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Abstract

The COVID-19 pandemic has highlighted the need for mathematical modelling that cap-
tures the uncertainty that is inherent to disease dynamics. There has also been an emphasis
on modelling scenarios and projections, rather than true predictions, which are useful for
understanding the impacts that different policies and interventions can have on the spread of
disease. We develop stochastic models to quantify the uncertainty in outcomes in different
settings, which is essential for designing interventions and preparing for reasonable worst-
case scenarios.

In Chapters 2 - 4 we use branching processes to model the early growth of outbreaks, with a
particular focus on COVID-19. In Chapters 2 and 3 we investigate the temporal uncertainty
in the early growth phase of an epidemic and develop analytic expressions for the approxi-
mate distribution in times taken for an outbreak to reach a given number of cases. Our re-
sults quantify this uncertainty in seconds, making our methods much faster than stochastic
simulations, and provide mathematical insights into the nature of the peak-timing distribu-
tion for an epidemic. We show that, in general, the peak-timing distribution can be thought
of as well-approximated by the inverse of a non-central �2 distribution with zero degrees of
freedom. In Chapter 4, we use a well-studied branching process with a negative binomial
offspring distribution in order to estimate the overdispersion in early clusters of infections
during the COVID-19 pandemic. We augment this process by explicitly accounting for case
under-ascertainment, reducing bias in the estimates of overdispersion.

We also develop stochastic models for operational use in prison and hospital settings during
the pandemic. In Chapter 5, we develop models aimed at understanding the risk of ingress
of COVID-19 into prisons and the impact of policies aimed at mitigating this risk. In Chap-
ter 6, we develop a multi-state survival model in order to estimate the length of stay for
COVID-19 patients in intensive care, and use stochastic simulations to predict future bed
capacity in hospitals. In both of these settings, we demonstrate the utility of stochastic mod-
els in conveying uncertainty to policymakers planning for different scenarios.

This thesis contains pieces of work that contributed to the broader modelling effort during
the COVID-19 pandemic. It also provides a novel framework for thinking about temporal
uncertainty in disease outbreaks that has the potential to be incorporated into a number of
different models in mathematical epidemiology and in biology more broadly.
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Chapter 1

General Introduction

The spread of infectious diseases in human populations is inherently stochastic, and is highly
dependent both on complex biological processes and on human behaviour. For this reason,
an enormous degree of uncertainty arises in epidemiological models, in addition to the un-
certainty in the data used to fit model parameters [2]. This type of uncertainty is frequently
referred to in the literature as aleatoric uncertainty and differs from epistemic uncertainty,
which refers to the statistical uncertainty in parameter estimates. There is a philosophical
subtlety buried within these definitions; in principle, if a model were complex enough and
there were sufficient data in order to understand every detail of individual behaviour and the
biological mechanisms of disease propagation, then it would be possible to model with cer-
tainty any outbreak, and thus all uncertainty would be epistemic. Aleatoric uncertainty can
therefore be seen as a catch-all term that encompasses all of the uncertainty that we are, in
practice, unable to pin down precisely using available data. A summary of further differ-
ences between aleatoric and epistemic uncertainty can be found in [3], and a taxonomy of
uncertainty is given by Howell and Burnett [4].

Consider, for example, a simple deterministic model of disease propagation in a closed pop-
ulation, the classic SIR (Susceptible! Infectious! Recovered) model introduced by Ker-
mack and McKendrick [5]. Though Kermack and McKendrick’s proposed model is more
general, the basic model consists of three differential equations for the fraction of the pop-
ulation (of size N ) that are Susceptible, Infectious and Recovered at time t during an infec-
tious disease outbreak. The SIR equations are given by:

dS
dt = ��SI

dI
dt = �SI � �I

dR
dt = �I

(S(0), I(0), R(0)) =

✓
1�

1

N
,
1

N
, 0

◆
,

where � is the transmission rate and � is the recovery rate of an individual. The growth or
decline of the epidemic in this model is governed by the parameter R0 = �

�
, which is the

number of secondary cases infected by an infectious individual at the start of the outbreak
when the rest of the population is totally susceptible to infection. If R0 > 1, then it is guar-
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anteed that a large outbreak will occur, in which at least a proportion 1 � 1
R0

of the pop-
ulation is infected [6], whereas if R0 < 1, then the outbreak will diminish in size until it
becomes extinct.

The deterministic model assumes that all individuals have the same behaviour and char-
acteristics, relying on the Law of Large Numbers to ensure that this assumption is valid,
on average [7], [8]. A stochastic model, however, can allow for individual variation in be-
haviour, in which infectious individuals have a probability of infecting a susceptible in-
dividual. These random variations on the individual level have a large impact on model
outcomes, particularly when outbreaks are small in numbers. For example, in a stochastic
model, it is possible that in an outbreak for which R0 > 1 the first few cases will fail to
infect any individuals, and hence the outbreak will die out before it can grow. The proba-
bility that an outbreak will grow to large numbers is a key element of uncertainty that is not
captured by deterministic models but is well-described in a stochastic setting. In a stochas-
tic model, one can also calculate the variance away from, and sometimes even the distri-
bution around, the mean behaviour of the dynamics of a disease outbreak. For this reason,
stochastic models add crucial uncertainty to predictions made using deterministic models.
This makes stochastic models highly suitable for scenario planning, when one often needs
to plan for extreme outcomes that can occur.

When a disease outbreak occurs, it is not just the number of cases at a given time that is
highly stochastic, but also the time taken for an event to occur or for the epidemic to reach
a given number of cases. It is therefore important to think of stochasticity as being temporal
in addition to being qualitative (i.e. randomness in deciding which event will occur). This
is important to understand in a variety of contexts; one might be interested in the time taken
for the number of cases in an outbreak to exceed testing capacity, or for the number of hos-
pitalisations to exceed hospital capacity, rather than the distribution of cases predicted at
a single time point in the future. From a modelling perspective, one might also be inter-
ested in the time at which stochastic effects no longer contribute significantly to the dis-
ease dynamics, so that the epidemic is guaranteed to be growing exponentially, with close
to zero probability of dying out. In this way, stochastic models provide a useful comple-
ment to deterministic models and can be used when case numbers are small and stochastic
effects have a large impact, before switching to a deterministic model when these impacts
are negligible. The uncertainty both in timescales and numbers of cases gained by using
a stochastic model can then be incorporated into deterministic models to produce hybrid
models, whose outputs reflect the aleatoric uncertainty that is inherent to early-stage disease
dynamics. Again, this provides insights that are more useful for policymakers and scenario
planners, offering a time window for which an intervention needs to be planned, rather than
a single-point average.

The remainder of this chapter contains a review of the history of stochastic modelling of
epidemics as well as existing literature on the relationship between stochastic and determin-
istic models and when it’s appropriate to switch between the two. It also includes a review
of the literature on modelling outbreaks in prison settings as well as in enclosed popula-
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tions more broadly. Finally, we include a section on some mathematical preliminaries that
are relevant to the rest of the thesis.

In Chapter 2 we develop methods for calculating the uncertainty in the timing of the peak
of a disease outbreak, by approximating the First Passage Time (FPT) distributions for an
outbreak to reach a certain number of cases. We start by modelling the early linear growth
phase of the outbreak using a branching process, but make use of Feller’s diffusion approx-
imation to the branching process in order to obtain an explicit expression for the time taken
for the number of cases to reach a threshold Z

⇤. We choose this threshold Z
⇤ to be suffi-

ciently large that stochastic effects become negligible once the number of infectious cases
is greater than Z

⇤, after which we may use a deterministic model to obtain the peak time
distribution from the FPT distribution. The result is that the peak timing distribution can
be obtained approximately by performing CDF inversion on a non-central �2 distribution
with zero degrees of freedom [9], with very little computation time required. We demon-
strate good convergence to the true underlying peak timing distribution, which we estimate
empirically by simulating the full stochastic SIR epidemic using the Gillespie algorithm.
Knowing not just the timing of the peak, but the uncertainty in this timing is highly useful
for scenario planning, since in a stochastic model the peak can occur significantly earlier or
later than predicted by deterministic models. This work is currently ready for submission to
peer review in journals and to the arXiv.

In Chapter 3, we extend the analysis of Chapter 2 to a multi-type branching process setting,
in order to model the stochastic invasion of a novel variant of concern (VoC) of COVID-19
into a population with heterogeneous immunity. This work contributed to [10], which was
published in Nature Communications in 2022, modelling potential future waves of COVID-
19 due to invading VoC for the roadmap out of lockdown. However, we use a version of the
modelling done in that paper using fewer types of individuals and extend the results to ob-
tain a fast approximation of the FPT distribution. As in Chapter 2, we define a total num-
ber of cases Z⇤ required for stochastic effects to become negligible. We derive the multi-
type Feller diffusion approximation for the process, and then consider the dynamics along
the dominant eigenvector of the next-generation matrix. This reduces the multi-type Feller
diffusion to the single-type case, albeit with contributions to the drift and variance terms
coming from infected cases of different types. We therefore obtain an approximation for the
first passage time distribution T to reach the level Z⇤ using the results from Chapter 2, this
time comparing with the simulated first-passage time distribution obtained via simulation
of the multi-type branching process. The results show good agreement between these two
distributions. We argue that this can be interpreted as the distribution of times taken for an
invading VoC to become established in a resident population. This work is also currently
ready for peer review and submission to journals and the arXiv.

Chapter 4 considers the impact of individual heterogeneity and superspreading events on
the number of cases as well as the probability of extinction over time. We use a discrete-
time branching process as outlined by Lloyd-Smith et al. [11] for which the number of off-
spring in each generation follows a negative binomial distribution. This is well-known to
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have the effect that outbreaks are likely to be less common but more explosive when they
do occur. We use this model to recover the results of Endo et al. [12], using maximum like-
lihood estimation to fit the dispersion parameter, k, for the offspring distribution to out-
break cluster sizes of COVID-19 from February 2020. We also augment these results by
incorporating a probabilistic model of case under-ascertainment to show that the degree of
overdispersion may have been underestimated previously. Finally, we also propose a model
in continuous time that shares important properties with the discrete-time model in order
to calculate the real-time probability that an outbreak that begins with a single case dies
out. Understanding the extent to which outbreaks are driven by superspreading events can
highlight the importance of planning more targeted measures aimed at preventing these
events from occurring. It also demonstrates that smaller outbreaks are more likely to die
out stochastically in scenarios where the majority of infected cases are infected by a small
number of superspreaders, compared to the scenario in which all infectious cases transmit
the same amount. Furthermore, our analysis highlights the importance of improving testing
capacity and contact tracing efforts in order to improve case ascertainment, so that the ex-
tent of overdispersion in outbreak clusters can be more accurately estimated. This work is
in preparation for submission to a journal, but we also plan to extend the work presented in
this thesis by applying this model to the ongoing analysis of Mpox [13] data.

In Chapter 5, we present stochastic models developed during the COVID-19 pandemic in
order to provide insights to Her Majesty’s Prison and Probation Service (HMPPS) on the
risks of importing COVID-19 into prisons from different sources, and on the potential ram-
ifications that outbreaks in prisons could have. For this piece of work, policymakers were
interested primarily in the probability over time that a single prison would experience an
outbreak due to an importation of COVID-19, and considering the impact that different
control strategies would have on this probability. The Prison Service in the UK is a com-
plicated system, with many routes through which disease ingress can occur. We focus, how-
ever, on the three largest sources of ingress risk, namely, due to the inflow of new prison-
ers after sentencing by the courts, due to staff interaction with prisoners and, finally, visi-
tors from the wider community meeting with prisoners. Here, using probability modelling
is crucial, as only a single event is required to start a potential outbreak in prisons, mak-
ing stochastic events much more impactful. We also use stochastic models to quantify the
uncertainty around the impact of different, prison-specific interventions, such as isolating
prisoners in small groups prior to entry, rather than individually (see Section 5.2.3). This
was important in order to communicate to policymakers the range of outcomes that a policy
can have, with certain outcomes being more extreme but also less likely.

In Chapter 6, we develop and implement methods for estimating the length of stay (LoS)
for COVID-19 patients in Intensive Care Units (ICUs) in hospitals in England. LoS is non-
trivial to estimate from real-time data, due to the presence of missing data in the form of
right-censoring. This was particularly the case in the early days of the pandemic, with pa-
tients receiving intensive care for longer periods than for other respiratory infections. In-
deed, a large minority of patients had LoS in ICUs lasting longer than a month. This type
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of censoring can be accounted for using survival analysis methods. We used a multi-state
survival model with competing hazards to estimate the transition probabilities for patients
in different areas of a hospital, as well as their LoS in each state. We used real-time hospi-
tal data in order to conduct this analysis and compared our results with those obtained using
two different methods applied to national-level aggregated data. For the observed transi-
tions, we then created a stochastic simulation model in order to predict future hospital bed
capacity in the event that the post-first-wave lockdown was lifted. Our results show that this
methodology can be used both at the local hospital level to plan the resources needed to
deal with patient inflow during a COVID wave, and also to plan responses at the national
level if hospital capacity is predicted to be breached during a wave. My specific involve-
ment in this project was in the development, code implementation and analysis of the multi-
state survival model and forward simulation model that was developed for patient pathways
at Manchester University Foundation Trust (MFT) hospitals, as well as in model verifi-
cation and comparison with other models used in that paper. This work was published in
BMC Infectious Diseases in 2021 [1].

These pieces of work, conducted at various stages of the pandemic, together highlight the
importance of considering stochasticity when attempting to plan interventions based on the
future course of an epidemic. Scenario planning based on mathematical modelling has been
used extensively during the COVID-19 pandemic as a way of communicating the uncer-
tainty that is inherent to infectious disease dynamics, in lieu of being able to “predict” the
future course of an epidemic that depends on government policy, human behaviour and vi-
ral evolution [14], [15].

1.1 Literature Review

1.1.1 Historical note on Stochastic Models of Epidemics

One of the earliest and most well-known stochastic models for epidemics is the classic Reed-
Frost model [16], often referred to as the chain-binomial model, which supposes that a dis-
ease outbreak progresses in discrete generations. Given a number of susceptible individu-
als, Xt, and infectious individuals, Yt at time t, the model assumes that susceptible individ-
uals each have an identical probability q of not making an infectious contact with a single
infectious individual in the generation (t, t + 1]. Then, it follows that the probability that a
susceptible individual is infected in this generation is given by 1� q

Yt . Given the number of
susceptible and infectious individuals in one generation, the number of individuals infected
in the next generation then follows a binomial distribution, so that

P(k infected in (t, t+ 1] |Xt, Yt) =

✓
Xt

k

◆
(1� q

Yt)k(qYt)(Xt�k)
, (1.1)

provided one assumes that susceptible individuals are infected independently of one an-
other. This model has the advantage that the distribution of the number of cases in each
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generation can be computed easily via the recursive formula (1.1). In 1952, Helen Abbey
used maximum likelihood methods for inference on equation (1.1) to obtain estimates for
the probability of no contact between an infectious individual and all other susceptible in-
dividuals in each discrete time step qi[17]. Fitting the Reed-Frost model to data on measles,
German measles and chickenpox, she noted the discrepancies between the final sizes ob-
tained from the Reed-Frost model and those observed in the data.

In 1948, D.G. Kendall published his work on the time-dependent birth-death chain, which
he analysed using generating functions [18]. Later, in 1949, M.S. Bartlett formulated a gen-
eral stochastic model for evolutionary and population processes, giving the stochastic SIR
model as an example of this more general process [19]. Kendall and Bartlett were close
collaborators [20] and later published work on use of the characteristic function applied to
a variety of stochastic models in both physics and biology [21]. These techniques led to a
number of key insights into the stochastic modelling of epidemics, such as obtaining ana-
lytic expressions for the probability of extinction of outbreaks over time as well as for the
moments of the process. In 1953, Norman Bailey and Eva Rowland observed that the final
size distribution for stochastic epidemics is bimodal by considering the probability generat-
ing function for the stochastic SIR model [22]. Shortly afterwards, P Whittle demonstrated
that the epidemic threshold for stochastic and deterministic models are equivalent, i.e. that
large outbreaks can only occur with R0 > 1 for the stochastic epidemic, and that they occur
with probability 1�R

�I0
0 .

These results on the distribution of final sizes for an epidemic were extended by later au-
thors. For a simple discrete-time branching process, the distribution of total progeny, or
the final size in an epidemic context, was studied by Dwass in 1969 [23]. Later, in 1983,
Thomas Sellke published a method for calculating the asymptotic final size of the stochastic
epidemic [24]. Sellke’s method involved assigning individuals in the population a random
threshold drawn from an exponential distribution (with mean 1) denoting their resistance to
infection, with an individual becoming infected once the cumulative force of infection act-
ing upon them from all other individuals becomes larger than their individual threshold. In
his paper, Sellke demonstrated that, for large population sizes, this formulation is equivalent
to the stochastic SIR model (with infectious individuals having exponentially distributed
recovery times) and gave a formula for the final size distribution under this construction.
Further results were published in the following decades on final sizes of epidemics for the
Reed-Frost model (including for the multi-type Reed-Frost model) [25]–[27] as well as for
the generalised stochastic SIR model [28], [29].

In 1991, Valerie Isham introduced a multivariate Gaussian approximation for the joint dis-
tribution of susceptible and infectious individuals in a general stochastic SIR epidemic [30].
This approximation takes into account the depletion of susceptibles as the number of in-
fected individuals increases, and uses a method introduced by Whittle [31] for approximat-
ing general stochastic processes with a normal distribution. This work added to the earlier
work of Feller [32], [33] on diffusion approximations for branching processes. Isham later
used a multivariate normal approximation to model outbreaks of HIV with multiple stages
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of infection, for which she uses a time-since-infection model, with the duration of each
stage following a gamma distribution [34]. Diffusion and stochastic differential equation
approximations have a wide range of applications in epidemic processes [35], [36] and are
useful for obtaining faster simulations and estimation of epidemic model parameters [37].

In addition to diffusion approximations of compartmental epidemic models, branching pro-
cesses are also frequently used throughout the literature to model the early stochastic growth
phase of an epidemic [8]. These range from using early results due to Kendall [18] on birth-
death chains to more general Bellman-Harris processes (which allow an individual’s trans-
mission to depend on their time-since-infection) and Crump-Mode-Jagers processes [38],
[39]. These more general processes have been employed recently by Barbour and Reinert to
derive integral equations for the number of cases over time in a time-dependent branching
process approximation of a general SIR model [40]. They have also been used for incorpo-
rating vaccination into outbreak dynamics when the number of susceptible individuals is
still large [41] and for approximating the distribution of the time at which the first case is
detected in an outbreak [42].

1.1.2 From Stochastic to Deterministic Models

Deterministic models offer a significant advantage over stochastic models in that their solu-
tions are often, if not analytically tractable, straightforward to approximate using standard
numerical methods. For general stochastic population processes, including epidemic mod-
els, Kurtz showed the convergence of stochastic compartmental models and diffusions to
their deterministic mean-field approximations [43]. Convergence of the process to the de-
terministic limit is guaranteed by Kurtz’s results in the limit as the population size N !1,
and is proven specifically for the case of compartmental epidemic models by Wang [44],
[45].

The deterministic approximation of the average behaviour of population dynamics once the
population has become large is often referred to as the deterministic ‘skeleton,’ suggesting
that the stochastic effects act as noise that adds ‘flesh’ around this skeleton [46]. This in-
terpretation holds when, for example, an outbreak becomes large enough that demographic
noise is small relative to the number of infectious cases and is unsuitable when the outbreak
is in its early stages and dominated by demographic uncertainty. However, as noted in [47],
there is no general rule for determining how large the population must be in order for the
deterministic approximation to be appropriate. More recently, Rebuli et al. [48] have devel-
oped hybrid models based on the stochastic SIR model and deterministic approximations,
switching between the two when the epidemic reaches a threshold such that the probabil-
ity of the outbreak remaining small is low. This threshold is determined by results on the
distribution of the maximum of the epidemic, obtained by Ball and Donnelly [49].

Some caution is required when, for example, stochastic effects at the larger population scale
interact with oscillatory dynamics and create irregular cycles, which has been shown for
predator-prey models [50]. These results have also been observed in modelling chemical
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reactions, where stochasticity in particle counts during reaction-diffusion processes causes
discrepancies in the peak concentration compared with solutions obtained from partial dif-
ferential equations [51].

An additional consideration when switching between deterministic and stochastic models
is the effect that early stochasticity has on delaying the growth of an outbreak. The distri-
bution of the total duration of the stochastic epidemic was first considered by Barbour [52],
who split the epidemic into three phases, namely, an early and late stochastic phase and an
intermediate deterministic phase. Renshaw [47] also considers the effect of stochastic de-
lays on the time taken for an epidemic to take off. In particular, they investigate the impact
of different delay distributions for the reproduction individuals in a population on the time
at which deterministic growth takes off, and the effect that these delays have on the natural
oscillations of the system. These effects are also considered in [53], which notes the delay
to epidemic takeoff across simulations of outbreaks of campylobacter jejuni in chicken pop-
ulations. This time shift is also noted and studied through simulations by [54] and is cor-
rected for in deterministic models by adding a time-shift parameter that allows for delays in
the epidemic takeoff.

More recently, the effects of delays to epidemic takeoff have been considered in [10]. There,
the authors considered the impact of demographic uncertainty in the emergence of novel
variants of concern of SARS-CoV-2 on the timing of the peak of resulting outbreak. Arino
et al [55] also consider the stochastic effects in the time to epidemic takeoff, defining a thresh-
old number of cases at which a deterministic approximation is appropriate based on Whit-
tle’s formula [31] for the probability of an outbreak becoming large. Czuppon et al. [42]
also consider the stochastic time-to-detection and early growth of an outbreak of COVID-
19 using a general age-dependent branching process. They use the moments of a martin-
gale associated with the branching process to determine the time at which a determinis-
tic approximation based on the McKendrick-von Foerster partial differential equation [56]
becomes suitable. The work of Chapters 2 and 3 of this thesis complements some of these
more recent efforts to find appropriate ways to switch from stochastic to deterministic mod-
els in a way that still incorporates the demographic uncertainty in the model output. Our
requirements for switching between the two depend not just on the probability of extinction,
as many other authors do, but we also require that the epidemic be growing exponentially
by imposing a condition on the coefficient of variation, which is the standard deviation of
the process divided by its mean. Our work also adds to methods from the literature by pro-
viding analytical results that approximate the distribution of times taken to hit this thresh-
old, which can be computed almost instantly.

The impact of stochastic delays on the time to epidemic takeoff can also be considered in
the context of border controls during a pandemic. This effect has been known in the mod-
elling community for a long time, since at least the work of Hollingsworth et al., which
looks at the importation of cases during a flu pandemic [57]. Scalia Tomba and Wallinga
[58] present a simple argument for this delay based on immigration that occurs via a Pois-
son process, and calculate the median time for the successful invasion of a pathogen into a
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population from an external source. Many such models exist for estimating the impact of
these delays, but find that substantial border controls are required to achieve even modest
delays in the introduction and subsequent growth of a novel pathogenic disease, particu-
larly in the context of influenza [59]–[61]. This phenomenon has also been observed during
the COVID-19 pandemic, but the ineffectiveness of border restrictions was noted in part to
be due to the relative frequency of travel between countries meaning that travel restrictions
were likely implemented after importations of COVID-19 had taken place [62], [63].

1.1.3 Modelling of Disease Outbreaks in Prisons and Enclosed Societies

Prisons are relatively unique settings that can be particularly vulnerable to outbreaks dur-
ing an epidemic [64]. On the one hand, the enclosed nature of these societies may suggest
that importations from the external community into prisons can be mitigated, and that con-
tact between prisoners can be limited. On the other hand, prisoners are typically vulnera-
ble individuals who are at risk of severe infection, and prisoners being held in close con-
finement can lead to faster disease transmission. Prisons typically exhibit high attack rates
compared with other enclosed settings [65], which can be exacerbated when prisoners en-
gage in communal or manual labour, as was observed during an outbreak of influenza in a
prison in Texas in 1972 [66]. Nevertheless, monitoring infectious disease outbreaks in pris-
ons and modelling strategies for mitigation remains a persistent challenge in public health
[67].

Modelling of infectious diseases in prisons has tended to be focused either on historical in-
fluenza outbreaks [66], [68], [69] or on outbreaks of diseases transmitted sexually or through
blood transfusion [70], such as Hepatitis C or HIV. More recently, observational studies of
influenza outbreaks in Australia found that strict prevention strategies and isolation of in-
fectious cases in prisons can be an effective means of preventing ingress [71]. However, the
paucity of mathematical modelling and studies of the ingress and spread of diseases within
prison settings is a critical issue for prisoner health and requires further study, particularly
following the COVID-19 pandemic [72].

Whilst there is a lack of modelling specific to prison settings, there are many studies that
make the comparison between prisons and other enclosed societies. These include, but
are not limited to, care homes, cruise ships, army barracks and isolated workplace settings
(such as oil rigs) [69]. For modelling COVID-19 in prisons, modelling techniques were
drawn from analyses of border control measures as a means of preventing ingress into pop-
ulations, adapted to modelling screening of staff, visitors and incoming prisoners [64]. Of
particular interest has been the parallels between regular asymptomatic testing of staff in
care homes [73], which found that regular lateral flow device testing had a positive impact
on reducing the number of outbreaks in care homes. Ingress into care homes has been mod-
elled using a Poisson process assuming a force of infection from the external epidemic as
well as a force of infection acting on individual care homes coming from other care homes.
The between-care-home model described by Hall et al. [74] follows an SIS model in which
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care homes are infectious if they contain a single infectious case, and transmission between
care homes occurs due to members of staff who may be contracted to work at multiple care
homes. This hypothesis has been at least partially confirmed in a study of care homes in
Norfolk in the UK [75]. These insights are also applicable to the prison setting, where agency
workers may be working at multiple prisons, facilitating transmission between prisons.

Further comparisons between prisons and other enclosed societies can be drawn, for ex-
ample with university halls of residence. In universities, the majority of transmission was
found to be taking place among students in residential settings rather than in learning envi-
ronments, which had largely been moved online in 2020 [76]. Many models of the spread
of COVID-19 on university campuses use a mixture of deterministic and stochastic com-
partmental models, with some models taking into account the seeding of outbreaks from
the external community [77]. These have parallels with modelling of COVID-19 in pris-
ons close to the start of the pandemic, though of course university students typically mix
more with members of the wider community than prisoners do. Enright et al. also looked at
testing strategies for students returning to university halls after holiday periods [78]. They
used a combination of deterministic, stochastic and network models based on student con-
tact survey data from before the pandemic to assess the impact of testing and staggered re-
turn of students after a holiday period, and found testing to be more impactful on the inci-
dence of infection after the start of term than staggering students’ return. This bears a re-
semblance to the situation in prisons in the UK, with prisoners entering Reverse Cohort-
ing Units (RCUs) in staggered groups of 15 at a time prior to entering prisons, with further
requirements on testing during their 14-day isolation prior to entry into the general prison
population.

Comparisons are often made between prisons and other enclosed societies in infectious dis-
ease modelling, in the hope that insights from other areas can be translated into the prison
setting. This is often due to the fact that there is a significant lack of published modelling
work, particularly for respiratory disease outbreaks, looking at prisons compared with other
settings [67]. This is not just a problem with modelling, but also a problem with data, with
many of the studies published pertaining to historical disease outbreaks, such as the 1919
influenza pandemic [65]. Whilst these historical studies may yield general insights for out-
break prevention in prisons, they are not necessarily reflective of modern prison systems
or of infection control strategies today. It is also not necessarily correct that insights ob-
tained from modelling disease outbreaks in other enclosed societies translate perfectly to
the prison setting since prisoners have complex health needs and potentially very different
contact patterns compared to other groups in society. For this reason, more work needs to
be done to understand the dynamics of disease transmission in prisons, as well as the routes
of ingress into prisons from the outside community, looking at the relative risks of impor-
tations due to prisoners, staff and visitors. This modelling work also requires significantly
more data on outbreaks in prisons, which presents both a data collection and ethical chal-
lenge [67].
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1.2 Mathematical Preliminaries

1.2.1 Deterministic Models

Here we give a brief overview of deterministic models in the mathematical modelling of in-
fectious diseases. Deterministic models are, by far, more commonly used than their stochas-
tic counterparts, in part due to their tractability and the availability of numerical methods
able to solve them. Typically, when we talk about deterministic models, we are talking about
compartmental models, with the SIR (Susceptible! Infectious! Recovered) model be-
ing the most common among these. These simple models assume that individuals spend an
exponentially distributed amount of time in each compartment. This assumption can be re-
laxed straightforwardly by including additional compartments, corresponding to an exposed
period, in which an individual is harbouring the infection but is not yet infectious towards
others.

Further compartments can be added in which an individual is either pre-infectious or in-
fectious, which has the effect of increasing variability in the latent or infectious period of
an individual. This is because the total time spent between entering the first compartment
and leaving the final compartment is the sum of exponentially distributed waiting times,
which follows an Erlang distribution. Further still, these models can be extended to allow
the transmission rate (typically denoted by �) to vary over the course of an individual’s in-
fectious period (so that it becomes �(⌧), where ⌧ is the time since an individual becomes
infectious) [79], [80]. These models are extremely flexible in terms of allowing more realis-
tic infectivity profiles still within a deterministic framework, but are often more difficult to
work with numerically [81].

Another common extension of the simple SIR model is the inclusion of subpopulations
based on heterogeneous contact patterns or risk structures. For example, in a population
that has two risk categories, high risk (H) and low risk (L), the multi-type version of the
SIR model can be given as:

dIH
dt = �HH

SH

N
IH + �HL

SH

N
IL � �HIH

dIL
dt = �LL

SL

N
IL + �LH

SL

N
IH � �LIL

This system, as well as more general systems of ODEs corresponding to more categories of
heterogeneity in a population, can be linearised around the disease-free state, whereby the
system can be described by the Jacobian matrix J . Diekmann et al. [82] describe a method
for calculating the reproduction number R0 for heterogeneous population models by de-
composing the Jacobian into the form J = T + ⌃, where T denotes transmission terms
that produce new infectious cases and ⌃ denotes transition terms that denote transition of
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individuals to a new state. In the previous example, we have that:

T =

 
�HH �HL

�LH �LL

!
, ⌃ =

 
��H 0

0 ��L

!
.

The next-generation matrix is then defined as the product �T⌃�1, and the basic repro-
duction number R0 is then the spectral radius, or maximum eigenvalue, of this matrix, i.e.
R0 = ⇢(�T⌃�1).

1.2.2 Continuous-Time Markov Chains

Continuous-time Markov chains (CTMCs) are often used to model the spread of infectious
diseases when one thinks of infection events as happening in real-time rather than in fixed
generations (as is often the case when using discrete-time models). CTMCs are charac-
terised by their transition probabilities which, due to the Markov property, only depend on
the current state of the system, and not the state of the system at any time in the past.

Consider, as an example, the stochastic SIR equations. Let p(S,I)(t) denote the probability
that the system is in state (S, I) at time t, i.e. this denotes the probability that there are S
susceptible individuals and I infectious individuals at time t. Define the transition probabil-
ities for the stochastic SIR model by:

pS�1,I+1(t) =

✓
�SI

N

◆
�t+ o(�t)

pS,I�1(t) = �I�t+ o(�t)

pS,I(t) = 1�

✓
�SI

N
+ �I

◆
�t+ o(�t),

where N is the total population size and all other state transitions have probability o(�t) in
the time interval �t. By assumption, �t is taken to be sufficiently small such that only one
event can occur in the time interval [t, t+ �t].

Letting j = I0, the initial number of infectious individuals, the Kolmogorov (forward)
equations for pi(t) = pi,I0(t) for the stochastic SIR model become:

dp(S,I)
dt = p(S+1,I�1)

✓
�(S + 1)(I � 1)

N

◆
+ p(S,I+1)�(I + 1)� p(S;I)

✓
�SI

N
+ �I

◆
(1.2)

We may also consider the Kolmogorov equations in the context of the probability generat-
ing functions Q(t, s) of the Markov chain, which are given by Q(t, s) =

P
j
pj(t)zj . The

Kolmogorov equations for the probability generating function of a general CTMC then be-
come:

@Q

@t
=
X

j

dpj(t)
dt s

j
.

25



The transition probabilities can then be used to obtain expressions for the right-hand side
of the above that allow the partial differential equation to be explicitly solved for the proba-
bility generating function, which allows for the state probabilities pj(t) to be obtained. See
[35] for a derivation of the Kolmogorov equation for the generating function of CTMCs in
the context of epidemic models and [18] for the case of branching processes.

1.2.3 Branching Process Approximation

In the early phase of the epidemic, the fraction of susceptible individuals in the population
is close to 1 ( S

N
⇡ 1), so that, approximately, the early growth of an outbreak follows a

linear first order ordinary differential equation:

dI
dt ⇡ (� � �)I.

This insight also implies that individuals that are infectious during the early stages of the
epidemic are most likely to come into contact with only individuals that have not yet been
infected (provided homogeneous mixing is assumed, and that the population size N is large).
The result is that number of secondary individuals infected by each individual during this
stage are approximately independent and identically distributed random variables [8] and,
therefore, the early dynamics are well-approximated by a branching process (for which we
take the limit N !1).

Many applications of branching processes to early outbreak dynamics exist in the literature
[39], [42], [49], [83]–[85]. One advantage of using the branching process is approximation
is that the non-linear effects due to depletion of the susceptible population that occurs in
later stages of an epidemic are removed, and so the growth of the process becomes linear.
This means that many features of the branching process are analytically tractable in a way
that is not true for other stochastic models. For example, a simple Galton-Watson process
with binary fission of particles can be used to model the early growth of a stochastic SIR
outbreak (see, for example, [86], [87]), from which it follows that the probability that an
outbreak that begins with a single case will go extinct is R�1

0 (and, for an outbreak that be-
gins with m cases, the corresponding probability is R�m

0 ).

