.  The 

objective is to assess the ability of the theory to predict the crack extension and associated 

crack driving force (i.e., stress intensity factor) accurately. Farahani et al. [165] tested the 

CT specimen under a fatigue load range of 603 N and measured the stress intensity factor at 

seven discrete crack lengths using Digital Image Correlation (DIC) techniques. Comparisons 

were made between the analytical ASTM E647 solutions, DIC technique, the finite element 

method using Abaqus, and the meshless radial point interpolation method (RPIM).  Consider 

then application of the procedure above: 

(i)  The geometry is provided in Farahani et al. (2017) [175], where the material used is 

Aluminium alloy AA6082-T6 with Young’s modulus 70 GPa and Poisson’s ratio 

0.33. The fatigue load 𝐹𝑝𝑠 = 𝐹𝑚𝑎𝑥 − 𝐹𝑚𝑖𝑛 = 670 − 67 = 603N. 

(ii)  Two scaled models are tested corresponding to scales 𝛽1 = 0.5 and 𝛽2 = 0.25.  

(iii)  The scaling factors are 𝛼01
𝑣 𝑔1 = 𝛽1

−2 = 4 and 𝛼01
𝑣 𝑔2 = 𝛽2

−2 = 16. 

(iv)  The value for 𝑅1 = (𝛽1
−1 − 𝛽2

−1)−1(1 − 𝛽1
−1) = (2 − 4)−1(1 − 2) = 0.5. 

(v)  Applied loads for the scaled models are calculated using 𝐹𝑝𝑠 = 𝛼01
𝑣 𝑔1𝐹𝑡𝑠1 and 

𝐹𝑝𝑠 = 𝛼01
𝑣 𝑔2𝐹𝑡𝑠2 to give 𝐹𝑡𝑠1 = 603 × 4

−1 = 150.75 N and 𝐹𝑡𝑠2 = 603 × 16
−1 =

37.69 N. 

(vi)  The ASTM expression for stress intensity factor as a function of crack length is 

      ∆𝐾 =
∆𝑃

𝐵√𝑊

(2 + 𝛼)

(1 − 𝛼)
3
2⁄
(0.866 + 4.64𝛼 − 13.32𝛼2 + 14.72𝛼3

− 5.6𝛼4) 

(3.32a) 

which is applied to the scaled models at crack length given by 𝑎𝑡𝑠1 = 𝛽1𝑎𝑝𝑠 and 

𝑎𝑡𝑠2 = 𝛽2𝑎𝑝𝑠 for the seven values of 𝑎𝑝𝑠 recorded by Farahani et al. (2017). 

(vii) To combine the stress intensity factors of the scaled models the relationship 
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∆𝐾𝑝𝑠 = 𝛼01
𝑣 𝑔1𝛽1

3
2⁄ ∆𝐾𝑡𝑠1 + 𝑅1 (𝛼01

𝑣 𝑔1𝛽1
3
2⁄ ∆𝐾𝑡𝑠1 − 𝛼02

𝑣 𝑔2𝛽2
3
2⁄ ∆𝐾𝑡𝑠2) (3.32b) 

is applied (derivable from Eq. (3.16c)) and the results are recorded in Table 3.3 and 

Fig. 3.9, where is apparent that the results from full scale model are predicted with 

0% error. 

Table 3.3. Stress intensity factors (MPa mm1/2) for scaled and virtual models, and ASTM 

full-scale prediction. 

Crack 

length 

∆𝐾𝐴𝑆𝑇𝑀 ∆𝐾𝑡𝑠1 ∆𝐾𝑡𝑠2 ∆𝐾𝑣𝑖𝑟𝑡𝑢𝑎𝑙  Error% 

12.98 285.41 201.82 142.71 285.41 0 

14.07 306.08 216.43 153.04 306.08 0 

15.26 330.55 233.73 165.27 330.55 0 

17.01 371.27 262.53 185.64 371.27 0 

20.56 481.04 340.15 240.52 481.04 0 

21.74 529.85 374.66 264.93 529.85 0 

22.48 564.95 399.48 282.47 564.95 0 

 

 

Figure 3.9: Crack length vs stress intensity factor for full scale, virtual and scaled-down 

models and comparison with full-scale ∆𝐾 analytical ASTM E647 prediction, experimental 

data [175] and numerical data in ref. [175] 
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3.5 Numerical Experimentation 

The case studies considered here examine the fatigue response of standard specimens 

recommended by ASTM E647 to examine the fatigue life and crack growth rate of materials. 

The tests considered are compact tension (CT), middle tension specimen (MT) and 

eccentrically loaded single edge notched specimen (ESET), which are analysed by means of 

XFEM cohesive segments method using the popular finite element software Abaqus [176]. 

This method specifies the degradation of enriched elements using a bilinear traction 

separation cohesive zone law. A linear elastic bulk material is specified for all models and 

consequently the numerical models in this section correspond to model “A-b” in Section 3.3 

To validate the fatigue crack growth results from Abaqus, the middle tension specimen 

analysis done by London et al. (2015) [177] is replicated and results compared.  Constant 

amplitude loadings are applied in all case studies. In case studies 2 and 3 the loading is set 

such that the specimen reaches full failure. This is done to show the ability of the scaling 

theory to replicate the fatigue behaviour of full-scale specimens up to and including final 

failure. All case studies are 2D due to the high computational cost of simulating fatigue in 

three dimensions even for a relatively low cycle count.  A structured mesh with plane stress 

elements (CP4SR) is used for all case studies. The element size is particularly important for 

an XFEM based approach since the crack traverses a whole element each time it propagates. 

Thus, the crack growth rate is heavily dependent on the element size. An element size of 0.2 

mm was used around the crack path for all case studies as recommended by Zhang et al. 

(2016) [178].  Elements with a size of 0.50mm were used in the other regions of the 

specimen. This meshing is achieved by means of the partitioning technique, where some 

24000 elements are generated in total for the full-scale model. The number of elements is 

kept the same for all scaled models to eliminate the effects of mesh dependency. This is 

achieved by multiplying the element sizes used in the full scale model by the 𝛽 value of the 

scaled model. All models are created in the commercial finite element software Abaqus. 

Aluminium alloy 6061 is used for all models, with pertinent properties taken from Bray 

(1990) [179] and provided in Table 3.4. 

Table 3.4: Mechanical properties of 6061 aluminium alloy used for all tests [179]. 

Material properties Value 

Young’s Modulus, 𝐸 (MPa) 70000 

Poisson’s ratio, 𝑣 0.30 
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Yield strength (MPa) 276 

Maximum principal stress 𝜎𝑐 (MPa) 310 

Ultimate tensile strength (MPa) 310 

Plastic strain 0.06 

Fracture energy (kJm-2) 30 

Paris law parameters 𝐶 (m/cycleMPam0.5) 3.807 × 10−10 

Paris law parameters 𝑚 3.034 

 

The maximum principal stress criterion is adopted for crack initiation. Thus, the crack 

propagates when the stress exceeds the maximum principal stress, in a direction orthogonal 

to the maximum principal stress. Previous studies by Liu et al. (2012) [180] show that a 

better correlation between numerical and experimental results is achieved when the 

maximum principal stress is set to the value of the tensile strength of the material. Thus, the 

same criterion is adopted in this paper. 

 

3.5.1. Verification of numerical results 

Before any scaling laws are applied it is imperative to validate the numerical results to ensure 

the numerical modelling is correct and in agreement with published research. The work of 

London et al [177] is replicated here.  They examined the fatigue growth rate of the middle-

tension specimen using the same direct cyclic solver in Abaqus that is employed in all case 

studies for this paper. A cyclic membrane stress of 100MPa was applied to both the top and 

bottom edges, and the geometry and loading are shown in Fig. 3.10.  The number of cycles 

in the reported study was 3000, but here validation is limited to 600 cycles as the number of 

cycles in all case studies does not exceed 50 cycles. The material is Al 6061 and 2D plane 

stress CPS4 elements are used for this study.  It is revealed that there is good agreement 

between the results of the current study and the reported findings of London et al. [177] (less 

than 3% error in final crack length value). Note that although the focus in this work is on 

demonstrating that the finite-similitude approach replicates fatigue behaviour modelled 

using cohesive elements the use of plane stress (and strain) elements is justified in practical 

studies involving a small number of cycles.  
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Figure 3.10: Loading and geometry of middle tension specimen and comparison between 

the numerical results of the current study and London et al. [177]. 

 

D’Angela & Ercolino [181] investigated the application of plane stress and strain elements 

to fatigue crack growth of a CT specimen using the same direct cyclic Abaqus solver applied 

in this study. Good agreement was found with experiment and analytical results for both 

plane stress and strain elements with insignificant differences recorded over the first few 

hundred cycles. The validated numerical procedure is employed in the next sections to 

investigate the efficiency of the proposed scaling method based on the first order theory. 

 

3.5.2 Evaluation of the fatigue crack growth rate of ASTM E647 specimens  

The numerical simulation for all case studies follows ASTM E647 procedure to evaluate the 

fatigue crack growth rate. The compact tension (CT), middle tension (MT) and eccentrically 

loaded single edge notched (ESET) model analysed are presented in Fig. 3.11, detailing mesh 

and the fatigue pre-crack. Abaqus is used for all simulations, and the specific geometry 

constraints in the ASTM E647 rules are adhered to. The procedure in section 3.4.1 is used to 

design and test the scaled specimens and correlate the obtained fracture mechanics outputs 

from scaled tests with the full scale specimen behaviour by means of virtual models. 

W=40mm 

2c 
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(a) Compact tension specimen dimensions and mesh 
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(b) Middle tension specimen dimensions and mesh 

 

 

(c) ESET specimen dimensions and mesh 

Figure 3.11: Fatigue test specimens considered in case studies. 

 

The scaling theory is then applied to different size scaled specimens. Three different load 

types are applied to the CT specimen to demonstrate the theory’s capability. A simple static 

load with peak displacement of 0.3 mm is applied, then a single loading-unloading cycle 

with the same peak displacement of 0.3 mm and finally a cyclic displacement of 1.5mm is 

applied for a duration of 50 cycles. For all load types, the load is applied at the upper loading 

pin and the lower loading pin is fixed in all directions. For the MT specimen a cyclic 

displacement of 1mm is applied to both the top and bottom edges for a duration of 50 cycles. 

The ESET specimen is loaded with an initially high static load with a displacement of 1.5 

mm at the upper pin and then cycled for 50 cycles with a constant amplitude displacement 

of 0.3 mm; the lower pin is fixed in all directions. This initial high loading is set such that 

an overload condition where a structure suddenly receives a load many times higher than 

normal operating loads can be simulated.  Virtual models are constructed from the 

combination of data obtained from the scaled experiments. These models are then contrasted 

with the output from the full-scale model and ultimately it is shown that the fatigue behaviour 

of a full-scale specimen can be predicted exactly using two scaled experiments.  

The procedure for measuring the fatigue crack growth rate (FCGR) as outlined in ASTM 

E647 involves two stages, the first is the measurement of the crack length against 

corresponding number of cycles and stress intensity factor. The slope of the curve da/dN is 

evaluated from the plot of crack length 𝑎 vs number of cycles 𝑁 to determine the crack 
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growth rate by the secant method.  Finally, the materials resistance to crack growth is 

expressed in the form of da/dN vs ∆𝐾 on a log log scale. The slope of this gives the Paris 

constant 𝑚. Additional information can be extracted from the FE simulations such as 

reaction force, which is measured at the upper loading pin. To determine the appropriate 

element size for the numerical analysis, a mesh sensitivity study was performed, and the 

results are presented in Fig. 3.12.  

 

Figure 3.12: Mesh sensitivity study for compact tension specimen. 

 

Fig. 3.12 shows that the crack in the CT specimen grows from 5 mm to 30 mm resulting in 

failure after 50 cycles for an element size of 0.50 mm at the crack tip.  However, when an 

element size of 0.10 and 0.20 mm is adopted around the crack path, the specimen does not 

fail after 50 cycles and the final crack length of 10 mm is the same for both element sizes. 

Thus, an element size of 0.20 mm around the crack tip is selected in this study for all 

specimens. The specimen dimensions and loading conditions for all specimens can be found 

in Tables 3.5 to 3.9.  Additionally, Table 3.10 presents the dimensional scaling factors for 

all three specimens.  The first four virtual models pertain to the CT specimen, virtual models 

5-8 are for the MT specimen and virtual models 9-12 are constructed from the scaled models 

of the ESET specimen. 

Table 3.5: The dimensions of CT specimen for the full-scale and scaled down models 
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Space 𝛽 

Initial 

crack 

size a 

(mm) 

 

Height 

(mm) 

Ligam

ent 

length 

(W-a) 

(mm) 

Thick

ness 

(mm) 

Width 

(mm) 

Fatigue pre-

crack length 

(mm) 

Physical 1.00 25.00 60 25.00 5.00 62.50 5.00 

Trial 

0.80 20.00 48 20.00 4.00 50.00 4.00 

0.70 17.50 42 17.50 3.50 43.75 3.50 

0.50 12.50 30 12.50 2.50 31.25 2.50 

0.40 10.00 24 10.00 2.00 25.00 2.00 

0.25 6.25 15 6.25 1.25 15.63 1.25 

 

Table 3.6: Loading conditions of CT specimen at different scales 

Space 𝛽 

Displacement 

for fracture load 

(mm) 

Displacement at maximum 

cyclic amplitude  

(mm) 

Physical 1.00 0.30 1.50 

Trial 

0.80 0.24 1.20 

0.70 0.21 1.05 

0.50 0.15 0.75 

0.40 0.12 0.60 

0.25 0.075 0.375 

 

Table 3.7: The dimensions of MT specimen at different scales 

Space 𝛽 

Initial 

crack 

size 

2c 

(mm) 

 

Height 

(mm) 

Ligament 

length 

(W-a) 

(mm) 

Thickness 

(mm) 

Width 

(mm) 

Displacement 

at maximum 

amplitude 

cyclic 

(mm) 

Physical 1.00 6.00 60 24.00 5.00 30.00 1.00 

Trial 
0.80 4.80 48 19.20 4.00 24.00 0.80 

0.70 5.60 42 16.80 3.50 21.00 0.70 
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0.50 3.00 30 12.00 2.50 15.00 0.50 

0.40 2.40 24 9.60 2.00 12.00 0.40 

0.25 1.50 15 6.00 1.25 7.50 0.25 

 

Table 3.8: The dimensions of ESET specimen at different scales 

Space 𝛽 

Initial 

crack 

size a 

(mm) 

 

Height 

(mm) 

Ligamen

t length 

(W-a) 

(mm) 

Thick

ness 

(mm) 

Width 

(mm) 

Fatigue pre-

crack length 

(mm) 

Physical 1.00 5.00 111 20.00 5.00 30.00 10.00 

Trial 

0.80 4.00 48 16.00 4.00 24.00 8.00 

0.70 3.50 42 14.00 3.50 21.00 7.50 

0.50 2.50 30 10.00 2.50 15.00 5.00 

0.40 2.00 24 8.00 2.00 12.00 4.00 

0.25 1.25 15 5.00 1.25 7.50 2.50 

 

Table 3.9: Loading conditions of ESET specimen at different scales 

Space 𝛽 

Displacement 

for fracture load 

(mm) 

Displacement at maximum 

cyclic amplitude  

(mm) 

Physical 1.00 1.50 0.30 

Trial 

0.80 1.20 0.24 

0.70 1.05 0.21 

0.50 0.75 0.15 

0.40 0.60 0.12 

0.25 0.375 0.075 

 

Table 3.10: Value of the scaling factors with different dimensional scaling factors 

Virtual 

Model No. 

𝛽1 𝛽2 𝛼01
𝑣 𝑔1 𝛼02

𝑣 𝑔2 𝑅1 

1 0.80 0.50 1.56 4.00 0.33 

2 0.80 0.25 1.56 16.00 0.09 
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3 0.50 0.25 4.00 16.00 0.50 

4 0.70 0.40 2.04 6.25 0.09 

5 0.80 0.50 1.56 4.00 0.33 

6 0.80 0.25 1.56 16.00 0.09 

7 0.50 0.25 4.00 16.00 0.50 

8 0.70 0.40 2.04 6.25 0.09 

9 0.80 0.50 1.56 4.00 0.33 

10 0.80 0.25 1.56 16.00 0.09 

11 0.50 0.25 4.00 16.00 0.50 

12 0.70 0.40 2.04 6.25 0.09 

 

3.5.3 Results 

The results achieved on application of the scaling theory are presented in this section.  The 

loading for the CT specimen starts with a simple monotonic load (load type 1) where the 

scaling theory is applied and results examined, then a single loading unloading load case 

(load type 2) then a constant amplitude cyclic load for 50 cycles (load type 3) with each cycle 

having a duration of 1s.  The values of reaction forces and crack lengths upon application of 

load type 1 have been presented according to Table 3.11. Also, the reaction force versus 

displacement has been plotted according to Fig. 3.13 where the error refers to the difference 

in the area under the curve of the virtual model compared to the full-scale model. It is evident 

that the response of the full-scale model including the reaction force and crack length has 

been predicted with zero error using the virtual models. 

 

Table 3.11. Reaction force and crack length values for all virtual models at maximum 

displacement for load type 1. 

 𝛽1 𝛽2 𝑎 (mm) Error% 𝐹 (kN) Error% 

PS - - 6 0 15306.20 - 

Virtual 

Model 1 

0.80 0.50 6 0 15309.90 0.02 

Virtual 

Model 2 

0.80 0.25 6 0 15307.70 0.01 

Virtual 

Model 3 

0.50 0.25 6 0 15297.80 0.03 
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Virtual 

Model 4 

0.70 0.40 6 0 15300 0.03 

 

 

Figure 3.13: Reaction force vs displacement for full-scale and virtual models. 

 

Von Mises stress at 

unloading (ps) 

Von Mises stress at 

unloading (𝛽1 = 0.8) 

Von Mises stress at 

unloading (𝛽2 = 0.25) 

   

Figure 3.14: Von Mises stress upon unloading for full scale and scaled models at the crack 

tip for load case 2. 
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A single loading unloading cycle was then applied to determine if the theory can correctly 

capture the unloading part of the force curve.  To understand the behaviour of the structure 

due to residual stresses upon unloading, the stress distribution around the crack tip on 

unloading is shown in Fig. 3.14.  The stress states are very similar for the physical space and 

first scaled model (𝛽1 = 0.80). It can be observed however that there is a marked difference 

in the stress distribution for the second scaled model (𝛽2 = 0.25).  Fig. 3.14 clearly shows a 

relatively larger region of residual stresses for the second scaled model.  Despite this 

difference, the reaction force vs time curves for a single loading-unloading cycle as presented 

in Fig. 3.15 show a perfect match for curves for the virtual and full-scale models.  Finally, a 

monotonic load of 0.30mm and a cyclic load with peak displacement of 1.50mm was then 

applied for fifty cycles. The stress in the y- direction for all models after 20 cycles are shown 

in Fig. 3.16. The crack length for the full-scale model at this point is 9 mm. 

 

 

Figure 3.15: Reaction force vs time plot for full scale CT specimen and virtual models for 

load type 2. 

The stress distributions in all scaled models are in good agreement and it is of interest to 

observe the crack paths during fatigue crack growth of the smaller specimens. All specimens 

follow the same path as the full-scale model, and consequently information about crack path 

can be readily gleaned from the scaled model. The crack path for the CT specimen under 
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load type 3 is plotted in Fig. 3.17, with the virtual model constructed on combining the crack 

paths of the scaled models, and accordingly perfectly match that of the full-scale model. Fig. 

3.18 shows the increase in crack length of the MT specimen with the cyclic load and the 

associated vertical stress distribution at different points of the loading curve namely after 10, 

30 and 48 cycles just before full failure for the full-scale model. Highest stresses are observed 

at the crack tip with the specimen losing its load bearing capacity as the crack grows. The 

crack lengths at these points are 10, 20 and 30mm, respectively. After a random number of 

cycles (33 is chosen), the stresses in the y-direction at the crack tip element are extracted.  

The stresses are of the same magnitude for all scaled specimens confirming the initial 

assumption about stress made in the scaling strategy is valid.  The traction-separation curve 

of the crack tip element after 33 cycles is plotted in Fig. 3.19, which is accurately captured 

by the virtual models.  Crack growth information for all the specimens is provided in Fig. 

3.20a.  Note that the stress intensity factor increases with increasing crack length which 

follows classical fracture mechanics theory and provides confidence in the Abaqus models. 

The MT specimen has the highest stress intensity factor after 50 cycles reaching a max value 

of 370 MPamm0.5. This is due to the specimen failing at 48 cycles and thus having the biggest 

final crack length of all specimens.  All virtual models have the same crack extension as the 

full-scale model thus providing an exact prediction of crack length of the full-scale model 

for all specimens.  

 

Crack length 9mm for full scale model at 

t=20s 

Crack length 9mm for virtual model at 

t=20s 
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crack length 7.20mm 

(𝛽 = 0.8) 

crack length 5.60mm (𝛽 =

0.7) 

crack length 4.50mm (𝛽 =

0.5) 

   

crack length 3.60mm (𝛽 = 0.4) crack length 2.25mm (𝛽 = 0.25) 

  

Figure 3.16: Stress in the y direction at t=20s for CT specimen for full scale, virtual and all 

projected trial space models for load type 3. 

 

 

Figure 3.17: Crack path of full-scale CT specimen and virtual models 1-4. 
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length 
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mm 
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length 

20 

mm 
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Crack 

length 

30 

mm 

Figure 3.18: Stress in the vertical direction for full scale MT model at different crack 

lengths. 
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Figure 3.19: Traction-separation curve at the crack tip element at t=33s of MT specimen 

for the full-scale model and virtual models 5 to 8. 

 

 

(a) Crack length vs stress intensity factor  
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(b) Fatigue crack growth rate vs stress intensity factor  

Figure 3.20: Fatigue crack growth outputs for full scale models for all specimens and 

virtual models 1-12. 

 

In the full-scale model, the fatigue pre crack grows from 5mm to 15mm for the CT specimen, 

10 mm to 20 mm for the ESET specimen and 6mm to 30 mm for the MT specimen, where it 

eventually fails after 48 cycles. The theory can also capture number of cycles to failure as 

seen in virtual models 5 to 8, where all virtual models fail at exactly 48 cycles.  It is critical 

to capture the stress intensity factor, which is the driving force for crack growth.  From Fig. 

3.20a the stress intensity factor grows at a linear rate between 10 and 50 cycles. This 

corresponds to the stable crack growth region where Paris law holds. Thus, the evolution of 

stress intensity factor with time is perfectly captured for all cases. Fig. 3.20b plots the fatigue 

crack growth rate on a log-log scale as recommended by ASTM E647 standard. Once again, 

the MT specimen has the fastest FCGR as it has the biggest initial crack while the crack 

growth rate is the slowest in the CT specimen. The crack growth rate of the full-scale model 

and that predicted by virtual models for all specimens is the same.  Fig. 3.21 shows the Von 

Mises stress distribution of the ESET specimen for the full-scale model, virtual model and 

trial models in case 3. The stress distribution is very similar for all models and the crack 

grows in the same direction (downwards) for all models. 
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Crack length 20mm for the full scale model 

at 20s 

Crack length 20mm for the virtual model at 

20s 

   

Crack length 10mm for 𝛽1 = 0.50 at 20s Crack length 5mm for 𝛽2 = 0.25 at 20s 

  - 

Figure 3.21: Von Mises stress distribution at the crack tip of ESET specimen for the full-

scale model and the two scaled models for virtual model 11. 

3.6 Conclusions 

In this paper an equivalence is established between the first-order finite similitude theory 

involving two scaled models and a fatigue modelling approach founded on cohesive zone 

models.  The first-order finite similitude theory combines information recorded at two scales 

to reproduce behaviours at the full scale.  Being a similitude approach, it can be anticipated 

to be approximate in practical applications, unless it could be confirmed that all the 

conditions pertaining to the rule could be satisfied.  It transpires and is confirmed in the paper 

(both analytically and numerically) that cohesive zone models satisfy all the requirements of 

the first-order finite similitude rule. The following conclusions were drawn from the analysis 

and results returned in the paper: 
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• The first-order finite similitude captures three critical behaviours necessary in 

representing fracture and fatigue, which are scale invariances for stress and 

displacement (or separation), and the linear change of displacement with scale (i.e., 

𝒖𝑡𝑠 = 𝛽𝒖𝑝𝑠). 

• For a range of 1-D cohesive models it has been confirmed how these three critical 

behaviours were sufficient to provide exact representations at full scale from 

information gleaned from two scaled models. 

• Additionally, for three specimen types conforming to ASTM E647 (i.e., CT, MT and 

ESET specimens) analysed numerically by means of XFEM cohesive segments 

method in Abaqus, that full-scale fatigue crack growth could be matched exactly 

(within numerical error) by two scaled models for the selection of scales considered. 

• The first-order finite similitude rules have been confirmed to be: (i) accurate for low-

cycle fatigue only, indicating that high-cycle fatigue studies are required; (ii) 

applicable within the confines of a continuum-mechanics framework, indicating 

practical limitations on the size of the smallest scaled models; and (iii) able to 

replicate behaviours modelled by cohesive zone models, indicating that further 

studies are required to ascertain the true practical value of the approach. 
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Chapter 4 Scaled Empirical Fatigue Laws 

4.1. Introduction 

Fatigue is the phenomenon whereby a structure, experiencing subcritical cyclic load, 

deteriorates in loading capacity and ultimately fails [3].  It is estimated that 90% of all 

component failures during service life is attributable to fatigue, making it critically important 

in design considerations [1].  A particularly important consideration is fatigue life, which is 

typically determined using one of two approaches.  These are namely cumulative fatigue 

damage (CFD) and fatigue crack propagation (FCP) [182].  The FCP approach is 

underpinned by the theory of fracture mechanics and highlights other aspects of importance 

for structural integrity monitoring purposes, which includes the rate at which a crack 

propagates after initiation and the path taken. Fatigue life is the number of cycles to failure, 

𝑛 it takes to grow a defect with an initial size, 𝑎 to a critical defect size, 𝑎𝑓 . Damage tolerant 

design for fatigue involves making fatigue life predictions of new components and structures 

using the FCP approach [183]. To calculate the number of cycles to failure, a suitable fatigue 

empirical law must be used. An important example of the many laws available is that 

proposed by Paris and Erdogan, which provides a relationship between the crack growth rate 

(i.e., 𝑑𝑎 𝑑𝑛⁄ ) and the elastic stress intensity factor range (i.e., ∆𝐾) [28].  The graph of 𝑑𝑎 𝑑𝑛⁄  

vs ∆𝐾 is typically plotted on a log-log scale and three regimes are readily identifiable.  

Limitations apply to empirical relationships and in the case of Paris law its validity is limited 

to long cracks in region II and where small-scale yielding is a feature (linear elastic fracture 

mechanics; LEFM).  To extend the scope of Paris law, various modifications have been 

proposed to account for all manner of influences on fatigue life [3].   

