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Chapter 1

Introduction

1.1 Context

Over the past decade radio astronomy has grown substantially. Next generation radio
telescopes such as ALMA in the millimetre waveband and LOFAR in the metre waveband
have pushed the boundaries of what is possible scientifically. However, with every sci-
entific opportunity produced by these new software-driven telescopes comes a new data
challenge. Looking to the future, with even larger facilities such as the Square Kilometre
Array (SKA) planned for construction, data challenges become even more substantial.

It is now well known that cosmic magnetic fields fill interstellar space, contribute
significantly to the total pressure of interstellar gas, affect the evolution of galaxies and
galaxy clusters and are essential for the formation of stars like our Sun. Nevertheless,
answers to questions such as where do magnetic fields come from and how they evolve
are still unknown (Widrow, 2002; Gaensler et al., 2004; Kandus et al., 2011; Subramanian,
2016; Martin-Alvarez et al., 2021).

One of the key science opportunities for next-generation telescopes is to investigate
the origin and evolution of cosmic magnetic fields. This can be done by observing large,
diffuse synchrotron radio sources such as radio halos and relics (e.g. Feretti, L. et al.,
2001; Bonafede, A. et al., 2009; Cuciti, V. et al., 2021; Stuardi et al., 2021; Vacca et al., 2022;
Stuardi, C. et al., 2022; Bonafede et al., 2022), cosmic filaments (e.g. Carretti et al., 2022a;
Carretti et al., 2022b) and through the analysis of polarised emission from radio galaxies
located at different projected distances with respect to the cluster centre (e.g. Govoni,
F. et al., 2001; Bonafede, A. et al., 2010). The interaction of the intra-cluster medium
(ICM), a magneto-ionic medium, with the linearly polarised synchrotron emission from
these radio galaxies results in a rotation of the plane of polarisation known as Faraday
rotation. This interaction will be produced by all magneto-ionic media along the line of
sight and additional contributions will also come from the Galactic foreground and the
intrinsic local contribution of the radio source itself (Brentjens, M. A. and de Bruyn, A.
G., 2005).

Nevertheless, to truly understand magnetic fields, we require hundreds or maybe
thousands of measurements of distant radio galaxies, pulsars, halos and relics. This is



1.1. Context 23

where the unique angular and spectral resolution of next-generation comes into play.
These instruments will allow us to make very large surveys of the sky, opening a new
window into the magnetic universe (see examples of surveys with SKA precursor in Jarvis
and Taylor et al., 2016 and Knowles, K. et al., 2022).

Even though the first paper on astronomical Faraday rotation was published by Burn
in 1966, the literature is still light on this subject. In fact, it was not until the advent of
broadband polarisation measurements when LOFAR became operational and when the
Very Large Array (VLA) was upgraded and renamed to Karl G. Jansky Very Large Array
in 2012, that a technique known as Rotation Measure (RM) Synthesis (Brentjens, M. A.
and de Bruyn, A. G., 2005) began to be used by radio astronomers. This is based on the
fact that Faraday rotation caused by a magneto-ionic plasma manifests as a rotation of the
linearly polarised radio-wave’s polarisation angle, appearing as a sinusoidal variation in
the measured amplitude of Stokes Q & U as a function of wavelength squared. Conse-
quently one can perform a Fourier inversion of the (Q,U) data with respect to wavelength
squared in order to isolate the so-called “Faraday screen" in the corresponding Fourier
space (Faraday depth). However, wavelength/frequency space cannot be measured com-
pletely by radio telescopes and, consequently, Faraday depth reconstruction suffers many
of the same deconvolution issues as standard interferometric imaging. Even so, with the
spectral resolution of the radio telescopes mentioned before, scientists were able to re-
solve Faraday depth structures and then infer physical parameters of the magnetized
plasma (e.g. Stuardi et al., 2021; Vacca et al., 2022; Stuardi, C. et al., 2022).

In this thesis, I introduce a novel compressed sensing framework for Faraday imaging
and provide a method to select the optimal basis or wavelet, considering the given data.
In Chapter 1, I delve into the physical and mathematical foundations of synchrotron ra-
diation, astronomical Faraday rotation, and RM Synthesis. In Chapter 2 I further explore
the concepts of radio interferometry and aperture synthesis, both of which are central to
this study. Chapter 3 is dedicated to the introduction of compressed sensing concepts
and their respective applications. Within this chapter, I also detail how the proposed
compressed sensing framework for Faraday imaging functions and how the selection
process for the optimal basis operates using simulated data. A comparison between
Faraday depth reconstructions, made using the compressed sensing framework, and the
widely recognized RM-CLEAN method, brings the chapter to a close. In Chapter 4, I
demonstrate the practical application of the compressed sensing framework using real
JVLA data from Abell 1314. Chapter 5 focuses on processing the Abell 1314 data with
the angular and spectral resolution provided by the eMERLIN radio telescope. Further,
in Chapter 6, I discuss the application of the framework to the MIGHTEE-POL survey,
which is currently being conducted with the MeerKAT telescope. Lastly, in Chapter 7, I
put forward recommendations for future work and provide my concluding thoughts.
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1.2 Plasma effects

Free charges often play an essential role in astrophysical applications. They determine
the propagation properties of the medium. The concept of plasma refers to a gas that
is so hot that its constituent atoms split up into electrons and ions (ionized gas). Since
plasma is then made up of electrically charged particles, they are strongly influenced by
electrostatic and magnetic field forces.

In this section I will review Maxwell equations to show how electric charges and
electromagnetic fields are mathematically related.

1.2.1 Review of Maxwell’s Equations for Electromagnetism

As radiation is an electromagnetic phenomena, it is useful therefore to give a brief view
of the governing equations of electromagnetism. The following derivations are mainly
based on Purcell and Morin, 2013 book. However, I highly recommend also check-
ing Griffiths, 2017; Zangwill, 2012 and Jackson, 2003.

In the 18th century, experiments from Priestley, Cavendish, and Coulomb gave us
important and founding information about the force between stationary charged objects.
That is, the force produced on a charge q at point r by N point charges qk at points rk is
given by Coulomb’s law:

F =
1

4πϵ0

N

∑
k=1

qqk
r − rk

|r − rk|3
. (1.1)

If I define the charge density of the N point charges as

ρ(r) =
N

∑
k=1

qkδ(r − rk), (1.2)

I can re-write Coulomb’s law such that

F = qE(r), (1.3)

where the vector electric field E(r) is defined as

E(r) =
1

4πϵ0

∫
ρ(r′)

r − r′

|r − r′|3 d3r′. (1.4)

Thus, the electric field produced by an arbitrary charge distribution is the vector
sum of the electric fields produced by each of its constituent pieces (Zangwill, 2012, Sec-
tion 2.2.1). If I use the following mathematical identities

∇ 1
|r − r′| = − r − r′

|r − r′|3 and ∇2 1
|r − r′| = −4πδ(r − r′) (1.5)

it is possible to show that
∇ · E =

ρ

ϵ0
(1.6)
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and
∇× E = 0, (1.7)

where Equation 1.6 is known as Gauss’ law. The second (Equation 1.7) is only valid for
electrostatics.

Later on, Ampere published the calculation of a force on a closed loop carrying a
current I due to presence of N other loops carrying currents Ik. If r points to the dl
element of loop I and rk points to the dlk element of the k-th loop, the Ampere equation
for force in I is

F = − µ0

4π

∮
I dl

N

∑
k=1

∮
Ik

r − rk

|r − rk|3
dlk, (1.8)

which we can re-write as
F =

∮
I × B(r) dl, (1.9)

where B(r) is written using the Biot and Savart (1820) form such that

B(r) =
µ0

4π

N

∑
k=1

∮
Ik × dlk

r − rk

|r − rk|3
. (1.10)

Additionally, if I define j(r) = ρ(r)v(r) as the current density at any point r, where v(r)
characterizes the motion of the charge density at that point, the magnetic field produced
by any time-independent current density is

B(r) =
µ0

4π

∫ j(r′)× (r − r′)
|r − r′|3 d3r′. (1.11)

As long as the current density satisfies the steady-current condition, in other words,
∇ · j = 0. It is possible to show that current loops and permanent magnets satisfy the
conditions

∇ · B = 0 (1.12)

and
∇× B = µ0 j, (1.13)

where the first equation represents the Maxwell’s second equation and the second, only
valid for magnetostatics is known as the Ampere’s law.

Maxwell’s third law derives from Faraday’s law of electromagnetic induction. Fara-
day made several experiments (see Faraday, 2012), however, as a simplification to the
reader I would like to use an example depicted in Figure 1.1.

Faraday observed that current could be induced when a conductor cuts across the
perpendicular magnetic field lines. He observed that whether the magnetic field changes
or the conductor moves. Then, German mathematical physicists Neumann, Weber and
Kirchhoff constructed the mathematical description of the phenomenon. Neumann be-
gan with the statement known as Lenz’s law which describes that the current induced
in a circuit is such as to oppose in the magnetic field flux through the circuit. In other
words, changing the magnetic flux within a circuit produces an induced electromotive
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S

C

B

FIGURE 1.1: Presence of an induction B on closed circuit C formed by a conducting wire.

force (emf) or voltage within the circuit. Mathematically, this can be expressed as

emf = −dΦ
dt

, (1.14)

where Φ is the magnetic flux within a circuit. We also can interpret the existence of the
induced emf as indicating the presence of a induced electric field along the wire C. This
can be written as ∮

C
E dl = −dΦ

dt
. (1.15)

Finally, the total magnetic flux is simply the sum of the magnetic field over the area S
enclosed by the wire C:

Φ(t) =
∫

S
B(r, t) dS, (1.16)

therefore, if I substitute Equation 1.16 into Equation 1.15 and apply the Stokes’ theorem
we have the third of Maxwell’s equations given by

∫
S
∇× E dS = − d

dt

∫
S

B(r, t) dS =
∫

S
−dB(r, t)

dt
dS.

Lastly, this can also be written as

∇× E = −∂B
∂t

. (1.17)

At this point I have the following equations:
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∇ · E =
ρ

ϵ0
∇ · B = 0

∇× E = −∂B
∂t

∇× B = µ0 j

(1.18)

We are assuming that all these equations, except Faraday’s law are still correct when
fields vary with time. One of the major contributions of James Maxwell was to find out
that Equation 1.13 is incompatible with charge conservation and then showing that this
inconsistency could be solved introducing an additional "current".

If I start by asumming that the divergence of a curl operator is always zero and apply
this to our equations, we will see that for Equation 1.17 we have

∇ · (∇× E) = ∇ · (−∂B
∂t

) = − ∂

∂t
(∇ · B), (1.19)

where the left side is zero, and the right side is zero because of Equation 1.12. However,
if we apply the same reasoning to Equation 1.13 we get

∇ · (∇× B) = µ0(∇ · j). (1.20)

And I know that for steady currents ∇ · j = 0. However, for non-steady currents

∇ · j = −∂ρ

∂t
. (1.21)

To find the missing term I can make use of Gauss’ law such that

∇ · j = −∂ρ

∂t
= −ϵ0∇ · ∂E

∂t
. (1.22)

If I add this term to Ampere’s law I have that

∇× B = µ0 j + µ0ϵ0
∂E
∂t

, (1.23)

which is known as the Ampere-Maxwell law and is the fourth of Maxwell’s equations.
So far I have derivated the following Maxwell’s equations according to the Interna-

tional System of Units (SI):

∇ · E =
ρ

ϵ0
∇ · B = 0

∇× E = −∂B
∂t

∇× B = µ0 j + µ0ϵ0
∂E
∂t

(1.24)

To convert these equations to Gaussian units I will go back to Equation 1.1. This
equation written in SI units contains the factor 1/4πϵ0, when using Gaussian units, this
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factor is 1. Therefore, I can simply set ϵ0 = 1/4π. And since µ0ϵ0 = 1/c2, I can also set
µ0 = 4π/c2 such that

∇ · E = 4πρ ∇ · B = 0

∇× E = −∂B
∂t

∇× B =
4π

c2 j +
1
c2

∂E
∂t

(1.25)

Since Lorentz force is defined as F = qv × B in SI units, and as F = (q/c)v × B
in Gaussian units, the last step to convert Maxwell’s equations to Gaussian units is to
replace every B to B/c. Consequently, I get

∇ · E = 4πρ ∇ · B = 0

∇× E = −1
c

∂B
∂t

∇× B =
4π

c
j +

1
c

∂E
∂t

(1.26)

1.3 Radio Emission Mechanisms

1.3.1 Synchrotron Emission

Through the whole reading of this thesis you will find out that the main source of radio
waves being studied are those originating from synchrotron radiation, also known as
magnetobremsstrahlung (Burke et al., 2019).

Russian astronomer Iosif Shklovsky proposed in 1953 that synchrotron radiation is
produced when relativistic electrons spiral along magnetic field lines (Carroll and Ostlie,
2007). Mathematically, this all starts from the equation relating the magnetic field on a
moving charge, q, (with velocity much less than the speed of light) also known as Lorentz
force equation,

F = q(
v
c
× B) , (1.27)

where F is the force acting on charge q with velocity v due to a magnetic field, B. Note
that in this equation all boldface quantities are vectors. Additionally, the magnetic force
is perpendicular to the particle velocity such that F · v = 0. Therefore, no power is trans-
ferred to the charge and its kinetic energy remains constant. In a constant magnetic field
the charge moves along a magnetic field on a uniform helical path with constant linear
and angular speeds. This depicted in Figure 1.2.

If I replace F by mq rLω2, where ω = v/rL is the angular frequency and rL is the
Lorentz radius I can obtain the cyclotron frequency:

ωcyc =
qB
mqc

, (1.28)

which shows that the orbital frequency of non-relativistic charges is independent of the
particle speed so long as v ≪ c.
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FIGURE 1.2: Diagram of synchrotron emission, arising from a charged particle moving along
a helical path around an ordered magnetic field. The Lorentz force causing the acceleration
a is perpendicular to the magnetic field vector B, and both are also perpendicular to the
circular component of the charge velocity v. The radiation is concentrated in a beamwidth of
∼ 1/γ radians. (Obtained from Emma Alexander at https://emmaalexander.github.io/

resources.html).

https://emmaalexander.github.io/resources.html
https://emmaalexander.github.io/resources.html
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Before continuing with the case of what happens when we have relativistic charges, I
need to recall the Lorentz factor, defined as

γ ≡ 1√
(1 − β2)

, (1.29)

where β = v/c.
Relativistic charges have a mass of m = γmq ≫ mq, therefore, their angular frequency

is reduced such that
ωB =

ωcyc

γ
=

qB
γmqc

, (1.30)

Any charged particle accelerated by a magnetic field will emit radiation. Thus, us-
ing the equation for total emitted radiation for relativistic particles P is (see Rybicki and
Lightman, 1985, Equation 4.92)

P =
2q2

3c3 γ4(a2
⊥ + γa2

∥). (1.31)

If I write the Lorentz force equation for relativistic charges as

mqγ
dv
dt

=
q
c

v × B (1.32)

and separate the velocity components along the field v∥ and in the plane normal to the
field v⊥ such that

a∥ =
dv∥
dt

= 0 , a⊥ =
dv⊥
dt

= ωBv⊥ =
qB

γmqc
v⊥ =

qB
γmqc

sin α , (1.33)

where angle α between electron velocity v and magnetic field B is called the pitch angle.
I can therefore find that the total power, P, emitted by a relativistic charge is

P =
2
3

q4γ2B2v2 sin2 α

m2
qc5 =

2
3

q4γ2B2β2 sin2 α

m2
qc3 . (1.34)

From Equation 6.16 in Rybicki and Lightman, 1985 I have that the averaged power
per unit frequency is

P(ω) = C1F
(

ω

ωc

)
, (1.35)

where

ωc ≡
3γ2qB sin α

2mqc
(1.36)

is defined as a critical frequency, C1 is a constant of proportionality and F is a dimen-
sionless function. By comparing the total power as evaluated over the integral over ω to
Equation 1.34 I have that

P =
∫ ∞

0
P(ω) dω = C1

∫ ∞

0
F
(

ω

ωc

)
dω = ωcC1

∫ ∞

0
F(x) dx , (1.37)
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where x ≡ ω/ωc. Note that is not possible to know what
∫

F(x) dx is until I specify F(x).
However, it is possible to regard its nondimensional value as arbitrary and set a conven-
tion for the normalization of F(x). Thus, from Equations 1.34 and 1.36 I can conclude that
for the highly relativistic case (γ ≫ 1 or β ≈ 1) the power per unit frequency emitted by
each charged particle is

P(ω) =

√
3

2π

q3B sin α

mqc2 F
(

ω

ωc

)
. (1.38)

It is important to highlight that the choice of
√
(3)/2 for the nondimensional constant

has been made to anticipate the conventional choice for the normalization of F, discussed
below.

Until now I have considered the radiation emitted by a single relativistic charge.
However, in a realistic scenario such as astrophysical plasmas, I should consider a rela-
tivistic gas with a number-density distribution of electrons N(E). The number of density
of particles with energies between E and E + dE (or γ and γ + dγ) if often approximated
as power law such that

N(E)dE = CE−pdE , E1 < E < E2 , (1.39)

or, alternatively,
N(γ)dγ = Cγ−p dγ , γ1 < γ < γ2 , (1.40)

where p is the particle distribution index and C is a quantity that varies with pitch angle.
By calculating the integral of N(γ)dγ times the single particle radiation formula (see

Equation 6.18 in Rybicki and Lightman, 1985) over all energies, or γ, I can calculate the
total power radiated per unit volume per unit frequency, that is

Ptot(ω) = C
∫ γ2

γ1

P(ω)γ−p dγ ∝
∫ γ2

γ1

F
(

ω

ωc

)
γ−p dγ . (1.41)

Thus, if I change the variables of integration x ≡ ω
ωc

again and noting ωc ∝ γ2, I find

Ptot(ω) ∝ ω−(p−1)/2
∫ x2

x1

F(x)x(p−3)/2 dx . (1.42)

Here, the limits x1 and x2 correspond to the limits of γ1 and γ2 which depend on ω. We
can approximate x1 ≈ 0 and x2 ≈ ∞ if the energy limits are sufficiently wide. Therefore,
the integral is approximately constant and I end up with

Ptot(ω) ∝ ω−(p−1)/2 , (1.43)

where I can relate the spectral index s with the particle distribution index p by

s =
p − 1

2
. (1.44)

Finally, as an example, Figure 1.3 confirms that we do see a power-law frequency
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FIGURE 1.3: Flux densities of sources 3C 123, 3C 196, 3C 286 and 3C 295 for frequencies be-
tween 1 and 50 GHz. Derived flux densities from Perley and Butler, 2013 values are depicted

as black dots. The red lines are the result of a power-law fitting on the flux density data.

spectrum for synchrotron emission. The figure shows flux densities as a function of fre-
quency for sources 3C 123, 3C 196, 3C 286 and 3C 295. The black dots and their error bars
are real data measured in Perley and Butler, 2013 and the red lines are a result of the
power-law fitting on the data.

1.3.2 Polarisation of Synchrotron Emission

Before continuing, note that I can express Equation 1.38 as

P(ω) =

√
3

2π

q3B sin α

mqc2 F(x) , (1.45)

where again x ≡ ω
ωc

and F(x) is a function that integrates a modified Bessel function of
order 5/3:

F(x) ≡ x
∫ ∞

x
K5/3(ξ) dξ. (1.46)

Due to the polarisation of synchrotron radiation, I need to split the radiation into its per-
pendicular and parallel (to the magnetic field) components. Hence, we have a function

G(x) ≡ xK2/3(x) (1.47)
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expressed in terms a modified Bessel function of order 2/3 and we can define the power
spectra of the polarised components as

P⊥,∥(ω) =

√
3

4π

q3B sin α

mqc2

{
F(x) + G(x) (⊥B),

F(x)− G(x) (∥ B).
(1.48)

Notice that a single charge would be elliptically polarised in this scenario. However,
when having a distribution of particles that varies smoothly with pitch angle, the ellip-
tical components will cancel out (see Section 6.5 in Rybicki and Lightman, 1985). Thus,
radiation is partially linearly polarised and it is possible to obtain the polarisation fraction
for these particles as

Π(ω) =
P⊥(ω)− P∥(ω)

P⊥(ω) + P∥(ω)
=

G(x)
F(x)

. (1.49)

We can also extend Equation 1.49 for particles that follow a power law distribution incor-
porating the particle distribution index p such that

Π =
p + 1
p + 7

3

. (1.50)

1.4 Astronomical Faraday Rotation

If I define electric and magnetic fields as space and time varying quantities such that

E(r, t) = E0ei(k·r−ωt) (1.51)

B(r, t) = B0ei(k·r−ωt), (1.52)

where k = (kx, ky, kz) is the wave vector (in radians per meter) and ω is the angular
frequency (in radians per second), then Maxwell’s equations, see Section 1.2.1, become

ik · E0 = 4πρ ik · B0 = 0

ik × E0 = i
ω

c
B0 ik × B0 =

4π

c
j − i

ω

c
E0

(1.53)

Additionally, if I assume that the plasma has an electron density n and that there is no
external magnetic field, therefore, each electron responds to an electric field following
Equation 1.3 (Newton’s law). Additionally, if from now on I denote an electron charge as
q = −e, we have that

m
dv(r, t)

dt
= −eE(r, t), (1.54)

and by integration v(r, t) becomes

v(r, t) =
eE(r, t)

iωm
. (1.55)
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Replacing Equation 1.55 into the definition of current density given by

j = ρ(r, t)v(r, t) = −n(r, t)v(r, t)e , (1.56)

I have
j(r, t) = σE(r, t), (1.57)

where the conductivity, σ, is

σ(r, t) =
in(r, t)e2

ωm
. (1.58)

By calculating the derivative of charge density with respect to time and using Equa-
tion 1.21 I have

∂ρ(r, t)
∂t

= −e
∂n(r, t)

∂t
∂ρ(r, t)

∂t
= −iωn(r, t)e

∂ρ(r, t)
∂t

= −iωρ(r, t), (1.59)

and therefore,

∂ρ(r, t)
∂t

+∇j(r, t) = 0

−iωρ(r, t) + ik · j(r, t) = 0, (1.60)

such that
ρ(r, t) =

k · j(r, t)
ω

=
σ(r, t)k · E(r, t)

ω
. (1.61)

Using these forms of j(r, t) and ρ(r, t) and introducing the dielectric constant defined
as

ϵ ≡ 1 − 4πσ(r, t)
iω

, (1.62)

I can write Maxwell’s equations as

ik · ϵE0 = 0 ik · B0 = 0

ik × E0 = i
ω

c
B0 ik × B0 = −i

ω

c
ϵE0

(1.63)

Here we find that k, E0 and B0 form an orthogonal right-hand vector triad where E0

and B0 are related such that

E0 =
ω

kc
B0 B0 =

ω

kc
ϵE0 ,

then replacing B0 I have

E0 = ϵ

(
ω

kc

)2

E0,
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and consequently
c2k2 = ϵω2 . (1.64)

Substituting Equation 1.58 into 1.62 an alternative expression for the dielectric con-
stant can be expressed as

ϵ = 1 −
(

ωp

ω

)2

, (1.65)

where ωp is the plasma frequency defined as

ω2
p =

4πn(r, t)e2

m
. (1.66)

Hence, I can substitute Equation 1.65 into 1.64 and calculate the dispersion relation con-
necting k and ω as

k =c−1
√

ω2 − ω2
p (1.67)

ω2 =ω2
p + k2c2 . (1.68)

I can notice that if ω < ωp the wave number is imaginary and therefore

k =
i
c

√
ω2

p − ω2 . (1.69)

It can be seen that the amplitude of the wave exponentially decreases with a factor of
the order 2πc/ωp. I can conclude that ωp defines the plasma cutoff frequency below which
there is not electromagnetic propagation.

Now I will consider the effect of an external fixed magnetic field B0. Wave properties
will then depend on the direction of the propagation relative to the direction of B0. In
order to this, I need to recall Equation 1.28 for cyclotron frequency ωcyc and Lorentz force
equation when both electric and magnetic field are present, that is

F = −e(E +
v
c
× B0) (1.70)

m
dv
dt

= −eE − e
c

v × B0 . (1.71)

Additionally, lets define the propagating wave as circularly polarised and sinosoidal

E(t) = E0e−iωt(x̂ ∓ iŷ) , (1.72)

where − and + correspond to right and left circular polarisation, respectively. For sim-
plicity, I will assume that this wave propagates along a fixed magnetic field B0

B0 = B0ẑ . (1.73)
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By substituting Equations 1.72 and 1.73 into Equation 1.71 it can be shown that the steady-
state velocity v(t) is

v(t) =
−ieE(t)

m(ω ± ωcyc)
(1.74)

where ωcyc is given in Equation 1.28. Additionally, if I substitute Equation 1.74 into 1.56
we can calculate a new expression for the dielectric constant such that

ϵR,L = 1 −
ω2

p

ω(ω ± ωcyc)
, (1.75)

where R corresponds to + and L corresponds to −.
From this it is clear that the magnetic field of the plasma affects the velocity of one

polarisation component of the wave, resulting in a delay and therefore a rotation in the
polarisation angle. This effect is known as Faraday rotation and is illustrated in Figure 1.4.

The phase angle, ϕ, of a polarised wave travelling a distance d can be defined as

ϕR,L =
∫ d

0
kR,Lds , (1.76)

where
kR,L =

ω

c
√

ϵR,L. (1.77)

Therefore, the rotation of the polarisation angle ∆ϕ is

∆ϕ =
ϕR − ϕL

2
. (1.78)

If we assume that ω ≫ ωp and ω ≫ ωcyc such that
ω2

p
ω(ω±ωcyc)

is a positive real number,
I can approximate the square root in Equation 1.77 as

kR,L ≈ ω

c

[
1 −

ω2
p

2ω2

(
1 ∓ ωcyc

ω

)]
. (1.79)

Replacing this latter result into Equation 1.76 and consequently in Equation 1.78 I have

∆ϕ =
1
2

∫ d

0
(kR − kL) ds

=
1
2

∫ d

0

1
cω2 ω2

pωcyc ds. (1.80)

Finally, I can substitute ω2
p (see Equation 1.66) and ωcyc (see Equation 1.28) to obtain the

standard Faraday rotation measure (RM) formula:

∆ϕ =
2πe3

m2c2ω2

∫ d

0
neB∥ ds (1.81)

= λ2RM (1.82)
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FIGURE 1.4: Representation of astronomical Faraday rotation. Two electromagnetic waves
coming from an astronomical source and passing through magneto-ionic plasma (grey back-
ground) are shown. The waves pass through plasma with opposite orientations of mag-
netic field, therefore, the polarisation angles of the waves at the top and bottom are ro-
tated clockwise and anti-clockwise, respectively. (Obtained from Emma Alexander at https:

//emmaalexander.github.io/resources.html).

where

RM =
e3

2πm2c4

∫ d

0
neB∥ ds (1.83)

and λ2 is the wavelength squared of the wave.
Note that this formula holds in general if we use B∥ which is the component of B

along the line of sight. From equations 1.81 and 1.82 it can be seen that ∆ϕ varies with
frequency and consequently, with wavelength. Therefore, to study the information about
the interstellar magnetic field it is necessary to make measurements at several frequencies
in order to determine the value of the integral. Note that if the direction of the field
changes often along the line of sight then these equations only result on a lower limit to
cosmic magnetic field magnitudes.

1.5 The RM Synthesis Method

In the last section, I have highlighted that measurements at multiple frequencies are
needed in order to calculate the integral in Equation 1.83. The construction of modern
radio telescopes and their ability to measure polarised radio light at broadband frequen-
cies have enabled the widespread use of the RM Synthesis technique (Burn, 1966; Bren-
tjens, M. A. and de Bruyn, A. G., 2005). RM Synthesis considers the Fourier relation-
ship between polarised intensity (corrected by the spectral dependency) as a function of
wavelength-squared P(λ2) and the Faraday dispersion function (FDF) F(ϕ). Thus, I can
recover the polarised intensity as a function of Faraday depth, ϕ, such that

https://emmaalexander.github.io/resources.html
https://emmaalexander.github.io/resources.html
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F(ϕ) =
∫ ∞

−∞

P(λ2)

s(λ2)
e−2iϕλ2

dλ2, (1.84)

where s(λ2) is the spectral dependence

s(λ2) =
I(λ2)

I(λ2
0)

=

(
λ2

λ2
0

)α/2

, (1.85)

and
P(λ2) = |P(λ2)|e2iχ(λ2) = Q(λ2) + iU(λ2). (1.86)

Note that P(λ2) can be recovered from the polarised intensity as a function of Faraday
depth such that

P(λ2)

s(λ2)
=

1
π

∫ ∞

−∞
F(ϕ)e2iϕλ2

dϕ. (1.87)

Faraday depth studies have allowed us to understand the physics of many astrophys-
ical systems, including our own Galaxy (e.g. Iacobelli et al., 2013), external galaxies (e.g.
Cantwell et al., 2020) and on larger scales the intra- and inter-cluster medium (e.g. Stuardi
et al., 2021). Even though at this point RM Synthesis technique looks conceptually sim-
ple, in practice the implementation of this method and the interpretation of the resulting
Faraday dispersion function are complicated by a number of different factors.