Given that the branching approximation suitably approximates the early growth of a disease
outbreak in a large population, the natural question arises of at what stage the approxima-
tion breaks down. The offspring distribution, or distribution of secondary cases from a sin-
gle infectious individual, is no longer i.i.d. for distinct individuals when an infectious indi-
vidual has some non-negligible probability of encountering an individual who has already
been infected previously. This phenomenon is memorably described in Mollison [88], where
such contacts who have been previously infected are kept track of as “ghost” contacts. As-
suming that the outbreak starts with a single infectious individual, the probability that this
individual comes into contact with non-ghost individual is 1. For the second infectious in-
dividual, this probability is now N�1

N
, which is approximately 1 for large N . The probabil-
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ity that there have been no ghosts among the first k infectious contacts is [8]:

P(no ghosts in first k contacts) = (N � 1)(N � 2) . . . (N � k)

Nk
. (1.3)

Factorising out Nk from the numerator, and using the approximation 1 � ✏ ⇡ e�✏, we then
have:

P(no ghosts in first k contacts) = exp
⇢
�

✓
1

N
+ · · ·+

k

N

◆�
= e� k2

2N . (1.4)

This calculation indicates that the probability of encountering a ghost in the first k con-
tacts is negligible, provided that k2 = o(N), i.e. that the cumulative number of infectious
individuals has not yet reached order

p
N . Therefore, branching processes provide a suit-

able approximation of an epidemic only until the number of cases approaches
p
N . Note

that this argument only gives a threshold at which the branching process approximation be-
comes inappropriate, rather than at which a deterministic approximation becomes appropri-
ate.

1.2.4 Exact Stochastic Simulation of Epidemics - the Gillespie Algorithm

Throughout this thesis, we make extensive use of algorithms for the exact simulation of
stochastic disease outbreaks. The most well-known example, and the one we make use of
most often, is Gillespie’s Direct Algorithm [89]. At each stage, Gillespie’s algorithm chooses
the next event that will occur based on the current state of the system and the transition
rates to the next state, which are converted into probabilities by dividing each individual
rate by the cumulative sum of all rates. It then draws a random time to the next event from
an exponential distribution whose mean is the sum of all rates out of the current state.

1. Label all of the events that are possible E1, . . . En

2. At each step of the algorithm, e, calculate the rate at which each event Ei occurs, ri.

3. Calculate the sum of all rates, ratesum =
P

n

i=1 ri. Also calculate the cumulative sum
of all the rates as a vector of length n� 1, ratecumsumi =

P
i

j=1 rj

4. Draw a psuedo-random number u1 from a uniform U(0, 1) distribution. The next event
Ei is chosen if ratecumsumi�1 < u1 ⇥ ratesum  ratecumsumi.

5. Draw a second pseudo-random number u2, again from a uniform U(0, 1) distribution.
The time to the next event is given by the formula:

⌧ = �
log(u2)

ratesum

6. t, e t+ ⌧, e+ 1
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We see that simulating each event requires two independent draws of a uniformly-distributed
random variable. For modelling infectious disease outbreaks, the time taken to simulate
an outbreak increases linearly with the number of infectious cases, and therefore increases
exponentially with time if the total population size is large and transmission is sufficiently
high (i.e. R0 > 1). This makes simulating disease trajectories with the Gillespie algorithm
prohibitively expensive for large outbreaks in terms of computational cost.

1.2.5 Stochastic Differential Equations

We will make frequent use throughout this thesis of stochastic differential equations (SDEs)
as a means of approximating Markov processes using results from [43]. SDEs typically
take the form:

dXt = µ(Xt, t)dt+ �(Xt, t)dWt,

where µ(Xt, t) is referred to as the drift term, �(Xt, t) is the diffusion term and Wt is a
standard Brownian motion, also called a Wiener process, satisfying the following [90]:

1. W0 = 0

2. Wt is almost surely continuous 8t 2 R (but differentiable almost nowhere)

3. Wt has independent increments, i.e. 80  t1 < t2, . . . , tk, the increments Wt1 ,Wt2 �

Wt1 , . . .Wtk
�Wtk�1

are independent.

4. Wt �Ws ⇠ N (0, t� s) 8 0  s  t

Note that these properties also imply that Wt is a Gaussian Process, so that a finite collec-
tion of the Wti follows a multivariate normal distribution. The PDF of Wt at time t is given
by:

fWt(x) =
1
p
2⇡t

e�x2

2t

We will also make use in this thesis of the Itô Lemma, which states that if Xt is a stochastic
process that satisfies the SDE:

dXt = utdt+ vtdWt

and f(t,Xt) is a twice continuously differentiable function on R�
⇥ R, then Yt = f(t,Xt)

satisfies the SDE:

Yt =
@f(t,Xt)

@t
dt+ @f(t,Xt)

@x
dXt +

1

2

@
2
f(t,Xt)

@x2
dWt.

The forward Kolmogorov equations (1.2) can be expressed as a partial differential equation
(also referred to as the Kolmogorov equation) for the PDF p(x, t) of the process at time t by
considering a finite difference scheme [35]. This partial differential equation has an equiva-
lent representation as a stochastic differential equation (see, for example, Øskendal [90]) via
the Feynman-Kac formula.
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If (S, I) denotes the number of susceptible and infectious individuals at time t, then we
have the following system of SDEs [35], [37]:

 
dS
dI

!
=

 
�

�SI

N

�SI

N
� �I

!
dt+

vuut
 

�SI

N
�

�SI

N

�
�SI

N

�SI

N
+ �I

! 
dW (1)

t

dW (2)
t

!
, (1.5)

where W (1)
t and W

(2)
t are independent Brownian motions.

The SDE (1.5) has been used in various settings in infectious disease modelling [37], [91]
In some circumstances, stochastic differential equations like those presented above can be
solved either through transforming the system using Itô’s Lemma, or by solving the equiva-
lent PDE directly. In most cases, however, it is not possible to solve these equations analyt-
ically. The most widely-known numerical method for solving SDEs is the Euler-Maruyama
method, and is related to the Euler method for solving ordinary differential equations. Con-
sider the SDE:

dXt = u(t,Xt)dt+ v(t,Xt)dWt.

For a given step size �t, the Euler-Maruyama approximation to the solution Xt, which we
denote Yt, is given by:

Yt+�t = Yt + u(t, Yt)�t+ v(t, Yt)�Wt,

starting with Y0 = X0, and where �Wt is the difference (Wt+�t �Wt) ⇠ N (0, �t). Given
that this finite-difference scheme requires sampling from a normal distribution, one needs
to simulate sample trajectories of the solution in order to approximate the full distribution
of the solution Xt for all t.

In addition to infectious disease modelling and population processes, stochastic differential
equations are widely used in the mathematical finance literature. SDEs similar to (1.5) that
exhibit a square root in the diffusion term are known as the Cox-Ingersoll-Ross model in
mathematical finance, and are used to model changes in interest rates over time [92]. This
process can be obtained as a sum of squared Ornstein-Uhlenbeck processes, which take the
form

dXt = �aXtdt+ bdWt.

These processes are again widely used in finance, where they are known as the Vasicek
model (also used to model interest rates over time) [93], but they also have applications in
mathematical biology, where they have been used to model neuron membrane potential in-
creasing up until the point at which a neuron fires [94] and the evolution of gene expression
over time [95].
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1.2.6 Markov Chain Monte Carlo

In a Bayesian inference setting, one is interested in estimating not just the maximum like-
lihood value of a parameter of interest but, rather, estimating a distribution of values to
which the parameter belongs. Typically, one starts by choosing a prior distribution, which
may already encode some information about prior beliefs about the distribution (such as
the range of values it can take, or whether the distribution is symmetric) or may be less in-
formative (where, for example, a uniform distribution is often chosen). Suppose that ✓ is a
parameter of interest, ⇡(✓) is our chosen prior on this parameter and x is our data. Then, by
Bayes’ Theorem, the posterior distribution of ✓ given the data is:

⇡(✓|x) =
⇡(x|✓)⇡(✓)R
⇡(x|✓)d✓ .

The approach taken in Markov Chain Monte Carlo (MCMC) is to simulate a Markov chain
✓n such that the stationary distribution of this chain is the posterior distribution ⇡(✓|x) (see,
for example, [96]). In addition to a starting prior distribution ⇡(✓), one also needs a pro-
posal distribution Q (often taken to be a Normal distribution due to its symmetry, making
the Markov chain reversible) as well as starting values of the parameters of interest, ✓0. The
proposal distribution defines the transition probabilities of the Markov chain, and so should
be chosen to make computation straightforward.

One of the most common algorithms for implementing MCMC is the Metropolis-Hastings
algorithm. At each step n of the algorithm, a new value ✓̃ is proposed, given a previous
value ✓n. We then calculate the acceptance ratio based on these two proposed values of ✓n:

↵ =
⇡(✓̃)Q(✓n ! ✓̃)

⇡(✓n)Q(✓̃ ! ✓n)
,

where ⇡ is the likelihood of the posterior distribution at stage n. The new value ✓n+1 = ✓̃ is
then accepted with probability q = min{↵, 1} and rejected with probability 1 � q, whereby
✓n+1 = ✓n is chosen. In the case where Q is chosen to be symmetric, the calculation of the
acceptance probability ↵ is simplified to ↵ = ⇡(✓̃)

⇡(✓n)
.

In practice, one samples a large number of values of ✓ by running the algorithm for large
n and discards the first m samples (m is referred to as the burn-in period, which is often
chosen somewhat arbitrarily and represents samples for which the Markov chain is not yet
deemed to have converged). There is also a subtle choice to be made regarding how wide
the proposal distribution Q should be, as choosing too narrow a distribution (with low vari-
ance) will result in the full posterior distribution not being explored efficiently, whereas too
wide a distribution (high variance) will result in high rejection probabilities, which is also
inefficient. In both cases, these issues lead to autocorrelation in the samples of ✓ that are
drawn [97].
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Chapter 2

Calculation of Epidemic First-Passage
and Peak Time Distributions

This chapter is work that is ready to be submitted for peer review in scientific journals and
for submission to the arXiv.

Understanding the timing of the peak of a disease outbreak forms an important part of epi-
demic forecasting. In many cases, such information is essential for planning increased hos-
pital bed demand and the design of public health interventions. The time taken for an out-
break to become large is inherently stochastic, but after a certain number of cases has been
reached the subsequent dynamics can be modelled approximately using ordinary differen-
tial equations. We present analytical and numerical methods for approximating the time
at which a stochastic model of a disease outbreak reaches a large number of cases and for
quantifying the stochastic uncertainty around that time. We project this uncertainty for-
wards in time using a deterministic model in order to obtain a distribution for the peak tim-
ing of the epidemic that agrees closely with large simulations, but that for error tolerances
relevant to most realistic applications requires a fraction of the computational cost of full
Monte Carlo approaches. Authors: Jacob Curran-Sebastian*, 1, Ian Hall1, 2, Lorenzo Pellis1, 2,
and Thomas House1, 2

Keywords: Branching Processes; First Passage Time Distribution; Uncertainty Quantifica-
tion; Stochastic Transmission Model; Outbreak.

Affiliations: 1. Department of Mathematics, The University of Manchester, UK, 2. Alan
Turing Institute, London, UK

*Corresponding Author: jacob.curran-sebastian@manchester.ac.uk

2.1 Introduction

The COVID-19 pandemic, which began in late 2019 with an outbreak of the novel SARS-
CoV-2 pathogen in Wuhan, China, has underscored the need for mathematical modelling
that can quickly and accurately estimate important epidemiological quantities and provide
meaningful forecasts of disease dynamics. Insights from modelling are particularly cru-
cial for planning responses and interventions in the early stages of an epidemic. Producing
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epidemiological forecasts and estimating key parameters, such as the generation time, dou-
bling time and the basic reproduction number, R0, while an epidemic is ongoing is subject
to enormous uncertainty [63], [98], [99]. Stochastic models of disease transmission offer
an advantage in that they are able to capture the randomness of events that occur during an
outbreak, particularly when that outbreak is in its early stages [100], [101]. Not account-
ing for stochasticity can lead to discrepancies between deterministic model outputs and out-
break data. Furthermore, if super-spreading events and extinction of individual transmis-
sion chains are common in outbreaks of a given disease, then models that do not capture the
random nature of these events can create biased estimates of key epidemiological quantities
[11]. Fitting deterministic models to disease data fails to fully capture the underlying uncer-
tainty in the disease dynamics, effectively attributing any discrepancy between the model
and data to measurement error [102]. Relying on deterministic models alone can therefore
lead to bias in the estimation of epidemiological parameters, as well as an underestimation
of the true uncertainty in model outcomes [2] and so stochastic models are preferred wher-
ever possible [7].

Stochastic models also have an advantage in modelling the early phases of epidemics in that
they allow events to occur after a random time, thus accounting for the large variability in
the time taken for an outbreak to begin growing exponentially. Hybrid modelling that in-
corporates both stochastic and deterministic elements have been used previously to enrich
deterministic models with uncertainty in both the time to extinction and probability of ex-
tinction of an outbreak [103], [104] as well as the total duration of an epidemic [52]. In the
context of COVID-19, stochastic models have been used to generate a distribution of start-
ing times, together with initial conditions, for a deterministic model that only begins once
an epidemic has reached its exponential growth phase [10].

However, simulating sample trajectories from a stochastic model is computationally expen-
sive, particularly when the number of events is large, and also has the disadvantage that it
does not offer any mathematical insight into the true underlying distribution of the num-
ber of cases at a given time. This makes large stochastic simulations particularly unsuit-
able for model calibration or sensitivity analysis, for which many such simulations may be
needed in order to test different regions of a given parameter space. This is particularly rel-
evant when many potential outbreak scenarios need to be considered, as was the case for
modelling the roadmap for lifting mass lockdown restrictions in the United Kingdom [105].
The tools outlined in this paper are intended to enrich deterministic modelling of epidemics
with explicit consideration of stochastic effects in the early growth phase, in a way that pro-
vides more tractable insight and is computationally much more efficient than running large
outbreak simulations.

We describe a simple stochastic version of the Susceptible-Infectious-Recovered (SIR) model,
using a continuous-time single-type branching process, and use insights from this model to
define the time after the initial case is infected at which the dynamics of the subsequent epi-
demic are well-approximated by a deterministic model. Intuitively, stochasticity becomes
negligible when the number of infectives is sufficiently large, so we aim to describe the dis-
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tribution of the time, T , at which the population, Z(t), of the branching process crosses
a particular size Z⇤. No analytical results for this First Passage Time (FPT) are currently
known. We identify a suitable Z⇤ by imposing conditions on the population distribution at
a given time, T ⇤ say, that indicate stochasticity has become negligible, namely that both the
probability of having zero cases is close to zero (provided that the outbreak has not already
become extinct), and also that the standard deviation in the number of cases grows propor-
tionally with the mean. We formalise these conditions in Section 2.2.2. We then define Z⇤

as the mean population of the branching process at time T ⇤.

Given the lack of results on FPT distributions for branching processes, we consider a diffu-
sion approximation to the branching process studied by Feller [32], [33] for which the FPT
distribution can be investigated. The Feller diffusion has a known distribution at each time
point, and so we use existing results to obtain the FPT distribution for the number of cases
in the Feller approximation to reach the same level as that of the branching process at time
T

⇤. Finally, we consider an alternative approximation for the FPT distribution of the Feller
diffusion using a Gaussian Process, which has the advantage of ease of implementation and
applicability to a wider range of contexts than the epidemic models considered in this pa-
per.

Once we have obtained an approximate FPT distribution for the branching process, translate
this distribution forward in time to obtain the distribution of peak timings. The peak timing
is of considerable interest in epidemic scenario planning, as it constitutes the time at which
most resources will be required, particularly in terms of hospital capacity and in terms of
reducing the risk of ‘òvershoot”. Overshoot occurs after the peak when the largest number
of individuals are infectious compared to any other point of the epidemic, leading to poten-
tially large numbers of infections despite the herd immunity threshold having been reached
[106]. At this stage of an epidemic, large amounts of resources are required in order to en-
sure that further infections are kept low [107]. Whilst this motivates our consideration of
the peak timing distribution, our results can apply to the distribution of hitting times to any
large threshold in terms of cases, such as a threshold number of cases representing breached
testing capacity, detection of a cluster of infections, or some threshold requiring implemen-
tation of an intervention.

2.2 Methods

2.2.1 Stochastic Model of Early Growth

We consider an SIR model of an outbreak of an infectious disease in a population that is
fully susceptible to infection. We approximate the early linear growth phase of this out-
break using a continuous-time branching process with constant rates of infection, �, and re-
covery, �. Under this approximation, we assume that the host population is homogeneously
mixing and that there is no significant depletion of the susceptible population. This is effec-
tively a linearisation of the SIR model and, since we assume an infinite susceptible popu-
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lation for this stage, is equivalent to an SIS model in which infectious individuals become
susceptible immediately upon recovery. For a supercritical branching process, this assump-
tion implies that, conditioned upon non-extinction, an outbreak will be unbounded and grow
exponentially. The branching assumption, therefore, breaks down when the size of the out-
break reaches o(

p
N), where N is the size of the population (see [8], originally demon-

strated in [88]).

We do not currently consider any immigration of cases from an external source, so that the
population is assumed to be closed, and do not consider transmission or recovery rates that
depend on time, though this is the subject of ongoing and future work. We also do not con-
sider infectious periods that are not exponentially distributed, which would require using a
Bellman-Harris process [108], though this is the subject of ongoing work.

Based on these assumptions, our aim is to define the number of cases Z⇤ in an outbreak
which is large enough that the subsequent dynamics can be well-approximated by a deter-
ministic SIR model. We then wish to quantify the uncertainty around this time by estimat-
ing the first-passage time distribution to Z

⇤. To define Z⇤ we identify a time T ⇤ that is suf-
ficiently late for a supercritical branching process to be “far enough’’ from zero and then
define Z⇤ = E[Z(T ⇤)], where Z(t) denotes the number of active infectious cases, i.e. the
prevalence, at time t in our branching process. We focus here on prevalence, rather than cu-
mulative incidence, as the number of active infections determines how likely or unlikely the
outbreak is to go extinct (see, for example, Whittle [31]). By contrast, an outbreak that re-
mains small for an extended period of time could accumulate a high cumulative incidence
but still be dominated by stochastic effects such as extinction.

At each event in the branching process model, an infectious case produces a number of off-
spring that is an i.i.d. copy of a random variable Y , whose generating function is given by:

PY (s) =
1X

n=0

Pr(Y = n)sn =
1

� + �

�
�s

2 + �
�
, (2.1)

so that at each infection event, an infectious case produces an identical copy of itself as well
as a number of secondary cases given by dP

ds

��
s=1
� 1 = ���

�+�
. This choice of offspring dis-

tribution means that the time to an event (infection or recovery) for each individual is expo-
nentially distributed with mean � + �. The total infectious period for an individual in this
model is therefore exponentially distributed with mean � (see Appendix C.1 for a deriva-
tion of this property). Our branching process is therefore equivalent to a birth-death chain
model in which the expected number of secondary cases due to a single infected individual
over the course of their infection is given by R0 =

�

�
[87], [109].

The number of infectious cases at time t, Z(t) then has the generating function Q(t, s) given
by:

Q(t, s) = E
⇥
s
Z(t)
⇤
=

1X

n=0

Pr(Z(t) = n)sn. (2.2)

We obtain the probability of extinction for an outbreak starting with a single infectious case,
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which we denote q(t), by setting s = 0 in (2.2). It was shown by Harris [38] that Q(t, s)

satisfies the backward Chapman-Kolmogorov equation:

@Q

@t
= �⇢ [Q(t, s)� PY (Q(t, s))] , Q(0, s) = s

= �Q
2
� ⇢Q+ �, (2.3)

where ⇢ = � + �.

Solving (2.3) for Q(t, s) and setting s = 0 with initial condition q(0) = 0 gives an explicit
expression for the extinction probability q(t), given by:

q(t) := Q(t, 0) = 1�

✓Z
t

0

�e(���)t1dt1 + e(���)t

◆�1

(2.4)

(see Appendix A.1 for details). It is also straightforward to obtain the first and second mo-
ments, m1(t) and m2(t) of Z(t) [87] by differentiating (2.3) with respect to s and substitut-
ing s = 1, so that:

dm1

dt = rm1 ) m1(t) = ert (2.5)
dm2

dt = 2�(m1)
2 + rm2 ) m2(t) =

�

r

�
e2rt � ert

�
, (2.6)

where r = � � � is the growth rate for the number of cases. The variance at time t, �2(t) is
given by �2(t) = m2(t)� (m1(t))2.

2.2.2 Time to Establishment of an Outbreak

We define the time at which an outbreak that begins with an initial case is fully established
in the resident population, provided that it has not gone extinct, which we denote by the
random variable T . Once this time has been reached, we conclude that the subsequent dis-
ease dynamics are well approximated by a deterministic model. In order for this to be the
case, we require two conditions for t > T , namely that the local epidemic is growing ap-
proximately according to the mean growth curve and that the probability of having no cases
is approximately constant.

We choose an appropriate threshold T
⇤ based on these two conditions in order to find a dis-

tribution of the random variable T that is centred on the threshold T
⇤, i.e. T ⇤ = E[T ]. We

formalise our criteria for choosing T
⇤ as follows:

1. |P (Z(t) = 0)� q| < "2 for 0 < "2 < q and t > T2,

2. c(t) := |
�(t)
m1(t)

� l| < "1 for "1 > 0 and t > T1

37



where c(t) := �(t)
m1(t)

is the coefficient of variation, q(t) := P (Z(t) = 0) is the probability
of extinction of the process over time, q = limt!1 q(t) and l is constant. We then choose
T

⇤ = T
⇤("1, "2) such that both of these conditions are satisfied, i.e. T ⇤ = max{T1, T2}.

Note that in a supercritical process, corresponding to R > 1, both of these conditions are
guaranteed to be satisfied as t ! 1 (see, for example, [87, Ch. 7] for details). We inter-
pret T ⇤ as the central estimate for T , the time at which the pathogen is established in the
resident population, and investigate the uncertainty around this estimate by obtaining an
approximation to the first-passage time distribution for the branching process to the level
Z

⇤ := m1(T ⇤) = E[Z(T ⇤)].

These conditions, informally, imply that the epidemic is truly established in the popula-
tion (in the case of the first condition) and that exponential growth is likely to have been
achieved (in the case of the second). Together, they suggest that stochastic effects no longer
dominate the process, due to the variation being of the same order of magnitude as the mean
of the process. Condition (1) is analogous to the threshold condition of Whittle [31], which
has been used as a condition for departure from stochasticity in epidemic models in other
contexts [55], [110]. Other alternatives for choices of threshold include using Ball and Don-
nelly’s results on the peak size distribution to exclude the probability that an epidemic re-
mains in low numbers [49], which has been used to switch between stochastic and deter-
ministic models by Rebuli et al. [48]. Typically, the condition (2) on the coefficient of vari-
ation represents a stronger condition than all of these mentioned since it requires not only
that the epidemic is guaranteed to become large, but also that it has likely achieved expo-
nential growth. This ensures that the subsequent epidemic dynamics will agree closely with
deterministic approximations that grow exponentially without any stochastic effects.

The choice of "1 and "2 have an impact on the value of Z⇤ that is ultimately chosen. There
is some ad hoc choice to be made here about choosing these two values such that Z⇤ is
sufficiently large (i.e. that the probability of subsequent extinction is kept low and the co-
efficient of variation is constant) but not so large that the branching approximation is in-
valid [88]. This requires, in practice, testing of a few values of "1 and "2 to find a resulting
value of Z⇤, and usually choosing the smallest value of "1 and "2 such that Z⇤

<
p
N . We

choose, as a baseline, "1 = "2 = 10�3, though we test our results for multiple different
values (and, hence, different values of Z⇤), and discuss the differences in Section 2.3.2.

2.2.3 Diffusion Model Approximation

In order to make progress on a first-passage time distribution for our branching process,
we first rely on a diffusion approximation studied by Kurtz [111], [112] and Jagers [113].
This diffusion approximation was first introduced by Feller [32], [33], and proven using the
Fokker-Planck equations by Jiřina [114]. This diffusion is a special case of the Kramers-
Moyal expansion of the Kolmogorov equation for the branching process, which takes the
first two terms of the Taylor expansion of the probability density function for the transition
rates of the process [115]. The Feller diffusion is also known as the squared Bessel process
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[93], [116] or, in finance, as the Cox-Ingersoll-Ross diffusion [92] and has been used exten-
sively to study changes in interest rates.

We begin with the classic Feller branching diffusion approximation to the single-type branch-
ing process. If Zt is the number of infectious cases at time t, then as t grows large Zt obeys
the following stochastic differential equation:

dZt = rZtdt +
p
⇢ZtdWt, (2.7)

where dWt denotes a standard Wiener process. As Feller noted in his original paper, the
above process has an absorbing boundary at Zt = 0, so that there is a non-zero probability
that the process becomes extinct. We can represent this SDE equivalently as a partial differ-
ential equation via the Fokker-Planck equation, so that:

@f(t, x)

@t
=
⇢

2

@
2

@x2
[xf(t, x)]� r

@

@x
[xf(t, x)] , (2.8)

where f(t, x) is the probability density function of the number of cases at time t. Feller
demonstrated that the solution is the PDF of a non-central �2 distribution with zero degrees
of freedom [9], [33], which has the explicit form:

f(t, x) =
rert

⇢

2(ert � 1)

r
ert
x
I1

 
2r
p
xert

⇢

2(ert � 1)

!
exp

✓
�
r(ert + x)

⇢(ert � 1)

◆
, (2.9)

where I1(·) is the modified Bessel function of the first kind. We derive from first principles
the PDF in (2.9) from (2.8) using the method of characteristics (see Appendix A.2). Note
that (2.9) does not represent a true density, since

R1
0 f(t, x) dx = 1� exp{��

2} < 1, where
� = 4ert/(⇢(ert�1)). This is because the non-central �2 distribution has mass at zero equal
to exp{��

2}, which represents the extinction probability at time t for the Feller process. In
order to obtain a true density for the number of cases at time t, we condition our process on
never reaching zero cases to obtain a density f̂(t, x) defined by:

f̂(t, x) =
f(t, x)

(1� e��
2 )
. (2.10)

From the non-central �2 distribution we obtain the First Passage Time (FPT) distribution
for the Feller process, which approximates the FPT distribution for the branching process.
At each time t, the integrated density F̂ (t, x) =

R1
0 f̂(t, x) dx = Pr(Zt  x) gives

the probability that the number of cases has not yet reached the level x, given that the pro-
cess has not yet become extinct. We then obtain the cumulative density function, Ux(t) =

Pr(Tx  t) for the random variable Tx = inf{t : Zt � x} directly from the CDF F̂ (t, x)

[94]. Choosing the level x = Z
⇤ with Z

⇤ = E[Z(T ⇤)] defined in Section 2.2.2 for the
branching process, and henceforth ignoring the subscript so that T = TZ⇤ and U(t) =

UZ⇤(t), we have that:
U(t) = 1� F̂ (t, Z⇤) = Pr(T  t). (2.11)
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2.2.4 Gaussian Process Approximation to the Feller Diffusion

As well as using the non-central �2 solution of (2.8), we can also approximate the FPT dis-
tribution of the Feller diffusion using a Gaussian Process. Using a Gaussian Process ap-
proximation instead of the exact non-central �2 distribution for the Feller Diffusion has the
advantage of being applicable to a more general set of diffusion problems. In particular,
Gaussian approximations to solutions of stochastic differential equations can be applied to
diffusion problems with more than one type, as well as to time-inhomogeneous diffusion
problems [37], [117]. This is research that we are currently undertaking and that, we hope,
will be the subject of future work in quantifying uncertainty in hitting times for stochastic
models. Archambeau et al. [117] note that a stochastic differential equation of the form:

dXt = (A(t)Xt + b(t))dt+
p

V (t)dWt (2.12)

has a Gaussian Process solution GP(m(t),⌃(t)), whose mean and variance satisfy the fol-
lowing ordinary differential equations:

dm
dt = A(t)m(t) + b(t) (2.13)
d⌃
dt = 2A(t)⌃(t) + V (t). (2.14)

This Gaussian Process solution does not require the process to be homogeneous in time and
also has an analogous formulation if Xt, b(t) 2 Rn are vectors and A(t), V (t), dWt 2 Rn⇥n

are matrices. The solutions of (2.13) and (2.14) are chosen such that the Kullback-Leibler
divergence between the distribution of Xt and the Gaussian Process GP(m(t),⌃(t)) is min-
imised (see [117]).

In order to make a Gaussian Process approximation to the Feller diffusion, we first need to
transform the Feller stochastic differential equation (2.7) using Itô’s Lemma [118] so that
it has the form 2.12. We start by making the transformation Xt = h(t, Z) =

p
Zt, so that

(2.7) becomes:

dXt =
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2
dWt. (2.15)

From the above equation, we make the approximation that O(X�1
t ) terms are small, and

can therefore be ignored, so that our equation finally becomes:

dXt ⇡ rXtdt+
p
⇢

2
dWt, (2.16)

which is in the form of (2.12). This approximation does not hold when Xt << 1, when
the original process Zt is close to extinction. We should also note that (2.16) no longer has
Xt = 0 as an absorbing state. We must therefore impose the additional boundary restriction
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Xt � 0 and dXt = 0 for Xt = 0 in order for the process (2.16) to share the same properties
as (2.7). Now that we have our SDE in the required form, we can write a Gaussian Process
solution for our approximation GP(m(t),⌃(t)), for which we solve the ODEs:

dm
dt = rm(t) (2.17)
d⌃
dt = 2r⌃(t) +

⇢

4
. (2.18)

As with the Feller diffusion, we can now obtain the first passage time distribution for the
Gaussian Process hitting the level

p
Z⇤ directly from the CDF, �(·), of the Gaussian distri-

bution at each time t, this time conditioning on the process being greater than 0 (since the
Gaussian Process at time t may also take negative values, unlike the non-central �2 distri-
bution). If UG(t) is the PDF for the first passage time distribution of the Gaussian Process
to the level

p
Z⇤, conditional on the process being greater than zero, then we have the ex-

plicit expression:

UG(t) =
1� �(

p
Z⇤ ; m(t),⌃(t))

1� �(0 ; m(t),⌃(t))
. (2.19)

2.2.5 Linear Noise Approximation

The Linear Noise Approximation (LNA) is a standard method used to approximate solu-
tions of stochastic differential equations introduced by van Kampen [119]. We consider the
LNA to equation (2.7)as an additional comparison to the approximations that we obtain in
the previous sections. The LNA is based on rewriting the stochastic process Zt as the sum
of a deterministic part, '(t) and a stochastic noise term ⇠t. Choosing '(t) = ert to be the
deterministic part, we make the substitution Zt = ert + ⇠t, so that:

dZt = rertdt+ d⇠t
= rZtdt +

p
⇢ZtdWt

) d⇠t = r⇠tdt +
p
⇢ert(1 + e�rt⇠t)dWt. (2.20)

Based on the final expression for d⇠t and, assuming e�rt
⇠t to be small, we may use a power

series expansion for
p
1 + e�rt⇠t in order to obtain the first order Linear Noise Approxima-

tion
d⇠t = r⇠tdt +p⇢e rt

2 dWt , (2.21)

where in the power series we have ignored terms that are O(⇠te
�rt
2 ). We note that this is not

a well-controlled expansion since this quantity will not typically be small compared to 1,
however it is included since such expansions are an extremely popular approach and may be
attempted without guarantees of convergence.

As with the square root of the Feller process, equation (2.21) can be solved using equations
(2.13) and (2.14) in order to give a solution that is normally distributed. Solving in this
way, we find that the first-order Linear Noise Approximation to Zt is given by a Gaussian
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distribution that takes the form:

Zt ⇡ N

⇣
ert, ⇢

r
(e2rt � ert)

⌘
. (2.22)

2.2.6 Peak Time Distribution for a Deterministic Model

The distributions of first passage times obtained in the previous section induce a distribu-
tion on the time taken for the resulting outbreak to hit its peak. Once the threshold Z

⇤ is
reached, we model the subsequent epidemic using the standard SIR model of Kermack and
McKendrick [5]. We consider a closed population of size N , with an initial number of in-
fectious cases Z⇤ that starts at time t = T

⇤.
8
>>><

>>>:

dS
dt = ��SI

N
, subject to S(t = T

⇤) = N � Z
⇤

dI
dt =

�SI

N
� �I, subject to I(t = T

⇤) = Z
⇤
.

R = N � S � I

(2.23)

We make the further assumption that R(T ⇤) ⇡ 0 since, for the branching process, we as-
sume that the number of susceptible individuals in the population is not significantly de-
pleted so that S(T ⇤) ⇡ N . We note that this assumption is also required up to time t = T

⇤

in order for the linear branching process to be a valid approximation of the epidemic dy-
namics. However, this observation suggests a trade-off in the choice of ✏ and, hence, of Z⇤.
The choice of threshold ✏ should not be so small as to make Z⇤ large enough that the as-
sumption of negligible depletion of the susceptible population is no longer valid. One could
improve upon this assumption by considering the total progeny of the branching process in
order to keep track of individuals that have been infected but have since recovered, but we
find that making this assumption does not have a large impact on our results. A comparison
of the true peak timing for the stochastic SIR epidemic compared with the estimated peak
timing using a hybrid branching process and deterministic model is given in Appendix A.4.

Solving (2.23), we can obtain the time at which the epidemic reaches its peak, tpeak. We can
then simply take the distribution of the hitting time for the peak of the epidemic to be the
same as the FPT distribution centred on T

⇤ obtained in the previous sections, translated for-
wards by the difference tpeak � T

⇤. This is equivalent to the simulated distribution that we
would expect to obtain if we ran multiple epidemics by solving (2.23) and drawing random
initial times t0 from the FPT distribution T .

2.3 Results

In order to compare the FPT distribution obtained in (2.2.3) and (2.2.4) we model an out-
break of COVID-19 in the United Kingdom using our SIR branching process model defined
in (2.2.1). As a baseline we take R0 = 2 with an infectious period of 7 days, so that � = 2

7

and � = 1
7 . These parameter choices correspond to a doubling of tD = 4.85 days, which
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Figure 2.1. Extinction probability, q(t), and coefficient of variation, c(t) = �(t)
m1(t)

, over time, for R = 2. From
these two curves, we choose the time T ⇤ at which both are within ✏ of their asymptotic limits. For ✏ = 10�3,

we have T ⇤ = 34 days. The mean number of cases for the branching process at time t = T ⇤ is given by
E[Z(T ⇤)] = 125 cases.

is within the range of doubling times quoted in the literature for COVID-19 in 2020 [120].
We also check the sensitivity of our approximation to different values of � and �, the re-
sults for which are shown in Appendix A.3. We assume the total size of the population to
be N = 107, corresponding roughly to the size of the Greater London area.