An aspect that has been largely neglected in damage tolerant design is the use of scaled 

experiments.  Its neglect is understandable since there exist difficulties in relating data across 

scaled experiments due to well-known size effects that feature in fracture mechanics and 

fatigue. Geometric size effects are those observed changes in behaviour for structures, 

processes, and systems that manifest with a change of scale.  These effects make it difficult 

to use scaled experiments to predict the behaviour of full-scale structures, processes, and 

systems. It is widely accepted that size effects feature in fracture mechanics and in Paris law 

[124].  Most size-effect fatigue studies in literature typically focus on fatigue modelling by 

means of the CFD approach [23,126] thus involving the crack initiation mechanism, which 

is not the focus of the current study. The focus here is on geometric-size effects observed in 

specimens containing an initial crack or notch. The aim of this work is to reconcile the 



109 

 

observed differences in fatigue life of propagating cracks with scale within the linear elastic 

fracture mechanics framework. 

A comprehensive review of size effects in fatigue can be found in ref [125].  Bazant’s work 

on the fatigue of concrete [14] was the first experimental attempt to demonstrate the size 

effect in fatigue. Since then, multiple studies have confirmed the existence of size effects in 

fatigue within the fracture mechanics approach (see [184-187]).  Barenblatt and Botvina 

confirmed that unless the Paris law exponent (usually denoted by the symbol, m) is 

identically equal to 2 it is impossible to achieve complete self-similarity [83].  The concept 

of complete self-similarity means a process reproduces itself exactly at all sizes. 

Experimental data for many materials confirm that m is rarely equal to 2 leading to the 

conclusion that the parameters C and m in Paris law are not material constants.  Thus, 

extrapolation of fatigue crack growth data from smaller specimens to inform the design of 

larger structures is erroneous as the crack growth rate changes with scale. Typically, very 

large safety factors are used in industrial settings to mitigate this. There have been several 

attempts to deal with the size effect in fatigue with the proposition of a “universal” scaling 

law [134].  Most of the techniques, are founded on dimensional analysis and more recently 

fractal geometry concepts.  Bazant and Xu expressed the change in crack length per cycle as 

a power function of the amplitude of a size-adjusted stress intensity factor [14].  Carpinteri 

proposed a fractal approach to deal with the dependence of the Paris law exponent on initial 

crack length [156].  However, it is important to appreciate that Paris law should not be 

expected to satisfy the similitude invariance provided by dimensional analysis.  It is shown 

in this work how n is scaled and that reasonable results can be returned for an invariant (with 

scale) value of m in Paris law. 

The FCP modelling approach is the focus, where both low and high cycle fatigue cases are 

considered with the application of a new scaling approach termed finite similitude, and where 

for the first-time, empirical fatigue relationships are considered.  The finite similitude theory, 

which was first introduced in [26], introduces new similitude rules (a countable infinite 

number) with each rule connecting information across a specific number of scaled 

experiments.  The similitude rule that is critical to fracture mechanics is called first-order 

finite similitude and involves two scaled experiments.  The work in reference [26] applies to 

a single scaled experiment only and the approach is now termed zeroth-order finite 

similitude, which has been shown to be equivalent to dimensional analysis.  The first order 

theory has now been applied to wide range of areas [153,158,188-189] including more 

recently to low cycle fatigue [190] and is extended here to empirical fatigue laws, which is 
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achieved with the introduction of a new scaling space Ω𝛽.  The theory was shown to capture 

the behaviour at the crack tip as described by the cohesive zone model for monotonic [189] 

and cyclic loads [190]. Exact predictions for the analytical expression for the stress intensity 

factor of a compact tension specimen under fatigue load was achieved using two scaled 

models in ref. [190]. The aim here is to further test the predictive capabilities of the first 

order theory with regards to predicting the fatigue life of different specimens using two 

small-scaled models.  

LEFM states that fatigue behaviour of a structure is controlled predominantly by behaviour 

around the crack tip. For quasibrittle materials however, the geometric size effect has been 

attributed to the presence of a fracture process zone (FPZ) of significant size around the 

crack tip [14]. Material damage in the FPZ has been modelled successfully using the 

cohesive zone model by other authors [31,191]. The hypothesis here is if the stresses at the 

crack tip and subsequently stress intensity factor can be captured using two scaled 

experiments then it should be possible to subsequently predict fatigue life of the large 

structure. A recap of the finite-similitude theory is presented in Section 4.2, where the new 

scaling space is introduced.  Although integral forms of the governing equations are used in 

the similitude theory the introduction of Ω𝛽 is shown to provide a route to consider 

alternative types of equation.  The transport equations pertinent to solid mechanics, fatigue 

and fracture are examined in greater detail in Section 4.3.  Additionally, by means of the 

space Ω𝛽, empirical fatigue relationships used in a damage tolerant design approach can be 

scaled, with a particular focus on Paris law in this work.  An explicit expression relating the 

number of cycles to failure and scale is derived, which is the principal objective of the work.  

In Section 4.4 the new theory is contrasted with experimental work published in the open 

literature.  It should be appreciated that it is only with the advent of the finite similitude 

theory that the rules for scaling two experiments are now known.  Despite this limitation 

good agreement is achieved with the experimental data.  Numerical case studies are 

considered in Section 4.5 involving different types of cracks, low and high cycle fatigue and 

excellent predictions for fatigue life is achieved.  The paper finishes with a conclusions 

section. 

4.2. A Brief Recap on Finite Similitude 

The theory of finite similitude theory and its application can be found in the open literature 

[159-165] and first appeared in 2017 [26].  It is useful however to briefly recap the basic 

concepts since a new feature is required to facilitate the definition of scalable differential 
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equations for fatigue analysis. A peculiarity of the finite-similitude approach is that it is 

based on a metaphysical concept that cannot be enacted, which is space scaling, where for 

the purpose of scaled experimentation, space is contracted or expanded.  There is no practical 

means to do this, physically nor is it required but what can be achieved is an assessment of 

the impact space scaling has on the physics constraining the fatigue behaviour of a 

component undergoing cyclic loading. 

 

4.2.1. The effects of space scaling 

Space scaling is characterised by a linear map 𝒙𝑝𝑠 ↦ 𝒙𝑡𝑠 between the physical and trial space 

inertial coordinate systems. The full-scale equipment resides in the physical space and a 

scaled version resides in the trial space.  In differential terms the map takes the form 𝒅𝒙𝑡𝑠 =

𝛽𝒅𝒙𝑝𝑠, where 𝛽 is a continuous parameter that dictates the extent of the scaling involved.  

Space scaling is isotropic for orthonormal inertial coordinate frames in the two spaces.  The 

parameter 𝛽 is positive, and space is contracted for 0 < 𝛽 < 1, with no space scaling taking 

place for 𝛽 = 1 and expansion for 𝛽 > 1. The focus on Newtonian physics means that a 

single measure of time is applied to each space, i.e., 𝑡𝑡𝑠 and 𝑡𝑝𝑠, which are assumed related 

by the differential identity 𝑑𝑡𝑡𝑠 = 𝑔𝑑𝑡𝑝𝑠, where 𝑔 is positive scalar, which is taken to be a 

continuous function of 𝛽.  To capture the impact of space scaling on the governing physics 

the finite similitude approach makes use of control volumes (being mere regions of space) 

since these reflect the immediacy of any change taking place.  Although control-volume 

approaches hardly feature in fatigue analysis this is nonetheless the route necessary to engage 

global physical laws in transport form prior to examining point-based formulations.  A 

control-volume can be of any size and made arbitrarily small to capture localised effects but 

also provides the means to target and analyse any spatial region of peculiar interest.  The 

movement of a control volume 𝛺𝑡𝑠
∗  (in the trial space) is describable by a smooth velocity 

field 𝒗𝑡𝑠
∗  with coordinate points transported by the differential equation 𝒅𝒙𝑡𝑠

∗ = 𝒗𝑡𝑠
∗ 𝑑𝑡𝑡𝑠.  The 

closure for 𝛺𝑡𝑠
∗  (which is an open domain) in the space 𝛺𝑡𝑠  contains the orientable boundary 

𝛤𝑡𝑠
∗  with outward pointing unit normal 𝒏𝑡𝑠.  Two spaces (i.e., physical 𝛺𝑝𝑠 and trial 𝛺𝑡𝑠) are 

of interest to scaling but introduced here is a third space 𝛺𝛽  that sits between these two 

spaces but is closely related to each.  The reason for the creation of an additional space (as 

will be revealed) is to draw a clear distinction between phenomena that similitude identities 
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describe in 𝛺𝑝𝑠 and phenomena that takes place.  In addition, 𝛺𝛽  is the space on which 

scalable differential equations are to be defined, which is of particular interest in this work.   

 

Figure 4.1. The interrelationship between the reference and moving control volumes in the 

trial and physical spaces and the space 𝛺𝛽 . 
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It is further assumed that 𝛺𝛽
∗  is a control volume transported in 𝛺𝛽  by velocity field 𝒗𝛽

∗  with 

coordinate point movement satisfying 𝒅𝒙𝛽
∗ = 𝒗𝛽

∗𝑑𝑡𝛽, where 𝒗𝛽
∗ = 𝑔𝛽−1𝒗𝑡𝑠

∗  and 𝑑𝑡𝛽 =

𝑔−1𝑑𝑡𝑡𝑠 (which makes 𝑑𝑡𝛽 = 𝑑𝑡𝑝𝑠).  Substitution of these latter two identities into 𝒅𝒙𝛽
∗ =

𝒗𝛽
∗𝑑𝑡𝛽 provides 𝒅𝒙𝛽

∗ = 𝛽−1𝒗𝑡𝑠
∗ 𝑑𝑡𝑡𝑠 = 𝛽−1𝒅𝒙𝑡𝑠

∗  or identically 𝒅𝒙𝑡𝑠
∗ = 𝛽𝒅𝒙𝛽

∗ , which can be 

contrasted against the space scaling map 𝒅𝒙𝑡𝑠 = 𝛽𝒅𝒙𝑝𝑠.  Thus, geometric measures of the 

control volumes 𝛺𝛽
∗  and 𝛺𝑡𝑠

∗  can be readily related, i.e., 𝑑𝑉𝛽
∗ = 𝛽−3𝑑𝑉𝑡𝑠

∗  and 𝒅𝚪𝛽
∗ = 𝛽−2𝒅𝚪𝑡𝑠

∗ .  

The interconnections between the various spaces and control volumes are depicted in Fig. 

4.1, where the motion of 𝛺𝛽
∗  and 𝛺𝑡𝑠

∗  is synchronised.  Note that the motion of the moving 

control volumes are defined relative to fixed control volumes, which provides for example 

the identity 𝒗𝛽
∗ = 𝐷∗𝒙𝛽

∗ /𝐷∗𝑡𝛽
∗ , where the temporal derivative 𝐷∗/𝐷∗𝑡𝛽

∗  is a partial derivative 

that holds constant points in the reference control volume 𝛺𝛽
∗𝑟𝑒𝑓

, i.e. 𝐷∗/𝐷∗𝑡𝛽
∗ ≡ 𝜕/𝜕𝑡𝛽

∗|
𝝌𝛽

, 

where 𝝌𝛽 ∈ 𝛺𝛽
∗𝑟𝑒𝑓

, and similarly for the other spaces.   

Observe from Fig. 4.1 that there presently exists no defined relationship between the moving 

control volumes 𝛺𝛽
∗  and 𝛺𝑝𝑠

∗ .  A feature of the finite similitude approach is that it ultimately 

establishes similitude relationships between fields in 𝛺𝑝𝑠
∗  and 𝛺𝑡𝑠

∗  and consequently this 

relationship should fall out as part of that process.  This involves establishing a connectivity 

between the velocity fields 𝒗𝛽
∗   and 𝒗𝑝𝑠

∗ . Note additionally that the relationships between the 

fixed reference control volumes are completely determined by the scaling of the space that 

they reside in. The generality of the finite similitude approach underpins its ability to tackle 

all classical physics and all forms of analysis, be it Eulerian, Lagrangian or arbitrary-

Eulerian-Lagrangian.  To proceed further requires the physics under scrutiny to be presented 

in transport equation form. 

 

4.2.2. The projection of transport equations  

A critical component of the finite-similitude theory is the projection of the governing trial-

space physics represented by transport equations onto the space 𝛺𝛽
∗ .  It is through this 

projection that scale dependencies are revealed in an implicit form for all the fields involved.   

The subsequent application of similitude rules connects 𝛺𝛽
∗  to 𝛺𝑝𝑠

∗  and reveals the similitude 

identities connecting scaled experiments and makes explicit the relationships between the 

fields and 𝛽.  It is reasonable to claim that in their integral form transport equations have 

been somewhat neglected principally because of the relative advantages offered by 



114 

 

alternative approaches (see [160]).  In solid mechanics, niche applications of the control-

volume approach include configurational forces in fracture and shock models for impact but 

otherwise their application is not universal.  A transport equation in its most generic form 

[159] in the trial space is: 

 

𝐷∗

𝐷∗𝑡𝑡𝑠
∫ 𝜌𝑡𝑠𝜳𝑡𝑠
𝛺𝑡𝑠
∗

𝑑𝑉𝑡𝑠
∗ +∫ 𝜌𝑡𝑠𝜳𝑡𝑠(𝒗𝑡𝑠 − 𝒗𝑡𝑠

∗ ) ∙ 𝒏𝑡𝑠
Г𝑡𝑠
∗

𝑑Г𝑡𝑠
∗

= −∫ 𝑱𝑡𝑠
𝛹

Г𝑡𝑠
∗

∙ 𝒏𝑡𝑠𝑑Г𝑡𝑠
∗ +∫ 𝜌𝑡𝑠𝒃𝑡𝑠

𝛹𝑑𝑉𝑡𝑠
∗

𝛺𝑡𝑠
∗

 

(4.1) 

where 𝜌𝑡𝑠, 𝜳𝑡𝑠, 𝒗𝑡𝑠, 𝑱𝑡𝑠
𝛹 , 𝒃𝑡𝑠

𝛹 , 𝒏𝑡𝑠 are density, physical field, velocity, boundary flux, a source 

term and the unit normal to boundary Гts
∗  of the control volume 𝛺𝑡𝑠

∗ .  

Substitution of the measure identities 𝑑𝑉𝛽
∗ = 𝛽−3𝑑𝑉𝑡𝑠

∗  and 𝒅𝚪𝛽
∗ = 𝛽−2𝒅𝚪𝑡𝑠

∗ , and the 

temporal relationship 𝑑𝑡𝛽 = 𝑔−1𝑑𝑡𝑡𝑠, along with multiplication by 𝑔 and the scalar 𝛼0
𝛹 

returns, 

𝛼0
𝛹𝛵0

𝛹(𝛽) =
𝐷∗

𝐷∗𝑡𝛽
∫ 𝛼0

𝛹𝜌𝑡𝑠𝛽
3𝜳𝑡𝑠

𝛺𝛽
∗

𝑑𝑉𝛽
∗

+∫ 𝛼0
𝛹𝜌𝑡𝑠𝛽

3𝜳𝑡𝑠(𝛽
−1𝑔𝒗𝑡𝑠 − 𝛽

−1𝑔𝒗𝑡𝑠
∗ ) ∙ 𝒏𝛽

Г𝛽
∗

𝑑Г𝛽
∗

+∫ 𝛼0
𝛹𝛽2𝑔𝑱𝑡𝑠

𝛹

Г𝛽
∗

∙ 𝒏𝛽𝑑Г𝛽
∗ −∫ 𝛼0

𝛹𝜌𝑡𝑠𝛽
3𝑔𝒃𝑡𝑠

𝛹𝑑𝑉𝛽
∗

𝛺𝛽
∗

= 0 

(4.2) 

which is a critically important equation in the finite similitude theory and is essentially Eq. 

(4.1) but projected onto the space 𝛺𝛽 . 

The scalar functions 𝛼0
𝛹 and 𝑔 are assumed functions of 𝛽 and it useful to present Eq. (4.2) 

in the form 

𝛼0
𝛹𝛵0

𝛹(𝛽) =
𝐷∗

𝐷∗𝑡𝛽
∫ 𝜌𝛽𝜳𝛽
𝛺𝛽
∗

𝑑𝑉𝛽
∗ +∫ 𝜌𝛽𝜳𝛽(𝒗𝛽 − 𝒗𝛽

∗ ) ∙ 𝒏𝛽
Г𝛽
∗

𝑑Г𝛽
∗ +∫ 𝑱𝛽

𝛹

Г𝛽
∗

∙ 𝒏𝛽𝑑Г𝛽
∗

−∫ 𝜌𝛽𝒃𝛽
𝛹𝑑𝑉𝛽

∗

𝛺𝛽
∗

= 0 

(4.3) 

where 𝜌𝛽𝜳𝛽 = 𝛼0
𝛹𝜌𝑡𝑠𝛽

3𝜳𝑡𝑠, 𝒗𝛽 = 𝛽
−1𝑔𝒗𝑡𝑠, 𝒗𝛽

∗ = 𝛽−1𝑔𝒗𝑡𝑠
∗ , 𝑱𝛽

𝛹 = 𝛼0
𝛹𝛽2𝑔𝑱𝑡𝑠

𝛹  and 

𝜌𝛽𝒃𝛽
𝛹 = 𝛼0

𝛹𝜌𝑡𝑠𝛽
3𝑔𝒃𝑡𝑠

𝛹 . 

It is evident that Eq. (4.3) is identical in form to Eq. (4.1) and consequently can be viewed 

as a transport equation on 𝛺𝛽
∗ .  A necessary requirement is for this equation to match the 
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physical space transport equation at 𝛽 = 𝛽0 = 1, which is ensured by 𝜌1𝜳1 = 𝜌𝑝𝑠𝜳𝑝𝑠, 𝒗1 =

𝒗𝑝𝑠, 𝒗1
∗ = 𝒗𝑝𝑠

∗ , 𝑱1
𝛹 = 𝑱𝑝𝑠

𝛹  and 𝜌1𝒃1
𝛹 = 𝜌𝑝𝑠𝒃𝑝𝑠

𝛹 , and additionally 𝛼0
𝛹(1) = 1 and 𝑔(1) = 1.  

This set of conditions indicates what is required with similitude rules describing the fields at 

𝛽 = 𝛽0 = 1 in order to represent behaviours in the physical space.  Note additionally that all 

fields are implicitly defined to be functions of 𝛽 as suggested by the notation, i.e., 

𝜌𝛽 , 𝒗𝛽 , 𝜳𝛽 , 𝑱𝛽
𝛹 and 𝒃𝛽

𝛹.  It is important to appreciate that Eq. (4.3) (of the form 𝛼0
𝛹𝛵0

𝛹(𝛽) =

0) suffers no approximation and provides an exact description of trial-space behaviours but 

projected onto 𝛺𝛽 .  All 𝛽 − dependencies of the fields involved are implicitly exposed by 

this projection, making the scaling problem one, where the objective is to reveal these hidden 

dependencies.  The significant advantage of this formulation is that unlike dimensional 

analysis it is not limited to a single invariance.   

 

4.2.3. Defining similitude rules  

The projection of trial-space physics onto the space 𝛺𝛽  provides a representation of scaling 

that is continuous and smooth and as a result gives rise to a calculus for scaled 

experimentation.  Although discrete identities are sought to link experiments at distinct 

scales the existence of a calculus for scaling provides scope for analysis and the involvement 

of differential equations and identities.  The starting point of finite similitude is the recursive 

definition (previously introduced in ref. [26]). 

Definition (High-order finite similitude) 

The concept of kth-order finite similitude is identified by the lowest derivative that satisfies, 

 𝛵𝑘+1
𝛹 =

𝑑

𝑑𝛽
(𝛼𝑘

𝛹𝛵𝑘
𝛹) ≡ 0 (4.4) 

∀𝛽 > 0, with 𝛼0
𝛹𝛵0

𝛹 defined by Eq. (3) and scalars 𝛼𝑘
𝛹 are functions of 𝛽 with 𝛼𝑘

𝛹(1) = 1, 

where the symbol “≡” in Eq. (4.4) signifies that the derivative is identically zero. 

The simplest invariance (equivalent to dimensional analysis) is obtained on setting 𝑘 = 0 

(which is 𝛵1
𝛹 ≡ 0) is the identity: 

 
𝑑

𝑑𝛽
(𝛼0

𝛹𝛵0
𝛹) ≡ 0 (4.5) 

which infers that the transport equation 𝛼0
𝛹𝛵0

𝛹 = 0 is absent of 𝛽 − terms on 𝛺𝛽  and 

therefore suffers no scale effects as traditionally defined.  
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Observe the role of 𝛼0
𝛹, being selected is to eliminate if possible 𝛽 − terms to satisfy Eq. 

(4.5).  Systems that conform to Eq. (4.5) are called zeroth order, and give rise to the 

following relationships between the physical space at 𝛽 = 1 and the trial space at 𝛽1: 

 𝜌𝑝𝑠𝜳𝑝𝑠 = 𝜌1𝜳1 = 𝜌𝛽1𝜳𝛽1 = 𝛼01
𝛹 𝛽1

3𝜌𝑡𝑠1𝜳𝑡𝑠1 (4.6a) 

 𝒗𝑝𝑠 = 𝒗1 = 𝒗𝛽1 = 𝑔1𝛽1
−1𝒗𝑡𝑠1 (4.6b) 

 𝑱𝑝𝑠
𝛹 = 𝑱1

𝛹 = 𝑱𝛽1
𝛹 = 𝛼01

𝛹 𝑔1𝛽1
2𝑱𝑡𝑠1
𝛹  (4.6c) 

 𝜌𝑝𝑠𝒃𝑝𝑠
𝛹 = 𝜌1𝒃1

𝛹 = 𝜌𝛽1𝒃𝛽1
𝛹 = 𝛼01

𝛹 𝑔1𝛽1
3𝜌𝑡𝑠1𝒃𝑡𝑠1

𝛹  (4.6d) 

where the identity 𝒗𝑝𝑠
∗ = 𝒗1

∗ = 𝒗𝛽1
∗ = 𝑔1𝛽1

−1𝒗𝑡𝑠1
∗  is assumed to apply (more on this below) 

to arrive at Eq. (4.6b), and where the following subscript notation is applied: 𝑔1 = 𝑔(𝛽1), 

𝛼01
𝛹 = 𝛼0

𝛹(𝛽1), 𝜌𝑡𝑠1 = 𝜌𝑡𝑠(𝛽1), 𝜳𝑡𝑠1 = 𝜳𝑡𝑠(𝛽1), 𝒗𝑡𝑠1 = 𝒗𝑡𝑠(𝛽1), 𝑱𝑡𝑠1
𝛹 = 𝑱𝑡𝑠

𝛹 (𝛽1) and 𝒃𝑡𝑠1
𝛹 =

𝒃𝑡𝑠
𝛹 (𝛽1).   

The identities in Eq. (4.6) are returned on integration of Eq. (4.5) between the limits 𝛽1 and 

𝛽0 = 1.  Similarly, first-order finite similitude requires setting 𝑘 = 1 (i.e., 𝛵2
𝛹 ≡ 0) in the 

definition above to reveal the identity 

 𝛵2
𝛹 =

𝑑

𝑑𝛽
(𝛼1

𝛹𝛵1
𝛹) =

𝑑

𝑑𝛽
(𝛼1

𝛹
𝑑

𝑑𝛽
(𝛼0

𝛹𝛵0
𝛹)) ≡ 0 (4.7) 

which contains two derivatives making integration a little more involved, and similarly for 

second order 

 

𝛵3
𝛹 =

𝑑

𝑑𝛽
(𝛼2

𝛹𝛵2
𝛹) =

𝑑

𝑑𝛽
(𝛼2

𝛹
𝑑

𝑑𝛽
(𝛼1

𝛹𝛵1
𝛹))

=
𝑑

𝑑𝛽
(𝛼2

𝛹
𝑑

𝑑𝛽
(𝛼1

𝛹
𝑑

𝑑𝛽
(𝛼0

𝛹𝛵0
𝛹))) ≡ 0 

(4.8) 

where although the focus in this work is on first order a particular result for fatigue requires 

second order, so is included here. 

A facet of the definition above is that these identities are unique in the sense that they can 

represent any other identity of the same order (proof formalised but not yet published) and 

their form is ideal for integration and a unified procedure exist for this. 

4.3. Finite Similitude Applied to Solid Mechanics and Fracture 

To focus the finite similitude theory onto the problem under scrutiny it is first necessary to 

list those transport equations that contain the fields of interest.  In the case of solid mechanics 
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involving cyclic loading, transport equations for volume, mass, momentum, and movement 

are of prime interest.  The velocity field 𝒗𝑡𝑠
∗  for example is constrained by the transport 

equation for volume and is needed to define a relationship for 𝒗𝛽
∗ , so should be included.  

The continuity equation brings density 𝜌𝑡𝑠 and material velocity 𝒗𝑡𝑠 into play.  The 

momentum transport equation additionally provides information on the stress tensor field 

𝝈𝑡𝑠 and specific body force 𝒃𝑡𝑠
𝑣 .  The movement transport equation introduced in reference 

[170] constrains the behaviour of the displacement field 𝒖𝑡𝑠, which is important to solid 

mechanics. 

 

4.3.1. Projected transport equations  

The four transport equations mentioned above are multiplied by 𝑔 and respectively by the 

scaling functions 𝛼0
1, 𝛼0

𝜌
, 𝛼0

𝑣, and 𝛼0
𝑢 and projected onto 𝛺𝛽 .  The application of the identity 

Eq. (4.5) returns zeroth-order connections between these scalars, i.e., 𝛼0
1 = 𝛽−3, 𝛼0

𝑣𝑔−1𝛽 =

𝛼0
𝜌

 and 𝛼0
𝑢𝛽 = 𝛼0

𝜌
 (or 𝛼0

𝑢 = 𝛼0
𝑣𝑔−1) (details provided in ref. [159]).  In addition, two zeroth-

order field relationships are assumed to be sufficient, which are 𝒗𝑝𝑠
∗ = 𝒗1

∗ = 𝒗𝛽
∗ = 𝑔𝛽−1𝒗𝑡𝑠

∗  

and 𝜌𝑝𝑠 = 𝜌1 = 𝜌𝛽 = 𝛼0
𝜌
𝜌𝑡𝑠𝛽

3.  The former condition is required for point-based rules and 

the latter is viewed as sufficient since density is typically considered invariant in solid 

mechanics and captured therefore by the single scalar function 𝛼0
𝜌

.  The four projected 

transport equations, with the zeroth-order conditions inserted, are: 

 𝛼0
1𝛵0

1(𝛽) =
𝐷∗

𝐷∗𝑡𝛽
∫ 𝑑𝑉𝛽

∗

𝛺𝛽
∗

−∫ 𝒗1
∗ ∙ 𝒏𝛽

Г𝛽
∗

𝑑Г𝛽
∗ = 0 (4.9a) 

 𝛼0
𝜌
𝛵0
𝜌(𝛽) =

𝐷∗

𝐷∗𝑡𝛽
∫ 𝜌1
𝛺𝛽
∗

𝑑𝑉𝛽
∗ +∫ 𝜌1(𝒗𝛽 − 𝒗1

∗) ∙ 𝒏𝛽
Г𝛽
∗

𝑑Г𝛽
∗ = 0 (4.9b) 

 

𝛼0
𝑣𝛵0

𝑣(𝛽) =
𝐷∗

𝐷∗𝑡𝛽
∫ 𝜌1𝒗𝛽
𝛺𝛽
∗

𝑑𝑉𝛽
∗ +∫ 𝜌1𝒗𝛽(𝒗1 − 𝒗1

∗) ∙ 𝒏𝛽
Г𝑝𝑠
∗

𝑑Г𝛽
∗

+∫ 𝝈𝛽
Г𝛽
∗

∙ 𝒏𝛽𝑑Г𝛽
∗ −∫ 𝜌1𝒃𝛽 𝑑𝑉𝛽

∗

𝛺𝛽
∗

= 0 

(4.9c) 

 

𝛼0
𝑢𝛵0

𝑢(𝛽) =
𝐷∗

𝐷∗𝑡𝛽
∫ 𝜌1𝒖𝛽
𝛺𝑝𝑠
∗

𝑑𝑉𝛽
∗ +∫ 𝜌1𝒖𝛽(𝒗1 − 𝒗1

∗) ∙ 𝒏𝛽
Г𝛽
∗

𝑑Г𝛽
∗

−∫ 𝜌1𝒗𝛽𝑑𝑉𝛽
∗

𝛺𝛽
∗

= 0 

(4.9d) 
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where 𝒗𝛽 = 𝛽−1𝑔𝒗𝑡𝑠, 𝝈𝛽 = 𝛼0
𝑣𝛽2𝑔𝝈𝑡𝑠, 𝜌1𝒃𝛽 = 𝛼0

𝑣𝜌𝑡𝑠𝛽
3𝑔𝒃𝑡𝑠

𝑣 , and 𝒖𝛽 = 𝛽
−1𝒖𝑡𝑠. 