Firstly, Faraday depth is the Fourier conjugate variable of λ2, however, radio spec-
trometers sample Stokes parameters Q and U uniformly in frequency, not λ2. This irregu-
lar sampling introduces a similar computational complexity to the one encountered when
imaging data from radio interferometers. A common solution is to use the Fast Fourier
Transform (FFT) after re-sampling the original data onto a regular grid using a convo-
lutional kernel. For RM Synthesis this approach has been implemented, for example, in
the widely used PYRMSYNTH1 package used for the LOFAR Two-metre Sky Survey (Van
Eck et al., 2018) and in RMTOOLS RM-CLEAN2. Even in the case of using gridding, the
inherent non-linear mapping of frequency to λ2 results in a non-uniform distribution of
measurements in this space. This introduces a multiplicative weighting function W(λ2)

which is in Faraday depth space produces a convolution of the true Faraday dispersion
function with a transfer function such that

F̃(ϕ) = F(ϕ) ∗ RMTF(ϕ) = K
∫ +∞

−∞

W(λ2)

s(λ2)
P(λ2)e−2iϕλ2

dλ2 , (1.88)

where

RMTF(ϕ) =
1
K

∫ +∞

−∞

W(λ2)

s(λ2)
e−2iϕλ2

dλ2 (1.89)

1https://github.com/mrbell/pyrmsynth
2https://github.com/CIRADA-Tools/RM-Tools

https://github.com/mrbell/pyrmsynth
https://github.com/CIRADA-Tools/RM-Tools
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is commonly known as the Rotation Measure Transfer Function (RMTF) or, alternatively,
the Rotation Measure Spread Function (RMSF) and K is defined as

K =
∫ +∞

−∞

W(λ2)

s(λ2)
dλ2 . (1.90)

The second complication is that P(λ2) does not exist at λ < 0. In the imaging case
the sky brightness distribution is always real, however, F(ϕ) is hardly ever a purely real
quantity and therefore a lack of measurements at λ2 < 0 is a fundamental limitation
when attempting to reconstruct a Faraday signal. The consequence of this is that the
problem of deconvolving the RMTF from the Faraday depth spectra (e.g. Heald, 2009) is
inherently under-constrained due to the irregular sampling and the non-existence of data
values at λ < 0, causing ambiguity between different solutions.

Thirdly, another important limitation is the finite bandwidth of radio telescopes and
therefore the finite range of wavelength-squared ∆λ2 available in the data. Moreover,
specific channels from an observation may need flagging or excision due to corrupting
effects, increasing the irregularity of the sampling and worsen the form of the RMTF.
Such effects may include radio frequency interference (RFI) (see Section 2.2 for details)
and instrumental problems.

The deconvolution of Faraday depth signals in such under-constrained context may
introduce spurious structures, whilst also being unlikely to reconstruct all true physical
structures (Macquart et al., 2012; Pratley et al., 2020). In order to address this problem,
attempts of using a suitable prior or regularisation during optimisation to compensate
for the missing information have been made (e.g. Akiyama et al., 2017b; Cooray et al.,
2020; Ndiritu et al., 2021; Pratley et al., 2021).

Finally, three important parameters need to be taken into account when reconstruct-
ing a signal in Faraday depth space. These are the channel width δλ2, the width of the
λ2 distribution ∆λ2 and the shortest wavelength squared λ2

min. Using these latter we can
determine the full-width-at-half-maximum (FWHM) of the RMTF δϕ, the largest scale
sensitivity in Faraday depth space max − scale and the maximum and the maximum ob-
servable Faraday depth |ϕmax| as

δϕ ≈ 2
√

3
∆λ2 , (1.91)

max − scale ≈ π

λ2
min

, (1.92)

and

|ϕmax| ≈
√

3
δλ2 . (1.93)

Different radio telescopes are able to observe the same frequency band. However, ob-
servations differ in bandwidth and spectral resolution. For example, Table 1.1 shows the
value of Faraday parameters for different telescopes at their lower observing frequencies.
These values are relevant since they will be used in different chapters of this thesis.
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Radio telescope Frequency range Channel width δϕ max-scale |ϕmax|
GHz Hz rad m−2 rad m−2 rad m−2

LOFAR LBA 0.030 - 0.080 767.9 0.040 0.224 1314.138
LOFAR HBA 0.120 - 0.180 767.9 0.999 1.133 39030.162

JVLA 1.008 - 2.031 1024024.0 51.96 144.190 25954.890
eMERLIN 1.230 - 1.740 125000.0 122.384 109.057 250580.770
MeerKAT 0.880 - 1.680 26123.0 42.422 98.774 695012.767
MeerKAT a 0.887 - 1.380 493493.5 51.672 66.568 25810.220

a Frequency range and channel width used for MeerKAT MIGHTEE-POL RM Synthe-
sis.

TABLE 1.1: Frequency ranges, channel widths, and Faraday parameters for several radio tele-
scopes, including LOFAR’s Low Band Antenna (LBA) and High Band Antenna (HBA), and
the L-band frequency range for JVLA, eMERLIN, and MeerKAT. For the MeerKAT telescope,
two distinct L-band ranges are provided - the actual frequency range and the particular range

used in this thesis for RM Synthesis
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Interferometry

In this chapter, I review important concepts on the context of interferometry that will be
used in during the reading of this thesis. Additionally, I provide a simplified analysis of
interferometry.

2.1 Radio Interferometers

Interferometry has been crucial to obtain a higher angular resolution than that obtained
by single dish antennas. Interferometer arrays can collect data from many small antennas
to produce results equivalent to a single very large antenna. The best way to understand
how interferometers work is by looking at the basic two-element interferometer geome-
try illustrated in Figure 2.1. In practice radio sources are observed by a collection of two-
element interferometers, each with a cosine-wave and sine-wave gain pattern rippling
across the source, with a spatial frequency and orientation determined by the particular
antenna pair (baseline) (Burke et al., 2019). The number of interferometer pairs for a col-
lection of Nant antennas is Nant(Nant − 1)/2, because a single telescope cannot form a pair
with itself. Each pair is at a distance D apart, and forms a baseline vector which connects
the phase centres of the two antennas. Furthermore, the two antennas are pointed at an
angle θ; however, the signals are out of sync because there is a path difference where it
takes a bit longer for the radio signal to reach one antenna than the other. In other words,
there is a length difference between signals. This difference is defined as

∆lg = D sin θ . (2.1)

Additionally, I can divide the physical length difference by the speed of light to get the
time delay:

τg = ∆lg/c = D sin θ/c . (2.2)

Finally, with these values it is possible to correlate the signals and therefore determine
the location of the signal in the sky very precisely. These values are time dependent as
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FIGURE 2.1: Diagram to show the two-element interferometer and to illustrate the principles
of aperture synthesis. Two receiver dishes are pointed at an angle θ from the zenith towards
a single far-field point source. The antennas are at a distance D apart (the baseline between
them). There is a timing offset of τg, due to the light travel distance offset of D sin θ, which
is used to combine the signals of the two dishes. (Obtained from Emma Alexander at https:

//emmaalexander.github.io/resources.html).

as the source moves across the sky as time passes and θ changes. Strictly speaking, the
source stays stationary and the earth rotates.

From this point forward, mathematical derivations are based on the discussion article
by Scaife (2020). Firstly, it is important to note that radio interferometers differ from
optical interferometers in their direct imaging of the sky. Instead, each baseline measures
the mutual coherence of the incident electric field at the two antennas, which is known
as visibility. A visibility is defined as

Vij = ⟨E(ri, t)E∗(rj, t)⟩t , (2.3)

where i and j represent the indices of the antennas, ⟨⟩t denotes the time average, and E∗

denotes the complex conjugate of the electric field E.
According to the van Cittert-Zernike theorem, a visibility Vij is equivalent to a Fourier

component of the radio sky brightness, I(l, m). I can mathematically express this relation-
ship as

V(u, v, w) =
∫ A(l, m)I(l, m)√

1 − l2 − m2
e−2πi(ul+vm+w

√
1−l2−m2−1) dldm (2.4)

where i represents the imaginary unit
√
−1, l and m are the direction cosines, and (u, v, w)

represents the baseline separation in a Cartesian frame projected towards the observing

https://emmaalexander.github.io/resources.html
https://emmaalexander.github.io/resources.html
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direction in units of wavelength. The kernel A(l, m) corresponds to the primary beam
(PB) and represents the solid angle reception pattern of the individual antennas. It is
commonly modelled as a Gaussian function (Taylor et al., 1999).

During extended observations, it is important to note that the projected length of an
individual pair of antennas towards a specific direction in the sky undergoes determinis-
tic changes as a result of Earth’s rotation. This characteristic presents a unique advantage,
as it enables the expansion of the range of Fourier measurements obtained from a finite
array. By capitalizing on this phenomenon, the sampling of Fourier measurements can
be extended, leading to enhanced data acquisition capabilities. The concept of filling
the Fourier plane by using Earth’s rotation directly is known as Earth rotation aperture
synthesis and was developed in 1960 by Ryle and Hewish. Further information and fun-
damentals of this technique can be found in Chapter 4 of A. Richard Thompson, 2004a
and in Section 10.6 of Burke et al., 2019.

It is important to highlight that the separation in the forward direction, denoted as w,
is typically small enough to be disregarded for most interferometers. Therefore, in such
cases, the relationship can be approximated as a two-dimensional Fourier transform. Fur-
thermore, it should be noted that the coverage of the Fourier plane can be enhanced by
adding antennas, extending integration times, or incorporating additional array config-
urations into the dataset. Visibilities can also be sampled across a range of frequencies to
fill gaps in the measured Fourier plane. Thus, the observation of small-scale emission
from sources requires longer baselines and higher frequency measurements, whereas
the observation of large-scale extended emission necessitates observations made with
smaller baselines and lower frequencies.

In order to recover the measured sky brightness distribution, a direct approach is to
invert the relationship in Equation 2.4. It is important to note that measurements consist
of irregular samples of the Fourier spectrum, obtained from a finite number of antenna
separations in the array, denoted as S(u, v). Thus, I have

Imeas(l, m) =
∫

S(u, v)V(u, v)e2πi(ul+vm) dudv , (2.5)

where S(u, v) can be expressed as a sum

S(u, v) =
M

∑
j=1

δ(u − uj, v − vj) , (2.6)

where M represents the total number of samples (visibilities) across all baselines. For Nτ

time samples and N f spectral channels, M = (Nant × (Nant − 1)/2)× Nτ × N f .
Commonly, the fast Fourier transform (FFT) is used to obtain Imeas. This choice is

motivated by the more efficient computational scaling of the FFT algorithm compared to
the traditional discrete Fourier transform (DFT). The issue that arises here is that the FFT
requires measurements to be regularly sampled in the spatial domain, whereas visibili-
ties are regularly sampled only in time and frequency. At this point, visibilities undergo



44 Chapter 2. Interferometry

a process known as gridding, which involves gridding the visibility data using a convo-
lutional kernel C(u, v) (to minimize the effects of aliasing), thereby creating a regularly
spaced grid in the Fourier domain. The gridded visibility data, denoted as Vgrid(uk, vk),
can then be mathematically expressed as:

Vgrid(uk, vk) = [[V(u, v) · S(u, v)] ∗ C(u, v)] ·X(uk, vk) , (2.7)

where X(uk, vk) represents the sampling function.
Each natively sampled visibility (also known as continuous visibility) is associated

with an estimated root mean square (rms) noise, represented by σ(u, v). As a result, the
weight of a visibility is expressed as

ω(u, v) =
1

σ2(u, v)
. (2.8)

These weights can be incorporated into the gridding process to amplify or attenuate dif-
ferent areas of the Fourier domain, thereby emphasizing distinct spatial features. Further
details on anti-aliasing convolution kernels and weighting schemes will be discussed
later in this section. Thus, the weighting function can be directly applied to the continu-
ous data, resulting in

Vgrid(uk, vk) = [[V(u, v) · S(u, v) · ω(u, v)] ∗ C(u, v)] ·X(uk, vk), (2.9)

Now, it is possible to apply the inverse FFT to calculate an image. This image must be
corrected for the introduced anti-aliasing kernel, and the weights need to be normalized,
as given by

Imeas =
FFT−1[Vgrid]

(∑ ω(u, v))FFT−1[C]
. (2.10)

This process yields what is commonly referred to as a dirty image, since it has not yet
been corrected for S(u, v)ω(u, v). Note that this operation results in a convolution on the
image domain, as demonstrated by the following relationship

V(u, v) · [S(u, v)ω(u, v)] ⇐⇒ I(l, m) ∗ B(l, m) , (2.11)

where B(l, m) is the point spread function (PSF), also known in radio interferometry
as synthesized beam. This function is defined as the Fourier transform of the irregular
weighted sampling, denoted as

B(l, m) = FT−1[S(u, v) · ω(u, v)]. (2.12)

2.1.1 Visibility Weighting

When gridding visibilities, different weighting schemes, ω(u, v), can be used in order to
alter the instrument’s natural response function (PSF) and to minimize sidelobes. The
most well-known weighting functions in the literature are:
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• Natural: Sums weights (proportionally inverse of the noise variance) when data is
gridded into the same u − v cell. Thus, higher u − v gridded density might result
in higher weights.

• Uniform: Gives weights inversely proportional to the sampling density function.
In this case, original weights are gridded in the uv cell, and then the new weight is
calculated as ωi =

ωi
Wk

, where Wk is the gridded weight in the k-th cell.

• Briggs or robust: Provides a compromise between natural and uniform weight-
ing. It creates an elliptical Gaussian that smoothly varies between natural and
uniform weighting based on the signal-to-noise ratio (SNR) of the measurements
and a tunable parameter defined as a noise threshold. The weight scheme used is
ωi =

ωi
1+Wk · f 2 , where Wk are the gridded weights as in uniform and

f 2 =
(5 · 10−R)2

∑k W2
k

∑i ωi

,

where R is the robust parameter and is such that R = 0 gives a good trade-off
between resolution and sensitivity. If R = −2.0 then the scheme will be close to
uniform weighting and if R = 2.0 the scheme will be close to natural weighting.

• Super-uniform: Uniform weighting computes the sampling density function in a
grid with the same size as the u − v grid. Depending on the cell and grid size,
uniform weighting is reduced to natural weighting. For example, if the field of
view is bigger than the primary beam size or if the field of view is smaller than
the synthesized beam, both cause super-uniform to reduce to natural weighting.
Super-uniform weighting separates the weighting from the field size. Instead, the
sidelobes of the synthesized image are minimized over some arbitrary grid size.

• uv-taper: Applies a multiplicative Gaussian taper to the spatial frequency grid to
increase the detectability of extended an Gaussian shape sources. Can be used with
any of the weighting schemes.

In Figure 2.2, each column presents the dirty image (top) and dirty beam (bottom) of
various common weighting schemes employed in the imaging process. These schemes,
displayed from left to right, include natural weighting, Briggs weighting, and uniform
weighting. Natural weighting, being the default choice, emphasizes maximum sensi-
tivity and signal-to-noise ratio, while Briggs weighting introduces a compromise be-
tween sensitivity and image resolution by incorporating a user-defined parameter R. On
the other hand, uniform weighting achieves high-resolution imaging by assigning equal
weight to all visibilities, thereby maximizing the spatial details captured in the image.
By visually examining these figures, the differences and trade-offs among the weighting
schemes become apparent. From left to right, it is evident how the image resolution in-
creases and how spatial details, such as the gaps in the protoplanetary disk, become more
pronounced. By observing the colorbars, it is also noticeable how sensitivity decreases.
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FIGURE 2.2: Dirty images (top) and dirty beams (bottom) of HL Tauri Band 6 ALMA data.
Weighting schemes from left to right: Natural weighting, Briggs with robust parameter equal

0.0 (a balance between natural and uniform) and uniform weighting.

This provides valuable insights into the impact of weight selection on the resulting image
quality and scientific interpretation.

2.1.2 Anti-aliasing Considerations

It is important to recall that gridding has a great impact in the resultant image. For
instance, if C(u, v) = 1 is assumed and no convolution kernel is used, aliasing artifacts
could appear in the image if some sources are near the edges or outside the field of view.

Suppose that I construct a model with a hyperbolic secant in the center of an image as
in Figure 2.3a. Then, the Fourier transform of this source can be calculated analytically as

F (sech(ax)) =
π

a
sech

(
π2

a
u
)

.

Note that if a = π, the Fourier transform is easier to model and to test since

F (sech(πx)) = sech(πu).
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FIGURE 2.3: (a) True model image with a hyperbolic secant at the center. (b) Visibility sam-
pling

Since the Fourier transform can be calculated analytically, I have created a custom
script to sample visibilities simulating a one hour observation with the VLA radio tele-
scope in D-array (most compact configuration) at 5GHz, resulting in a field of view is
approximately 8.4 arcminutes. Additionally, I have assumed that the astronomical point-
ing direction moves across the local celestial meridian. In this case, a data sample is taken
every 6 minutes (0.1 hours) at a declination of δ = 45◦. Figure 2.3b shows the resultant uv
plane with 106,002 simulated visiblities. The resultant dirty image of this sampling can
be seen in Figure 2.4a. Aliasing artifacts are no expected because there are not sources
near the edges or outside the field of view.

However, if I add a source outside the field of view in the down-right direction, for
example at position (−676.5, 676.5) arcseconds, then aliasing artifacts will appear. An
experiment making a dirty image allocating each data sample into the nearest grid cell
shows that the source outside the field of view is barely seen and that sampling pattern
form artifacts that are all over the image (see Figure 2.4b).

There are three common approaches to avoid aliasing problems. The first, is to make
the image large enough that there are no sources of interest near the edges of the image.
The second, is to avoid undersampling. And finally, to use a gridding convolution func-
tion/kernel C(u, v) whose Fourier transform c drops off very rapidly beyond the edge of
the image (Taylor et al., 1999). C(u, v) is always real and even and is usually separable
C(u, v) = C1(u)C2(v). It is important to note that next following choices are truncated to
an interval of width of m grid cells. That is, C(u) = 0 for |u| > m∆u/2, where ∆u repre-
sents the cell size in the one dimensional grid. The typical choices for C in one dimension
are:

• Pillbox: C(u) takes the value of 1 if |u| ≤ m∆u/2 and 0 otherwise. Therefore, a
convolution using m = 1 is equivalent to simply summing data in each cell.
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FIGURE 2.4: (a) Dirty image of one hyperbolic secant. (b) Dirty image of two hyperbolic
secants but one has been moved outside the field of view. (c) Dirty image of (b) using a

Gaussian kernel.

• Exponential: C(u) = exp
[
−
( |u|

w∆u

)α]. Typically m = 6, w = 1, and α = 2. In other
words, a truncated Gaussian with a size of 6 pixels.

• Sinc: C(u) = sinc( u
w∆u ). Typically m = 6, w = 1.

• Exponential times sinc: C(u) = exp
[
−
( |u|

w1∆u

)α] sinc( u
w2∆u ). Typically m = 6, w1 =

2.52, w2 = 1.55 and α = 2. That is, a Gaussian-tapered sinc function.

• Spheroidal functions: C(u) = |1− η2(u)|α ·ψα0(
2u

m∆u , η(u)), with ψα0 a 0-order spheroidal
function, η(u) = 2u

m∆u and α > −1. For α = 0 this is a 0-order prolate spheroidal
wave function. Choosing α > 0 gives higher alias rejection near the center of the
image, at the expense of alias rejection near the edges.

As an example, Figure 2.4c shows that artifacts mentioned before have disappeared
after convolving the gridded visibilities with a Gaussian kernel with m = 6 and w = 1.

2.2 RFI Excision

Technology is growing rapidly, being more and more affordable and available as time
passes. It has been forecasted that in 2023 approximately 7.33 billion people in the world
will have a smartphone1, and with the increasing of internet accessibility and the growing
social networks, radio transmitters have become a daily basis media to communicate.

As a consequence of the latter, the radio spectrum gets crowded and since the signals
of radio transmitters are several order of magnitude stronger than sky observations, in-
terferences and perturbations are produced on the observed astronomical signal. This is
known as radio frequency interference (RFI). In this section I will summarize the methods
used in this thesis to detect and excise RFI.

1https://www.statista.com/statistics/218984/number-of-global-mobile-users-since-2010/

https://www.statista.com/statistics/218984/number-of-global-mobile-users-since-2010/
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The Common Astronomy Software Applications (CASA) package 2 is the main soft-
ware to process data from radio telescopes such as the Atacama Large Millimeter/sub-
millimeter Array (ALMA) and the Karl G. Jansky Very Large Array (VLA). This software
is a suite for analysis and reduction of radio data with a Python (IPython) interface. In
this section, I will only focus on its RFI excision functions but further information can be
found in McMullin et al., 2007 and The CASA Team et al., 2022.

• manual: This mode receives the exact selection of the data from the user about the
data that needs to be flagged. For example, a user could specify antennas, baselines,
spectral windows, channels, correlations and other parameters.

• clip: Uses data ranges in order to flag visilibities. For instance, a user could flag all
the data where amplitude values are greater than 1.

• quack: Generally in observations it may happen that the array settles down at the
start of the scan. Therefore quack mode can be used to remove data at scan bound-
aries.

• tfcrop: This method is typically used on uncalibrated non-bandpass corrected (see
subsection 2.3.2) data and is optimized to flag strong narrow-band RFI. It creates
a 2D time-averaged-frequency of the visibility amplitudes for each field, spectral
window, time range and baseline. It uses a polynomial fit to the bandshape of the
spectrum, then flags the data that deviate from the fit.

• rflag: Uses a sliding window statistical (root-mean squared) filter. This autoflag-
ging algorithm iterates the data through chunks of time. Then for each chunk it
calculates statistics and flags the data based on the thresholds the user supplies.

Another known software to excise RFI from data is aoflagger3 (Offringa, A. R. et al.,
2012) which detects RFI in the time-frequency domain with existing techniques and then
applies two-dimensional interference mask. It finds adjacent intervals that can be likely
affected by RFI in the time or frequency domain. This is done by using the scale-invariant
rank (SIR) operator which is a one-dimensional mathematical morphology technique.

Finally, it is important to remark that modern and next-generation radio telescopes
will produce data at very high rates, making supervised solutions as the ones above
unusable. In this context, deep learning approaches are now being studied in order to
learn to discriminate RFI from all known astronomical signals, see e.g. Mesarcik et al.,
2022.

2.3 Parallel-hand calibration

The calibration of interferometric data is crucial to detect, remove and correct for atmo-
spheric factors and instrumental effects that may interfere with the scientific objective

2http://casa.nrao.edu
3https://gitlab.com/aroffringa/aoflagger

http://casa.nrao.edu
https://gitlab.com/aroffringa/aoflagger
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of the measurement. Before reconstructing an image from visibilities it is important to
perform this calibration since there might be factors associated with an antenna, pair of
antennas or their electronics. Put in other words, the process of calibration turns the nu-
merical output from the cosine and sine correlators into complex visibilities on a known
scale and corrects their time and frequency dependence (Burke et al., 2019).

In this thesis I will separate the calibration process into a series of steps:

• Set the flux density scale.

• Delay calibration.

• Bandpass calibration.

• Complex gain calibration.

The observed visibility amplitudes have units of flux density and must be rescaled
such that the result is in units of Janskys. This can be done by observing a strong compact
source which its flux density is known and varies only slightly over time. Examples of
well-known compact flux calibrators are 3C 48, 3C 138, 3C 147 and 3C 286.

Commonly, radio-astronomy data sets contain visibility data of the source which is
the subject of research interest, also known as the target source, and the calibrator sources.
An uncalibrated visibility can be expressed as a function of the true source intensity,
I(l, m), the time-dependent complex gain factor,

Gij(t) = gi(t)g∗j (t) , (2.13)

which is a function of the antenna pair, (i, j), and the normalised primary beam pattern,
AN(l, m), such that:

V(u, v, w) = Gij(t)
∫ ∫ AN(l, m)I(l, m)√

1 − l2 − m2
e−2πi(ux+vy+w

√
1−l2−m2−1) dldm. (2.14)

As has been noted, to calibrate Gij the interferometer observes an unresolved calibra-
tor source, to which the measured response is

Vc(u, v, w) = Gij(t)Sc, (2.15)

where c indicates a calibrator and Sc its flux density at the phase centre. Amplitudes and
phases are considered separately to calibrate the gain. This is due to differences in the
mechanisms of how errors propagate between these two quantities. An instance of this
is that atmospheric changes can affect phase fluctuations but have roughly no effect on
amplitude. Mathematically the calibration of the target source visibility can be described
as:

V(u, v, w) =
V(u, v, w)uncal

Gij
= V(u, v, w)uncal

Sc

Vc(u, v, w)
. (2.16)



2.3. Parallel-hand calibration 51

The calibration source is usually placed at the phase center of its field. Therefore, since
the calibrator is assumed to be unresolved, the phase is an indirect measure of the instru-
mental phase. Hence, when phase-calibrating the target the calibrator phase is subtracted
from the observed phase and the amplitude is calibrated using the moduli of visibility
terms. Note that when two frequency channels have been observed in opposite polari-
sations at each antenna, calibration is performed separately for each one. Additionally,
when observing polarised emission, further calibration is needed. This approach will be
described in the next section.

2.3.1 Delay calibration

Inaccurate antenna positions and timing data might introduce small deviations into radio
observations. These variations are noticeable as a time-constant linear phase slope as a
function of frequency in the correlated data for a single baseline. This slope is known
as the delay and can be found across the whole baseband in each spectral window. In
order to solve for the delays on parallel-hands, a short time interval on a strong source is
needed. This allows one to achieve high signal to noise in the solutions without including
the time dependent variations.

2.3.2 Bandpass calibration

Frequency dependency of the instrumental response across the reception band is not con-
stant, therefore this must be corrected. In practice, the visibility data is measured at dif-
ferent frequency channels. Thus, the gain factor, Gij(t) in Equations 2.14 and 2.16, can be
generalized to include a frequency-dependent term Bij(ν), such that

Gij(ν, t) = Gij(t)Bij(ν) . (2.17)

In order to calibrate Bij(ν), a short time interval strong source is also needed to achieve
high signal to noise for the solution. Therefore, the same calibrator if often used for delay
and bandpass calibration.

2.3.3 Complex gain calibration

To better understand the calibration details for the time-dependent complex gain factor
Gij(t), it is necessary to separate it into amplitude aij(t) and phase ϕij(t). The variations
in the amplitude gains can arise from changes in the atmospheric absorption, electronic
path gains and antenna pointing. These effects are commonly small and vary slowly in
time at centimetre and longer wavelengths. By repeatedly switching between the target
and a nearby compact source when making an observation it is possible to account for
these variations. However, the angular separation and timescale between the target and
the source is set by the phase calibration, which will be explained below.

According to Burke et al., 2019, there are a number of factors that can cause temporal
variations in phase:
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• Changes in the troposphere and ionosphere.

• Changes in the electronic path of the correlator.

• Imperfect corrections in the the real-time frequency transfer system.

• Unmonitored drifts in the independent atomic frequency standards used in VLBI.

In general, the angular separation and timescales between the target and the calibration
source would depend on the coherence time and the size of the isoplanatic patch (see
Chapter 10.7.3 of Burke et al., 2019). However, for radio telescopes that observe the sky at
frequency ranges between 1.5 - 15 GHz with baseline separations ranging from JVLA-A to
eMERLIN, the separation and the switching time between the target and the calibration
source would be up to 5 degrees and 10 minutes, respectively.