2.3.1 Branching Process SIR model

In order to choose the time at which we are able to switch from a stochastic model to a de-
terministic one, we calculate (2.4) for our branching process model together with (2.5) and
(2.6) in order to obtain q(t) and c(t) for our choices of parameters. These results are plotted
in Figure 2.1. We choose a common threshold ✏, defined in Section 2.2.2, for both curves in
order to calculate the times T ⇤

1 and T
⇤
2 after which q(t) and c(t) are approximately constant,

respectively. Figure 2.1 shows the resulting choice for T ⇤ obtained by taking the maximum
of these two times. For our baseline model, with R = 2, we choose ✏ = 10�3 and obtain
T

⇤ = 34 days, with a mean of Z⇤ = E[Z(T ⇤)] = 125 cases for the branching process.

To investigate the true underlying FPT distribution for the branching process to the level
Z

⇤ = 125, we simulate sample trajectories of our branching process using the Gillespie
algorithm [89], stopping the algorithm at the time at which the number of cases reaches
Z

⇤. We run 100,000 simulations of the branching process, stopping each simulation once
the number of cases reaches either zero or Z⇤, and obtain an FPT distribution based on the
stopping times for each simulation. We discard simulations for which the branching pro-
cess goes extinct, so that the FPT distribution is conditioned on non-extinction. This en-
sures consistency with the approximations of the FPT made using the Feller Process and
Gaussian Processes, which we also condition on the number of cases not reaching zero. We
treat this sampled FPT distribution as a benchmark, to which we compare the distributions
obtained via both the Feller and Gaussian Process approximations of the FPT distribution.
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2.3.2 Feller Diffusion and Gaussian Process Approximations

To compare the FPT distribution for the Feller diffusion with that of the branching process,
we make use of the analytic result (2.9) and compare this with simulations of the Feller pro-
cess using the Euler-Maruyama method [121]. Comparisons of both the simulated and an-
alytic FPT distributions are shown in figure 2.2. For simulating the Feller diffusion, we ran
100,000 simulations and compared the resulting FPT distribution with the analytic distribu-
tion derived from the non-central �2 distribution, and found that they are almost identical.
We also note that, compared to simulating the branching process via the Gillespie ⌧ -leaping
algorithm, running the Euler-Maruyama simulation required significantly lower total com-
putation time, even for a ten-fold increase in the number of simulations (see Table 2.1). We
also calculate the FPT distribution based on the Gaussian Process approximation described
by equation (2.19).

In order to evaluate the performance of each of our approximations, we compare the cumu-
lative density functions (CDFs) obtained by both the Feller and Gaussian Process approx-
imations with the (empirical) CDF of our simulation output for the branching process. We
measure the closeness of each distribution to the simulated “true” distribution using both
the Kullback-Leibler divergence and the Kolmogorov-Smirnov distance. We also compare
our results with the empirical CDF of the simulation output obtained with a lower number
of simulations, in order to demonstrate the trade-off between accuracy and computational
cost. A comparison of the PDF of the first passage time distribution, T , estimated using all
of these methods is given in Figure 2.2. A comparison of the required computation time for
calculating the FPT distribution using each of the methods described in this paper is given
in table 2.1.

In Figure 2.4, we demonstrate the convergence of each approximated FPT distribution to
the true distribution as the threshold ✏ is changed, corresponding to different choices for T ⇤

and for Z⇤. We find that, of all of our methods, the non-central �2 distribution arising from
the Feller approximation to the branching process provides the closest approximation for
almost all values of ✏ that we considered, both with respect to the Kullback-Leibler diver-
gence and the Kolmogorov-Smirnov distance. The Gaussian Process approximation of the
FPT distribution also demonstrates good convergence with KL divergence below 10�4 for
all choices of Z⇤ above the baseline Z⇤ = 125. Both of our approximations perform signif-
icantly better than the first-order Linear Noise Approximation with respect to both the KL
divergence and the KS distance metric.

2.3.3 Peak Timing Distribution

Having obtained first passage time distributions for the number of cases to reach the level
Z

⇤, we translate the distribution forward in time using the deterministic model described in
Section (2.2.6) so that the mean peak time coincides with the peak obtained from the deter-
ministic SIR equations. The resulting peak time distributions using the Feller and Gaussian
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Figure 2.2. Comparison of estimated probability density functions for the First Passage Time distribution with
for R0 = 2 and Z⇤ = 125 cases, using the 100,000 simulations of the branching process as a benchmark. We
compare FPT distributions obtained via a) 1,000 simulations of the branching process (labelled ‘BP approx.’),

b) the exact non-central �2 distribution for the Feller process, c) 100,000 simulations of the Feller process
(labelled ‘Feller’) and d) the exact distribution for our Gaussian Process approximation (labelled ‘GP’).

✏ = 10�3 ✏ = 10�4 ✏ = 10�5

Method Runs Time it/s Time it/s Time it/s
Gillespie 100,000 0:20:43 80.4 1:14:52 22.26 5:32:03 5.02

Euler-Maruyama 100,000 0:01:35 1045 0:02:13 746.79 0:04:29 370.79
Non-central �2 N/A 0:00:25 392.43 0:00:25 393.06 0:00:25 392.21

Gaussian Process N/A 0:00:07 N/A 0:00:07 N/A 0:00:07 N/A

Table 2.1. Run times for each different method approximating the FPT distribution, for different choices of ✏.
For large numbers of events, the Gillespie algorithm takes significantly longer to run than the other methods

of estimating the FPT that rely on uniform time steps of size dt = 0.1.

Process approximations are shown in Figure (2.3). We also show the window of uncertainty
around the peak in which 95% of the distribution of peak times lie. This provides a useful
tool for planning the allocation of resources and interventions required during the peak of
an epidemic, including increasing hospital capacity [1].

Relative to the FPT distribution obtained from the Feller diffusion approximation, we find
that our Gaussian Process approximation has a longer-tailed FPT distribution. This accounts
partly for the somewhat poorer convergence of the Gaussian Process approximation to the
underlying distribution with respect to the Kolmogorov-Smirnov metric, and results in larger
uncertainty in estimating the peak time. For R0 = 2, we observe a 48-day window in which
the peak is likely to fall using the Gaussian Process approximation, compared with a 34-day
window for the equivalent Feller diffusion approximation.

2.4 Discussion

We have introduced two methods for approximating the temporal distribution for an epi-
demic whose early growth phase can be modelled using a branching process to reach a cer-
tain number of cases. We determine a suitable number of cases that should be reached in
order for a deterministic model to be appropriate, based on analytic properties of the branch-
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Figure 2.3. Deterministic outbreak for our baseline scenario with R0 = 2 and T ⇤ = 34 days. Starting from
time t0 = T ⇤, shown in green (dashed line), we solve the SIR equations for an outbreak with I0 = Z⇤ initial
cases. We take the 5th and 95th percentile from the FPT distribution (green band) which we translate forward
in time to obtain the uncertainty around the mean peak time (red band). Top left: peak timing uncertainty of

48 days due to the Gaussian Process approximation. Top right: peak time distribution for the Gaussian
Process approximation, compared with the simulated distribution generated from the branching process.

Bottom left: peak timing uncertainty of 34 days due to the Gaussian Process approximation. Bottom right:
peak time distribution for the Feller diffusion approximation, compared with the simulated distribution

generated from the branching process.

Figure 2.4. Convergence of approximated FPT distributions to the true distribution (estimated via 100,000
simulations of the Gillespie algorithm) for an outbreak with R0 = 2, given different choices of Z⇤. We

compare approximations using the non-central �2 distribution (�2), the Gaussian Process approximation (GP)
and the first-order Linear Noise Approximation (LNA) using the Kullback-Leibler divergence and the

Kolmogorov-Smirnov distance between distributions. We also compare our approximations with the 95th

percentiles from 1,000 bootstrapped samples of size 1,000 of the branching process simulated using the
Gillespie algorithm. The baseline of Z⇤ = 125 cases is plotted in red (dashed).
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ing process. Once we obtain this time threshold, we are able to calculate the distribution
in times taken for the process to reach this level, which we then translate forward in time
to obtain a distribution of peak times for a deterministic approximation that starts with a
stochastic growth phase.

Our first method uses the solution of the widely-used Feller process to approximate the dy-
namics of the branching process, for which we obtain exact expressions using the Fokker-
Planck equation. The second method makes an additional approximation to the square root
of the Feller process, which allows for a Gaussian process solution from which we obtain
an approximate FPT distribution.

The advantage of using our methods is threefold: Firstly, we show in Figure 2.4 that, for
reaching a large number of cases, our methods approximate the true FPT distribution bet-
ter than the distribution obtained via the Gillespie algorithm when only 1,000 trajectories
are simulated. Secondly, our methods provide explicit expressions for the approximate dis-
tributions of both the number of cases and the hitting times, which gives greater mathemat-
ical insight than simulation alone. Finally, our approach is well suited to model calibration,
particularly when estimates of the FPT distribution are needed for many different combi-
nations of parameter choices. Even compared to only 1, 000 trajectories obtained via the
Gillespie algorithm, our methods require much less computation time to approximate the
FPT distribution (see Table 2.1). Whilst not as close to the true underlying FPT distribu-
tion as the non-central �2, the Gaussian Process approximation offers an advantage over the
non-central �2 in that it is straightforwardly applicable to a wider range of processes than
the ones considered in this paper. In particular, the authors are currently working to ap-
ply these approximations to multi-type branching processes, but we also envisage that our
Gaussian Process approximation being useful in time-inhomogeneous settings and for more
general branching processes.

We have applied our results for the FPT distribution to calculate the peak time for an epi-
demic that evades extinction in the early growth phase. However, our results can be ap-
plied in a much broader context than simply in mathematical epidemiology; indeed, branch-
ing processes have been used to model the growth of cell populations, multi-strain dynam-
ics, phylogenetic trees as well as many other processes in biology and physics [10], [110],
[122], [123].

Our methods presented in this paper enhance deterministic modelling of epidemics by ac-
counting for the stochastic uncertainty in the peak timing, but they can also help modellers
to quantify the uncertainty due to parameter choices. Our results are obtained in only a
fraction of the computation time taken to simulate the peak timing distribution using the
full stochastic SIR model, which makes our methods more suitable for conducting grid
searches of parameter space in order to quantify the parameter uncertainty in key model
outcomes. We anticipate these approximations being used for scenario planning, where a
number of different potential outcomes need to be considered in order to provide insights
for operational planning. In particular, our results enhance deterministic models in this re-

47



spect by providing a time window in which the peak number of infections is likely to occur.

Code availability

The code needed to reproduce the results shown here is available at https://github.
com/JCurran-Sebastian/FirstPassageTime_Branching
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Chapter 3

Stochastic Invasion of Variants of
Concern in a Population with
Heterogeneous Immunity

This chapter is work that is ready to be submitted for peer review in scientific journals and
for submission to the arXiv.

During the COVID-19 pandemic, the emergence of novel variants of concern (VoC) has
prompted different responses from governments across the world aimed at mitigating the
impacts of more transmissible or more harmful strains. We model the invasion of a novel
VoC into a population with heterogeneous vaccine- and infection-acquired immunity us-
ing a multi-type branching process framework with immigration. We define the number of
cases needed to be reached after which stochastic extinction of this strain is unlikely and,
therefore, the strain has become established in the population. We use a mixture of stochas-
tic simulations and analytic results to estimate the first-passage time distribution to reach
this number of cases. This gives a time window that is useful for policymakers planning in-
terventions aimed at suppressing or delaying the introduction of novel VoC.
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Keywords: Multi-type Branching Process, Variants of Concern, Vaccination, Host Hetero-
geneity, COVID-19
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3.1 Introduction

The emergence of SARS-CoV-2 in December 2019 as well as of novel variants of concern
(VoCs) has created a focus on border controls and nationwide lockdowns as a defence against
importing infected cases into a population. Border restrictions are known to have only lim-
ited effectiveness in delaying the ingress of infected cases [57], [124], but the ability of an
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imported strain to establish itself in a society is complicated by the levels of non-pharmaceutical
interventions (NPIs) and by how advanced the vaccination program against the existing res-
ident strain is. Taking into account both the external infection pressure and the internal dis-
ease dynamics results in a large degree of uncertainty when estimating the time taken for a
novel strain to become established. However, estimating the duration between the ingress of
a novel strain and its establishment in the population, as well as the uncertainty in this dura-
tion, is crucial for policymakers to be able to plan appropriate interventions, and to evaluate
the relative benefits of different policies.

Branching processes are widely applied in epidemic modelling, and have been used dur-
ing the COVID-19 pandemic to model the early behaviour of outbreaks in homogeneously
mixed populations [125], [126] as well as to understand the extent and nature of super-spreading
events [12]. More structured branching process models have also been used to understand
household transmission and the effectiveness of contact tracing [127]. We use a multi-type
branching process model to understand the stochastic invasion of a VoC into a population
where a vaccination program is ongoing and where part of the population exhibits immu-
nity due to prior infection with a resident strain. We use this framework to obtain the prob-
ability that an imported strain ultimately becomes established in the population, as well as
the mean and variance in the number of cases over time. Furthermore, we quantify the time
after which the system’s dynamics can be well approximated by a deterministic model, at
which point the epidemic grows exponentially. We interpret this as the time taken for the
novel strain to become fully established in the population, after which point further restric-
tions may need to be put in place at a population level in order for the epidemic to be con-
trolled. We approximate the uncertainty around this time scale by using a one-dimensional
diffusion approximation to the multi-type branching process, which has an analytic solu-
tion, and we compare these results with those obtained via stochastic simulations.

3.2 Methods

3.2.1 Multi-type Branching Process Model with Heterogeneous Immunity

We model the disease dynamics of an invading VOC into a population that has had previ-
ous exposure to a resident variant and has undergone an incomplete vaccination program.
We assume that neither existing immunity in the population due to prior infection nor due
to vaccination is totally effective at blocking infection by the novel VOC.

We consider an epidemic for which infected cases are divided into 2m types, consisting of
m exposed types and m infectious types (so that, in the language of branching processes,
we have m types-at-birth [128, Ch. 6]). The distinction between different types-at-birth
corresponds to heterogeneous profiles in the susceptibility and infectiousness of different
groups within the resident population. For our model, we mainly consider heterogeneous
susceptibility resulting from prior infection to a heterologous strain and from a partial vac-
cination program. We do not consider the difference in immunity conferred by vaccines of
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different types or by different numbers of doses, effectively assuming that all vaccinated in-
dividuals have received the same doses of the same type of vaccine.

Following [109], we denote the time time to an event (either end of incubation period, an
infection event or recovery) of a case of type i by !i = � for 1  i  m and by !i =
P

m

j=0 �j + � for m + 1  i  2m. The probability generating function (PGF) for the
offspring distribution of this process is given by:

Pi(s) =

8
>>><

>>>:

si+m for 1  i  m

Pm
j=0 �jsjsi

!i
+ �

!i
for m+ 1  i  2m

(3.1)

where s = (si)2mi=1 is a vector of length 2m.

We first consider a process that starts with a single case of type i only at time t = 0, in or-
der to obtain the probability of extinction for a lineage arising from a single index case. For
this process, we consider the vector Yi(t) = (Yij(t)) (1  i, j  2m), where Yij(t) denotes
the number of cases of type j at time t. For each i, the random variable Yi(t) has PGF

Qi(t, s) =
1X

n1,n2,...,n2m=0

Pr(Yi(t) = n)sn, (3.2)

where both s = (s1, . . . s2m) and n = (n1, . . . n2m are vectors, where nj refers to the num-
ber of cases of type j. The notation sn denotes the product sn1

1 · · · · · s
n2m
2m .

For each i, the generating functions Qi(t) satisfy:

@Qi(t, s)

@t
= �!i[Qi(t, s)� Pi(Q)], subject to Q(0, s) = s, (3.3)

where Q(t, s) = [Qi(t, s)]2mi=1 is a vector. Setting s = 0 gives the probability qi(t) =

Qi(t, 0) that, by time t, there are no cases of any type for a process starting with a single
particle of type i.

Our main object of study is the process that began with no cases of any type, but that allows
immigration of exposed cases of type i for 1  i  m at a constant rate ⌘i and write ⌘ =
P

i
⌘i, and the vector ⌘ = (⌘i). We denote the total number of cases of all types at time t

for this process by Z(t) = (Zj(t)) (1  j  2m), with the associated generating function:

R(t, s) =
1X

n1,n2,...,n2m=0

Pr(Z(t) = n)sn, (3.4)

where n = (n1, n2, . . . , n2m). We obtain R(t, s) by solving:

@R(t, s)

@t
= �⌘R(t, s) +

2mX

i=0

⌘iR(t, s)Qi(t, s), subject to R(0, s) = 1. (3.5)

Again setting s = 0, we find the probability that there are no cases of any type at time t,
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r(t) = R(t, 0). In the case of a supercritical process (corresponding to R0 > 1), we note
that ⇢ := limt!1 r(t) = 0 and, hence, the probability of having zero cases becomes arbi-
trarily small. This is because when immigration is allowed to occur, new cases are allowed
to enter the population, and hence the state Z(t) = 0 is no longer absorbing for any t. This
means that we should no longer interpret r(t) as a probability of extinction, however, we
may interpret r(t) << 1 loosely as evidence that Z(t) is sufficiently bounded away from
zero at time t.

The vector of the mean number of cases of each type at time t, µ(t) = E[Z(t)] = (E[Zj(t)])2mj=1

satisfies:
dm
dt = ⌦m(t) + ⌘(t) subject to m(0) = Z(0), (3.6)

where the matrix ⌦ has (i, j)th entry given by ⌦i,j =
@Pi
@sj

(1)� !i, with 1  i, j  2m.
We also obtain expressions for the time-dependent variance of this process following [109].
We consider a population that, at least initially, begins with no cases infected with the in-
vading strain so that any outbreak is seeded by cases imported from outside the population.
At time t, the variance-covariance matrix for the number of cases is given by Var(Z(j)(t)) =

E[Z(j)(t)TZ(j)(t)]� E[Z(j)(t)]TE[Z(j)(t)]. The superscript j denotes the process for which
only cases of type j are imported. For such a process, Var(Z(j)(t)) reduces to calculating
the integral:

Vec(Var(Z(j)(t))) =

Z
t

0

⌘j

⇥
Vec[Vj(t� ⌧)] + e(t�⌧)⌦⇤

⌦ e(t�⌧)⌦⇤Vec[uju
T

j
]
⇤

d⌧ (3.7)

Here we have made use of the Vec operator, which stacks the columns of an m⇥n matrix to
produce a vector of length mn and the Kronecker product. Vj(t) is the variance-covariance
matrix at time t of the immigration-free process that begins with a single case of type j.

Splitting (3.7) into the sum of two integrals, we first write:
Z

t

0

e(t�⌧)⌦⇤
⌦ e(t�⌧)⌦⇤ d⌧ = '1(⌦

⇤
�⌦⇤) (3.8)

where A �B is the Kronecker sum of an r ⇥ r matrix A and an n ⇥ n matrix B given by
A�B = A⌦ In + Ir ⌦B and '1 is the matrix exponential integrator function given by:

'1(A) = (exp(A)� Ir)A
�1 (3.9)

for an invertible r ⇥ r matrix A. [129]

For the first part of the integral (3.7) we make use of the fact that

Vec[Vj(t)] = (uj ⌦ I ⌦ I)

Z
t

0

es⌦ ⌦ e(t�s)⌦⇤
⌦ e(t�s)⌦⇤ ds (3.10)
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so that
Z

t

0

Vec[Vj(t� ⌧)] d⌧ = (uj ⌦ I ⌦ I)

✓Z
t

0

Z
⌧

0

es⌦ ⌦ e(t�s)⌦⇤
⌦ e(t�s)⌦⇤ ds d⌧

◆

If we define the variance-covariance matrix, ⌃(t), of the overall number of cases at time t
when cases of all types are imported, then we have that:

⌃(t) =
2mX

j=1

Var(Z(j)(t)) (3.11)

Finally, adding all of the elements of ⌃(t), we obtain the variance �2(t) of the total number
of cases at time t for this outbreak:

�
2(t) =

X

i,j

⌃i,j(t) (3.12)

3.2.2 Time to Establishment of Invading Strain

We now define the time at which an outbreak that has been seeded by cases imported from
an external epidemic is fully established in the resident population. In order to define this
time, we consider a total number of cases, Z⇤, that must be reached that is large enough so
that the subsequent epidemic dynamics are well approximated by a deterministic model.
In order for this to be the case, we require two conditions, namely that the local epidemic
is approximately according to the mean growth curve and that the probability of having no
cases is negligible. Given Z

⇤, we define a time T ⇤ such that Z⇤ =
P2m

j=1 Z
(j)(T ⇤), with T

⇤

being the minimum time such that our two criteria are satisfied.

We formalise these conditions as follows:

1. q(t) := P (Z(j)(t) = 0, 1  j  2m) = q � "2 for 0 < "2 < q and t > T2,

2. c(t) := �(t)
µ(t) = l + "1 for "1 > 0 and t > T1

We then choose T ⇤ = T
⇤("1, "2) such that both of these conditions are satisfied, i.e. T ⇤ =

max{T1, T2}, with Z
⇤ =

P2m
j=1 Z

(j)(T ⇤). Note that in a supercritical process, correspond-
ing to R0 > 1, both of these conditions are satisfied as t!1 (see [87, Ch. 7] for details).

Having defined both T
⇤ and Z

⇤, we are interested in finding the distribution of the random
variable T , which is the First-Passage Time (FPT) of the branching process Z(t) to Z

⇤, de-
fined as:

T = inf
(
t > 0

�����

2mX

j=1

Z
(j)(t) = Z

⇤

)
. (3.13)
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3.2.3 Diffusion Model Approximation

In order to study first-passage time distribution for our branching process, we first rely on a
diffusion approximation, studied by Kurtz [111], [112], but first introduced by Feller [32],
[33]. For the multi-type process Z(t) in the absence of immigration (corresponding to ⌘ =

0), the Feller diffusion approximation, which we denote by Xt, satisfies the vector stochas-
tic differential equation:

dXt = ⌦Xt dt+
p

⌃ dWt, (3.14)

where = diag(!iX
(i)
t ), and Wt = (W (i)

t ) is a vector of independent standard Brownian
motions [130], [131].

If ⌦ is diagonalisable, so that ⌦ = P�1⇤P , then we may rewrite the vector Xt in terms of
the eigenbasis of ⌦ that forms the columns of the matrix P . Letting Vt = PX t, and there-
fore Xt = P�1Vt, we may rewrite (3.14) using the multivariate version of Itô’s Lemma
[132]:

dVt =
@

dX [PXt]dXt = P dXt

= ⇤V tdt+ P
p

⌃ dWt. (3.15)

The transformation in equation (3.15) therefore ensures that the drift matrix is diagonal.

To the knowledge of the authors, an analytic solution to (3.15) is not yet known. Instead,
we may approximate the growth of the branching process by considering the growth, V (1)

t ,
along the dominant eigenvector v1. Then Xt = P�1Vt has X(i)

t = (⇠i,1V
(1)
t )i, where

P�1 = (⇠i,j). Taking only the first component in (3.15) and approximating V
(i)
t ⇡ 0 for

i � 2, we may reduce 3.15 to the single dimensional diffusion:

dV (1)
t ⇡ rV

(1)
t dt+ (P

p

⌃ dWt)
(1)

= rV
(1)
t dt+

 
2mX

i=1

�1,idW (i)
t

!

= rV
(1)
t dt+

vuut
2mX

i=1

�2
1,idWt (3.16)

where we have set V (i)
t = 0 for i � 2 for the approximation in the first line, and where

� = P
p
⌃. We have also used the linear sum c1dW (1)

t + c2dW (2)
t =

p
c
2
1 + c

2
2dWt, for

independent Brownian motions W (1)
t and W

(2)
t , with Wt also a (scalar-valued) Brownian

motion.

We note that, with the assumption that the V (i)
t are approximately zero for 2  i  2m and

X
(i)
t = (⇠i,1V

(1)
t )i that

P2m
i=1 X

(i)
t =

P2m
i=1 ⇠i,1V

(1)
t = ⇠̄V

(1)
t . Hence, for the one-dimensional

Feller diffusion (3.16), we find the first-passage time distribution for the random process
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V
(1)
t to reach the level V ⇤ = Z

⇤/⇠̄.

3.2.4 First Passage Time Distribution for the Diffusion Approximation

Let f(t, v) be the probability density function for the number of cases according to the pro-
cess V (1)

t at time t. Also let ⇢ =
P2m

i=1 !i⇠i,1. Then the probability density function f(t, v)

has the solution:

f(t, v) =
rert

⇢

2(ert � 1)

r
ert
v
I1

 
2r
p
vert

⇢

2(ert � 1)

!
exp

✓
�
r(ert + v)

⇢(ert � 1)

◆
, (3.17)

which is the PDF of a non-central �2 distribution with zero degrees of freedom, studied by
Siegel [9], and where I1(·) is the modified Bessel function of the first kind. Since the non-
central �2 distribution with zero degrees of freedom has mass exp{��

2} at v = 0, where
� = 4ert/(⇢(ert�1)), we must condition on the process not reaching zero in order to obtain
a true density function. Hence, we obtain the conditioned density function:

f̂(t, v) =
f(t, v)

(1� e��
2 )
. (3.18)

Finally, the integrated density F̂ (t, v) =
R1
0 f̂(t, v) dx = Pr(V (1)

t  v) represents the
probability that the number of cases has not yet reached the level v.

Let Uv(t) be the cumulative density function for the first passage time of the process V (1)
t

to the level v. The CDF Uv(t) is obtained from F̂ (t, v) via CDF inversion. Hence, the CDF
for the first passage time for the process V (1)

t to reach the level V ⇤ is given by the formula:

UV ⇤(t) = 1� F̂ (t, V ⇤) = Pr(T ⇤
 t). (3.19)

The FPT distribution for the process V (1)
t to reach the level V ⇤ represents a one-dimensional

approximation to the FPT distribution for the total number of cases of all types in the multi-
variate process Z(t) to reach Z

⇤.

3.3 Results

3.3.1 Epidemic Model with Heterogeneous Immunity

As a concrete example of our model in practice, we consider an epidemic in which the pop-
ulation is divided into 8 types, corresponding to m = 4 types-at-birth. We have 4 exposed
types, which we denote by Ed,v, and 4 infectious types, which we denote by Id,v. Here, d 2
{sus, rec} (corresponding to previous disease history) denotes whether an individual has
previously been infected with any prior strain of covid-19, and v 2 {U,V} (for vaccination
status) denotes whether an individual is vaccinated against any existing strain of COVID-
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Parameter Explanation Values
� Recovery rate 7 days�1

� Incubation rate 3 days�1

" Threshold for choosing Z⇤ and T ⇤ 10�4

R0 Basic reproduction ratio 2, 2.5, 3, 3.5, 4
⌘ Immigration rate 5 days�1

pvac Probability that an individual has been vaccinated 0.7
prec Proportion recovered from a previous strain 0.2

susrec
Relative susceptibility of individuals

recovered from a previous strain 0.6

susvac Relative susceptibility of vaccinated individuals 0.4

Table 3.1. Parameter values for the multi-type branching process model described in Section 3.3.

R0 2 2.5 3 3.5 4
Reff 1.112 1.390 1.668 1.946 2.224

Table 3.2. Values of R0 for the invading strain used to produce our results, together with the corresponding
values of the effective reproduction number, Reff, that take into account the levels of existing immunity

against the novel strain in the population due to vaccination and previous infection to different strains. These
values of Reff are dominant eigenvalues of the next-generation matrix, calculated as outlined in [82].

19 (not taking into account the novel VOC). In order to keep our model simple, we assume
here that all vaccines confer the same level of immunity on a vaccinated individual and that
all vaccinated individuals are completely vaccinated (including booster doses). In princi-
ple, however, our model could also straightforwardly account for multiple vaccines with
differences in effectiveness as well as including those have only been partially vaccinated,
by adding additional types. We could also consider heterogeneous levels of immunity con-
ferred by prior infection with different strains of COVID-19. This would add further com-
plexity to the model and so, for simplicity, we do not conduct that analysis here. For an ex-
ample of a similar model to the one presented here, but with some of this additional com-
plexity, we refer to [10].

We order the types in our model so that types 1-4 correspond to exposed cases and types
5-8 correspond to infectious cases. Hence, an exposed individual of type j transitions to be-
come an (infectious) individual of type j + 4 at a rate �j . We therefore have 4 types-at-birth
[128, Ch. 6] in our model corresponding to individuals with 4 different levels of immune
protection against the novel VOC. We denote by fj (1  j  4) the fraction of the suscepti-
ble population of type-at-birth j, with

P4
j=1 fj = 1.

We denote the relative susceptibility of an individual of type(-at-birth) j by,  j , determined
by their previous exposure to other variants and by their vaccination status. We do not as-
sume that immunity, whether vaccine- or infection-acquired, has any impact on the trans-
missibility of an infectious individual, and hence infectious individuals of all types have an
identical transmission rate �. The force of infection of an infectious individual of any type
acting on a susceptible individual of type j (1  j  4) is given by �j = cj�, where
cj = fj j . Table 3.1 contains the proportions of the population that are vaccinated (pvac)
and recovered from a previous strain (prec), so that the proportions fj for each type j are ob-
tained by multiplying the proportions with the corresponding vaccination and recovery sta-
tus together. Similarly, the quantities (susvac) and (susrec) denote the relative susceptibility
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Figure 3.1. (Top) Probability over time that a transmission chain beginning with a single exposed case goes
extinct in the absence of immigration. These probabilities tend to a constant value q1 in the limit as t!1.
(Bottom) Probability that there are no cases of any type at time t when there are zero cases at time t = 0 and
immigration occurs at a constant rate ⌘ = 0.2. These probabilities all tend to zero as t!1. Each value of

R0 corresponds to a value of Reff given in Table 3.2.

of individuals who have been vaccinated or who have previously recovered from a previous
strain, respectively. The quantity  j is then calculated by taking the minimum susceptibility
based on the corresponding vaccine and recovery status of that type. For example, an indi-
vidual of type j = 4, who receives immunity from both vaccination and prior infection with
COVID-19, we have that  j = min{susrec, susvac} The PGF for the offspring distribution of
this process then satisfies ((3.1)) with m = 4.

Although we have described a relatively simple model where vaccination only affects the
susceptibility of an individual, we could straightforwardly extend our model to one that
allows vaccination to have an impact on the infectiousness of individuals who have been
vaccinated but nevertheless become infected. This would change our assumption that all
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individuals have an identical underlying transmission rate � so that individuals would in-
stead have a baseline transmission rate �i according to their type. The force of infection
would then receive an additional subscript i, becoming betai,j = cj�i. This is, in princi-
ple, straightforward, though would require adding additional parameters to our model, and
so is avoided for simplicity. One could also add further host heterogeneity in the form of
additional risk factors for COVID such as age structure or heterogeneous mixing patterns
through the addition of additional types, though this quickly adds to the complexity of our
model, as each added subpopulation would require the addition of 4 additional types, given
that we have assumed 4 types-at-birth.

To implement this model, we consider a population in which 70% of individuals have been
vaccinated and 20% of people have been infected previously with a separate strain of SARS-
CoV-2. All exposed cases become infectious at the same constant rate � = 0.3 and all infec-
tious cases have the same constant recovery rate � = 0.4. As a baseline, we set � = 0.8, so
that the R0 of the invading strain is equal to 2 (assuming total susceptibility of the resident
population to the novel strain). Using the next-generation matrix to calculate the effective
R0 given the heterogeneous immunity profile in the population [82], the baseline effective
reproduction number Reff is 1.1 (see Table 3.2 for all values of Reff considered). A single
exposed case enters the population on average once every 5 days, so that ⌘ = 0.2. This
exposed case can belong to any of the 4 types-at-birth, and so for each type, we scale the
immigration rate by the proportion of individuals of that type in the resident population,
giving ⌘j = fj⌘ for 1  j  4. A full summary of the parameters used to generate our
results is given in Table 3.1.

We also show the probability that, at time t, there are no cases of any type in Figure 3.1.
We consider separately the extinction probability for a transmission chain that be begins
with a single imported case of the VoC and for the total number of cases of an invading
VoC starting from no cases, but with importation of cases ocurring at a rate ⌘ = 0.2. Since
Reff > 1 for all of the scenarios we consider, the extinction probability for any individual
transmission chain always tends to a limit that is lower than 1. When immigration of cases
is allowed to occur, these probabilities will always tend to zero over time, as cases are con-
tinually replenished by imported cases.

3.3.2 Time to Establishment of an Outbreak

We assess the impact of measures taken against a newly emerging strain both at the border
and in the resident population on the time to establishment of a VoC as measured by T

⇤.
We begin by considering the mean and coefficient of variation for the multi-type process
as described in Section 3.2.1. We then choose T ⇤ based on the criteria defined in Section
3.2.2, which we show in Figures 3.2 (without immigration) and 3.3 (with immigration at
rate ⌘ = 0.2). As we expect, for larger values of R0, the time T ⇤ required for both of our
conditions (2) and (1) to be satisfied is lower, reflecting the fact that an outbreak reaches a
large number of cases more quickly.
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For the baseline R0 = 2, we obtain a choice of T ⇤ = 615 days (taking "1 = "2 = 10�4

in 2 and 1) for a transmission chain resulting from a single imported case, compared with
T

⇤ = 80 when immigration is allowed to occur. When R0 = 4 (so that Reff = 2.2), we
obtain a choice of T ⇤ = 64.5 days in the absence of immigration, and T

⇤ = 60.5 when
immigration is included. The large time taken for a strain to become established when Reff

is close to 1 reflects the fact the variation around the mean growth curve remains large, and
with a higher proportion of realisations of the process having low growth for extended pe-
riods of time. The impact of immigration on T

⇤ is therefore much more significant when
R0 is close to one. In Appendix B.2 we present additional results with different rates of im-
migration (⌘ = 0.1 and ⌘ = 1

3 ), which demonstrate the impact that increasing or relaxing
border restrictions has on the FPT distribution T (See Figure 3.3). In general, increasing
border restrictions (and, thus, lowering the immigration rate ⌘) has the effect of increasing
the time T ⇤ until the novel strain becomes established in the population. Border controls
can therefore be seen as a mechanism for “buying time” to prepare other necessary inter-
ventions for mitigating the impact of a novel VoC on the resident population.