To remove higher order terms and to reflect the fact that convection is negligible in solid 

mechanics the terms 𝒗𝛽(𝒗𝛽 − 𝒗1
∗) and 𝒖𝛽(𝒗𝛽 − 𝒗1

∗) have been approximated by 

𝒗𝛽(𝒗1 − 𝒗1
∗) and 𝒖𝛽(𝒗1 − 𝒗1

∗) in Eq. (4.9c) and Eq. (4.9d).  Note how the condition 𝒗𝑝𝑠
∗ =

𝒗1
∗ = 𝒗𝛽

∗  means that Eq. (4.9a) is independent 𝛽 and (with 𝛺𝛽
∗ = 𝛺𝑝𝑠

∗ ) and consequently the 

identity Eq. (4.5) is satisfied.  However, none of the other equations disappear completely 

with differentiation with respect to 𝛽.  The next set of transport equations  𝛼1
𝛹𝛵1

𝛹 = 0 are 

obtained on differentiation of Eq. (4.5) and multiplication by 𝛼1
1, 𝛼1

𝜌
, 𝛼1

𝑣, and 𝛼1
𝑢, giving rise 

to the first-order equations: 

𝛼1
𝜌
𝛵1
𝜌(𝛽) = ∫ 𝛼1

𝜌
𝜌1𝒗𝛽

′ ∙ 𝒏𝛽
Г𝛽
∗

𝑑Г𝛽
∗ = 0 

(4.10a) 

𝛼1
𝑣𝛵1

𝑣(𝛽) =
𝐷∗

𝐷∗𝑡𝛽
∫ 𝛼1

𝑣𝜌1𝒗𝛽
′

𝛺𝛽
∗

𝑑𝑉𝛽
∗ +∫ 𝛼1

𝑣𝜌1𝒗𝛽
′ (𝒗1 − 𝒗1

∗) ∙ 𝒏𝛽
Г𝛽
∗

𝑑Г𝛽
∗

+∫ 𝛼1
𝑣𝛔𝛽

′

Г𝛽
∗

∙ 𝒏𝑝𝑠𝑑Г𝑝𝑠
∗ −∫ 𝛼1

𝑣𝜌1𝒃𝛽
′ 𝑑𝑉𝛽

∗

𝛺𝑝𝑠
∗

= 0 

 

 

(4.10b) 

𝛼1
𝑢𝛵1

𝑢(𝛽) =
𝐷∗

𝐷∗𝑡𝛽
∫ 𝛼1

𝑢𝜌1𝒖𝛽
′

𝛺𝛽
∗

𝑑𝑉𝛽
∗ +∫ 𝛼1

𝑢𝜌1𝒖𝛽
′ (𝒗1 − 𝒗1

∗) ∙ 𝒏𝛽
Г𝛽
∗

𝑑Г𝛽
∗

−∫ 𝛼1
𝑢𝜌1𝒗𝛽

′ 𝑑𝑉𝛽
∗

𝛺𝛽
∗

= 0 

 

 

(4.10c) 

where here the dash “ ′ ” signifies differentiation with respect to 𝛽, and observe that these 

equations are similar in appearance to their corresponding counterparts in Eq. (4.9). 

The equations in Eq. (4.10) are assumed independent of 𝛽 under the rule of first-order finite 

similitude (i.e., Eq. (4.7)).  It can be readily shown that under quasistatic loading the Eq. 

(4.10) can be identically satisfied for conditions prevailing in fracture mechanics (more on 

this below).  In addition, identity Eq. (4.7) (and all high-order identities in fact) can be 

integrated exactly by the divided difference procedure provided in Appendix A. The 

integrated first-order identities of interest here are presented in Table 4.1 in two formats, i.e., 

compact and expanded, with latter useful for application of the method and the former 

helpful for further developments. 
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Table 4.1. First-order finite similitude identities 

Fields Compact representation Expanded representation 

Displacement 𝒖1 = 𝒖𝛽1 + 𝑅1 (𝒖𝛽1 − 𝒖𝛽2) 𝒖1 = 𝛽1
−1𝒖𝑡𝑠1 + 𝑅1 (𝛽1

−1𝒖𝑡𝑠1

− 𝛽2
−1𝒖𝑡𝑠2) 

Velocity 𝒗1 = 𝒗𝛽1 + 𝑅1 (𝒗𝛽1 − 𝒗𝛽2) 𝒗1 = 𝑔1𝛽1
−1𝒗𝑡𝑠1

+ 𝑅1 (𝑔1𝛽1
−1𝒗𝑡𝑠1

− 𝑔2𝛽2
−1𝒗𝑡𝑠2) 

Body force 𝒃1 = 𝒃𝛽1 + 𝑅1 (𝒃𝛽1 − 𝒃𝛽2) 𝜌1𝒃1
𝑣 = 𝛼01

𝑣 𝜌𝑡𝑠1𝑔1 𝛽1
3𝒃𝑡𝑠1

𝑣

+ 𝑅1 (𝛼01
𝑣 𝜌𝑡𝑠1𝑔1 𝛽1

3𝒃𝑡𝑠1
𝑣

− 𝛼02
𝑣 𝜌𝑡𝑠2𝑔2 𝛽2

3𝒃𝑡𝑠2
𝑣 ) 

Stress 𝝈1 = 𝝈𝛽1 + 𝑅1 (𝝈𝛽1 − 𝝈𝛽2) 𝝈1 = 𝛼01
𝑣 𝑔1𝛽1

2𝝈𝑡𝑠1

+ 𝑅1 (𝛼01
𝑣 𝑔1𝛽1

2𝝈𝑡𝑠1

− 𝛼02
𝑣 𝑔2𝛽2

2𝝈𝑡𝑠2) 

Force 𝑭1 = 𝑭𝛽1 + 𝑅1 (𝑭𝛽1 − 𝑭𝛽2) 𝑭1 = 𝛼01
𝑣 𝑔1𝑭𝑡𝑠1

+ 𝑅1 (𝛼01
𝑣 𝑔1𝑭𝑡𝑠1

− 𝛼02
𝑣 𝑔2𝑭𝑡𝑠2) 

Strain 𝜺1 = 𝜺𝛽1 + 𝑅1 (𝜺𝛽1 − 𝜺𝛽2) 𝜺1 = 𝜺𝑡𝑠1 + 𝑅1 (𝜺𝑡𝑠1 − 𝜺𝑡𝑠2) 

Strain rate �̇�1 = �̇�𝛽1 + 𝑅1 (�̇�𝛽1 − �̇�𝛽2) �̇�1 = 𝑔1�̇�𝑡𝑠1 + 𝑅1 (𝑔1�̇�𝑡𝑠1 − 𝑔2�̇�𝑡𝑠2) 

In addition to those fields obtained directly from the transport equations extra field 

relationships for the force, strain and strain rate are included into Table 4.1.  This is a feature 

of the finite similitude approach, which provides all the fields needed to analyse a problem 

despite not invoking constitutive laws. 

 

4.3.2. Fracture and fatigue on 𝜴𝜷  

The compact identities in Table 4.1 are identical in form because each satisfies the exact 

same differential equation of the form 
𝑑

𝑑𝛽
(𝛼1

𝑑ℵ𝛽

𝑑𝛽
) = 0, where ℵ𝛽 is any of the fields in 
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Table 4.1.  This equation is the first-order identity Eq. (4.7) but now applied to fields defined 

on 𝛺𝛽  as opposed to transport equations.  It is readily deduced that the second-order identity 

similarly provides the differential equations of the form 
𝑑

𝑑𝛽
(𝛼2

𝑑

𝑑𝛽
(𝛼1

𝑑ℵ𝛽

𝑑𝛽
)) = 0 for the 

same fields.   

Proposition: The product of two first order fields is second order in the sense that fields ℵ𝛽 

and 𝜩𝛽 defined on 𝛺𝛽  satisfying  
𝑑

𝑑𝛽
(𝛼1

𝑑ℵ𝛽

𝑑𝛽
) = 0 and 

𝑑

𝑑𝛽
(𝛼1

𝑑𝜩𝛽

𝑑𝛽
) = 0, respectively, then 

the product ℵ𝛽𝜩𝛽 with 𝛼2 = 𝛼1  satisfies 
𝑑

𝑑𝛽
(𝛼2

𝑑

𝑑𝛽
(𝛼1

𝑑ℵ𝛽𝜩𝛽

𝑑𝛽
)) = 0. 

Proof: Note that 

𝛼1
𝑑

𝑑𝛽
(𝛼1

𝑑ℵ𝛽𝜩𝛽

𝑑𝛽
) = 𝛼1

𝑑

𝑑𝛽
(𝛼1 ℵ𝛽

𝑑𝜩𝛽

𝑑𝛽
+ 𝛼1

𝑑ℵ𝛽

𝑑𝛽
𝜩𝛽) = 2 (𝛼1

𝑑ℵ𝛽

𝑑𝛽
) (𝛼1

𝑑𝜩𝛽

𝑑𝛽
)     (4.11)        

which is identically zero on differentiation with respect to 𝛽, which confirms the result. 

This proposition is particularly pertinent to fatigue as the product Δ𝐾𝑡𝑠𝑛𝑡𝑠 plays a significant 

role in characterising the fatigue process, where on the trial space, Δ𝐾𝑡𝑠 is the change in the 

stress intensity (assumed constant with cycle momentarily) and 𝑛𝑡𝑠 is the number of cycles 

(often the number of cycles to failure).  The product arises on consideration of the sum 

𝑆 =∑(Δ𝐾𝑡𝑠)𝑖

𝑛𝑡𝑠

𝑖=1

= Δ𝐾𝑡𝑠𝑛𝑡𝑠 
 

(4.12) 

 

where the simplified result 𝑆 = Δ𝐾𝑡𝑠𝑛𝑡𝑠 is returned if cyclic loading is such to return no 

change in Δ𝐾𝑡𝑠 between cycles. 

Hypothesis: The product Δ𝐾𝑡𝑠𝑛𝑡𝑠 is second order with Δ𝐾𝑡𝑠𝑛𝑡𝑠 = Δ𝐾𝛽𝑛𝛽, where Δ𝐾𝛽 and 

𝑛𝛽 are the stress intensity and number of cycles on 𝛺𝛽 . 

Prior to examining the implications of this hypothesis, it is worth contrasting the product 

Δ𝐾𝛽𝑛𝛽 with ℵ𝛽𝜩𝛽 in the proposition above.  These are not quite the same thing with the 

latter being a product of fields and the former being a product of parameters.  Note however 

that 𝐾𝑡𝑠  can be connected to a field with the relationship Δ𝐾𝑡𝑠 = 𝐹𝑡𝑠Δ𝜎𝑡𝑠√𝜋𝑎𝑡𝑠, where 𝐹𝑡𝑠 

is a shape factor, 𝑎𝑡𝑠 is crack length, and Δ𝜎𝑡𝑠 is the change in stress amplitude. Given that 

𝝈𝛽 = 𝛼0
𝑣𝛽2𝑔𝝈𝑡𝑠 and 𝑎𝛽 = 𝛽−1𝑎𝑡𝑠 it follows that Δ𝐾𝛽 = 𝛼0

𝑣𝛽3/2𝑔𝝈𝑡𝑠Δ𝐾𝑡𝑠, and note that the 

condition 𝝈𝛽 = 𝝈𝑡𝑠 provides 𝛼0
𝑣𝑔 = 𝛽−2 and ultimately Δ𝐾𝛽 = 𝛽−1/2Δ𝐾𝑡𝑠.  The conditions 

𝝈𝛽 = 𝝈𝑡𝑠 and Δ𝐾𝛽 = 𝛽−1/2Δ𝐾𝑡𝑠 are physically meaningful with the expectation that stress 
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on 𝛺𝛽  and 𝛺𝑡𝑠  around the crack tip are the similar but stress intensity is different because of 

the change in crack length under the projection from 𝛺𝑡𝑠  to 𝛺𝛽 .  The hypothesis Δ𝐾𝑡𝑠𝑛𝑡𝑠 =

Δ𝐾𝛽𝑛𝛽 immediately implies that 𝑛𝛽 = 𝛽1/2n𝑡𝑠, and additionally since Δ𝐾𝛽 is first order it 

follows from the proposition above that 𝑛𝛽 is first order.  In summary, Δ𝐾𝛽 and 𝑛𝛽 satisfy 

the differential equations 
𝑑

𝑑𝛽
(𝛼1

𝑑𝛥𝐾𝛽

𝑑𝛽
) = 0 and 

𝑑

𝑑𝛽
(𝛼1

𝑑𝒏𝛽

𝑑𝛽
) = 0 (despite Δ𝐾𝛽 and 𝑛𝛽 not 

being fields) and integrate to produce discrete identities 

Δ𝐾1 = Δ𝐾𝛽1 + 𝑅1 (Δ𝐾𝛽1 − Δ𝐾𝛽2)

= 𝛽1
−1/2

Δ𝐾𝑡𝑠1 + 𝑅1 (𝛽1
−1/2

Δ𝐾𝑡𝑠1 − 𝛽2
−1/2

Δ𝐾𝑡𝑠2) 

(4.13a) 

𝑛1 = 𝑛𝛽1 + 𝑅1 (𝑛𝛽1 − 𝑛𝛽2) = 𝛽1
1/2
𝑛𝑡𝑠1 + 𝑅1 (𝛽1

1/2
𝑛𝑡𝑠1 − 𝛽2

1/2
𝑛𝑡𝑠2) (4.13b) 

which are important relationships connecting information from two scaled experiments to 

the full scale. 

Note that the expressions in Eq. (4.13) are not yet definitive since 𝑅1  remains undefined, 

which is linked to the stipulation of the scalar 𝛼1 .  The specification of 𝛼1  and 𝑅1  arise out 

of a peculiar invariance that is needed to represent crack separation across the scales.  Note 

the relationship for displacement is 𝒖𝛽 = 𝛽
−1𝒖𝑡𝑠 satisfying 

𝑑

𝑑𝛽
(𝛼1

𝑑𝒖𝛽

𝑑𝛽
) = 0, which under 

the assumption that 𝒖𝑡𝑠 is invariant of 𝛽 provides 
𝑑

𝑑𝛽
(𝛼1

𝑑𝛽−1

𝑑𝛽
) = 0, which is satisfied by 

𝛼1 = 𝛽2 (recall the requirement 𝛼1 (1) = 1).  Similarly, the expression for displacement in 

Table 1 returns 

𝑅1 =
1 − 𝛽1

−1

𝛽1
−1 − 𝛽2

−1 
(4.14) 

where on stimulation of the scales 𝛽1  and 𝛽2  provides is a definitive expression for 𝑅1 . 

It is important to appreciate that although invariances for stress and displacement are invoked 

to determine 𝛼0
𝑣𝑔 and 𝛼1 , respectively different behaviours are possible.  The invariances 

are desirable behaviours that can be captured (should they feature) by the similitude rules 

under settings 𝛼0
𝑣𝑔 = 𝛽−2 and 𝛼1 = 𝛽2. 

4.3.3. Practical application of first order finite similitude rules. 

Despite the mathematical nature of the theory, its application in practice is relatively 

straightforward. Detailed description of the procedure for application of the theory in fracture 

mechanics and fatigue can be found in references [189] and [190] respectively and is 

recapped here as follows: 
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(viii) Specify the geometry, material properties, loading and boundary conditions of the 

full-scale model. 

(ix) Specify the geometric scaling factors 𝛽1 and 𝛽2, and material properties for the scaled 

models.  Identical materials are applied to all models in this work. 

(x) Calculate the dimensional scaling factors for scaled models by using the zeroth order 

setting 𝛼01
𝑣 𝑔1 = 𝛽1

−2 and 𝛼02
𝑣 𝑔2 = 𝛽2

−2. 

(xi) Calculate the scaling factor 𝑅1 using Eq. (4.14). 

(xii) Calculate the applied loads and boundary conditions for the scaled models. If the 

loading condition of the full-scale model is an applied stress, then the same stress is 

applied to all scaled models. For the case of applied force or displacement, the 

dimensional scaling factors 𝛼01
𝑣 𝑔1 and 𝛼02

𝑣 𝑔2 are used to calculate the suitable load 

for scaled models. 

(xiii) Conduct experimental tests on the scaled models. 

(xiv) Combine the results of the desired outputs returned from the scaled model using the 

appropriate field equations given in Table 4.1.  

(vii) For the case of fatigue within the LEFM framework, the desired outputs are the 

crack length, crack growth rate, stress intensity factor and number of cycles to failure.  

The crack length outputs from the scaled models can be combined using the first-order 

approximation, 

𝑎𝑝𝑠 = 𝛽1
−1𝑎𝑡𝑠1 + 𝑅1 (𝛽1

−1𝑎𝑡𝑠1 − 𝛽2
−1𝑎𝑡𝑠2) (4.15a) 

and similarly for crack growth rate the following equation is assumed to apply, 

(
𝑑𝑎

𝑑𝑛
)
𝑝𝑠
= 𝛽1

−
3
2 (
𝑑𝑎

𝑑𝑛
)
𝑡𝑠1
+ 𝑅1 (𝛽1

−
3
2 (
𝑑𝑎

𝑑𝑛
)
𝑡𝑠1
− 𝛽2

−
3
2 (
𝑑𝑎

𝑑𝑛
)
𝑡𝑠2
) 

(4.15b) 

which is a first-order relationship for (𝑑𝑎/𝑑𝑛)𝛽 and realised on substitution of 𝑑𝑎𝛽 =

𝛽−1𝑑𝑎𝑡𝑠 and 𝑑𝑛𝛽 = 𝛽
1/2𝑑𝑛𝑡𝑠. 

Finally, the stress intensity factor and number of cycles to failure outputs are combined 

using Eq. (4.13a) and Eq. (4.13b), respectively.  In this way, the first order theory provides 

a framework that describes the necessary conditions for performing scaled fatigue tests.  

 

4.3.4. Empirical fatigue equations on 𝜴𝜷  

Power law empirical differential relationships are commonly used to represent fatigue 

behaviour with a particular focus on the relationship between crack length 𝑎𝑡𝑠 and the 
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number of cycles 𝑛𝑡𝑠.  The focus here is on Paris law which on 𝛺𝛽  takes the form 

(𝑑𝑎𝛽 𝑑𝑛𝛽⁄ ) = 𝐶𝛽(𝛥𝐾𝛽)
𝑚

 with 𝑛𝛽 = 𝛽1/2𝑛𝑡𝑠, 𝑎𝛽 = 𝛽−1𝑎𝑡𝑠, Δ𝐾𝛽 = 𝛽
−1/2Δ𝐾𝑡𝑠, and 𝐶𝛽 =

𝐶𝑡𝑠𝛽
−3/2𝛽𝑚/2.  Note additionally, that Δ𝐾𝛽 = 𝐹𝛽Δ𝜎𝛽√𝜋𝑎𝛽 and since the shape factor 𝐹𝛽 

and stress amplitude Δ𝜎𝛽 are zeroth order, it follows that √𝑎𝛽 has the same order as Δ𝐾𝛽, 

i.e., both are first order   This observation along with the hypothesis above (Δ𝐾𝛽𝑛𝛽 is 

second order) leads to the following important proposition. 

Proposition: Paris law (𝑑𝑎𝛽 𝑑𝑛𝛽⁄ ) = 𝐶𝛽(𝛥𝐾𝛽)
𝑚

 is a first-order relationship. 

Proof: The proof is relatively simple and follows from the observation that 𝑎𝛽 is second 

order being the product of two first order terms (i.e., 𝑎𝛽 = √𝑎𝛽√𝑎𝛽) and 𝑛𝛽 is first order 

leads to the realisation that the derivative 𝑑𝑎𝛽 𝑑𝑛𝛽⁄  is first order and consequently it follows 

immediately that Paris law is first order. 

This is an important result as it confirms that Paris law adheres exactly to first order rules 

and therefore Eq. (4.15b) is exact. The first-order relationship provided by Eq. (4.15a) is 

approximate (as 𝑎𝛽is second order) but this transpires to be sufficient to return good 

accuracy. 

4.4. Experimental Investigation 

In this section, previous experimental data is examined, and the first order theory applied.  

Although scaled fatigue investigations into the geometrical size effect are detailed in the 

literature, few conform to the rules of first-order finite similitude.  They do not apply the 

identities in Table 4.1 nor conform to the procedure outlined is Section 4.3.  In addition, the 

CFD approach [23,126] is predominantly applied yet the focus here is FCP.  The closest 

match from the literature is the experimental data from a three-point bending fatigue test on 

concrete performed by Bazant & Xu [14] and Kirane & Bazant [129]. 

 

4.4.1. Case study I: Three-point bending fatigue test of concrete 

Three-point bending fatigue tests of normal strength concrete were carried out in the 

pioneering work of Bazant and Xu [14] for three different geometrically similar beam sizes 

with loading ratio 𝑅 = 0. This was the first comprehensive experimental investigation into 

size effect in fatigue. Each specimen size was tested twice and the number of cycles to failure 

were recorded. The beams have an elastic modulus of 27.12 GPa, mean compression strength 

of 32.8 MPa and Poisson’s ratio equal to 0.18. The thickness B for all beams was 38.1 mm 
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(1.5 in) and the length-to-depth ratio 𝑆/𝐷 was held constant at a value of 2.5. Table 

4.2 presents the geometry dimensions, geometric scaling factor 𝐵 and the mean monotonic 

force as obtained from a load-CMOD monotonic test. The cyclic loading for each beam was 

set at 80% of peak load at its maximum and 5% of its peak load at its minimum. The fatigue 

strength expressed as the number of cycles to failure 𝑛𝑓 for all specimens is presented in 

Table 4.3 alongside the Paris law exponents C and m. The predictions made using the size 

effect law proposed by Bazant and Xu [14] are reported. 

 

Table 4.2: Specimen dimensions [14] 

Specimen 
Depth 

D (mm) 

Length  

S (mm) 

Thickness 

B (mm) 
𝛽𝑖 

Force  

𝑃 (kN) 

Small (ts2) 38.1 95.25 38.1 0.186 408 

Medium 

(ts1) 
76.2 190.5 38.1 0.432 671 

Large (ps) 152.4 381 38.1 1 1165 

 

Table 4.3: Experimental data for number of cycles to failure 𝑛𝑓 and Paris law parameters C 

and m for concrete beams of different sizes [14] 

Specimen Small Medium Large 

1 974 850 882 

2  939 1286 1083 

Mean 𝑛𝑓 957 1068 983 

Mean 𝐿𝑜𝑔 𝐶 -16.7 -18.2 -19.6 

Mean m 11.78 9.97 9.27 

 

The first order finite similitude rules provide the scaling factors needed to combine key 

fatigue outputs from the fatigue tests of the small-scale models (small and medium beam) to 

predict the corresponding fatigue parameters of the full-scale model (large beam). The 

practical procedure outlined in Section 4.3.3 is applied here. Eq. (4.13b) is used to predict 

the number of cycles to failure of the large specimen from the information provided at the 

two smaller scales.  The mean number of cycles to failure for each of the specimen sizes in 

Table 4.3 is used to predict fatigue life. The dimensional scaling factor 𝑅1  is calculated 

using Eq. (4.14). Substitution of the data for the scaled specimens into Eq. (4.13b) gives: 
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𝑛1 = 0.5
0.5 × 1068 + 0.5 (0.50.5 × 1068 − 0.250.5 × 957) 

= 893 ≈ (𝑛𝑝𝑠)𝑓 

(4.16a) 

providing good agreement between the similitude prediction of 893 cycles and the 

experimental result of 983 cycles (9% error). Similarly, the final crack length of the large 

specimen can be predicted using Eq. (4.15a): 

(𝑎1)𝑓 = 0.5−1 × 76.2 + 0.5 (0.5−1 × 76.2 − 0.25−1 × 38.1) 

= 152.4 𝑚𝑚 = (𝑎𝑝𝑠)𝑓  

(4.16b) 

providing an exact match between the predicted crack length by first-order similitude and 

the experimental result.   

Despite the loading conditions for the experimental tests not being ideal, reasonable fatigue 

life predictions can still be achieved on application of the first order theory. Although the 

results for fatigue life are only indicative and introduced principally to show the application 

of Eq. (4.13b) and Eq. (4.15a) it is of interest nevertheless to examine the fatigue crack 

growth (FCG) curve to ascertain if the theory (despite these limitations) can capture the 

correct crack growth rate.  A virtual model is constructed from the two projected scaled 

models (using the first-order identities) with the projected scaled models on 𝛺𝛽  being akin 

to predictions returned from dimensional analysis. Table 4.4 compares the Paris law 

exponents for the large beam as obtained from experiments [14], proposed scaling model 

in [14] and the virtual model constructed using first order similitude rule identities. The Paris 

law exponent C is observed to exhibit a much stronger size effect than m [14]. Thus, in 

designing large structures, it is imperative that the prediction of C returned by the scaling 

theory is as accurate as possible. The error in ln C prediction returned by virtual model is 

1.9% with the scaling models in ref. [14] returning an error of 6.1%. 

Table 4.4: Comparison of Paris law exponents for the large beam between experimental 

data, first order theory and the scaling model in ref. [14] 

Model 𝐿𝑜𝑔 𝐶 𝑚 𝑚 error 

(%) 

𝐿𝑜𝑔 𝐶 error 

(%) 

Experimental [14] -19.6 9.27 - - 

Bazant & Xu’s 

model [14] 

-18.4 10.6 14.3 6.1 

Virtual model 

(Current work) 

-19.976 10.65 14.9 1.9 
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Mean log C -16.7 -18.2  -19.6 

Mean m 11.78 9.97  9.27 

 

 

4.4.2. Case study II: Three-point bending fatigue test of concrete 

The experimental data from the work of Kirane and Bazant [129] involves three-point 

bending fatigue tests of concrete for three different beam sizes (see Fig. 4.2).  Each specimen 

size was tested 6 times and the number of cycles to failure were recorded. To minimise the 

statistical size effect, the mean value of the number of cycles to failure of each specimen was 

used to validate the scaling theory in ref. [129] and the same method is adopted in this paper.  