2.4 Polarisation calibration

It is known that the state of the radiation field is described by the superposition of two
orthogonal polarisations (Taylor et al., 1999). Moreover, four correlations describe the
spatial coherence of this vector field. Some radio-telescopes can use circular polarisa-
tion feeds to sample left circular (L) and right circular (R) polarisation (LCP and RCP,
respectively), others use linear polarisation feeds to sample horizontal (X) and vertical
(Y) polarisation. Depending on the case, this results in four visibility functions LL, RR,
RL and LR for a circular feed and XX, YY, XY and YX for a linear feed. If polarisa-
tion channels were exactly orthogonal (if voltage signal from the channels were exactly
proportional to the orthogonal electric fields) then cross-hand visibilities would be also
calibrated. However, in practice this proportionality is not obtained and further calibra-
tion for the cross-hand correlations is needed.

Polarisation observations and studies are crucial in radio astronomy to understand
specific processes in the Universe. Four parameters were introduced by George Stokes in
1852 to measure polarisation. These parameters are related to the amplitudes of the elec-
tric field Ex and Ey, resolved in two directions normal to the direction of the propagation
(see A. Richard Thompson, 2004a). Of the four parameters, I represents the total inten-
sity, Q and U represent the linear polarised component and V represents the circular po-
larised component. Note that Q, U and V can have positive and negative values depend-
ing on the position angle or sense of rotation of the polarisation. These parameters can be
represented by images and therefore each has an associated visibility function in Fourier
space, VI , VQ, VU and VV . Even though these cannot be measured independently, they are
a linear combination of the four correlations produced by a radio-telescope. Therefore,
for a circular feed I have
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V[RR] = VI + VV ,

V[LL] = VI − VV ,

V[RL] = (VU − iVQ)e−2iχ,

V[LR] = (−VU − iVQ)e2iχ, (2.18)

and for a linear feed

V[XX] = VI + VQ,

V[YY] = VI − VQ,

V[XY] = (VU + iVV),

V[YX] = (VU − iVV), (2.19)

where χ is the parallactic angle, which determines the orientation of the feed with respect
to the sky.

2.4.1 Cross-hand delay calibration

It is important to note that a good complex gain and bandpass calibration will only correct
for parallel-hand delay. However, this procedure typically leaves a single cross-hand
delay (and phase) from the reference antenna. A consideration to check if this delay is
present is to look at the cross-hand phases as a function of frequency. This will show the
cross-hand delay as a slope in frequency. A detailed look into the cross-hand delay and
the current implemented method to solve this in radio astronomy software can be found
in Cotton, 2012.

2.4.2 Leakage calibration

In practice feeds are not exactly orthogonal. This causes a small amount of RCP to show
up in the LCP feed channel, and vice-versa. This effect is commonly known as leakage.
For linearly polarised antennas it is possible to write the received voltage signals v′x and
v′y as

v′x = vx + Dxvy

v′y = vy + Dyvx (2.20)
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where x and y subscripts indicate two orthogonal planes of polarisation, v terms are
signals received using an ideal polarised antenna and D terms are the leakage.

For a pair of antennas (i, j) the measured correlator outputs R′
xx, R′

xy, R′
yx and R′

yy can
be expressed as

R′
xx

gxig∗xj
= Rxx + DxiRyx + D∗

xjRxy + DxiD∗
xjRyy,

R′
xy

gxig∗yj
= Rxy + DxiRyy + D∗

yjRxx + DxiD∗
yjRyx,

R′
yx

gyig∗xj
= Ryx + DyiRxx + D∗

xjRyy + DyiD∗
xjRxy,

R′
yy

gyig∗yj
= Ryy + DyiRxy + D∗

yjRyx + DyiD∗
yjRxx, (2.21)

where g represents the complex voltage gains of the corresponding signal channels. This
equation can also be written in terms of Stokes visibilities as

R′
xx

gxig∗xj
= VI + VQ cos(2χ) + VU sin(2χ),

R′
xy

gxig∗yj
= VI(Dxi + D∗

yj)− VQ sin(2χ) + VU cos(2χ) + jVV ,

R′
yy

gyig∗yj
= VI(Dyi + D∗

xj)− VQ(2χ) + VU cos(2χ)− jVV ,

R′
yx

gyig∗xj
= VI − VQ cos 2χ − VU sin 2χ. (2.22)

Similarly, for a circular polarised feed

R′
rr

grig∗rj
= Rrr + DriRlr + D∗

rjRrl + DriD∗
rjRll ,

R′
rl

grig∗l j
= Rrl + DriRll + D∗

l jRrr + DriD∗
l jRlr,

R′
lr

glig∗rj
= Rlr + DliRrr + D∗

rjRll + DliD∗
rjRrl ,

R′
ll

glig∗l j
= Rll + DliRrl + D∗

l jRlr + DliD∗
l jRrr, (2.23)
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which in terms of Stokes visibilities results in

R′
rr

grig∗rj
= VI + VV ,

R′
rl

grig∗l j
= VI(Dri + D∗

l j)− (−VU + iVQ)e−j2χ,

R′
lr

glig∗rj
= VI(Dli + D∗

rj)− (VU + iVQ)ej2χ,

R′
ll

glig∗l j
= VI − VV . (2.24)

In practice, leakage terms D are calculated using observations of a known unpolarised
source in the sky or a source which has sufficiently good parallactic angle coverage.
Hence, using all the baselines it is possible to find two leakage terms per antenna and
the measured correlations.

2.4.3 Polarisation angle calibration

Another effect that needs to be calibrated is the phase difference between polarisation
channels. The normal parallel hand phase calibration calibrates the phase of one polari-
sation channel of each antenna with respect to the phase of that same channel of the ref-
erence antenna (Taylor et al., 1999). Commonly, after parallel hand calibration there will
be a remaining phase difference between the two polarisation channels. For each antenna
this difference is the same to that of the reference antenna. It is known that cross-hand
phase has information about a visibility’s Stokes’ parameters Q and U, and therefore,
the instrumental phase difference must be removed. Phase difference with the reference
antenna is normally removed by observing a source with a known polarisation position
angle. Note that the phase difference for only one antenna is needed. Hence, only one
baseline is needed and commonly one of the shortest baselines is used to observe this
calibrator source.

When doing polarisation calibration it is important to consider that there exist only
two linearly polarised sources (3C 286 and 3C 138) with position angles that do not tend
to vary. These sources are commonly used to calibrate the phase difference for oppositely
polarised channels. Additionally, it is important to highlight that polarisation observa-
tions are made for sources that are small compared with the size of the main beam due
to the increasing variation of polarisation toward the beam edges.
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2.5 Interferometric Imaging

At this point, it can be stated that the principles of radio interferometry, as outlined in
Section 2.1, are now well-established. However, in this section, I will discuss several is-
sues that need to be examined. Firstly, the shape of the dirty/synthesized beam B(l, m)

depends on how we distribute our measurements S(u, v). As I mentioned earlier, we
can enhance this aspect by incorporating additional antennas into the array or by extend-
ing the observation time to take advantage of Earth’s rotation and maximize coverage in
the Fourier plane. Nevertheless, it is important to note that a radio interferometer array
inherently possesses a minimum and maximum separation between antennas. The for-
mer impedes sampling of the zero-spacing and nearby measurements, while the latter
inevitably imposes finite resolution on the final image. These limitations, coupled with
the irregularity of our sampling, result in a sampling function that necessarily yields zero
values in specific regions of the visibility grid Vgrid. Therefore, employing a division in
Fourier space to compensate for these areas becomes unfeasible.

Many algorithms have been proposed for solving the deconvolution/image synthe-
sis problem. A colloquially known procedure in radio astronomy is the CLEAN heuristic
(Hogbom, 1974; Schwarz, 1978). This algorithm uses a variation on matching or basis
persuit (Lannes et al., 1997), which is a pure greedy-type algorithm (Temlyakov, 2008).
Image reconstruction in CLEAN is performed in image plane using a convolution rela-
tionship, and it is quite efficiently implemented using Fast Fourier Transforms. How-
ever, this traditional approach incorporates a number of approximations and compro-
mises. For example, the algorithm is supervised. This means that the user could indicate
iteratively in which region of the image the algorithm should focus. Also, statistical in-
terpretation of resulting images and remaining artifacts are far to be described by a well
founded theory. More information of this algorithm and its implementation can be found
in The CASA Team et al., 2022.

Another well known algorithm is the Maximum Entropy Method (MEM). This method
is based on a maximum likelihood argumentation since interferometer are assumed to be
corrupted by Gaussian noise. The main goal of this method is to solve a non-linear opti-
mization problem with an entropy regularization term as follows

ÎMEM = arg min
I≥G

Φ(I, Vo; λ, G), (2.25)

where

Φ(I, Vo; λ, G) =
1
2 ∑

k

∣∣∣∣Vo
k − Vm

k
σk

∣∣∣∣+ λ ∑
i

Ii

G
log

Ii

G
. (2.26)

In Equation 2.26, Vo
k and Vm

k are observed and model visibilities, respectively. σk is
the standard deviation of each sample, G is a positive lower bound constraint for the sky
image I and λ is the penalization factor.

Additionally, works like Cárcamo et al. (2018) have included other terms as a Lapla-
cian and a non-positive entropy regularization used in (Casassus et al., 2018; Cieza et al.,
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2017), respectively. Resulting images of MEM have been considered to have higher res-
olution and less artifacts than CLEAN images (Cornwell and Evans, 1985; Narayan and
Nityananda, 1986; Donoho et al., 1992). Even though this method is not used by all the
community in a regular basis due to its high computational demands (Taylor et al., 1999;
Cornwell and Evans, 1985; Donoho et al., 1992), a GPU version of this method (Cárcamo
et al., 2018) has been proposed reducing the computational time and obtaining a speedup
of 1000x compared with the serialized version.

Figure 2.5 shows CLEAN, MEM model and restored images. Note that as expected,
deconvolution methods return a better estimation of the image in comparison of the dirty
image using a gridding and a Inverse Fourier Transform as in Figure 2.2. Additionally, it
can be seen that MEM model image has a better resolution than CLEAN. In (Cárcamo et
al., 2018), it was empirically studied using simulated point sources that MEM resolution
is about 1/3 of CLEAN.
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FIGURE 2.5: From left to right: CLEAN, MEM model and restored MEM images from Cár-
camo et al., 2018 using HL Tauri Band 6 ALMA data.

2.5.1 Model Image Representations and Multi-Frequency Synthesis

In the field of radio astronomy, different image synthesis methods employ diverse ap-
proaches to represent model images. Among these techniques, multi-frequency synthe-
sis stands out as a powerful tool for reconstructing high-resolution images by combining
radio observations at multiple frequencies. A crucial element in the domain of multi-
frequency synthesis relates to the characterization of image representations. Various
strategies have been developed, including representing the image as a collection of point
sources, a combination of point sources and Gaussians through a multi-scale approach,
as well as employing a power-law representation.

Literature shows that CLEAN (Hogbom, 1974) version implemented in AIPS models
the sky image as a collection of point sources or delta functions. However, last features of
the algorithm as multi-scale CLEAN (Cornwell, 2008) implemented in CASA (McMullin
et al., 2007; The CASA Team et al., 2022) represent the sky brightness as a summation
of components of emission (Gaussians and point sources) having different size scales
(widths) instead of just delta functions.
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Additionally, as I mentioned earlier, it is a common practice in radio astronomy to
carry out observations at multiple radio frequencies within a specific range to improve
the sampling of visibilities in Fourier space. This frequency range typically extends ap-
proximately ±15% from the central frequency value. However, as explained in Chap-
ter 1, the mechanisms governing the emission of continuum radio waves in astrophysical
sources exhibit frequency-dependent characteristics. To account for this and overcome
the limitations imposed by significant frequency variations, the sky brightness image at
a chosen reference frequency ν0 is modeled using a power-law relationship such that

Iν(l, m) = Iν0(l, m)

(
ν

ν0

)α(l,m)

, (2.27)

where Iν0 is the sky brightness at the reference frequency ν0 and α is the spectral index
that varies with (l, m) and can be interpreted as the dependency of radiative flux on
frequency.

A basic approach to obtain a spectral index is to reconstruct each frequency channel
of a continuum dataset separately and then use a log interpolation to get an average of
α. However, this method is restricted to the sensitivity of the instrument and the spatial-
frequency coverage and its solutions are not consistent (Rau and Cornwell, 2011). In
fact, the source can only be studied at the angular resolution of the lowest frequency
(Rau and Cornwell, 2011). For example, this method has been used in (Casassus et al.,
2015) to get an spectral index for the HD 142527 protoplanetary disk ALMA datasets.
However, a better proposed solution in the state of the art is to combine frequency mea-
surements during image reconstruction using a MFS algorithm. The first approaches
of multi-frequency synthesis appeared in (Conway et al., 1990), where the term multi-
frequency synthesis is denoted and explained, and a method using double deconvolution is
proposed and detailed. This work claims that the total bandwidth of a continuum dataset
must amount a maximum of ∼ 10% the central frequency. Also, this approach was the
precursor of multi-frequency CLEAN (MF-CLEAN) proposed in (Sault and Wieringa,
1994). MF-CLEAN approximates the spectral model function using a Taylor-polynomial
expansion around the reference frequency. Thus, Taylor coefficients are computed via
least-squares.

To solve the multi-scale problem in a multi-frequency regime, a combination of the
general ideas of MF-CLEAN and Multi-Scale CLEAN (MS-CLEAN) (Cornwell, 2008)
have been proposed in (Rau and Cornwell, 2011). This algorithm models the sky bright-
ness as a summation of centered and scaled extended components and uses the Taylor-
polynomial expansion to reconstruct the sky image and the spectral dependency from the
sky brightness distribution. Currently this methods are part of the Common Astronomy
Software Applications (CASA) package (McMullin et al., 2007), and they are the most
widely used by the community today.

CLEAN has not been the only method used to reconstruct a spectral index image from
visibilities. In fact, Bayesian approaches as the maximum entropy method were used to
deconvolve a spectral dependency image from VLBI datasets using a Taylor expansion of
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Equation 2.27 and optimizing the objective function with the method of Lagrange multi-
pliers (Bajkova, 2008; Bajkova and Pushkarev, 2011).

Even though there is a variety of imaging algorithms available and other algorithms
based on compressed sensing that will be discussed in the next chapter, our choice for the
data analysis in this thesis is CASA’s tclean algorithm. This decision is primarily driven
by the requirement of reconstructing spectro-polarimetric cubes for the rotation measure
(RM) analysis. Unfortunately, not all software packages offering imaging options include
this specific functionality. Therefore, we have opted for CASA’s tclean as it provides the
necessary tools for reconstructing spectro-polarimetric cubes, which are essential for our
research. However, it is worth noting that the lack of software options with this specific
functionality opens avenues for the development of novel methods using regularized
maximum likelihood (RML) approaches and compressed sensing techniques.

2.5.2 Self-Calibration

As a variation in time of the troposphere and ionosphere, phase errors expressed as a
fraction of radian may be much larger than in visibility amplitudes. If the calibration
is uncertain and the resulting images does not have the expected signal-to-noise the
usual approach is to iterate between an imager and derive new calibration information
from the resulting model images. Self-calibration is an iterative procedure used in radio-
astronomy and consists on modelling the complex antenna gains as free parameters and
deriving them together with the intensity flux. A first approach to self-calibration (Tay-
lor et al., 1999) could be use the least-mean-squared method to minimise the difference
between observed Vo

ij and the derived model visibilities Vm
ij as in Equation 2.14.

∑
time

∑
i<j

ωij|Vo
ij − gig∗j Vm

ij (I)|2. (2.28)

This equation can also be re-written as

∑
time

∑
i<j

ωij|Vm
ij (I)|2|xij − gig∗j |2, (2.29)

where

xij =
Vo

ij

Vm
ij (I)

, (2.30)

and ωij is the inverse of the variance of Vo
ij . Note that when the model approaches to an

accurate solution, xij becomes proportional to the antenna gains modelling the response
to a calibrator. The procedure starts with an initial model image I and calculates xij and
consecutively determines antenna gains factors for each integration period within the
observation. The gains are applied to calibrate the observed visibilities and the imager
is run again. The steps are repeated until convergence. In practice, most of the times
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self-calibration is performed first only solving for the phases complex gain and then cor-
recting the amplitudes at a later stage.

Although theoretically simple, in practice self-calibration might turn into a trial and
error algorithm for scientists. Commonly the procedure starts looping solution intervals
and solving the phases for each one of them. The intervals can be long as the scan sam-
pling and then it might decrease in time. If solutions are found over that range of time,
then the solution can be applied. Every time that a new solution is found it is important
to check if the signal-to-noise ratio has improved. Additionally, phase vs. time plots for
each antenna in the array need to be checked such that solutions smoothly vary, if they
not it is be better to manually flag the outliers or to keep the last and better signal-to-noise
solution. Then, if solutions were found and applied the idea is to continue re-imaging the
corrected datasets and using the model to found new-solutions in the next time intervals.
Since amplitudes vary slowly in time than phase, solution intervals tend to be longer.
Again, the idea is to loop the time intervals and apply solutions if the above conditions
are accomplished. It is important to check the results carefully in this step since ampli-
tude corrections are more subject to deficiencies in the model image.
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Chapter 3

Compressed Sensing Faraday
Reconstruction

The work in this chapter is published as part of the paper “CS-ROMER: A novel compressed
sensing framework for Faraday depth reconstruction”, Miguel Cárcamo, Anna M. M. Scaife,
Emma L. Alexander, and J. Patrick Leahy, 2022, Monthly Notices of the Royal Astronomical
Society, arxiv:2205.01413.

In this chapter, I will review pivotal concepts of compressed sensing that are essential
for the comprehension of this thesis, alongside conducting a literature review. Subse-
quently, I will introduce our unique compressed sensing framework, which has under-
gone testing with simulated data under varied scenarios. This framework is then com-
pared to the well-established method, RM-CLEAN.

3.1 Compressed Sensing

Compressed Sensing (CS), also known as compressive sensing or sparse sampling, is a
cutting-edge paradigm that challenges the Nyquist-Shannon theorem for data acquisi-
tion under certain conditions. CS posits that sparse high-dimensional signals, subject
to specific constraints, can be recovered from far fewer samples or measurements than
those required by traditional methods, which necessitate sampling at a rate at least twice
the signal bandwidth. When applied to signal processing, the method is designed to ex-
tract an accurate signal from an incompletely sampled dataset (A. Richard Thompson,
2004b). The success of this method hinges on the volume of information provided to con-
strain the signal solution while ensuring consistency with the measurements (A. Richard
Thompson, 2004b). These constraints include sparsity, non-negativity, compactness, and
the smoothness of the signal.

For example, let x be a measured signal of length N, or a representation of it in some
basis. This can be written as x = ∑N

i ciϕi, where {ϕi}N
i=1 is a set of linearly independent

vectors and {ci}N
i=1 are unique coefficients that represent signal x. If we let Φ be the

N × N matrix with columns given by ϕi we can represent this relationship in a compact
manner such that x = Φc.
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Technically, x is not measured directly. Instead, M < N linear measurements are
acquired using a M × N sensing matrix or a linear transform. This can be mathematically
represented as y = Ax. Here, matrix A is considered a dimensionality reduction since it
maps RN , where N is generally large, into RM, where M is much smaller than N. In
this scenario (when M ≪ N measurements are taken) an ill-posed problem arises. This
means that for any particular true signal an infinite number of signals x, will yield the
same measurements y. At this point, the theoretical question that arises is how can we
recover the original signal x from measurements y?

To fully recover the signal, a compressible representation of x as a k-sparse vector
must be imposed. In other words, if x has k nonzero elements, then the signal can be mea-
sured using a linear operation and a number of measurements M ≈ k log N. Note that if
x is not sparse (has many non-zero elements) it can also be modelled as a superposition of
coefficients from a given basis, Φ. Some examples of commonly used bases/dictionaries
are wavelets, curvelets, Fourier components, etc. The most well known wavelet families
are the Haar wavelet family (Haar, 1910) and the Daubechies wavelet family (Daubechies
et al., 1992).

There are a wide variety of methods available to reconstruct a signal from measured
data. Given measurements y and knowing that signal x is sparse I can intent to solve the
following optimization problem

x̂ = arg min
x

∥x∥0 subject to x ∈ B(y), (3.1)

where B(y) ensures that x̂ is consistent with the data y. In an ideal case B(y) = {x : Ax =

y} if the measurements are not corrupted by noise. Otherwise, B(y) = {x : ∥y − Ax∥2
2 ≤

ϵ}. The main problem with this approach is that the zero-norm function, which counts
the non-zero elements of a vector, is non-convex and finding a solution that approximates
the true minimum is generally non-deterministic polynomial-time hard (NP-hard) and
computationally very intensive (Natarajan, 1995).

Donoho (2006) and Candes and Tao (2006) discovered that under general conditions it
is possible to solve (relax) the problem stated above by using a basis pursuit or enforcing
convexity in the ∥·∥0. That is, considering a Laplacian prior or a L1 regularization as

x̂ = arg min
x

∥x∥1 subject to x ∈ B(y), (3.2)

and that B(y) is convex, then the problem has been translated into a computationally
feasible one that can be solved with efficient methods from convex optimization.

Here, the L1 norm of a vector is defined as the sum of the absolute values of each
component of the vector:

||x||1 =
N

∑
t=1

|xt|. (3.3)

Note that from a Bayesian perspective the L1 norm can be seen as the negative loga-
rithm of a Laplacian prior distribution on each t component of x (see Section 5 Tibshirani,
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1996).
In the presence of noise, Equation 3.2 can also be written as a unconstrained problem:

x̂ = arg min
x

1
2
∥Ax − y∥2

2 + η ∥x∥1 , (3.4)

where the first term is equivalent to the squared sum of the data residuals and η is a
regularization parameter that determines the importance between minimizing the L1-
norm and the measurement residuals.

3.1.1 Sparsity, incoherence and RIP

To ensure sparse recovery of a signal in presence of noise, CS relies on two conditions.
Sparsity and incoherence applied through the Restricted Isometry property (RIP).

At the beginning of Section 3.1 I have defined our signal as x = Φc, where c is con-
sidered a k-sparse vector since it contains a small number of k non-zero elements.

I can define coherence as the largest correlation between any row of a sensing matrix
A and any column of a representation basis Φ. The less the coherence between these two
matrices, the fewer measurements are needed to recover the signal (Candes and Wakin,
2008). A common example of maximal incoherence occurs when using a Fourier sensing
matrix and a canonical (delta functions) representation basis. Mathematically, coherence
is defined as

µ(A, Φ) =
√

n max
1≤k,j≤n

|⟨Ak, Φj⟩|. (3.5)

If both sparsity and incoherence conditions are satisfied, then it can be said that matrix
AΦ meets the k-RIP, and therefore, all subsets of k columns taken from AΦ are nearly
orthogonal. Thus, the optimization problem on Equation 3.4 can be solved with high
probability.

Defining RIP, let k = 1, 2, ..., and let an isometry constant δk < 1 of a matrix AΦ such
that

(1 − δk) ∥x∥2
2 ≤ ∥AΦx∥2

2 ≤ (1 + δk) ∥x∥2
2 , (3.6)

holds for all k-sparse vectors x. Thus, the property holds when AΦ approximately pre-
serves the Euclidean distance of k-sparse signals. This equivalent to say that all subsets
of k columns taken from AΦ are nearly orthogonal.

3.1.2 Regularization

Until here I have defined the problem using a regularization for sparsity such as L1-norm.
However in CS and signal reconstruction, Total Variation (TV) (see Poon, 2015; Krahmer
et al., 2017), often computed as

TV(x) = ∑
i
|xi+1 − xi| , (3.7)
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in its 1-dimensional version and

TV(x) = ∑
i,j

|xi+1,j − xi,j|+ |xi,j+1 − xi,j| , (3.8)

in its 2-dimensional version, and Total Squared Variation (TSV) computed as

TSV(x) = ∑
i
|xi+1 − xi|2 , (3.9)

in its 1D version and

TSV(x) = ∑
i

∑
i,j

|xi+1,j − xi,j|2 + |xi,j+1 − xi,j|2 , (3.10)

in its 2D version. These regularisation techniques, have a rich history of use in the
field of astrophysics, underpinning various key studies. Notably, they were instrumental
in analysis of Faraday rotation and the polarised structure of astrophysical jets, as ref-
erenced in Akiyama et al., 2018 and Akiyama et al., 2017b. Moreover, these methods
played a critical role in the Event Horizon Telescope’s (EHT) landmark achievement of
capturing the first-ever image of a black hole, detailed in The Event Horizon Telescope
Collaboration et al., 2019. These examples illustrate how such regularisation methods
contribute to significant advancements in the reconstruction of radio signals. Note that
while TV can also be seen as the L1-norm for adjacent pixel differences and minimizes
the gradients and favor smoother signals (A. Richard Thompson, 2004a) with flat regions
separated by edges (The Event Horizon Telescope Collaboration et al., 2019), TSV only
favor those signals with smooth edges.

Another well-known regularization is the L2-norm, that can be seen as the negative
logarithm of a Gaussian prior distribution. However, this prior will fail when producing
a sparse solution. As an example, Figure 3.1 shows the difference between optimisation
on a set of delta basis function coefficients using method of L2-minimization and basis
persuit (L1-norm). If a L1-norm is used, sparse coefficients are exactly recovered. In turn,
a traditional linear method based in L2-minimization fails reconstructing sparse coeffi-
cients. This is because the Laplacian distribution is highly peaked and bears heavy tails
in comparison to Gaussian distribution (Wiaux et al., 2009). In other words, Laplacian
prior has a greater distribution mass around zero, while Gaussian distribution is more
diffuse around its center.

3.1.3 CS Optimization methods

As I previously mentioned, L1 minimization can be addressed using general-purpose
convex optimization methods such as steepest descent, conjugate gradient (CG), and
Quasi-Newton Methods (Nocedal and Wright, 2006; Press et al., 2007; Elad et al., 2007).
Additionally, proximal splitting methods as Alternating-direction method of multipliers (ADMM)
(Yang and Zhang, 2011; Boyd et al., 2011) and Simultaneous-direction method of multipliers
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FIGURE 3.1: Example of optimisation of delta basis function coefficients using a L2 (on top)
and L1 (on bottom) minimization.

(SDMM) have been used to optimize a certain objective function. In general, proximal
methods solve optimization problems of the form

min
x∈RN

f1(x) + ... + fs(x)

where f1(x), ..., fs(x) are convex lower semicontinuous functions from RN to R, not nec-
essarily differentiable (Carrillo et al., 2014).

The first splits the objective function in two parts and it optimizes them separately.
Then, the algorithm performs a dual variable update. The second method is a general-
ization of ADMM to a sum of more than two functions (Carrillo et al., 2014).

Iterative algorithms have also been developed to solve these problems in the context
of CS. This methods estimate coefficients or the sparse signal iteratively until reach a
convergence criterion. The most common algorithms are the Orthogonal Matching Persuit
(OMP) and Iterative Hard Thresholding (IHT). OMP (Cai and Wang, 2011) on each itera-
tion correlates the columns of A with the signal residual (obtained by substracting the
estimation of the signal with the observed measurement) until reaching a limit on the
number of iterations or accomplishing the requirement y ≈ Ax̂. On the other hand, IHT
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(Blumensath and Davies, 2009) starts from an initial signal estimate x̂0 = 0 and iterates
a gradient descent step using the hard thresholding operator on x, which sets all entries
to zero except for the entries of x with largest magnitude. This steps are repeated until
meeting a convergence criterion.

Another important algorithm that will be mentioned throughout this thesis is the Fast
Iterative Shrinkage-Thresholding Algorithm (FISTA, see Beck and Teboulle, 2009a). This
method is used when we need to minimise a cost function:

x = arg min
x

F(x) = f (x) + g(x), . (3.11)

The function f (x) is a smooth convex function, continuously differentiable with a Lips-
chitz continuous gradient L( f ) such that:

||∇ f (x)−∇ f (y)|| ≤ L( f )||x − y||| for every, x, y ∈ R, . (3.12)

and the function g(x) is a continuous convex function, which might not be smooth. FISTA
is an upgrade to the Iterative Shrinkage-Thresholding Algorithm (ISTA, see Kowalski,
2014), as it introduces a momentum term to help speed up the convergence rate, which
was slower in ISTA.