3.3.3 First Passage Time Distribution

We first obtain an approximate distribution for the FPT distribution of the full multi-type
branching process with offspring distribution given by (3.1), both with and without immi-
gration, using the Gillespie algorithm [89]. In order to do this, we simulate 10,000 trajecto-
ries from the branching process and record the first time at which the total number of cases
passes the threshold Z

⇤. In the absence of immigration, the resulting distribution is shown
in the left panels in Figure 3.4 for R0 = 2, and in Figure 3.5 for R0 = 4. When immigration
is included at a rate ⌘ = 0.2, we obtain the FPT distribution given in Figure 3.6.

In the absence of immigration, we then compare the simulation output from the Gillespie
algorithm with the probability density function for the approximated FPT obtained via one-
dimensionalisation of the Feller diffusion approximation. For the PDF of the Gillespie sim-
ulated FPT distribution, we take the kernel density estimate of the histogram and compare
this with the exact PDF based on the Feller diffusion. These comparisons are also shown in
Figure 3.4 for R0 = 2 and in Figure 3.5 for R0 = 4. In both cases, we find that the one-
dimensional approximation based on the Feller diffusion provides a very good approxima-
tion of the true underlying distribution, estimated via simulations. As can be expected, the
Feller approximation is closer to the true distribution for higher values of R0, reflecting the
intuition that convergence to the one-dimensional process is faster for higher values of the
dominant eigenvalue, r, which increases monotonically with R0.

These results demonstrate the practical utility of using one-dimensional Feller diffusion ap-
proximation to the multi-type branching process as an alternative to simulating the FPT dis-
tribution. The diffusion approximation has the advantage of being much faster to compute
than simulating from the branching process model, taking only 10 seconds to compute the
full FPT distribution for R0 = 2, compared with 3 hours, 4 minutes and 16 seconds to ob-
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Figure 3.2. (Above) Summary of the mean and coefficient of variation over time for different values of R0, as
well as the appropriate choice for T ⇤ made in each case shown in purple. (Below) Choice of T ⇤ made for

different values of R0, which decreases monotonically with R0. Each value of R0 corresponds to a value of
Reff given in Table 3.2.

tain 10,000 samples of the first passage time using the Gillespie algorithm. The diffusion
approximation also offers additional insight into the true underlying distribution, suggest-
ing that the total number of cases at a given time t in a multi-type branching process is well
approximated by a non-central �2 distribution with zero degrees of freedom.

3.4 Discussion and Conclusions

We have used a multi-type branching process model to calculate the mean and variance in
the number of cases during an outbreak of a novel variant of concern in a population that
has already been exposed to previous variants of COVID-19 and has undergone a partial
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Figure 3.3. (Above) Summary of the mean and coefficient of variation over time for different values of R0 for
an outbreak that begins with no cases, but for which immigration occurs at a rate ⌘ = 0.2. (Below) Choice of
T ⇤ made for different values of R0, which decrease monotonically with R0. Each value of R0 corresponds to

a value of Reff given in Table 3.2.

vaccination program. We also approximate the first-passage time distribution using sim-
ulations in order to quantify the uncertainty in the time taken for a novel strain to become
successfully established in the population. For a single imported case whose transmission
chain does not go extinct, in the absence of further immigration of cases, we obtain an ana-
lytic expression for the approximate time taken to be successfully established in the popula-
tion based on a one-dimensional diffusion approximation.

When we are able to approximate the FPT distribution of the branching process using the
one-dimensional Feller diffusion approximation, the computation time is much faster than
for simulations using the Gillespie algorithm. This represents a significant advantage of
our method for use in scenario planning and sensitivity analysis, when many combinations
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Figure 3.4. (Left) Estimated FPT distribution for the full multi-type branching process model based on 10,000
trajectories simulated using the Gillespie algorithm, with R0 = 2 (Reff = 1.11). The mean first-passage time

is given by T ⇤ = 825 days. (Right) Comparison of the simulated FPT distribution with the exact FPT
distribution of the one-dimensionalised Feller process. The Kolmogorov-Smirnov distance between these two

distributions is 2.938⇥ 10�4.

Figure 3.5. (Left) Estimated FPT distribution for the full multi-type branching process model based on 10,000
trajectories simulated using the Gillespie algorithm, with R0 = 4 (Reff = 2.22). The mean first-passage time

is given by T ⇤ = 85 days. (Right) Comparison of the simulated FPT distribution with the exact FPT
distribution of the one-dimensionalised Feller process. The Kolmogorov-Smirnov distance between these two

distributions is 1.893⇥ 10�5.

Figure 3.6. FPT distribution for the multi-type branching process model with R0 = 2 (Reff = 1.11) and with
immigration of cases at a rate ⌘ = 0.2. The mean time to reach Z⇤ = 102 cases for this process is T ⇤ = 218

days.
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of parameter choices need to be modelled. In these situations, large stochastic simulations
to generate an FPT distribution can be prohibitively expensive, but our methods allow for
random times to be drawn directly from the approximated FPT distribution. Currently, we
are unable to obtain an approximate FPT distribution when immigration occurs at a rate
⌘ > 0, which introduces a positive constant drift term to the one-dimensional Feller diffu-
sion. However, solving the SDE (3.16) with immigration included is the subject of current
and future work.

The insights for policymakers gained from our modelling complement the work in [57] and
[124], which emphasise the difficulty in relying on border controls to prevent the incursion
of diseases into a population. In our approach, we interpret the efficacy of border controls
and internal NPIs in terms of delaying the ingress and establishment of novel pathogenic
strains in a population. Our model output therefore provides policymakers with a time win-
dow in which a novel strain is likely to become established in the population, when policy
should move from prevention (which is no longer possible) to mitigation or suppression.
Our results can also be used to inform policymakers on when a novel strain is likely to have
achieved exponential growth within a population, suggesting a timescale upon which addi-
tional interventions need to be planned. In particular, these results also give a window of
time for emergency responders, such as hospital and ambulance services, to increase their
capacity in time for large surges in admissions, which can be expected once large numbers
of cases have been reached. Once this time window has passed and exponential growth has
been achieved, it is likely that much stricter interventions will need to be implemented in
order to curtail the subsequent growth of the epidemic.

Code availability

The code needed to reproduce the results shown here is available at https://github.
com/JCurran-Sebastian/MultiType_Branching
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Chapter 4

Estimating Overdispersion in Disease
Outbreaks with Under-Ascertainment of
Cases

This chapter is work that is in preparation for submission for peer review. We intend to con-
duct additional analysis using the results from this chapter applied to Mpox data before
publication.

During the COVID-19 pandemic there have been attempts to estimate the degree to which
outbreaks have been driven by superspreading events. These efforts are complicated by
under-ascertainment of cases that occur in the early stages of an outbreak, when testing ca-
pacity is limited. We recover results obtained early in the pandemic using a discrete-time
branching process model, but adjust these results by incorporating case under-ascertainment
into the offspring distribution. Our results show that this can have a significant impact on
the estimates of overdispersion, suggesting a higher role played by super-spreading events
than has previously been estimated. We also develop a continuous-time model that is in-
tended to retain key features of the discrete-time model, but for which extinction probabili-
ties can be calculated analytically over time.
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4.1 Introduction

Infectious diseases are inherently stochastic, and there is often a high degree of heterogene-
ity in the characteristics and behaviour of infectious cases. For many pathogens, there are
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a number of individuals who, when infected, do not transmit to any other susceptible indi-
viduals, whilst there are others who transmit to many more than the average. Superspread-
ing events occur when a large number of infections are caused by a relatively small num-
ber of individuals in a short period of time, and were studied by [11], in which the authors
consider a Poisson process with individual heterogeneity in the transmission rate. In the
branching process literature, there are many ways of dealing with individual heterogeneity
in transmission, the most common being to adopt a negative binomial distribution (NegBin(k, p))
for the offspring of a single infectious case, so that the overdispersion in the offspring distri-
bution is characterised by the parameter k. Other methods for incorporating individual het-
erogeneity infectiousness include the use of Crump-Mode-Jagers (or age-dependent) pro-
cesses [108], in which each individual has its own infectiousness profile that depends on
their time since infection, ⌧ [133], [134].

Estimates of the overdispersion parameter k for COVID-19 have been calculated in [12] us-
ing Monte Carlo methods. However, these estimates are highly dependent on the degree of
case under-ascertainment, which leads to an underestimate of the sizes of clusters. In the
early months of the pandemic, case under-ascertainment varied greatly between countries,
but could often be very large [135]. The authors of [12] adjust for imperfect case ascertain-
ment using a simulation study to investigate the impact on estimates of k. We opt instead
to augment the branching process model so that each offspring of an infectious case has a
probability of being identified through testing. We apply this model to the same data as in
[12], recovering the same results in the case of perfect case ascertainment, but with differ-
ent estimates of k when case ascertainment is assumed to be low.

4.2 Methods

4.2.1 Cluster Size Distribution for a Branching Process

We consider a single-type SIR (Susceptible! Infectious! Recovered) model of trans-
mission in which the offspring distribution for an infectious case is an i.i.d. copy of random
variable Y ⇠ NegBin(r, p) that follows a negative binomial distribution. This follows from
the assumption that transmission at each event follows a Poisson process whose intensity ⌫
is drawn from a gamma distribution whose mean is equal to R0. The probability generating
function for the offspring distribution is therefore given by:

GY (s) =
1X

i=0

Pr(Y = i)si =
1X

i=0

pis
i =

✓
1� p

1� ps

◆r

. (4.1)

This is equivalent to the formulation given in [11], where the offspring distribution is a neg-
ative binomial random variable parameterised by k and R0, with r = k and p =

�
1 + R0

k

��1.

Initially, we consider the discrete-time process Zi, which counts the number of infectious
cases in generation i of the outbreak.
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An expression for the probability mass function of the final size of a cluster in an outbreak
is given by a formula of Dwass [23]. Suppose that an outbreak begins with Z0 = a ini-
tial cases and that the offspring distribution is given by (4.1). The total progeny, K, of the
branching process is given by:

Pr(X = x|Z0 = a) =
a

x

dx�a

dsx�a
(GY (s))

x

����
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=
a

x

dx�a
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. (4.2)

Noting that R0
k

= p

1�p
, it can be seen that the expression (4.2) is equivalent to the result of

Blumberg et al. [136].

4.2.2 Modelling Imperfect Case Ascertainment

Cluster sizes that are observed from outbreak data are biased due to the under-ascertainment
of cases in each cluster that occurs, for example, when testing is imperfect at identifying
infected cases, when there are infected cases who do not display any symptoms, or when
infected cases do not seek medical attention. The true size of a cluster of cases resulting
from a superspreading event is therefore likely to be higher than what is observed in out-
break data, which leads to bias in the fitted estimates of the dispersion parameter k.

To correct for this bias in estimates of the overdispersion parameter r, we model the prob-
ability of identifying a single infectious case as a Bernoulli random variable B with prob-
ability ⇡ of success, B ⇠ Bernoulli(⇡). We assume that identifying a case is independent
for each infectious individual so that for a final cluster size K we have K i.i.d. Bernoulli
random variables Bi, 1  i  K giving the probability of each case being successfully
identified. The probability generating function GB(s) for a Bernoulli random variable with
probability ⇡ of success is given by:

GB(s) = (1� ⇡) + ⇡s. (4.3)

The number of secondary cases identified as being infected by a single case is then given by
the random sum:

Ỹ =
YX

i=1

Bi, (4.4)

where Y ⇠ NegBin(r, p). By the Law of Total Probability, the random sum Ỹ has the gen-
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erating function:

G
Ỹ
(s) = GY (GB(s)) =

✓
1� p

1� p(1� ⇡ + ⇡s)

◆r

=

✓
1� p̃

1� p̃s

◆r

, (4.5)

where p̃ = p⇡

1�p+p⇡
. Hence, the random variable Ỹ also follows negative binomial distribu-

tion with an adjusted probability p̃ of success, that is, Ỹ ⇠ NegBin(r, p̃).

Note that in adopting the branching process whose offspring distribution is given by Ỹ , we
effectively make the assumption that the true reproduction number R0 of the outbreak is
underestimated by considering the process with offspring distribution Y . This is because,
for a fixed value of the parameter r, the reproduction number depends only on p. However,
some care should be taken with this approach. When considering imperfect case ascertain-
ment in the offspring distribution Ỹ (i.e. ⇡ < 1), we are counting the number of secondary
cases identified in the next generation as an offspring of an infectious case in the current
generation. This means that if case ascertainment is not perfect, we fail to identify not only
those secondary cases themselves but all of the cases infected in subsequent generations as
a result of those secondary cases. In other words, we fail to identify the entire lineages as-
sociated with cases that we do not identify in the next generation as a result of imperfect
case ascertainment.

We may then consider the total progeny, X̃ , of the process adjusted to include imperfect
case ascertainment. Replacing the parameter p with p̃ in (4.2), we obtain the probability
that an outbreak results in X̃ = x cases being observed.

4.2.3 Likelihood Estimation of Overdispersion

We obtain the likelihood in an analogous way to [12], by accounting for censoring in the
data that corresponds to outbreak clusters that are still ongoing. The true total progeny is
therefore greater than or equal to the total progeny observed at the time the data were col-
lected, where an outbreak is assumed to be ongoing if the most recent new case was ob-
served within seven days prior to the 27th of February, when the original analysis was con-
ducted. A censored observation of the total progeny, therefore, has the probability

Pr(X � x|Z0 = a) = 1�
x�1X

m=a

Pr(X = m|Z0 = a). (4.6)

If I is the set of clusters that have gone extinct and J is the set of clusters that are assumed
to be censored, then the total likelihood for the data, assuming imperfect case ascertain-
ment, is given by:
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To obtain the maximum likelihood estimate of the dispersion parameter k, we minimise the
negative log-likelihood in SciPy using the BFGS methods of the optim function [137].

4.2.4 Continuous-Time Forward Transmission Model

To model the real-time transmission that occurs during an outbreak, we switch from us-
ing the discrete-time branching process characterised by the random variables Y and Zi to
the continuous-time branching process, with offspring distribution Y and prevalence Z(t)

at time t. The embedding of the discrete-time process into the continuous-time process is
known to not exist when the offspring distribution follows a negative binomial distribution
[138]. Levesque et al. [139] propose an alternative model based on a Crump-Mode-Jagers
process that models the offspring distribution as a Lévy Process. Instead, we aim to build
a continuous-time process without dependence on the time since infection that shares cer-
tain features with both the discrete-time process and the analogous continuous-time process
without overdispersion. This has the advantage that the process is still Markovian, and that
Kolmogorov equations can be solved for the real-time probability of extinction of a trans-
mission chain [38].

For the continuous-time process, we require that infection events occur at a rate � and that
recovery occurs at a rate �. If an infection event occurs, a number of newly infected indi-
viduals ⇠ is drawn from a negative binomial distribution whose mean is 1 and with disper-
sion parameter k, whilst the initial infected case is removed and a copy of that individual is
created. The time to either an infection or recovery event is drawn from an exponential dis-
tribution with rate � + �. This information is summarised in the generating function of the
offspring distribution Y , GY(s):

GY(s) =
1

� + �

"
�s

✓
1 +

1

k
(1� s)

◆�k

+ �

#
. (4.10)

The mean number of secondary cases at each infection event arising from a single infec-
tious individual is given by d

dsGY |s=1 � 1 = ���

�+�
. This is equivalent to a birth-death chain

in which the expected number of secondary cases produced by a single individual through-
out their infection is �

�
= R0 (see Appendix C.1 for details). Note, also, that the random

variable ⇠ has the generating function G⇠(s) =
�
1 + 1

k
(1� s)

��k.
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Figure 4.1. Maximum Likelihood estimates of the dispersion parameter k for the branching process with
negative binomial offspring distribution. If the probability of successfully identifying the infected offspring of

an infectious case is ⇡ = 0.4, we obtain lower estimates of k when R0 > 1, suggesting increased
overdispersion. The control estimates of k, corresponding to ⇡ = 1, agree with those obtained via MCMC

using the same data in [12].

We are interested in obtaining the probability that a chain starting with Z(0) = 1 case is ex-
tinct by time t, which we denote by q(t). Let Q(t, s) be the probability generating function
for Z(t). Q(t, s) satisfies the backward Kolmogorov equation [87]:

@Q

@t
= �(� + �) [Q(t, s)�GY(Q(t, s))] , (4.11)

subject toQ(0, s) = s.

Solving (4.11) and setting s = 0 gives the probability that there are no infectious cases at
time t, q(t). If the process starts with Z(0) = a cases, then the probability of having no
cases at time t is given by q(t)a.

4.3 Results

We show that the maximum-likelihood estimate of the dispersion parameter k changes dras-
tically, particularly for lower values of R0, when case ascertainment is low. In Figure 4.1,
we compare the different estimates of k when case ascertainment is perfect (correspond-
ing to ⇡ = 1) with those when case ascertainment is much lower (for which we assume
⇡ = 0.4, i.e. approximately 60% of cases are not identified as part of a cluster). For ⇡ = 1,
we recover the estimates of k given in [12], with k ⇡ 0.1 for values of R0 2 [2, 3]. How-
ever, when case ascertainment is modelled with ⇡ = 0.4, we obtain maximum-likelihood
estimates of k ⇡ 0.05, suggesting increased overdispersion.

We also find that lower estimates of k, which suggest higher overdispersion, result in a higher
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R0 (observed) k (MLE) p R0 (true)
0.5 0.19 0.132 1.25
0.68 0.1284 0.0698 1.71
0.87 0.1041 0.0458 2.17
1.05 0.0908 0.0333 2.63
1.24 0.0822 0.0259 3.09
1.42 0.0761 0.021 3.55
1.61 0.0715 0.0175 4.01
1.79 0.0679 0.0149 4.47
1.97 0.0649 0.013 4.93
2.16 0.0625 0.0115 5.39
2.34 0.0604 0.0102 5.86
2.53 0.0586 0.0092 6.32
2.71 0.0571 0.0084 6.78
2.89 0.0557 0.0076 7.24
3.08 0.0545 0.007 7.7
3.26 0.0533 0.0065 8.16
3.45 0.0524 0.006 8.62
3.63 0.0514 0.0056 9.08
3.82 0.0506 0.0053 9.54
4.0 0.0498 0.005 10.0

Table 4.1. Estimated values of the dispersion parameter k and the true value of R0 when cases are
under-ascertained with probability ⇡ = 0.4. The parameter p corresponds to the usual “success probability”

for a negative binomial random variable, and depends on both k and R0. It is given by the formula
p =

�
1 + R0

k

��1 [136].

probability of extinction. This is due to the fact that case under-ascertainment results in a
lower observed value of R0 than the true value that would be obtained if all of the offspring
of an infectious case were successfully traced. The adjusted estimates of R0 that we obtain
when the probability ⇡ of tracing each person infected by an infectious case is equal to 0.4
are given in Table 4.1. Notably, having such a low probability of case ascertainment has a
large effect on R0, particularly when the observed value of R0 is lower than 1. For higher
values of R0, the ultimate probability of extinction is higher when case ascertainment is
low. For example, with R0 = 4.0 and perfect case ascertainment, the ultimate extinction
probability is approximately q1 = 0.4, but rises to approximately q1 = 0.46 when case
ascertainment is low. The real-time probability of extinction over time for different val-
ues of ⇡ is shown in Figure 4.2. These results demonstrate that accounting for case under-
ascertainment leads to lower values of k, which correspond to higher probabilities of ex-
tinction over time compared with the case ⇡ = 1, where perfect case ascertainment is as-
sumed. The ultimate probability of extinction according to the continuous-time model for
different values of R0 is shown in Figure 4.3, as well as the probability of extinction for the
branching process with no overdispersion (i.e. binary fission at each infection event) but
with ⇡ = 0.4 (See Appendix C.1 for details).

4.4 Discussion and Conclusions

We have demonstrated that imperfect case ascertainment has a significant effect, both on es-
timates of the dispersion parameter k as well as on the projected probability of extinction
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Figure 4.2. Real-time probability of extinction for an outbreak that starts with a single case, for different
values of R0, obtained by solving (4.11) and setting s = 0. Accounting for case under-ascertainment leads to

estimates of k that correspond to increased overdispersion, which increases the probability of extinction.

Figure 4.3. Ultimate probability of extinction for an outbreak that starts with a single case, for different values
of R0.
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q(t) for an outbreak. We use data from outbreaks of COVID-19 in different countries up to
February 2020 to recover the analysis in [12], and then to adjust for case under-ascertainment.
The result is that, particularly for lower values of R0, the true overdispersion in the off-
spring distribution is much higher than previously estimated. This work highlights the im-
portance, firstly, of improving testing and contact tracing in the early stages of a pandemic,
in order for estimates of dispersion not to be biased and, secondly, of adjusting for imper-
fect case ascertainment when analysing outbreak clusters. Estimating the probability of
successfully identifying cases may not always be possible in the early stages of a pandemic,
however, providing sensitivity analysis with different values of the probability ⇡ could be
helpful in quantifying the potential biases that come with not accounting for under-ascertainment.
Our work also suggests the impact that underestimating the level of overdispersion can have
on the probability that a transmission chain dies out over time.

Code availability

The code needed to reproduce the results shown here is available at https://github.
com/JCurran-Sebastian/CaseAscertainment
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Chapter 5

Modelling Insights Concerning the Risk
of Importation and Spread of COVID-19
in Prisons

This chapter is work that is ready to be submitted for peer review in scientific journals and
for submission to the arXiv.

Prisons are enclosed populations that contain individuals who are at high risk of adverse
health outcomes related to infection with COVID-19. We present a number of mathemat-
ical models that describe the ingress and spread of COVID-19 in prisons in the UK under
various policies that were in place during the pandemic. Our results demonstrate the rela-
tive benefits of different testing, isolation and vaccination strategies from the perspective of
infection control, and our methods can be used to model a wide range of policy options.

Authors: Jacob Curran-Sebastian*, 1, Hugo Lewcowicz1, Lorenzo Pellis1, 2

Keywords: Disease Ingress, Mathematical Model, Prisoner Health, Vaccination, COVID-
19
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5.1 Introduction

Prisons, as well as care homes and other relatively enclosed societies, are known to be at
particular risk of outbreaks when an epidemic occurs in the wider population [65]. Prison-
ers themselves are also at an increased risk of adverse effects when infected with respira-
tory viruses due to comparatively worse health with respect to the general population [140].
When community epidemics occur, it is therefore important to understand and to be able
to quantify the risks of introduction of the infection into prisons. This requires an under-
standing of the disease dynamics both internal and external to the prison, as well as the link
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between them, in order to provide policy responses that are informed by epidemiological
insights.

Simple mathematical models of epidemics often make the assumption that a given disease
spreads in an enclosed society. It may seem, therefore, that prisons are a natural example
of where this assumption is most valid. In reality, however, the prison service is a porous
system in which there is a regular inflow and outflow of prisoners from and into the wider
community. Furthermore, the members of staff that work at prisons are themselves mem-
bers of the general population, whose movement between the prisons that they work at and
the outside community allows for the introduction of disease into prisons from the commu-
nity and vice-versa. An additional risk factor for ingress of COVID-19 into prisons comes
from prisoners being allowed visits from family members and acquaintances from the out-
side community. These visits were limited in the early stages of the pandemic but were
gradually allowed to resume as time went on due to impacts on the welfare of prisoners and
their families [141]. Prisons should therefore not be viewed as completely enclosed soci-
eties, but rather as institutions with complex links to other areas of the wider society [142].

We use mathematical modelling to investigate the risks of importing COVID-19 into the
prison population in the UK under a number of scenarios corresponding to different points
in time during the pandemic. These models were developed at different stages of the pan-
demic, and therefore make different assumptions about the disease dynamics as well as
prison policy, based on the information that was available at the time. During the first wave
of the pandemic, when there was large uncertainty surrounding ingress from different groups
of people entering prison, we use a stochastic model to estimate the probability that, in a
given time frame, a single prison in the UK would experience an outbreak. This constitutes
a broad overview of the relative risks of ingress of COVID-19 into the prison system from
different sources that is particularly useful in the early stages of the pandemic and provides
simple modelling insights for policy recommendations.

As the pandemic progressed, and testing for COVID-19 became more sophisticated and
more widely available, HMPPS began to require that members of staff working on-site in
prisons, as well as members of the public visiting prisoners, undergo testing. For staff, this
was a requirement for regular, weekly testing as a condition for coming in to work in order
to complete a shift. Prisoners were not required to be tested regularly [143]. Incorporating
testing as a screening strategy requires a slightly more complicated model of ingress that
takes into account visiting times and staff shift patterns, as well as more explicit assump-
tions of the dependence of an individual’s infectiousness on their time since infection.

As well as changes in the way staff and visitors were tested prior to entry into prisons, the
way that prisoners were allowed to enter from the court system also changed during the
pandemic, grounding almost to a halt during the first lockdown. Throughout the pandemic,
there were attempts to isolate prisoners prior to entry to different degrees, with prisoners
being isolated individually close to the start of the pandemic in order to prevent any onward
transmission upon their entry into the prison [144]. Later on in the pandemic, as the court
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system gradually restarted after the first lockdown, individual isolation grew logistically un-
feasible and the policy changed to prisoners being isolated in groups of up to 15 people,
in what were called Reverse Cohorting Units (RCUs) [145]. In order to model the risk of
ingress from prisoners entering prisons via RCUs we consider the disease dynamics of po-
tential outbreaks inside an RCU and estimate the number of active infectious cases entering
the general prison population.

Finally, in December 2020, the UK Government announced a list of nine priority groups
for receiving vaccination, with the first four groups being given the earliest access to the
vaccine. Prisoners were not identified separately as a priority group, and so prisoners were
offered vaccination only according to their age, or if they were deemed to be clinically vul-
nerable on an individual basis. As more of the prison population were offered the vaccine,
the relevant question shifted away from understanding the probability of ingress, and to-
ward quantifying the harms caused by outbreaks that could occur in a population with par-
tial vaccination coverage. We use stochastic modelling of an outbreak in prisons in order to
demonstrate the relative harms caused by outbreaks in prisons where only elderly prisoners
are vaccinated, compared with those in which the majority of prisoners have been vacci-
nated.

5.2 Methods

5.2.1 Ingress into the Prison System

Many different people enter and leave prisons on a day to day basis, and all of these entries
represent potential risks infecting prisoners and thus seeding an outbreak inside a prison.
Figure 1 in [142] gives a full description of the interconnections and movement of people
between prisons and other areas of the community. For the purposes of our model, prison
populations are treated as entirely closed societies, such that an outbreak in a prison may
only occur due to an introduction of the disease from outside the prison population. For
simplicity, we assume that this can only occur in one of three ways:

1. Members of staff: We assume that there is 1 member of staff for every 25 prisoners in
the prison population. Since it is impossible to remove the risk of importation due to
members of staff (contact between staff and prisoners is an essential part of their job),
we consider importation solely due to staff as our baseline scenario.

2. Inflow of new prisoners: We assume that the introduction of new infections is not pos-
sible when prisoners are isolated prior to entering the prison. This was a policy im-
plemented by HMPPS called Reverse Cohorting and, during this phase of the pan-
demic, meant that incoming prisoners were isolated alone for 14 days prior to entering
a prison.

3. Visitors: In the absence of visitors being allowed into prisons, we assume that it is im-
possible for an introduction of COVID-19 into prisons from visiting members of the
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Parameter Interpretation Value
R0 Basic reproduction ratio in the community 3
 0 Community seroprevalence at the time of conducting the analysis (05/2020) 0.1
N Median prison size (no. of prisoners) in the UK 600
��1 Average infectious period for COVID-19 7 days
��1 Average pre-symptomatic (infectious) period for COVID-19 2 days
ns Average number of staff members per prison 24
⇡s Average proportion of contacts that staff make with prisoners 1

3
np Baseline number of new prisoners admitted to prison each day 15
⇡p Proportion of contacts that prisoners make with other prisoners 1
nv Average number of visitors to a single prison each day 40
⇡v Average proportion of contacts that visitors make with prisoners 0.1

Table 5.1. (Baseline) Parameter values used to model ingress of COVID-19 into an average-sized prison.

public. In practice, it is difficult to measure how much transmission occurs between
visitors and prisoners due to heterogeneity and uncertainty in the nature and frequency
of contact between the two groups. We therefore explored a number of different pa-
rameter values in order to test the impact that our assumptions had on the final results.

The probability that a prison has experienced an ingress from any of these three external
routes depends on the seroprevalence in the general population (i.e. the fraction of the pop-
ulation with antibodies), a measurable proxy for the number of people in the general pop-
ulation that have been infected up until the time that this analysis was conducted. This is
because the fraction of the external population that has been infectious represents the prob-
ability that a randomly selected individual has been infected with COVID-19, assuming that
visitors, staff and incoming prisoners are a representative sub-sample of the population. In
order to calculate the resulting force of infection from external sources acting on the pris-
oner population, we make a number of assumptions and parameter choices, which are sum-
marised in Table 5.1.

We assume that the external epidemic grows according to an SEIR (Susceptible! Exposed
! Infectious! Recovered) model in order to be able to estimate the seroprevalence  t at
time t in the future. We use data on the number of infections over time up until the 5th of
May 2020 in order to obtain the starting seroprevalence  0 = 0.1, i.e. 10% seroprevalence.
This estimate is intended to be a conservative upper limit and is taken from seroprevalence
estimates in London in May 2020, when approximately 10% of those sampled in London
tested positive for antibodies (see [146]). Whilst the estimate of seroprevalence at this time
is much lower in other parts of the country, we take this estimate of 10% as a reasonable
worst-case scenario. The projected prevalence over time under different assumed future val-
ues of R0 is shown in 5.1. We assume that the value of the effective reproduction number,
Rt, takes a new value once the lockdown is lifted and remains constant thereafter.

The forces of infection acting on a prison due to incoming prisoners, staff and visitors is
denoted by �p,�s and �v, respectively. Each separate force of infection is calculated via the
formulas:
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Figure 5.1. Projected values of the infection prevalence from the 5th of May, when the analysis was conducted
(at which point the integral of the incidence divided by the total population is  0)”, assuming different values
of Rt once a lockdown has been lifted. We assumed that R0 = 3, and that control policies are implemented
with the goal to reduce that to an effective reproduction number Rt  3, which then remains constant over

time. We explore a range of Rt values.

�p = R0 tnp⇡p (5.1)

�s = R0
�
�1

��1
( tns⇡s) (5.2)

�v = R0
�
�1

��1
( tnv⇡v) (5.3)

Given these forces of infection acting on the prison population, we assume that infectious
cases are imported into the prison via a Poisson process [147]. Under this model, the total
force of infection � is obtained by summing the forces of infection from each source, so that
� = �p + �s + �v. The probability that a prison has received no introductions of the disease
from any of these three groups by time t is then given by e��t. Hence, the probability that a
prison experiences at least one infectious case by time t is given by:

P (Ingress by time t) = 1� e��t (5.4)

5.2.2 Modelling Testing Strategies for Prison Staff and Visitors

Prison Population and Structure

For this piece of work, we assumed a more detailed structure of an average prison in order
to calculate the average number of staff working at any given time. We assume that a mean-
sized prison has N = 650 residents, with the prison divided into 5 wings, so that each wing
contains 130 prisoners. We were given also that members of staff work in 8-hour shifts,
with three shifts per day. We assume that, for every 26 prisoners there is 1 member of staff,
and that there is additionally an overall supervisor for each wing. This means that, per shift,
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Figure 5.2. Assumed Natural History of COVID-19 for individuals in our model, as well as the assumed
probability of receiving a false negative as a function of an individual’s time since infection.

there are 6 members of staff for each wing and so, with 5 wings and 3 shifts per day, we ob-
tain a total of ns = 90 members of staff working in the entire prison each day. Note that ns

only refers to those members of staff that are in contact with prisoners; there are also many
additional members of staff, such as administrative and governance staff, that we do not in-
clude in this model. We also take, as a baseline assumption, that there are nv = 40 visitors
from the general public allowed into prisons on a single day.

Natural History of COVID-19

We assume that a proportion of infected individuals, which we denote pa, will be completely
asymptomatic, with the rest experiencing symptoms. We assume, as a baseline, that pa =

0.5. We also assume that the infectious period for all infected individuals is constant 7 days,
with those that develop symptoms having a pre-symptomatic infectious period of constant
length 3 days (and, hence, a symptomatic infectious period of 4 days).

We assume that all symptomatic individuals have an infectivity profile that is given by the
same curve, shown in Figures 5.2 and 5.3. Each day, a symptomatic person transmits at a
rate �i for 1  i  10, so that R0 =

P10
i=1 �i. In our baseline scenario, we assume that

R0 = 4.

Asymptomatic cases are assumed to have exactly the same infectivity profile, but with all
infection rates �i scaled by ra, which we assume to be equal to 0.75 at baseline (thereby as-
suming an effective R0 = 3 for asymptomatic cases). Visitors also have the same infec-
tiousness profile as staff, but their interaction with prisoners is assumed to be less close, so
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Figure 5.3. Assumed daily transmission rate for an infectious individual that displays symptoms. �i represents
the transmission rate on day i after an individual is infected, with

P
i
�i = R0 = 4. The states E, I, and S

correspond to exposed (but not yet infectious), infectious (but not yet symptomatic), and symptomatic (and
still infectious), respectively.

their transmission is also scaled by a constant factor rv = 0.75.

We assume that members of staff transmit for only 8 hours of the day when at work, that
they transmit outside of work for 8 hours, and that they are asleep (and, hence, do not trans-
mit) for 8 hours of the day. This means that members of staff transmit for a proportion of
⇡s = 0.5 of the day when awake. Similarly, visitors are assumed to spend 4 hours of their
day visiting, so that ⇡v = 1/4. If infection control measures, such as masking, social dis-
tancing, and use of hand sanitiser by staff and visitors, are in place, then all transmission
rates are reduced by a factor c, which we assume to be equal to 0.5 at baseline.

Finally, the risk of a visitor or a member of staff becoming infected outside the prison is de-
pendent on the daily incidence of COVID-19 in the general population. For short-term pro-
jections, we make the simplifying assumption that the daily incidence remains constant at a
value of J . Assuming that visitors are drawn randomly from the population, the daily rate
of a visitor becoming infected is given by Pv = J . At this stage of the pandemic, we were
informed by HMPPS that the daily rate of a member of staff getting infected was approxi-
mately twice the incidence level seen in the general population. The daily rate of a member
of staff getting infected is, therefore, Ps = xJ , where x = 2. On the 16th of October 2020,
the Office for National Statistics (ONS) estimated that approximately 1% of the population
(0.84% upper limit of 95% confidence interval for percentage testing positive) were infec-
tious (i.e. the prevalence of COVID-19 at this time was approximately 1%) [148]. This es-
timate is taken from estimates of prevalence for England only between the 10th and 16th of
October and is taken to be a conservative upper bound for the proportion of individuals that
were infectious at this time in England.