Dimensions of the specimen are given in Table 4.5 for beams with elastic modulus of 41.4 

GPa and Poisson’s ratio equal to 0.18.  Three different beam depths D were tested, which 

are 40, 93 and 215 mm.  The thickness B for all beams was held constant at 40 mm (1.58 in) 

and the length-to-depth ratio 𝑆/𝐷 was held constant at a value of 2.4.  The fatigue life 

expressed as the number of cycles to failure 𝑛𝑓 for all specimens is presented in Table 4.6 

alongside the Paris law exponents C and m.  

 

Table 4.5: Specimen dimensions [129] 

Specimen 
Depth 

D (mm) 

Length  

S (mm) 

Thickness 

B (mm) 
𝛽𝑖 

Small (ts2) 40 96 40 0.186 

Medium (ts1) 93 223.2 40 0.432 

Large (ps) 215 516 40 1 

 

Table 4.6: Experimental data for number of cycles to failure 𝑛𝑓 and Paris law parameters C 

and m for concrete beams of different sizes [129] 

Specimen Small Medium Large 

Mean 𝑛𝑓 1000 564 418 

Mean log C  -30.42 -31.11 -31.68 

Mean m 8.59 8.36 8.02 
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Figure 4.2: Specimens at final fatigue fracture [129] 

 

The first order finite similitude rules provide the scaling factors needed to combine key 

fatigue outputs from the fatigue tests of the small-scale models (small and medium beam) to 

predict the corresponding fatigue parameters of the full-scale model (large beam). The 

practical procedure outlined in Section 4.3 is applied here. Eq. (4.13b) is used to predict the 

number of cycles to failure of the large specimen from the information provided at the two 

smaller scales.  The mean number of cycles to failure for each of the specimen sizes in Table 

4.5 is used to predict fatigue life. The dimensional scaling factor 𝑅1  is calculated using Eq. 

(4.14). Substitution of the data for the scaled specimens into Eq. (4.13b) gives: 

𝑛1 = 0.432
0.5 × 564 + 0.429 (0.4320.5 × 564 − 0.1860.5 × 1000) 

= 368 ≈ (𝑛𝑝𝑠)𝑓 

(4.17a) 

providing good agreement between the similitude prediction of 368 cycles and the 

experimental result of 397 cycles (7% error). Similarly, the final crack length of the large 

specimen can be predicted using Eq. (4.15a): 

(𝑎1)𝑓 = 0.432
−1 × 93 + 0.429 (0.432−1 × 93 − 0.186−1 × 40) 

= 215 𝑚𝑚 = (𝑎𝑝𝑠)𝑓  

(4.17b) 

providing an exact match between the predicted crack length by first-order similitude and 

the experimental result.   
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Figure 4.3: Fatigue crack growth rate vs stress intensity factor for full scale, virtual, 

projected scaled and Kirane & Bazant’s [129] models. 

 

The model by Kirane & Bazant based on a size adjusted Paris law [129] returned an 

impressive global error of only 3% when contrasted with the FCG curve of the large beam. 

The virtual model constructed using the finite similitude theory returns in this case the crack 

growth rate of the large concrete beam to good accuracy (6% error). The promising results 

shown in this section lend credence to the first order theory as an alternative approach to 

scaled experimentation of propagating fatigue cracks. 

4.5. Numerical Experimentation 

The experiments discussed above provided reasonable results despite these not strictly 

adhering to the finite similitude rules introduced by the new theory. An advantage of 

numerical approaches in scaling work is they can be applied at any scale and consequently 

can be used to test scaling theories. It is of interest therefore to explore the benefits of trials 

satisfying exactly the rules of finite similitude.  This is examined in this section by means of 

numerical experiments for methods that are typically applied to model and investigate 

fatigue.  The first-order finite similitude rule has the advantage of replicating exactly the 

macroscopic conditions at the crack tip (i.e., stress, stress gradients) [189-190] and 

consequently the expectation is that numerically produced results will be replicated with 

little error. 
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Three case studies are considered in this section with the principal aim to show the 

applicability of the theory to a diverse range of fatigue problems.  The tests considered are 

the single edge notched tensile specimen (SENT), a hollow pipe, and a cylindrical pressure 

vessel with a semi elliptical crack.  The ASTM E647 [174] procedure is employed in all case 

studies to evaluate the fatigue crack growth rate.  ANSYS 2021 is the software of choice, 

and crack propagation is studied by means of the ANSYS SMART solver [95].  ANSYS can 

model three kinds of cracks: arbitrary, semi-elliptical, and pre-meshed.  The pre-meshed 

crack is used for the SENT specimen whereas for the last two case studies a semi-elliptical 

crack is modelled.  The cracks behaviour is described by a cohesive zone model in the 

software.  For the pre-meshed crack, it is necessary to define the top and bottom surfaces of 

the crack and its crack front manually, whereas with the semi-elliptical crack it is done 

automatically.   

The mode of operation using the smart crack growth-analysis tool is relatively 

straightforward.  The crack front is advanced by a small amount ∆𝑎 and the mesh is updated 

around the new crack front.  As the crack propagates, the newly introduced crack segments 

are assumed to behave in accordance with the cohesive zone model. This process is repeated 

for a set number of sub steps till the desired final crack length is reached 𝑎𝑓. SMART 

automatically updates the mesh from crack geometry changes due to crack propagation at 

each solution stage, reducing the need for long pre-processing sessions.  

To apply the procedure highlighted in section 4.3.3, the zeroth-order condition ∆𝑎𝑡𝑠 =

𝛽 × ∆𝑎𝑝𝑠 is applied to the scaled models and the number of sub-steps are kept the same for 

both the full scale and scaled down models. This enables fracture mechanics outputs to be 

combined at each sub-step using the relevant first order identity. ∆𝑎𝑝𝑠 is set to 0.2 mm in all 

case studies. ∆𝐾 is evaluated at the mid-point of the crack point in all case studies. 

The work of Busari et al. [192] on a SENT specimen is replicated first to validate the fatigue 

crack growth results in this paper.  Constant amplitude loadings are applied in all case 

studies. An element size of 0.2 mm is employed local to the crack tip for all case studies as 

recommended by Zhang et al. [178].  Elements with a size of 1 mm are used in the other 

regions of the specimen to reduce computational time.  The number of elements is kept the 

same for all scaled models to eliminate the effects of mesh dependency and SOLID187 [95] 

elements are employed in all case studies. S355 steel is used for the first two case studies, 

and 7% nickel steel is the material of choice for the pressure vessel with material properties 

according to ref. [193].  Material properties are provided in Table 4.7. 
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Table 4.7: Mechanical properties of materials used in numerical analysis [192,193] 

Material 

Young’s 

Modulus 

(MPa) 

Poisson’s 

ratio, 𝑣 

Yield 

strength 

(MPa) 

Ultimate 

tensile 

strength 

(MPa) 

Paris law parameters  

C 

(mm/cycleMPamm0.5) 
m 

S355 213 0.3 400 450 1.67 × 10−12 2.51 
7% 

Nickel 

steel 
205 0.3 475 510 1 × 10−13 3 

 

4.5.1. Verification of numerical results 

The Ansys smart solver is validated in this section against previous experimental work to 

ensure the fatigue life predictions are accurate before applying scaling laws. Busari et al. 

[192] conducted fatigue tests on a single edge notched tensile (SENT) specimen for S355 

and S960 steel at different load ratios and applied pressure. The fatigue response of the S355 

steel is replicated here with a load ratio 𝑅 = 0.  Two types of crack measurement method 

were used for enhanced accuracy.  A cyclic stress of 150MPa was applied to the top edge 

whereas the bottom edge was fixed. Details of the geometry are shown in Fig. 4.4.  Due to 

computational resource limitations, the number of cycles is validated over 100,000 cycles 

only.  

 

Figure 4.4: Geometry of single edge notched tension specimen and comparison between 

the numerical results of the current study and Busari et al. [192]. 
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The numerical results predict a crack length of 10.5 mm at 100,000 cycles whilst 

experimental data gives 10 mm.  The agreement achieved between numerical results from 

Ansys, and experimental data provides confidence in the Ansys SMART solver.  The current 

study and the reported findings of Busari et al. [192] differ by a 5% error in final crack 

length. The validated numerical procedure is employed in the subsequent sections to 

investigate the efficacy of the proposed scaling method based on the first-order theory. 

 

4.5.2. Case study I: Single edge notched tensile specimen (SENT) 

The geometry of the SENT specimen is same as highlighted in Fig. 4.4. The material 

considered is S355 steel. A cyclic stress of 160 MPa with a load ratio 𝑅 = 0 is applied to the 

top edge and the bottom edge is fixed. A mesh sensitivity study was performed to investigate 

the effect of different element sizes around the crack tip. Element sizes used are 0.2 mm, 0.5 

mm and 1 mm. The simulation ran until final fracture of the specimen and the results are 

presented in Fig. 4.5.  Based on the analysis 0.2 mm is chosen as element size around the 

crack tip as the crack growth rate is very similar with an element size of 0.1 mm or 0.2 mm 

up to 100,000 cycles where some deviation can be observed. All case studies are below 

100,000 cycles so 0.2 mm is deemed sufficient. For the SENT specimen, the number of 

cycles taken to propagate the crack 5 mm in the full-scale model to critical final crack length 

𝑎𝑓 of 10 mm is examined. The crack-extension increment ∆𝑎 of the full-scale model is set 

to 0.2 mm (i.e., ∆𝑎𝑝𝑠 = 0.2 mm). The number of sub-steps over which the crack is 

propagated is 25 which is kept the same for the scaled models. The stress distribution is not 

uniform across the crack front, so the stress intensity factors are evaluated at the midway 

point of the crack front for all case studies. Applied stress for the scaled models are calculated 

using the identities in Table 4.1. 

The specimen dimensions and loading conditions for SENT specimen can be found in Table 

4.8 and Table 4.9.  Additionally, Table 4.10 presents the dimensional scaling factors for all 

three specimens. 
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Figure 4.5: Mesh sensitivity study for single edge notched tensile specimen 

 

Table 4.8: Dimensions of SENT specimen at all scales 

Model 𝛽 

Initial 

crack 

size a 

(mm) 

 

Height 

(mm) 

Ligament 

length 

(W-a) 

(mm) 

Thickness 

(mm) 

Width 

(mm) 

Full scale 1.00 5.00 240 30.00 5.00 35.00 

Scaled 

Model 1 
0.80 4.00 192 24.00 4.00 28.00 

Scaled 

Model 2 
0.50 2.50 120 15.00 2.50 17.50 

Scaled 

Model 3 
0.25 1.25 60 7.50 1.25 8.75 

 

Table 4.9: The loading conditions of SENT specimen at all scales 

 

Model 𝛽 

Crack extension 

∆𝑎  

(mm) 

Applied cyclic 

stress 

(MPa) 

Load  

ratio 

𝑅 
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Full scale 1.00 0.20 200 0 

Scaled 

Model 1 
0.80 0.16 200 0 

Scaled 

Model 2 
0.50 0.10 200 0 

Scaled 

Model 3 
0.25 0.05 200 0 

 

Table 4.10: Value of the scaling factors with different dimensional scaling factors 

Virtual 

Model No. 
𝛽1 𝛽2 𝛼01

𝑣 𝑔1 𝛼02
𝑣 𝑔2 𝑅1 

1 0.80 0.50 1.56 4.00 0.33 

2 0.80 0.25 1.56 16.00 0.09 

3 0.50 0.25 4.00 16.00 0.50 

 

The first task undertaken is examining the stress distribution around the crack tip after 5mm 

of crack propagation; the results are shown in Fig. 4.6.  It can be observed that the stress 

distribution is the same for both the full scale and scaled down models.  The crack propagates 

through the midpoint of the specimen as it is a pure mode I case. These findings are consistent 

with that of previous researchers [192].  The next step is to investigate how accurately the 

crack tip driving force, i.e., the stress intensity factor and subsequently the crack propagation 

rate is predicted. The aim here is to predict the number of cycles, it takes the crack to grow 

5 mm. The results are tabulated in Table 4.11. Excellent agreement is achieved for the stress 

intensity factor at 5 mm with a maximum error of 2% predicted by virtual model 3. Virtual 

model 1 gives the best lifecycle prediction where the crack grows 5 mm in 39,962 cycles as 

opposed to 40,624 cycles for the full-scale model (2% error). The plot of the crack length 

against number of cycles is shown in Fig. 4.7 with the effect of load ratio presented in Fig. 

4.8. 

Crack length 10mm for the full-scale 

model  

Crack length 10mm for the virtual model   
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Crack length 8mm for 𝛽1 = 0.80  Crack length 5mm for 𝛽2 = 0.5  

   

Figure 4.6: Von Mises stress distribution at the crack tip of SENT specimen for the full-

scale model and the two scaled models for virtual model 1. 

 

Table 4.11. Stress intensity factor and number of cycles at final crack length of 10 mm after 

25 sub steps for full scale, virtual and scaled down models 

Model 𝑎𝑓 (mm) 𝐸𝑟𝑟𝑜𝑟 (%) 𝐾(𝑀𝑃𝑎𝑚𝑚0.5) 𝐸𝑟𝑟𝑜𝑟 (%) 𝑛𝑝𝑠 𝐸𝑟𝑟𝑜𝑟 (%) 

Full 

Scale 
10 - 1684.4 - 40624 - 

Virtual 

Model 

1 

10 0 1666.5 1 39962 2 

Virtual 

Model 

2 

10 0 1664.6 1.2 39427 3 

Virtual 

Model 

3 

10 0 1655.7 2 37068 9 

Scaled 

Model 

1 

8 20 1490.4 12 43119 6 

Scaled 

Model 

2 

5 50 1177.8 30 48623 20 
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Scaled 

Model 

3 

2.5 75 842.8 50 58016 43 

 

Eq. (4.13b) is used to predict the number of cycles needed to propagate the crack 5 mm for 

the full-scale model. Eq. (4.14a) is used to predict the final crack length from the outputs of 

the scaled model. At the final crack length, 𝑎𝑓 of 10 mm the number of cycles for the full 

scale is 40624. The corresponding cycle count for scaled models 1, 2 and 3 are 43119, 48623 

and 58016, respectively.  Substitution of the data for the scaled specimens 1 and 2 into Eq. 

(4.13b) and using the scaling factors provided in Table 4.9 gives: 

(𝑛1 )𝑓 = 0.80.5 × 43119 + 0.33 (0.80.5 × 43119 − 0.50.5 × 48623) (4.17) 

which consequently provides the prediction for virtual model 1 of  

(𝑛1 )𝑓 = 39962 

which can be contrasted against the full-scale value of 40624 cycles; similarly, the 

predictions for virtual models 2 and 3 can be calculated in the same manner, and for virtual 

model 3 they are 39427 cycles and 37068 cycles, respectively.   

The effect of mean stress on crack growth rate is examined and the first order theory applied 

to determine if this effect can be captured. To this end, the SENT specimen is subjected to 

two different R ratios of 0.1 and -1.  The results are presented in Fig. 4.8, which reveals that 

the mean-stress effect is adequately captured by the theory as the virtual models give near 

exact predictions of the number of cycles.  The global error for R ratios 0, 0.1 and -1 are 2%, 

2% and 5 % respectively. The findings of this work are consistent with that of other 

researchers. Elber found that negative R ratios decrease fatigue life while low R ratios 

increase fatigue life [194]. 
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Figure 4.7: Crack length vs number of cycles for full scale and scaled down SENT models 

 

Figure 4.8: Crack length vs number of cycles for single edge notched tensile specimen for 

full scale model and virtual model 1 at R ratios 0, 0.1 and -1 

 

4.5.3. Case study II: Semi-elliptical crack in a pipeline 

A pipe of length 100 mm, outer radius 50 mm and inner radius 42 mm under an internal 

pressure load of 50 MPa is considered. A semi-elliptical crack with a major radius of 5 mm 
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and minor radius of 1 mm is inserted in the longitudinal direction at the midpoint of the pipe. 

The dimensions of the pipe are shown in Fig. 4.9 with trial details presented in Table 4.12.  

Three scaled models are considered and a pressure of 50 MPa is applied to all models; S355 

steel is used throughout. The loading conditions are tabulated in Table 4.13. The dimensional 

scaling factors for all three specimens are identical to those in Table 4.10.  

 

Figure 4.9: Meshed pipe with crack mesh at the centre. 

 

Table 4.12: Dimensions of pressurized pipe for the full-scale and scaled models 

Space 𝛽 

 

Crack 

length 

2𝑐 

(mm) 

 

Crack 

depth 

 𝑎 

(mm) 

Length 

(mm) 

Outer 

radius 

(mm) 

Inner 

radius 

(mm) 

Full scale 1.00 5.00 1.00 100.00 50.00 42.00 

Scaled 

Model 1 
0.80 4.00 0.80 80.00 40.00 38.40 

Scaled 

Model 2 
0.50 2.50 0.50 50.00 25.00 26.00 

Scaled 

Model 3 
0.25 1.25 0.25 25.00 12.50 13.00 

 

Table 4.13: The loading conditions of pipe at all scales 

 

Model 𝛽 

Crack extension 

∆𝑎  

(mm) 

Applied pressure 

load 

(MPa) 

Load  

ratio 

𝑅 

Full scale 1.00 0.20 50 0 
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Scaled 

Model 1 
0.80 0.16 50 0 

Scaled 

Model 2 
0.50 0.10 50 0 

Scaled 

Model 3 
0.25 0.05 50 0 

 

 

Table 4.14. Stress intensity factors and number of cycles at final crack length of 7 mm for 

full scale and virtual models 

Model 𝑎𝑓 (mm) 𝐸𝑟𝑟𝑜𝑟 (%) 𝐾(𝑀𝑃𝑎𝑚𝑚0.5) 𝐸𝑟𝑟𝑜𝑟 (%) 𝑛𝑝𝑠 𝐸𝑟𝑟𝑜𝑟 (%) 
Full 

Scale 
7 - 6452 - 783 - 

Virtual 

Model 

1 

7 0 6678 1 782 0.1 

Virtual 

Model 

2 

7 0 6613 1.2 769 2 

Virtual 

Model 

3 

7 0 6321 2 710 9 

 

 

Figure 4.10: Crack growth rate vs stress intensity factor of pipe for full scale and virtual 

models 
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As evident from Fig. 4.10 the predictions of the crack growth rate by virtual models 1 and 2 

are near enough exact throughout the range of ∆𝐾 in the test. Exact agreement is achieved at 

lower ∆𝐾 values with slight deviations observed as the stress intensity factor increases. 

Predictions made by virtual model 3, based on the smallest scaled models (see Table 4.10), 

produces slightly worse results than others yet still records results at less than 10% error.  

The stress intensity factors and number of cycles at final crack length are tabulated in Table 

4.14. 

 

4.5.4. Case study III: Semi-elliptical Crack in a Pressure Vessel 

In this case study, a vertical pressure vessel with a semi elliptical crack at the centre is 

analysed with the geometry presented in Fig. 4.11. The crack is 5 mm long and 1 mm deep 

(aspect ratio 0.4). The top face is under a tensile loading of 250 MPa while the bottom end 

is fixed in all directions.  The material 7% nickel steel is used for the full-scale model and 

scaled-down models. Table 4.15 and Table 4.16 presents the loading and geometry 

dimensions for all models. The semi-elliptical crack is propagated by 0.2mm for 10 substeps 

for a total crack growth of 2 mm in the full-scale model and the aim here is to evaluate the 

number of cycles it takes to reach the final crack length of 7 mm. A prediction is made from 

three different virtual models which are three permutations of the data (see Table 4.10) from 

the three scaled models.  Lifecycle and stress intensity predictions are extremely accurate 

with only 1% deviation from the full-scale model for all virtual models.  The stress intensity 

factors and number of cycles at final crack length are tabulated in Table 4.17. 

  

Figure 4.11: Dimensions and mesh of pressure vessel 
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Table 4.15: Dimensions of pressure vessel for the full-scale and scaled down models 

Model 𝛽 

 

Crack 

length, 

2𝑐  
(mm) 

 

Crack 

depth 

 𝑎 

(mm) 

∆𝑎 

(mm) 

Length 

(mm) 

Diameter 

(mm) 

Full scale 1.00 5.00 1.00 0.20 60.00 40.00 

Scaled 

Model 1 
0.80 4.00 0.80 0.16 48.00 32.00 

Scaled 

Model 2 
0.50 2.50 0.50 0.10 30.00 20.00 

Scaled 

Model 3 
0.25 1.25 0.25 0.05 15.00 10.00 

 

Table 4.16: The loading conditions of pressure vessel at all scales 

 

Model 𝛽 

Crack extension 

∆𝑎  

(mm) 

Applied pressure 

load 

(MPa) 

Load  

ratio 

𝑅 

Full scale 1.00 0.20 250 0 

Scaled 

Model 1 
0.80 0.16 250 0 

Scaled 

Model 2 
0.50 0.10 250 0 

Scaled 

Model 3 
0.25 0.05 250 0 

 

Table 4.17. Stress intensity and number of cycles at final crack length of 7 mm for full 

scale and virtual models 

Model 𝑎𝑓 (𝑚𝑚)  𝐸𝑟𝑟𝑜𝑟 (%) 𝐾(𝑀𝑃𝑎𝑚𝑚0.5) 𝐸𝑟𝑟𝑜𝑟 (%) 𝑛𝑝𝑠 𝐸𝑟𝑟𝑜𝑟 (%) 
Full 

Scale 
7 - 1003.8 - 26702 - 

Virtual 

Model 

1 

7 0 1014.6 1 26682 1 

Virtual 

Model 

2 

7 0 1014.3 1 26673 1 
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Virtual 

Model 

3 

7 0 1012.8 1 26637 1 

 

 

Figure 4.12: Crack length vs number of cycles for full scale and virtual models of pressure 

vessel 

 

SIF variation for the full-scale model  SIF variation for the virtual model   

  

 

 

 

 

 

 

 

 

 

SIF variation for 𝛽1 = 0.80  SIF variation for 𝛽2 = 0.5  
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Figure 4.13: Stress intensity factor distribution at the crack front of the pressure vessel for 

the full-scale model and the two scaled models for virtual model 11 after 2mm crack 

growth. 

 

The stress intensity factor after 2 mm of crack propagation in the full-scale model is 

1003.8 MPamm0.5. The first-order theory returns a value of approximately 1014 

MPamm0.5 for virtual models 1 and 2, and 1013 MPamm0.5 for virtual model 3 translating 

to a 1% error. The lifetime prediction is within a 1% deviation from full-scale fatigue life for 

all virtual models. The plot of crack length vs number of cycles is presented in Fig. 4.12. 

Contrasted in Fig. 4.13 is the crack shape after 2mm of crack propagation for the scaled, 

virtual, and full-scale models.  As can be readily seen from this figure, the final crack shape 

is predicted accurately by the theory.  The locations of the maximum and minimum SIF are 

consistent across all scales. A quantitative analysis is made to determine how well the 

variation of the stress intensity factor across the crack front for the full-scale model can be 

predicted. It is appreciated that stress intensity factor for a semi-elliptical crack depends on 

the position along the crack front [195].  Fig. 4.14 shows the stress intensity factor 

distribution across the crack front for the full-scale model and virtual models. Excellent 

agreement is achieved between the virtual model and full-scale model with no more than 3% 

error.   
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Figure 4.14: Stress intensity factor distribution across the crack front of pressure vessel for 

the full-scale model and virtual models at final crack length of 7 mm.  

 

Presented in Fig. 4.15 is the fatigue crack growth curve (FCG) of 7% Nickel steel for the 

pressure vessel. The FCG curve is constructed according to ASTM E647 standard [174]. The 

crack growth rate 𝑑𝑎/𝑑𝑛 is measured in (𝑚𝑚/𝑐𝑦𝑐𝑙𝑒) whereas ∆𝐾 is measured in 

𝑀𝑃𝑎𝑚𝑚0.5. The first order identity is applied to the maximum ∆𝐾 values in order to return 

accurate 𝐶 and 𝑚 values. This is because crack extension in SMART solver using Paris law 

is controlled by the ∆𝐾 𝑚𝑎𝑥 at the nodes. The location of the maximum stress intensity factor 

is at the crack tips in this case study, the left and right crack tip have roughly the same ∆𝐾 

values see Fig. 4.14. Thus ∆𝐾 values at the crack tip are used for all models. The pattern of 

decreasing C with scale is observed here with m remaining unchanged. This is consistent 

with the findings of other researchers see [14, 129]. Remarkably, the virtual models predict 

the Paris law constants of the material with no error confirming the two-experiment approach 

is a potentially promising approach to fatigue scaling.  
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Figure 4.15: Crack growth rate vs stress intensity factor of pressure vessel for full scale, 

scaled down and virtual models 

 

4.6. Conclusions 

The first-order finite similitude theory combines information recorded at two scales to 

reproduce behaviours at the full scale.  The approach has been extended to facilitate its 

application to empirical crack growth laws.  New expressions for the number of cycles to 

fatigue failure and stress intensity increment with scale have been established under the 

hypothesis that their product satisfies a second-order finite similitude rule (i.e., Δ𝐾𝑡𝑠𝑛𝑡𝑠 is 

second order).  Previous experimental data for concrete was examined and it was found that, 

despite the presence of a geometric size effect, it is possible to capture full-scale fatigue 

behaviour from the results of two scaled experiments.  Numerical studies for three different 

case studies based on Paris law confirmed the initial observations made on experimental 

data. Exact predictions for the Paris law constants C and m were achieved.  

The following specific conclusions were drawn from the analysis and results returned in the 

paper: 

• Application of the approach to available experimental data for concrete confirmed 

that reasonable predictions for crack growth was possible.  Single digit percentage 

errors were returned for crack growth rate and the number of cycles to failure. 
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• Numerical experimental trials were employed to investigate fatigue crack growth in 

a single edge notched tensile specimen, pipe and pressure vessel with the experiments 

designed based on the exact application of the finite-similitude rules. Fatigue life was 

predicted very accurately in each case within a 0.1% error in the best models and no 

more than 9% deviation in the worst-case scenario.  Furthermore, critical fracture 

mechanics parameters such as the stress intensity variation across the crack front was 

accurately captured by the theory.  

• The results from the case studies suggest that use of two scaled models is a possible 

alternative approach to fatigue crack growth analysis within the fracture mechanics 

framework. However more experiments both physical and numerical would need to 

be conducted to further validate the effectiveness of this approach. Furthermore, 

practical fatigue case studies would need to be performed to determine if mixed crack 

growth fatigue life predictions can be resolved by the first order finite similitude 

theory.  
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Chapter 5 Scaled Fatigue Cracks Under Service Loads 

 

5.1 Introduction 

The presence of defects such as flaws, cracks, and voids in the microstructure is virtually 

unavoidable in engineering structures. Under repeated cyclic loading, these flaws grow 

eventually resulting in failure of the structure, which is a phenomenon known as fatigue 

[196]. The importance of designing a structure to withstand fatigue loads cannot be 

understated as it is estimated that up to 90% of structures fail due to fatigue fracture [1].  The 

mechanism of fatigue can be broadly divided into three stages, viz: crack initiation, 

propagation, and final failure.  The fatigue life of a structure refers to the summation of time 

periods for crack initiation, crack propagation and final failure [3].  Fatigue largely remains 

an empirical science founded on experimental investigations and supported by analytical 

studies.  The first and most popular law (widely known as Paris law [28]) describing steady 

fatigue growth was proposed by Paris and Erdogan in 1961.  This law relates the crack 

growth rate 𝑑𝑎 𝑑𝑛⁄   (𝑎 is crack length and 𝑛 is the number of cycles) with the elastic stress 

intensity factor range (∆𝐾).  Since falling under the umbrella of linear elastic fracture 

mechanics (LEFM) the effects of residual stress, stress ratio and environmental conditions 

are not accounted for in the Paris law formulation [3].  This has led to various adaptations, 

which include Walker’s formula, accounting for the influence of mean stress [50], and 

Wheeler’s formula, which accommodates sudden overloads on structures [197].  A 

comprehensive review of different empirical fatigue laws can be found in refs. [3, 198-199]. 