One of the main aspects of FISTA is the Lipschitz constant L. When the gradient
of a function is Lipschitz continuous, the Lipschitz constant can be found, this ensures
that the distance of the gradient between two points does not exceed the product of this
constant and the distance between the points themselves. If the Lipschitz constant is
known for the smooth part of the function, FISTA can use it to decide the step size. In
this case, FISTA uses Algorithm 1, where pgL(y) is a proximal function defined as

Algorithm 1 FISTA with constant step size
Input: L = L( f ) - A Lipschitz constant of ∇ f
Step 0. y1 = x0, t1 = 1
Step k. (k ≥ 1) Compute

xk = pgL(yk) (3.13)

tk+1 =
1 +

√
1 + 4t2

k

2
(3.14)

yk+1 = xk +

(
tk − 1
tk+1

)(
xk − xk−1

)
(3.15)

pgL(y) = arg min
x

{
g(x) +

L
2

∣∣∣∣∣
∣∣∣∣∣x −

(
y − 1

L
∇ f (y)

)∣∣∣∣∣
∣∣∣∣∣
2}

. (3.16)

However, not always the Lipschitz constant is known. In these cases, a method called
backtracking line search can be used. This technique starts with an initial estimate for
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the step size and then gradually reduces it until a certain condition is satisfied. This
ensures the step size is not too large, making FISTA a versatile tool that can be used in a
wide range of scenarios where the Lipschitz constant might not be known. In this case,
Algorithm 2 is used.

Algorithm 2 FISTA with backtracking
Input: Take L0 > 0 and η > 1
Step 0. y1 = x0, t1 = 1
Step k. (k ≥ 1) Find the smallest non-negative integer ik such that

F(pgL(yk)) ≤ QgL(pgL(yk), yk) (3.17)

with L = ηik Lk−1

Set Lk = ηik Lk−1 and compute

xk = pgL(yk) (3.18)

tk+1 =
1 +

√
1 + 4t2

k

2
(3.19)

yk+1 = xk +

(
tk − 1
tk+1

)(
xk − xk−1

)
(3.20)

A drawback of FISTA is that it does not guarantee steady, monotonic convergence.
This means that the value of the objective function may not decrease with each itera-
tion. To address this issue, a modified version of FISTA, known as Monotone FISTA or
MFISTA (Beck and Teboulle, 2009b), was developed. This version ensures that the value
of the objective function decreases after each iteration, thereby guaranteeing the mono-
tonic convergence of the algorithm.

3.2 Applications of Compressive Sensing to radio astronomy

CS proves to be a technique well-suited to handling large computing/data problems,
given its ability to significantly compress data sizes through the use of basis coefficients.
This compression can be viewed as an additional constraint to the ill-posed problem, po-
tentially leading to better regularization. The first applications of this theory to image
synthesis in radio astronomy were done by Wiaux et al. where simulated images of dif-
ferent radio sources (random Gaussians and string signals) were used to demonstrate
that the CS method can have better results than classic imaging techniques. Then (Puy
et al., 2009) discusses the importance of the effect of non-negligible component direc-
tions using simulated data and compressive sensing for reconstruction. Specifically, they
simulate sparse signals in Gaussian waveforms and use a basis persuit algorithm and
gridded visibilities for reconstruction. In (Wenger et al., 2010) the work of Wiaux et al. is
extended proposing a compressive sensing framework called SparseRI. This framework
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solves a functional of the form

||y − F(x)||22 + λ f (x),

where y is the vector of measurements, F is the Fourier transform and x is the sky image
to be reconstructed. The parameter λ can be chosen by the user so that the first term lies
within the expected noise level, and f (x) can either be the L1 norm of the coefficients of x
in a sparsity basis, like Daubechies wavelets (Daubechies, 1992), or the total variation of
the gradient of the sky brightness x. This framework is tested using real and simulated
data and is compared with CLEAN, obtaining comparable results.

In Li, F. et al., 2011a, another compressive sensing approach to reconstruct radio in-
terferometry images is proposed. This work test a partial Fourier reconstruction method,
that is to apply the L1 norm directly to the gridded Fourier transform. Also, the work
tests the isotropic undecimated wavelet transform (IUWT) since it is very well suited for
astronomical sky sources. In fact, the author states that the undecimated and redundant
wavelet transforms preserve translation-invariance, and that many sources in the uni-
verse are isotropic. Finally, both CS methods are optimized using the FISTA algorithm to
reconstruct and test the algorithm using ASKAP simulated data.

Consequently, in Carrillo et al., 2012, Carrillo et al. presents an algorithm for radio
interferometry imaging named Sparsity Averaging Reweighted Analysis (SARA) that as-
sumes that sky signals are sparse in many bases, such as, the Dirac basis, wavelet bases
or in their gradient which pretends to represent a powerful prior. This algorithm imposes
positivity in the image and uses a reweighted L1 minimization to approach the solution
to a L0 norm. Additionally the author tests his algorithm with simulated data generated
by random variable density profiles at low frequencies. In the work of Garsden et al.,
2015 a FISTA algorithm is proposed for reconstructing real and synthetic LOFAR images.
In this work, the dictionary chosen is the starlet transform (Starck et al., 2011) or isotropic
undecimated wavelet since it has been shown that it is useful in astronomical image recon-
struction. This transform decomposes an image c0 of N × N pixels in a set of coefficients
W = {w1, ..., wj, cj} as a superposition:

c0[k, l] = cJ [k, l] +
J

∑
j=1

wj[k, l].

This paper also proposes a strategy where threshold applied to wavelets is fixed only
from the noise distribution at each basis scale.

The main difference between Carrillo et al. an other authors (Wenger et al.) is that
Carrillo et al. solves a problem with the form of Equation 3.2 with the Douglas-Rachford
splitting algorithm. In turn, other authors solve Equation 3.4 using FISTA. The Douglas-
Rachford algorithm minimizes the L1 norm iteratively a then projects the result on the
constrained problem (Equation 3.2) until some criteria is reached. This projection re-
quires an iterative process as the backward-forward algorithm to solve the optimization
problem. Additionally, it requires the calculation of the norm of the basis to guarantee
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convergence. If visibilities are gridded then the norm can be computed and have a fast
convergence rate. However, if visibilities are in a continuous space the norm is unknown
and it will not be precise enough to converge. Given that this algorithm does not have
a parallel structure to solve large-scale problems, Carrillo et al., drawing on the SARA
algorithm, extended his previous work (Carrillo et al., 2012) and published PURIFY. This
algorithm utilises compressed sensing techniques to reconstruct actual continuous inter-
ferometric measurements. Specifically, the authors employ the simultaneous-direction
method of multipliers (SDMM) and compare its results with CLEAN.

Concerning parallelization and distributed computing, in Repetti et al., 2016 two com-
pressive sensing algorithms for radio interferometry are proposed. These algorithms
solve the sparsity averaging problem proposed in Carrillo et al., 2012 using the alternat-
ing direction method of multipliers (ADMM) and using the primal-dual (PD) method.
This methods decompose the original problem into simpler and easier problems, each
one associated with a term of the objective function. The main difference between these
two algorithm is that ADMM offers a partial splitting of the objective function whereas
PD allow the full splitting for operators and functions. In fact, in this work PD can work
selecting a random fraction of visibilities at each iteration, being flexible in terms of mem-
ory requirements a computational loads. Since terms can be splitted, both algorithms are
highly parallelizable and can be distributed in different computing processors. This algo-
rithms are compared with the SDMM algorithm and with CLEAN and using simulated
data.

In Pratley et al., 2017, the PURIFY software is enhanced with the addition of the
following features: a new optimization method named proximal alternating direction
method of multipliers (P-ADMM), the code has been redesigned a re-implemented in
C++ and different convolutional kernels were added for gridding and degridding. In
this paper, the discussion in mainly centered on how different convolutional kernels af-
fect the quality of the sparse image reconstruction. In this discussion, simulated data
using real model images of M31 and 30Dor of 256 × 256 pixels and 131, 072 visibilities
are used. Also, the author discusses differences between images recovered by PURIFY
and CLEAN using real data from the VLA and ATCA telescopes.

Finally, the work conducted by Akiyama et al., 2017b utilizes compressed sensing
techniques to reconstruct Stokes parameter images (I, Q, U, V) from simulated polar-
ized data models of M87. This approach incorporates regularization techniques, such as
the L1 norm for sparsity enforcement and TV for enhancing smoothness. The optimiza-
tion process employs the MFISTA algorithm with backtracking to calculate the Lipschitz
constant. Additionally, in another study by Akiyama et al., 2017a, the same regulariza-
tion functions are employed to optimize the visibility amplitudes and closure phase. In
this case, the quasi-Newton method, specifically the limited-memory Broyden-Fletcher-
Goldfarb-Shanno (L-BFGS-B) algorithm, is utilized as an approximation of the BFGS al-
gorithm while efficiently managing computer memory resources. In Kuramochi et al.,
2018, the same optimization algorithm is used to minimize the L1 norm and the Total
Squared Variation (TSV) as an application to image the black hole shadow. Simulated
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observations of radio models of black holes were used to test the reconstructions.

3.3 Applications of Compressive Sensing to 1D data

Before I discuss the existing literature on the use of compressed sensing (CS) for solving
the Faraday Rotation Measurement problem in one-dimensional data, it is important to
highlight the work by Bell, M. R. and Enßlin, T. A., 2012. This article outlines the
conventional two-step technique, known as 2+1D Faraday imaging, which involves the
following steps:

1. Calibration and self-calibration (if necessary) of the visibility data.

2. Separate deconvolution of the Stokes Q and U parameters at each frequency, using
a reconstruction algorithm, to generate a spectro-polarimetric cube.

3. Restoration of each slice of the cube with the same common restoring beam.

4. Reconstruction of Faraday depth for all lines of sight.

Even though this approach is the most used in the literature, it has certain drawbacks.
Firstly, reducing the resolution of all slices of the spectro-polarimetric cube can cause sig-
nificant issues. Changes in resolution and intensity of polarised intensity in λ2-space can
shift the Faraday depth of the emission, leading to systematic errors. Secondly, the re-
construction of Faraday depth for all lines of sight is based on deconvolved maps, which
are reconstructed using a non-linear algorithm. Consequently, any artefacts introduced
by these algorithms can be amplified during RM Synthesis, further impacting the final
results.

The article also proposes a new approach that avoids the aforementioned disadvan-
tages. This approach calculates the deconvolved Faraday dispersion function (see 1.88)
by combining aperture and rotation measure synthesis imaging and deconvolution into
a single algorithm/step. This is accomplished by gridding visibility measurements in
(u, v, λ2) using a convolutional kernel, applying the FFT algorithm to obtain the 3D dirty
Faraday dispersion function, and then employing a 3D CLEAN-like algorithm. The au-
thors refer to this method as 3D Faraday imaging.

From this point onward, the papers that I will reference in this section will be those
specifically using the 2+1D Faraday imaging approach, focusing on reconstruction meth-
ods in one-dimensional data.

One of the first works in this area has been done by Frick et al., 2010. This study
demonstrates the applicability of the known Mexican Hat wavelet to decompose the
Faraday Depth Spectrum.

Then in Li, F. et al., 2011b the synthetic data simulated in Brentjens, M. A. and de
Bruyn, A. G., 2005 is reconstructed. In particular, three algorithms for the reconstruction
of thin and thick Faraday depth structures were implemented. All the implementations
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use FISTA to minimize the L1 norm whether in Faraday Spectrum space (using and iden-
tity matrix) or in Daubechies-8 space. The difference between algorithms lies on which
space these structures are sparse. The first algorithm is named CS-RM Thin and was im-
plemented to reconstruct thin structures of the Faraday Spectrum. This structures are
itself sparse if Faraday depth space, and therefore, a delta basis must be applied to the
data. However, thick structures are not sparse in Faraday Depth space, and they are as-
sumed to be in Daubechies-8 space. Therefore, the second algorithm is called CS-RM
Thick and reconstructs mainly thick structures minimizing the L1 norm in the wavelet
space. Finally, a mix of these two algorithms named CS-RM Mix was implemented to re-
construct both thin and thick structures at the same time. This is basically done applying
both algorithms to the data, and then summing up the results.

Another study that employs Compressed Sensing (CS) to reconstruct Faraday Depth
Spectrum signals is Andrecut et al., 2011. This work uses the Matching-Persuit (MP) algo-
rithm, a L1-norm regularization and a boxcar dictionary in order to reconstruct both thin
and thick Faraday signals. Each atom ϕj of the dictionary Φ is defined on Equation 3.21
where j = j(a, b), a > 0 its a scale and b ∈ R its a translation.

ϕj(a,b)(ϕ) =

1/
√

a if b ≤ ϕ < b + a,

0 otherwise
(3.21)

According to the authors, this dictionary is able to capture sources with arbitrary
thickness. Given that the Faraday Depth grid in this case has a length of M, coordinates
ϕm and a sampling resolution of ϕR, it is possible to discretize the boxcar dictionary as in
Equation 3.22:

ϕj(ϕm) ≡ ϕj(s,l)(ϕm) =

1/
√

sϕR if l ≤ m < l + s,

0 otherwise,
(3.22)

where the maximum width of the boxcar atom is amax = SϕR and S ≤ M/2, then each
scale a = sϕR where s = 1, 2, ..., S and each translation b = lϕR where l = 0, 1, ..., M − s.

To illustrate the method two experiment layouts were made. The first simulates both
noiseless and noisy cases of Westerbork Synthesis Radio Telescope (WSRT) observations
in a frequency range of 315-375 MHz spread over 126 channels. The second simulates
Arecibo telescope data in the frequency range of 1225-1525 MHz spread over 200 chan-
nels. The simulated Faraday Depth sources were a thin source and two different thick
sources one thicker than the other.

Even though this works promote sparsity on a certain basis. The work of Akiyama et
al., 2018 uses a tradeoff between sparsity and smoothness in Faraday Depth space using
regularizations such as L1-Norm and TV or TSV. This is done using the FISTA algorithm
and uses a Faraday Depth model from Ideguchi et al., 2014 with both Faraday thin and
thick structures at a frequency band from 300 to 3000 MHz to test the procedure. The
results are compared with an RMCLEAN version from Miyashita et al., 2016.
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The work made by Cooray et al., 2020 improves the latter work using an iterative
restoration algorithm based on the projected gradient descent. The algorithm is named
Constraining and Restoring iterative Algorithm for Faraday Tomography (CRAFT). At
each iteration, different assumptions of the Faraday Depth Spectrum can be made such
as sparsity and considering that some parts of the spectrum are result of the RMSF. In
this work the smoothing of the polarisation angle can also be added as a constraint.

There are two things to note in these works. Both create data in Faraday Depth space
and then go to λ2-space using a DFT. However, doing this implies that the λ2-space is
implicitly regularly-spaced. It is worth to note that an irregular λ2-space adds not only
adds an additional layer of noise to the problem but also a problem similar to what hap-
pens in image synthesis. Also note that in this works the simulations do not account for
the fact of frequency channel excision due to RFI, instrumental problems or calibration.

Finally, the study conducted by Pratley et al., 2021 introduces a convex non-parametric
QU fitting algorithm for Faraday depth spectra. This novel approach projects onto λ2-
space and constraints the polarised flux at negative wavelengths squared to zero. This
method significantly contributes to tackling the under-constrained issue prevalent in the
reconstruction of Faraday depth spectra. It provides a solution for dealing with negative
wavelengths squared, which are not natively sampled.

However, one potential caveat of this approach lies in its assumption that negative
wavelength squared samples are zero. Theoretically, these samples do not exist, thus
rendering this portion of the data an empty set. By assuming these values to be zero, the
method may inadvertently introduce systematic uncertainties or biases.

3.4 Faraday Spectra Reconstruction

The Faraday spectra reconstruction problem can be solved using a Regularized Maxi-
mum Likelihood (RML) method in order to select one signal among many feasible. In
section 1.5 we not only have shown that measurements are noisy and incomplete but
also that they belong to an irregular space and that the problem is inherently under-
constrained due to P(λ2 < 0) = ∅. The idea behind the RML is to reduce the solution
space choosing data that fit the measurements to within the noise level. Among these,
choose signals constrained to have certain features, such as sparsity or edge-smoothed
signal.

In this work I propose a CS-framework that solves the problem stated on Equation 3.4
extending the objective function adding TV and TSV regularizations in order to impose
edge-smoothed constraints when needed. Consequently, I aim to solve the following
optimization problem

x̂ = arg min
x

{
f (x) + g(x)

}
(3.23)

where

f (x) =
1
2

M

∑
k=0

∣∣∣∣Po
k − Pm

k (x)
σk

∣∣∣∣2 , (3.24)
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is commonly seen in the literature as a χ2 term and is considered a convex smooth func-
tion, and g(x) is a convex function that is non-differentiable in some region and can be
either

g(x) = η1L1(x) + η2TV(x) , (3.25)

or
g(x) = η1L1(x) + η2TSV(x) , (3.26)

where x can be the signal itself or a wavelet representation of it and L1, TV and TSV
are defined in Equations 3.3, 3.7 and 3.9, respectively. Po is a M-size vector containing the
observed polarised intensity measurements as a function of λ2 and Pm denotes the model
measurements which are functions of the signal estimate calculated using Equation 1.87.
Finally, σ2

k is the variance for channel k. Before continuing, it is important to highlight
that our framework will first calculate main parameters involved in Faraday Depth re-
construction as in Li, F. et al., 2011b and Brentjens, M. A. and de Bruyn, A. G., 2005. First,
the framework calculates λ2

min and λ2
max. Then, ∆λ2 and δλ2 are computed as

∆λ2 = λ2
max − λ2

min (3.27)

and

δλ2 =
∑N

i=0 λ2
i+1 − λ2

i

N
, (3.28)

respectively. These can in turn be used to define the resolution in Faraday depth space,
the largest scale in Faraday depth to which the data is inherently sensitive and the max-
imum observable Faraday depth. In Brentjens, M. A. and de Bruyn, A. G., 2005 and our
framework these are approximated as in Section 1.5.

Thus, the framework selects the cell-size in Faraday Depth space as ϕR = δϕ/ρ, where
ρ is the oversampling factor which can be selected as 4 or 5. From Li, F. et al., 2011b we
can use ||ϕmax|| to calculate the length of the grid in Faraday Depth space as

n =

⌊
2||ϕmax||

ϕR

⌋
Given that the observed measurements reside in an irregular space and the Faraday

Depth space exists on a regular grid, the framework provides two options for estimating
the model data. The first and more intuitive option is to grid the observed measure-
ments, which can be achieved by estimating Pm from Faraday spectra using just a DFT
or FFT. The alternative option involves the use of the Non-Uniform Fast Fourier Trans-
form (NUFFT) (Lin, 2018), which executes an FFT on non-uniformly sampled data. This
is accomplished by conducting an FFT on the signal and then performing a min-max in-
terpolation (Fessler and Sutton, 2003). Once a method to approximate the model data
points has been identified, the subsequent step is to employ an optimization method to
minimize either Equation 3.25 or 3.26.
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In this work, I have chosen to use the monotonic version of the Fast Iterative Shrinkage-
Thresholding Algorithm (MFISTA) for the reconstruction process (Beck and Teboulle,
2009b). The FISTA method and its monotonic variant have been employed in previ-
ous studies on reconstruction of Faraday spectra, as demonstrated by Li, F. et al., 2011b
and Akiyama et al., 2018. Furthermore, the efficacy of this method with regularizations
such as Total Variation (TV) and Total Squared Variation (TSV) has been established, as
highlighted in the work by Akiyama et al., 2017b and Kuramochi et al., 2018.

The gradient calculation of ∇ f (yk) is done by estimating the model visibilities as
explained above. It is important to highlight that if we are using a basis representation
we need to reconstruct the Faraday Depth space from coefficients before estimating the
model measurements. Then, we apply the IDFT to the residuals as shown on the right
part of Equation 1.88. The calculation of the proximal function pgL when only having the
L1-norm function as a regulariser can be done analytically. That is

proxλg(y) = arg min
x

{
||x||1 +

1
2λ

||x − y||22
}

.

The optimality condition for this problem is

0 ∈ ∂(||x||1) +∇
(

1
2λ

||x − y||22
)

0 ∈ sign(x) +
(x − y)

λ
⇐⇒ y = x + λsign(x)

x = y − λsign(x)

From here, we can detect three conditions:

s(y) =


y − λ, y ≥ λ

0, |y| ≤ λ

y + λ, y ≤ −λ.

which can be written as

s(y) = max (|y| − λ, 0)sign(y).

This is commonly known as the soft-thresholding operator and it sets small values to
zero while it shrinks large values toward zero. In order to incorporate TV and TSV reg-
ularisations, we have implemented a fast gradient projection algorithm just as Beck and
Teboulle, 2009b and Akiyama et al., 2017b. In practice, the Fast Projected Gradient (FGP)
method is replaced by the soft-thresholding operator.

Numerous attempts have been made to automatically calculate regularization param-
eters beforehand (see Hansen, 2000; Belge et al., 2002; Karl, 2005; Bauer and Lukas, 2011;
Shi et al., 2018). As a preliminary approach in this framework, I have considered only L1
regularization. Since I can estimate the theoretical noise, denoted as σ, of our signal from
the dirty Faraday spectrum where ϕ >= |ϕmax| or from the data weights, I calculate the
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parameter η1 by minimizing the scalar objective function

η̂1 = arg min
η1

{|ση1(r̂)− 5 σ|} , (3.29)

where r̂ represents the residuals in Faraday depth space. By minimizing this objective
function, I can determine the regularization parameter such that the resulting residuals
have a root mean square (rms) value of 5 times the theoretical noise. This latter number
can also be parameterized within the framework, thereby allowing an η1 parameter to
produce a lower or higher rms.

In the case the signal can be represented by a wavelet dictionary, the framework of-
fers the set of discrete wavelet transforms (DWT) from package pywt (Lee et al., 2019).
However, sometimes the DWT can cause problems due to its shift variance and poor
directional properties (Golilarz and Demirel, 2017). As an alternative, and as a way to re-
construct both thin and thick Faraday structures, I have added the Undecimated Wavelet
Transform (UWT) 1D functions from Lee et al., 2019 to our framework. Another moti-
vation is that it has been shown that the use of the thresholding function and UWT can
improve results in image denoising and reconstruction applications (Starck et al., 2007;
Offringa and Smirnov, 2017), and even though there have been studies of wavelets in the
Faraday Measurement Synthesis context, the UWT has not been tested yet.

3.5 Application to Simulated Data

To illustrate and test the compressed sensing algorithm I am going to use the following
equations to analytically simulate Faraday depth spectra on three scenarios. First, we
consider polarised emission from the lobe of a radio galaxy as:

Prg(λ
2) = Sν0

(
λ2

λ2
ref

)α/2

exp(2iϕ1λ2)

= Sν0

(
λ2

λ2
ref

)α/2 [
cos(2ϕ1λ2) + i sin(2ϕ1λ2)

]
. (3.30)

where Sν0 is the intensity at the reference frequency, α is the spectral index and ϕ1 is the
single Faraday Depth value. This can be also seen as a thin Faraday source on Faraday-
space. In this case, the simulated source will have an intensity of 0.035 Jy/beam and the
Faraday Depth ϕ1 will be at −200 rad m−2.

The second scenario has been adopted from the top-hat function in (Brentjens, M.
A. and de Bruyn, A. G., 2005) which represents a Faraday Thick component. I have
generalised the equations (see Equation 3.32) such that a component of width ϕfg could
be centered at any ϕ0 value. In this case the simulated source will have an intensity of
0.035 Jy/beam and a width of 140 rad m−2 including a range of Faraday Depths from
130 to 270 rad m−2. I have chosen this value because it is very close to the maximum
recoverable width structure.
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FIGURE 3.2: Scenario 1. On the left we show the simulated polarisation data as a function
of λ2. In the center, the dirty Faraday depth spectrum of the same data. On the right, the
reconstructed Faraday depth spectrum from a noisy and incomplete realisation of these data
with σQU = 0.7 mJy/beam with a 30% removal fraction, using the delta basis function. The

theoretical ±5σϕ noise boundary for complex Faraday depth is shown as red lines.
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FIGURE 3.3: Scenario 2. On the left we show the simulated polarisation data as a function
of λ2. In the center, the dirty Faraday depth spectrum of the same data. On the right, the
reconstructed Faraday depth spectrum from a noisy and incomplete realisation of these data
with σQU = 0.7 mJy/beam with a 30% removal fraction, using the delta basis function. The

theoretical ±5σϕ noise boundary for complex Faraday depth is shown as red lines.

Fgal(ϕ) =

Sν0(ϕfg)
−1 ϕ0 − ϕfg

2 < ϕ < ϕ0 +
ϕfg
2

0 elsewhere
(3.31)

Pgal(λ
2) =

Sν0

λ2ϕfg
sin
(
λ2ϕfg

)
e
(

2iλ2ϕ0

)
= Sν0 e

(
2iλ2ϕ0

)
sinc

(
λ2ϕfg

)
(3.32)

Finally, the third scenario is a mixture of a Faraday thin source and a Faraday thick source.
This is done by simply summing the resulting complex polarisation intensities from pre-
vious scenarios

Ptot(λ
2) = Pgal(λ

2) + Prg(λ
2). (3.33)

The frequency range and parameters employed across all scenarios align with those
for JVLA, as depicted in Table 1.1.

To be consistent with channel excision due to RFI and calibration we have randomly
taken data out. Particularly, for all three scenarios I have taken out different fractions of
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FIGURE 3.4: Scenario 3. On the left we show the simulated polarisation data as a function
of λ2. In the center, the dirty Faraday depth spectrum of the same data. On the right, the
reconstructed Faraday depth spectrum from a noisy and incomplete realisation of these data
with σQU = 0.7 mJy/beam with a 30% removal fraction, using the delta basis function. The

theoretical ±5σϕ noise boundary for complex Faraday depth is shown as red lines.

Scenario ϕ1 ϕfg ϕ0 Sν0

[rad m−2] [rad m−2] [rad m−2] [Jy/beam]

1 -200 - - 0.035
2 - 140 200 0.035

TABLE 3.1: Abell 1314 JVLA simulation details

the total data points. Therefore, different datasets were made with removal fraction in a
range from 0.0 to 0.9 in regular steps of 0.1.

Finally, to make the scenarios even more realistic I have also added different levels
of Gaussian random noise with levels of fraction of the peak that go from 0.0 to 0.9 in
regular steps of 0.1.

To illustrate how the data looks like Figure 3.5 depicts plots of λ2-space on scenario 1
using removal fractions of 0.2, 0.5 and 0.8 as well as using 0.2, 0.5 and 0.8 fractions of the
peak as noise.

3.5.1 Evaluation Metrics

This section aims to explain the different evaluation metrics used in this work in order
to evaluate the Faraday Rotation Measurement Synthesis framework and its different
solutions obtained from the simulated scenarios.

Peak-signal-to-noise ratio (PSNR)

Before continuing, it is important to define what is meant by the restored Faraday sig-
nal. Similarly to imaging in radio interferometry, most of the time the resulting model
signal will not represent the system’s resolution. Therefore, to create the restored signal
the resulting model signal is convolved with a zero mean Gaussian that has a standard
deviation equivalent to that of the RMTF.

The peak-signal-to-noise (PSNR) metric computes the maximum value of a signal
divided by the corrupting noise that affects its fidelity. Since Faraday-space signals are
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complex, we can take the maximum of the absolute value of the restored signal as the
peak. The noise is calculated as the standard deviation of the residuals in Faraday depth
space. This can be written as

PSNR =
max {|F|}

σ

where F represents the restored Faraday depth signal and σ is the standard deviation of
the residuals in the same space, calculated as the arithmetic mean of the rms noise on the
real and imaginary components of the Faraday depth spectrum:

σ =
σREAL + σIMAG

2
. (3.34)

Root Mean Squared Error (RMSE)

One way to assess the reconstruction and how well the model fits the observed mea-
surements is calculating the Root Mean Squared Error (RMSE). When the reconstruction
reaches its end, the framework returns the residuals and we can use these to calculate the
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RMSE as

RMSE =

√
∑i |ri|2

2n
. (3.35)

Therefore, the RMSE can be interpreted as the average distance between the model
and the observed data. The lower this distance is, the better the fit is.