Staff Testing and Isolation

Members of staff were required to take a COVID-19 test weekly in order to be able to work
and were required to isolate if they produced a positive test. This strategy was aimed pri-
marily at identifying those cases that are either totally asymptomatic or that were in the
pre-symptomatic stages of infection, since members of staff that displayed symptoms were
assumed to self-isolate immediately. Members of staff with COVID-19 are assumed to iso-
late until they receive a subsequent negative test or until they have isolated for a period of
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10 days. All staff are assumed to be tested on the same day of the week. Upon testing, an

Days after infection Symbol Probability of False Negative
Lower Bound Median Upper Bound

1 f1 1.00 1.00 1.00
2 f2 0.81 1.00 1.00
3 f3 0.37 0.96 1.00
4 f4 0.00 0.59 0.92
5 f5 0.00 0.22 0.54
6 f6 0.00 0.06 0.31
7 f7 0.00 0.05 0.17
8 f8 0.00 0.04 0.12

Table 5.2. Probability of receiving a false negative result, fi for an infectious individual on day i after
infection, based on values from [149]

infectious individual who is on day i after being infected has a probability fi that their test
returns a (false) negative. The values of the fi are given in Table 5.2. We obtain prelimi-
nary values visually for the fi together with 95% confidence intervals based on figures from
[149]. However, this paper was published in May 2020, using data from when the test was
not yet well developed. We therefore take the shape of the infectiousness profile as the au-
thors of [149], but scale the values of the fi based on [150] so that the lowest false nega-
tive rate (on day 8) is 3.6%. Tests are performed via a swab that is taken at the start of the
working day, and results arrive at the start of the following working day, assuming a one
day delay between testing and results. A person testing positive isolates immediately upon
receiving their results and so does not spend that day working.

The impact of tests returning a false negative is two-fold. Firstly, an asymptomatic infec-
tious case may fail to receive a positive test when swabbed, and so continue to transmit to
prisoners for their entire infectious period. Secondly, a case that has been identified either
through prior testing or through displaying symptoms and is self-isolating may be permitted
to return to work by receiving a negative test, despite still being infectious.

For both symptomatic and asymptomatic members of staff, we calculate an average RS

s

and R
S

a
that represents the overall infectivity spread by a single member of staff through-

out their entire infectious period. Members of staff are able to spread a different amount de-
pending on whether they are successfully identified through testing, and depending on the
number of days between becoming infected and taking a PCR test. The calculation of RS

s

and R
S

a
is summarised in Figure 5.4.

We are now able to calculate the daily force of infection (FOI) due to staff. The key obser-
vation is that we assume a constant probability Ps = xJ of infection each day, and so sum-
ming the daily contribution throughout the infectious life of an individual infected on a spe-
cific day is equivalent to fixing a single day and summing over all possible days of infection
in the past. Recalling that staff spend one half of their working day in contact with prison-
ers and that prevention measures have an efficacy c, the force of infection �s exerted by a
single member of staff towards the prison population in a single day is given by:

�s = ⇡sc[paR
S

a
+ (1� pa)R

S

s
]Ps =

1

2
c[paR

S

a
+ (1� pa)R

S

s
]xJ. (5.5)

81



Hence, the total FOI from all ns members of staff over an interval of T days, ⇤s(T ), is given
by:

⇤s(T ) =
1

2
cnsT [paR

S

a
+ (1� pa)R

S

s
]xJ. (5.6)

Force of Infection from visitors

Visitors entering the prison are not required to be tested, but individual prisoners are not
allowed to conduct a visit if they show symptoms. Visitors are assumed to have exactly
the same infectivity profile and pattern of symptoms as members of staff, given in Figure
5.3. Each visitor is assumed to visit only once, so that visits are independent. If a visitor
were to spend an entire day visiting the prison i days after being infected, they would trans-
mit at a rate �i. If a visitor is asymptomatic, then their average integrated infectivity over
their infectious period is given by R

V

a
= raR0, whereas the average integrated infectivity

of a symptomatic visitor, given that they can only infect before experiencing symptoms, is
R

V

s
= (�4 + �5 + �6). Visitors have a constant probability of being infected each day,

Pv = J .

We arrive at an expression for the total FOI, �v, exerted by a single visitor towards the pop-
ulation of prisoners in a single visit, which lasts for a proportion ⇡v = 1/4 of a day and in-
volves less physical contact than that between staff and prisoners (resulting in infectivity
prisoners visitors being reduced by a factor rv). We arrive at the expression:

�v = ⇡vrvc[paR
V

a
+ (1� pa)R

V

s
]Pv =

1

4
rvc[paR

V

a
+ (1� pa)R

V

s
]J. (5.7)

Hence, the total FOI from all nv visitors over an interval of T days, ⇤v(T ) is given by:

⇤v(T ) =
1

4
rvcnvT [paR

V

a
+ (1� pa)R

V

s
]J. (5.8)

5.2.3 Modelling the Impact of Reverse Cohorting Units

The first Reverse Cohorting Unit (RCU) was established in April 2020 with the aim of iso-
lating prisoners individually prior to entry into the main prison, a policy which was largely
successful at preventing new prisoners from bringing the virus into prisons [144], [151]. In
practice, this approach became impractical due to demands on the prison service from the
courts, who began to experience a backlog of people awaiting places in prison after being
sentenced. Since HMPPS did not have sufficient resources to continue isolating incoming
prisoners individually at such a rate, the policy of reverse cohorting was modified to isolate
prisoners in small groups instead [145]. Under this policy, prisoners were isolated in RCUs
in groups of up to 15 prisoners for a period of 14 days. Prisoners were able to come into
contact with each other within an RCU.

This change in policy increased the risk of COVID-19 being introduced into prisons by in-
coming prisoners compared to the policy of individual isolation. Prisoners being allowed
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to mix with one another in an RCU allows for a potential outbreak to occur in which other
incoming prisoners can be infected. At the end of the RCU period, it is therefore possible
that multiple prisoners will enter the prison population while still infectious, which we as-
sumed not to be possible under the previous isolation policy. There is then a risk, if there
are no controls on transmission in RCUs, that these units act as amplifiers that can seed an
outbreak in the general prison population with more cases than there would have been had
there been no mandatory isolation of prisoners.

One method for reducing transmission in RCUs and for preventing infectious prisoners
from being allowed to enter the prison undetected is for testing to be carried out, with iso-
lation of identified positive cases. There is then a question as to what is the optimal choice
of test timing in order to minimise the introduction of COVID-19 into prisons from new
ingresses. Furthermore, the duration of the RCU period can also potentially have an im-
pact on the number of introductions if the end of the RCU period happens to coincide with
a large number of cases being infectious in the within-RCU outbreak. We use a stochastic
model of an outbreak occurring in RCU with different testing strategies in place, in order to
inform policy on the optimal strategy and length of the RCU period.

Modelling assumptions

We assume that an RCU consists of 15 individuals, including a single infectious individual
at the start of the RCU period and 14 susceptibles. All prisoners in the RCU are tested on
the same day for a maximum of two separate days before they leave and enter the general
prison population. We consider three different lengths of RCU stay (5, 7, and 14 days) with
testing carried out on all prisoners on up to two separate days.

We assume that the average infectivity profile consists of an infectious period of 7 days,
preceded by a latent exposed period of 3 days (on average), during which cases are not in-
fectious. In this setting, we do not consider whether cases are symptomatic or not, so that
infectious cases are only identified through testing. We assume that each individual has a
daily transmission rate �i, with values for the �i given in Table 5.3 and R0 =

P
i
�i.

Infectivity �1 �2 �3 �4 �5 �6 �7 �8 �9 �10

R0 = 1 0 0 0 0.1 0.1 0.2 0.2 0.2 0.1 0.1
R0 = 1.5 0 0 0 0.15 0.15 0.3 0.3 0.3 0.15 0.15
R0 = 2 0 0 0 0.2 0.2 0.4 0.4 0.4 0.2 0.2

Table 5.3. Infectivity profile for different values of R0 for a mean duration of 3 days for the latent exposed
phase (corresponding to �1,�2,�3). In each case, R0 =

P
i
�i

For the latent exposed period, we assume a mean for each individual of 3 days, but allow
this to be a random variable. Taking estimates of the distribution of days from infection to
symptom onset from available literature at the time [98], we assume that the latent exposed
period follows a gamma distribution whose mean is approximately 3 days, and whose stan-
dard deviation is 2.8 days. For our simulation, this means that the infectivity profile taken
from Table 5.3 for an individual is potentially augmented or reduced by having a random
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number of days at the start of the infectious period (in place of the fixed �1, �2, �3). Once
cases become infectious, we make no assumptions about the proportion of cases that will
display symptoms, and assume for simplicity that symptoms have no impact on how infec-
tious a person is.

Testing in RCU is conducted using both a PCR and a Lateral Flow Device (LFD) test si-
multaneously. We assume that PCR tests have a delay of 2 days between taking the test and
receiving the result, and that LFD tests return a result immediately. Test are conducted and
results are received at the start of the day, and prisoners are removed from the RCU pop-
ulation immediately upon testing positive. Both tests have an associated probability fi of
giving a false negative result when performed i days after an individual is infected.

Days after infection Symbol Probability of False Negative
LFD PCR

1 f1 1.0 1.0
2 f2 0.98 1.0
3 f3 0.70 0.96
4 f4 0.42 0.59
5 f5 0.38 0.22
6 f6 0.46 0.06
7 f7 0.60 0.05
8 f8 0.64 0.04
9 f9 0.73 0.06

Table 5.4. Probability fi of receiving a false negative test when taken on day i after being infected for both
LFD and PCR tests. Though LFDs appear to have an advantage over the PCR tests in the early infectious

period, the PCR is much more sensitive in the later stages of infectiousness.

Sellke’s Construction

In order to simulate exactly a stochastic outbreak occurring within an RCU, we use Sel-
lke’s construction [24]. Sellke’s method offers an advantage over other Monte Carlo meth-
ods in that it still provides an exact simulation of a stochastic epidemic, but requires fewer
pseudo-random number generations, making it less computationally expensive than other
individual-based models [152]. The central idea is that each susceptible individual in the
RCU population has a resistance threshold assigned to them randomly at the start of the
epidemic. Once the integrated force of infection from all infectious cases passes a suscepti-
ble individual’s threshold, that individual becomes infected. The outbreak ends either when
all susceptible individuals have become infected, or when there are no infected or exposed
cases.

More formally, consider a population of size N with an initial number S0 of susceptible in-
dividuals and I0 initial infectious cases. For 1  i  S0, equip each susceptible individual
i with a threshold Qi, which is a random variable drawn from the exponential distribution
with parameter 1. We also equip all individuals with a random variable Ei, which denotes
the latent period of an individual once infected. In practice, this is also taken from an ex-
ponential distribution with rate �. Infectious individuals all have an identical (non-random)
infectious period in our model.
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Figure 5.5. Flow diagram for our compartmental age-structured model of disease spread in a prison that has
undergone a partial vaccination program. We model 3 age groups separately (<40, 40-50, >50), but members

of each age group mix homogeneously with one another. Susceptible individuals who are infected have a
latent exposed period (E) followed by a pre-symptomatic (P) and symptomatic (I) infectious period, after

which they either recover (R) or are hospitalised (H). Once hospitalised, they are removed from the population
and either recover (RH) or die (D). Here, � = �P

P
Pi+�I

P
Ii

N�
P

(Hi+Di+RHi)
is the total force of infection acting on the

susceptible population for each age group coming from all age groups. �P and �I are the infection rates for
pre-symptomatic infectious and symptomatic infectious individuals, respectively.

Without loss of generality, we order the susceptible population so that Qi  Qj for i  j,
and we give infectious individuals the threshold Qi = 0. On each day d of the simulation,
we calculate the cumulative force of infection:

⇤(d) =
dX

j=1

NX

i=1

�
(i,j)

�{individual i is infectious on day j}, (5.9)

where �(·) is the characteristic function that returns 1 if the statement inside is true and 0
otherwise. �(i,j) is the infectiousness of an individual i on day j, and takes values �k for
0  k  10 given in Table 5.3. Any susceptible individual that has ⇤(d � 1)  Qi  ⇤(d)

then becomes infected on day d.

5.2.4 Modelling Vaccination Strategies in Prisons

In order to model the spread of COVID-19 in a prison that has undergone a partial vaccina-
tion program, we use an age-structured stochastic compartmental model that is based on the
SEIR model, but that allows a prodromal (P) period of pre-symptomatic infection, and that
also allows for prisoners to be hospitalised (H) (thus leaving the prison) and to die (D) or
recover whilst in hospital (RH). The compartmental flow diagram for this model is given in
Figure 5.5. An outbreak in a prison begins with a single case and the rest of the prison pop-
ulation is assumed to be totally susceptible to infection with COVID-19 at the beginning of
the outbreak.

Prisoners belong to one of the three age groups (<40, 40-50, >50), but where members of
each age group mix homogeneously within their own age group and between different age
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groups. The purpose of the age structure is therefore to denote vaccination status and risk
of hospitalisation and mortality. We assume that vaccinated prisoners receive a single vac-
cine dose, which is assumed to be effective only against infection. We assume that the ef-
fect of the vaccine is “all or nothing”, so that a proportion of vaccinated individuals ev (de-
noting efficacy of the vaccine) are totally protected from infection, with the remaining frac-
tion (1� ev) of vaccinated individuals being totally susceptible to infection. In order to test
the relative benefits of vaccinating different age groups, we assume at baseline that no pris-
oners are vaccinated. We then model scenarios in which those over 50 years old are offered
a vaccine, then all those over 40, and finally, in which prisoners from all age groups are of-
fered vaccines. We assume that 12% of prisoners refuse vaccination uniformly across age
groups and are therefore still fully susceptible to infection. The equations for the number of
people in each state for age group i are given in Appendix D.1.

We assume hospitalisation and fatality rates that are broadly consistent with data collected
from prisons. These rates differ significantly from those in the community; prisoners are
generally at higher risk of severe disease across all age groups than members of the wider
community. The rate of hospitalisation and fatality for an individual prisoner of a given age
group was estimated to be roughly equal to the equivalent rate for a member of the com-
munity 10 years older. This was suggested as a proxy for the general worse health status of
prisoners compared to the general population. However, due to the paucity of available data
and studies to confirm this effect, the uncertainty around our parameter choices is poten-
tially large.

5.3 Results

5.3.1 Ingress into the Prison System

Figure 5.5 shows the probability of ingress for a prison of size N = 600 for different timescales
for different prevention strategies, under different values of Rt. Our baseline scenario, rep-
resented by the top row of each timescale band, is that staff are the only people allowed en-
try into the prison, and that no other groups contribute to the risk of introduction. In this
scenario, visitations of prisoners are not allowed, and reverse cohorting of new prisoners
before they arrive into the prison is implemented with 100% effectiveness. Up to May 2020,
individual isolation of incoming prisoners and not allowing visits from the general public
was the enacted policy of HMPPS. We modelled three additional scenarios; one in reverse
cohorting was not implemented, one in which visits were allowed to resume at a constant
rate, and one in which both reverse cohorting was not implemented and visitors were al-
lowed to resume.

Figure 5.5 shows that the probability that a medium-sized prison (N = 600) had already
had at least one case of COVID-19 was close to 50%. Probabilities of a prison seeing at
least one case of COVID-19 in the future are calculated conditional on the prison having
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Figure 5.6. Table showing the effective total infectivity of asymptomatic and symptomatic members of staff
and visitors in the presence (staff only) and absence of testing.

not already had a case by the 5th of May 2020. We see that, under all scenarios with Rt >

1, the probability that a prison eventually has at least one imported case is greater than 99%.

Had reverse cohorting not been implemented at this time, that probability may have been
as high as 89% if only 5 prisoners per day were allowed to join the prison population, and
99.4% with the baseline number of 15 prisoners joining per day. If visitors had been al-
lowed to enter prisons, then the probability that a prison would have had at least one case
of COVID-19 prior to May 2020 would have been 84.8%. This suggests that incoming pris-
oners have a larger effect on the probability of disease ingress compared to visitors, in turn
suggesting that the policy of reverse cohorting had a larger impact than that of suspending
visits by the general public.

Our model relies on many simplifying assumptions, and therefore we should be careful
about drawing too many (particularly quantitative) conclusions from our results. Instead,
the purpose of this modelling was simply to demonstrate qualitatively the relative risks of
ingress into prisons from the wider community under different prevention strategies. How-
ever, even these qualitative results rely on our assumptions and parameter choices. For ex-
ample, reverse cohorting appears to have had a higher impact than suspending visits from
the public, but this is largely due to the fact that we assume that reverse cohorting is 100%
effective when implemented. We have also assumed a very low level of mixing between
prisoners and visitors; in reality, it is very difficult to estimate the extent to which visitors
are able to transmit to prisoners, and it is likely that the nature and frequency of contact be-
tween the two groups are highly heterogeneous.

We also do not model explicitly transmission between prisoners once the infection has en-
tered the prison. This would require a more complicated model of individual prisons of dif-
ferent sizes, with a compartmental model of how COVID-19 is spread within the prison
population. We conducted work of a similar nature for care homes in [85] and work com-
bining this model of ingress with a within-prison model of transmission is given in [64].

5.3.2 Modelling Testing Strategies for Prison Staff and Visitors

As in the previous section, because we model ingress via a Poisson process, we may simply
sum the forces of infection action on the prison due to staff and visitors, so that the proba-
bility of having no introductions after T days is given by exp(�(⇤v(T ) + ⇤s(T ))). Hence,
the probability, P (T ) that a prison experiences at least one introduction in an interval of
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length T days is given by:
P (T ) = 1� e�(⇤v(T )+⇤s(T )) (5.10)

For different levels of the incidence, J , we calculate both the expected number of introduc-
tions and the probability of at least one introduction. We calculate these quantities both
with and without staff being tested, as well as with and without COVID control measures
(corresponding to c = 0.5 and c = 1, respectively). These results are shown in Figures 5.6
and D.1.

In order to provide the upper and lower bound estimates given in Figures 5.6 and D.1, we
use the upper and lower bounds for the probability of receiving a false negative test result
from Table 5.2, and use the following alternative parameter choices presented in the format
baseline [lower bound, upper bound]:

• The proportion pa of infected individuals that are asymptomatic takes values 0.5 [0.3,
0.7].

• The relative infectiousness of asymptomatic cases compared to those who display
symptoms, ra, takes values 0.75 [0.5, 1.0]

• The effectiveness of measures such as masking, social distancing, and hand washing at
reducing transmission, c, takes values 0.5 [0.25, 0.75]

Testing is more effective at preventing asymptomatic transmission, but still has the problem
that much of the early transmission is missed, and has the caveat that asymptomatic individ-
uals transmit less than symptomatic ones. A summary of the impact of testing on asymp-
tomatic and symptomatic individuals can be found in Figure 5.6

Our results in Figures 5.6 and D.1 (see Appendix D.2) suggest that, even with COVID-
19 controls such as masking and social distancing in place, it is extremely unlikely that an
average-sized prison will be able to prevent an infection being brought in from outside by
staff and visitors. If the incidence estimates from the time (between 60 and 70 thousand
new infections per day [148]) had remained constant, our modelling finds that there would
be a larger than 80% probability of introduction into an average-sized prison within two
weeks, assuming that COVID-19 control measures were in place. Without COVID-19 mea-
sures in place, prisons would be almost certain to experience an introduction of a case of
COVID-19.

Three main assumptions drive the large absolute risk of introduction: Firstly, the high in-
cidence in the general population gives a high probability that members of staff and vis-
itors will be infected outside of the prison. Secondly, a high assumed R0 of 4 means that
staff and visitors will transmit more to prisoners, making ingress more likely, compared to
what was assumed in Section 5.3.1. Thirdly, a large amount of pre-symptomatic infection
(3 out of the 7 days of infectiousness) and high proportion of asymptomatic cases mean
that a large proportion of the infectivity of staff and prisoners is not affected by the policy
of isolation upon displaying symptoms.
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These three points being considered, it may nevertheless seem surprising that testing has
a relatively low impact on the probability of introduction. Again, this has much to do with
our assumptions on the infectivity profile of infected cases, shown in Table 5.3 and on the
time-varying probability of a test giving a positive result shown in Table 5.2. It is likely that
a more precise model of infectivity and test positivity over time could have been used, how-
ever, both of these quantities depend largely on host viral load, which was better understood
much later in the pandemic [153]. Nevertheless, the key characteristic of both curves is that
infectiousness and test sensitivity grow roughly at the same time, making it difficult to iden-
tify infected individuals early enough to prevent pre-symptomatic transmission.

The positive impact of testing could be substantially improved in prisons if the delay be-
tween testing and results were made shorter. This could be achieved by using Lateral Flow
Tests (LFTs) instead of PCR tests, but there is then a trade-off between the increased sensi-
tivity of the PCR tests that makes the choice more complicated. Testing could also be im-
proved if tests were not taken weekly by all members of staff on the same day, but rather
were coordinated with individual staff’s shift patterns, so that a member of staff receives
their test result at the beginning of their individual shift. Assuming PCR results arrive ex-
actly one day after swabbing, this would require members of staff to take the test one day
before starting their own shift, which could be logistically difficult. Similarly, testing mem-
bers of staff every day would increase the probability of identifying pre-symptomatic and
asymptomatic cases. Switching to using LFTs might make either of these strategies more
feasible, but this again comes with drawbacks in terms of reduced sensitivity.

5.3.3 Modelling the Impact of Reverse Cohorting Units

In order to evaluate different testing strategies for the RCU, we ran 10,000 simulations per
strategy of an outbreak in an RCU with testing on different days, using different tests and
different RCU durations. From these simulations, we measured the cumulative number of
infected cases (excluding the primary case) in the RCU over the whole period, the total
number of ingresses (i.e. the number of infectious cases entering the prison after the final
day of the RCU) and, for these ingresses, the fraction of their total remaining infectivity.
These results are shown in Figure 5.7 and, in closer detail, in Figure 5.8.

Unsurprisingly, we find that, regardless of the duration of the RCU period, strategies with-
out testing always perform worse on average than those where testing is conducted on two
days. Testing on two days significantly curtails the risk of ingress and we find that, marginally,
the best strategy based on the number of introductions into the prison population is one in
which testing is conducted on the first day and on day 2 of the RCU, with the RCU period
ending after 5 days (T0 T2 E5 in Figure 5.7). We also find that, comparing RCU periods
of 7 days, it is slightly better to test once at the beginning and once at the end of the RCU
period (T0 T5 E7 in Figure 5.7) rather than twice closer to the start. Whilst this may result
in a slightly larger outbreak within the RCU, this strategy is very marginally better chance
of identifying and isolating cases on the final day, thus preventing them from entering the
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Figure 5.7. Boxplots of our simulation output for each testing strategy, with R0 = 2, 1.5, 1 and 0
(corresponding to individual isolation). Testing strategies should be read as follows: T (Test) refers to the day
of the swab, from which an LFD test result is produced immediately and a PCR test result arrives 2 days later.
E (Exit) corresponds to the day on which all prisoners leave the RCU and enter the general prison population.
The total number of infected individuals in the RCU (blue) includes the initial infected case, and so is always
at least 1. The number of ingresses (orange) refers to the number of prisoners that are infected and neither yet

recovered nor been identified through testing on the day that they leave the RCU. They therefore enter the
general prison population and continue to infect other prisoners. Remaining infectiousness (green) is obtained
by summing the fraction of infectivity remaining from each infectious case that enters the prison population
(i.e. summing the remaining �is). The middle 50 % of our simulation outputs lie within the coloured boxes,
whilst the mean output for each testing strategy is displayed as a black triangle. Outliers are displayed as grey

diamonds, meaning that they occur with low probability.

Figure 5.8. Copy of Figure 5.7 with only orange and green boxes, zoomed in.
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general prison population.

Some caution is needed in interpreting the number of ingresses and remaining infectious-
ness represented in Figure 5.8, particularly when considering the outcomes from shorten-
ing the RCU period to 5 or 7 days. The benefit of cutting the RCU period when R > 1 in
the RCU is somewhat illusory, however. If we compare a 14-day RCU period with a 7-day
RCU period, prisoners leaving after 7 days will simply spend the remaining 7 days infecting
in the general prison population, thus generating further infections that are not counted in
the metrics measured here. The ultimate effect is therefore one of cutting the within-RCU
outbreak closer to its peak, leading to more individuals moving into the general prison pop-
ulation already infected. Even if R0 in the general prison population is smaller than in the
RCU, a higher number of ingresses is of greater concern as more ingresses reduce the prob-
ability that a resulting outbreak in the prison goes extinct. If instead, R0 in the prison is
higher than in the RCU, it is more likely that even a single ingress will cause a potentially
large outbreak. If R0 between the RCU and prison is similar, then it is likely that the contin-
ued outbreak in the prison resulting from ingress from the RCU after 5 or 7 days will result
in a similar number of cases over a 14-day period. This highlights the fact that reverse co-
horting of prisoners is just one aspect of prevention and control of COVID-19 in prisons,
and that much more thought is needed to model and design policy for control in all parts of
the prison service.

We conclude that transmission in RCUs should be limited as much as possible in order to
make reverse cohorting in groups as close as possible to the original policy of isolating
prisoners individually. This is certainly an obvious conclusion from an infection control
standpoint, but ensures that RCUs do not act as amplifiers that have the potential to con-
vert a single ingress into multiple ingresses. Naturally, however, there is also a constraint
on resources and on the well-being of prisoners which means that, in practice, some contact
between them is necessary. We find that testing does have a somewhat significant impact on
the effectiveness of RCUs but, given that testing is carried out, there is little difference be-
tween testing on different days. Reducing the length of the RCU period may have an effect
on the number of ingresses, but this depends strongly on the dynamics of outbreaks within
the RCU relative to the wider prison. If the dynamics are similar, then the ultimate num-
ber of infected people after 14 days may also be similar, regardless of how many of those 14
days are spent in the RCU.

5.3.4 Modelling Vaccination Strategies in Prisons

We simulate trajectories from a stochastic version of the SEPIR model described in Figure
5.5 using the Gillespie algorithm [89]. We model an outbreak in a prison of size N = 650

with three different within-prison values of R0 (R0 = 2, 3 and 4). We also test three dif-
ferent levels of vaccine efficacy against infection, transmission, and hospitalisation; at base-
line, we assume that vaccination is 70% effective against infection, 25% effective against
transmission, and 80% effective against hospitalisation. The impact of vaccine efficacy
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is assumed to be “all or nothing,” meaning that if the efficacy against a given outcome is
given by ve, then vaccination offers full protection against that outcome to a proportion ve

of the population, and no protection to the remaining proportion 1� ve of the population.

For each scenario based on the within-prison value of R0, different vaccination strategies,
and for different values of vaccine efficacy, we simulate 1,000 outbreak trajectories. Across
all trajectories and in each scenario, we measure the average number of cases, hospitali-
sations and fatalities for the entire outbreak, as well as the size and timing of the peak of
the outbreak. These are the metrics by which we assess the effectiveness of each vaccina-
tion strategy, as a successful vaccination strategy should not only limit the number of severe
outcomes, but also the number of cases overall. Vaccination strategies should also be aimed
at reducing the size and slowing down the peak of an outbreak, in order to avoid large out-
breaks that overwhelm the capacity of within-prison healthcare staff and facilities.

Sample trajectories of outbreaks within prisons are shown in Figure 5.9 for different vac-
cination scenarios. Clearly, outbreaks for which a larger group of the prison population is
vaccinated are much smaller than those for which only prisoners over 50 are vaccinated.
For our baseline scenario, where a single vaccine dose confers complete protection against
infection to 70% of people that receive it and where R0 = 2, we observe outbreaks with
253 cases at the peak, on average. Comparatively, for the same baseline scenario but with
all prisoners vaccinated, the average peak size of the simulated outbreaks is reduced by
almost 80% to 54 cases. Vaccinating all prisoners, therefore, results in much smaller out-
breaks in prisons compared to a strategy in which prisoners are vaccinated according to
their age groups in line with the wider community vaccination program in the UK.

5.4 Discussion and Conclusions

We have presented a general framework for estimating the risk of introducing a single case
of COVID-19 into the prison system in the UK from different sources. Initially, we model
the risk of introduction into prisons due to prisoner inflow, staff and visitors using a Poisson
process, with different intensities of the rate of introduction for each group. These intensi-
ties are dependent on a number of factors, including the proportion of an individual’s day
assumed to be spent in prison, the number of prisoners that an individual comes into con-
tact with, and the prevalence over time of the disease in the external population. Though
this simple model is useful for providing high-level insights into the relative risks of ingress
associated with each group, in practice, more detailed modelling is required for each route
of entry in order to evaluate these risks more accurately, as well as to evaluate measures
aimed at mitigating them. We then refine this approach by modelling ingress from each of
these different sources in greater detail, including different testing and isolation strategies,
in order to provide more actionable insights for policy. Finally, we model the impact that
the ingress of a single infectious case can have on a prison once a proportion of the prison
population is protected through vaccination.

95



Figure 5.9. Simulated outbreaks for different values of R0 within prisons, as well as for different vaccination
strategies and different levels of vaccine efficacy (value displayed against infection).
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The models that we have presented will always reach the straightforward conclusion that
any intervention aimed at limiting an individual’s ability to transmit the virus to those in
prison will result in some reduction in the risk of ingress and of large outbreaks occurring
in prisons. These insights gained from modelling may therefore appear to offer simple so-
lutions in terms of policy. However, one must bear in mind that the situation of prisoners
is relatively unique in that the state is directly responsible for their care and well-being,
without their being able to leave prisons voluntarily. Any intervention aimed at protecting
prisoners from infection with COVID-19 must therefore be balanced against potential detri-
ments to their physical and mental health that can arise as a result of these interventions.
Early in the pandemic, HMPPS restricted regular visits to prisoners by friends and family
members, which was observed to have had a negative impact on prisoner well-being (in-
deed, it was noted that some women in prisons in the UK were unable to see their children
for a period of two months) [154]. Isolation of infectious cases and cohorting of incom-
ing prisoners has also been noted as a contributing factor to the declining mental health of
prisoners in the UK [155], with time spent outside of cells being an important factor in im-
proving prisoner mental health and reducing the risk of suicide [156]. During the pandemic
prisoners have, on average, only been allowed to spend 90 minutes per day outside of their
cells [157]. These impacts on prisoner well-being, therefore, need to be weighed carefully
when considering any intervention aimed at reducing the ingress and spread of COVID-19
in prisons. This analysis is beyond the scope of this paper, but these concerns highlight the
need for health economic modelling to complement our models in weighing the impacts of
different proposed interventions.

Throughout the analysis that we have conducted, we have made assumptions that have been
informed by colleagues in HMPPS and, where possible, by data that they have provided.
However, it is important to stress that our results depend strongly on these assumptions
made and that the insights gained through these models are intended to signpost towards
policies that would make prisons less susceptible to outbreaks. Our initial results in Section
5.3.1 suggest that the inflow of new prisoners into a prison represents the largest source of
risk for importing cases into the prison system and therefore that policies aimed at isolat-
ing incoming infectious cases would provide the largest benefit. In Section 5.3.2, we find
that, although the impact of testing staff on the introduction of COVID-19 is limited, testing
does somewhat reduce the risk by identifying asymptomatic cases. These results could be
improved by considering tests that are more sensitive and that return a result more quickly,
which became possible later in the pandemic. Our results in Section 5.3.3 show that testing
of prisoners within RCU does have a large impact on the total number of ingresses, thereby
significantly strengthening the policy of isolating prisoners in cohorts where individual iso-
lation is not possible. The efficacy of RCUs is also strengthened by limiting the mixing of
prisoners as much as possible though, again, this may often be impractical or detrimental to
prisoner welfare in many cases. Without these measures in place, we argue that RCUs have
the potential to amplify the risk of an introduction of COVID-19 into prisons from incom-
ing prisoners, depending on the relative levels of transmission within the RCU and within
the general prison population. Finally, we present results in Section 5.3.4 that suggest that
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outbreaks resulting from a single ingress in prisons are significantly mitigated if all prison-
ers are given priority for vaccination as early as possible, rather than being vaccinated over
the course of the vaccine roll-out in the UK according to their age. This would also have
the effect that prisons can return to activity that is as close as possible to pre-pandemic lev-
els, which is beneficial to prisoner health.

Our hope is that the insights gained from modelling the ingress and spread of COVID-19
in prisons in the UK can form part of the learning that is taken forward about prison man-
agement during a pandemic and applied to future health emergencies. Modelling enables
policymakers to quantify the relative risks of proposed scenarios and policies and therefore
to make informed decisions about the trade-offs between prevention and prisoner welfare.
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Chapter 6

Hospital length of stay for COVID-19
patients: Data-driven methods for
forward planning

This chapter is work that was published in BMC Infectious Diseases in 2021 [1].

Background

Predicting hospital length of stay (LoS) for patients with COVID-19 infection is essential
to ensure that adequate bed capacity can be provided without unnecessarily restricting care
for patients with other conditions. Here, we demonstrate the utility of three complementary
methods for predicting LoS using UK national- and hospital-level data.

Method

On a national scale, relevant patients were identified from the COVID-19 Hospitalisation in
England Surveillance System (CHESS) reports. An Accelerated Failure Time (AFT) sur-
vival model and a truncation corrected method (TC), both with underlying Weibull distri-
butions, were fitted to the data to estimate LoS from hospital admission date to an outcome
(death or discharge) and from hospital admission date to Intensive Care Unit (ICU) admis-
sion date. In a second approach we fit a multi-state (MS) survival model to data directly
from the Manchester University NHS Foundation Trust (MFT). We develop a planning tool
that uses LoS estimates from these models to predict bed occupancy.

Results

All methods produced similar overall estimates of LoS for overall hospital stay, given a pa-
tient is not admitted to ICU (8.4, 9.1 and 8.0 days for AFT, TC and MS, respectively). Esti-
mates differ more significantly between the local and national level when considering ICU.
National estimates for ICU LoS from AFT and TC were 12.4 and 13.4 days, whereas in lo-
cal data the MS method produced estimates of 18.9 days.