Overall, there does not exist a universal fatigue model/law that considers the multitude of 

factors that affect fatigue-crack growth [134]. 

Because of the increased adoption of the damage tolerance design concept across various 

industries, there is increased demand for more accurate residual life predictions of 

components and structures [58].  There are three types of crack loading viz: mode I, mode 

II, and mode III, which is a categorisation based on the relative direction of the applied load 

to the direction of crack growth.  In mode I, the loading is normal to the crack direction, 

whereas mode II it is parallel to the crack direction [200].  Most crack-growth studies focus 

mainly on mode I dominated fatigue loading, however, during the service of various 

structures, including those of aircraft, the loads experienced by a structure are 

multidirectional in nature and consequently crack directions are not necessarily normal to 

the loading direction [200].  All three modes of fracture exist, hence in such practical cases, 
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the direction of crack growth is not obvious.  To successfully predict the crack growth rate 

of mixed-mode fatigue crack growth, it is convenient to define an equivalent stress intensity 

factor range (∆𝐾𝑒𝑞𝑢𝑖𝑣) that accommodates the stress intensity combination of the different 

modes.  In practice, modes I and II are dominant with the contribution from mode III being 

usually negligible.  Tanaka proposed a modification of Paris law in 1974 by replacing ∆𝐾 

with an equivalent stress intensity factor range (∆𝐾𝑒𝑞𝑢𝑖𝑣) and relating it to crack growth rate 

[59].  Different ∆𝐾𝑒𝑞𝑢𝑖𝑣 models have been put forward by different researchers since 1974 

and a summary can be found in refs. [58, 201-203].  In addition, several stress and energy-

based fracture criteria have been postulated to predict the crack growth trajectory.  The most 

popular criterion is the maximum tangential stress (MTS) criterion proposed by Erdogan 

[65].  This criterion has been widely applied with great success however there are instances 

where the data does not support its application (see the work of Tanaka [59]). The minimum 

strain energy density (SED) [204], maximum energy release rate (MERR) [205] and the 

maximum tangential strain (MTSN) [206] criteria are some of the more commonly used 

theories to predict crack trajectory under mixed mode conditions. 

The consequences of fatigue failure of a structure are enormous with loss of life a very real 

threat.  Consequently, structures must be designed to either resist crack initiation over its 

lifecycle (safe life approach) or permit crack growth (damage tolerant approach) in 

circumstances where there is no significant loss of function of the structure.  The latter is the 

focus in this paper in combination with the application of scaled models.  Full-scale 

experimental fatigue testing is a possibility for mixed-mode cracks, but these are invariably 

time intensive, costly and in some cases impractical due to limited testing capability.  The 

cheaper alternative of scaled experimentation suffers a particular impediment however with 

size effects making it difficult to interpret the results from scaled studies.  Due to the sheer 

size of structures, it is sometimes impossible to perform full scale testing with scaled testing 

the only recourse. The specimens tested can often be one or two orders magnitude smaller 

than the actual structure thus plagued by severe size-effects limiting the usefulness of 

predictions that can be forecast using scaled models. Engineers compensate for this with 

very conservative safety factors, but the benefit of reliable predictions from scaled testing is 

evident, through less conservative safety factors being applied leading to lighter and cheaper 

products.  Size and scale effects were first recorded by Galilei in 1730 observing that the 

behaviour of structures, systems, and processes change with scale [151].  To make sense of 

the information recorded at scale an underpinning theoretical foundation is required, which 
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usually takes the form of similarity methods, which include dimensional analysis [116], 

energy methods [117], empirical methods [118] among others [13].  Extensive research [127-

134] has confirmed the existence of size effects in fracture mechanics and fatigue regardless 

of material type.  Broadly speaking, size effects can be categorised into three, which are 

statistical, technological, and geometric [126]. 

The focus in this paper is solely on the observed difference in fatigue crack growth (FCG) 

rate with geometry change with replica scaling (i.e., identical materials throughout).  

Geometric size effects are shown in the work of Brose and Dowling [24], where they 

examined the fatigue crack growth rate of compact tension (CT) specimens.  Increasing the 

width from 25mm to 400mm whilst maintaining constant other dimensions resulted in a 

decrease by a factor of 5 of the FCG rate of AISI 304 steel.  Similarly, Garr and Hesko 

confirmed that different sized CT specimens resulted in varying FCG rates in Inconel 718 

alloy [25].  In addition, quasi-brittle materials such as concrete have been shown to exhibit 

a size effect [14] indicating that plasticity is not the principal cause.  Special mention must 

be paid to the pioneering work of Barenblatt and Botvina who confirmed, on application of 

dimensional analysis to the Paris law, that complete self-similarity is impossible for a 

material under fatigue loading.  The theoretical exception is a Paris law exponent m equal to 

2 [134], but this cannot occur in the presence of a size effect, which is a contention supported 

by experimental observation. Alternative formulations to counter the lack of scalability of 

Paris law have been considered.  Bazant and Xu expressed the change in crack length per 

cycle as a power function of the amplitude of a size-adjusted stress intensity factor [33].  

Carpinteri proposed a mono-fractal approach to deal with the dependence of the Paris law 

exponent on initial crack length [207].  Other multifractal approaches have been put forward 

by different researchers [208,209].  However, it should be recognised that adaptions of the 

Paris law will not satisfy the similitude invariance provided by dimensional analysis.  The 

existence of a size effect in and of itself is sufficient to confirm that dimensionless empirical 

laws must change with scale.  

Numerical simulation techniques are increasingly used to support fatigue studies especially 

for complex geometries where analytical expressions for stress intensity factors are not 

available.  Common methods used are the: boundary element method (BEM), finite 

difference method (FDM), extended finite element method (XFEM), and the traditional finite 

element method (FEM) [81].  The literature is replete with examples where these approaches 

are employed to model fatigue crack growth under a wide range of loading conditions [81].  

The research presented in this paper is underpinned by the commercial software ANSYS 
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taking advantage of its selective adaptive remeshing algorithm (SMART) solver [95]. This 

solver automatically handles remeshing as the crack propagates into a structure.  The 

advantage of numerical approaches in scaling work is that they can be applied at any scale 

and consequently can be used to test the validity of scaling theories at reasonable cost.  The 

focus of this paper is on the new scaling approach termed finite similitude and its application 

to fatigue under realistic loads and artefacts.  The finite similitude theory [26] introduces 

new similitude rules that communicate information across a defined number of scaled 

experiments.  The work published in ref. [26] involves one scaled experiment and the 

associated similitude rule (termed zeroth-order finite similitude) is equivalent to scaling with 

dimensional analysis.  The similitude rule involving two scaled experiments at distinct scales 

(termed first-order finite similitude) is the rule salient to fracture. The first order theory has 

been applied to a broad range of areas spanning different fields and scales [160-165], 

including low cycle fatigue [190], but limited to simple test samples. The aim of the work 

presented here is the establishment of rules for design and experimentation of two scaled 

down replica models (identical materials) to predict the full-scale fatigue behaviour of 

realistic structures subject to complex loading.  A novel feature of the presented work is the 

application of the finite-similitude approach to mixed-mode fatigue crack growth.  Rational 

relationships with scale are established for key parameters in fatigue-crack growth, which 

include stress intensity amplitude, and the number of cycles to fatigue failure. These 

relationships lead to a proof that establishes that Paris law is a first-order similitude rule. 

This means (and is confirmed in the paper) that the first-order, finite-similitude framework 

has the advantage of accuracy, that requires little calibration on comparison with alternative 

scaling approaches (e.g., dimensional analysis), which suffer uncertainty in parameter setting 

[134].  

A brief recap of the finite-similitude theory is presented in Section 5.2, where transport 

equations for the trial space (where the scaled experiment resides) are projected onto a new 

scaling space Ω𝛽, which has similar features to the physical space (where the full-scale 

component resides).  The space Ω𝛽 matches the physical space both temporally and spatially 

but additionally permits alternative mathematical formulations including fatigue laws.  

Transport equations pertinent to fatigue and fracture are examined in greater detail in Section 

5.3 along with the role played by Ω𝛽 in investigating empirical fatigue relationships such as 

Paris law.  Numerical case studies are considered in Section 5.4 involving different types of 
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cracks, low and high cycle fatigue and excellent predictions for fatigue life are achieved.  

The paper finishes with a conclusions section. 

5.2 A Description of the Finite Similitude Theory 

Details pertaining to the finite similitude theory are available in refs. [159-163] so only a 

brief description is provided here.  Inertial coordinates in the trial and physical spaces are 

assumed related by the differential space map 𝒅𝒙𝑡𝑠 = 𝛽𝒅𝒙𝑝𝑠, where 𝛽 is a continuous 

positive parameter.  Space contraction is indicated by 0 < 𝛽 < 1, no scaling by 𝛽 = 1, and 

expansion by 𝛽 > 1.  Additionally, time in the two spaces is related by a similar differential 

identity 𝑑𝑡𝑡𝑠 = 𝑔𝑑𝑡𝑝𝑠, where 𝑔 is a positive continuous function of 𝛽.  The aim of the theory 

is to construct transport equations in the physical space 𝛺𝑝𝑠 by projecting the governing 

equations in the trial space 𝛺𝑡𝑠  onto a facsimile of 𝛺𝑝𝑠, which is denoted by 𝛺𝛽 .  For the 

sake of generality, the physics is described on moving control volumes denoted by 𝛺𝑡𝑠
∗ , 𝛺𝑝𝑠

∗ , 

and 𝛺𝛽
∗  (with boundaries 𝛤𝑡𝑠

∗ , 𝛤𝑝𝑠
∗ , and 𝛤𝛽

∗), respectively.  The movement of each control 

volume is dictated by velocity fields 𝒗𝑡𝑠
∗ , 𝒗𝑝𝑠

∗ , and 𝒗𝛽
∗ , respectively.  Coordinate points on 

the control volumes are transported by integration of differential identities 𝒅𝒙𝑡𝑠
∗ = 𝒗𝑡𝑠

∗ 𝑑𝑡𝑡𝑠, 

𝒅𝒙𝑝𝑠
∗ = 𝒗𝑝𝑠

∗ 𝑑𝑡𝑝𝑠, and 𝒅𝒙𝛽
∗ = 𝒗𝛽

∗𝑑𝑡𝛽, respectively.  Subscript 𝛽 properties are obtained by 

operating on trial space properties and on setting 𝒗𝛽
∗ = 𝑔𝛽−1𝒗𝑡𝑠

∗  and 𝑑𝑡𝛽 = 𝑔
−1𝑑𝑡𝑡𝑠 (making 

𝑑𝑡𝛽 = 𝑑𝑡𝑝𝑠) observe that 𝒅𝒙𝛽
∗ = 𝒗𝛽

∗𝑑𝑡𝛽 = 𝛽
−1𝒗𝑡𝑠

∗ 𝑑𝑡𝑡𝑠 = 𝛽−1𝒅𝒙𝑡𝑠
∗  or equivalently 𝒅𝒙𝑡𝑠

∗ =

𝛽𝒅𝒙𝛽
∗ , which is similar to the space scaling map 𝒅𝒙𝑡𝑠 = 𝛽𝒅𝒙𝑝𝑠.  Consequently, geometric 

measures on the control volumes 𝛺𝛽
∗  and 𝛺𝑡𝑠

∗  can be related, i.e., 𝑑𝑉𝛽
∗ = 𝛽−3𝑑𝑉𝑡𝑠

∗  and 𝒅𝚪𝛽
∗ =

𝛽−2𝒅𝚪𝑡𝑠
∗ .  The whole apparatus along with reference spaces 𝛺𝑡𝑠

∗𝑟𝑒𝑓
, 𝛺𝑝𝑠

∗𝑟𝑒𝑓
 and 𝛺𝛽

∗𝑟𝑒𝑓
, which 

are used to precisely define the motion of the moving control volumes, is depicted in Fig. 

5.1.  The dotted line between the moving control volumes in 𝛺𝛽  and 𝛺𝑝𝑠 indicates 

uncertainty, which is resolved on defining the similitude rule applicable to the velocity field 

𝒗𝛽
∗  (limited to zeroth order in this work).  

The transport equation (in its most generic form [159]) in the trial space is 

 

𝐷∗

𝐷∗𝑡𝑡𝑠
∫ 𝜌𝑡𝑠𝜳𝑡𝑠
𝛺𝑡𝑠
∗

𝑑𝑉𝑡𝑠
∗ +∫ 𝜌𝑡𝑠𝜳𝑡𝑠(𝒗𝑡𝑠 − 𝒗𝑡𝑠

∗ ) ∙ 𝒏𝑡𝑠
Г𝑡𝑠
∗

𝑑Г𝑡𝑠
∗

= −∫ 𝑱𝑡𝑠
𝛹

Г𝑡𝑠
∗

∙ 𝒏𝑡𝑠𝑑Г𝑡𝑠
∗ +∫ 𝜌𝑡𝑠𝒃𝑡𝑠

𝛹𝑑𝑉𝑡𝑠
∗

𝛺𝑡𝑠
∗

 

(5.1) 
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where 𝜌𝑡𝑠, 𝜳𝑡𝑠, 𝒗𝑡𝑠, 𝑱𝑡𝑠
𝛹 , 𝒃𝑡𝑠

𝛹 , 𝒏𝑡𝑠 are density, physical field, velocity, boundary flux, a source 

term and the unit normal to boundary Гts
∗  of the control volume 𝛺𝑡𝑠

∗ .  

This equation is projected onto the space 𝛺𝛽  by means of substitution of 𝑑𝑉𝛽
∗ = 𝛽−3𝑑𝑉𝑡𝑠

∗ , 

𝒅𝚪𝛽
∗ = 𝛽−2𝒅𝚪𝑡𝑠

∗ , and 𝑑𝑡𝛽 = 𝑔−1𝑑𝑡𝑡𝑠, along with multiplication by 𝑔 and the scalar 𝛼0
𝛹 to 

yield 

𝛼0
𝛹𝛵0

𝛹(𝛽) =
𝐷∗

𝐷∗𝑡𝛽
∫ 𝜌𝛽𝜳𝛽
𝛺𝛽
∗

𝑑𝑉𝛽
∗ +∫ 𝜌𝛽𝜳𝛽(𝒗𝛽 − 𝒗𝛽

∗ ) ∙ 𝒏𝛽
Г𝛽
∗

𝑑Г𝛽
∗ +∫ 𝑱𝛽

𝛹

Г𝛽
∗

∙ 𝒏𝛽𝑑Г𝛽
∗

−∫ 𝜌𝛽𝒃𝛽
𝛹𝑑𝑉𝛽

∗

𝛺𝛽
∗

= 0 

(5.2) 

where 𝜌𝛽𝜳𝛽 = 𝛼0
𝛹𝜌𝑡𝑠𝛽

3𝜳𝑡𝑠, 𝒗𝛽 = 𝛽
−1𝑔𝒗𝑡𝑠, 𝒗𝛽

∗ = 𝛽−1𝑔𝒗𝑡𝑠
∗ , 𝑱𝛽

𝛹 = 𝛼0
𝛹𝛽2𝑔𝑱𝑡𝑠

𝛹  and 

𝜌𝛽𝒃𝛽
𝛹 = 𝛼0

𝛹𝜌𝑡𝑠𝛽
3𝑔𝒃𝑡𝑠

𝛹 . 

The form of this equation is typical of a transport equation expected for 𝛺𝛽  and consequently 

𝛺𝛽  can be viewed as a physical space despite being a mere projection of Eq. (5.1).  Eq. (5.2) 

is required to match the physical space transport equation at 𝛽 = 𝛽0 = 1, which is assured 

on setting 𝜌1𝜳1 = 𝜌𝑝𝑠𝜳𝑝𝑠, 𝒗1 = 𝒗𝑝𝑠, 𝒗1
∗ = 𝒗𝑝𝑠

∗ , 𝑱1
𝛹 = 𝑱𝑝𝑠

𝛹  and 𝜌1𝒃1
𝛹 = 𝜌𝑝𝑠𝒃𝑝𝑠

𝛹 , and 

additionally 𝛼0
𝛹(1) = 1 and 𝑔(1) = 1.  Observe the implicit dependence of all the fields of 

Eq. (5.2) on 𝛽 as indicated by the notation employed, i.e., 𝜌𝛽 , 𝒗𝛽 , 𝜳𝛽 , 𝑱𝛽
𝛹 and 𝒃𝛽

𝛹.  Eq. (5.2) 

is not an approximation in the sense that it captures exactly trial-space physics yet projected 

onto 𝛺𝛽 .  The objective here though is to capture the behaviour of the physical space 𝛺𝑝𝑠, 

which can be achieved with the application of similitude rules.  The form the rules should 

take is as previously introduced in ref. [34] in the form of a recursive identity. 
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Figure 5.1: Velocity fields and associated reference and moving control volumes in the 

scaling spaces.  

5.2.1 Definition (High-order finite similitude) 

The concept of kth-order finite similitude is identified by the lowest derivative that satisfies, 

 𝛵𝑘+1
𝛹 =

𝑑

𝑑𝛽
(𝛼𝑘

𝛹𝛵𝑘
𝛹) ≡ 0 (5.3) 
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∀𝛽 > 0, with 𝛼0
𝛹𝛵0

𝛹 defined by Eq. (5.2) and scalars 𝛼𝑘
𝛹 are functions of 𝛽 with 𝛼𝑘

𝛹(1) = 1, 

where the symbol “≡” signifies that the derivative is identically zero. 

The simplest invariance, which is equivalent to dimensional analysis, is returned on setting 

𝑘 = 0 and is simply 𝑑
𝑑𝛽
(𝛼0

𝛹𝛵0
𝛹) ≡ 0.  This means that the transport equation Eq. (5.2) (i.e., 

𝛼0
𝛹𝛵0

𝛹 = 0) suffers no 𝛽 − dependency. Integration of this rule (between the limits 𝛽1 and 

𝛽0 = 1) gives 𝛼0
𝛹𝛵0

𝛹(1) ≡ 𝛼0
𝛹𝛵0

𝛹(𝛽1) confirming that the behaviour on 𝛺𝛽1 captures exactly 

what is occurring on the physical space 𝛺𝑝𝑠.  This is the situation where the scaling problem 

suffers no scale effects as traditionally defined and it is the situation captured by dimensional 

analysis.  Unfortunately, this rule is not applicable to fracture and fatigue since as established 

above a size effect is present.  The rule that applies is the first-order finite similitude rule, 

which is obtained on setting 𝑘 = 1 (i.e., 𝛵2
𝛹 ≡ 0) in the above definition to provide: 

 

 𝛵2
𝛹 =

𝑑

𝑑𝛽
(𝛼1

𝛹𝛵1
𝛹) =

𝑑

𝑑𝛽
(𝛼1

𝛹
𝑑

𝑑𝛽
(𝛼0

𝛹𝛵0
𝛹)) ≡ 0 (5.4) 

which although is the focus of the work some reference is required to second order, which is 

obtained on setting 𝑘 = 2 to provide: 

 

𝛵3
𝛹 =

𝑑

𝑑𝛽
(𝛼2

𝛹𝛵2
𝛹) =

𝑑

𝑑𝛽
(𝛼2

𝛹
𝑑

𝑑𝛽
(𝛼1

𝛹𝛵1
𝛹))

=
𝑑

𝑑𝛽
(𝛼2

𝛹
𝑑

𝑑𝛽
(𝛼1

𝛹
𝑑

𝑑𝛽
(𝛼0

𝛹𝛵0
𝛹))) ≡ 0 

(5.5) 

which involves three derivatives, so is a little more involved but needed here, nevertheless. 

Like the zeroth order rule, Eqs. (5.4) and (5.5) can be readily integrated [189] to give: 

 𝛼0
𝛹𝛵0

𝛹(1) = 𝛼0
𝛹𝛵0

𝛹(𝛽1) + 𝑅1
𝛹(𝛼0

𝛹𝛵0
𝛹(𝛽1) − 𝛼0

𝛹𝛵0
𝛹(𝛽2)) (5.6) 

and 

 

𝛼0
𝛹𝛵0

𝛹(1) = 𝛼0
𝛹𝛵0

𝛹(𝛽1) + 𝑅1,1
𝛹 (𝛼0

𝛹𝛵0
𝛹(𝛽1) − 𝛼0

𝛹𝛵0
𝛹(𝛽2))

+ 𝑅2
𝛹𝑅1,1

𝛹 (𝛼0
𝛹𝛵0

𝛹(𝛽1) − 𝛼0
𝛹𝛵0

𝛹(𝛽2)

+ 𝑅1,2
𝛹 (𝛼0

𝛹𝛵0
𝛹(𝛽2) − 𝛼0

𝛹𝛵0
𝛹(𝛽3))) 

(5.7) 

where 𝑅1
𝛹, 𝑅1,1

𝛹 , 𝑅1,2
𝛹 , and 𝑅2

𝛹 are parameters that to a certain extent are free to be set to the 

advantage of the scaling theory. 
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5.3 Finite Similitude Applied to Fatigue 

Eq. (5.6) on application to the transport equations in Appendix B give rise to the identities 

in Table 5.1. Additional fields over and above those present in the transport equations are 

included in this table.  All relevant fields salient to solid mechanics can be obtained, which 

is a feature of the finite similitude approach despite making no reference to constitutive laws. 

Table 5.1. First-order finite similitude identities 

Fields Compact representation Expanded representation 

Displacement 𝒖1 = 𝒖𝛽1 + 𝑅1 (𝒖𝛽1 − 𝒖𝛽2) 𝒖1 = 𝛽1
−1𝒖𝑡𝑠1 + 𝑅1 (𝛽1

−1𝒖𝑡𝑠1

− 𝛽2
−1𝒖𝑡𝑠2) 

Velocity 𝒗1 = 𝒗𝛽1 + 𝑅1 (𝒗𝛽1 − 𝒗𝛽2) 𝒗1 = 𝑔1𝛽1
−1𝒗𝑡𝑠1

+ 𝑅1 (𝑔1𝛽1
−1𝒗𝑡𝑠1

− 𝑔2𝛽2
−1𝒗𝑡𝑠2) 

Body force 𝒃1 = 𝒃𝛽1 + 𝑅1 (𝒃𝛽1 − 𝒃𝛽2) 𝜌1𝒃1
𝑣

= 𝛼01
𝑣 𝜌𝑡𝑠1𝑔1 𝛽1

3𝒃𝑡𝑠1
𝑣

+ 𝑅1 (𝛼01
𝑣 𝜌𝑡𝑠1𝑔1 𝛽1

3𝒃𝑡𝑠1
𝑣

− 𝛼02
𝑣 𝜌𝑡𝑠2𝑔2 𝛽2

3𝒃𝑡𝑠2
𝑣 ) 

Stress 𝝈1 = 𝝈𝛽1 + 𝑅1 (𝝈𝛽1 − 𝝈𝛽2) 𝝈1 = 𝛼01
𝑣 𝑔1𝛽1

2𝝈𝑡𝑠1

+ 𝑅1 (𝛼01
𝑣 𝑔1𝛽1

2𝝈𝑡𝑠1

− 𝛼02
𝑣 𝑔2𝛽2

2𝝈𝑡𝑠2) 

Strain 𝜺1 = 𝜺𝛽1 + 𝑅1 (𝜺𝛽1 − 𝜺𝛽2) 𝜺1 = 𝜺𝑡𝑠1 + 𝑅1 (𝜺𝑡𝑠1 − 𝜺𝑡𝑠2) 

Strain rate �̇�1 = �̇�𝛽1 + 𝑅1 (�̇�𝛽1 − �̇�𝛽2) �̇�1 = 𝑔1�̇�𝑡𝑠1 + 𝑅1 (𝑔1�̇�𝑡𝑠1 − 𝑔2�̇�𝑡𝑠2) 

 

The zeroth-order condition 𝒗𝑝𝑠
∗ = 𝒗1

∗ = 𝒗𝛽
∗  with 𝛺𝛽

∗ = 𝛺𝑝𝑠
∗  permits differentiation with 

respect to 𝛽 directly applied to the integrands in the transport equations.  This means that, 

for first order finite similitude, identity Eq. (5.6) applies to fields and takes then form 
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𝑑

𝑑𝛽
(𝛼1

𝑑ℵ𝛽

𝑑𝛽
) ≡ 0, where ℵ𝛽 is any field under the compact-form header in Table 5.1.  

Similarly, the second-order identity applies 
𝑑

𝑑𝛽
(𝛼2

𝑑

𝑑𝛽
(𝛼1

𝑑ℵ𝛽

𝑑𝛽
)) ≡ 0 for the same fields.  

Note the following proposition and short proof along with an important hypothesis for 

fatigue. 

Proposition: The product of two first order fields is second order in the sense that fields ℵ𝛽 

and 𝜩𝛽 defined on 𝛺𝛽  satisfying  
𝑑

𝑑𝛽
(𝛼1

𝑑ℵ𝛽

𝑑𝛽
) = 0 and 

𝑑

𝑑𝛽
(𝛼1

𝑑𝜩𝛽

𝑑𝛽
) = 0, respectively, then 

the product ℵ𝛽𝜩𝛽 with 𝛼2 = 𝛼1  satisfies 
𝑑

𝑑𝛽
(𝛼2

𝑑

𝑑𝛽
(𝛼1

𝑑ℵ𝛽𝜩𝛽

𝑑𝛽
)) = 0. 

Proof: Note that 

𝛼1
𝑑

𝑑𝛽
(𝛼1

𝑑ℵ𝛽𝜩𝛽

𝑑𝛽
) = 𝛼1

𝑑

𝑑𝛽
(𝛼1 ℵ𝛽

𝑑𝜩𝛽

𝑑𝛽
+ 𝛼1

𝑑ℵ𝛽

𝑑𝛽
𝜩𝛽) = 2 (𝛼1

𝑑ℵ𝛽

𝑑𝛽
) (𝛼1

𝑑𝜩𝛽

𝑑𝛽
)           

(5.8) 

which is identically zero on differentiation with respect to 𝛽, which confirms the result. 

Hypothesis: The product Δ𝐾𝑡𝑠𝑛𝑡𝑠 is second order with Δ𝐾𝑡𝑠𝑛𝑡𝑠 = Δ𝐾𝛽𝑛𝛽, where Δ𝐾𝛽 and 

𝑛𝛽 are the stress intensity and number of cycles on 𝛺𝛽 . 