Sparsity

As has been noted previously, sparsity can be defined as the number of non-zero ele-
ments, k, in a data vector of length n. The fewer the number of non-zero elements, the
sparser the data. Here I calculate the percentage of non-zero elements, s, in the resulting
parameters after optimization. This can be the sparse Faraday-space representation of the
data, or the basis coefficient representation. When working with coefficients that have a
real representation, this can be written as the proportion between non-zero coefficients
and the length of the coefficient vector

s = 100 · k/n. (3.36)

However, since Faraday-space is complex, I need to calculate sparsity for the real and for
the imaginary parts as

s = 100 · (kREAL + kIMAG)/(2 · n). (3.37)

Model selection criterion: AIC and BIC

Given the fact that the deconvolution of Faraday depth spectra is an ill-posed problem,
many models will be able to fit the data. Additionally, since we are using multiple sce-
narios to test different basis representations, we would like to know which model best
approximates the data. To do this we use the Akaike Information Criterion (AIC) and the
Bayesian Information Criterion (BIC) defined as

AIC = n log
( ||y − ŷ(x)||22

n

)
+ 2 · df, (3.38)

and

BIC = n log
( ||y − ŷ(x)||22

n

)
+ df log n, (3.39)

respectively. Here, y represents the complex observed data vector of length n and ŷ repre-
sents the estimated data, and x can be either the Faraday depth spectrum or the coefficient
vector. Following Shi et al., 2018, df is an estimate of the degrees of freedom of x, which
is defined as the number of non-zero entries, that is df = k.

Although in Shi et al., 2018 AIC and BIC have been used as a part of the optimisation
process, here I calculate them using the estimated data only after convergence. In sum-
mary, the only difference between the AIC and BIC is that the BIC takes into account the
logarithm of the total size of the estimator. Here we are looking for the sparser signal
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that best minimizes the residual sum of squares (RSS). In that sense, in the BIC the func-
tion will also be penalized if the size of the signal is large. However, since I am testing
for different percentages of removal fraction, which will remove data randomly in λ2-
space, this can change the size of the Faraday depth space and consequently the size of
the wavelet representation. Therefore, I suggest that n should be equal to the number of
measurements in λ2-space, such that the AIC and BIC metrics show the sparsest signal
with the best RSS. Further information about the use of the AIC and BIC can be found
in “Appendix E: Model Selection Criterion: AIC and BIC” 2014; Ding et al., 2018.

In order to study which wavelet family best represents certain scenarios I have made
50 realizations for each of the scenarios described in Section 3.5, fixing the noise and
removal fractions to 0.7 mJy/beam and 0.3, respectively. This allows me to calculate
the mean and standard deviation of each metric. I have used only orthogonal wavelet
families and the delta function basis. It is important to highlight that when using wavelet
transforms we always use the maximum number of decomposition levels defined for the
DWT. For a signal of length n and a filter of length p this is defined as

max_level =
⌊

log2

(
n

p − 1

)⌋
. (3.40)

The results of this process for the DWT are shown in Figure 3.6. For the corresponding
UWT the number of decomposition levels is given by log2(n) and the results of these
experiments are shown in Figure 3.7 for undecimated wavelets.
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FIGURE 3.6: PSNR, RMSE, AIC and BIC using all discrete wavelet families for reconstruction
using the discrete wavelet transform. First row shows scenario 1, second row for scenario 2

and third row for scenario 3.

From Figure 3.6 and Figure 3.7 it can be seen that although the average values of
the RMSE, AIC and BIC tend to be lowest for the delta function basis, the best values
for wavelets can be obtained using the discrete Meyer, Haar, symlets and coiflets filters.
However, when combining the wavelets with the delta function basis the best metrics are
obtained using the discrete Meyer, Haar and Daubechies families.

Note that although AIC and BIC tend to be higher for UWT, one must take into ac-
count that the number of coefficients are larger than in the discrete wavelet transform
case since the UWT does not use any downsampling or upsampling.
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FIGURE 3.7: PSNR, RMSE, AIC and BIC using all discrete wavelet families for reconstruc-
tion using the undecimated wavelet transform. First row shows scenario 1, second row for

scenario 2 and third row for scenario 3.

Scenario 1 Scenario 2 Scenario 3
AIC −20248.78 ± 60.24 −20231.11 ± 55.93 −20163.09 ± 66.42
BIC −20093.34 ± 120.40 −20019.56 ± 116.71 −19887.35 ± 119.22
PSNR 124.79 ± 4.49 10.33 ± 0.95 123.53 ± 5.72
RMSE (70.83 ± 1.52)× 10−5 (70.73 ± 1.21)× 10−5 (71.85 ± 1.62)× 10−5

TABLE 3.2: AIC, BIC, PSNR and RMSE for delta function basis.

From these results I have selected the best wavelet families to be those that have
the lowest AIC and BIC average values. These are summarised in Tables 3.3 and 3.4
where all the metrics for the three scenarios and wavelet and undecimated transforms
are presented. Then I have repeated the same process by selecting the best wavelets
within those families for each of the cases. These results are presented in Tables 3.5 and
3.6. As a comparison we also present these results for the delta function basis in Table
3.2. Note that even though the WT works better than UWT according to the AIC and
BIC, the difference is small. The tests show that PSNR and RMSE are improved when
using UWT. This can be attributed to the fact that the UWT is considered a multiscale
decomposition (Starck et al., 2007).

Figures 3.8 − 3.10 show the results of 50 realisations for the three scenarios using
removal fractions and noise fractions from 0.1 to 0.9. Figure 3.8 show the results using
the delta function basis and Figure 3.10 show the results using the undecimated wavelet
transform (UWT).

Very different results can be observed in Figure 3.10 when comparing the outcomes of
the discrete wavelet transform with the undecimated wavelet transform. While the PSNR

Scenario 1 Scenario 2 Scenario 3
WT UWT WT UWT WT UWT

Best wavelet family dmey haar sym haar coif haar
AIC −19739.53 ± 180.53 −18823.76 ± 260.78 −20241.77 ± 60.25 −20054.28 ± 133.15 −19671.22 ± 191.22 −18690.92 ± 252.91
BIC −19427.18 ± 216.16 −16156.66 ± 893.47 −20163.74 ± 66.63 −19398.75 ± 446.16 −19369.09 ± 222.83 −15865.54 ± 861.84
PSNR 92.86 ± 11.78 97.11 ± 8.30 9.78 ± 0.92 9.70 ± 0.75 92.44 ± 10.03 96.22 ± 7.80
RMSE (83.30 ± 5.06)× 10−5 (83.74 ± 3.46)× 10−5 (71.76 ± 1.38)× 10−5 (70.92 ± 1.38)× 10−5 (85.49 ± 5.64)× 10−5 (85.97 ± 4.26)× 10−5

TABLE 3.3: AIC, BIC, PSNR and RMSE for discrete wavelets transforms (WT) and undeci-
mated wavelet transforms (UWT) with the minimum AIC.
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Scenario 1 Scenario 2 Scenario 3
D+WT D+UWT D+WT D+UWT D+WT D+UWT

Best wavelet family db db dmey haar dmey db
AIC −20207.76 ± 81.40 −19644.59 ± 414.10 −20246.30 ± 57.76 −19984.59 ± 168.32 −20104.92 ± 70.98 −19211.01 ± 332.61
BIC −20120.36 ± 90.66 −18232.65 ± 1254.23 −20134.18 ± 70.59 −19203.41 ± 612.72 −19937.21 ± 82.66 −16832.39 ± 1064.69
PSNR 122.61 ± 6.49 117.66 ± 10.28 10.00 ± 0.95 9.64 ± 0.72 116.75 ± 7.20 114.13 ± 9.43
RMSE (72.55 ± 1.96)× 10−5 (74.14 ± 3.78)× 10−5 (71.31 ± 1.49)× 10−5 (71.47 ± 1.32)× 10−5 (74.45 ± 1.85)× 10−5 (75.87 ± 3.68)× 10−5

TABLE 3.4: AIC, BIC, PSNR and RMSE for delta basis function combined with discrete
wavelets transforms (D+WT) and undecimated wavelet transforms (D+UWT) with the min-

imum AIC.

Scenario 1 Scenario 2 Scenario 3
WT UWT WT UWT WT UWT

Best wavelet family dmey haar sym7 haar coif17 haar
AIC −19739.53 ± 180.53 −18823.76 ± 260.78 −20257.25 ± 49.57 −20054.28 ± 133.15 −19744.98 ± 156.91 −18690.92 ± 252.91
BIC −19427.18 ± 216.16 −16156.66 ± 893.47 −20188.55 ± 55.79 −19398.75 ± 446.16 −19450.36 ± 185.29 −15865.54 ± 861.84
PSNR 92.86 ± 11.78 97.11 ± 8.30 9.86 ± 1.01 9.70 ± 0.75 93.95 ± 8.68 96.22 ± 7.80
RMSE (83.30 ± 5.06)× 10−5 (83.74 ± 3.46)× 10−5 (71.45 ± 1.28)× 10−5 (70.92 ± 1.38)× 10−5 (83.30 ± 4.48)× 10−5 (85.97 ± 4.26)× 10−5

TABLE 3.5: AIC, BIC, PSNR and RMSE for discrete wavelets transforms (WT) and undeci-
mated wavelet transforms (UWT) with the minimum AIC.

and RMSE plots exhibit similar trends, the AIC and BIC plots display notable discrepan-
cies. It is important to note that AIC and BIC do not agree, as observed in the previous
plots. One reason for this divergence can be attributed to the nature of the undecimated
wavelet, which does not perform coefficient decimation at every transformation level.
Consequently, this leads to a higher number of coefficients, potentially including an in-
creased number of non-zero coefficients that represent the Faraday depth signal. As a
result, the value of df is higher, which penalizes the BIC. It is important to acknowledge
that, in certain cases, the number of available data points may be significantly fewer than
the number of parameters, which can cause the AIC to encounter challenges and requir-
ing correction (see e.g. Hurvich and Tsai, 1989; Hurvich et al., 2002).

3.5.2 Comparison with RM-CLEAN

At this point in the thesis, I have tested three different scenarios for Faraday depth spectra
reconstruction, using the AIC and BIC metrics to select the wavelets that best fits the data.
Another well known method for reconstructing Faraday spectra is the RM-CLEAN algo-
rithm, which is based on the CLEAN imaging heuristic proposed by Hogbom in 1974.
Given the complex nature of Faraday depth signals, the algorithm works by iteratively
finding the maximum in the absolute values of the residual signal. It then subtracts a
scaled and shifted RMTF from the residual and adds the subtracted flux into the model
signal. This process continues until the maximum in the absolute values of the resid-
ual signal falls below a set threshold. Finally, the RM-CLEANed signal is obtained by

Scenario 1 Scenario 2 Scenario 3
D+WT D+UWT D+WT D+UWT D+WT D+UWT

Best wavelet family db7 db34 dmey haar dmey db38
AIC −20231.67 ± 61.31 −19931.31 ± 204.32 −20246.30 ± 57.76 −19984.59 ± 168.32 −20104.92 ± 70.98 −19365.93 ± 274.70
BIC −20149.23 ± 68.95 −19110.59 ± 660.77 −20134.18 ± 70.59 −17275.06 ± 914.83 −19937.21 ± 82.66 −16832.39 ± 1064.69
PSNR 123.42 ± 6.28 123.11 ± 6.22 10.00 ± 0.95 9.64 ± 0.72 116.75 ± 7.20 117.38 ± 6.58
RMSE (71.98 ± 1.55)× 10−5 (72.47 ± 1.96)× 10−5 (71.31 ± 1.49)× 10−5 (71.47 ± 1.32)× 10−5 (74.45 ± 1.85)× 10−5 (74.60 ± 2.13)× 10−5

TABLE 3.6: AIC, BIC, PSNR and RMSE for delta basis function combined with discrete
wavelets transforms (D+WT) and undecimated wavelet transforms (D+UWT) with the min-

imum AIC.
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FIGURE 3.8: PSNR, RMSE, AIC and BIC for delta function basis reconstruction. First row
shows scenario 1, second row for scenario 2 and third row for scenario 3.

convolving the model signal with the clean beam, which is typically a Gaussian fitted
to the absolute values of the RMTF, and then adding the residual signal. This process is
outlined in Algorithm 3.

Algorithm 3 Hogbom RM-CLEAN

1: Input: Dirty Faraday depth signal F̃(ϕ), RMTF RMTF(ϕ), clean RMTF RMTFc(ϕ),
gain g, threshold τ

2: Initialize: residual signal R = F̃(ϕ), model signal M = 0 + 0j
3: while max(|R|) > τ do
4: Find location ϕ of maximum in |R|
5: f = g × R(ϕ)
6: M(ϕ) = M(ϕ) + f
7: Subtract scaled and shifted dirty beam from residual: R = R − f ×RMTF(ϕ − ϕ′)
8: end while
9: Output: RM-CLEANed signal Fc = M ⊗ RMTFc + R

In order to draw comparisons between the method I propose in this thesis and RM-
CLEAN, the same three scenarios previously examined will be deployed. This will yield
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FIGURE 3.9: PSNR, RMSE, AIC and BIC using a discrete wavelet basis reconstruction. The
first row shows Scenario 1, the second row shows Scenario 2 and the third row shows Sce-

nario 3. We have used wavelets dmey, haar and sym9, respectively.

insights into the behaviour of RM-CLEAN during the reconstruction of both thin and
thick Faraday depth spectra and afford a comparison with the proposed compressed
sensing framework. The intensity of the thick source has been increased to 105 mJy
beam−1 to ensure its visibility in the plots. It is of importance to note that due to the
absence of measurements at low frequencies in λ2-space, part of the signal intensity and
the shape of these sources may become distorted.

In each scenario, I will conduct a comparative analysis of Faraday depth spectra re-
constructions, utilising both the proposed framework and RM-CLEAN1. The comparison
will include reconstructions employing the delta basis function in isolation (that is, L1

norm regularisation on Faraday depth spectrum), as well as those that incorporate the
optimally selected discrete and undecimated wavelets as determined in the preceding
subsection. Figures 3.11, 3.12, and 3.13 exhibit Faraday depth reconstructions of simu-
lated scenarios using a variety of methods. Each top panel illustrates the restored, model,
and dirty Faraday depth amplitudes, while the corresponding bottom panel presents the

1https://github.com/CIRADA-Tools/RM-Tools
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FIGURE 3.10: PSNR, RMSE, AIC and BIC using an undecimated wavelet basis reconstruc-
tion. First row shows scenario 1, second row for scenario 2 and third row for scenario 3. We

have used wavelets coif3, haar and haar, respectively.

residuals.
Firstly, Figure 3.11 portrays an assortment of reconstructions for a thin source (Sce-

nario 1). While all strategies effectively reconstruct the thin source and reduce the RMTF
sidelobes to a level below 5,σ, only the reconstructions employing the delta basis func-
tion and RM-CLEAN achieve a peak value close to the simulated one (35 mJy beam−1).
Specifically, the reconstruction using the delta basis function and RM-CLEAN generate
peak values of 34.21± 0.25 and 35.19± 0.25 mJy beam−1, respectively. In contrast, the hy-
brid methods that combine the delta basis function with the discrete wavelet db7 and the
undecimated wavelet db34 yield peak values of 33.14± 0.22 and 33.55± 0.22 mJy beam−1,
respectively. Importantly, for all methods, the Faraday depth at peak, ϕpeak, aligns closely
with the simulated value, within the error margins, which stands at -200 rad m−2.

Secondly, reconstructions of the modified Scenario 2 are depicted in Figure 3.12. As
I mentioned before, due to the lack of measurements at low frequencies in λ2-space, the
polarised intensity and shape of thick sources are distorted. Therefore, it is not possible to
compare the resulting polarised intensity peaks with the simulated value. Instead, it can
be reported that none of the methods are able to reach the polarised intensity values of



86 Chapter 3. Compressed Sensing Faraday Reconstruction

0

20

Restored |P | - Peak 34.21 ± 0.25 mJy beam

Model |P |
Dirty |P |
5σ = 1.24 mJy beam−1 rmtf−1

φpeak = −199.92± 0.20 [rad m−2]

−1

0

1 Residual |P |
Residual Q

Residual U

±5σ = 1.24 mJy beam−1 rmtf−1

±3σ = 0.74 mJy beam−1 rmtf−1

In
te

n
si

ty
[m

J
y

b
ea

m
−

1
]

Delta basis

0

20

Restored |P | - Peak 33.14 ± 0.22 mJy beam

Model |P |
Dirty |P |
5σ = 1.24 mJy beam−1 rmtf−1

φpeak = −199.93± 0.19 [rad m−2]

−1

0

1 Residual |P |
Residual Q

Residual U

±5σ = 1.24 mJy beam−1 rmtf−1

±3σ = 0.74 mJy beam−1 rmtf−1

In
te

n
si

ty
[m

J
y

b
ea

m
−

1
]

Delta basis + discrete wavelet (db7)

0

20

Restored |P | - Peak 33.55 ± 0.22 mJy beam

Model |P |
Dirty |P |
5σ = 1.24 mJy beam−1 rmtf−1

φpeak = −199.69± 0.19 [rad m−2]

−1

0

1 Residual |P |
Residual Q

Residual U

±5σ = 1.24 mJy beam−1 rmtf−1

±3σ = 0.74 mJy beam−1 rmtf−1

In
te

n
si

ty
[m

J
y

b
ea

m
−

1
]

Delta basis + undecimated wavelet (db34)

0

20

Restored |P | - Peak 35.19 ± 0.25 mJy beam

Model |P |
Dirty |P |
5σ = 1.24 mJy beam−1 rmtf−1

φpeak = −199.89± 0.20 [rad m−2]

−1000 −750 −500 −250 0 250 500 750 1000

φ [rad m−2]

−1

0

1 Residual |P |
Residual Q

Residual U

±5σ = 1.24 mJy beam−1 rmtf−1

±3σ = 0.74 mJy beam−1 rmtf−1

In
te

n
si

ty
[m

J
y

b
ea

m
−

1
]

RM-CLEAN

FIGURE 3.11: Faraday depth reconstructions of a simulated thin source (Scenario 1). From
top to bottom: reconstructions using the delta basis function, the delta basis function com-
bined with the discrete wavelet db7, the delta basis function combined with the undecimated
wavelet db34, and RM-CLEAN. In each plot, the top panel displays the amplitude values
of the restored (black), model (red), and dirty Faraday depth spectrum (dotted grey). The
vertical dashed grey line indicates the position at the peak in Faraday depth. The horizontal
dashed blue line represents the theoretical 5σ boundary on the amplitude of polarized inten-
sity. The bottom panel illustrates the amplitude, real, and imaginary parts of the residuals.
Red and blue dashed lines represent the theoretical ±5σ and ±3σ noise boundaries, respec-

tively.

the dirty Faraday depth spectrum. However, the delta basis function combined with the
dmey discrete wavelet and RM-CLEAN are able to reach the highest polarised intensity
values with peaks of 8.51± 0.23 and 8.50± 0.25 mJy beam−1, respectively. Additionally, it
is observable that when using the haar undecimated wavelet, part of signal from the top
of the thick source is reconstructed. On the contrary, all other methods show structures
as if two very close point sources were reconstructed.

Thirdly, Figure 3.13 depicts the reconstruction of modified Scenario 3, which com-
bines a thin source and a thick source. Similar to Scenario 1, it can be observed that RM-
CLEAN and the delta basis function are capable of reconstructing the highest polarised
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FIGURE 3.12: Faraday depth reconstructions of a simulated thick source (modified Scenario
2). The source polarised intensity has been increased to 0.11 mJy beam−1 to ensure its visibil-
ity in the plots. From top to bottom: reconstructions using the delta basis function, the delta
basis function combined with the discrete wavelet dmey, the undecimated wavelet haar, and
RM-CLEAN. In each plot, the top panel displays the amplitude values of the restored (black),
model (red), and dirty Faraday depth spectrum (dotted grey). The vertical dashed grey line
indicates the position at the peak in Faraday depth. The horizontal dashed blue line repre-
sents the theoretical 5σ boundary on the amplitude of polarized intensity. The bottom panel
illustrates the amplitude, real, and imaginary parts of the residuals. Red and blue dashed

lines represent the theoretical ±5σ and ±3σ noise boundaries, respectively.

intensity values, yielding peaks of 35.58± 0.25 and 34.38± 0.25 mJy beam−1, respectively.
Furthermore, for all the methods, the Faraday depth at the peak, ϕpeak, aligns closely with
the simulated value, mirroring the reconstructions in Scenario 1. Conversely, the thick
sources exhibit the same pattern as if two very close point sources were reconstructed,
consistent across all the reconstruction methods.

In this chapter, I have delved into the fundamentals of compressed sensing and its
specific applications within the field of radio astronomy. Our exploration also extended
to the unique opportunities offered by one-dimensional applications of compressed sens-
ing within this domain. A crucial component of this chapter has been the introduction of
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FIGURE 3.13: Faraday depth reconstructions of a simulated thin and thick source (modified
Scenario 3). The source polarised intensity has been increased to 0.11 mJy beam−1 to ensure
its visibility in the plots. From top to bottom: reconstructions using the delta basis function,
the delta basis function combined with the discrete wavelet dmey, the delta basis function
combined with the undecimated wavelet db38, and RM-CLEAN. In each plot, the top panel
displays the amplitude values of the restored (black), model (red), and dirty Faraday depth
spectrum (dotted grey). The vertical dashed grey line indicates the position at the peak in
Faraday depth. The horizontal dashed blue line represents the theoretical 5σ boundary on
the amplitude of polarized intensity. The bottom panel illustrates the amplitude, real, and
imaginary parts of the residuals. Red and blue dashed lines represent the theoretical ±5σ

and ±3σ noise boundaries, respectively.

our novel compressed sensing framework, cs-romer.
A significant part of the discussion in this chapter is centered around evaluation met-

rics, highlighting the importance of meticulously selecting an optimal wavelet basis. As
I have established, this step is crucial in attaining the most effective representation of
Faraday depth data, given a specific observational set-up.

I have also conducted an in-depth comparison between our cs-romer framework and
RM-CLEAN. Through this comparative analysis, I have not only validated the effective-
ness of our approach but have also showcased cs-romer’s potential as a viable alternative
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to the established methods in the field.
It is essential to emphasize that cs-romer is capable of performing 1+2D Faraday

imaging by reconstructing Faraday depth spectra on multiple lines of sight within a
spectro-polarimetric cube. However, the cs-romer framework is not designed for direct
extension to 3D reconstruction.

Rather than attempting to force the framework into this role, a more practical and
efficient approach would be to incorporate 3D imaging directly into an imager. This
would entail integrating a Faraday depth cube as a parameter in the objective function
and fitting visibilities using a 3D Fourier transform.

Thus, through the exploration of the intricacies of compressed sensing and the unveil-
ing of cs-romer, we have expanded the array of data processing tools available for use in
radio astronomy. We aspire that the potential of our proposed framework will contribute
to enhancing the quality and efficiency of radio astronomical data processing.
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Chapter 4

JVLA Abell 1314

The work in this chapter is published as part of the paper “CS-ROMER: A novel compressed
sensing framework for Faraday depth reconstruction”, Miguel Cárcamo, Anna M. M. Scaife,
Emma L. Alexander, and J. Patrick Leahy, 2022, Monthly Notices of the Royal Astronomical
Society, arxiv:2205.01413.

4.1 Abell 1314 Case Study

Abell 1314 (A1314; z = 0.034) is a nearby low-mass merging galaxy cluster with a highly
disturbed density profile. The observational properties of this cluster are summarised in
Table 4.1. From shallow XMM-Newton observations, Wilber, A. et al., 2019 calculated the
0.5 − 2.4 keV X-ray luminosity of A1314 to be 0.17 × 1044 ergs s−1, which is higher than
that previously found by Ledlow et al., 2003 using ROSAT data, and hence derived a
mass of M500 = 0.68 × 1014 M⊙ using the scaling relation of Reichert, A. et al., n.d.

Although no deep observations of A1314 have been made in the X-ray, a significant
number of radio studies have been undertaken due to the complex nature of the radio
emission associated with the cluster galaxies. The brightest of these, IC 708 and IC 711,
are bent-tail galaxies, with IC 711 in particular having a very long radio tail extending
for almost a mega-parsec in a SE-NW direction across the cluster (Vallee and Wilson,
1976). Observations from 2016 with the GMRT (Srivastava and Singal, 2020) showed a
spectral break part of the way along the tail of IC 711, and suggested that this may have
arisen due to local environmental factors within the cluster. This was supported by later
observations, which showed low-levels of diffuse emission perpendicular to the main
direction of the IC 711 tail, again indicating a disturbance within A1314 (Sebastian et al.,
2017).

Despite the disturbed nature of the cluster, recent radio observations with the LO-
FAR and GMRT telescopes did not detect a radio halo (Wilber, A. et al., 2019), but the
authors suggest that this may be due to the very low mass of this system. However, they
did detect irregularly-shaped diffuse radio emission likely to be associated with historic
AGN activity from IC 712. They also noted that the spectral index map of the extended
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Property Value Reference
R.A. (J2000) 11 34 48.7 Mahdavi and Geller, 2001
δ (J2000) +49 02 25 Mahdavi and Geller, 2001
z 0.034 Popesso, P. et al., 2004
LX 0.17 × 1044 ergs s−1 Wilber, A. et al., 2019
M500 0.68 × 1014 M⊙ Wilber, A. et al., 2019

TABLE 4.1: Observational properties of Abell 1314 from the literature.

ID R.A Dec Speak α Distance Pol?
(deg) (deg) (mJy/bm) (kpc) [Y/N]

1 173.454 48.987 9.11 -0.73 520.2 Y
2 173.496 49.046 32.04 -0.72 390.7 N
3a 173.497 49.062 156.69 -0.43 378.9 Y
4 173.498 48.941 2.57 0.12 538.7 N
5 173.521 49.106 4.24 -0.82 331.5 Y
6 173.571 49.152 14.11 -0.53 291.1 N
7 173.621 48.951 1.29 -1.83 397.6 N
8 173.632 49.048 1.59 0.57 179.4 N
9 b 173.694 48.956 41.27 -0.22 353.0 Y
10 c 173.705 49.078 27.97 -0.72 36.9 Y
11 173.713 49.203 1.87 -1.20 291.0 N
12 173.761 49.193 4.29 -0.63 277.6 Y
13 173.803 48.967 11.17 -0.98 357.6 Y
14 173.933 49.038 3.62 -0.68 400.0 N
15 173.942 48.921 3.55 0.41 590.1 Y

a IC708. b IC711. c IC712.

TABLE 4.2: A1314 radio sources. Radio sources within the A1314 field detected in Stokes I
at ≥ 5 σI are listed in order of increasing Right Ascension. Column [1] lists the source id as
used in this work, [2] Right Ascension of the source in degrees, [3] Declination of the source
in degrees, [4] peak flux density of the source at a frequency of 1.5 GHz, [5] Stokes I spectral
index of the source at the position of the peak as determined from the VLA data used in this
work, [6] distance of the source from the X-ray centre in kpc, and [7] indicates whether the

source is also detected in polarisation at ≥ 6 σP.

head-tail radio galaxy IC 711 indicates signs of disturbance, consistent with the findings
of Srivastava and Singal, 2020.

Here I use a combination of archival X-ray and radio observations to derive the mag-
netic field properties of A1314 as a function of location within the cluster.

4.2 JVLA Data Reduction

In this section, I use the JVLA data with the aim of demonstrating and testing the CS ap-
proach to Faraday Rotation Measurements using a real radio-astronomical dataset. The
data that I use here can be accessed in the VLA archive under project ID 18A-1721. The

1https://archive.nrao.edu/archive/advquery.jsp

https://archive.nrao.edu/archive/advquery.jsp
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observation, spanning three hours, was conducted in January 2019 in the L-Band (1.008-
2.031,GHz, see Table 1.1) and employed the C configuration. This information is sum-
marised in Tables 4.3 and 4.4.

Obs. Date Obs. Time Band JVLA Beam σrms
[hr] Array [arcmin] [mJy/beam]

January 2019 3 L C 0.27′ × 0.25′ 0.29

TABLE 4.3: Abell 1314 JVLA radio observation details

Parameter Value Description
λmin 0.148 m Minimum wavelength
λmax 0.297 m Maximum wavelength
Bmax 3373.853 m Maximum baseline
Dmin 25 m Dish size
∆x 9.02 arcsec Resolution

FOV 40.8 arcmin Field-of-view

TABLE 4.4: Abell 1314 JVLA resolution and field-of-view details

As has been described in Chapter 2 the main steps of the data reduction are parallel-
hand calibration, polarisation calibration and self-calibration. In the case of this observa-
tion I have manually inspected the data before parallel-hand calibration in order to find
anomalies and/or RFI. Subsequently the I used the VLA pipeline to calibrate the parallel-
hand data. To use the pipeline I followed the polarisation calibration CASA guide2. I
ran the pipeline and then restored the Measurement Set to the state before polarisation
calibration since this latter part will be done using our custom polarisation calibration
framework.