Conclusions

Given the complexity and partiality of different data sources and the rapidly evolving na-
ture of the COVID-19 pandemic, it is most appropriate to use multiple analysis methods on
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multiple datasets. The AFT method accounts for censored cases, but does not allow for si-
multaneous consideration of different outcomes. The TC method does not include censored
cases, instead correcting for truncation in the data, but does consider these different out-
comes. The MS method can model complex pathways to different outcomes whilst account-
ing for censoring, but cannot handle non-random case missingness. Overall, we conclude
that data-driven modelling approaches of LoS using these methods is useful in epidemic
planning and management, and should be considered for widespread adoption throughout
healthcare systems internationally where similar data resources exist.

Keywords: Branching Process, Case Under-ascertainment

Background

Since its emergence in December 2019 and classification in January 2020, SARS-CoV-2,
the coronavirus that causes COVID-19, has spread rapidly, with 270 thousand confirmed
infections in the UK by the end of May 2020 [158]. The exponential growth in the early
days of each nation’s outbreak has led to a doubling time of around three days [120]. Cou-
pled with potentially high estimates of R0 (the average number of new infections gener-
ated by an infected individual, in the absence of control measures and population acquired
immunity) [159]–[161], this has continued to have substantial impacts on healthcare sys-
tems across the world. Large growth rates and a delay between new infections and their de-
tection can lead to unexpected surges in bed demand. In order to restrict the spread of the
pathogen, many countries have implemented mass quarantine (also known as lockdown)
strategies, including England where the mass quarantine began on 23 March 2020 [162].
However, the effects of such interventions are not seen for at least a week [163], emphasis-
ing the need for careful, evidence-based, planning; particularly as the easing of mass quar-
antine measures is considered. In this context, the use of clinical care data to predict the de-
mand for hospital and Intensive Care Unit (ICU) beds by patients presenting with COVID-
19 is invaluable in optimising the effectiveness of planning by hospitals and, therefore, pa-
tient outcomes.

Understanding the impact of COVID-19 on hospital capacity breaks down into two core
measurement tasks: first, to predict incidence (and thereby hospital admissions rates); and
second, to estimate total length of stay (LoS) accurately allowing for variation in severity
of disease and healthcare needs. The combination of these two measures can then be used
to predict bed demand. This challenging task requires a careful modelling approach, par-
ticularly when high-quality data is limited within often fragmented healthcare systems. Na-
tional datasets are crucial in understanding demand in hospitals across the country, but are
flawed by amounts of record-level (or whole case) missingness that can bias the estimates.
Routinely collected data generated by individual hospitals are, by definition, smaller and
non-general but tend to be less prone to missingness and these can complement national
data by providing insights for planning on a local level.
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Estimating LoS has not been the primary focus of previous modelling; and studies that cal-
culate LoS tend to use ad-hoc approaches [164]. There is currently a lack of statistically
principled modelling that accounts for both delays in patient outcomes and complex hos-
pitalisation pathways. This problem is particularly important during the COVID-19 pan-
demic, since some groups of patients spend extended periods in hospital, and, for the most
severe cases, in critical care. Furthermore, estimates of LoS that use deterministic models
or observations drawn directly from data fail to take missingness into account [165]–[167].
Accurately calculating LoS therefore requires mathematical and statistical techniques that
specifically address these issues.

In this paper, we present three methods for estimating LoS for patients with COVID-19 in-
fection using both a nationally collected dataset and local data from a large inner city hos-
pital Trust in the UK. The truncation corrected (TC) method corrects for the fact that ob-
servations are truncated at the day of reporting; accelerated failure time models (AFT) ex-
plicitly account for all observed LoS including those censored by not having seen the out-
come; and the multi-state (MS) approach analyses LoS and takes into account dependence
between outcomes such as discharge or death. Finally, we include measures of uncertainty
in each of our model results, which should be incorporated into hospital planning strategies.
With this principled approach, past data can be appropriately used to better prepare for the
next phase of the COVID-19 pandemic.

The results presented in this article use data that were available as of 26 May 2020. At this
stage of the pandemic, many patients were still in hospitals, leading to right-censoring in
their lengths of stay. To evaluate the performance of the methods at correcting for this right-
censoring, we compare the estimated distribution to the full LoS distributions, using data
available as of 21 January 2021. We do not re-analyse the LoS for the second and third
waves, since this manuscript focuses on comparing methods for estimating LoS whilst cor-
recting for right-censoring. However, the methods are readily applicable to these more re-
cent data.

Methods

Data

Outcome variables

We define two outcome events: death or discharge. All patients admitted to hospital will
eventually experience one of these two outcomes. Then, we model LoS from hospital ad-
mission to either death or discharge. For the analysis shown in the Results section, we focus
on LoS until any outcome, to facilitate comparison of the three methods. We account for
whether the patient was in ICU or not and also estimate the LoS from hospital admission
to ICU and LoS on ICU. In Appendix E.6, we further examine different outcomes using the
TC and MS methods.
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CHESS

The COVID-19 Hospitalisation in England Surveillance System (CHESS) 1 collects reports
from all NHS acute care hospital trusts to provide daily patient-level and aggregate data on
COVID-19 hospitalisations. In the patient-level data, patients are followed through their
hospitalisation pathway; the dates of various events are recorded, such as date of admission
to hospital, date of admission to ICU and final outcome date.

CHESS predictors

We used four variables as predictors. First, sex, for which we removed patients with un-
known values. Second, age, which we grouped into four categories (< 50, 50� 64, 65� 74,
75+), and removed negative values and patients with a recorded age equal to zero (which
did not seem genuine, based on the number of such cases and other factors such as comor-
bidities). Third, week of admission to hospital, which, in the TC model, we categorised in
two groups: weeks 12 to 14 (i.e. from 16 March to 5 April 2020), and weeks 15 to 20 (from
6 April to 17 May 2020). In the AFT model, we used single week as a fixed effect predic-
tor but present results for the two groups of admissions. Fourth, we used a binary indicator
on whether a patient was admitted to ICU or not, and omitted the patients for whom this in-
formation was unknown. The resulting analytical sample is n = 6208. Details of the data
processing procedure, and inclusion/exclusion criteria, are presented in Appendix E.3.

Whilst we can identify predictors such as sex, age, and week-of-admission from these data,
we cannot identify other potential predictors such as which variant contributed to the in-
fection or treatment strategies. This would be of interest with the emergence of new vari-
ants of concern. Instead, the effect of new variants has to be approximated using week-of-
admission, but this may be confounded with other factors, such as treatment changes and
hospital burden.

Routinely collected hospital data (MFT)

Routine data on the hospitalisation of patients were provided by Manchester University
NHS Foundation Trust (MFT). MFT is the largest NHS Trust in England, comprising nine
hospitals and accounting for approximately 2.5% of the National Health Service. For COVID-
19 admission, there were three geographically distinct acute hospitals across South and
Central Manchester: Manchester Royal Infirmary; Wythenshawe Hospital; and Trafford
General Hospital. MFT serves the population of Greater Manchester, a large, ethnically di-
verse conurbation of approximately 2.8 million people. The data follow all patients through
their clinical pathway for the duration of a single hospitalisation, and provide timings and
lengths of stay in all critical care episodes. Patient data are complete unless patients are still
in hospital, in which case they are censored.

1Since October 2020 this has been replaced with the Severe Acute Respiratory Infection (SARI) data.
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MFT data preparation

Data were drawn from the Patient Administration System (PAS) and WardWatcher to join
information on a patient’s hospitalisation pathway and critical care episodes. Patients were
selected from the MFT database if a swab was taken either on the day of their hospitalisa-
tion, or within two days of their hospital admission, and tested positive for COVID-19. This
was to discount any hospital-acquired cases since COVID-19 positive cases who required
hospitalisation due to non-COVID related health conditions may bias LoS estimates. We
also excluded patients admitted for elective procedures requiring treatment for chronic ill-
nesses such as dialysis. As a result of having multiple admissions close together, it was dif-
ficult to determine whether these cases were hospital-acquired or genuine COVID-19 ad-
missions. The resulting sample included n = 786 patients. The models based on the MFT
data did not use information on predictors due to the smaller sample size, although from a
methodological point of view these could be easily added to the models. Details of the data
generating process are presented in Appendix E.1.

Data quality issues in length of stay data

There are several types of data quality issues that tend to be present in length of stay data
and all are present in one or both of the two datasets. Some of these are a consequence of
the reporting and data collection methods. Others are inherent to the nature of outbreaks,
and will be present regardless of the data collection. Here, we present some key issues that
need to be adjusted for, and discuss the implications of ignoring them. Accounting for these
biases for COVID-19 can enable robust estimates that provide timely insight for policy and
planning.

Missing cases

One issue with the CHESS dataset is missing cases. For example, the number of deaths
recorded in CHESS is considerably less than the official figures. These also suffer from re-
porting lag issues but some indication about the level of missingness in CHESS can be ob-
tained by comparing to the COVID-19 patient notification system (CPNS), which records
all deaths attributed to COVID-19 in England. On 26 May, there were 23504 deaths in hos-
pital as attributable to COVID-19 in the CPNS data. This compares to an equivalent figure
of 4071 in the raw CHESS data for the same day. This is indicative of case level missing-
ness within CHESS of over 80%. We discuss this issue in more detail in Section 6“Discus-
sion”.

Missing values on important variables

Many rows in the data are incomplete. This is particularly problematic for data pertaining
to outcome events: for example in some cases it is unclear whether a patient has not been
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discharged yet, or whether they have but the data have not been recorded. The amount of,
and patterns of, missing patient information in the CHESS data is associated with the trust
that reports the cases, with varying levels of missingness across different trusts (see Ap-
pendix E.2).

Censoring

In time-to-event studies, we observe a collection of individuals who are infected or have
been exposed to infectious material. If these individuals could be followed indefinitely, the
outcomes of all individuals would be observed. Therefore, these data can be used to de-
termine the length of stay in the various compartments (states) of the disease progression
pathway, as well as the probabilities of transitions into other states. However, during an
outbreak we only observe individuals up until the most recent reporting date. This leads to
right-censoring (e.g. [168]), when we only know the lower bound of duration until the next
event in the pathway, and cannot accurately determine the length of time until their next
transition nor to which state this will be. Thus, censoring may lead to the underestimation
of the LoS.

Truncation bias

To remove the uncertainty around censored cases, we can instead condition our sample to
only look at cases for whom the outcome has been observed. However, such a sample in-
cludes only cases with outcomes that occurred before the most recent reporting date, caus-
ing the sample to be truncated by the reporting date. This truncation leads to an over-expression
of short LoS, since the recently infected individuals are only included if their LoS is short.
Failing to account for this bias will underestimate the LoS of interest. 2

Truncation is exacerbated by exponential growth in the early stages of an outbreak, since
a higher proportion of cases will have been infected recently. By the final phase of an out-
break, truncation has a smaller effect since the majority of cases occurred sufficiently long
ago to be unaffected by the truncation date. However, it will always be present as long as
the epidemic is ongoing. Even in these late stages, whilst it may have a negligible impact
across the whole outbreak, its effect might be of concern in certain scenarios, such as when
using time as a predictor variable. In such a case, for events early in the epidemic, trunca-
tion will have very little effect, but for more recent events many cases may still be trun-
cated. Such biases are often considered in the HIV literature [169], [170], due to the long
infectious periods involved, but are often ignored for acute outbreaks. As alluded to in [171],
this is potentially due to high quality data being available only after an explosive outbreak
has finished, by which point these biases have little or no effect. However, when attempting
to control ongoing epidemics, we require estimates of LoS distributions that are robust in
the face of censoring and truncation.

2This can be seen in Figure 6.2 by comparing the TC results to the LoS observed in the data.

105



Survival analysis

Survival analysis describes a collection of statistical procedures for which the outcome of
interest is time until an event, often as a function of predictor variables [172]–[174]. A cen-
tral assumption of most survival analytic methods is that the time to event will have been
censored for some observations, as discussed in Section 6“Data quality issues in length of
stay data”.

Survival analysis may assume an underlying distribution for LoS in each state. Generally,
LoS are observed to be right-skewed, so a distribution with this property should be used.
In this paper, LoS is assumed to follow a Weibull distribution, which is a popular choice
in survival analysis as it is robust in terms of violation of its assumptions. Therefore, the
choice allows us to focus on the comparison between the different methods rather than the
issues of model fit.

Figure 6.1 outlines the model used to represent the hospital pathways we consider in our
analysis. Allowed transitions are indicated by directed arrows between any two states. Be-
low, we outline the survival methods we selected for our analyses. Code for all methods is
available at https://github.com/thomasallanhouse/covid19-los.

Acute Ward
Critical Care
(Respiratory)

Stepdown/Recovery
Ward

Mortality

Discharge

Figure 6.1. A schematic representation of the possible hospital pathways considered by our methods; at any
given time, patients are considered to be in one of the five following states: Acute Ward, Critical Care,

Stepdown Ward, Discharge or Mortality.

Accelerated Failure Time (AFT) model

In the AFT model, rather than considering all of the hospitalisation pathways shown in Fig-
ure 6.1, we focus on predicting LoS in a given state, until another pre-specified event oc-
curs. That is, we are interested in estimating the time between subsequent events in the path-
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way, such as from hospital admission to being admitted to ICU. We aggregate the final out-
comes of death and discharge into a single outcome. This is necessary since it is not clear
what the outcome will be for the censored cases in the CHESS data.

The response variable is the natural logarithm of the LoS, denoted by ln(t), which is ex-
plained by a vector of predictors x, with associated parameter vector �, and error term ⇠:

ln(t) = x · � + ⇠. (6.1)

The assumed probability distribution of ⇠ defines the hazard function, i.e. the probability
that a case will experience an event at time t, given that they have not already experienced it
until time t [175], [176]. For ⇠ we assumed a Weibull distribution, giving the hazard func-
tion h(t) = p�t

p�1, where � = exp(�px · �) and p is the shape parameter defining the
Weibull distribution. If p > 1 the hazard is increasing over time, if p < 1 the hazard is de-
creasing over time, and for p = 1 the hazard is constant over time (which is equivalent to
an exponential error term distribution). The predictors x therefore increase or decrease the
hazard and so accelerate (shorten) or decelerate (lengthen) the time to event, t.

The AFT model explicitly takes into account cases with right-censoring [176]. Thus, the
model corrects for the potential underestimation of the LoS when only a portion of patients
in the sample have observed the event.

A limitation of this simple model is when there is more than one potential event of inter-
est [174]. In this study there were two events of interest: death and discharge. These are
‘competing hazards’, i.e. if a patient experienced one they were censored for experiencing
the other. We could have run the model twice, once for each event, and treated patients who
experienced the other event as being censored. This would have given unbiased results if
the competing hazards were independent, but, for a given patient, as the hazard of death in-
creases, it decreases for discharge, and vice versa. For this reason we considered a model of
the joint event: death or discharge.3

We fitted separate models for patients who never entered ICU versus patients who did enter
ICU at some point, as these groups were expected to have different baseline hazard func-
tions. In all models, the predictors in x were sex, age group and week of hospital admission
(see Section 6“CHESS predictors”).

All models were estimated using JAGS software implemented in the rjags R package [177]
using the glm and dic modules for fitting and model selection, and running 50,000 iter-
ations for each model. For the shape parameter, we used a uniform prior, p ⇠ U(0, 10),
which represents our lack of information on this parameter. There is not a conjugate prior
simultaneously for both the shape and scale parameters in the Weibull distribution [178].
An alternative specification for this prior is a Gamma distribution [179]. However, in our
tests the results were virtually the same with both priors for p. The scale parameter � is

3This is not as counter-intuitive as it might sound since, although death is certainly not an equivalent outcome for the patient, our
primary concern here is in length of stay regardless of outcome.
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specified via a prior for the predictors’ coefficients �, which is multivariate normal with
mean zero and variance equal to 10, i.e. each element of � is distributed as N (0, 10).4

Truncation corrected method

In this method, we again focus on estimating the single LoS in a given state. We assume
that LoS is given by a random variable X , drawn from a distribution with density function
f✓(·), parameterised by a set of parameters ✓. In this analysis, we assume that X is drawn
from a Weibull distribution. We aim to determine the underlying parameters for this distri-
bution by fitting the observed data using maximum likelihood estimation.

To use maximum likelihood estimation, we need to construct a likelihood function for the
observed data. For each data point, the LoS is not directly observed. Instead, the arrival and
departure dates and/or times that bracket the period of stay are observed. These correspond
to two random variables, E1 and E2, linked by the LoS random variable, i.e. E2 = E1 +X .
Instead of treating incomplete entries as censored, here we condition the data on observ-
ing both events. For example, if interested in the time from hospital admission to ICU ad-
mission, we condition on cases that have been admitted to hospital and to ICU. This intro-
duces a truncation bias (See Section 6“Truncation bias”), which needs to be corrected in
the likelihood function. This approach does not take into account competing hazards, since
we condition the data on observing the outcome of interest. However, this method enables
LoS for different patient outcomes to be estimated, since censored cases are not included.

Our likelihood function is defined as the probability that the second event occurs on the ob-
served date, given the time of the first event and that the second event must have occurred
before the truncation date [170]. This removes censored observations since we condition on
observing the second event. Therefore, we need to find

f(E2 = e2 | {E1 = e1} \ {E2  T}) =
gE1,E2(e1, e2)R

T

e1
gE1,E2(e1, x)dx

, (6.2)

where gE1,E2 is the joint distribution of E1 and E2. The time of the second event is the time
of the first event plus the delay, E2 = E1 +X . Therefore gE1,E2 = gE2|E1(e2 | e1)gE1(e1) =

f✓(e2 � e1)gE1(e1), which gives

f(E2 = e2 | {E1 = e1} \ {E2  T}) =
f✓(e2 � e1)gE1(e1)R
T�e1

0 f✓(x)gE1(e1)dx
=

f✓(e2 � e1)R
T�e1

0 f✓(x)dx
. (6.3)

This can be maximised across all data points to find the maximum likelihood estimator for
✓. 5

This method can be used to examine LoS to individual outcomes by specifying the events,
4The model can also be estimated using maximum likelihood implemented in Stata 14 using the command streg (https://www.

stata.com/manuals/ststreg.pdf)
5We maximise this using command fminsearch in MATLAB, but it is relatively simple to implement in any language. We provide

both MATLAB and Python code in the Github repository.
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e.g. specifying that the second event is a death. Additionally, the effect of predictor vari-
ables can be analysed by sub-setting the data and then modelling the LoS of each subset.

Multi-state model

Multi-state survival analysis extends the above two methods by permitting us to model the
time to multiple outcome events in the presence of competing hazards [180], [181]. Thus,
we can model complex patient pathways upon admission to hospital.

Each permitted transition in Figure 6.1 is a survival model, where the instantaneous rate
of transition from one state, r, to another state, s, otherwise known as the transition inten-
sity, can be modelled similarly to hazard functions. For all transitions, we assume a Weibull
AFT model, but this method can easily accommodate the use of any parametric or flexible
parametric models used in standard survival analysis [175]. When there are nr competing
events for state r, a patient entering state r at time tj has their next event at tj+1, which is
given by the minimum of the survival times for the competing events, s1, . . . , snr .

The data are formatted in such a way that we have a series of event times and LoS, each
corresponding to a change in state. The last of these may be observed so that the patient
has entered an absorbing state, i.e. they are discharged or dead, or right-censored if the pa-
tient is still in the hospital. Therefore, the data to inform the nr models consist of an indi-
cator corresponding to whether or not the transition is observed or censored at tj+1. In this
format, we can separate the data by transition and fit a transition-specific Weibull model to
each subset. 6

We calculate time to each transition, and the confidence and prediction intervals for these,
using forward simulation together with bootstrapping [182]. Individual survival times are
simulated for patients using estimates from each fitted Weibull model, and iterating through
all possible transitions until all patients have reached an absorbing state or are censored at
a specified maximum follow-up time. More detail on the method, including equations, is
provided in Appendix E.4.

Results

Overall LoS

Table 6.1 and Figure 6.2 show the overall estimated LoS for all three methods. Here, we
present results for LoS aggregated across the outcomes of death and discharge, since this
can be estimated by all three methods. In Appendix E.6, we consider the lengths of stay to
specific outcomes. The AFT and TC estimates were all based on models adjusted for the
week of admission, sex, and age group. The effect of sex was found to be small and non-

6We estimate the parameter values by using maximum likelihood estimation in Python.
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Figure 6.2. Overall Length of Stay mean estimates with 50% and 95% Predictive Intervals (PI). For CHESS
and SARI data, the intervals are based on empirical percentiles. Notes: CHESS denotes data used for

predictions as of 26 May 2020; SARI are the data after all patients have had seen their outcomes and missing
cases have been added; MFT C denotes data with censoring; MFT UC - without censoring (after all patients

have seen the outcome). Source: own elaboration using CHESS and MFT data.

significant in all of the models7, thus, we do not present breakdowns by it. Overall, the ex-
planatory power of the predictor variables was only modest. They accounted for a maxi-
mum of 10 per cent of the variance in observed LoS in any of the AFT models. MS models
were run without adjusting for any predictors.

The lack of power in the predictor variables reflects the high individual-level stochasticity
of LoS. Trying to predict LoS at an individual level for COVID-19 has been shown to be
inaccurate [185]. The highly stochastic dynamics of infectious diseases within host, from
magnitude of the initial dose to where the pathogen colonises within host, could drive dif-
ferences in LoS. Therefore, the majority of variance in observed LoS are driven by the un-
derlying stochastic process rather than explanatory variables. Although the predictors may
not explain a large portion of the variance in LoS, they do have a substantial influence on
the LoS distributions, with age in particular having a large influence on the expected distri-
bution.

CHESS data for England

For the ICU patients (Hospital to Outcome via ICU), the shape parameters in AFT and TC
methods were larger than one, implying the baseline hazard increased over time. For the
non-ICU patients and LoS within the ICU, the baseline hazard remains constant in the AFT
model and is slowly decreasing in TC, whereas for the Hospital to ICU admission it is de-
creasing in both models.

7This is an interesting finding; although the severity of COVID is associated with the sex of the patient [183], the length of stay con-
ditioning on severity is not. This has also been found with the CHESS data when controlling for other predictors, see, e.g., [184].
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Table 6.1. Overall length of stay estimates for England using the AFT and TC method, and for Manchester
trusts using the MS method. Source: own elaboration using CHESS and MFT data. For the multi-state model,
the sample size in brackets indicates the observed and censored data (including competing risks), with the first
number indicating observed transitions. For TC, for sample size indicates the number of observed transitions,

and for AFT the sample size is the number of observed and censored transitions.

Method Hospital trajectory Mean SD N
TC Hospital admission to outcome (no ICU) 9.1 9.5 2794
TC Hospital admission to outcome (via ICU) 17.3 13.1 2517
TC ICU entry to ICU exit 13.4 13.8 1809
TC Hospital admission to ICU entry 2.0 2.7 2983
AFT Hospital admission to outcome (no ICU) 8.4 8.9 2805
AFT Hospital admission to outcome (via ICU) 16.2 12.0 2555
AFT ICU entry to ICU exit 12.4 12.8 1809
AFT Hospital admission to ICU entry 2.0 2.7 2983
Multistate Hospital admission to outcome (no ICU) 8.0 8.4 620 (786)
Multistate Hospital admission to outcome (via ICU) 29.7 22.9 73 (101)
Multistate ICU entry to ICU exit 18.9 18.0 92 (101)
Multistate Hospital admission to ICU entry 2.3 4.5 101 (786)

Overall, for hospital admission to final outcome, the mean LoS for patients not admitted to
ICU was shorter, with an AFT mean of 8.4 (TC mean: 9.1) days, than that of patients who
were admitted to ICU at some point, with an AFT mean of 16.2 (TC mean: 17.3) days. ICU
admission was estimated to take 2.0 (2.0) days from hospital admission, and ICU patients
were estimated to spend an average of 12.4 (13.4) days in ICU.

Standard Deviations (SD) of the estimated LoS are presented in Table 6.1 whereas Predic-
tive Intervals (PIs) for the LoS in AFT and TC methods are shown in Figure 6.2. The stan-
dard deviations (SD) for both the AFT and TC models are remarkably similar in depicting
the large variability in the observed LoS. With the exception of the LoS from the hospital
admission to outcome via ICU, all SD suggest that the waiting times till outcome are ap-
proximately exponentially distributed.

MFT data

Similarly to AFT and TC methods, in the MS approach, we used a Weibull distribution for
each of the transition times between states in Figure 6.1. Then, using fitted parameters, we
used 1000 bootstraps and 103 forward simulations in order to obtain estimates of the mean
lengths of stay in each state, given each transition. The MFT data-based results (compa-
rable with trajectories obtained using CHESS dataset with AFT and TC models) are pre-
sented in Figure 6.2 and Table 6.1, along the summaries of the data.

As with the AFT and TC methods, LoS for patients admitted to ICU is longer, with a mean
of 29.7 days, than that of patients not admitted to ICU, with a mean of 8.0 days. ICU ad-
mission was estimated to take 2.3 days from hospital admission and ICU patients were es-
timated to spend an average of 18.9 days in critical care. Taking into consideration com-
peting hazards between stepdown and death, our mean LoS estimate for a patient in ICU
is between 15.8 and 20.1 days (Table A1 in Appendix E.6), though in the data we observe
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Figure 6.3. Output of our simulation for transition parameters estimated using each of our three methods,
starting from 23 February, which we take to be the start of the outbreak in the UK. Source: own elaboration

using CHESS and MFT data.

people that have much longer critical care periods (20% of patients have over 40 days in an
ICU).

Planning with LoS

Figure 6.3 predicts bed occupancy in acute ward and ICU after running our simulator with
the parameter estimates of all three methods. The red and blue lines represent the imple-
mentation of, and relaxation of mass quarantine (or “lockdown”), respectively. These are
considered to change the shape of the admissions trajectory to reflect that observed. We
simulate hospital admissions from 23 February, first assuming exponential growth with a
doubling time of 3 days, followed by exponential decay shortly after the implementation of
mass quarantine. Following the blue line, we plan for a reasonable worst case scenario, and
so assume a slower growth in cases with a doubling time of 15 days. Changing the assump-
tions used to generate hospital admissions allows us to predict and plan for any scenario of
interest.

In the MS model, the hazard functions account for the competing risks of different path-
ways and outcomes. Therefore, hospital occupancy can be obtained by simulating the haz-
ard functions and following the shortest transitions. In the TC and AFT models, the hazard
functions are conditional on pathways and outcomes. Therefore, to simulate hospital occu-
pancy these hazard functions need to be coupled with probabilities of each pathway. With
the aggregated outcomes considered in this article, the only competing risk is whether a pa-
tient goes to ICU or not. From the MS model, the ICU admission probability is approxi-
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mately 13%, so we assume the transition probability of 13% for going from the acute ward
to ICU. Hospital occupancy can be then obtained by simulating the ICU probability com-
bined with the conditional hazard functions. See Appendix E for more details.

The estimates from the AFT and TC methods yield similar predictions of bed occupancy
and total observed outcomes. The MS model also gives similar predictions for acute ward
and outcome but differs for ICU. The peak in bed occupancy in ICU in the MS output oc-
curs roughly two weeks later than in the AFT and TC model outputs, and there is a slower
decline after the peak. This is caused by the larger LoS estimates for the MS models as seen
in Table 6.1 and Figure 6.2.

The effect of predictors – England

In Figure 6.4 and Table 6.2, we present the estimates of LoS broken down by two main pre-
dictors: age and week of admission. The mean waiting time from hospital admission to
ICU entry (first column of Figure 6.4) is around two days irrespective of age. For hospi-
tal admission to outcome without ICU stay (second column of Figure 6.4), increasing age
raises the length of stay, with length of stay around five days for the youngest age group and
twelve days for the oldest, irrespective of the AFT or TC model. For individuals who go
via ICU (third column of Figure 6.4), the pattern with age is less clear 8. For the first three
age groups, the length of stay is roughly similar (especially AFT model), with a slight de-
crease in the oldest age group with respect to the first two. The 75+ age group, however, has
a much shorter length of stay. A similar pattern is observed for mean LoS from ICU admis-
sion to ICU exit (fourth column of Figure 6.4).

Considering the week of admission as a predictor variable, there is less variability in LoS
than in LoS disaggregated by age. For a great majority of hospital trajectories, the mean
LoS seems to have decreased by, on average, 16 per cent, depending on the age group and
the method used. This could be explained by potential behavioural changes in the later ad-
mission weeks. Firstly, after mass quarantine progressed individuals may have waited longer
before presenting at hospital. Secondly, treatment policy has changed over the course of
the outbreak, with the criteria for discharge being relaxed to ensure hospitals had capacity.
Nonetheless, we also note large variability in predicted LoS both in earlier and later weeks
under study.

Model validation

Analysis of the Cox-Snell and deviance residuals for individual patients for the AFT mod-
els, in which these are well-defined [186], showed good model fit and little evidence of bias
for three of the models (although there was less precision for the right-hand tails of the LoS

8This is likely to be caused by the LoS to death (via ICU) following the opposite pattern to the LoS to discharge (via ICU). Younger
age groups appear to have a longer duration until death on ICU and a shorter duration before discharge. These patterns seemingly cancel
out when looking at the LoS until any outcome. This analysis is not shown here since we are focusing on length of stay in hospital rather
than different outcomes.
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Figure 6.4. Mean Length of Stay by age and week of admission with 50% and 95% Predictive Intervals (PI).
Source: own elaboration using CHESS data for England.

distributions, where the effective sample size was smaller because of earlier deaths, dis-
charges, and censoring). The exception was the model from hospital admission to ICU en-
try. This observed distribution was very skewed (median LoS was 0.7 days, with 20 percent
over 3 days). The choice of Weibull error distribution did not represent this well, and the
model showed bias in predicted LoS.

To evaluate how well the models compensated for censoring we compared the model esti-
mated mean LoS with the data that were available during the original data collection win-
dow (i.e. including censored cases) and also the fully observed, uncensored data, which
was eventually available in 2021 when all patients had left hospital. The LoS summaries
based on fully observed data are presented in Figure 6.2 and denoted as ‘Data SARI’ (the
updated CHESS dataset), and ‘MFT UC’ (the uncensored MFT dataset). These data correct
on the data used in the original analysis in three ways. Firstly, the right-censored data avail-
able at the time have been uncensored (except for a negligible proportion of patients, who
we remove from the final sample). Secondly, data have been retrospectively corrected. In
the original analysis, we removed the last week of data to reduce the effect of data correc-
tions, but there could still be potential revisions. Thirdly, new patients have been added to
the CHESS/SARI data. In this comparison, we only used patients admitted before 17 May
2020, to be consistent with the original data. However, in the original CHESS data, after
processing this left 6208 patients, whereas in the uncensored SARI data we have 13800 pa-
tients admitted before this date. Therefore, in this validation, we investigated how the mod-
els simultaneously deal with the right-censoring, errors in the data, and case missingness of
patient records.

Table A2 (see Appendix E.7) shows that the mean LoS from hospital admission to final
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Table 6.2. Length of stay estimates with predictor variables for AFT and TC methods. Sample sizes differ due
to the inclusion of censored observations in the AFT method. Source: own elaboration using CHESS data for

England.

AFT model TC model
Trajectory Age Weeks Mean SD N Mean SD N

Hospital
admission to
outcome
(no ICU)

1 to 49 12 to 14 4.9 4.8 146 5.1 6.5 146
15 to 20 3.7 3.6 210 3.6 4.1 210

50 to 64 12 to 14 7.3 7.2 223 7.0 7.4 223
15 to 20 5.6 5.4 304 5.9 5.9 304

65 to 74 12 to 14 10.6 10.4 204 11.0 10.5 204
15 to 20 8.1 7.9 270 8.3 7.7 266

75 + 12 to 14 11.7 11.4 609 11.7 10.9 607
15 to 20 8.8 8.6 839 10.0 9.4 834

Hospital
admission to
outcome
(via ICU)

1 to 49 12 to 14 17.5 12.5 312 17.5 11.8 312
15 to 20 14.3 10.5 267 17.8 14.0 262

50 to 64 12 to 14 18.8 13.4 641 19.5 14.3 626
15 to 20 15.7 11.5 467 17.0 12.1 455

65 to 74 12 to 14 16.8 12.0 391 17.1 13.5 388
15 to 20 13.9 10.2 225 14.9 10.2 223

75 + 12 to 14 13.3 9.5 161 12.6 10.8 161
15 to 20 10.2 7.6 91 11.3 8.9 90

ICU entry to
ICU exit

1 to 49 12 to 14 13.0 12.8 239 13.2 14.0 239
15 to 20 10.0 10.0 210 12.7 14.5 210

50 to 64 12 to 14 15.4 15.2 468 15.4 14.2 468
15 to 20 12.0 12.0 337 13.6 13.8 337

65 to 74 12 to 14 13.6 13.4 237 13.6 12.5 237
15 to 20 10.4 10.4 152 11.4 11.4 152

75 + 12 to 14 7.6 7.5 109 8.1 8.9 109
15 to 20 5.5 5.6 57 5.0 5.9 57

Hospital
admission to
ICU entry

1 to 49 12 to 14 2.0 2.6 340 1.9 2.5 340
15 to 20 1.7 2.3 336 1.8 2.4 336

50 to 64 12 to 14 2.2 2.9 732 2.4 3.3 732
15 to 20 2.0 2.7 610 1.8 2.2 610

65 to 74 12 to 14 2.2 2.9 421 2.1 2.9 421
15 to 20 1.9 2.6 276 1.9 2.4 276

75 + 12 to 14 2.4 3.1 168 1.9 2.4 168
15 to 20 2.1 2.8 100 2.6 3.2 100

outcome for patients who went into ICU at some point was on average underestimated by
over five days in the original data compared to the fully observed data, and mean LoS in
ICU was underestimated by over 2 days. The TC model was able to compensate for about a
quarter of the underestimate in LoS for the former, and over 70 percent of the underestimate
for the latter. The AFT model made smaller adjustments to the observed LoS and so cap-
tured less of the underestimate. In the original CHESS data set, we had data from 16 March
2020 to 17 May 2020, so the maximum LoS included could be 62 days. In the uncensored
data, the maximum observed LoS was 245. Therefore, although the models attempted to
adjust for the truncated/censored tail observations, there was insufficient data on the true
extent of the tail to make the full adjustment. This illustrates how challenging it can be to
estimate LoS during an emerging epidemic, even with large volumes of data.

Both TC and AFT models performed poorly for the LoS from hospital admission to ICU
entry, underestimating LoS even more than the original, censored data. This is perhaps due
to the Weibull distribution being inappropriate for this length of stay, and therefore strug-
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gling to capture the long tail.