This hypothesis is hinting at the broad notion that empirical rules have a close association 

with finite-similitude rules, particularly in situations where scale effects (as previously 

defined) are eliminated.  It is convenient to define scale effects more broadly with the arrival 

of finite similitude rules, with zeroth, first, and second-order scale effects referring to the 

respective similitude identities not being satisfied.  The claim here is that the product Δ𝐾𝑡𝑠𝑛𝑡𝑠 

is a first-order scale effect (and zeroth order therefore), but not a second order one.  The 

interest in the product Δ𝐾𝑡𝑠𝑛𝑡𝑠 stems from the fact that as Δ𝐾𝑡𝑠 increases the expectation is 

for 𝑛𝑡𝑠 to reduce.  Note additionally stress intensity amplitude Δ𝐾𝑡𝑠 is connected to the stress 

field through the identity Δ𝐾𝑡𝑠 = 𝐹𝑡𝑠Δ𝜎𝑡𝑠√𝜋𝑎𝑡𝑠, where 𝐹𝑡𝑠 is a shape factor, 𝑎𝑡𝑠 is crack 

length, and Δ𝜎𝑡𝑠 is the change in stress amplitude. But 𝝈𝛽  and 𝝈𝑡𝑠
  are related by 𝝈𝛽 =

𝛼0
𝑣𝛽2𝑔𝝈𝑡𝑠 with 𝑎𝛽 = 𝛽−1𝑎𝑡𝑠 and consequently Δ𝐾𝛽 = 𝛼0

𝑣𝛽3/2𝑔𝝈𝑡𝑠Δ𝐾𝑡𝑠.  Matching the 

stress field around the crack is a clear requirement, so 𝝈𝛽 = 𝝈𝑡𝑠 gives rise to 𝛼0
𝑣𝑔 = 𝛽−2 

and ultimately Δ𝐾𝛽 = 𝛽−1/2Δ𝐾𝑡𝑠.  The hypothesis Δ𝐾𝑡𝑠𝑛𝑡𝑠 = Δ𝐾𝛽𝑛𝛽 therefore provides 

𝑛𝛽 = 𝛽1/2n𝑡𝑠, and that Δ𝐾𝛽 and 𝑛𝛽 are first order, satisfying differential equations 
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𝑑

𝑑𝛽
(𝛼1

𝑑𝛥𝐾𝛽

𝑑𝛽
) = 0 and 

𝑑

𝑑𝛽
(𝛼1

𝑑𝒏𝛽

𝑑𝛽
) = 0.  These can be integrated to produce identities of 

the type found in Table 5.1, i.e., 

Δ𝐾1 = Δ𝐾𝛽1 + 𝑅1 (Δ𝐾𝛽1 − Δ𝐾𝛽2)

= 𝛽1
−1/2

Δ𝐾𝑡𝑠1 + 𝑅1 (𝛽1
−1/2

Δ𝐾𝑡𝑠1 − 𝛽2
−1/2

Δ𝐾𝑡𝑠2) 

(5.9a) 

𝑛1 = 𝑛𝛽1 + 𝑅1 (𝑛𝛽1 − 𝑛𝛽2) = 𝛽1
1/2
𝑛𝑡𝑠1 + 𝑅1 (𝛽1

1/2
𝑛𝑡𝑠1 − 𝛽2

1/2
𝑛𝑡𝑠2) (5.9b) 

which connect results obtained from two scaled experiments to the physical space. 

Note that 𝑅1  (along with 𝛼1 ) is presently undefined, but imposition of the first-order 

identity 
𝑑

𝑑𝛽
(𝛼1

𝑑𝒖𝛽

𝑑𝛽
) ≡ 0 on displacement with 𝒖𝛽 = 𝛽−1𝒖𝑡𝑠 and under the assumption that 

𝒖𝑡𝑠 is invariant of 𝛽 provides 
𝑑

𝑑𝛽
(𝛼1

𝑑𝛽−1

𝑑𝛽
) = 0 or equivalently 𝛼1 = 𝛽2 satisfying 

𝛼1 (1) = 1.  The same invariance applied to displacement in Table 5.1 gives 

𝑅1 =
1 − 𝛽1

−1

𝛽1
−1 − 𝛽2

−1 
(5.10) 

which returns a definitive expression for 𝑅1 . 

It is worth noting that the identities 
𝑑

𝑑𝛽
(𝛼1

𝑑𝛥𝐾𝛽

𝑑𝛽
) = 0 and 

𝑑

𝑑𝛽
(𝛼1

𝑑𝒏𝛽

𝑑𝛽
) = 0 can be directly 

integrated (since 𝛼1 = 𝛽2) to provide a form useful in empirical growth rules.  Direct 

integration provides 

𝑛𝛽 = 𝛽1/2𝑛𝑡𝑠 = −𝐴𝛽
−1 + 𝐷 (5.11a) 

𝛥𝐾𝛽 = 𝛽
−1/2𝛥𝐾𝑡𝑠 = −𝐻𝛽−1 + 𝐸 (5.11b) 

which are remarkably simple expressions relating stress-intensity amplitude and number of 

cycles to scale, where 𝐴, 𝐷, 𝐻 and 𝐸 are constants of integration. 

Note additionally that 𝛥𝐾𝛽 = 𝐹𝛽Δ𝜎𝛽√𝜋𝑎𝛽, where 𝑎𝛽 = 𝛽−1𝑎𝑡𝑠, Δ𝜎𝛽 = Δ𝜎𝑡𝑠 and the shape 

factor 𝐹𝛽 = 𝐹𝑡𝑠 for the sake of simplicity is assumed to be zeroth order, i.e., independent of 

𝛽, which is a large-plate assumption.  The fact that Δ𝜎𝛽 is zeroth order means that √𝑎𝛽 is 

first order (since 𝛥𝐾𝛽 is assumed to be first order).  This is equivalent to 𝑎𝛽 being second 

order since it is the product of two first-order terms, i.e., 𝑎𝛽 = √𝑎𝛽√𝑎𝛽.  This result (under 

the large plate assumption) provides insight into constraints imposed on the form any 

empirical fatigue growth relationship might take.  Consider a crack growth law of the form 
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𝑑𝑎𝛽

𝑑𝑛𝛽
= 𝑔𝛽(𝛥𝐾𝛽 , 𝑎𝛽 , 𝐶𝑖) 

(5.12) 

which is assumed to exist on 𝛺𝛽 , where 𝑔𝛽 is a function of 𝛥𝐾𝛽 , 𝑎𝛽 , 𝐶𝑖, with 𝐶𝑖 being material 

parameters assumed invariant with scale. 

Eq. (5.12) can be written as 
𝑑𝑎𝛽

𝑑𝛽
= 𝑔𝛽

𝑑𝑛𝛽

𝑑𝛽
 and under the assumption that 𝑛𝛽  is first order (as 

is 𝛥𝐾𝛽) and 𝑎𝛽 is second order it immediately follows that 𝑔𝛽 must be first order.  The proof 

for this follows exactly that for the proposition above, i.e., multiply throughout by 𝛼1  

differentiate with respect to 𝛽, multiply by 𝛼1  again, and the expression disappears under 

the final differentiation if and only if 𝑔𝛽 is first order. Consequently, 𝑔𝛽 satisfies the 

relationships 

𝑔1 = 𝑔𝛽1 + 𝑅1 (𝑔𝛽1 − 𝑔𝛽2) = −𝐵𝛽−1 + 𝐺 (5.13) 

where 𝐵 and 𝐺 are integration constants. 

A question of immediate interest is does Paris law (𝑑𝑎𝑡𝑠 𝑑𝑛𝑡𝑠⁄ ) = 𝐶𝑡𝑠(𝛥𝐾𝑡𝑠)
𝑚𝑡𝑠 satisfy 

these requirements?  Substitution of 𝑛𝑡𝑠 = 𝛽
−1/2𝑛𝛽 , 𝑎𝑡𝑠 = 𝛽𝑎𝛽 and 𝛥𝐾𝑡𝑠 = 𝛽1/2𝛥𝐾𝛽 

provides (𝑑𝑎𝛽 𝑑𝑛𝛽⁄ ) = 𝐶𝑡𝑠𝛽
−3/2𝛽𝑚𝑡𝑠/2(𝛥𝐾𝛽)

𝑚𝑡𝑠
= 𝐶𝛽(𝛥𝐾𝛽)

𝑚𝛽
, which is of the form of 

Eq. (5.12), where 𝐶𝛽 = 𝛽
−3/2𝛽𝑚𝑡𝑠/2𝐶𝑡𝑠 and 𝑚𝛽 = 𝑚𝑡𝑠.  This leads to the following 

important proposition. 

Proposition: Paris law (𝑑𝑎𝛽 𝑑𝑛𝛽⁄ ) = 𝐶𝛽(𝛥𝐾𝛽)
𝑚𝛽

 is a first-order relationship. 

Proof: The proof follows immediately since 𝑔𝛽 = 𝐶𝛽(𝛥𝐾𝛽)
𝑚𝛽

= 𝑑𝑎𝛽 𝑑𝑛𝛽⁄  is first order as 

deduced above confirming that Paris law is first order. 

An alternative more direct proof is to observe that 𝑎𝛽 is second order with 𝑛𝛽 being first 

order leads to the realisation that the derivative 𝑑𝑎𝛽 𝑑𝑛𝛽⁄  is first order and the result follows. 

5.4 Practical Application of First Order Finite Similitude Rules. 

The procedure for the application of first-order, finite-similitude rules for fatigue testing is 

presented in this section.  It transpires that, despite its mathematical complexity, the 

application of the approach is reasonably straightforward. The application involves the 

following steps: 

(i) Confirm geometry, loading and boundary conditions, and material properties of 

the full-scale model. 
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(ii) Decide on geometric scaling factors 𝛽1 and 𝛽2 for the scaled models. 

(iii) Set 𝛼01
𝑣 𝑔1 = 𝛽1

−2 and 𝛼02
𝑣 𝑔2 = 𝛽2

−2. 

(iv) Determine scaling factor 𝑅1 using Eq. (5.10). 

(v) Determine boundary conditions and applied loads for the scaled models. Scaling 

factors 𝛼01
𝑣 𝑔1 and 𝛼02

𝑣 𝑔2 relate the applied loads in the scaled models to the full-

scale model. For example, for an applied stress loading, 𝜎𝑡𝑠1 = 𝜎𝑝𝑠/𝛼01
𝑣 𝑔1𝛽1

2.  In 

the case of an applied force, 𝐹𝑡𝑠1 = 𝐹𝑝𝑠/𝛼01
𝑣 𝑔1. 

(vi) Perform experimental trials on the scaled models. 

(vii) Combine the results returned from the scaled model using the field equations 

presented in Table 5.1.  

(vii) Despite being second-order, crack length from the scaled models can be combined to 

good accuracy using the first-order approximation, 

𝑎𝑝𝑠 = 𝛽1
−1𝑎𝑡𝑠1 + 𝑅1 (𝛽1

−1𝑎𝑡𝑠1 − 𝛽2
−1𝑎𝑡𝑠2) (5.14a) 

with the crack growth rate provided by 

(
𝑑𝑎

𝑑𝑛
)
𝑝𝑠
= 𝛽1

−
3
2 (
𝑑𝑎

𝑑𝑛
)
𝑡𝑠1
+ 𝑅1 (𝛽1

−
3
2 (
𝑑𝑎

𝑑𝑛
)
𝑡𝑠1
− 𝛽2

−
3
2 (
𝑑𝑎

𝑑𝑛
)
𝑡𝑠2
) 

(5.14b) 

which is a first-order relationship for (𝑑𝑎/𝑑𝑛)𝛽, obtained on substitution of 𝑑𝑎𝛽 = 𝛽
−1𝑑𝑎𝑡𝑠 

and 𝑑𝑛𝛽 = 𝛽
1/2𝑑𝑛𝑡𝑠. 

(viii) Finally, stress intensity amplitude and the number of cycles to failure are obtained 

using Eq. (5.9a) and Eq. (5.9b), respectively.   

The procedure presented here provides a framework for performing scaled-fatigue tests, 

which is applied to practical examples in the next section. 

 

5.5 Numerical Experimentation 

In this section three different case studies of fatigue loaded cracked components are studied 

encompassing both low and high cycle fatigue using the procedure outlined in section 5.4. 

The aim is to illustrate the ease of application of the theory and to demonstrate its 

effectiveness in dealing with challenging crack growth problems commonly encountered 

during the service life of structures (e.g., non-planar crack growth).  The tests considered are 

the compact tension shear specimen (CTS), a wing fuselage-attachment lug, and a t-joint 

with an inclined semi-elliptical crack. ANSYS 2021 is the software of choice, and crack 

propagation is studied by means of the Ansys SMART solver [95].  For all the case studies, 
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full 3D models are established to closely reflect reality. For mixed mode crack growth 

problems, the following equations are employed in Ansys: 

∆𝐾𝑒𝑞𝑢𝑖𝑣 =
1

2
cos (

𝛽

2
) [∆𝐾𝐼(1 + 𝑐𝑜𝑠𝛽) − 3∆𝐾𝐼𝐼𝑠𝑖𝑛𝛽] 

(5.15a) 

𝛽′ = 𝑐𝑜𝑠−1 [
3(𝐾𝐼𝐼

𝑚𝑎𝑥)2 + (𝐾𝐼
𝑚𝑎𝑥)√(𝐾𝐼

𝑚𝑎𝑥)2 + 8(𝐾𝐼𝐼
𝑚𝑎𝑥)2

(𝐾𝐼
𝑚𝑎𝑥)2 + 9(𝐾𝐼𝐼

𝑚𝑎𝑥)
2 ] 

  (5.15b) 

∆𝐾𝐼 = 𝐾𝐼
𝑚𝑎𝑥 − 𝐾𝐼

𝑚𝑖𝑛 = (1 − 𝑅)𝐾𝐼
𝑚𝑎𝑥  (5.15c) 

∆𝐾𝐼𝐼 = 𝐾𝐼𝐼
𝑚𝑎𝑥 − 𝐾𝐼𝐼

𝑚𝑖𝑛 = (1 − 𝑅)𝐾𝐼𝐼
𝑚𝑎𝑥  (5.15d) 

where ∆𝐾𝑒𝑞𝑢𝑖𝑣 is the equivalent stress intensity factor, 𝛽 is the direction of propagation, ∆𝐾𝐼 

and ∆𝐾𝐼𝐼 are the variation in modes I and II stress intensity factors, respectively, and 𝑅 is the 

load ratio, and superscripts min and max refer to minimum and maximum values, 

respectively. 

The equivalent stress intensity factor ∆𝐾𝑒𝑞𝑢𝑖𝑣 is used in conjunction with Paris law to 

calculate the crack growth rate, which is the approach is applied to all the case studies. Paris 

law is the recommended law for fatigue life predictions in industrial applications as per 

BS7910 standard [210] and the API 579 standard [211].  The Ansys SMART solver works 

by advancing the crack front by a small amount ∆𝑎  and then updating the mesh around the 

new crack front. This process is repeated for a prescribed number of sub-steps until the 

desired final crack length 𝑎𝑓. For scaled models, the zeroth-order condition ∆𝑎𝑡𝑠 = 𝛽∆𝑎𝑝𝑠 

for crack extension reasonably applies and consequently, matching the number of sub-steps 

for all models permits fracture- mechanics outputs to be combined at each sub-step according 

to the outlined procedure in Section 5.4. The newly introduced crack front is assumed to 

behave in accordance with a cohesive zone model. The automatic re-meshing capability of 

Ansys eliminates the major drawback of long pre-processing times associated with fatigue 

analysis within a conventional finite-element framework. The first-order similitude theory 

has been shown to replicate exactly the behaviour of cohesive zone models for both 

monotonic [189] and fatigue loading [190]. 

The work of Sajith et al. [212] on the CTS specimen is replicated first to provide confidence 

in the correctness of the simulation and to validate the fatigue crack growth results.  Constant 

amplitude force or stress loadings are applied in all case studies. Mesh sensitivity studies 

have been performed for each case study to optimize solution accuracy and computational 

cost.  An element size of 0.5 mm or smaller is employed local to the crack tip for all cases. 

Elements with a size of 1 mm are used in other regions of the specimen to reduce 
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computational costs.  The number of elements is kept identical for all scaled models to 

eliminate the effects of mesh dependency, and second-order tetrahedral elements 

(SOLID187) [95] are employed throughout. This is achieved by multiplying the element 

sizes used in the full-scale model by the 𝛽 value of the scaled model. Three different 

materials are considered to demonstrate that positive outcomes are not tied to a specific 

material. Al-6061 is used for case study 1 [212], structural steel [213] is used for case study 

2, whereas AISI 316 stainless steel is the material of choice for the t-joint with material 

properties according to those in ref. [214]. All ∆𝐾 values in ref. [213] are in units MPamm0.5 

thus a conversion is applied to return a 𝐶 value with the correct units in Table 5.2.  Replica 

scaling is then focus here with identical material used for the full scale and all associated 

scaled-down models. 

 

Table 5.2: Mechanical properties of materials used in numerical analysis [212-214] 

Material 

Young’s 

Modulus 

(GPa) 

Poisson’s 

ratio, 𝑣 

Yield 

strength 

(MPa) 

Ultimate 

tensile 

strength 

(MPa) 

Paris law parameters  

C  

(mm/cycle)

/(MPa m0.5)𝑚 

 

m 

Al-6061 T6 

alloy 
68 0.33 270 307 4.34 × 10−7 2.6183 

AISI 316 

stainless 

steel  

192 0.27 295 582 4.05 × 10−8 2.3483 

Structural 

Steel 
206 0.3 250 460 1.85 × 10−7 2.26 

 

5.5.1. Verification of numerical results 

The focus of this section is performing a thorough validation of the Ansys SMART solver 

by comparison against previous published experimental and numerical data.  This is to 

ensure that the fatigue life and crack path predictions returned are accurate before applying 

first-order finite similitude scaling rules. Sajith et al. [212] conducted fatigue tests on a 

compact tension shear (CTS) specimen for Al-6061 by means of the well-known Richard’s 

apparatus [64]. Their findings were validated numerically by Fageehi and Alshoaibi [215] 
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using the same Ansys SMART solver in this study. Details of the geometry and boundary 

conditions are shown in Fig. 5.2. The specimen thickness is 15 mm. Two different loading 

angles (𝜃) corresponding to 30° and 60° are examined. The magnitude of the load 𝑃, 

remotely applied in the experiment is 16kN with a load ratio 𝑅 = 0.1 for both cases.  The 

finite element model however is loaded by the reaction forces generated at the six loading 

holes. The magnitude of the reaction forces for each loading hole is set by: 

𝑃1 = 𝑃4 = 𝑃 (
1

2
 cos 𝜃 +

𝑐

𝑏
sin 𝜃) 

(5.16a) 

𝑃2 = 𝑃5 = 𝑃 sin 𝜃   (5.16b) 

𝑃3 = 𝑃6 = 𝑃 (
1

2
cos 𝜃 −

𝑐

𝑏
sin 𝜃) 

  (5.16c) 

where, 𝑃 is the magnitude of the applied load, 𝜃 is the loading angle and 𝑃𝑖 are the reaction 

forces at the loading hole, and additionally 𝑏 and 𝑐 are the lengths identified in Fig. 2. 

Fig. 5.3 shows the evolution of crack length with time, where the numerical findings from 

the current study agrees with those of Fageehi and Alshoaibi [215] and the experimental data 

of Sajith et al. [212]. The deviation between the final value of the crack length for the 30º 

and 60º loading case obtained numerically in this work and experimental data [212] are 1% 

and 2%, respectively. A critical feature of a mixed-mode fatigue process is the initial 

direction of crack growth, which is defined by the crack-propagation angle (𝛽), also referred 

to as the initiation angle in some works. The crack propagation angle is the angle formed 

between the propagated crack and the centreline of the specimen. 
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Figure 5.2: Compact tension shear (CTS) specimen dimensions and mesh. 

 

 

Figure 5.3: Comparison of fatigue life between the numerical results obtained from Ansys, 

experimental data [212] and numerical data [215] for 30º and 60º loading angles. 

 

Tabulated in Table 5.3 is the crack-propagation angle for both loading angles for the current 

and previous studies. Under experimental loading the crack propagates upwards at an angle 

of 31.6º and 51.3º to the horizontal centre line of the specimen for the 30º and 60º loading 

angles, respectively. Numerical results in the present study obtained from Ansys return 

crack-propagation angles of 31º and 50º, respectively, which contrast favourable with the 

numerical results in ref. [212] with corresponding angles of 30.7º and 50.6º.  Finally, the 

paths taken by the crack as it propagates is of interest and is examined in Fig. 5.4.  A direct 

correlation can be observed between the increase in loading angle and the angle of crack 

propagation, where for 60º the crack propagates at a steeper propagation angle compared to 

a loading angle of 30º.  The closeness of the results provides confidence in the application 

of the Ansys SMART solver to non-planar (mixed-mode fatigue) crack growth. The 
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validated numerical procedure is employed in the subsequent sections to investigate the 

efficacy of the proposed scaling method based on the first-order finite similitude theory. 

Table 5.3. Comparison of crack propagation angle for 30º and 60º loading angles of 

numerical model, experimental data [212] and numerical data [212] 

 

Model 

Loading 

angle 

𝜃 (º) 

Propa

gation 

angle 

𝛽′ (º) 

𝐸𝑟𝑟𝑜𝑟 

 (%) 

Loading 

angle 𝜃 (º) 

Propagation 

angle 

𝛽′ (º) 

𝐸𝑟𝑟𝑜𝑟 (%) 

Experiment 

[212] 
30 31.6 - 60 52.1 - 

Ansys 

numerical 

model 

30 31.0 2 60 50 4 

Numerical 

model [212] 
30 30.7 3 60 50.6 3 

 

Crack path for numerical model (30°)  Experimental crack path (30°) [212]  

   

Crack path for numerical model (60°) Experimental crack path (60°) [212]  
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Figure 5.4: Comparison of crack paths between the numerical results of the current study 

and experimental study of Sajith et al. [212] 

 

5.5.2. Case study I: Compact tension shear specimen (CTS) 

A compact tension shear specimen made from Al 6061 is analysed in this section. The 

geometry of the CTS specimen is exactly the same as highlighted in Fig. 5.2. The three upper 

loading pins are subjected to a cyclic applied force whereas the bottom three loading pins 

are fixed. For a loading angle of 30º the magnitude of the applied force is 18kN whereas for 

a loading angle of 60º its magnitude is 11kN. The load ratio R, for both cases is 0.1. A clear 

dependency on solution accuracy with mesh size exists thus a mesh sensitivity study was 

performed. For each loading angle and each case study in this work a separate mesh 

convergence study is undertaken to optimise the trade-off between solution accuracy and 

computational costs. Based on the findings, an element size of 0.5 and 0.2 mm was deemed 

sufficient around the crack tip for loading angles 30º and 60º, respectively. For both loading 

angles, the global element size was 0.8 mm resulting in 82,139 and 164,000 elements being 

generated. The same number of elements was used for all scaled models to eliminate mesh 

sensitivity effect influencing the scaled results.  The findings are in line with Zhang et al. 

[178], who concluded that an element size of 0.5 mm or smaller is sufficient to capture the 

stress state around the crack tip for fatigue crack growth analysis.  

The specimen dimensions and loading conditions for all specimens can be found in Table 

5.4 and Table 5.5. Table 5.6 presents the dimensional scaling factors for all three specimens. 

Virtual models 1a, 2a and 3a denote the virtual models for loading angle 30º whereas virtual 
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models 1b, 2b and 3b are the virtual models for the loading angle of 60º.  Virtual models are 

formed on combination of the results from two scaled models using the first-order finite 

similitude rule. 

Table 5.4: Dimensions of CTS specimen at all scales 

Model 𝛽 

Initial 

crack size 

a (mm) 

 

Height 

(mm) 

Ligament 

length (W-

a) (mm) 

Thickness 

(mm) 

Width 

(mm) 

Full 

scale 
1.00 45.00 148 45.00 15.00 90.00 

Scaled 

Model 1 
0.80 36.00 118.4 36.00 12.00 72.00 

Scaled 

Model 2 
0.50 22.50 74 22.50 7.50 45.00 

Scaled 

Model 3 
0.25 11.25 37 11.25 3.75 22.50 

 

Table 5.5: The loading conditions of CTS specimen at all scales 

Model 𝛽 

∆𝑎1 

(mm) 

∆𝑎2 

(mm) 

Applied load 

 1 

(kN) 

Applied load  

2 

(kN) 

Load  

ratio 

𝑅 

Full 

scale 
1.00 0.50 0.20 250 11 0.1 

Scaled 

Model 

1 

0.80 0.40 0.16 250 7.04 0.1 

Scaled 

Model 

2 

0.50 0.25 0.10 250 2.75 0.1 

Scaled 

Model 

3 

0.25 0.125 0.05 250 0.69 0.1 
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Table 5.6: Value of the scaling factors with different dimensional scaling factors 

Virtual 

Model No. 

𝛽1 𝛽2 𝛼01
𝑣 𝑔1 𝛼02

𝑣 𝑔2 𝑅1 

1 0.80 0.50 1.56 4.00 0.33 

2 0.80 0.25 1.56 16.00 0.09 

3 0.50 0.25 4.00 16.00 0.50 

 

After 5 mm of crack growth at a loading angle of 60º, the von-mises stresses at the crack tip 

are examined for the full scale, virtual and scaled models 1 and 2. The results are presented 

in Fig. 5.5, which indicate an exact representation of the stress state at the crack tip, captured 

by both the virtual and scaled-down models. A key parameter of interest in fatigue-crack 

growth experimentation is the crack tip driving force (i.e., the stress intensity factor) as this 

governs the crack propagation rate.  For mixed mode fatigue cases, this is denoted by the 

equivalent stress intensity factor ∆𝐾𝑒𝑞𝑢𝑖𝑣, which has contribution from modes I and II stress 

intensity factors (𝑖. 𝑒. , ∆𝐾𝐼  and ∆𝐾𝐼𝐼). The first-order finite similitude theory is applied here 

to determine how accurately the virtual models predict ∆𝐾𝑒𝑞𝑢𝑖𝑣 of the full-scale model using 

data from the scaled down models. The number of cycles it takes the crack in the full-scale 

model to grow 10 mm for the 30º loading angle and 5 mm for the 60º loading angle along 

with the ∆𝐾𝑒𝑞𝑢𝑖𝑣 at the final crack length is presented in Table 5.7 and Table 5.8, 

respectively. 

To return the virtual model predictions, Eqs. (5.9a) and (5.9b) are used. The values of 

∆𝐾𝑒𝑞𝑢𝑖𝑣 and n for the two scaled models obtained from the numerical experimentation at 

each sub-step are combined using Eq. (5.9a) and Eq. (5.9b) to obtain the corresponding 

virtual-model prediction for the equivalent stress intensity factor and number of cycles. Eq. 

(5.14a) is used to obtain the crack extension and exact predictions of the final crack length  

𝑎𝑓 (critical defect size) are obtained. Near exact predictions of the equivalent stress intensity 

factors are returned by the virtual models for both loading angles with a deviation of no more 

than 0.03%. The lifecycle predictions returned by all virtual models are within 6% error for 

both loading angles. 

 

Crack length 10mm for the  

full-scale model  

Crack length 10mm for the  

virtual model   
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Crack length 8mm for 𝛽1 = 0.80  Crack length 5mm for 𝛽2 = 0.5  

  

 

 

 

 

 

 

 

 

Figure 5.5: Von Mises stress distribution at the crack tip of CTS specimen after 25 sub 

steps for the full-scale model and the two scaled models for virtual model 1 at loading 

angle 60º. 

 

Table 5.7. Stress intensity factor and number of cycles at final crack length of 55 mm for 

full scale and virtual models for 30º loading angle. 