4.2.1 RFI Excision

Before doing polarisation calibration I inspected the amplitude vs. frequency plots of
the cross-hand data for each spectral window in order to identify RFI and instrumental
anomalies in the data. These were flagged using the automated statistical algorithms
rflag and tfcrop in CASA. I use the first to remove the residual RFI and although the
use of tfcrop is optional, we use it to decrease the amount of residual RFI in the parallel-
hand data. I note that the RFI removal works better over short frequency intervals (no
more than 3 spectral windows). Therefore, I first use the command flagdata with the
following parameters to flag the residual RFI on parallel hands:

mode = ‘tfcrop’

correlation = ‘’

freqfit = ‘line’

2https://casaguides.nrao.edu/index.php?title=CASA_Guides:polarisation_Calibration_
based_on_CASA_pipeline_standard_reduction:_The_radio_galaxy_3C75-CASA5.6.2

https://casaguides.nrao.edu/index.php?title=CASA_Guides:polarisation_Calibration_based_on_CASA_pipeline_standard_reduction:_The_radio_galaxy_3C75-CASA5.6.2
https://casaguides.nrao.edu/index.php?title=CASA_Guides:polarisation_Calibration_based_on_CASA_pipeline_standard_reduction:_The_radio_galaxy_3C75-CASA5.6.2
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Then I used the same command for cross-hand data, but with the following parameters:

mode = ‘rflag’

correlation = ‘LR,RL’

spw = ‘0’

extendflags = True

Note here that spectral window 0 is the frequency interval most affected by RFI. Then we
repeat the same command using spectral windows intervals such that:

mode = ‘rflag’

correlation = ‘LR,RL’

spw = ‘1˜2’

extendflags = True

and we repeat until we get to the last spectral window.

4.2.2 Calibration models

By considering the available calibrators in the observation data, I chose 3C 286 as the
polarisation angle calibrator and the unpolarised source 3C 147 as the leakage calibrator.
I then used the four-step polarisation calibration framework, described in more detail
in Chapter 2: fitting the calibrator data to known flux density, polarisation angle and
polarisation fraction models, calibrating for cross-hand delays, calibrating for leakage,
and lastly calibrating for polarisation angle.

The polarisation calibration framework begins by using the Taylor coefficients of
3C 286 and 3C 147 and their errors as stored in CASA from (Perley and Butler, 2017), see
Table 4.5 and Table 4.6, to calculate their flux densities as a function of frequency using
the following expression:

log(Sν) = ∑
n=0

anlog10(ν)
n. (4.1)

However, the CASA task setjy requires coefficients using the following representa-
tion:

Sν = S0

(
ν

ν0

)α+β log10

(
ν

ν0

)
(4.2)

and therefore I need to fit the spectral index, α, and the spectral curvature, β, to the flux
densities calculated from Equation 4.1. The red line in Figure 4.1 shows the fitted flux
density from these coefficients.

TABLE 4.5: 3C 286 coefficients details

Coefficient Value σ

a0 1.2481 0.0005
a1 -0.4507 0.0009
a2 -0.1798 0.0011
a3 0.0357 0.0009
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TABLE 4.6: 3C 147 coefficients details

Coefficient Value σ

a0 1.4516 0.0010
a1 -0.6961 0.0017
a2 -0.2007 0.0050
a3 0.0640 0.0044
a4 -0.0464 0.0035
a5 0.0289 0.0025

To model linearly polarised intensity data, setjy takes arrays of coefficients p =

[p0, p1, ..., pn] and x = [x0, x1, ..., xn] as inputs. These coefficients model the polarised
fraction,

Pν

Iν
= ∑

n=0
pn

(
ν − ν0

ν0

)n

, (4.3)

and the polarisation angle:

χν =
1
2

arctan
Uν

Qν
= ∑

n=0
xn

(
ν − ν0

ν0

)n

. (4.4)

Once I have all the coefficients it is possible to call setjy which creates Stokes I, Q,
and U point source models (Stokes V is set to zero) for 3C 286 and 3C 147. Note that
3C 147 is unpolarised at these frequencies and therefore Stokes Q, U and V will be equal
to zero for this calibrator.

4.2.3 Cross-hand delay calibration

The framework continues with the cross-hand delay calibration, which solves cross-hand
delays due to the residual difference between correlations R and L on the reference an-
tenna. I have chosen 3C 286 as the cross-hand delay calibrator since we know that it has
polarised signal in the RL and LR correlations. There are two ways to solve for cross-
hand delays. The first option is to solve for a multiband delay, which fits the cross-hand
delay across the entire baseband. The second option is to solve the cross-hand delays
independently for each spectral window. In this case, I have chosen the first option. This
is performed using the CASA task gaincal with the parameter gaintype=‘KCROSS’. This
will create the cross-hand delay calibration solution table.

4.2.4 Leakage calibration

Using the unpolarised calibrator 3C 147 it is possible to derive the D-terms for the JVLA
dataset, see Chapter 2. This is done using the CASA task polcal with parameters:
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FIGURE 4.1: 3C 286 and 3C 147 flux densities from Perley and Butler, 2017 (black lines) and
their respective fitted flux densities using Equation (4.2) (red lines).

refant = []

poltype = ‘Df’

gaintable = [‘JVLAdataset.Kcross’]

combine = ‘scan’

The ‘Df’ parameter means that we are solving for leakage terms, D, on a per channel
basis, f , and assuming zero intrinsic polarisation. I also need to add the cross-delay
calibration table as parameter and map its unique spectral window (0) solution to all the
other spectral windows.
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(A) Polarisation angle fit for 3C 286 along the wavelength squared axis
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FIGURE 4.2: Polarisation angle fit for 3C 286. Each black marker represent a datum taken
from the VLA polarimetry webpage. The red line represents the fit along the wavelength
squared axis. The shade on cyan color represent the frequency bandwidth used for this JVLA

dataset.

4.2.5 Polarisation angle calibration

I have already modelled the flux, polarisation fraction and polarisation angle of 3C 286
as a function of frequency. As noted previously, this is equivalent to modelling a point
source with Stokes I, Q and U as a function of frequency. To obtain an accurate polar-
isation angle, we calibrate using the CASA task polcal using parameter poltype=‘Xf’,
which means that we are calibrating polarisation angle, X, as a function of frequency, f .
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(A) Polarisation fraction fit for 3C 286 along the wavelength squared axis
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FIGURE 4.3: Polarisation fraction fit for 3C 286. Each black marker represent a datum taken
from the VLA polarimetry webpage. The red line represents the fit along the wavelength
squared axis. The shade on cyan color represent the frequency bandwidth used for this JVLA

dataset.

in this step I used parameters

gaintable = [‘JVLAdataset.Kcross’, ‘JVLAdataset.D0’]

poltype = ‘Xf’

spwmap = [[0,0,0,0,0,0,0,0],[]]

combine = ‘scan’

Note that the gaintable parameter accumulates past calibration tables. From the polcal
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task, the final calibration table is created and now we can apply all of these to our data to
get a corrected data set. This is done using applycal and the following parameters

gaintable = [‘JVLAdataset.Kcross’, ‘JVLAdataset.D0’, ‘JVLAdataset.X0’]

spwmap = [[0,0,0,0,0,0,0,0],[],[]]

applymode = ‘calflagstrict’

4.2.6 Calibration checks

To verify the successful application of polarisation calibration, it is recommended to in-
spect certain plots of the corrected data, specifically, amplitude versus frequency and
phase versus frequency plots of the calibrators. Additionally, multi-frequency images
of the calibrators, specifically Stokes Q and U, can be produced. If the calibration has
been performed correctly, a polarisation angle of 33 degrees in the polarisation angle cal-
ibrator and a very low polarisation fraction in the leakage calibrator would be expected.
Furthermore, an accurate evaluation of leakage and polarisation angle can be achieved
by imaging the calibrators per spectral window. This would enable us to examine polar-
isation angle, polarisation fraction and leakage along the frequency axis.

4.2.7 Imaging

Following calibration for parallel-hands and cross-hands, I imaged the target using multi-
scale multi-frequency synthesis (MFS) using the CASA task tclean with 128 w-projection
planes. I made Stokes I, Q and U images of the entire field, 22 × 22 arcminutes, with a
cell size of 1.3 arcseconds. Finally, I used widebandpbcor to correct for the primary beam.
The calibrated total intensity image has a noise level of 0.09 mJy/beam and a peak flux
density of 156.69 mJy/beam. Self-calibration was not applied in this instance.

To produce Stokes I, Q and U cubes in preparation for RM Synthesis, I use the CASA

multi-scale tclean task with option specmode=’cubedata’ to create multi-frequency spec-
tral cubes. Afterwards, I restored all frequency channels using a PSF equal in size to that
of the MFS image, see Table 4.3.

4.3 Faraday Imaging

Before RM-Synthesis I need to prepare the data and look for outliers that might affect
the quality of the reconstruction. Firstly, all the channels from the resulting cubes are
checked by cs-romer, following which 33.79% of the frequency slices from the cubes were
discarded since they resulted in empty images. This is mainly due to frequency channels
flagged during parallel and cross hand calibration. I calculate the rms noise in each slice
of the Q and U cubes, resulting in σQ and σU values for each channel, see Table 4.8.
Assuming σQ ≈ σU , we define σQU =

σQ+σU
2 . From this, I calculate the mean and the

standard error of σQU as ⟨σQU⟩ and σ̂QU , respectively. Subsequently, I flag an additional
12.01% of the data slices that have σQU > ⟨σQU⟩ + 5σ̂QU . Finally, I select those lines of



4.3. Faraday Imaging 99

173◦50′ 40′ 30′

49◦10′

05′

00′

48◦55′

Right Ascension [J2000]

D
e
c
li
n
a
ti

o
n

[J
2
0
0
0
]

100 kpc

XMM

WISE

JVLA

FIGURE 4.4: Overlay image of cluster Abell 1314. Image of the SDSS optical spectral with
three overlayed contours. Purple contours represent the X-ray XMM-Newton point-source
subtracted surface brightness. Blue contours represent the WISE 3.4 µm infrared emission.
Finally, red contours represent the VLA C-configuration total intensity radio emission at 1.5
GHz. The contours start at 3.75σ, 50σ and 5.0σ, respectively and all of them are spaced by a
factor of 2. σ value for radio contours is listed in Table 4.3. The eleven detected radio galaxies
are marked with numbers and the cluster center is marked with a yellow cross. See Table 4.2

for further information about each source.
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FIGURE 4.5: Total intensity images of 3C 286 (left) and 3C 147 (right). The vector lines show
the polarisation angle and their magnitudes show their polarisation fraction.

Parameter δϕ max-scale |ϕmax| ϕR
Value [rad m−2] 54.4 129.7 13540.6 6.8

TABLE 4.7: Abell 1314 VLA RM-Synthesis details.

sight where both total intensity and polarised intensity in the MFS images are greater
than 3σI and 3σP, respectively. The quantity σP is the noise in integrated Stokes P, which
has a Ricean distribution with a standard deviation equivalent to the rms in integrated
Stokes Q and U. We denote this quantity σP to differentiate it from the channel noise, σQU,
see Table 4.8. This results in a total of 678 channels and 16, 280 unflagged lines of sight to
be reconstructed.

I run cs-romer over the P(λ2) cube using weights calculated directly from each slice
as W(λ2) = 1/σ2

QU(λ
2), that is, natural weights. These weights were chosen for the

Faraday depth spectra reconstruction to maximize signal sensitivity by leveraging in-
trinsic data characteristics. Given the preprocessing step where data slices with σQU >

⟨σQU⟩+ 5σ̂QU were flagged and treated as outliers, natural weights provide a statistically
robust reconstruction with enhanced signal-to-noise ratio. The framework then calcu-
lates a Faraday depth reconstruction with parameters as shown in Table 4.7.

As highlighted in Section 3.4, the regularisation parameter η can be calculated by min-
imising Equation 3.29. This function receives three inputs: the reconstruction algorithm,
the wavelength squared measurements and the theoretical noise. In the case of real data,
where σϕ is unknown a priori, there are multiple possible approaches to calculate this
latter quantity. The first is to use the measured noise from the Stokes Q and U frequency
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FIGURE 4.6: On top: Full field total intensity and polarisation fraction maps. On bottom:
Zoom in on polarisation fraction maps of IC708 (left) and IC711 (right). Polarisation angles

is represented as cyan vectors on bottom figures.

Noise quantity Definition Method of measurement/calculation
σI Noise in integrated Stokes I Measured from MFS Stokes I image using the rms in an off-source region.
σP Noise in integrated Stokes P Measured from MFS Stokes Q & U images using the rms in an off-source region.
σQ Channel noise in Stokes Q Measured from each Stokes Q channel image using the rms in an off-source

region.
σU Channel noise in Stokes U Measured from each Stokes U channel image using the rms in an off-source

region.
σQU Arithmetic mean of QU channel noise Calculated from σQ and σU.
σϕ Theoretical noise in Faraday depth space Reciprocal of the square root of the sum of the frequency channel weights.

(real/imaginary parts)
σ′

ϕ Measured noise in Faraday depth space Measured as the rms of the reconstructed Faraday depth spectrum in the
(real/imaginary parts) regions |ϕ| > 0.8 ϕmax.

σRM Faraday dispersion See Equation 4.8.
∆ϕpeak Faraday uncertainty at peak See Equation 4.6.

TABLE 4.8: Different noise/variance quantities used in data reconstruction and analysis.
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FIGURE 4.7: RMTF for the VLA Abell 1314 data.

channels and to calculate

σϕ =

[√√√√ N

∑
i=1

Wi(λ2)

]−1

, (4.5)

where N is the number of unflagged frequency channels; alternatively one might estimate
σϕ directly from the dirty Faraday depth spectrum towards each polarisation detection.
This second approach is best done using the edges of the spectrum, which are expected
to contain least contamination due to sidelobe structure; however, tests using simulated
data as described in Section 3.5 suggest that σϕ calculated directly from the Faraday depth
spectrum will always be over-estimated when significant structure is present, regardless
of whether it is measured using a direct rms calculation or using the median absolute
deviation (MAD), which is in principle more robust to outliers such as those from resid-
ual sidelobe structure. Therefore for the reconstruction in this work I calculate σϕ using
the first of these methods and I note that this approach gives σϕ values consistent with
the empirically measured rms recovered from empty, i.e. structure-free, lines of sight in
Faraday depth.

Unlike Stuardi et al., 2021, who use an average spectral index of α = 1 for all lines of
sight, I use the tclean MFS spectral index image to reconstruct Faraday depth spectra.
Following the results described in Section 3.5 and shown in Table 3.2, we use the delta
basis function for reconstruction. Faraday depth spectra are recovered for 16, 280 lines of
sight over the range [−ϕmax, ϕmax]. The RMTF for these data is shown in Figure 4.7.

I compare the rms of the residuals for each reconstructed line of sight to the theoretical
value of σϕ calculated from the weights on the spectral data. Unlike the reconstructions
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of the simulated scenarios in Section 3.5, for some lines of sight the measured rms differs
from the theoretical value, and we suggest that this is likely due to residual RFI con-
tamination in the real VLA data. We find that the rms of the residuals for the VLA data
is consistent with that calculated using the edges of the clean Faraday depth spectrum,
which I estimate using the regions where |ϕ| > 0.8 ϕmax and refer to as σ′

ϕ, see Table 4.8.
The cs-romer framework outputs the following data products: a dirty Faraday depth

cube, a Faraday depth model cube, a Faraday depth residual cube and a restored Faraday
depth cube. RM images for each polarised source are shown in Figures 4.8 - 4.12. These
show the peak Faraday depth, ϕpeak, the uncertainty at the peak, ∆ϕpeak, calculated as

∆ϕpeak =
δϕ

2P/σ′
ϕ

, (4.6)

and the fractional polarisation, using polarised intensity corrected for Ricean bias such
that

P =
√
|F(ϕpeak)|2 − 2.3σ′2

ϕ (4.7)

(George et al., 2012), where σ′
ϕ is calculated as described above. The polarisation fraction

is calculated by dividing P by the Stokes I MFS image in regions where the emission
exceeds both a 6σP and 5σI threshold.

4.4 Polarised radio galaxies

Eight radio sources in the A1314 field have detectable polarised emission above a level of
6σP, see Table 4.2. For each of these sources we calculate the pixel-wise average rotation
measure across the source, ⟨RM⟩, the observed standard deviation of the RM across the
source, σRM,obs, and the median error of the RM estimate, med(σ′

ϕ). The true dispersion
of the RM across the source is then calculated as

σRM =
√

σ2
RM,obs − med(σ′

ϕ)2. (4.8)

The value of σRM is shown for each source in Table 4.9, along with the median RM
for each source, med(RM), and the median absolute deviation (MAD) value, which is
considered to provide an improved estimate of the true dispersion when outliers are
present in the data. Sources which cover a sky area smaller than 5 synthesized beams do
not have dispersion, standard deviation or MAD values calculated due to an insufficiency
of independent samples.

4.4.1 IC 708

The wide angle tail galaxy IC 708 (Source 3; Table 4.2; Figures 4.8 and 4.9) shows sig-
nificant structure in polarisation across its lobes and this is reflected in the high RM dis-
persion value of σRM = 46.688 rad m−2 for this source, see Figure 4.8 and Table 4.9. The
host galaxy of IC 708 has a much higher RM than the lobes: ϕpeak = 109.3± 0.12 rad m−2,
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FIGURE 4.8: IC 708. Contours show radio total intensity in increments of 1 σ from 5 σ.
Greyscale shows: (left) the observed peak rotation measure; (centre) the uncertainty on the
observed rotation measure, σϕ; and (right) the polarisation fraction, P/I; all for the region
where P > 6 σQU. The regions of the image are used to define the core, the north and south
lobes of this galaxy. as described in Section 4.4.1, this is indicated by yellow, blue and cyan

circles, respectively.
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5 σ and 3 σ boundaries, respectively.

suggesting that it is affected by more local magneto-ionic structure from the interstellar
medium of the host galaxy. Table 4.10 shows RM statistics separately for the core region,
and the North and South lobes of IC 708. The areas used to define these regions are in-
dicated in Figure 4.8. I note that the high RM dispersion indicated for the core region is
heavily affected by the sharp transition in RM at the base of the jet for the Northern lobe.

4.4.2 IC 711

The head-tail radio galaxy IC 711 (Source 9; Table 4.2; Figures 4.10 and 4.11) has a simi-
larly high RM dispersion to IC 708 with a value of σRM = 35.49 rad m−2. The full exten-
sion of the long tail of emission associated with this source seen at 144, 240 and 610 MHz
(Sebastian et al., 2017; Wilber, A. et al., 2019) is not visible in these higher frequency
VLA data at this resolution. We note however that the discrete compact source listed as
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FIGURE 4.10: IC 711. Contours show radio total intensity in increments of 1 σ from 5 σ.
Greyscale shows: (left) the observed peak rotation measure; (centre) the uncertainty on the
observed rotation measure, σϕ; and (right) the polarisation fraction, P/I; all for the region

where P > 6 σQU.
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FIGURE 4.11: Line of sight at the core of IC 711. The upper panel shows the dirty and the
restored Faraday depths with a peak at -34.17 rad m−2. The lower panel shows the amplitude,
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5 σ and 3 σ boundaries, respectively.

Source 6 in Table 4.2 and shown in Figure 4.4, is coincident with the location of the north-
ern east-west extension of emission perpendicular to the main tail of IC 711. This abrupt
turn in the direction of the diffuse emission from IC 711 was first noted by Srivastava and
Singal, 2020 and also detected by Sebastian et al., 2017 and Wilber, A. et al., 2019. Those
works proposed that the turn in emission was potentially due to a disturbance caused by
ram pressure or shocks propagating outwards in the intra-cluster medium. We suggest
that alternatively this emission may not be part of the tail from IC 711 but instead could
be associated with Source 6.

4.4.3 IC 712

IC 712 (Source 10; Table 4.2; Figures 4.12 and 4.13) is the brightest cluster galaxy in A1314
(Lin and Mohr, 2004) and closest to the X-ray centre with a projected distance of ∼ 40 kpc,
see Table 4.2. The source appears compact in both Stokes I and polarisation, with a small
offset of the polarised emission from the peak total intensity, see Figure 4.12.

The Faraday depth spectrum of IC 712 shows a single Faraday thin structure, see Fig-
ure 4.13, with a peak value of ϕpeak = 13.67 ± 0.89 rad m−2. It has been suggested that
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FIGURE 4.12: IC 712. Contours show radio total intensity in increments of 1 σ from 5 σ.
Greyscale shows: (left) the observed peak rotation measure; (centre) the uncertainty on the
observed rotation measure, σϕ; and (right) the polarisation fraction, P/I; all for the region

where P > 6 σQU.
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FIGURE 4.13: Line of sight at the core of IC 712. The upper panel shows the dirty and the
restored Faraday depths with a peak at 13.67 rad m−2. The lower panel shows the amplitude,
the real and imaginary parts of the residual signal. Light and dark grey dashed lines show

5 σ and 3 σ boundaries, respectively.

RMs smaller than the FWHM of the RMTF are expected to differ from their true value
by about 5% due to the presence of leakage at ϕ = 0 rad m−2 (Jagannathan et al., 2017),
which would increase the uncertainty on this measurement to ∆ϕpeak ≃ 3 rad m−2.

4.5 Galactic contribution

To correct for foreground Galactic rotation, in cs-romer I have implemented an option to
read the HEALPix image model from Hutschenreuter et al., 2022 and use a bilinear inter-
polation of those data to calculate the mean and standard deviation of the Galactic RM
for each line of sight. I denote the interpolated mean image as ϕGAL and the de-rotation
of this value can be applied directly as a shift in λ2 space. Thus, cs-romer optionally
applies this operation directly to the P(λ2) cube as follows

P̂(λ2) = P(λ2)e−2iϕGALλ2
, (4.9)

where P̂(λ2) denotes the de-rotated complex polarisation.
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The mean RM of the Galactic contribution for the Abell 1314 field is ⟨ϕGAL⟩ = −12 ±
4 rad/m2 (Hutschenreuter et al., 2022). Since this is systematically different from zero,
I choose to subtract it from the VLA measurements. This is performed by querying the
Galactic foreground RM mean and standard deviation maps provided by Hutschenreuter
et al., 2022. These foreground maps are significantly lower resolution than the JVLA data,
and cover the A1314 field using ∼13 pixels. The cs-romer framework uses a bilinear
interpolation across the field-of-view to approximate the Galactic foreground at the po-
sition of each pixel in the VLA data. The mean Galactic RM values for each line-of-sight
are then derotated as a shift to each line of sight for the polarised intensity in λ2 space
using Equation 4.9.

4.6 X-ray data analysis

A1314 was observed by XMM-Newton in November 2003 during rev. 725 (ObsID: 0149900201)
with a total exposure time of 18.4 ks. The observation was performed in full frame mode
for the MOS cameras and the PN detector, all using the medium filter. Observation
data files (ODFs) were downloaded from the XMM-Newton archive and processed with
the XMMSASv19.1.0 software for data reduction (Gabriel et al. 2004). Processing was
performed following the steps of the XMM-Newton Extended Source Analysis Software
(XMM-ESAS) pipeline (Snowden et al. 2008; Kuntz & Snowden 2008). I used the tasks
emchain and epchain to generate calibrated event files from raw data. We excluded all
the events with PATTERN > 4 for PN data and with PATTERN > 12 for MOS data.
Bright pixels and hot columns were removed by applying the expression FLAG == 0.
The data were observed to be free of significant periods of high background induced by
solar flares and the statistical thresholding provided by the mos-filter and pn-filter

tasks was used to remove any residual contamination. The remaining exposure times
after cleaning were 16.7 ks for MOS1, 16.9 ks for MOS2, and 12.9 ks for PN.

Point-like sources were detected using the XMM-ESAS task cheese, which combines
data from all three EPIC detectors to provide source lists and masks for removing such
sources from images and spectra. The compact X-ray source associated with the host
galaxy of IC708 was masked manually as it lies close to CCD boundaries for the MOS1
and MOS2 detectors. The mos-spectra and pn-spectra tasks were used to create redis-
tribution matrix files (RMFs), auxiliary response files (ARFs) and exposure maps for the
full field of view of each detector, and these were then used to create models of the qui-
escent particle background (QPB) in each case. The rate-hardness plots for each of the
CCDs with unexposed corners were inspected to check for CCDs in anomalous states;
no CCDs were excluded on this basis. A combined 0.3 − 2.0 keV data set was created
assuming a power-law spectrum with α = 0.7 and a 2 × 1020 cm−2 HI absorption. The
resulting 0.3 − 2.0 keV combined background-subtracted exposure-corrected image with
point sources masked is shown in Figure 4.15.
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X-ray spectra were fitted jointly to data from the three EPIC detectors using the Xspec
software (Arnaud, 1996). The fitted model included instrumental spectral lines at ener-
gies of 1.496 keV (Al Kalpha) and 1.75 keV (Si Kalpha) in the MOS data and at energies of
1.496 keV (Al Kalpha) and near 8 keV (Cu; 71, 7.5, 7.9, 8.2, 8.5 keV) in the PN data, spectral
lines due to solar wind charge exchange at 0.56 and 0.65 keV, and a cosmic background
component linked for all spectra and constrained additionally through the inclusion of
a background spectrum extracted from an annulus between 1 − 2◦ radius from the X-
ray peak of A1314 using the ROSAT All-Sky Survey diffuse background maps3 (Sabol
and Snowden, 2019) and associated response files. The cosmic background component
is modelled as a combination of a cool (E ∼ 0.1 keV) unabsorbed thermal component
representing emission from the Local Hot Bubble or heliosphere, a cool (E ∼ 0.1 keV)
absorbed thermal component representing emission from the cooler halo, a higher tem-
perature (E ∼ 0.25 − 0.7 keV) absorbed thermal component representing emission from
the hotter halo and/or intergalactic medium, and an absorbed power law with α ∼ 1.46
representing the unresolved background of cosmological sources. The cluster emission
itself is modelled using an absorbed thermal component, represented by an apec model.

In addition to the above components, broken power-laws are included in the fits for
all three of the EPIC detectors to account for any residual soft-proton background emis-
sion that was not been completely removed by the time-dependent filtering applied dur-
ing the data reduction process.

The non-detector components of the fit were scaled by solid angle separately for each
detector using values from the XMMSAS proton_scale task. Absorption was fixed using
the Galactic value4 of NH = 1.53 × 1020 cm−2 (HI4PI Collaboration: et al., 2016) and a
redshift value of z = 0.034 was used for all fits.

I have extracted a radial temperature profile from the data by fitting spectra from five
annular regions with a width of two arcminutes each, as well as a central core region
with a radius of two arcminutes. These regions are shown in Figure 4.15. Spectra were
fitted independently for each region. The results from these fits are shown in Figure 4.16,
where it can be seen that the central region is marginally cooler than the outer regions of
the cluster.

4.7 Radio RM profiles

Radial profiles of the absolute average RM, RM dispersion and median absolute devia-
tion for all sources detected in polarisation are shown in Figure 4.17. The radial distance
of each source is calculated as the projected distance from the X-ray peak (11h34m51.36s
+49d05m27.6s) to the position of peak polarisation within the given source. Sources that
extend over areas smaller than nbeam = 5 are excluded from the σRM and MAD(RM)
profiles, as they have insufficient independent samples to be considered. The separate
components of radio galaxy IC 708 are also indicated in Figure 4.17.

3https://heasarc.gsfc.nasa.gov/cgi-bin/Tools/xraybg/xraybg.pl
4https://heasarc.gsfc.nasa.gov/cgi-bin/Tools/w3nh/w3nh.pl

https://heasarc.gsfc.nasa.gov/cgi-bin/Tools/xraybg/xraybg.pl
https://heasarc.gsfc.nasa.gov/cgi-bin/Tools/w3nh/w3nh.pl
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FIGURE 4.15: Regions used for extracting radial cluster properties are overlaid on the
0.3 − 2.0 keV adaptively-smoothed, background-subtracted and exposure-corrected image

from the combined MOS1, MOS2 & PN exposures.
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FIGURE 4.16: Radial temperature profile for Abell 1314. Data points correspond to spectral
fits of the emission in the core and annular regions shown in Figure 4.15

.