The Multi-state model, on the other hand, performed well at estimating LoS for each tran-
sition (Table A2). This is in part due to local data from MFT exhibiting fewer biases than
the national CHESS data so that a trust-specific LoS can be estimated with greater accu-
racy. The performance of the MS model can also perhaps be explained by the fact that it
fully takes into account the competing risks at each transition. Of all of the LoS considered
in Table 6.1, the maximum absolute difference between the final LoS observed in the un-
censored MFT data and our estimate from the MS model is 0.98 days (from hospital admis-
sion to ICU entry), so that all of our estimates are within 1 day of the true, observed values.
Again, this transition is potentially not well-captured using a Weibull hazard function.

Discussion

Analysis of results

Comparison of the three different models

In this study, we have presented three methods for estimating the LoS of patients with COVID-
19 infection. Overall, the AFT and TC methods produced similar estimates for LoS for all
four hospital trajectories. This is reassuring and forms an effective cross-validation of both
methods and results.

The estimated mean LoS from the AFT model are shorter by around one day than the TC
means, except for the Hospital-ICU entry. This might be due to the exclusion of potentially
censored cases in the AFT method9, since it was not clear these were genuinely censored
or incomplete data entries. Both methods also yielded similar predictive uncertainty about
the LoS, with TC producing slightly wider predictive intervals than the AFT method. This
might be explained by the explicit inclusion of the predictors in the AFT model with a joint
assessment of their effect on the LoS. The TC method assumes independence between pre-
dictors and is applied to the subsets of CHESS data disaggregated by the predictor cate-
gories.

There were large differences in predicted ICU LoS between the two CHESS based meth-
ods and the MS method. The mean estimates derived using AFT and TC methods (12-13
days) were 5-6 days less than those from the MS method. The predictive intervals overlap
suggesting the variability in LoS is large. However, given the focus of the paper is on com-
parison, and bearing in mind the MFT data is an effective census of the MFT patients and
therefore that estimates are reliable in terms of the mapping of the data to the population, it
is valuable to consider possible explanations for the differences in the point estimates.

These differences may reflect several substantive factors. First, MFT is one of five adult
9For the ICU entry to ICU exit trajectory there were n = 108 censored cases included in the model. For the trajectory from hospital

admission to outcome via ICU: n = 43, and without ICU: n = 14. There were no censored cases in hospital admission to ICU entry.

116



centres in the UK to have an extracorporeal membrane oxygenation (ECMO) unit. Com-
bined with expertise in specialist respiratory care, MFT takes referrals for severe COVID-
19 cases requiring ECMO treatment from other hospital trusts in the UK’s North West and
Midlands regions. This higher proportion of severe cases could contribute to the longer, on
average, lengths of stay observed at MFT. Unfortunately, referrals and ECMO cases cannot
be separated from the MFT data, so we were unable to account for this in our analysis.

Second, the underlying data were different: the AFT and TC models used the country-wide
but very incomplete CHESS data, whereas the multi-state model was based on data from
just one NHS trust, but largely free of missing data. There is potentially large heterogeneity
between LoS at different trusts, so data at a single trust may not reflect the national data.

Third, differences in excess bed demand from trust to trust potentially further explain dis-
crepancies in our estimates. For trusts experiencing significant increases in demand, it is
possible that they do not have the ability or resources to accurately generate daily CHESS
reports which are collected in addition to routinely collected data (see Appendix E.1). This
partially explains the case-missingness in the CHESS data.

In order to check sensitivity of the findings for the differences in the data, we evaluated the
AFT model and TC method using CHESS data for Manchester University NHS Foundation
Trust only. MFT contributed 53 cases with recorded LoS in ICU to CHESS. Running the
AFT model on these cases gave a predicted ICU LoS of 16.5 days (SD=17.3). For the TC
method, the predicted mean was 16.1 (SD= 16.7).The estimated LoS were longer than the
full-sample CHESS estimates but still shorter than the predicted LoS from the MS models
(18.9 days). In the MFT data, 83 cases are included. This discrepancy between the data sets
could be contributing to the difference between the MS model and the AFT and TC models.
Additionally, when evaluating model performance, the MS model appears to better account
for the right-censoring, which could be further contributing to this discrepancy.

All methods captured the variability in the data and reflected it in the predictive distribu-
tions. This uncertainty should be taken into account when planning for the number of beds
during the pandemic. For example, upper bounds of the predictive intervals can be used to
construct extreme-case scenarios for the beds occupancy. These can be fed into the multi-
state model to predict the number of patients in hospital at various stages of the pandemic
(Figure 6.3).

In the main LoS analysis above, we did not distinguish between different outcomes, such as
death or discharge. Particularly in ICU, the baseline hazards for these competing hazards
may be strongly diverging over time. In Appendix F, we analyse the length of stay for given
outcomes using the TC and MS methods, finding that in general the length of stay to dis-
charge is longer than to death.
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Evaluation of model performance

When evaluating the performance of the three methods at accounting for the right-censoring,
we observe different levels of performance across the methods. Using the CHESS data, the
AFT model struggles to appropriately adjust for the right-censoring, resulting in an under-
estimate of the true distribution. The TC model does a better job at accounting for this,
but still slightly underestimates the LoS. The TC model struggles to capture the true LoS
because this method requires sufficient tail observations in order to adjust for the trunca-
tion bias. However, in the uncensored data there are some tail observations over twice the
length of the maximum possible LoS included in the original analysis data. Therefore, the
TC method does not have sufficient information to construct the true tail of the LoS distri-
butions. The AFT model is also affected by this issue. A further complication with the AFT
model is the challenge with censoring in the CHESS data. With high levels of data miss-
ingness and incompleteness at the time of the analysis, it was unclear whether cases were
genuinely censored or had failed to be updated. This resulted in many censored cases be-
ing omitted from the analysis data set, leading to further underestimation of the LoS. Using
the MFT data, the MS model captures the true LoS much more accurately. This model uses
higher quality data, so can appropriately adjust for the censoring and the competing risks of
different hospital pathways. Therefore, provided sufficiently high quality data are available,
the MS approach is superior for estimating LoS during an epidemic. However, such high
quality data may not be available early in a pandemic, particularly in smaller trusts. The
CHESS data are not well suited for such analysis, due to the unclear case inclusion biases.
This may affect the proportion of cases entering each pathway, which can interfere with the
competing risks aspect of the MS model.

Limitations of research

The CHESS dataset suffers from large amounts of case-missingness, which may lead to
bias in the estimates. There appear to be three types of this. Update delay where a record
has not been updated (with a transition) which may lead to incorrect censoring. This leads
to the patient being removed from the data for some of the models. Reporting delay where
a patient does not appear in the data at all until sometime after their admission. Non-reporting
where no report is ever made on a patient. All three of these may cause bias in the mod-
els if they are correlated with either LoS or with extraneous variables (that are not con-
trolled for within a given model). Another limitation of both datasets was that only cases
of COVID-19 infection that led to hospital admission were included in the data. During
March 2020, the hospitalised patients in England were considered to reflect the underly-
ing population of patients with severe COVID-19 infection, but by 14 April, care-home
deaths reported on death certificates caused a revision of views [187]. Those severe cases
not attending hospital and COVID-19-related deaths outside of hospital may have different
properties from hospitalised patients and deaths. So care should be taken in extrapolating
the findings to general statements about disease progression outside of the hospital setting.
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Given that the goal here was to model length of stay in hospital this is less of a concern.
However, change in hospitalisation practice could lead to changes in the estimates that the
models produce.

Our models were also limited by the missing values in the CHESS data. A notable limi-
tation was that around half of the cases did not have their final outcome or current status
recorded. We did not know if this implied that the patient was still in hospital or whether it
was an omission or whether this was a result of update delay. In either case, we had no reli-
able way to estimate the last time point at which the patient was observed to be in hospital,
and thus these patients could not contribute to the LoS estimates. The fact that the CHESS-
based LoS estimated by using the AFT models were not adjusted sufficiently to capture this
suggests that many such patients were indeed still in hospital.

Compared with the AFT model, the TC method should, in theory, be less sensitive to this
issue since it ignores censored cases. However, this method relies on sufficient tail obser-
vations being recorded. With the long duration of this study (over 60 days), one might ex-
pect sufficient tail observations to be included. However, with the very long lengths of stay
observed in the uncensored SARI data (over 200 days), it is apparent that the original cen-
sored sample did not contain enough information on the tail of the distributions. Further
complications are caused by non-random case missingness. For example, omitted cases
might correspond disproportionately to tail observations, which would cause the truncation
corrected method to underestimate LoS.

The strength of bias due to the truncation and censoring varies depending on the phase of
the epidemic, with it having a large impact during exponential growth and lessening impact
during the decay phase. The data used in this analysis is from the decay phase, so the trun-
cation bias does not have a huge impact, and ignoring this bias would underestimate LoS
by up to two days (using TC method). However, for a sample earlier in the outbreak, this
underestimation may be amplified, as well as the difference in model performance. This
is also true for censoring biases, since early in the outbreak the majority of cases will have
censored outcomes. A large number of right-censored cases would lead to relatively large
values of LoS when using the AFT model. For the purposes of this paper, we have opted
not to investigate the performance of each model at different sampling dates. This is to fo-
cus on the presentation of the different methods using a single illustrative example to im-
prove clarity. Future research could extend this in several ways, including running itera-
tively through the data available on different dates, modelling the impact of truncation, cen-
soring, reporting and updating lags as the epidemic progresses.

Another issue is that clustering of patients within the NHS trusts, which were at different
stages of the epidemic at different times leading to variations in pressure on capacity, could
mean that there are spatial-temporal interactions in the processes driving LoS which are
not captured in the models. Further, these may in turn interact with the data generating pro-
cesses for CHESS with more non-reporting and reporting delays likely during high demand
times. These issues could have unpredictable effects on the estimates of LoS.
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With respect to the MFT data, most limitations arise due to the small absolute sample size.
The multi-state method requires seeing an adequate number of patients for each state tran-
sition before any reliable modelling can take place. Indeed, although it is clinically known
that stepdown to mortality is a valid transition, after applying our exclusion criteria, there
were no observations of this transition occurring for patients with COVID-19 infection within
this Manchester Trust. The analysis conducted in this paper therefore excluded this transi-
tion, and it is not possible to see how this influences overall hospital LoS of those patients
who have an ICU episode during their hospitalisation. Together with uncommonly long
ICU periods, the relative delay in the Manchester epidemic compared to other parts of the
country means that MFT patients with long critical care spells are either still in ICU or only
just starting to move onto stepdown. Given more weeks of data, we might be able to include
stepdown to mortality in our model.

The above suggests differences between the estimates of LoS for the two datasets may there-
fore be due more to differences in the available data than differences in the statistical meth-
ods per se. It is important to acknowledge these uncertainties in the data when interpreting
length of stay estimates. We further note that not only would we obtain more power in pre-
dictions through a larger amount of complete data, but also a better understanding of how
the complex interactions between the virus and background risk factors affect disease sever-
ity. Additionally, inclusion criteria are slightly different between the CHESS/SARI and
MFT data sets. In the CHESS/SARI data set, there is a column which indicates whether
the admission was due to COVID-19. However, there is no clear definition for this, so in-
dividual hospital trusts could use different cutoff criteria, such as positive on admission or
showing clear signs of COVID-19 pneumonitus. For the MFT data, we defined our own in-
clusion criteria, including all patients with a positive test 2 days either side of admission.
At the time of the analysis (March 2020 to May 2020), there was some admissions screen-
ing at MFT, but not as widespread as the current (April 2021) requirements. Therefore, the
majority of patients captured through this definition are likely to be symptomatic COVID-
19 patients requiring acute care for COVID-19, rather than general admissions who return a
positive swab. In both data sets we do not consider nosocomial COVID-19 cases.

Conclusions

In this paper and its supporting materials, we provide a freely accessible set of models and
tools to estimate LoS with an application to patients with COVID-19 infection. Together
with a prediction of hospital admissions, which depends on the severity of outbreaks in the
local area, LoS predictions can be implemented to provide organisational support within
hospitals to ensure the demand for hospital and, in particular, ventilated ICU beds does not
exceed availability. The models use routinely collected hospital data which are available
within many national healthcare systems. Thus we anticipate our approaches will have util-
ity across diverse healthcare systems in many different countries.
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Chapter 7

General Conclusions

This section aims to draw together conclusions from each chapter of this thesis, and to com-
ment on the general findings from the whole body of work, rather than commenting on the
individual conclusions of each section.

7.1 Temporal Stochasticity is Crucial for Scenario Planning

A key theme across all of the pieces of work in this thesis is the importance of stochasticity
in the time taken for events to occur, or for thresholds in the number of cases to be crossed.
Starting with operational modelling, in Chapters 5 and 6, we see that knowing when an
event is likely to occur is often as important as knowing how many cases there will be at
a given time. This point is illustrated in Figures 6.3 and A2 in the hospital setting; during
the COVID-19 pandemic, there was a particular focus on intensive care capacity not be-
ing breached. Knowing in advance when the peak is likely to be allows for the allocation
of additional resources, such as beds and oxygen, to better meet the expected demand. In
Chapter 6, we provide insight into the timing of the peak of the hospital demand through
stochastic simulation of an external epidemic and the resulting effect on patient pathways in
the hospital. We provide a similar analysis (though more simplistic) in the prison setting,
considering outbreaks that occur in the general prison population under different vacci-
nation strategies. These results are given in Figures 5.9 and 5.10. In the prison setting, as
for the hospital setting, understanding the timing of the peak of an internal outbreak allows
for appropriate interventions to be put in place in a timely manner so that prison medical
staff and healthcare services are not overwhelmed. Rather than providing a single point-
estimate, offering time windows in which the peak will occur in these situations allows pol-
icymakers to plan for reasonable worst-case scenarios in addition to the scenarios that are
most likely.

In Chapter 2, we provide approximations for the distribution of times taken for the number
of cases in a single-type SIR epidemic to reach a certain number of cases. As we discussed
in that chapter, this can be used to produce hybrid models in which the early growth phase
of an outbreak is modelled using a stochastic model, before switching to a deterministic ap-
proach once stochastic effects are deemed to contribute little to the overall disease dynam-
ics. This provides a fast tool for modellers to quantify the temporal uncertainty that is miss-
ing from deterministic models when the early growth phase is not considered, as well as
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providing insight into the analytic properties of the true underlying distribution. These in-
sights are useful for modellers wanting to incorporate temporal stochastic effects into their
models, but they can also be useful for scenario planning purposes. In Chapter 2, we de-
fined the first passage time distribution to the level Z⇤, defined as the number of cases re-
quired for the probability of extinction of a chain and the coefficient of variation to become
approximately constant over time. However, one could define Z⇤ to be any case threshold
of interest, provided that it is large enough for convergence of the Feller or Gaussian Pro-
cess approximation to the true FPT distribution to be valid (see Figure 2.4). In particular,
one might be interested in the time taken for the number of cases to exceed hospital bed or
testing capacity in a local outbreak.

7.2 The Impact of Host Heterogeneity in Stochastic Settings

Another theme presented in this thesis across the different pieces of work is the impact that
host heterogeneity, both at an individual and population level, can have on model outcomes,
particularly in a stochastic setting. In Chapter 4, we explicitly consider the impact of in-
dividual transmission heterogeneity in order to quantify the level of overdispersion in the
offspring distribution. This is important in order to estimate the extent to which outbreaks
are driven by superspreading events which, in a stochastic setting, has the effect of increas-
ing the probability that a transmission chain goes extinct before becoming large. This effect
was first proposed in [11]. We introduce a model that explicitly accounts for case under-
ascertainment which, in turn, produces higher estimates of the level of overdispersion. This
suggests that the level of overdispersion, and thus the proportion of individuals in the pop-
ulation that may be considered superspreaders, may be underestimated for outbreak models
that do not take case-under-ascertainment into account. This has implications for policy-
makers and scenario planning, as it informs the extent to which superspreaders need to be
identified and isolated.

In Chapter 3, we extend the work from Chapter 2 to explicitly account for heterogeneous
immunity in the population, acquired through vaccination and prior infection. Unsurpris-
ingly, this has a large impact on the effective reproduction number, Reff for the outbreak,
and therefore slowing down the time taken for a novel strain to become established in the
population, which we denote by T

⇤. Indeed, comparing Figure 2.1 with 3.2, we see that the
choice for T ⇤ becomes much higher when population heterogeneity is taken into account.
This is also due to the fact that the probability of extinction for an outbreak that begins with
a single case is much closer to 1 when there is existing immunity in the population. The im-
pact of heterogeneous immunity on the proliferation of novel variants of concern is further
explored in [10] (see Appendix F for details), with sensitivity analyses for vaccine efficacy
and infection-acquired immunity.

In Chapter 6, we estimate the large variation between individual patients’ LoS in hospitals
during the first wave of COVID-19. This posed an enormous challenge for management
within hospitals, making it difficult to account for individuals with longer than average LoS
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when attempting to predict future ward and ICU capacity. Our methods demonstrate that
with high-fidelity data available within a hospital it is possible to obtain good estimates of
the average LoS for patients in different areas of the hospital, as well as of the variability in
LoS. We also showed that even with nationally aggregated data, which is subject to higher
levels of missingness, the estimates obtained can be useful for bed capacity management.
We also use stochastic simulations based on the Weibull transition rates estimated using our
survival model in order to predict patient demand in different areas of the hospital into the
future, given scenarios and assumptions about the general community epidemic.

7.3 Future Work

The work undertaken in each chapter of this thesis provides novel insights based on stochas-
tic modelling that can be useful for scenario planning and operational research. However,
there are also some key areas in which the work that I have undertaken could be extended
and applied in novel settings.

For the work undertaken in Chapters 2 and 3, we are able to obtain fast and accurate ap-
proximations of the FPT distribution based on the Feller diffusion approximation and on a
Gaussian Process approximation, but only in the absence of immigration. One simple way
of extending this work would be to include a constant drift term in the stochastic differential
equation ⌘ > 0 to include immigration, and then solve the corresponding Fokker-Planck
equation in order to obtain an FPT distribution. This would allow us to approximate the full
distribution of the time taken for invading variants of concern to become established in a
population much in an analogous way to in Chapter 2. One could also extend this work by
considering a more general Crump-Mode-Jagers (CMJ) process which, in an epidemiolog-
ical setting, is a branching process in which the offspring distribution of an individual de-
pends on their time-since-infection [188]. A diffusion approximation to the CMJ process
was considered in [113], and so future work could be done to generalise our results to ob-
tain an FPT distribution in this case and to investigate the impact that this has on our re-
sults. Finally, although our results using a one-dimensional approximation to the multi-type
process in Chapter 3 succeeded in closely approximating the true distribution, we would
ultimately be interested in approximating a full multi-type FPT distribution based on equa-
tion (3.14). This may be possible by finding a transformation of the vector SDE using Itô’s
Lemma, or using the eigendecomposition of the matrix , but we have been unable to do this
successfully so far.

Furthermore, the methods we present in Chapters 2 and 3 are not specific to epidemic mod-
els, and would be applicable to any setting for which continuous-time branching processes
(both single- and multi-type) can be used. We could, therefore, extend the results in this
thesis by applying our methods in a broader range of settings within mathematical biol-
ogy. Branching processes have been used in models of cancerous cell growth, population
genetics and evolution [189]. Our methods could be used, for example, to approximate the
distribution of times taken for a number of proliferating cancerous cells to reach a given
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number, which could have clinical implications in terms of treatment. Alternatively, our
models could be used for evolutionary models of the mutation of novel strains of bacteria,
for example in the setting of antimicrobial resistance. Stochastic models are already used
to model the emergence of antimicrobial resistance and subsequent proliferation of novel
strains [190]. Using a multi-type branching process, we could model the emergence and dy-
namics of competing strains and investigate the problem of coexistence [191], as well as the
FPT distribution for a novel strain to become established in a bacterial population. These
biological settings, as well as many others, would be a natural next step for applying the re-
sults presented in this thesis.

For the branching process model with overdispersion presented in Chapter 4, our aim is
to apply our methods to datasets from other disease outbreaks, for example to infection
clusters of Mpox (formerly, Monkeypox). The offspring distribution for Mpox has been
noted to be heavy-tailed [192], which would make using a negative binomial offspring dis-
tribution suitable. We would then be interested in investigating the impact that case under-
ascertainment has on estimates of R0 and on the probability of extinction. We could also
investigate alternative offspring distributions for the continuous-time model, for example
using a CMJ process as has been done in [139], and comparing the impact that this has on
our estimates of the overdispersion. Finally, we are also interested in generalising the re-
sults on total progeny and case under-ascertainment from Chapter 4 to the multi-type set-
ting, using theoretical results obtained in [193]. This would enable us to further incorporate
host heterogeneity into our model, for example by including high- and low-risk groups of
hosts who are more susceptible to infection.

7.4 Conclusions

In this thesis, we have presented a number of stochastic models, whose outputs provide use-
ful insights for scenario planning in an epidemic. In particular, we attempt to quantify un-
certainty in our models, with a particular focus on temporal uncertainty, in order to demon-
strate the different scenarios that can occur during an epidemic due to the inherent stochas-
ticity in disease dynamics. We have applied our models with numerous settings in mind,
including in hospitals and prisons, and predominantly with the early-stage growth of novel
pathogens and strains. In all of these settings, we have demonstrated that insights from stochas-
tic models lead to better-informed scenario planning in the face of large uncertainty.
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Appendix A

Calculation of Epidemic First Passage
and Peak Time Distributions

A.1 Probability of Extinction for the Single-Type Branching Process

We solve the backward Chapman-Kolmogorov ((2.3)):

@Q

@t
= �Q

2
� ⇢Q+ �,

subject to Q(0, s) = s in order to obtain the probability q(t) that an outbreak that starts
with an initial case at time t = 0 has gone extinct by time t. We note that (2.3) is a Riccati
equation, which can be solved by substitution. We first note, that Q(t, s) ⌘ 1 solves the
ODE, and so the general solution takes the form Q(t, s) = 1+u(t, s), where u(t, s) satisfies
the first order ODE:

u
0
� (� � �)u = �u

2
. (A.1)

Making the substitution u = 1
z(t,s) gives the linear ODE:

z
0 + (� � �)z = ��

) z(t, s) =
�

� � �
+ Ae(���)t

.

Writing Q(t, s) = 1+ 1
z

and using the initial condition Q(0, s) = s to eliminate the constant
of integration A, we obtain the following expression for the generating function:

Q(t, s) =
�(s� 1)� e(���)t(�s� �)

�(s� 1)� e(���)t(�s� �)
(A.2)

Finally, setting s = 0 in the above expression yields the expression for q(t) given in (2.4):

q(t) =
�(e(���)t

� 1)

�e(���)t � �
(A.3)

Note that q := limt!1 q(t) = �

�
is the probability that an outbreak that begins with a single

infectious individual ultimately goes extinct.
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A.2 Solution to the Fokker-Planck equation for the Single-Type Branching
Process

We derive the solution of (2.8) by first taking the Fourier transform:

f̃(t, k) =

Z 1

0

f(t, x)e�ikx dx

and then solving the resulting PDE via the method of characteristics. We first note the fol-
lowing properties of Fourier transforms:

g✓
@f

@x

◆
= ikf̃(t, k) (A.4)

^(xf(t, x)) = i
@f̃

@k
(A.5)

and then, taking the Fourier transform of f(t, x) in (2.8), we arrive at the equation:

@f̃

@t
=

✓
rk �

i⇢k
2

2

◆
@f̃

@k
, (A.6)

subject to: f̃(0, k) = e�ikx0 .

We now solve the above equation using the method of characteristics. Our aim is to find
equations for the curves that lie in the surface f̃ along which the value of f̃ is constant.
These are the characteristic curves of the PDE (A.6), parameterised by s, and are given by
(t(s), k(s)) such that the tangent vector r(t(s), k(s)) has coefficients that satisfy:

8
>>><

>>>:

dt
ds = 1, t(s = 0) = 0

dk
ds = �rk + i⇢k

2

2 , k(s = 0) = k0

df̃
ds = 0, f̃(t(0), k(0)) = e�ik0x0 .

(A.7)

From the third equation, we see that our solution f̃(t, k) is constant along these characteris-
tic curves. The first equation implies that t = s, whilst, for the second, we have that:

Z
k

k0

dv
rv �

i⇢v

2

= �

Z
s

0

ds

)
[log(k)� log(r � i⇢k

2 )� log(k0) + log(r � i⇢k0

2 )]

r
= �t. (A.8)

Rearranging the above and isolating k0, we have that:

k0 =
kert

1 + i⇢k

2r (ert � 1)
. (A.9)
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Finally, substituting our expression for k0 into the final equation of (A.7), we obtain an ex-
pression for our solution f̃(t(s), k(s)) = f̃(t(s = 0), k(s = 0)):

f̃(t, k) = exp
"

�ikx0ert

1 + i⇢k

2r (ert � 1)

#
.

In order to simplify our expression for the Fourier transform of f(t, x), we now scale x so
that x ! 4rx

⇢(ert�1) . Finally, in order to obtain the characteristic function from the Fourier
transform of f(t, x), we also make the substitution k ! �k so that we have:

f̃(t, k) = exp


i�k

1� 2ik

�
(A.10)

where � =
4rx0ert
⇢ (ert � 1)

.

Equation (A.10) is the characteristic function for a �2 distribution with zero degrees of free-
dom and non-centrality parameter �, first described by A. Siegel in [9], whose p.d.f. is given
by:

g(x;�) =
1

2

r
�

x
e� 1

2 (�+x)
I1(
p

�x), (A.11)

where I1(·) is the modified Bessel function of the first kind. The p.d.f. for for the number of
cases at time t in the Feller diffusion is therefore given by:

f(t, x) =
r

⇢

2(ert � 1)

r
ert
x
I1

 
2r
p
xert

⇢

2(ert � 1)

!
exp

✓
�
r(ert + x)
⇢

2(ert � 1)

◆
,

where we have used the fact that, for a random variable X with p.d.f. f(x) and for a con-
stant c independent of x, the p.d.f. of cX is given by 1

c
· f(x

c
).

A.3 Sensitivity Analysis

In order to provide sensitivity analysis for our results, we demonstrate the convergence of
the Feller and Gaussian Process approximations to the simulated Gillespie simulations of
the FPT distribution for outbreaks with R0 = 1.5 and with R0 = 3. For the outbreak with
R0 = 1.5, we also adjust the infectious period duration to 10 days, in order to show that our
results can be obtained with different lengths of infectious period. These results are shown
in Figure A.1.
We also obtain analogous figures for the peak timing distribution for different values of R0

and with a different value of the recovery rate, � = 10�1. These results are shown in Figure
A.2.

Comparing the results in Figures A.1 and A.2 with those of Figure 2.4, we see that across
all values of R our approximations achieve good convergence to the true underlying FPT
distribution. The non-central �2 distribution consistently outperforms the Gaussian Pro-
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Figure A.1. Convergence of approximated FPT distributions to the true distribution (estimated via 100,000
simulations of the Gillespie algorithm), this time for an outbreak with R0 = 3. The equivalent plot for our

baseline of R0 = 2 is shown in Figure 2.4

Figure A.2. Convergence of approximated FPT distributions to the true distribution (estimated via 100,000
simulations of the Gillespie algorithm), for an outbreak with R0 = 1.5. In this example, we also adjust the

recovery rate � so that infected individuals recover on average after 10 days.

cess approximation in terms of convergence, which reflects the fact that the Gaussian Pro-
cess requires a further approximation of the square root of the Feller Process. We noted in
Section 2.3.3 that the Gaussian Process approximation results in a fatter-tailed peak time
distribution than for the true distribution based on the branching process approximation.
This results in the Gaussian Process approximation performing worse with respect to the
Kolmogorov-Smirnov metric than with respect to the Kullback-Leibler divergence. This
also suggests that the Gaussian Process approximation captures the overall distribution rea-
sonably well, but that it captures the shape of the tail less accurately than our other meth-
ods.

We also note that, whilst the non-central �2 distribution provides a similar level of accuracy
across all values of R0 tested, the Gaussian Process approximation performs significantly
better for higher values of R0. With R0 = 1.5, the lowest value of R0 that we tested, the
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Figure A.3. True peak time distribution (estimated via simulation of the SIR epidemic using the Gillespie
algorithm) compared with approximated peak time distribution based on the approximating the early growth
phase with a branching process followed by a deterministic approximation once Z⇤ = 125 cases have been

reached.

Kullback-Leibler divergence in the Gaussian Process is of order 10�3, which improves to an
error of order 10�5 for R0 = 3. This improvement in the KL divergence as R0 increases
is also reflected in the KS distance between the Gaussian Process and the true underlying
distribution.

A.4 Peak Timing for the Stochastic SIR Epidemic

We compare our results on the peak timing distribution for the branching process using the
Gillespie algorithm followed by a deterministic approximation once the threshold Z

⇤ = 125

cases has been reached, with those obtained by simulating the full stochastic SIR epidemic.
For the stochastic SIR epidemic, we have the transitions:

(S, I)! (S � 1, I + 1) with rate �SI

N

(S, I)! (S, I � 1) with rate �I.

As for the branching process, we simulate trajectories of the stochastic SIR epidemic using
the Gillespie algorithm. A comparison of the FPT distributions based on the branching pro-
cess and the full stochastic SIR model is shown in Figure A.3.
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Appendix B

Stochastic Invasion of Variants of
Concern in a Population with
Heterogeneous Immunity

B.1 Projection of the Multi-Type system onto the Dominant Eigenvector

Our projection of the multi-type Feller diffusion (3.14) onto the dominant eigenvector v1 is
motivated by the fact that the mean dynamics are given by µ(t) ⇡ e⌦tX0 = P�1e⇤tPX0.
Since the matrix ⌦

0
+ max(!i)I2m is positive, the Perron-Frobenius theorem guarantees

that ⌦0 has a single positive eigenvalue  and, hence, ⌦ has the maximum eigenvalue �1 =

r = �max(!i), with all other eigenvalues being negative [194]. Since the process that we
consider is supercritical, we have that r > 0 [109] and, hence:

e⇤t =

0

BBBB@

e�1t 0 . . . 0

0 e�2t . . . 0
... ... . . . ...
0 0 . . . e�2mt

1

CCCCA
,

where �2, . . . ,�2m are the remaining negative eigenvalues of ⌦. Hence, if PX0 =
P2m

i=1 aivi,
then

µ(t) ⇡ e⌦t

2mX

i=1

aivi = a1e�1tv1 + · · ·+ a2me�2mtv2m

⇡ a1ertv1,

as t increases, since �i < 0 for 2  i  2m.

B.2 Additional Results

Here we present additional results analogous to those in Sections 3.3.2 and 3.3.3. We first
obtain a FPT distribution for an outbreak that begins with a single case, but with no immi-
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Figure B.1. (Above) Estimated FPT distribution for the full multi-type branching process model based on
10,000 trajectories simulated using the Gillespie algorithm, with R0 = 2, but where" = 10�3 is chosen.

(Below) Comparison of the simulated FPT distribution with the exact FPT distribution of the
one-dimensionalised Feller process.

gration, using a different threshold " = 10�3. This results in a lower choice of T ⇤, repre-
sents slightly less certainty that the novel VoC has become established in the population.
These results are shown in Figure B.1.

We also show how the choice of T ⇤ is affected by choosing different immigration rates ⌘
in an outbreak that begins with no initial cases (so that outbreaks are seeded by imported
cases). We find that changing the immigration rate from our baseline ⌘ = 0.2 to ⌘ = 1

3 (so
that, on average, a new infected case is imported into the population every 3 days) signif-
icantly reduces our estimate of T ⇤ for the baseline value of " = 10�4. In the case where
R0 = 2, for example, the choice of T ⇤ decreases from T

⇤ = 218 days for ⌘ = 0.2 to
T

⇤ = 143 days. Similarly, we see that decreasing the immigration rate to ⌘ = 0.1 has the
effect of increasing our choice of T ⇤ to T

⇤ = 501 days in the case where R0 = 2. These
results are plotted, for different values of R0 in Figure B.2
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Figure B.2. Choices of T ⇤ made for different values of R0, for an outbreak that begins with no cases, but for
which immigration occurs at different rates, with " = 10�4

151



Appendix C

Estimating Overdispersion in Disease
Outbreaks with Under-Ascertainment of
Cases

C.1 Basic Properties of the Continuous-Time Branching Process Model

In Section 4.2.4 we introduce a continuous-time branching process model whose offspring
distribution Y has generating function:

GY(s) =
1

� + �

"
�s

✓
1 +

1

k
(1� s)

◆�k

+ �

#
. (C.1)

This is intended to be an analog of the continuous-time branching process whose offspring
distribution, Ŷ , has the generating function:

GŶ(s) =
1

� + �

⇥
�s

2 + �
⇤
, (C.2)

but with a dispersion parameter k that allows for variation in the number of offspring at
each infection event. In this appendix, we demonstrate some basic properties of the branch-
ing process with offspring distribution Y and show that it shares some key properties with
the branching process with offspring distribution Ŷ .

The key observation is that, for both processes, at least one offspring is generated at each
infection event, because the infectious case is effectively removed and replaced by an identi-
cal copy of itself. We are therefore interested in the number of secondary cases generated at
each infection event, which we denote by the random variable ⌅. We first note that, at each
event, the mean number of cases produced by each process is given by:

E[Y � 1] = G
0

Y(s)� 1 =
� � �

� + �
= G

0

Ŷ(s)� 1 = E[Ŷ � 1]. (C.3)

The second moment of the number of particles produced at each event for the process with
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offspring distribution Y is given by:

E[(Y � 1)2] = G
00

Y(s)�G
0

Y(s) + 1 = 1 +
�

� + �

✓
k + 1

k

◆
, (C.4)

which, compared with E[(Ŷ � 1)2] = 1, suggests that the offspring distribution Y has a
higher variance than that of the distribution Ŷ . This variance increases as the dispersion
parameter k approaches zero, which matches the intuition that lower values of k represent
increased over-dispersion in the model.

We also compare the expected number of secondary cases over the expected lifetime of a
single individual in both processes. We first note that, for both processes, the expected time
between events follows an exponential distribution with rate � + �. Suppose that N events
occur before the infectious individual recovers, that is, that N � 1 infection events occur be-
fore the infectious individual recovers. Then N follows a geometric distribution with prob-
ability �

�+�
, i.e. N ⇠ Geom( �

�+�
). Let ⌧1, . . . , ⌧N be the durations between each of the N

events, with i.i.d. ⌧i ⇠ Exp(� + �). Then, the infectious period L of a single infectious
individual has the distribution:

L =
NX

i=1

⌧i, (C.5)

and, hence, L ⇠ Exp(�). This agrees with the definition the average infectious period for
an infectious individual is ��1.