Model 𝑎 𝑓 (mm) 𝐸𝑟𝑟𝑜𝑟 (%) 𝐾𝑒𝑞𝑢𝑖𝑣(MPam
0.5) 𝐸𝑟𝑟𝑜𝑟 (%) 𝑛𝑝𝑠 𝐸𝑟𝑟𝑜𝑟 (%) 

Full 

Scale 
55 - 21.13 - 15578 - 
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Virtual 

Model 

1 

55 0 21.13 0.0 15454 0.01 

Virtual 

Model 

2 

55 0 21.15 0.01 15291 2 

Virtual 

Model 

3 

55 0 21.16 0.01 14573 6 

 

Table 5.8. Stress intensity factor and number of cycles at final crack length of 50 mm for 

full scale and virtual models for 60º loading angle.  

Model 
𝑎 𝑓  

(mm) 
𝐸𝑟𝑟𝑜𝑟 (%) 𝐾𝑒𝑞𝑢𝑖𝑣(MPam

0.5) 𝐸𝑟𝑟𝑜𝑟 (%) 𝑛𝑝𝑠 𝐸𝑟𝑟𝑜𝑟 (%) 

Full 

Scale 
50 - 8.71 - 62337 - 

Virtual 

Model 

1 

50 0 8.71 0.00 61115 2 

Virtual 

Model 

2 

50 0 8.70 0.02 60448 3 

Virtual 

Model 

3 

50 0 8.69 0.03 57506 6 

 
 

The most important consideration when evaluating the fatigue life of realistic and/or 

complex structures numerically is the accuracy of the predicted stress intensity factors. Fig. 

5.6 presents the evolution of both mode I and II stress intensity factor values as the crack 

propagates. Clearly demonstrated in Fig. 5.6 is the near exact predictions returned by all 

virtual models for both 𝐾𝐼 and 𝐾𝐼𝐼 values. Note how 𝐾𝐼 increases while 𝐾𝐼𝐼 approaches zero 

during crack growth indicating that although initially the crack propagates under a mixed 

mode condition, mode-I becomes more dominant as propagation proceeds. This problem 

converges to a mode-I loading type as 𝐾𝐼𝐼 tends to zero after the first 2mm of crack growth, 

with subsequent crack growth perpendicular to the loading axis. This is a well observed 

phenomenon in the literature, validated by the works of other researchers (see ref. [98]), and 

affirming the ability of the first-order similitude theory to reproduce exactly the correct 

mixed-mode fatigue behaviour. 
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The accurate predictions for 𝐾𝐼  and 𝐾𝐼𝐼 (see Fig. 5.6) result in an accurate prediction for the 

equivalent stress intensity factor, 𝐾𝑒𝑞𝑢𝑖𝑣 thus the crack growth rate is predicted to a high 

degree of accuracy with the best models returning a lifecycle percentage error of 0.2, whereas 

a maximum error of 9% is returned by virtual model 3 for the 30º loading angle. For the 60º 

loading angle the same pattern is observed with virtual model 1 returning a maximum error 

of 2% and virtual model 3 returning a maximum error of 6%. Excellent agreement is 

achieved for the equivalent stress intensity factor at a crack length of 15 mm for the loading 

angle of 30º with a maximum error of 0.7 % predicted by virtual model 3. The plot of the 

crack length against number of cycles for both loading angles is shown in Fig. 5.7.  

Table 5.9 presents the crack propagation angle after the first sub step of crack growth 

obtained by using Eq. 15b and substituting the predicted 𝐾𝐼 and 𝐾𝐼𝐼 values. This is a critical 

parameter that must be predicted with accuracy as it is a strong indicator of the path the crack 

takes as it propagates. Near exact predictions are returned by all virtual models for both 

loading angles clearly demonstrating the efficacy of the first-order theory as applied to 

fatigue. 

 

Figure 5.6: Evolution of mode 1 and 2 stress intensity factor with crack length for CTS 

specimen for full scale model and virtual models 1-3 at a loading angle of 30 degrees 

-15

-5

5

15

25

35

45

45 47 49 51 53 55 57 59

S
tr

es
s 

in
te

n
si

ty
 f

ac
to

r 
(M

P
am

^
0
.5

)

Crack length (mm)

Full-Scale Full scale

Virtual Model 1 Virtual Model 1

Virtual Model 2 Virtual Model 2

Virtual Model 3 Virtual Model 3

𝐾𝐼𝐼 
𝐾𝐼𝐼 

𝐾𝐼𝐼 
𝐾𝐼𝐼 

𝐾𝐼 

𝐾𝐼 

𝐾𝐼 

𝐾𝐼 



170 

 

 

Figure 5.7: Crack length vs number of cycles for full scale and all virtual models for the 

CTS specimen 

 

Table 5.9. Crack propagation angle for full scale and virtual models for 30º and 60º loading 

angle  

Model 

Loading 

angle 𝜃 

(º) 

Propagation 

angle 

𝛽 (º) 

𝐸𝑟𝑟𝑜𝑟 

 (%) 

Loading 

angle 𝜃 (º) 

Propagation 

angle 

𝛽 (º) 

𝐸𝑟𝑟𝑜𝑟  

(%) 

Full 

Scale 
30 26.3 - 60 45.9 - 

Virtual 

Model 

1 

30 26.1 0.8 60 45.7 0 

Virtual 

Model 

2 

30 25.8 1.9 60 45.8 0 

Virtual 

Model 

3 

30 26.1 0.8 60 46.4 1 
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Finally, the path which the crack takes as it propagates through the CTS specimen is 

investigated using Eq. (15b). The first-order theory is used to combine the associated 

displacements in the horizontal and vertical directions of the scaled models at each sub step 

of crack growth to form the virtual model. This is then contrasted with the co-ordinates of 

the crack at the full scale. The results are presented in Fig. 5.8. After the first step of crack 

growth, the influence of 𝐾𝐼𝐼 on the crack path is negligible as its value is nearly zero thus 

crack growth and direction are controlled solely by 𝐾𝐼 . The first order theory has been 

readily shown to capture both the 𝐾𝐼 and 𝐾𝐼𝐼  values as seen in Fig. 5.6 so it is no surprise that 

there is an exact agreement in the paths taken by the crack of the virtual models and full-

scale models as degradation of the material occurs. 

This is a truly remarkable finding as it proves scaled models can be used to predict the path 

taken by cracks during degradation of a structure. It is important to emphasize that the value 

of ∆𝐾𝑒𝑞𝑢𝑖𝑣 depends on some combination of individual 𝐾𝐼 and 𝐾𝐼𝐼values, which the first 

order theory has been shown to predict to great accuracy. Hence, by extension despite the 

empirical criterion chosen the theory would always be able to predict the correct ∆𝐾𝑒𝑞𝑢𝑖𝑣 

value and consequently both fatigue life and crack direction to a high degree of accuracy. 

This opens a whole host of possibilities for implementing this approach for structural 

integrity assessments in industry regardless of numerical software choice.  

 

Figure 5.8: Crack path for full scale and all virtual models of the CTS specimen at 30º and 

60º loading angles 
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5.5.3. Case study II: Fatigue of wing-fuselage attachment lug of a light aircraft 

In this section the numerical analysis of a wing fuselage attachment lug of a light aerobatic 

aircraft Safat 03 is conducted and the first-order similitude rules applied to determine the 

fatigue life predictive capabilities of the theory for this realistic service structure. Attachment 

lugs are a critical component of any aircraft as they function as the primary means of 

connecting different components of the airframe. During flight, the transfer of loads from 

wings to fuselage is primarily by means of pin-loaded attachment lugs. Thus, the 

consequences of failure of the lug are enormous with wing loss a near certainty. The lug 

geometry is that of a light aircraft and is taken from the work of Solob et al. [213] and is 

depicted in Fig. 5.9. The meshed lug used in numerical analysis is shown in Fig. 5.10. The 

stress load applied to the pin hole is 250 MPa with a load ratio 𝑅 = −1 due to both tensile 

and compressive loads exerted on the lug during flight. The lower portion of the lug is fixed 

in all directions.  The dimensions and loading for the full scale and sub scale models are 

highlighted in Table 5.10 and Table 5.11. For the full-scale model, the element size at the 

crack tip is 0.25 mm and is set to 0.5 mm in the other regions resulting in 84 713 elements 

being generated. ∆𝑎𝑝𝑠 is 0.35mm and the crack is propagated for 10 sub steps. Dimensional 

scaling factors are presented in Table 5.6 

 

 

Figure 5.9: Safran O3- Wing fuselage attachment lug geometry and dimensions [213] 
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Figure 5.10: Meshed wing-fuselage attachment lug. 

 

Table 5.10: Dimensions of wing-fuselage attachment lug at all scales 

Model 𝛽 

Initial 

crack 

size a 

(mm) 

 

Pin 

Diameter 

(mm) 

Length 

(mm) 

Thickness 

(mm) 

Width 

(mm) 

Applied 

load  

(MPa) 

Full 

scale 
1.00 1.00 14.00 53.00 12.00 32.00 200 

Scaled 

Model 1 
0.80 0.80 11.20 42.40 9.60 25.60 200 

Scaled 

Model 2 
0.50 0.50 7.00 26.50 6.00 16.00 200 

Scaled  

Model 3 
0.25 0.25 3.50 13.25 3.00 8.00 200 
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Table 5.11: The loading conditions of wing fuselage attachment lug at all scales 

 

Model 𝛽 

Crack extension 

∆𝑎  

(mm) 

Applied pressure 

load 

(MPa) 

Load  

ratio 

𝑅 

Full scale 1.00 0.350 200 -1 

Scaled 

Model 1 
0.80 0.280 200 -1 

Scaled 

Model 2 
0.50 0.175 200 -1 

Scaled 

Model 3 
0.25 0.875 200 -1 

 

 

Solob et al [213] adopted a typical damage tolerant approach to fatigue analysis prevalent in 

industry. They determined the critical location of the lug by conducting a finite element 

analysis of the component in the absence of a crack. They found the location of maximum 

stresses to be at the midpoint of the loading hole, thus in this study a through thickness crack 

of length 1 mm is inserted at the right midpoint of the loading hole and propagated to a final 

crack length 𝑎𝑓 of 4.5 mm. The number of cycles it takes to reach this final crack length and 

the corresponding equivalent stress intensity factor is tabulated in Table 5.12. The boundary 

conditions imposed on the lug induce a mixed mode stress state at the crack tip and the crack 

propagates upwards. The same path is taken by all scaled models. Predictions of the 

equivalent stress intensity factor are exact with very negligible error (maximum error of 

0.08%). The full-scale lug fails at 1057 cycles indicating failure of the lug under low cycle 

fatigue. The lifecycle predictions by the virtual models are once again accurate with no more 

than 9% error in virtual model 3. The results are displayed in Fig. 5.11. 

 

Table 5.12. Stress intensity factors and number of cycles at final crack length of 4.5 mm for 

full scale and virtual models 

 

Model 
𝑎𝑓 

 (mm) 

𝐸𝑟𝑟𝑜𝑟 

(%) 

𝐾𝑒𝑞𝑢𝑖𝑣 

(MPam0.5) 

𝐸𝑟𝑟𝑜𝑟 

 (%) 
𝑛𝑝𝑠 

𝐸𝑟𝑟𝑜𝑟  

(%) 

Full 

Scale 
4.5 - 89.11 - 1057 - 
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Virtual 

Model 

1 

4.5 0 88.32 0.90 979 7 

Virtual 

Model 

2 

4.5 0 88.59 0.60 975 8 

Virtual 

Model 

3 

4.5 0 89.81 0.80 960 9 

 

 

Fig 5.11: Crack length vs number of cycles for full scale and all virtual models of lug 

 

5.5.4. Case study III: Friction stir welded t-joint with an inclined semi- elliptical crack 

A t-joint is a typical joint type in welded structures. T–joints can be found in vehicles, 

bridges, offshore structures, ships and various other industrial fields. Due to the change of 

the section form, the stress concentration factor is high. Under cyclic loading, cracks initiate 

at regions of high stress concentration eventually resulting in fatigue fracture [216]. Friction 

stir welding (FSW) is a solid-state welding technology that offers advantages to traditional 

welding methods. This has led to its widespread adoption in the aerospace, automotive and 

marine industries [217]. The chief benefit is the increased fatigue resistance of joints 

manufactured by this process (up to 2.4x) as opposed to the single riveting method used in 

aerospace industry [217]. Most cracks observed in practice are predominantly surface cracks 
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and either semi elliptical in shape or can be closely approximated by a semi elliptical shape 

[219], so a surface elliptical crack surface crack is used in this study. To add further to the 

complexity of the analysis, the crack is inclined at an angle to the horizontal, hence the 

structure is undergoing mixed mode fatigue. 

In this case study, a friction stir welded t-joint typically found in aerospace applications 

comprising an inclined semi elliptical surface crack at the centre is analysed with the 

geometry presented in Fig. 5.12. The top face is referred to as the skin and the bottom is the 

stringer. A common application is in the fuselage of the aircraft. The crack is 2 mm long and 

1 mm deep (aspect ratio of 1) with its centre at the midpoint of the skin. A tensile load of 

48kN is applied to the top face while the bottom face is fixed in all directions. AISI 316 

stainless steel [214] is used for both the full scale and scaled-down models. Table 5.13 and 

Table 5.14 presents the geometrical dimensions and loading for all models. The 𝑅 ratio is 

0.1.  

The main output of interest is the number of cycles it takes to propagate the crack 3.85 mm 

to a final crack length 𝑎𝑓 of 5.85mm for the full-scale model.  The crack extension ∆𝑎 for 

the full-scale model is 0.35 mm (i.e., ∆𝑎𝑝𝑠 = 0.35 mm), and the crack is propagated for 11 

sub-steps.  An element size of 0.5 mm is used around the crack tip for the full-scale model 

and 1 mm in other regions.  In addition, the crack front element size is set to 0.25 mm, 

generating a total of 149,295 elements. Dimensional scaling factors are the same values  

presented in Table 5.6. 

 

 

Figure 5.12: T-joint geometry and mesh  

 

Skin 
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30 mm 

10  

60 mm 

10 mm 
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It is of interest in this study to confirm or otherwise if the Paris law parameters of AISI 316 

stainless steel can be successfully predicted using two scaled models.  Three different virtual 

models offer different predictions for the number of cycles by combining the data from the 

scaled models (see Table 5.6). It is shown that lifecycle and stress intensity predictions are 

accurate with a maximum of 9% deviation from the full-scale model for all virtual models.  

The stress intensity factors at the final crack length of 5.85 mm obtained at the left crack tip 

are tabulated in Table 5.15. The plot of crack length vs number of cycles is presented in Fig. 

5.13. 

 

Table 5.13: Geometrical dimensions of t-joint at all scales 

Model 𝛽 

Initial 

crack 

size 𝑎𝑙 

(mm) 

 

Initial 

crack 

size 𝑎𝑑 

(mm) 

 

∆𝑎 

(mm) 

Length 

(mm) 

Width 

(mm) 

Thickness 

(mm) 

Full 

scale 
1.00 2.00 1.00 0.35 40.00 60.00 10.00 

Scaled 

Model 1 
0.80 1.60 0.80 0.28 32.00 48.00 8.00 

Scaled 

Model 2 
0.50 1.00 0.50 0.175 20.00 30.00 5.00 

Scaled  

Model 3 
0.25 0.50 0.25 0.875 15.00 15.00 2.50 

 

Table 5.14: The loading conditions of t-joint at all scales 

 

Model 𝛽 

Crack extension 

∆𝑎  

(mm) 

Applied  

load 

(MPa) 

Load  

ratio 

𝑅 

Full scale 1.00 0.350 48.00 0.1 

Scaled 

Model 1 
0.80 0.280 30.72 0.1 

Scaled 

Model 2 
0.50 0.175 12.00 0.1 
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Scaled 

Model 3 
0.25 0.875 3.00 0.1 

 

 

Table 5.15. Stress intensity factors and number of cycles at final crack length of 5.85 mm 

for full scale and virtual models 

Model 
𝑎𝑓 

(mm) 
𝐸𝑟𝑟𝑜𝑟 (%) 𝐾𝑒𝑞𝑢𝑖𝑣(MPam

0.5) 𝐸𝑟𝑟𝑜𝑟 (%) 𝑛𝑝𝑠 𝐸𝑟𝑟𝑜𝑟 (%) 

Full 

Scale 
5.85 - 76.22 - 55627 - 

Virtual 

Model 

1 

5.85 0 72.65 5 53576 4 

Virtual 

Model 

2 

5.85 0 73.36 4 52989 5 

Virtual 

Model 

3 

5.85 0 76.60 0.1 50435 9 

 

 

Figure 5.13: Crack length vs number of cycles for full scale and virtual models of t-joint 

 

After 3.85 mm of crack propagation, the equivalent stress intensity factor in the full-scale 

model is 76.2 MPam0.5. The first-order theory returns a value of approximately 72.7 
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MPam0.5 and 73.4 MPam0.5 for virtual models 1 and 2, and 76.6 MPam0.5 for virtual model 

3 translating to a maximum error of 5%. The lifetime prediction is within a 9% deviation 

from full-scale fatigue strength for all virtual models.  

The crack path after 3.85mm of crack growth is presented in Fig. 5.14. Despite the relatively 

complex crack path, all the scaled models follow the same exact path and deform in the same 

way. This is because of the scaled experiments being designed individually accordingly to 

the zeroth-order similitude rules and combined to satisfy first order. Hence, information 

about the crack path can be readily gleaned from the scaled models. The left crack tip of the 

inclined semi elliptical crack propagates upwards at an angle and cuts through the skin while 

the right crack tip propagates downwards at an angle cutting through the stringer. The crack 

growth rate is different at both crack tips, with the left crack tip propagating slightly faster. 

The right crack tip propagates slower as its path is through the stringer which is fixed in all 

directions whereas the left crack tip is propagating towards the face where the tensile load is 

applied. The crack path of the inclined crack obtained from the numerical simulation closely 

matches the experimentally observed crack paths of other researchers see ref. [200].   

 

 Crack length 5.85 mm for the full-scale model  Crack length 5.85 mm for the virtual model   

   

Crack length 4.68 mm for 𝛽1 = 0.80  Crack length 2.925 mm for 𝛽2 = 0.5  
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Figure 5.14: Final crack path comparisons between the full-scale model, virtual model and 

scaled models 1 and 2. 

 

The ‘gold’ standard for fatigue experimentation in both academia and industry is the ASTM 

E647 [174] handbook. It recommends the measured experimental outputs of crack growth 

rate and stress intensity factor be plotted on a log-log scale whereby the Paris law constants 

𝐶 and 𝑚 can be extracted to describe the fatigue resistance of the material/component. A 

question of widespread interest therefore is whether scaled experiments can successfully 

predict the Paris law constants of the full-scale structure. The first order rules have been 

shown in this work to predict the crack length, number of cycles and stress intensity factor 

of the material of the full-scale models with high accuracy from the scaled tests (see Tables 

5.7, 5.8, 5.12 and 5.15). These three parameters are the only parameters required to extract 

the Paris law constants thus the first order finite similitude approach offers a solution to this 

question.  

Figure 5.15 presents the plot of crack growth rate vs the equivalent stress intensity factor for 

the full scale and virtual models of the t-joint according to ASTM E647 standard. The virtual 

models are formed by combining fatigue test data (𝑎, 𝐾𝑒𝑞𝑢𝑖𝑣) of the scaled T-joint models. 

The Paris law parameters 𝐶 and 𝑚 of AISI 316 stainless steel obtained from the numerical 

full-scale model are 4.06 × 10−8 and 2.34 respectively. This is an exact match within 

numerical error when contrasted with the experimental data of Sajith et al. [214].  All virtual 

models formed provide an exact match with that of the full-scale model to within 1% error. 

It is confirmed that exact replication of the Paris-law parameters is achieved using two scaled 

experiments.  The results of all three case studies in this section confirm that complete fatigue 

response of realistic structures with inherent defects under service loads can be predicted 

using two scaled experiments, designed strictly conforming to first order finite-similitude 

rules. Although the experimental campaign in this work is numerical, the value of the 

proposed framework lies in its applicability to physical laboratory experiments.  

Consequently, the focus of future work would be on fatigue outputs obtained directly from 

physical scaled experimentation, substituting for the numerical outputs performed in this 

work. 
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Figure 5.15: Crack growth rate vs equivalent stress intensity factor for the full-scale model 

and all virtual models of t-joint 

 

 

5.6 Conclusions 

This paper builds on previous work by the authors on scaling low cycle fatigue [46]. A novel 

approach for scaling empirical fatigue laws is introduced with particular focus on Paris law. 

A novel expression for number of cycles to fatigue life is proposed to predict the fatigue life 

of the prototype using two scaled experiments. Geometric size effects that arise in fatigue 

loaded structures with pre-existing cracks are examined to determine if they vanish upon 

conducting two scaled down tests. The first-order finite similitude theory is applied to 

combine information recorded at two scales to reconstruct full scale behaviour.  

The following conclusions can be drawn from the analysis and results returned in the paper: 

• Numerical experimentation was employed to investigate fatigue crack growth in a 

compact tension shear specimen, wing fuselage attachment lug and a welded t –joint. 

Simple radical functions of scale 𝛽 were discovered for the number of cycles to 

failure and stress intensity amplitude. It is shown that the scale effects present in the 

fields pertinent to mixed mode fatigue analysis within the fracture mechanics 

framework such as the number of cycles to failure, stress intensity factor and crack 

growth rate are eliminated with two scaled experiments.  
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• By performing two scaled experiments, the fatigue life of the full-scale models was 

predicted very accurately in each case within a 1% error in the best models and no 

more than 9% deviation in the worst-case scenario. Critical fracture mechanics 

parameters such as the mode I and mode II stress intensity factor values, equivalent 

stress intensity factor values, crack propagation angle, crack path and crack tip stress 

distribution were accurately predicted by the theory. In addition, Paris law parameters 

𝐶 and 𝑚 were predicted to up to 99% accuracy using two scaled experiments.  

• The results from the case studies confirm that the first order finite similitude theory 

is a useful tool that can aid with structural integrity decisions in any field that employs 

a damage tolerant design approach by determining service inspection intervals. It can 

help reduce the amount of multiple full-scale fatigue tests needed (accounting for 

scatter by repeated small scale testing instead) with the obvious benefit being 

tremendous cost savings for laboratory fatigue testing of large structures such as 

aircrafts, bridges etc., and components built with expensive materials such as robots, 

biomedical devices, among many others.  
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6. Discussion 

The aim of this thesis was to determine if the finite similitude theory can be applied to 

propagating fatigue cracks and successfully predict key fatigue damage parameters of a full-

scale structure using two scaled down experiments. This was achieved by performing 

numerical fatigue experiments. The first order finite similitude framework was extended in 

this thesis with the development of a similitude relationship for the number of cycles to 

fatigue failure. 

A major component of this work is the extensive numerical experimentation carried out 

alongside experimental validation with previous published fatigue experimental data using 

the fatigue capabilities of Ansys and Abaqus. The direct cyclic solver is used in Abaqus 

whereas the SMART solver is employed in Ansys. Realistic numerical models that are truly 

representative of fatigue crack growth in real components to replace physical testing were 

generated. The aim was to obtain fatigue crack growth outputs from the full scale and sub 

scale tests that typically would be obtained from laboratory tests. Both 2D and 3D fatigue 

crack growth finite element models for mode I and mixed mode fatigue were created in this 

thesis and validated against experimental tests (see Figs. 3.10, 4.4, 5.3 and 5.4). This 

promoted confidence in the use of a numerical experimentation campaign to validate the first 

order theory. The theory is then applied by conducting numerical tests according to the 

procedure outlined in section 5.4. This procedure enables creation of virtual models for 

fatigue outputs of interest that predict the full-scale fatigue output by combining the outputs 

from the scaled fatigue tests. This is the same procedure that should be followed in order to 

apply the first order theory to design and conduct physical fatigue tests in a laboratory/ 

industrial setting. 

A key aspect of successful implementation of the theory with numerical fatigue tests is the 

setup of the geometry, mesh, boundary conditions and fatigue crack growth parameters for 

the full and scaled down models. Also, careful consideration needs to be given to how the 

output data is obtained. Mesh sizes affects the accuracy of finite element simulation results. 

Thus, a mesh sensitivity study was conducted for each case study in this thesis. The fatigue 

outputs such as the crack length, number of cycles to failure and stress intensity factor were 

checked for convergence in the smallest scale models. This is to eliminate any error in the 

outputs of the models due to mesh sensitivity and ensure that the fatigue outputs at each scale 

are representative of what would be obtained if each scaled test was conducted as a 

standalone physical fatigue test. The same material was used for the full scale and scaled 
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down models. Numerical fatigue crack growth simulations were performed with five 

different materials in this thesis (Aluminium 6061 alloy, S355 steel, 7% Nickel steel, 

Structural steel and AISI 316 stainless steel). The first order theory demonstrates accurate 

predictions of full-scale fatigue response regardless of material choice. 

The number of elements in the full-scale model is kept the same for all scaled models to 

eliminate mesh sensitivity effects and to ensure any observed differences in fatigue outputs 

of interest are solely due to geometric changes in scale (geometric size effects). Advanced 

meshing techniques are used such as partitioning to refine the mesh in areas of interest such 

as the crack tip whereas a coarser mesh is employed elsewhere. This is done for two reasons, 

firstly to reduce the computational costs and secondly to enhance the accuracy of the results. 

Previous studies by researchers prescribed an element size of 0.5 mm or smaller around the 

crack tip, thus the element size in the case studies around the crack tip for the full-scale 

model are 0.5 mm or smaller to ensure accuracy of fatigue fracture mechanics parameters. 

Typically, an element size of either 1 mm or 0.8 mm is used in the other regions for the full-

scale model. The requirement of keeping the same number of elements in all models implies 

that the element size used in the smaller models must be smaller. This is achieved by 

partitioning the sub scale models in the exact same manner as the full-scale model and 

multiplying all the element sizes in the partitions of the full-scale model by the 𝛽 value of 

the scaled model being tested. 

Another parameter that affects the accuracy of crack growth simulations is the crack front 

extension value delta Δ𝑎 which determines the number of sub steps and consequently data 

points obtained for a given critical crack length 𝑎𝑓. Ideally, this should be set to a similar 

value to the element size at the crack tip. It can be smaller but if it is much larger than the 

element size at the crack tip, inaccuracies in the stress intensity factor values and number of 

cycles to failure arise. In this work, the outputs of the fatigue crack growth simulations need 

to be synchronized to apply the first order identities to each recorded data point (sub step) of 

the sub scale models. To achieve this, the crack front extension; Δ𝑎𝑝𝑠 of the full-scale model 

is set to a fixed value typically 0.2 mm in this work and the crack is propagated by the same 

value each sub step for a prescribed amount of sub steps till the crack reaches the desired 

crack length 𝑎𝑓. The number of sub steps must be kept the same for all scaled models, thus 

the crack front extension for the scaled models is set to ( 𝛽𝑖 x Δ𝑎𝑝𝑠). The stress intensity 

factor; ∆𝐾 is synchronised by taking the values at the same location of the crack front in all 
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models due to the non-uniform distribution of ∆𝐾. In this work the stress intensity factor 

values are taken from midpoint of the crack front (deepest point for semi-elliptical cracks) 

in all models and Eq. (5.9a) is used to combine the scaled model ∆𝐾 values. The applied 

loads in this work are applied to the finite element models as either displacement, force or 

stress-controlled loading. Excellent agreements are achieved in all cases by the virtual 

models. Paris law is the fatigue crack growth law used in all case studies. Identical materials 

are used for scaled models so the Paris law input parameters in the scaled numerical models 

are set to the same value as the full-scale model. 