Unlike the work of Stuardi et al., 2021, which performed a similar analysis for the
galaxy cluster Abell 2345, a radial trend is seen only in the absolute average RM, with RM
dispersion and MAD(RM) values not indicating any clear systematic behaviour. These
results suggest that for A1314, the local RM contribution to each source dominates over
the contribution of the ICM. This is particularly notable for the galaxy IC 708 for two rea-
sons: firstly the average RM of the host deviates substantially from the radial behaviour
seen in the absolute average RM for other sources, indicating that the host galaxy of
IC 708 has a significant local contribution to its RM; secondly, the difference in the MAD
values between the North and South lobes of IC 708 indicates a variance that also can-
not be accounted for by the changes in the local ICM, which is quite similar for these
closely located regions. This second point is supported by the lower panels of Figure 4.17,
which show the RM profiles as a function of X-ray surface brightness (see Section 4.6 for
further information about the data reduction), a proxy for electron density in the ICM.
Once again, although the surface brightness local to both lobes of IC 708 is similar, the
MAD(RM) values are highly discrepant. As noted by Stuardi et al., 2021, the MAD(RM)
is expected to be the most robust estimator of RM dispersion and hence the best measure
with which to distinguish local from large-scale environments.

Furthermore, the Faraday depth spectrum towards the core of IC 708, see Figure 4.9,
shows a potential deviation from the Faraday-simple structure that would be expected
from an external Faraday-thin screen such as the ICM. The Faraday depth spectrum for
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FIGURE 4.17: |⟨RM⟩|, σRM and MAD(RM) of the polarised sources in the Abell 1314 cluster
plotted against the projected distance of each source to the X-ray center (top row) and against
the X-ray surface brightness at the position of peak polarisation for each source (bottom row).
The uncertainties of the |⟨RM⟩| and σRM are the ±1σ considering nbeam samples for each
source. Sources that cover an area with fewer than 5 nbeam are shown as open red circles and
are not considered in the σRM and MAD(RM) plots. Uncertainties for MAD(RM) are derived
from the median error on the RM measurement, med(σϕ). The detected polarised sources are
numbered according to Table 4.9. The components of IC708 are shown with yellow triangles

and named as C, N and S for core, north lobe and south lobe, respectively, see Table 4.10.
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ID z ⟨RM⟩ ⟨RM⟩a σRM med(RM) MAD(RM) med(σϕ) nbeam
(rad m−2) (rad m−2) (rad m−2) (rad m−2) (rad m−2) (rad m−2)

1 − -1.5 -14.1 13.8 − 6.8 1.4 6.0
3 0.032 -5.5 -17.2 46.7 -13.7 20.5 0.6 49.3
5 − 17.9 7.8 3.6 20.5 − 1.3 0.8
9 0.032 -10.2 -22.4 35.5 -13.7 13.7 0.9 50.3
10 0.033 22.8 9.3 6.3 20.5 6.8 1.3 0.7
12 − -55.1 -72.8 21.1 -68.3 − 1.5 0.5
13 − 7.1 -6.0 0.8 6.8 − 1.1 1.3
15 − 6.8 0.0 − 6.8 − 4.1 0.1

a Galactic-contribution-subtracted ⟨RM⟩.
TABLE 4.9: RM profile of Abell 1314 polarised sources.

Component z ⟨RM⟩ ⟨RM⟩a σRM med(RM) MAD(RM) med(σϕ) nbeam
(rad m−2) (rad m−2) (rad m−2) (rad m−2) (rad m−2) (rad m−2)

Core 0.032 79.8 68.5 51.7 116.2 6.8 0.4 5.1
North lobe − -24.5 -36.8 27.5 -20.5 13.7 0.5 23.7
South lobe − -7.4 -18.5 36.1 -6.8 27.3 0.7 18.7
a Galactic-contribution-subtracted ⟨RM⟩.

TABLE 4.10: RM profile of polarised source IC 708.

the host of IC 708 shows an extension of polarised emission from the main peak that
is detected at a significance of ∼ 20 σ′

ϕ. This structure could be caused by the Faraday
thin peak being embedded in a more local Faraday thick region. Such structure would
be geometrically consistent with the presence of a compact source embedded within an
envelope of emitting and rotating material. Or alternatively, rather than mixing of Fara-
day rotation and emission, such complexity could be caused by structure in an unre-
solved screen associated with the host galaxy. Slight deviations from purely Faraday
thin structure are also seen in the Faraday depth spectra for IC 711 and IC 712, see Fig-
ures 4.11 & 4.13; however, we note that these sources are not detected at such high signif-
icance in polarisation as IC 708 and therefore the presence of additional structure is less
well-defined.

Unlike IC 708, the head-tail radio galaxy IC 711 has an average RM that is low com-
pared to the general radial decrease observed for other sources. The reason for this dis-
crepancy can be seen in Figure 4.4, where it is clear that the majority of the radio emission
recovered for IC 711 lies outside the main X-ray emitting region and consequently this
source will experience lower rotation than sources embedded within the higher density
regions of the ICM. This is also clear from the lower panel of Figure 4.17, where IC 711
(Source 9) is associated with the second lowest surface brightness measurement.
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Chapter 5

eMERLIN Cluster Sample

5.1 Abell 1314

In the preceding Chapter 4, I introduced the Abell 1314 cluster. To the best of my knowl-
edge, there are no Very Long Baseline Interferometry (VLBI) observations of Abell 1314
in the existing literature. Thus, this chapter unveils one of the first studies of the radio
galaxy IC 708 (see Subsection 4.4.1) employing high-angular resolution and high sensi-
tivity radio telescope observations on its core using eMERLIN.

In the course of reviewing the literature, I came across studies that investigated po-
larisation in Active Galactic Nuclei (AGN) and quasars using VLBI observations (see
e.g. Flatters, 1987; Lüdke et al., 1998; Casadio et al., 2017). More recent works have
delved into the study of the polarisation of Messier 87 (M 87) using the Event Horizon
Telescope (see e.g. Collaboration et al., 2021). Yet, a critical aspect not addressed in these
studies is the Faraday rotation caused by regions with non-zero magnetic fields. Further-
more, while some studies have explored the Faraday rotation induced by AGN (see e.g.
Reynolds et al., 2001; Gabuzda and Chernetskii, 2003; Hovatta et al., 2012; Motter and

Gabuzda, 2017), their methodology employs a slope-fitting approach (e.g., χ2 fitting).
This approach is known for its insensitivity to nπ ambiguities and its simplification to a
single RM-component. This gap in the existing literature presents a significant opportu-
nity. Specifically, there is scope for contributing original findings by using the Rotation
Measure (RM) Synthesis technique and the cs-romer framework to enhance our under-
standing of magnetic fields.

Before delving deeper into Abell 1314, it is crucial to note that eMERLIN is a radio-
interferometer and a Square Kilometre Array (SKA) pathfinder instrument. It consists
of an array of seven radio telescopes that span 217 km across Great Britain. These fea-
tures position eMERLIN as an outstanding scientific resource, as it attains a resolution of
∼0.15 arcseconds at 1.5 GHz (L-band, see Table 1.1). This resolution is akin to what SKA1-
MID would observe in this frequency range, which further reinforces the significance of
the findings in this chapter.

Abell 1314 has been studied as part of project CY4234, which initially proposed eMER-
LIN observations for 14 polarised sources situated within 10 "normal" clusters. These are
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clusters devoid of widespread cooling flows or potent synchrotron haloes. The proposal’s
primary aim was to offer updated RM measurements for these targets, employing QU-
fitting and RM Synthesis techniques. Moreover, this project intends to investigate the
impact of resolution on the estimates of magnetic field strength. Understanding this bias
is pivotal for refining the cosmic magnetism science case for SKA, especially since SKA1-
MID will have baseline lengths akin to eMERLIN. As illuminated by Feretti, L. et al.,
1995, resolution holds a key role in studies of cosmic magnetic fields. This work’s results
highlight the considerable effect that the resolution at which RM structures across em-
bedded radio galaxies in galaxy clusters are observed has on the inferred magnetic field
strengths. This effect is attributed to the range of reversal scale lengths examined. An in-
crease in resolution by approximately a factor of 2 was found to systematically enhance
the recovered polarisation percentage on sub-arcsecond scales by up to 10%. Therefore,
improved resolution is vital for accurately extracting the power spectrum of RM fluctu-
ations within resolved structures in embedded cluster galaxies. Ultimately, attaining a
resolution enhancement could potentially offer more precise constraints on the magnetic
fields present within these clusters.

5.2 eMERLIN Data Reduction

In this section I will explain the pre-processing and data reduction steps for the eMER-
LIN observation. Abell 1314 was observed on 16-01-2017 for 14 hours and 27 minutes at
L-band (see Table 1.1). All antennas except Darnhall were included in the observation.
The dataset includes observation of 0319+415 (3C 84) for pointing and leakage calibra-
tion, 1331+305 (3C 286) for flux and polarisation angle calibration, 1153+4931 for phase
calibrator and 1407+286 for bandpass calibration.

5.2.1 RFI Excision

For L-band datasets the eMERLIN CASA pipeline contains specific aoflagger LUA1

recipes for each calibrator and the target. However, default RFI excision for the target
and the point source calibrator are very mild. For the case of the Abell 1314 dataset I had
to modify the scripts for sources OQ208, 1153+4931 and the target in order to make the
RFI excision more aggresive.

Additionally, due to the presence of residual RFI on the target and for 1153+4931
in spectral windows 3, 4 and 5 I have used flagdata with mode=’tfcrop’ to flag those
measurements.

5.2.2 Parallel-hand Calibration

In order to calibrate the parallel-hands (refer to Section 2.3), I used a modified version of
the eMERLIN CASA pipeline2. This adapted pipeline chiefly employs modular CASA

1https://www.lua.org/about.html
2https://github.com/e-merlin/eMERLIN_CASA_pipeline

https://www.lua.org/about.html
https://github.com/e-merlin/eMERLIN_CASA_pipeline
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functions to read the IDI-FITS files supplied by the eMERLIN observatory and produce
a parallel-hand calibrated measurement set. Besides, this pipeline leverages aoflagger

with custom strategies/recipes and CASA tasks to eliminate RFI from the calibrators and
the target. The pipeline primarily comprises two significant steps: pre-processing and
calibration.

The pre-processing phase involves converting the FITS-IDI file into a measurement set
(MS) using the CASA task importfitsidi, applying Hanning smoothing and excising
RFI (see 5.2.1 for details).

The calibration phase is responsible for executing the standard parallel-hand calibra-
tion on continuum data, discovering solutions using only the inner approximately 90%
channels of each spectral window. First, I would like to explain the calibrators used by
eMERLIN to understand the pipeline steps for calibration. Initially, to perform the cali-
bration our data needs:

1. The target source itself.

2. The phase calibrator. Normally, this is a source very close to the target and bright
enough to calibrate the telescope gains (amplitude and phase). These vary with
time since some phase data can rotate on timescales of minutes. Specifically for
eMERLIN the phase calibrator is observed for 3 minutes, followed by 7 minutes of
observation on the target, this is repeated for the length of the whole observation.

3. The flux calibrator. For eMERLIN this source is 3C 286 (1331+305) which flux den-
sity is not variable and is well known. However, it is resolved by e-MERLIN and
therefore only the shortest baselines contain the full flux. Consequently, L-band
and C-band models were made to calibrate all telescopes.

4. The band pass calibrator. Most common sources for eMERLIN are 0555+398, OQ208
(1407+286) and 2134+004. Even though these slowly vary in time, all of them are
unresolved by eMERLIN and therefore all baselines have the same flux. Addition-
ally, spectral behaviour is very well understood. This source is used to calibrate the
bandpass response.

The calibration macro-step then comprises initializing the source models using the
observatory model for 3C 286, followed by the generation of the bandpass table using
the CASA task bandpass. Subsequently, the pipeline constructs a new calibration table
by solving the parallel-hand delays with the task gaincal. Using the same task, it then
corrects phase and amplitude gains.

The next step involves adjusting the flux to account for the higher resolving power of
eMERLIN. This is achieved by presuming that 3C 286 can be represented by a 2D Gaus-
sian of an angular size θs and by representing the resolving power of a given baseline
as a function of frequency, ν, and antenna separation, B, by θ(ν, B). Consequently, the
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reduction in central flux density, S(ν0), due to finite θs is given by:

S′(ν0)

S(ν0)
=

θ(ν, B)2

θ(ν, B)2 + θ2
S
=

1
1 + ρ(ν, B)

, (5.1)

where the resolved fraction, ρ(ν, B), is given by

ρ(ν, B) =
θ2

S
θ(ν, B)2 . (5.2)

By using θ(ν, B) = k/(νB) we can write

ρ(ν, B) =
(

νB
νLov−PiBLov−Pi

)
· ρLov−Pi , (5.3)

where νLov−Pi, BLov−Pi are the reference frequency and the antenna separation of the
Lovell-Pickmere baseline, and ρLov−Pi is value fixed at 0.04.

If I bootstrap the flux density scale of 3C 286 using fluxscale and then correct by
its flux, it is possible to re-calculate the bandpass and the amplitude calibration tables
including the spectral index information.

The final step is then to apply all the calibration tables to the measurement set. Ad-
ditionally, as an optional final step it is possible to flag residual RFI on the target using
flagdata with mode=’rflag’.

5.2.3 Self-Calibration

As I mentioned in Chapter 2, when handling heterogeneous arrays, the visibility weight-
ings do not provide the best outcome for sensitivity. For instance, in e-MERLIN the Cam-
bridge (Cm) antenna is more sensitive than the rest of the antennas of the array. Conse-
quently, to reconstruct an optimal image, the Cm antenna must have larger weights than
others before self-calibration. In order to do this, it is possible to use CASA’s statwt task
which re-calculates the weights according to their variance.

Self-calibration procedures are often hard to code at first and need a lot of trial and
error to get a robust code that actually works. Additionally, a self-calibration procedure
can change drastically depending on the source and radio-interferometer. Therefore, in
order to mitigate possible errors and to decrease the programming time, an object ori-
ented self-calibration framework named snow3 has been developed in this project. As
it can be seen in Figure 5.1, this framework mainly consists in two classes: Self-cal

and Imager. The first contains variables and functions that are useful or can be shared
between the only-phase and phase-amplitude procedures. Three child classes inherit in-
formation from Self-cal: Phase-cal, Amp-cal and Amp-phase-cal. Each of these classes
instantiate variables such as solution interval, interpolation method, imager and calibra-
tion mode differently. According to A. Richard Thompson, 2004a; Chael et al., 2018 the
self-calibration procedure can be performed with any imager (see Section 2.5) as long as

3https://github.com/miguelcarcamov/snow

https://github.com/miguelcarcamov/snow
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FIGURE 5.1: Class diagram of the Self-calibration framework

they store the model visibilities. Thus, the idea behind the class Imager is to plug any
imaging algorithm into the self-cal workflow, allowing scientists to test different imaging
schemes and to build a model according to their needs. The relationship between Imager

and Self-cal classes is quite simple. While self-calibration can work only by having an
imager, the imager can be part of multiple self-calibration classes.

Taking into account that the scan length for the Abell 1314 eMERLIN dataset is around
7 minutes, for the self-calibration of this dataset I have done five rounds of only phase cal-
ibration using tclean, natural weights and setting solint = [’inf’, ’3.5min’, ’2min’,

’1min’, ’30s’]. This will be useful to get as much extended emission as possible. After
finishing the rounds using the framework, the peak-signal-to-noise of the images im-
prove from 91.7 to 524.7. Figure 5.2 shows the improvement of the peak intensity and
the rms noise on the images over the phase calibration loops. After self-calibration, we
image all Stokes maps using MFS tclean and saving the model column. This will allow
us to find residual RFI that might be present in the data. We flag these latter using tfcrop

and rflag. Finally, we use the task statwt in order to re-calculate the weights.

5.2.4 Total Intensity Images

Having completed the parallel-hand pre-processing, I have imaged the eMERLIN dataset
using MFS tclean using Briggs weighting, robust 0.5 and cell size of 0.02 arcseconds.
The resulting image can be seen in Figure 5.3, which illustrates a comparison of the JVLA
(on the left) and eMERLIN (on the right) images. The image clearly shows the core of
IC S708 at a resolution 65 times higher than the JVLA. In fact, the beam of this eMERLIN
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FIGURE 5.2: Self-calibration improvement over the phase calibration loops on the eMERLIN
dataset of Abell 1314. The annotation on each sub-image show the iteration number, where
0 corresponds to the image reconstructed after doing the parallel-hand calibration, and the

rms noise. At the top of each colourbar the intensity peak of each sub-image is shown.

image has a size of 0.4” × 0.2” whilst the JVLA image has a beam size of 12.4” × 11.7”.
Additionally, it can be seen some lower extended emission filament at the north-east of
the core at 4σ and 8σ level, where σ = 0.17 mJy beam−1. The peak at the core has an
intensity of 39.8 mJy beam−1.

Additionally, Figure 5.4 reports the spectral index map for the IC 708 eMERLIN im-
age. It can be seen that at the core, the spectral index is 0.07± 4.5× 10−4. At the extended
emission the mean spectral index is −0.5 ± 0.2.

5.3 eMERLIN Polarisation Calibration

In this section I will give details of the polarisation calibration for the Abell 1314 eMER-
LIN dataset.

5.3.1 Cross-hand problems in CASA

Before continuing with the cross-hand calibration details, I need to report a problem
that I have encountered in versions of CASA up to 5.8. Raw eMERLIN datasets use
the FITS-IDI format, therefore, in order to process them using CASA and convert them
to a measurement set we need to use the task importfitsidi. Here, I have found that
parallel-hand data is correctly labelled according to their respective correlation (LL, RR).
However, some cross-hand data are not (i.e. correlation RL is really LR). I have found
out that this issue is dependent on the baseline direction definition. For instance, whilst
North-South baselines like Mark2-Defford suffer this problem, the South-North baselines
such as Defford-Pickmere do not. Thus, for a typical eMERLIN dataset with 15 base-
lines, 9 will suffer this reverse labelling and 6 will have their cross-hand correlations
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FIGURE 5.3: On the left: Total intensity image of Abell 1314 using JVLA (see Chapter 4).
On the right: Higher resolution image of IC 708 using the eMERLIN radio telescope. The
contours are drawn from a 4σ to 32σ level with increments of 2σ, where σ = 0.17mJy beam−1.
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labeled correctly. To confirm this I have compared amplitude and phase plots for the
first 3 spectral windows of 3C 286. I have done this by inspecting the data read directly
as FITS-IDI using AIPS, and the measurement set made after conversion. Hence, from
Figures 5.5, 5.6, 5.7 and 5.8 it is possible to confirm that baseline Defford-Pickmere does
not suffer a mismatch on the labelling of the cross-hand data. However, if we look at
Figures 5.9, 5.10, 5.11 and 5.12 we can see that something is wrong with the cross-hand
correlations because the CASA plot for correlation LR and RL are similar to AIPS plots of
correlations RL and LR, respectively.

Finally, it is important to emphasize that due to this problem the polarisation cali-
bration using CASA versions below 5.8 will fail as some of the cross-hand correlations
are mislabelled. Hence, I found two ways to fix this issue and proceed with the cross-
hand calibration. One workaround is to use the casacore software4 after converting the
dataset from FITS-IDI to measurement set and swap the cross-hand correlations on those
affected baselines. This was the technique used to process these data during early ver-
sions of our reduction. The other solution, and the one I now use for the results in this
thesis, is to update CASA software to a version above 5.7 5.

5.3.2 Cross-hand Calibration

As we now have the measurement set with the correct labels for the cross-hand corre-
lations, we can proceed with the cross-hand calibration, which for this dataset is done
in five steps. Firstly, I derive the flux density and polarisation properties of the polari-
sation angle calibrator (3C 286) as shown in Subsection 4.2.2. Secondly, I derive the flux
density of the leakage calibrator (3C 84) using the CASA task fluxscale on the eMER-
LIN pipeline amplitude and phase calibration table. Thirdly, I determine the instrumen-
tal delay between the two cross-hand correlations. Fourthly, I solve for the frequency-
dependent leakage terms using an unpolarised source, such as 3C 84. Finally, I solve for
the polarisation angle by using a source with known polarisation angle, such as 3C 286.
Just as in the parallel-hand calibration, we use ∼90% of the inner channels to find solu-
tions for these tables.

Cross-hand delay calibration

At this step I derive the residual L-R delay on the reference antenna (Mk2) by using
the CASA task gaincal and gaintype=’KCROSS’ and 3C 286 which I know has polarised
signal in the cross-hand correlations. Since the delay solutions are very stable across all
spectral window (see Figure 5.13a) I created a single calibration table by fitting the cross-
hand delay for the entire baseband, also known as a multiband delay. Consequently a
single solution with a value of 108.421 nanoseconds (see Figure 5.13b) is used.

4https://github.com/casacore/casacore
5This update became available on 26-05-2021

https://github.com/casacore/casacore
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FIGURE 5.5: Amplitude and phase plots for 3C 286, baseline Defford-Pickmere and its first 3
spectral windows and correlation LL.
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FIGURE 5.6: Amplitude and phase plots for 3C 286, baseline Defford-Pickmere and its first 3
spectral windows and correlation LR.
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FIGURE 5.7: Amplitude and phase plots for 3C 286, baseline Defford-Pickmere and its first 3
spectral windows and correlation RL.
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FIGURE 5.8: Amplitude and phase plots for 3C 286, baseline Defford-Pickmere and its first 3
spectral windows and correlation RR.
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FIGURE 5.9: Amplitude and phase plots for 3C 286, baseline Mark2-Defford and its first 3
spectral windows and correlation LL.
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FIGURE 5.10: Amplitude and phase plots for 3C 286, baseline Mark2-Defford and its first 3
spectral windows and correlation LR.
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FIGURE 5.11: Amplitude and phase plots for 3C 286, baseline Mark2-Defford and its first 3
spectral windows and correlation RL.
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FIGURE 5.12: Amplitude and phase plots for 3C 286, baseline Mark2-Defford and its first 3
spectral windows and correlation RR.
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FIGURE 5.13: Single and multi band solutions for the cross-hand delay in the Abell 1314
eMERLIN dataset.
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FIGURE 5.14: Amplitude vs frequency and amplitude vs antenna plots from the leakage
calibration table before flagging outlier solutions.

Leakage calibration

To derive the leakage solutions I used the CASA task polcal and the flux density model
of the unpolarised source 3C 84. It is important to note we need to find one solution
over the entire run per spectral channel of 0.125 MHz. I have done this by setting the pa-
rameters poltype=’Df’, solint=’inf,0.125MHz’ and combine=’scan’. By looking at the
leakage calibration table, specifically plotting amplitude versus frequency and versus an-
tenna, we can spot some outlier solutions with amplitudes above 0.2 Jy (see Figure 5.14).
These outliers are most likely due to residual RFI, therefore we flag these solutions from
the leakage calibration table using the CASA task flagdata and obtain the plots shown
in Figure 5.15.
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FIGURE 5.15: Amplitude vs frequency and amplitude vs antenna plots from the leakage
calibration table after flagging outlier solutions.

Polarisation angle calibration

At this point I have already solved the cross-hand delays and the leakage. In order to
obtain an accurate polarisation angle, I need to calibrate the R-L phases using the 3C 286
model and the CASA polcal again but this time with poltype=’Xf’. After creating the
calibration table, I can inspect the gain phase solutions versus frequency as shown in
Figure 5.16. As R-L delays are solved the polarisation angle solutions do not show a
significant slope in phase. Additionally, it can be seen that the phases connect from one
spectral window to each other, this is because I have used the single multiband solution.

At this point, I have all the necessary polarisation calibration tables and we can apply
them using the CASA task applycal.

5.3.3 Polarisation Images

Taking into account the CASA bug that prevented the reconstruction of the polarimetric
spectral cubes, the analysis was limited to the available data. Therefore, I focused on
investigating the polarization properties of radio galaxy IC 708 using the multi-frequency
images.

Having applied the polarization calibration, we were able to generate maps of Stokes
I, Q, and U using the tclean algorithm with Briggs weighting and robust 0.5. From these
maps, I calculated the polarization fraction and angle.

Figure 5.17 presents the polarization fraction of IC 708, with a 5 σ mask applied in
Stokes I. The figure also displays vectors representing the polarization angle, which are
yet to be corrected for the Faraday rotation induced by both the Abell 1314 cluster and
the Milky Way galaxy. In this analysis, we observed that while the core exhibited negli-
gible polarization (with a percentage ranging from 2% to 3%), the north-west extended
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FIGURE 5.16: Polarisation angle solutions versus frequency, each spectral window is shown
with a different color.

emission filament displayed a polarization fraction approximately ranging from 0.1 to
0.5.

To further evaluate the significance of the polarization signal, we examined the po-
larization and total intensity signal-to-noise ratio (SNR) maps, as shown in Figure 5.18.
Notably, the peak value in the total intensity SNR map reached 279.346, whereas the
peak value in the polarization SNR map was approximately 4 σQU, where σQU equals
0.14 mJy beam−1. Thus, it became evident from the MFS maps that the polarization signal
was not significant. Using an upper threshold of 8 σQU, equivalent to 1.14 mJy beam−1,
and considering the inability to reconstruct eMERLIN polarimetric cubes, I established
that no RM Synthesis can be performed.

Despite the limitations imposed by the CASA bug, the analysis of the available data
for radio galaxy IC 708 offers valuable insights into its polarization properties within the
Abell clusters. The results emphasize the need for further investigations and improve-
ments in the reconstruction process, as well as the importance of resolving the CASA bug
to enable a more comprehensive analysis of the Faraday depth cubes.

Throughout this study, the eMERLIN telescope has proven to be a valuable tool as
an SKA pathfinder in facilitating our observations and generating essential data. Despite
the challenges faced, the analysis conducted in this chapter highlights the capabilities
and limitations of eMERLIN, setting the stage for future advancements in the study of
cosmic magnetism within Abell clusters.

In conclusion, while the CASA bug hindered the complete reconstruction of the po-
larimetric spectral cubes and the subsequent Faraday depth analysis, the analysis of the
available data for radio galaxy IC 708 provided meaningful insights into its polarization
characteristics. Further research is warranted to address the limitations encountered and
to explore the magnetic phenomena in Abell clusters more comprehensively. The eMER-
LIN telescope, as an SKA pathfinder, demonstrates its potential in studying the magnetic
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properties of these clusters and holds promise for future advancements in this field of
research.
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Chapter 6

MeerKAT Deep Field

Part of the work in this chapter is published in the paper “A Compressed Sensing Faraday Depth
Reconstruction Framework for the MeerKAT MIGHTEE-POL Survey”, Miguel Cárcamo, Anna
M. M. Scaife, Russ Taylor, Matt Jarvis, Micah Bowles, Srikrishna Sekhar, Lennart Heino, Jeroen
Stil., 2022 3rd URSI Atlantic and Asia Pacific Radio Science Meeting (AT-AP-RASC), 2022, pp.
1-4, doi: 10.23919/AT-AP-RASC54737.2022.9814329.

Though studying the linearly polarised emission passing through magneto-ionic gas
in galaxy clusters provides important information about galaxy formation, evolution,
and cosmic magnetism, there remains considerable value in investigating the voids, namely,
the empty spaces between radio galaxies.

In conducting these observations, I employ MeerKAT, a South African radio tele-
scope located on the Karoo Plateau. Comprising 64 antennas, each with a diameter of
13.5 meters, and arranged with a maximum separation distance of 8 kilometers, MeerKAT’s
correlator offers up to 32,798 frequency channels, which enables the observation of the
L-band frequency range (refer to Table 1.1). These capabilities allow for the effective cov-
erage of a sky area of 1.5 square degrees with an impressive resolution of 4.5 arcseconds,
positioning MeerKAT as an ideal instrument for a comprehensive survey of the southern
sky.

In this context, the MeerKAT MIGHTEE survey, a large-scale project that I am part
of, is designed to study galaxy evolution. The project aspires to generate valuable data
products covering various scientific domains, including total intensity, broad-band con-
tinuum science, HI spectral-line science, and spectro-polarimetric science. The survey
targets imaging of four extragalactic fields: COSMOS, XMM-LSS, CDFS, and ELAIS S1
(Jarvis and Taylor et al., 2016). Observations are conducted within the L-band frequency
range, with multiple pointings intended to be mosaicked into a final image. The antic-
ipated broad-band sensitivity of the survey is approximately 2 microjanskys per beam
(Heywood and al., 2021). Initial data sets for shared-risk early science projects are al-
ready being assembled for each category, utilizing early observations of COSMOS and
XMM-LSS.
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The early science observations for MIGHTEE encompass four distinct pointings. The
first pointing is centered on the COSMOS field, while the subsequent three pointings in
XMM-LSS, which are labeled as XMMLSS-12, XMMLSS-13, and XMMLSS-14, are neigh-
boring and overlapping. Each of these pointings was observed twice for approximately
8 hours, while the COSMOS pointing was observed three times for an identical duration
of 8 hours each. The number of antennas used in each observation fluctuated between 59
to 64. I present further details and a summary of these observations in Table 6.1.