In practical laboratory testing, the same procedure to synchronise the output data should be 

followed with the software set to record relevant fatigue data at prescribed fixed successive 

crack length increments Δ𝑎𝑝𝑠 with the scale model output data recorded at 𝛽𝑖 x Δ𝑎𝑝𝑠 mm 

crack lengths. The first order identities should then be applied at the recorded data points of 

the scaled model to construct the virtual model.  

Numerical experimentation in this thesis confirms that the procedure outlined in section 5.4 

for the design and testing of scaled fatigue crack growth experiments enables replication of 

full-scale fatigue component response. Hence, the procedure can be applied to physical 

scaled down fatigue tests in a laboratory environment. Section 5.4 prescribes the identities 

needed to apply the correct forces, loads and boundary conditions in the design of scaled 

fatigue tests and additionally post process the required fatigue outputs after the physical tests 

have been performed. For example, the force that should be applied to a scaled model with 

a geometric scaling factor 𝛽 is: 𝐹𝑡𝑠1 = 𝐹𝑝𝑠/𝛼01
𝑣 𝑔1. Where 𝐹𝑝𝑠 is the force experienced by the 

full-scale component/ structure in service and 𝛼01
𝑣 𝑔1 are scaling factors. 

The first order identities in Table 5.1 describe how to combine the outputs of the scaled 

fatigue tests such as stress, stress intensity factor, crack length (displacement), number of 

cycles to failure etc. to create a virtual model that predicts the corresponding output of the 

full-scale structure. Numerical simulations for planar and non-planar crack growth show an 

increase in error for fatigue outputs when 𝛽 value of the smallest model used in the virtual 

model is very small. However, fatigue output predictions are still within 10% of the full-

scale component values. Thus, when conducting physical fatigue tests the smallest scale 

model employed should be circa 20% of full-scale size (𝛽 = 0.2). However, the numerical 

simulations demonstrate that the selection of 𝛽 values for the scaled tests is not unique thus 

any 𝛽 value in the range of 0.2 ≤ 𝛽 ≤ 0.9 can be employed. 
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In Chapter 3, the fatigue response of three different ASTM E647 specimens made from 

Aluminium Alloy 6061 under low cycle fatigue are simulated in Abaqus using the cohesive 

zone model, XFEM and the direct cyclic solver. 2D finite element models are created and 

the constitutive relationship for the cohesive zone model is a bi-linear traction separation 

law. The first order rules are applied to design and conduct the scaled fatigue tests. The 

stresses at the crack tip are captured exactly with virtual models constructed from the vertical 

stresses (𝜎𝑦𝑦) obtained from Abaqus models. Both monotonic and cyclic loading were 

considered, and the force-displacement curve predicted by the virtual models are in exact 

agreement with the full-scale specimen. In addition, the stress intensity factor, crack length 

and number of cycles to failure are predicted to a high accuracy (see Figs. 3.20a, 3.20b). The 

expected trend of increase in stress intensity factor values with crack length is also observed. 

The focus here is on low cycle fatigue and the first order rules are shown to apply for the 

design and testing of both fracture and low cycle fatigue tests. 

In chapter 4, additional complexity is introduced by considering high cycle fatigue. Ansys 

SMART solver is used to create 3D fatigue crack growth models for all case studies. A novel 

function relating the number of cycles to failure change with scale is proposed and validated 

by means of two experimental and three numerical case studies. Fatigue crack growth 

simulation of a single edge notched specimen was validated against published experimental 

data. The first order rules are applied for the design and testing of fatigue crack growth in a 

single edge notched specimen, pipeline with semi elliptical crack and a pressure vessel with 

a semi elliptical crack.  

The lifecycle predictions for all three cases are highly accurate with a higher error occurring 

in virtual models with the smallest scale model (𝛽 = 0.25). Minimal errors are recorded for 

the stress intensity factor values. It is observed that the stress intensity factor distribution 

across the crack front in the full-scale model is non uniform. The first order rules are applied 

to create virtual models which predict the crack front distribution of the full-scale model 

accurately (Fig 4.14). Fig. 4.15 shows the plot of crack growth rate vs stress intensity factor 

for a pressure vessel. Observed clearly is the size effect in the scaled fatigue models which 

is consistent with observed experimental data [14, 127]. However, the size effect vanishes 

upon creating the virtual model and the Paris law parameters of the full-scale model are 

predicted with 99.9% accuracy. 
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In chapter 5, 3D mixed mode (mode I and mode II) fatigue crack growth simulations are 

performed in ANSYS. In practical cases, structures are under a combination of different 

loads acting on different planes thus the investigation here is to determine if the first order 

rules are still valid for the design and fatigue testing of real structures. The modified compact 

tension shear specimen is the most common specimen for extraction of Paris law parameters 

of structures under mixed mode loading conditions. Thus, a finite element model of the 

MCTS specimen was created in ANSYS and validated against previous experimental data. 

Both the crack growth rate (Fig 5.3) and path taken (Fig 5.4) agreed with previous 

experimental efforts. 

The first order finite similitude rule is then used to design and test scaled fatigue crack growth 

experiments for the MCTS specimen, wing fuselage attachment lug and a welded t-joint 

following the procedure outlined in section 5.4. The virtual models constructed from the 

scaled fatigue tests predicted the critical crack length, residual life, mode I, mode II and the 

equivalent stress intensity factors to high accuracy (see Tables 5.7, 5.8, 5.12 and 5.15). The 

crack initiation angle is a key fracture mechanics parameter for structures under mixed mode 

loading as it controls the path taken by the crack as it propagates through the structure. The 

first order was able to predict both the crack initiation angle and the paths taken by the 

propagating cracks to a high degree of accuracy with a maximum error of 3% (Table 5.8). 

The crack path predictions by the theory (Fig 5.8) are exact. The fatigue crack growth curve 

of t-joint with an inclined crack made from AISI 316 steel is plotted in Fig 5.15 and 

contrasted with experimental data. The virtual models predict the Paris law parameters of 

AISI 316 stainless steel under mixed mode fatigue with up to 99% accuracy when contrasted 

with experimental data [214]. The impact of this work is that Paris law parameters 𝐶 and 𝑚 

of realistic structures and components can now be predicted with 99% accuracy using two 

scaled experiments. 

A major uncertainty in the characterisation of the fatigue strength of real components in 

industry is the transferability of fatigue test data obtained from specimens usually cylindrical 

smooth specimens to real service structures. The fitness for service flaw (FFS) assessment 

procedures for fatigue in industrial standards such as BS 7910 [210], API 579 [211], R6 

[220], ASME Section VIII Division 2 [221] etc address this with typically large conservative 

safety factors however there is a greater push in recent times for less conservative structural 

integrity assessments. This is particularly important in life extension of structures such as 

pressure vessels where there is a need to keep the plant in operation past its initial design 
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life. In this scenario, a more accurate estimation of the actual crack growth rates of the 

structure is needed. The work presented here can be of benefit in the experimental campaign 

used for FFS assessments of structures and/or development of FFS industrial codes as full 

scale mock up tests are very costly. This is because accurate fracture mechanics fatigue 

outputs of full-scale components/ structures such as the mode I/ II stress intensity factors and 

number of cycles to fatigue failure are predicted from data obtained from the medium amd 

small scale tests using the procedure presented in this work. 

Although the focus in this work was on propagating cracks in a damage tolerant framework, 

during the research the novel hypothesis proposed in this work (the product Δ𝐾𝑡𝑠𝑛𝑡𝑠 is 

second order) was discovered to have an analogous counterpart within the CFD framework 

(𝑆 − 𝑁 curves). The product Δ𝜎𝑡𝑠𝑛𝑡𝑠 is second order with Δ𝜎𝑡𝑠𝑛𝑡𝑠 = Δ𝜎𝛽𝑛𝛽, where Δ𝜎𝛽 and 

𝑛𝛽 are the stress amplitude and number of cycles on 𝛺𝛽 . An initial exploratory study was 

performed using the procedure highlighted in section 5.4 to combine the number of cycles 

to failure 𝑛𝑓 and the first order identity for stress; 𝝈𝑝𝑠 = 𝛼01
𝑣 𝑔1𝛽1

2𝝈𝑡𝑠1 +

𝑅1 (𝛼01
𝑣 𝑔1𝛽1

2𝝈𝑡𝑠1 − 𝛼02
𝑣 𝑔2𝛽2

2𝝈𝑡𝑠2)  to validate this hypothesis. 

Experimental data from fatigue rotary bending tests of cylindrical specimens (Diameters 8, 

20, 30 and 40 mm) made from forged steel (SF50) conducted by Hatanaka et al. [222] was 

examined. Virtual models are created from the scaled fatigue tests to predict the fatigue 

strength 𝜎𝑓 corresponding to a number of cycles to failure 𝑛𝑓 at 106 cycles. The fatigue 

strength of the full-scale specimen (D=40 mm) is 202.2 MPa. Virtual model 1 (𝛽1 =

0.75, 𝛽2 = 0.25) and virtual model 2 (𝛽1 = 0.5, 𝛽2 = 0.2) returned fatigue strength 𝜎𝑓 

predictions of 207.7 MPa and 211.8 MPa respectively. This corresponds to 2.7 % and 4.8% 

error respectively. This is a significant discovery as it highlights the potential in conducting 

reliable scaled fatigue tests in the safe-life approach which is more commonly used in 

standards such as the ASME code [221].  It further confirms that fatigue crack growth is a 

first order process and complete similarity in crack growth rate is possible using two scaled 

experiments. More experimental data (𝑆 − 𝑁 and 휀 − 𝑁 ) curves would be examined to 

further validate the proposed hypotheses and would be the subject of future publications. 

In conclusion, the numerical simulations demonstrate that the first order finite similitude 

theory provides a framework for connecting lab-based fatigue/fracture experiments to 

understand failure modes in real engineering components. It enables designers to design and 

conduct meaningful scaled fatigue tests that extract large scale (component-level) 



189 

 

mechanical data by following the procedure outlined in section 5.4. The scale effects present 

in the fields pertinent to the fatigue analysis within the fracture mechanics framework are 

eliminated with two scaled experiments.  

Cost weight savings can be realised as less conservative safety factors can be applied now. 

The results from the case studies confirm that the first order finite similitude theory is a 

useful tool that can aid with structural integrity decisions in the field such as determining 

service inspection intervals by accurate prediction of critical defect size. It virtually 

eliminates the need for multiple full-scale fatigue tests with the obvious benefit being 

tremendous cost savings for fatigue testing of large structures such as aircrafts, bridges etc., 

and components built with expensive materials such as robots, bio medical devices, among 

many others. In situations where it is difficult to conduct full scale fatigue tests such as boiler 

pressure vessels in nuclear reactors, pipework in harsh operating conditions etc. the finite 

similitude theory offers a solution in providing accurate residual life predictions. 

The first order theory is only valid for isotropic scaling where the geometric dimensions are 

scaled in all directions by the same 𝛽. The first order theory as presented deals only with the 

effect of changes in scale on the continuum kinematics as such the theory deals with 

geometric scale effects only. Material-based size effects can also play a significant role in 

fatigue crack growth thus the work presented is valid when the microstructure length scales 

influencing crack growth are much smaller than the component or sub-scale models. For 

example, at the component level the material may be mechanically isotropic; however, if the 

trial domain is small enough to resolve grains, the material behaviour will be anisotropic. 

The theory is applicable within the confines of a continuum-mechanics framework, 

indicating practical limitations on the size of the smallest scaled models, it is recommended 

that the size of the smallest scaled models should be no smaller than 20% of the full-scale 

structure. Experimental studies designed conforming strictly to first order similitude rules 

should be undertaken to further validate the results presented in this thesis. This work 

focused on LEFM long crack fatigue crack growth. Fatigue crack growth simulations 

accounting for plasticity is a subject of future work to validate the theory. Finally, the work 

presented is valid for replica scaling (the same material used for both the full scale and scaled 

down models). 
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7. Conclusions 

The aim of this thesis was to determine if the finite similitude theory can be applied to 

propagating fatigue cracks and successfully predict key fatigue damage parameters of a full-

scale structure using two scaled down experiments. Fatigue is the phenomenon whereby a 

structure fails due to the application of sub critical cyclic loads. With a very high percentage 

of all structural failures attributed to fatigue it is a key consideration in the design stage. With 

full scale fatigue testing not just costly but also time consuming, the use of smaller specimens 

sharing geometric characteristics with the larger structure is an alternative and, in some 

cases, the only option for physical testing purposes.   

When performing scaled tests however, a similarity law is needed to select the appropriate 

parameters for the experimental test such as forces, boundary conditions etc in the first 

instance and relate the desired outputs behaviour to that of the full scale by applying scaling 

factors.  In theory 𝑛 should not change as it is dimensionless but observed experimental and 

numerical data show the number of cycles to failure has an inverse relationship with the 

structural size. 

The first order similitude theory is a theory founded on space scaling that calls for the use of 

two scaled experiments. Scale effects are accommodated either explicitly or implicitly in its 

formulation. The zeroth order similitude theory now confirmed as akin to dimensional 

analysis uses a single scaled experiment and is used for the design of individual scaled 

fatigue experiments. The first order finite similitude theory then prescribes the scaling factors 

required to combine the outputs from the scaled model to form a virtual model that predicts 

full scale behaviour.   

Within a damage tolerant design framework, fatigue and fracture has to be modelled using 

the fracture mechanics theory. The first order finite similitude rules have been shown to 

accurately describe the fracture behaviour of structures within both the linear elastic fracture 

mechanics framework and elastoplastic fracture mechanics framework. The theory is applied 

here to fatigue cases within the linear elastic fracture mechanics framework and its efficacy 

evaluated. Scaled fatigue tests of five different metals (steel, Al 6061 etc.) are designed and 

conducted following the first order finite similitude framework outlined in section 5.4.  

This thesis presents contributions towards the use of smaller scaled down experiments for 

fatigue testing to predict full scale behaviour. The aim of the research was successfully 

achieved as it was revealed that the finite similitude theory can successfully predict 
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behaviour of propagating fatigue cracks within the linear elastic fracture mechanics (LEFM) 

framework. Both analytical and numerical studies show strong evidence that supports the 

use of first order finite similitude theory for fatigue testing. The fatigue crack growth rate of 

ASTM E647 standardised specimens can be accurately predicted using scaled models. 

Furthermore, for more practical cases as encountered in industry the first order theory is still 

able to make accurate predictions of full-scale fatigue response such as the critical/limiting 

defect size. The key conclusions from the thesis are summarised as follows: 

• The complete fatigue crack growth response of metals (critical defect size, crack 

growth rate and path) can be simulated accurately using numerical software Abaqus 

(direct cyclic solver) for low cycle fatigue and Ansys (SMART solver) for both low 

and high cycle fatigue. The outputs correlate well with published experimental data. 

• Geometric size effects are present in scaled fatigue testing for both mode I and mixed 

mode loading. One of the primary challenges in scaled experimentation in fatigue 

lies in the inability to scale the number of cycles to failure, 𝑛 as it is a dimensionless 

number. This issue was resolved in this thesis by the proposal of a brand-new 

hypothesis viz: the product of the number of cycles to failure and change in stress 

intensity factor is second order (i.e., Δ𝐾𝑡𝑠𝑛𝑡𝑠 is second order).  This hypothesis led 

to the proposal of simple radical functions that relate the number of cycles to failure 

and stress intensity factor amplitude to change in geometric scale that were validated 

successfully both numerically and experimentally. 

• Multiple subscale mixed mode fatigue testing is attempted for the first time in this 

thesis and near exact agreement of crack growth rate, path and crack propagation 

angle was achieved. Under mixed mode loadings, the crack path predicted using the 

SMART solver in Ansys was in good agreement with experimental data.  

• The outcomes from the numerical experimentation confirmed that the fracture 

mechanics parameters that describe the fatigue behaviour of a full-scale 

component/structure for both low and high cycle fatigue can be predicted by a virtual 

model formed using two smaller replica models designed according to first order 

finite similitude rules with minimal error. Paris law was previously shown to exhibit 

incomplete similarity with scale according to dimensional analysis. It was proven for 

the first time in this work that complete similarity in Paris law is possible at two 

distinct scales. More generally, the fatigue crack growth rate 𝑑𝑎 /𝑑𝑛 behaves 

according to the first order rule. 
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• Fatigue crack growth rate is a first order rule consequently Paris law parameters 𝐶 

and 𝑚 of a material can be predicted using scaled models with up to 99.9% accuracy.  

• The fracture mechanics parameters predicted in this work are crack length, number 

of cycles to failure, stress intensity factor, crack path, mode I and II stress intensity 

factor and stress intensity factor distribution across the crack front. These parameters 

were predicted by the virtual models all within 10% error. These parameters would 

ordinarily be obtained using physical experiments, the numerical work in this thesis 

was performed as an alternative to obtain these parameters thus demonstrating the 

validity of the scaling theory to conducting real fatigue experiments in the laboratory 

or industrial settings using subscale models.  

• Numerical simulations for planar and non-planar crack growth show an increase in 

error for fatigue outputs when geometric scaling factor (𝛽) of the smallest model 

used in a virtual model is very small. However, fatigue outputs are still within 10% 

of the full-scale component values. Thus, when conducting physical fatigue tests the 

smallest scale model employed should be circa 20% of full-scale size (𝛽 = 0.2). Any 

𝛽 value in the range of 0.2 ≤ 𝛽 ≤ 0.9 can be employed in scaled fatigue tests. 

• Numerical data showed an increase in fatigue life when the 𝑅 ratio was increased 

(crack closure effect). Negative 𝑅 ratios reduced the fatigue life. Stress intensity 

factor was observed to be non-uniform across the crack front. The highest stress 

intensity factor is recorded at roughly the midpoint of the crack front.  

• Experimental data of three-point bending tests of concrete by previous researchers 

were examined, and first order rules applied to combine outputs from scaled models 

such as critical crack length, number of cycles to failure and Paris law parameters C 

and m. Good agreement was achieved despite the experiments not strictly designed 

and tested according to first order similitude rules in section 5.4. 

• The ability to perform meaningful sub scale fatigue tests that are reflective of the 

full-scale component behaviour translates to cheaper cost, reduced time in the 

product lifecycle meaning new innovative products can be brought to market quicker 

and at a cheaper cost as multiple full scale fatigue tests are no longer a necessity. 

• To accurately resolve the stress distribution at the crack tip and give accurate residual 

life predictions, the element size around the crack tip for full scale models should be 

set to 0.5mm or smaller for planar crack growth and for mixed mode fatigue cases 

0.25mm or smaller to accurately resolve the stress distribution at the crack tip and 
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give accurate residual life predictions. The number of elements in the sub scale model 

should be the same as the full-scale model. This is achieved by multiplying the 

element sizes used in the full-scale model by the 𝛽 value of the sub scale model. 

• Excellent prediction of fatigue parameters enables engineers to make predictions of 

critical defect size as well as fatigue life and path of a component enabling remedial 

action to be undertaken in industrial settings. For example, by predicting the path 

accurately, measures can be taken to slow down crack growth to ensure the structural 

integrity of a component is intact such as drilling of stop holes, composite fibre patch 

repair, increasing redundant load paths, laser shot peening etc. Operating conditions 

(e.g., pressure in a pressure vessel) can be altered to achieve desired crack growth 

rates. It would enable engineers to determine service inspection intervals more 

accurately as the crack growth rates are more accurately predicted. This would result 

in cost savings by reducing unnecessary service inspections. 

• Numerical experimentation confirms that the fatigue test output data must be 

synchronized to apply first order identities correctly in its point by point formulation. 

In the numerical work here, this is done by recording the variables of interest at the 

crack front advance points Δ𝑎. In a physical experiment, this can be achieved by 

recording data points such as stress intensity factor; ∆𝐾 and number of cycles at 

successive fixed crack length increments ∆𝑎𝑝𝑠 for the full-scale model, the data 

points for subscale model (𝛽𝑖) should be recorded at 𝛽𝑖 × ∆𝑎𝑝𝑠. Furthermore, ∆𝐾 

values should be obtained at the same location in all samples. Typically, this would 

be at the midpoint of the crack front. The first order identities prescribed in section 

5.4 can then be applied at these data points to predict full scale fatigue behaviour. 

• Numerical simulations confirm that the first order theory predicts fatigue outputs 

accurately independent of the type of mechanical loading (stress, force, 

displacement, and pressure) and material (five different metals were tested). 

• Limitations of the proposed framework are that the theory is only valid within the 

confines of continuum mechanics and thus there are practical limitations on the size 

of the smallest scaled experiment. In this work the smallest scaled experiment was 

circa 20% of the full-scale size. The size of the sub scale models has to be greater 

than the length scales where microstructure affects fatigue crack growth. The work 

here is limited to isotropic materials; only metals were tested. Furthermore, this work 

is applicable to geometrically similar structures only with an initial notch/defect. 
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8. Recommendations for future work 

Fatigue is a very broad subject and it is impossible to investigate all the different factors that 

affect fatigue as scale changes within the limited time of a PhD study. The positive outcomes 

of the first order finite similitude theory as applied to fatigue presented in this thesis is a 

starting point for future research. The following recommendations are made for future 

efforts: 

• The first recommendation is a physical scaled fatigue experimental investigation. 

Fatigue crack growth is demonstrated in this work to be a first order process. There 

is a distinct lack of experimental data describing the behaviour of propagating fatigue 

cracks at different scales. As a starting point, the ASTM E647 standardised 

specimens that were analysed numerically in this thesis should be tested. Isotropic 

scaling would be the focus with the same material used for the full-scale specimen 

and scaled down specimens. The experimental parameters such as the magnitude of 

the force applied to the scaled models would be calculated according to the procedure 

outlined in section 5.4. It is recommended that multiple fatigue tests at each scale are 

conducted with the mean values recorded to eliminate the statistical size effect 

ensuring that the observed differences at scale are caused solely by geometric sizing 

update. Relevant physical outputs from the experiment are the stress intensity factor, 

number of cycles to failure and crack length. The first order rules would then be used 

to combine the outputs to create a virtual model whose predictions can be contrasted 

with the outputs of the full-scale specimen. The Paris law constants C and m should 

be calculated according to ASTM E647 guidelines. This would be useful as it would 

add to the knowledge base presented in this thesis, further validating the efficacy of 

the theory. 

• The numerical investigation performed in this thesis can be extended by considering 

a few different scenarios. Only Paris law was used for fatigue crack growth 

simulations in this work. The 𝛺𝛽  introduced in this work, facilitates the study of 

changes in empirical fatigue laws with scale thus more empirical fatigue crack 

growth models (see section 2.4) should be tested. Industrial standards prescribe a 

correction factor to modify the Paris law exponent C and m (modified Paris law) for 

complex crack growth problems. However, complete similarity of the crack growth 

rate was demonstrated in this thesis, thus the expectation is that for more complex 

loading cases (e.g. residual stresses, crack closure effect etc.) the first order similitude 
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theory should still provide accurate predictions. Furthermore, constant amplitude 

loading was applied in all cases. Simulations of fatigue crack growth with 

components/ structures under variable loading should be conducted to determine if 

the virtual models constructed by the first order theory still give accurate predictions 

of the full-scale behaviour. 

• Replica scaling was the focus of this thesis. However, there are situations where it is 

advantageous to use a different material in the testing phase than that of the prototype. 

A major reason for this is cost reduction. One can imagine a situation where a product 

is made from a very expensive material thus it would be very advantageous if a 

cheaper material can be used for the sub scale fatigue tests while still giving a good 

accurate prediction of the full-scale fatigue behaviour. It is anticipated that the 

material choices for the scaled models must be carefully considered with selected 

properties of the full-scale material chosen to match or be as close as possible. For 

example, the Young’s modulus, yield strength, fracture toughness etc. Different 

materials would be used to determine the size effect on the fatigue response using a 

scaled experiment. The results from this study would inform the materials that should 

be used for the scaled models. A first attempt would involve using a different material 

to the prototype for both scaled models and examining the predictions of key fatigue 

parameters such as crack growth rate and stress intensity factor returned by the virtual 

models. If satisfactory results are achieved, then the complexity can be increased by 

using different materials for both scaled models that also differ from the full-scale 

model. 

• This thesis is limited to structures with an initial defect i.e., crack or notch. It would 

be useful to determine if the first order theory can also capture the crack initiation 

life in addition to the crack propagation life for the safe life design approach. The 

cumulative fatigue damage (CFD) framework plots the stress amplitude against the 

number of cycles to failure. The empirical fatigue laws, Basquin law and Coffin 

Manson are then used to determine the fatigue strength by curve fitting the 

experimental data. A numerical investigation is possible as various commercial 

software can simulate fatigue damage using the CFD approach. Scaled models would 

be created using the same procedure in section 5.4 and the size effect in the 𝑆 − 𝑁 

and 휀 − 𝑁 curves examined. The use of an extra scaled model would be tested to 

determine if the size effects in the fatigue strength 𝜎𝑓 of the structure vanish. 
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Preliminary investigations on experimental fatigue data of forged steel [222] suggests 

that a slightly modified version of the hypothesis presented in this work is also valid 

for the CFD framework. The hypothesis is as follows; the product Δ𝜎𝑡𝑠𝑛𝑡𝑠 is second 

order with Δ𝜎𝑡𝑠𝑛𝑡𝑠 = Δ𝜎𝛽𝑛𝛽, where Δ𝜎𝛽 and 𝑛𝛽 are the stress amplitude and number 

of cycles on 𝛺𝛽 . The total life fatigue strength of the full-scale structure was 

predicted by the virtual models to within 5% error. Basquin law fatigue constants 

𝜎𝑓
′and 𝑏 were evaluated to great accuracy. This is significant as it suggests less 

conservative safety factors can be employed for fatigue assessments of structures in 

challenging operating conditions/environments such as offshore engineering 

structures, boiler pressure vessels, environmentally assisted fatigue, and in the 

characterisation of fatigue strength of new innovative materials such as different 

alloyed steels among others as more reliable fatigue strength predictions can be made 

using scaled models. It can be a useful tool to aid in the reduction of conservatism 

inherent in fitness for service assessment procedures in design codes. For example, 

the ASME code [221] applies a fatigue strength reduction factor of 20 to the value of 

the number of cycles to failure obtained from scaled tests to account for factors such 

as the size effect, surface finish etc when predicting the fatigue life of the full-scale 

component. More accurate 𝑆 − 𝑁 curves can now be constructed from small/medium 

scale fatigue tests. Further validation of this hypothesis with more experimental data 

sets would be the focus in future publications. 

 

 

 

 

 

 

 

 

 

 

 

 

 



197 

 

Appendix: Publications 

Published 

1. Davey, K., Darvizeh, R., Akhigbe-Midu, O. and Sadeghi, H., 2022. Scaled cohesive 

zone models for fatigue crack propagation. International Journal of Solids and 

Structures 256, p.111956. 

2. Davey, K., Akhigbe-Midu, O. Darvizeh, R., and Sadeghi, H., 2023. Scaled empirical 

fatigue laws. Engineering Fracture Mechanics 284 p.109258.  

3. Davey, K., Akhigbe-Midu, O. Darvizeh, R., and Sadeghi, H., 2023. Scaled fatigue 

cracks under service loads. Theoretical and Applied Fracture Mechanics 127 p. 

103991. 
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