Pointing Date time N antennas
(yyyy-mm-dd) (h)

XMMLSS_12 2018-10-06 8.02 59
XMMLSS_12 2018-10-11 8.05 63
XMMLSS_13 2018-10-07 8.07 59
XMMLSS_13 2018-10-12 8.03 62
XMMLSS_14 2018-10-08 8.03 60
XMMLSS_14 2018-10-13 8.00 62

COSMOS 2018-04-19 8.65 64
COSMOS 2018-05-06 8.39 62
COSMOS 2020-04-26 7.98 59

TABLE 6.1: Observations for the MIGHTEE-POL Early Science Release.

6.1 MeerKAT MIGHTEE-POL Data Reduction

The visibility data were calibrated using different sources as calibrators for the COSMOS
and XMM-LSS fields. For the COSMOS field, J0408−6565 was used as the primary cali-
brator, J1008+0740 as the secondary calibrator, and J1331+3030 (3C 286) as the polarisa-
tion calibrator. For the XMM-LSS pointings, J1939−6342 served as the primary calibrator
to establish the flux density scale, as well as a bandpass calibrator and for deriving the
leakage solutions. The secondary calibrator, J0201−1132, was observed every 20 to 30
minutes during the 8-hour track to monitor time-dependent complex gains. Moreover,
the source J0521+1638 (3C 138) was used as the polarisation angle calibrator, which was
observed once or twice during a track.

The calibration of visibility data and imaging in full polarisation mode was per-
formed on the ilifu cloud facility using the CASA-based IDIA pipeline 1. The pipeline
initially partitions the L-band RF MHz into 15 spectral windows ranging from 880 MHz
to 1680 MHz, resulting in the creation of multi-MS files processed concurrently using
the ilifu SLURM manager. During this stage, strong persistent RFI has been detected as
shown in Figure 6.1. The contaminated data has been removed through automated flag-
ging within the frequency ranges of 933-960 MHz, 1163-1299 MHz, and 1525-1630 MHz.
The subsequent step in the pipeline involves using observations of the primary calibra-
tor to measure the frequency-dependent gains using an absolute flux bandpass solution.

1https://idia-pipelines.github.io/docs/processMeerKAT

https://idia-pipelines.github.io/docs/processMeerKAT
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Solutions are then applied, and leakage terms are derived. As mentioned earlier, com-
plex gains are calculated using the secondary calibrator. This is achieved by utilizing the
CASA task gaincal and setting gaintype=’T’, ensuring that any polarised signal in the
secondary calibrator does not affect the relative X and Y gains derived from the primary
calibrator. Finally, the polarisation calibrator is used to solve for the polarisation angle.
At this stage, the median XY phase spectrum is fitted with a 3rd degree polynomial, and
the calibration solution tables are applied.
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FIGURE 6.1: Time-averaged bandpass response from MeerKAT on J1939-6342. The portions
of the spectrum marked in red are dominated by significant, consistent RFI across all obser-

vational data, leading to their exclusion from all datasets.

Following calibration, the separated multi-MS files were merged into a single mea-
surement set containing the calibrated visibility data. This dataset undergoes self-calibration
using CASA, with gaintype=’T’ set to preserve the relative X and Y gains. Two cycles of
self-calibration were performed using the imager tclean, utilizing the full dimensions of
the primary beam image (6144 x 6144), a cell size of 1.5 arcseconds, and a robust param-
eter of −0.5. In the first cycle, calibration is done solely for phase, while in the second
cycle, both phase and amplitude are solved for.

Several data products were generated after reducing the visibility data using tclean

and combining the visibilities from multiple observations. Firstly, MFS broadband im-
ages for Stokes I, Q, U, and V were produced using Briggs weighting and robust param-
eters of −0.5 and +0.4. The central coordinates of the four image sets and the restoring
beams of the MFS images (with a robust parameter of -0.5) are listed in Table 1. Addition-
ally, Figure 2 shows the MFS continuum Stokes I image of the COSMOS field. Secondly,
spectro-polarimetric hypercubes (I, Q, U, V) are created for the calibrators and target
fields, using a robust parameter of 0.0. Two types of hypercubes were generated: the
first maintains the native resolution for each frequency slice, while the second smooths
all frequency slices to a common resolution of 18 arcseconds. The frequency range of the
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hypercubes is 794 MHz (887-1680 MHz), with a channel width of 2.51 MHz. Frequency
channels affected by persistent RFI are replaced with not-a-number (NaN) slices. Conse-
quently, the frequency ranges of contiguous correct data are 887-993 MHz, 960-1163 MHz,
1299-1524 MHz, and 1630-1680 MHz, accounting for 74% of the band.

Pointing Coordinates MFS Image RM Synthesis (smoothed cube)
RA DEC resolution RMTF median RM RMS median per-chan background RMS

(robust = −0.5) FWHM off-source Q U V
(rad m−2) (µJy beam−1) (µJy beam−1) (µJy beam−1) (µJy beam−1)

XMMLSS_12 02 17 51.0 -04 59 59 7.75′′ × 6.81′′ −35.1◦ 56.8 3.12 25.3 26.9 25.1
XMMLSS_13 02 20 42.0 -04 49 59 7.69′′ × 6.73′′ −21.2◦ 56.8 3.97 27.9 31.2 27.2
XMMLSS_14 02 23 22.0 -04 49 59 7.93′′ × 6.90′′ −35.2◦ 57.6 2.90 25.3 26.1 25.4

COSMOS 10 00 28.6 +02 12 21 7.80′′ × 7.22′′ −20.1◦ 55.2 3.21 31.2 31.6 31.5

TABLE 6.2: MIGHTEE-POL image and cube properties for each pointing.

It is important to note that the residual on-axis leakage after calibration measures
approximately 0.1%. However, at the upper end of the L-band, there is beam squint
and squash that varies with frequency, resulting in off-axis frequency-dependent leakage
(Asad et al., 2021; Sekhar et al., 2022). To mitigate the impact of strong leakage at the
high-frequency range, I have limited the analysis of polarisation signals to frequencies
below 1380 MHz. Below this threshold, the leakage remains below 0.2% within a 0.5◦

radius from the field center. See Table 1.1 for resulting frequency range, channel width
and Faraday parameters.

6.2 MeerKAT Deep Field optimal wavelet selection

In Section 3.5 I have seen that depending on the data, Faraday depth signals might have
different structures. i.e thin sources, thick sources or both. Again, to select the wavelet
which best represents the signal. In order to simulate data for MeerKAT I will use the
L-band frequency range and equations 3.32 and 3.33. Additionally, I will set Sν0 to 0.055
and 0.066 Jy beam−1 for scenarios 1 and 2, respectively and a spectral index of 0.7. For
scenario 2 we have also set ϕfg to 40 rad m−2. This is summarized on Table 6.3. Following
steps from Section 3.5.1, we have set removal fraction to 0.3 and noise to 2.2804 and
2.38714 mJy beam−1 in Stokes Q and U, respectively.

Given Equation 6.1 from Stil et al., 2014 I can get the polarisation percentage by draw-
ing Gaussian random variables such that a ∼ N (0.051, 0.004) and b ∼ N (0.038, 0.007).
Consequently, I also draw S ∼ U[Smax,5σS] as a uniform random variable where Smax and
σS are the maximum flux and rms noise in mJy on real Stokes I in at 1.4 GHz, respectively.
The maximum flux is 34 mJy beam−1 and the rms noise is 0.00504 mJy beam−1.

log Π0,med = −a log S1.4 + b (6.1)

Finally, after multiplying the polarisation percentage by S/100 we set polarised in-
tensity values for the simulated sources.

Results from Tables 6.4, 6.5, 6.6 and Figures 6.3 and 6.4 show that the optimal fam-
ily according to the lowest AIC for scenario 1 is the delta wavelet. Note that, even
thoughdb25 provides a better PSNR and superior RMSE, we have decided to choose the
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FIGURE 6.2: COSMOS MFS Stokes I continuum image at 1.28 GHz using Briggs weighting
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Scenario ϕ1 ϕfg ϕ0 Sν0

[rad m−2] [rad m−2] [rad m−2] [Jy/beam]

1 -200 - - 0.055
2 - 40 200 0.066

TABLE 6.3: MeerKAT L-band simulation details

Scenario 1 Scenario 2 Scenario 3
AIC −16473.97 ± 121.79 −16675.31 ± 69.21 −16306.49 ± 112.43
BIC −15632.70 ± 379.94 −16019.68 ± 196.20 −15314.80 ± 267.24
PSNR 346.41 ± 103.08 108.16 ± 19.93 292.59 ± 93.70
RMSE (248.38 ± 4.76)× 10−5 (237.06 ± 4.22)× 10−5 (258.40 ± 7.41)× 10−5

TABLE 6.4: AIC, BIC, PSNR and RMSE for delta function basis.

delta wavelet as optimal since it will help us to identify the RM at the maximum with
greater precision."

6.3 Rotation Measure extraction on the MIGHTEE-POL survey

I conducted the RM synthesis using a ∆ϕ = 0.4,rad,m−2 and constructed it over a Faraday
depth range of ±2000,rad,m−2. Faraday depth signals were reconstructed from the on-
source catalog, which points to text files containing the polarised spectra of on-source
sources. In order to avoid the large off-axis leakage at the high end of the band, and
as mentioned above, I restricted RM synthesis to frequencies less than 1380 MHz. I also
checked and filtered the catalog for possible sources on which the flux density fit failed
and either the flux density was zero, or the spectral index error was too high. This was
important due to the impact of the spectral index on the RMTF. For example, Figure 6.5
shows the RMTF for the wavelength-squared sampling of COSMOS for spectral indices
-1.0, 0.0 and 1.0. On the bottom left, it shows the residuals between the RMTFs using
α = −1.0 and α = 0.0. On the bottom right the same residual is calculated between
RMTFs using α = 0.0 and α = 1.0. The residuals are not zero (peaks on the amplitudes are
around 0.1). This demonstrates a difference between RMTFs, and there is an impact when
using different spectral index when reconstructing Faraday depth spectra. Additionally,
it is possible to see on the top left plot that sidelobes are thicker than those when using
α = 0.0 or α = 1.0. Another example is shown in Figure 6.6, which depicts a RMTF of
a fainter source with a fitted spectral index α = 110.46 ± 61.65. On the right, the RMTF
for the same sampling, but this time forcing the spectral index to a value of -0.7. It is

Scenario 1 Scenario 2 Scenario 3
WT UWT WT UWT WT UWT

Best wavelet family haar haar haar haar haar haar
AIC −16392.37 ± 150.02 −15199.08 ± 288.31 −16659.79 ± 87.98 −15628.69 ± 190.52 −16203.82 ± 122.41 −14312.71 ± 472.85
BIC −15815.51 ± 295.55 −11501.69 ± 1000.41 −16247.48 ± 147.86 −12399.92 ± 601.51 −15400.09 ± 259.50 −8624.71 ± 1525.12
PSNR 158.44 ± 24.61 163.95 ± 27.82 81.15 ± 22.35 38.44 ± 3.65 153.38 ± 24.13 164.18 ± 22.40
RMSE (265.23 ± 9.78)× 10−5 (265.42 ± 5.50)× 10−5 (246.46 ± 6.50)× 10−5 (242.67 ± 5.32)× 10−5 (275.03 ± 8.60)× 10−5 (277.85 ± 9.23)× 10−5

TABLE 6.5: AIC, BIC, PSNR and RMSE for discrete wavelets transforms (WT) and undeci-
mated wavelet transforms (UWT) with the minimum AIC.
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Scenario 1 Scenario 2 Scenario 3
D+WT D+UWT D+WT D+UWT D+WT D+UWT

Best wavelet family db haar haar haar db haar
AIC −16460.83 ± 147.871 −15206.63 ± 315.86 −16610.73 ± 105.32 −15564.75 ± 333.21 −16158.84 ± 182.93 −14281.35 ± 377.99
BIC −15698.88 ± 351.33 −11501.48 ± 1067.85 −16055.69 ± 247.02 −12147.92 ± 1097.16 −14987.25 ± 446.89 −8386.21 ± 1246.50
PSNR 443.34 ± 238.47 164.65 ± 27.46 76.93 ± 23.11 37.93 ± 4.21 384.76 ± 220.08 165.78 ± 21.49
RMSE (252.35 ± 8.38)× 10−5 (264.43 ± 5.82)× 10−5 (245.97 ± 5.81)× 10−5 (242.01 ± 5.87)× 10−5 (265.89 ± 10.41)× 10−5 (273.11 ± 7.28)× 10−5

TABLE 6.6: AIC, BIC, PSNR and RMSE for delta basis function combined with discrete
wavelets transforms (D+WT) and undecimated wavelet transforms (D+UWT) with the min-

imum AIC.

Scenario 1 Scenario 2 Scenario 3
D+WT D+UWT D+WT D+UWT D+WT D+UWT

Best wavelet family db25 haar haar haar db36 haar
AIC −16565.94 ± 55.75 −15206.63 ± 315.86 −16610.73 ± 105.32 −15564.75 ± 333.21 −16276.35 ± 101.67 −14281.35 ± 377.99
BIC −15936.84 ± 152.44 −11501.48 ± 1067.85 −16055.69 ± 247.02 −12147.92 ± 1097.16 −15218.28 ± 256.98 −8386.21 ± 1246.50
PSNR 624.64 ± 21.42 164.65 ± 27.46 76.93 ± 23.11 37.93 ± 4.21 585.64 ± 36.65 165.78 ± 21.49
RMSE (247.40 ± 4.47)× 10−5 (264.43 ± 5.82)× 10−5 (245.97 ± 5.81)× 10−5 (242.01 ± 5.87)× 10−5 (258.82 ± 6.45)× 10−5 (273.11 ± 7.28)× 10−5

TABLE 6.7: AIC, BIC, PSNR and RMSE for delta basis function combined with discrete
wavelets transforms (D+WT) and undecimated wavelet transforms (D+UWT) with the min-

imum AIC.
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FIGURE 6.5: On the top, from left to right: RMTF for the COSMOS wavelength squared sam-
pling using spectral indices -1.0, 0.0 and 1.0. On the bottom left: Residual between RMTFs
using α = −1.0 and α = 0.0. On the bottom right: Residual between RMTFs using α = 0.0

and α = 1.0

clear, that the value of the spectral index is crucial for a good reconstruction of fainter
signal. Therefore, for this kind of sources, I forced a spectral index equal to the mode
of the distribution (see Figure 6.7) on the in-source catalog equal to -0.74. Additionally,
after reconstructing Faraday depth, I corrected the maximum value and position of the
RM using a quadratic interpolation.

6.3.1 COSMOS

To analyse the resulting polarised intensity from the reconstruction of the on-source
sources using cs-romer, I will refer to Figure 6.8 which shows these values versus the
peak flux density for each source. This displays the polarisation fraction of each source
and indicates which sources should be categorised as polarised. Additionally, I have in-
cluded polarised intensity values from both dirty and reconstructed Faraday spectra in
order to compare them. For example, one of the first things one can notice is that most
of the sources with polarisation fraction over 10% and over the 99.9 percentile thresh-
old have moved on the reconstructed plot with respect to the dirty one. Firstly, various
sources less than 1% polarised were moved below the 99.9 percentile. Secondly, sources
that were over 10% polarised moved below the 10% polarised line. This is expected since
we do not expect either sources with a polarisation over 10% or sources below 1% and
above 99.9 percentile. Lastly, by looking at Figure 6.9 we can see that the reconstruction
of Faraday depth spectra is able to correct outlier sources seen in the histogram from the
dirty Faraday spectra (e.g. the source with a polarisation fraction of 4). Furthermore, re-
constructions have corrected those sources with low polarisation fractions that were over
the 99.9 percentile.
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Finally, this chapter has provided significant insights about polarisation and its utility
in understanding temporal changes in magnetic fields in cosmic web filaments. Studies
such as those by Carretti et al., 2022b and Kronberg et al., 2008 demonstrate that the RM
is an effective tool for gaining insights into the magnetized space traversed by radiation.
This data can be leveraged to track modifications in magnetic fields. Concurrently, al-
terations in polarisation fraction may indicate changes in depolarisation (Sokoloff et al.,
1998) and in the magneto-ionic conditions at the origin of the radiation or in the inter-
galactic medium (Berger, A. et al., 2021).

In this chapter, I used RM synthesis and analysed polarised spectra from on-source
sources from the COSMOS catalogue. To ensure the accuracy of my results, I meticu-
lously examined the catalogue and eliminated any sources with flux density fits that had
failed or that had significant spectral index errors. This was a crucial step since the spec-
tral index can influence the RMTF, as illustrated by Figure 6.5. When determining the
spectral index for fainter sources proved challenging, I assigned it to the mode of the
distribution to enhance the reliability of the reconstructions.

Next, I employed the cs-romer framework to reconstruct on-source sources and an-
alyze their polarised intensity. The polarised intensity of each source in relation to its
peak flux density is demonstrated in Figure 6.8. This comparison assists in determining
the polarisation fraction for each source. I observed significant differences when compar-
ing the polarised intensity values from both the dirty and reconstructed Faraday spectra.
For instance, sources with polarisation fractions exceeding 10% and those in the 99.9 per-
centile exhibited differing positions in the reconstructed plot as opposed to the dirty plot.
This finding aligns with the presumption that extreme polarisation fractions surpassing
certain thresholds are improbable.

Although I have reconstructed the Faraday depth spectra of extragalactic sources,
the polarisation fraction is not fully described yet. Nonetheless, these findings guide us
towards promising areas for future investigation. To replicate the outcomes in Carretti et
al., 2022b using MIGHTEE-POL MeerKAT early science data, I need to delve deeper into
the fluctuations of RM and polarisation fraction of extragalactic sources with redshift.
More precise measurements will aid us in comprehending the origins and evolution of
magnetic fields. Gauging the variations in the cosmic magnetic field across cosmic time
can offer invaluable insights into its derivation from primordial fields and the potential
role of field seeding and amplification by astrophysical sources (Carretti et al., 2022b;
Akahori and Ryu, 2011; Vazza, F. et al., 2015; Subramanian, 2016; Vazza et al., 2017;
O’Sullivan et al., 2020; Arámburo-García et al., 2021).

The suitability of cosmic web filaments for this research arises from their lesser pro-
cessed state, which closely mirrors original conditions (Carretti et al., 2022b). More-
over, examining these filaments can also provide valuable insights into the extragalac-
tic sources themselves, such as alterations in their physical conditions and environments
(Kronberg et al., 2008; Berger, A. et al., 2021). This adds to our knowledge of the temporal
evolution of magnetic fields.
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In summary, the findings of this chapter enhance the precision of polarisation frac-
tion measurements for extragalactic sources. The analysis of polarised intensity from
the reconstruction of Faraday depth spectra yields valuable insights into the evolution
of magnetic fields in cosmic web filaments. These results serve as a foundation for fur-
ther investigations, particularly on the COSMOS and XMM-LSS fields. The accuracy of
these measurements is of vital importance for understanding how magnetic fields origi-
nate and evolve in the universe. By deepening our understanding of these fundamental
aspects, we edge closer to unravelling the mysteries of the origins and development of
magnetic fields and their role in shaping the cosmos.
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Chapter 7

Future work and conclusions

In this chapter I will discuss recommendations of future work, what is left to do and
can we improve in the forthcoming research. Additionally, this chapter presents the final
conclusions of this thesis.

7.1 Future work

Potential future improvements to the cs-romer framework could include the implemen-
tation of a more flexible optimization algorithm such as SDMM (Moolekamp and Mel-
chior, 2018). This addition would allow the framework to further generalize the com-
pressed sensing problem by adding several regularization or constraint functions. Fur-
thermore, although cs-romer currently uses the pywavelets package to provide discrete
and undecimated wavelets, it does not yet include the implementation of continuous
wavelets. This enhancement would increase the software’s flexibility, enabling users to
either incorporate existing continuous wavelets or program their own wavelets to de-
compose and reconstruct Faraday depth signals. Additionally, while in this thesis I have
implemented and adopted the error bound calculation from Carrillo et al., 2014; Prat-
ley et al., 2017, the study of multiple regularizations and their parameters remains an
open topic of research. Several studies about regularization parameter selection crite-
ria have been conducted (see e.g. Hansen, 2000; Karl, 2005; Shi et al., 2018). Looking
forward, it would be advantageous to implement an L-hypersurface criterion using the
fixed-point optimization method from Belge et al., 2002. Since cs-romer has been im-
plemented following the object-oriented programming paradigm, users should be able
to include these enhancements in a straightforward manner. Given the context of next-
generation telescopes and their data-rates, it is critical to incorporate big data and big
computing technologies into the cs-romer framework. Technologies such as dask and
cupy would not only allow handling large data cubes but also scale them out to clusters
and process them using GPUs. An even more challenging and long-term project is the
incorporation of RM Synthesis into an aperture synthesis software as in (see e.g. Bell, M.
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R. and Enßlin, T. A., 2012). This would permit reconstructing a Faraday depth cube di-
rectly from Fourier space, thereby reducing the number of steps currently taken to obtain
a Faraday depth cube.

Additionally, the process of time-frequency averaging plays a pivotal role in the pre-
processing of radio-interferometric data, often implemented to decrease the volume of
datasets, which can become unwieldy due to the vast amount of information generated
by modern radio telescopes. However, this method can influence the resulting data in the
wavelength-squared space and subsequently affect the reconstruction of Faraday depth
spectra. Instead of applying a traditional frequency averaging, a more nuanced approach
might involve averaging in the wavelength-squared space. This technique is reminiscent
of baseline-dependent averaging (see e.g. Wijnholds et al., 2018; Atemkeng et al., 2018;
Deng et al., 2022), respecting the distinct information contributed at each wavelength in a
similar way that baseline-dependent averaging considers the unique contribution of each
antenna pair. By adopting this wavelength-squared averaging approach, we can mitigate
the potential adverse effects on the Faraday depth spectra reconstruction. This method
would account for the specific characteristics of data in the wavelength-squared space,
ensuring crucial astronomical information remains intact during the data preprocessing
phase, all while maintaining the beneficial aspect of data volume reduction.

This work has also spurred new research questions regarding the use of the NUFFT.
Just as in image synthesis, it remains unclear whether the application of gridding in λ2-
space would prove beneficial when reconstructing Faraday depth structures from data.
While gridding would decrease the volume of data, as multiple points would be summed
into the same cell, it remains to be determined if gridding leads to reconstructions with
improved evaluation metrics such as PSNR and RMSE.

Regarding the MeerKAT MIGHTEE-POL survey, considering that I was unable to
calculate the 99% percentile threshold for COSMOS, the optimal approach to verify the
accuracy of the polarisation detections would be to reproduce the results from the cubes
using cs-romer and repeat this process for all the fields. In addition, future calibration
of MeerKAT data will incorporate full-Stokes A-projection, which will necessitate a com-
plete redo of the analysis from scratch. It is important to note that the data presented in
this thesis are based on early science shared risk.

Even though I did not find any polarisation signal in the Abell 1314/IC708 eMERLIN
dataset, there is still a need to process the other sources from project CY4234. Perhaps
other sources may indeed contain polarisation signals, allowing for better estimations of
the magnetic fields of those clusters. Now that I have the parallel-hand, cross-hand, and
self-calibration pipelines to pre-process the datasets, this task has become realistically
achievable.
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7.2 Conclusions

In the course of this thesis, I have devised and implemented the object-oriented frame-
work, cs-romer, aimed at reconstructing Faraday depth structures from radio polari-
metric data via compressed sensing. This process also involves regularising an under-
constrained optimisation problem. In parallel, I have introduced two additional object-
oriented frameworks: ocarina and snow. These frameworks facilitate the calibration of
cross-hand correlations for measurement sets from a circular feed, and the self-calibration
of parallel-hands, respectively. Moreover, I have adapted the eMERLIN CASA pipeline
to integrate with the modular version of CASA.

Throughout the progression of my thesis, I have implemented numerous features
within the cs-romer framework. Initially, I ensured that the framework could simulate
sources directly in frequency (data) space. In addition, I utilized the NUFFT to calculate
the values of irregularly spaced λ2 measurements from regularly spaced Faraday depth
during reconstruction. Next, I incorporated a suite of filters for discrete and undeci-
mated wavelet transforms into cs-romer, providing the option to combine them with a
delta function basis. Furthermore, I integrated a prior that encourages sparsity in Fara-
day depth space or wavelet space, such as the L1-norm, into cs-romer. Additionally,
I included convex regularisation functions like Total Variation (TV) and Total Squared
Variation (TSV), providing the capability to smooth the reconstructed signal as necessary.

Other optional astrophysical features that I have implemented in this framework
are the derotation of the Galactic Faraday rotation, which can be applied directly in
wavelength-squared space using external measures of the Galactic foreground. In ad-
dition, I have developed the option to correct for the spectral dependency of the radio
polarisation data. As it has been shown in Chapter 6, the spectral index has a big impact
on the width of the sidelobes of the RMTF, and therefore, this needs to be used with dis-
cretion. Direction-dependent spectral index can be provided as a single scalar value or as
a map resulting from an MFS deconvolution algorithm such as CASA’s tclean.

In Chapter 3, I have also demonstrated the cs-romer framework for a variety of Fara-
day depth structures scenarios and under different observational configurations such as
different instances of signal-to-noise and RFI flagging. The different simulated scenarios
were used to compare different evaluation metrics and select the optimal wavelet basis
that best represents the Faraday depth data for a given observational set-up. This selec-
tion also depends on the application and the scientific aims of the user. For example, we
have seen in Chapter 6 that even though the Daubechies 25 wavelet gave a better PSNR
and RMSE, we have chosen the delta wavelet since it helped us to find the RM at the peak
with more precision.

Furthermore, in the concluding portion of the chapter,I have made a comparison be-
tween Faraday depth spectra reconstructions using the optimally chosen wavelet basis
and the widely known RM-CLEAN method. This comparison not only serves as a val-
idation for the efficacy of our proposed framework but also establishes it as a capable
alternative to RM-CLEAN. The results from this comparison propose that our cs-romer
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framework can indeed compete with RM-CLEAN, and thus, it introduces a promising
prospect in the domain of Faraday depth spectra reconstruction.

I have demonstrated the cs-romer framework on real data from the JVLA telescope
towards the low-mass galaxy cluster Abell 1314 in Chapter 4. By using the optimal ba-
sis function determined in Chapter 3, incorporating the de-rotation of the Galactic fore-
ground and a direction-dependant spectral index map I was able to analyse Faraday
depth spectra on individual galaxies within Abell 1314. These galaxies show a behaviour
that deviates from what is expected for a Faraday-thin screen. This suggests the galaxies
in this cluster, most noticeably IC 708, suffer a Faraday rotation that is dominated by local
magneto-ionic structures rather than the large-scale intra-cluster medium.

Even though no significant polarisation signal was detected in Chapter 5, I have
demonstrated the parallel-hand and cross-hand calibration using the modified CASA
eMERLIN pipeline and the ocarina framework. Additionally, I have shown the impor-
tance of using a self-calibration framework such as snow when pre-processing a dataset,
especially when the signal-to-noise ratio is low after parallel-hand calibration as in the
eMERLIN Abell 1314 case. We have also shown that the framework was able to improve
the PSNR of the dataset from 91.7 to 524.7.

In Chapter 6 I applied the cs-romer framework to real data from the MeerKAT tele-
scope, specifically on the COSMOS field. I have analysed a catalog with in-source sources
and compared the polarised intensity values using the dirty and reconstructed Faraday
spectra. Reconstructed Faraday depth spectra values from the framework are able to cor-
rect for those outliers seen with the dirty. These outcomes lay the foundation for future
investigations that concentrate on examining the behavior of the RM and polarisation
fraction as a function of redshift within the COSMOS and XMM-LSS fields. The accu-
racy of these measurements is of crucial importance in comprehending the genesis and
progression of magnetic fields in the universe.

Finally, the frameworks developed for this thesis work are a first step with respect
to next-generation telescopes and the SKA. We have already seen that RM Synthesis
is a much more under-constrained problem than image synthesis, and therefore, regu-
larisation for Faraday depth spectra along with compressed-sensing are a must when
analysing and studying magnetic fields using this technique on wide field and VLBI
images. Looking to the future, the data-rates, angular and spectral resolution of next-
generation telescopes, we aim to incorporate big data and big computing technologies
into these frameworks to be able to process forthcoming datasets.
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