We now consider, for each process, the expected number of secondary infectious cases that
a single case produces over the course of its infectious period. Considering the process Ŷ
without over-dispersion, we note that only a single secondary case is produced at each in-
fectious event, and hence the number of secondary cases produced during the entire infec-
tious period of an individual is

P
N

i=1 1, which has the generating function:

GN(s) =
�

�+�

1� (1� �

�+�
)s
. (C.6)

The mean number of secondary cases is therefore given by G
0
N
(1) = �

�
= R0, recovering

the familiar definition of the basic reproduction number. For the branching process with
over-dispersion, the number of secondary cases produced by a single individual over their
entire infectious period is given by ⌅ =

P
N

i=1 ⇠i, where ⇠i are i.i.d random variables with
common generating function G⇠(s) =

�
1 + 1

k
(1� s)

��k. The generating function for ⌅ is
therefore given by:

G⌅(s) = GN(G⇠(s)) =
�

�+�

1� �

�+�
(1 + 1

k
(1� s))�k

, (C.7)

with G
0

⌅(s) =

�

�+�

⇣
�

�+�
(1 + 1

k
(1� s))�(k+1)

⌘

⇣
1� �

�+�
(1 + 1

k
(1� s))�k

⌘2 . (C.8)
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Figure C.1. Real-time probability of extinction for an outbreak that begins with a single case, for the
branching process with both overdispersion (using a negative binomial offspring distribution) and imperfect
case ascertainment (⇡ = 0.4) compared with the branching process with no overdispersion, whose offspring

distribution is given by C.2.

Evaluating G
0
⌅(s) at s = 1 gives the mean number of secondary cases generated over an

individual infectious period, which for this process is also given by R0, as expected.

In Figure C.1, we show that including overdispersion in the continuous-time branching pro-
cess model results in a higher probability of extinction, due to the possibility that some “in-
fection events” produce no secondary cases. This is consistent with the argument in [11]
that outbreaks are “rarer but more explosive” when they are driven by superspreading events,
compared to when all individuals infect others at the same constant rate.
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Appendix D

Modelling Insights Concerning the Risk
of Importation and Spread of COVID-19
in Prisons

D.1 Equations for an Outbreak in Prisons with Vaccination

The system of differential equations for the compartmental model of an outbreak in prisons
for which certain age groups have been vaccinated (corresponding to the diagram in Figure
5.5) is given as follows. Consider age group i for 1  i  3. We have:

dSi

dt = ��Si

dEi

dt = �Si � ⇢Ei

dPi

dt = ⇢Ei � �Pi

dIi
dt = �Pi � �Ii

dRi

dt = �p
i

R
Ii

dHi

dt = �p
i

H
Ii � ⌘Hi = �(1� p

i

R
)Ii � ⌘Hi

dRHi

dt = ⌘p
i

RH
Hi

dDi

dt = ⌘p
i

D
Hi = ⌘(1� p

i

RH
)Hi

Vi = evNi

N =
3X

i=1

(Si + Ei + Pi + Ii +Ri +Hi +RHi ++Di + Vi)

=
3X

i=1

Ni

� =
�P

P
i
Pi + �I

P
i
Ii

N �
P

i
(Hi +Di +RHi)

.
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The final expression for � reflects the fact that there is homogeneous mixing between age
groups. The age-group structure exists only to denote vaccination status. For those age groups
i that have been vaccinated, we have the initial condition Si(0) = (1�ev)pvNi+(1�pv)Ni,
where ev is the vaccine efficacy, pv is the proportion of prisoners that agreed to take the
vaccine (assumed to be the same across age groups) and Ni is the number of individuals
belonging to age group i. We begin an outbreak with a single infectious case in age group
1, corresponding to individuals under the age of 40, so that I0(0) = 1. All other compart-
ments contain no individuals at time t = 0

D.2 Additional Tables of Results
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Appendix E

Hospital length of stay for COVID-19
patients: Data-driven methods for
forward planning

E.1 Data generating process

The data that we analyse from MFT is routinely collected by the hospital administration
teams. Details from doctors’ notes and patient admissions are entered into the Trust’s Pa-
tient Administration System (PAS). Patient data from PAS and WardWatcher are then ag-
gregated together to determine an individual’s entire hospitalisation pathway. We further
make use of data collected by MFT on testing for COVID-19; this is, again, collected and
entered manually into a database called Telepath, which is subsequently joined to the main
Trust database by the Trust’s data warehouse.

In addition to this routinely collected information, trusts have also been required by Public
Health England (PHE) to report individual-level data on patients receiving care for acute
respiratory infection and aggregate data on all COVID-19 admissions for CHESS. This in-
formation is submitted by 09:00 each day with data corresponding to the previous day. This
data is compiled manually, requiring additional input from administrative staff to ensure
that the data is sent on time and with the correct information. Information sent to PHE by
individual trusts is then compiled into a dataset that is disseminated weekly to trusts and
reported on weekly to NHS England.

E.2 Value-missingness in CHESS data

Figure A1 presents the percentage of missing values in the raw CHESS data reported by
NHS trusts grouped by region. London followed by Midlands have the highest percentages
of missing values, while South West obtains the smallest one.

In terms of the variables, final outcome date variable has 33.6% of missing values. These
will be split into cases where the missingness is because the final outcome has not yet hap-
pened and those where it has happened but has not been captured.
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Figure A1. Percentage of values that are missing or recorded as unknown for the variables of the raw CHESS
data that are used in this paper (Date and week of Hospital Admission, Was in ICU?, ICU Admission date -

conditional on the patient being admitted to ICU, Final outcome date, Sex, and Age). Source: own elaboration
using CHESS data for England.

ICU admission date conditioned on whether the patient was admitted to ICU has 5.36%
missing values. Age has 0.29% missing values, and date and week of hospital admission
only have 0.06%.

By contrast, sex and the variable regarding whether a patient was in ICU or not do not have
missing values. However, these do have some recorded values of ”unknown” which we in-
terpret as missing. Sex has 0.23% of unknown values, whereas the item regarding being
admitted to ICU has 4.41%.

E.3 Data processing

We use CHESS data released on 26 May 2020 (N = 16, 138). We first filter out 493 dupli-
cated cases. The de-duplication rule set as follows.

Rule 0
number of records 1
IDS are singular
Date/time of admission to ICU Any
Other variables Any values
Action leave unchanged
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Rule 1
number of records 2
IDS are Identical
Date/time of admission to ICU Identical values for dateadmittedicu
Other variables different values for hospitaladmissiondate
Action Include record with the earliest hospitaladmissiondate, delete the others

Rule 2
number of records 2
IDS are Identical
Date/time of admission to ICU Identical values for dateadmittedicu
Other variables identical values for hospitaladmissiondate
Action Include record with the earliest sbdate, delete the others

Rule 3
number of records 2
IDS are Identical
Date/time of admission to ICU Different values for dateadmittedicu
Other variables ICU periods are non contiguous
Action Leave all records in the file but record a different obsid for each record

Rule 4
number of records 2
IDS are Identical
Date/time of admission to ICU Different values for dateadmittedicu
Other variables ICU periods are contiguous
Action Merge the records to a single record which has the earliest hospitaladmissiondate and dateadmittedicu and the

latest dateleavingicu

Rule 5
number of records 2
IDS are Identical
Date/time of admission to ICU One of them doesn’t have dateadmittedicu
Other variables
Action Include record with dateadmittedicu, delete the others

Rule 6
number of records 2
IDS are Identical
Date/time of admission to ICU Neither has dateadmittedicu
Other variables different values for hospitaladmissiondate
Action Include record with the earliest hospitaladmissiondate, delete the others
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Rule 7
number of records 2
IDS are Identical
Date/time of admission to ICU Neither has dateadmittedicu
Other variables identical values for hospitaladmissiondate
Action Include record with the earliest sbdate, delete the others

Rule 8
number of records 2
IDS are Different
Date/time of admission to ICU Identical values for dateadmittedicu, hoursadmittedicu and minutesadmittedicu (and those values are not missing).
Other variables identical vales for: sex, ageyear, agemonth, hospitaladmissiondate, trustcode, postcode
Action Use the record with the earliest estimateddateonset or infectionswabdate, delete the others

Rule 9
number of records 4
IDS are Identical
Date/time of admission to ICU identical values for dateadmittedicu for a and b, identical values for c and d and a <c
Other variables a and c have identical values for hospitaladmissiondate as do b and d and a <b
Action delete b and d and run the rule set over a and c

Rule 10
number of records >1
IDS are Identical
Date/time of admission to ICU

Any not meeting the above conditionsOther variables
Action mark for clerical review

The rules are applied in numerical order. In the small number of cases where rule 10 ap-
plies then this will always be where two or more of the rules need to be applied in combina-
tion.

We only analyse those patients whose records make explicit that the admission to the hos-
pital unit was due to COVID-19. We make this assumption to exclude nosocomial cases,
for whom the LoS begins when they were admitted to hospital for non-COVID-19 reasons.
It does not make sense to compare these cases with LoS from COVID-19 hospitalisations.
Thus, from 15, 645 deduplicated cases, 8, 938 entries were excluded.

Furthermore, we only analysed cases who were admitted to hospital from 16 March 2020
to 17 May 2020 (i.e. from week 12 to 20). Data before week 12 was omitted as this sam-
ple size was small and the treatment policy was different from that in more recent data,
with patients having very long lengths of stay early in the outbreak. Data after week 20
was omitted as there are often corrections to historical data from the last week or so, so we
could not treat the most recent data as reliable. This removed 317 additional cases.
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Finally the omission of cases due to unknown sex, and negative values in age or recorded
age of zero, and unknown (effectively missing) information regarding whether a patient was
admitted to ICU or not led to a dataset of 6, 208 records. The removal of the records that
have an age of 0 recorded needs further explanation. The number of records with age 0 was
725 (which compares to 15 age 1’s). Many such records had characteristics that one would
not attribute to newborns (e.g. obesity, smoking, diabetes, ulcers etc.). We also note that
some cases with ages recorded as 0 in early versions of the CHESS dataset had been up-
dated with non-zero ages by 26 May. It seems likely that the data entry system for CHESS
has a default setting of ”today” for the DOB and therefore in effect the vast majority of Age
0’s were in fact cases where the age/DOB was not available when the data were entered.
Hence removing these cases seems prudent.

Some LoS have zero length, where patients enter and leave ICU on the same day and only
have to the day of arrival and departure recorded not the time. For such cases, we assumed
the outcome occurred half a day after admission, since instantaneous durations are unrealis-
tic. Half a day was chosen so that these cases were not biased to either side of their recorded
data. Some cases recorded hourly data for some events but not all, causing some LoS to be
in (�1, 0). For them, we also adjust the outcome date to half a day after admission. All pa-
tients with LoS in (�1,�1] were discarded. In total 849 cases had their ICU admission
date changed to half a day after hospital admission, 41 cases had the ICU discharge date
changed to half a day after ICU admission and 199 cases had final outcome date changed to
half a day after hospital admission. Therefore, the choice of how to adjust this data has the
largest impact on the hospital admission to ICU length of stay, where this constitutes 28%
of cases. For this length of stay, moving the adjustment to different extremes (either adding
0.1 or 0.9) changes the length of stay estimates by no more than one tenth of a day. There-
fore, this data processing method does not have a substantial impact on the LoS estimates.

E.4 Multi-state survival analysis

Here we present the details of the multi-state survival model used in our analysis. Suppose
an individual is in state u at time t, then the move that an individual makes to their next
state v is governed by a set of transition intensities quv(t) = lim�t!0 Pr(S(t + �t) = v |

S(t) = u)/�t. The intensity represents the instantaneous rate of transition from state u to
state v.

Data structure and transition-specific parametric models

Given the granularity of routinely collected data in hospitals, all transition times between
states are observed exactly, with no additional transitions between observation times. Such
data allows us to efficiently model the transition intensities parametrically, which we show
here with the use of a Weibull accelerated failure time (AFT) model.

It is important to note that the data must first be structured in a specific way. In contrast
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to standard survival analysis, in the multi-state case, we now have a series of event times
t1, . . . , tn for each individual, corresponding to each change in state. The last of these, may
be observed so that the patient has entered an absorbing state i.e. they are discharged or
dead, or right censored if the patient is still in the hospital. When there are nu competing
events for state u, a patient entering state u at time tj , has their next event at tj+1 which is
defined as the minimum time amongst the survival times of the competing events v1, . . . , vnu .
A row is created for each transition that is possible for the patient, with an additional col-
umn consisting of an indicator corresponding to whether or not the transition is observed or
censored at tj+1. In this format, we can separate the data by transition and fit a transition-
specific parametric model to each subset [175]. Our required data format is described in
detail in [195].

Weibull AFT model

In the survival framework, for a random variable T , denoting the time until an event of in-
terest occurs, the survival function is given by S(t) = 1 � F (t), where F (t) is the cumula-
tive density function of T . The hazard function, �(t), is defined as the instantaneous rate of
occurrence of an event and is given by

�(t) = lim
�t!0

P (t  T < t+ �t | T � t)

�t
.

If we assume that T ⇠ Weibull(k,↵), for shape parameter k and scale ↵, then the baseline
survival and hazard functions are given by S̄(t) = exp(�↵tk) and �̄(t) = ↵kt

k�1, respec-
tively.
In an AFT model, predictors, x, act multiplicatively on time. This in contrast to the pro-
portional hazards model where the predictors act multiplicatively on the hazard. If we let
�i = e

�·xi , where � are the regression coefficients, then we get that

Si(t) = exp(�↵tk
i
�i)

�i(t) = �i�(�it) = �ik(�it)
k�1 = �

k

i
kt

k�1
.

The model is fit using the maximum likelihood estimation (MLE) method. Formulating the
likelihood for a survival model requires the consideration of both the contribution of cen-
sored and uncensored individuals. For a potentially right-censored observation, let ci be the
event indicator for the ith individual with ci = 1 if an event occurred and ci = 0 otherwise.
Then the likelihood is given by

L(�, k; ti) =
nY

i=1

�i(ti)
ciSi(ti).
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Therefore it follows that the log-likelihood for such a model is given by

L =
nX

i=1

[ci log(�i(ti)) + log(Si(ti))]

=
X

i

[ci(log(ktk�1
i

) + k log(�i))� (�iti)
k]

=
X

i

[ci(log(ktk�1
i

) + k�Txi)� t
k

i
e
k�Txi ].

Simulation/Bootstrap

In order to predict time to each transition from all states, we use a Monte Carlo simulation
approach. This provides greater flexibility than computing length of stay via an integration,
allowing us to predict patient pathways during an outbreak in addition to estimating length
of stay in each state. As such, it creates a more powerful planning tool for hospital manage-
ment. The number of simulated individuals, N , is based on COVID-19 positive hospital
admissions from MFT since 23 February 2020. Individual survival times are simulated us-
ing estimates from each fitted transition-specific model, and iterating through the transition
matrix until all patients have reached an absorbing state or are censored at a specified max-
imum follow-up time. The structure of the simulation treats the simulation as a sequence of
competing hazards in the following way.

Let u be the patient’s starting state, entered at time tu = s and tmax the maximum follow-
up time of interest. For each day of interest, repeat the following to simulate paths for every
new admission:

1. Let V be the set of states with an allowed transition from u and Qu = |V | be the num-
ber of possible transitions from u. While v 2 V , let �uv(t) be the transition intensity
for the transition from u to v. Note, if Qu = 0, we are in an absorbing state and stop.

2. For each possible transition, use the fitted parameter estimates of �uv(t) to simulate a
survival time, t̄uv.

3. Set t̄ = min{t̄u1, . . . , t̄uQu , tmax}. If t̄ = tmax, stop for this individual.

4. Let u = z for z 2 V such that t̄ = tuz and set tu = t̄

E.5 Competing Hazards vs. Conditional Hazards

In this Appendix, we compare using conditional versus competing hazards within a multi-
state framework. The MS model in the main text describes competing hazards, whereas the
AFT and TC methods use conditional hazards. Competing hazards are perhaps more use-
ful, but require very high quality data. If such data are not available, it may only be possible
to estimate conditional hazards (where we condition on observing a given transition). How-
ever, here we demonstrate that these can be combined with estimates for the transition prob-
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abilities to obtain competing hazards. Thus, we conclude that coupling conditional hazards
with transition probabilities can capture the same phenomena as a model based on compet-
ing hazards.

Consider the situation where a system has a state X(t) and starts in state X(0) = 0 and
moves to one of n states indexed by i, j, . . . 2 [n], where [n] is the set of integers from 1 to
n inclusive.

0

1

2

n

�1(t)
�2(t)

�n(t)

Letting ⇡i(t) = Pr(X(t) = i), we get Chapman-Kolmogorov equations

d⇡0
dt = �(1� ⇡0)

nX

j=1

�j , d⇡i
dt = (1� ⇡0)�i , i 2 [n] , (E.1)

for initial conditions ⇡0(0) = 1, ⇡i(0) = 1. We now consider two models. In a competing
hazards approach, each rate is a general integrable function, and we write these integrals as

⇤i(t) =

Z
t

0

�i(u)du , i 2 [n] . (E.2)

In a conditional approach, we add an additional random variable, I , which is the state that
the system will move to, i.e. limt!1 X(t). We then let

�i(t) = 1{I=i}ri(t) , (E.3)

where ri(t) is the rate of going from 0 to i conditional on that being the event that happens.
Integrals of these rates are defined as

Ri(t) =

Z
t

0

ri(u)du , i 2 [n] . (E.4)

Our aim is to show that the two approaches (competing and conditional) can be calibrated
to give consistent results for quantities of interest.

One result needed for consistency is on the final outcome probabilities:

Pr(I = i) = lim
t!1

Pr(X(t) = i) =: ⇡1
i

, i 2 {0} [ [n] , (E.5)

where we have allowed for the possibility that the system may never leave the state 0, al-
though for most of the parametric models we consider that will not be the case. Imposing
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consistency of the probability of being in state 0 over time, by integrating (E.1) and using
the law of total probability for the conditional model,

⇡0(t) = exp
⇣
�
P

i2[n]⇤i(t)
⌘
= ⇡

1
0 +

P
i2[n]⇡

1
i

exp (�Ri(t)) . (E.6)

Substituting (E.6) back into (E.1), we can then obtain (also using the law of total probabil-
ity)

d⇡i
dt = �i(t)

⇣
1� exp

⇣
�
P

i2[n]⇤i(t)
⌘⌘

= ⇡
1
i
ri(t) (1� exp (�Ri(t))) , i 2 [n] .

(E.7)
We can then solve both (E.6) and (E.7) simultaneously using the Ansatz

�i = C⇡
1
i
ri(t) . (E.8)

This ensures that (E.7) is satisfied, then substituting into (E.6) we obtain

exp
⇣
�C
P

i2[n]⇡
1
i
Ri(t)

⌘
= ⇡

1
0 +

P
i2[n]⇡

1
i

exp (�Ri(t)) , (E.9)

and hence

C =
log
⇣
⇡
1
0 +

P
i2[n]⇡

1
i

exp (�Ri(t))
⌘

�
P

i2[n]⇡
1
i
Ri(t)

. (E.10)

This demonstrates that it is possible to capture the same phenomena of interest in the two
models given appropriate calibration.

E.6 Additional results

In the main results section, we provided estimates for the LoS until any outcome. This was
chosen to facilitate comparison between the different methods. In addition to this LoS, the
TC method and the MS method can be used to estimate the length of stay until given out-
comes such as discharge or death.1 In this section, we compare estimates for these LoS.
Again, pathways are disaggregated by whether the individual went via ICU. Here we choose
to omit further predictor variables such as age or week of admission from the TC method to
aid comparison.

Table A1 shows the comparison. For the LoS without ICU, the two methods give similar
estimates. Using the TC method on the CHESS data predicts that LoS to mortality without
ICU is slightly shorter than that to discharge, whereas the MS model on the MFT data pre-
dicts vice versa. This might be explained by the small sample size for the MFT data and
the different demographic profile of the wider population captured by CHESS. The two
methods predict very different LoS on ICU, with ICU to mortality being more than 5 days
longer in MS (15.8 days) to that predicted by TC (10.2 days). Similarly, the LoS from ICU
to stepdown, where individuals are discharged from ICU back to the general ward, is also

1A univariate AFT model is not fit for estimating LoS for competing hazards, such as for death and discharge.
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longer with the MS model. As with the main results, this could most likely be explained by
the presence of a much higher proportion of ECMO patients in the MFT data than in the
CHESS data. The LoS from stepdown to discharge is similar for the two methods, with 7.9
from TC and 6.2 from MS. We are unable to estimate stepdown to ICU from CHESS due to
the small number of such cases present in the data.

Table A1. Length of stay estimates to given outcome for England using the truncation corrected (TC) method,
and for the Manchester Trust using the multi-state (MS) method. Source: own elaboration using CHESS and

MFT data.

Method Hospital trajectory Mean 95% Confidence Interval
TC Acute Ward to ICU 2.0 (1.9, 2.1)
TC Acute Ward to Discharge 9.4 (8.9, 9.9)
TC Acute Ward to Mortality 8.3 (7.8, 8.9)
TC ICU to Stepdown 16.6 (15.6, 17.6)
TC ICU to Mortality 10.2 (9.7, 10.7)
TC Stepdown to ICU NA NA
TC Stepdown to Discharge 7.9 (7.5, 8.3)
Multistate Acute Ward to ICU 2.2 (1.9, 2.9)
Multistate Acute Ward to Discharge 7.8 (7.0, 8.6)
Multistate Acute Ward to Mortality 8.7 (7.5, 9.8)
Multistate ICU to Stepdown 20.1 (15.9, 25.1)
Multistate ICU to Mortality 15.8 (12.0, 21.5)
Multistate Stepdown to ICU 2.2 (1.1, 7.6)
Multistate Stepdown to Discharge 9.9 (7.2, 14.0)

Figure A2 shows the output of our simulator on bootstrapped MFT data using the complete
multi-state model in Figure 6.1. The red line represents true data that is plotted against 200
bootstrap simulations using fitted estimates for the transitions. Day 0 is taken to be 23 Febru-
ary, which we have taken to be the start of the national outbreak for the UK.

E.7 Model Validation Results

Table A2 compares our mean LoS estimates from each model with the observed LoS in
the data. For both the CHESS and MFT datasets we show the LoS from the censored data
that was available prior to the 17th of May, which was the cutoff date for our original analy-
sis, and from the uncensored data obtained once all patient outcomes had been observed.
We also show the difference between the two, thereby showing by how much taking the
observed mean LoS from the data underestimates the true LoS. For each model we then
record the estimated LoS for each pathway and calculate both the absolute error when com-
pared to the true uncensored LoS from the data as well as the error as a percentage of the
LoS underestimate
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Figure A2. Output of our simulation using the MS method (black cloud of points) on MFT data (red lines).
Source: own elaboration using MFT data.

Table A2. Validation of our models against the fully observed, uncensored (UC) data. For the accelerated
failure time (AFT) and truncation corrected (TC) models we record both the absolute difference between our
model mean estimates and the uncensored data from CHESS and as a percentage of the difference between
the censored (C) and uncensored data. For the Multistate (MS) model we perform the same analysis, but

against the data from MFT.

Admission to
ICU entry

ICU entry to
ICU exit

Admission to
Outcome
(via ICU)

Admission to
Outcome
(no ICU)

CHESS Data
LoS (C) 2.12 11.58 16.03 8.37
LoS (UC) 2.18 14.16 21.19 9.41
LoS Underestimate 0.06 2.58 5.16 1.04

AFT model
Mean 2.00 12.40 16.20 8.40
Difference 0.18 1.76 4.99 1.01
% of adjustment -200.00 31.78 3.29 2.88

TC model
Mean 2.00 13.40 17.30 9.10
Difference 0.18 0.76 3.89 0.31
% of adjustment -200.00 70.54 24.61 70.19

MFT Data
LoS (C) 1.30 13.72 17.21 6.86
LoS (UC) 1.35 18.58 30.57 8.52
LoS Underestimate 0.05 4.86 13.36 1.66

MS model
Mean 2.33 18.93 29.73 7.97
Difference -0.98 -0.35 0.84 0.55
% of adjustment 2060.00 107.20 93.71 66.87
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Appendix F

Possible future waves of SARS-CoV-2
infection generated by variants of
concern with a range of characteristics

This work was published in Nature Communications in 2021 [10]
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Viral reproduction of SARS-CoV-2 provides opportunities for the acquisition of advantageous

mutations, altering viral transmissibility, disease severity, and/or allowing escape from nat-

ural or vaccine-derived immunity. We use three mathematical models: a parsimonious

deterministic model with homogeneous mixing; an age-structured model; and a stochastic

importation model to investigate the effect of potential variants of concern (VOCs). Cali-

brating to the situation in England in May 2021, we find epidemiological trajectories for

putative VOCs are wide-ranging and dependent on their transmissibility, immune escape

capability, and the introduction timing of a postulated VOC-targeted vaccine. We demon-

strate that a VOC with a substantial transmission advantage over resident variants, or with

immune escape properties, can generate a wave of infections and hospitalisations compar-

able to the winter 2020-2021 wave. Moreover, a variant that is less transmissible, but shows

partial immune-escape could provoke a wave of infection that would not be revealed until

control measures are further relaxed.
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S ince the SARS-CoV-2 virus was first identified in humans in
late 2019, the resulting global pandemic has caused, as of
23rd July 2021, over 190 million confirmed COVID-19

cases and above 4.1 million reported deaths with COVID-19
disease1. As the pandemic continues globally, high SARS-CoV-2
incidence rates act to increase the risk of the virus acquiring
additional advantageous mutations2, potentially altering trans-
missibility, severity, and escape from natural or vaccine-derived
immunity.

The number of countries reporting variants causing concern
continues to increase1. One such SARS-CoV-2 variant is PANGO
lineage B.1.1.73, with WHO label “Alpha”4. This variant was first
detected in southeast England, with the earliest sequenced
B.1.1.7 samples collected in September 20205. The B.1.1.7 variant
was designated a variant of concern (VOC) in the United King-
dom on 18th December 20206. There is a consensus across
multiple statistical and mechanistic modelling approaches that
the B.1.1.7 variant has a substantial transmission advantage over
preexisting variants, with estimates ranging between 40 and 80%
more transmissible than previously circulating variants7–11. Fur-
thermore, matched cohort studies also suggest that the B.1.1.7
variant is associated with higher mortality compared with pre-
existing variants at a population level12–14, although there appears
to be no significant difference in mortality for cases we already
know to be severe enough as to require hospitalisation15.

Subsequently, the B.1.617.2 PANGO lineage (with WHO label
“Delta”4), a variant initially prevalent in India16, was designated a
VOC in the United Kingdom on 6th May 2021 due to it being
assessed to have “at least equivalent transmissibility to B.1.1.7
based on available data (with moderate confidence)”17. A week
later, on 13th May 2021, this assessment was revised to “high
confidence”18. The continued growth of B.1.617.2 relative to
B.1.1.7 observed in the United Kingdom is indicative of a sub-
stantial transmission advantage19.

Novel variants of COVID-19 that substantially evade vaccine
or naturally acquired immunity may pose a much bigger threat
than those that somewhat increase overall transmissibility,
reducing the efficacy of vaccines and enabling higher rates of
reinfection. There is apprehension that as countries with high
vaccine coverage begin to relax nonpharmaceutical interventions
(NPIs), variants may be revealed within-country, or be imported,
that escape existing immunity, thereby causing new waves of
infection. Notably, initial evidence for the B.1.351 variant (with
WHO label “Beta”4) suggests potential immune escape; B.1.351
was first detected in South Africa in October 202020 and was
designated a VOC in the United Kingdom on 24th December
2020. Collective findings from neutralisation experiments, vaccine
clinical trials and observational studies of population-level sur-
veillance data indicate that B.1.351 can evade natural immunity
from previous infection21, and the two prominently used SARS-
CoV-2 vaccines in the United Kingdom, the AstraZeneca (AZ)
and Pfizer–BioNTech (Pfizer) vaccines, likely have reduced effi-
cacy against B.1.35122–25. It has been suggested that immune
evasion explains the growth of B.1.351 in some regions of
France26. There has also been concern that the variant P.1 (with
WHO label “Gamma”4), first reported in Manaus, Brazil, in
December 2020, can evade immunity; a large secondary wave of
infection occurred in Manaus, despite high levels of preexisting
immunity due to a previous large wave of infection27, although
neutralisation experiments have been more equivocal28. Perhaps
most worrying is the potential for the emergence of variants that
are both highly transmissible and harbour immune-escape
mutations. Hence, B.1.1.7 lineages that also have the E484K
mutation, which is associated with reduced neutralisation from
antibodies, were designated a VOC in its own right in the United
Kingdom on 5th February 202129.

A range of different VOCs are found in genomically sequenced
specimens in England. Of those reported by 31st May 2021
(noting that delays between specimen collection and sequencing
can extend to up to three weeks), there had been 846 genomically
sequenced samples of B.1.351, 151 of P.1, 43 of B.1.1.7 with
E484K, and 9426 of B.1.617.2 variant cases (excluding variant
cases not linked to a known COVID-19 case or with provisional
sequencing/genotyping results)30. We remark that the frequency
of variants among sequenced samples may not be representative
of variant frequencies more broadly due to nonrandom selection
of samples sent for sequencing.

The infectious-disease dynamics of SARS-CoV-2 result from a
complex interaction between the circulation of multiple variants,
vaccination, NPI policy, and adherence. Mathematical modelling
approaches are an avenue for testing the sensitivity of these
dynamics to the underlying assumptions and conveying uncer-
tainty, with the caveat that models must balance biological rea-
lism with mathematical and computational tractability and
parameter identifiability31. Models have previously demonstrated
their usefulness as a tool offering insights on the dynamics of
pathogens with multiple lineages32,33. At the original time of
writing (May 2021), there was burgeoning interest in modelling
to explore the effects of VOCs on the trajectory of the SARS-
CoV-2 epidemic. One such paper used a deterministic compart-
mental model to simulate the impact of the potential introduction
of the more transmissible variant, B.1.1.7, into a Colombian
population in which previous strains were dominant34. The
authors considered the effect on the prevalence of hospitalisation
and deaths, and concluded that the introduction of such a variant
would necessitate increased NPIs and an increased pace of vac-
cinations, though the potential immune-escape characteristics of
a VOC were not explored. Another example study, considering
the spread of the B.1.1.7 variant in Ontario, Canada, devised a
two-strain mathematical framework to model both a resident and
a mutant-type viral population to estimate the time at which a
mutant variant is able to take over a resident-type strain during
an emerging infectious-disease outbreak35.

In this study, we use three mathematical models of novel
SARS-CoV-2 variant dynamics to evaluate the drivers, and the
likely timescales, of SARS-CoV-2 VOC epidemics in England. We
demonstrate that a VOC can cause subsequent epidemic out-
breaks comparable in magnitude to earlier waves in the pandemic
if it possesses either a large transmission advantage over the
existing resident variants, or the ability to evade immunity (either
infection- or vaccine-derived). Further, even when a novel variant
is less transmissible than the locally resident variants, immune
escape can lead to a marked wave of infection and consequential
hospitalisations. In addition, the reduced transmissibility of such
a VOC can allow it to remain difficult to detect, until NPIs are
reduced. Finally, we explore the relative timing of VOC-targeted
vaccines versus the establishment of community transmission of
an emergent VOC, showing a multitude of projected possibilities
that demonstrate the need to remain attentive to all potential
scenarios.

Results
We investigate two ways in which variants may be concerning:
either that they may be more transmissible than the resident
variants, or that they may evade immunity (infection- or vaccine-
derived). While there are indications of immune escape for some
particular variants23,24, the extent to which these variants evade
immunity in vivo is uncertain27. We therefore begin by exploring
parameter space using a parsimonious deterministic model with
simple homogeneous mixing. While such a parsimonious model
is useful for exploring parameter space and understanding the
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essential dynamics, it is unsuited to understanding how infection
may be translated into disease burden. We therefore extend our
analysis using a more complex age-structured model: first to
ensure that the simplifications made for the parsimonious model
do not have a large effect on the dynamics and second to
investigate how the infections seen in the parsimonious model
may translate into hospitalisations. In particular, as the roll-out of
vaccinations progresses, we expect the proportion of infections
that result in hospitalisations or death to decrease, reducing the
burden of large numbers of infections. Finally, using a Gillespie
stochastic simulation, we explore how the timing of the intro-
duction of a putative VOC-targeted vaccine and the rate of VOC
introductions into the population impact the trajectory of the
epidemic. See “Methods” for further details on the three models
used to perform our analyses.

We considered six representative potential VOCs, specifying
relative transmissibility versus resident variants (with resident
variants in our context referring to the period in England when
the Alpha/B.1.1.7 variant was predominant) and immune-escape
properties (Table 1): VOC MT—more transmissible, no immune
escape; VOC E—equally transmissible, (partial) immune escape
to vaccination and prior infection; VOC LT+E—less transmis-
sible, (partial) immune escape to vaccination and prior infection;
VOC Ev—equally transmissible, (partial) immune escape to
vaccination only; VOC Ei—equally transmissible, (partial)
immune escape to prior infection only; VOC E+LH—as VOC E,
but with no immune escape to hospitalisation. The results for
VOCs Ev and Ei are presented in the Supplementary Information.
While these scenarios focused on VOCs that had either an
advantage in terms of transmissibility or to escape previously
acquired immunity (but not both), our sensitivity analyses con-
sidered VOCs possessing a combination of both advantages.

Effects of potential variants on resultant waves of SARS-CoV-2
infection. In the absence of any introductions of other variants
and assuming the continuation of the relaxation roadmap to Step
4 from 21st June 2021, the parsimonious SARS-CoV-2 trans-
mission model gave a small wave of infection for currently cir-
culating variants (primarily B.1.1.7) spanning the second half of
2021 with a peak infectious prevalence of approximately 0.5%
(Fig. 1a, black line). This is in broad agreement with con-
temporaneous modelling of the roadmap relaxations36.

On the other hand, VOCs can lead to waves of infection
beyond what we would expect from the resident variants. The
introduction of a variant that was 1.5 times more transmissible
than resident variants (VOC MT) resulted in a surge of infection
peaking in August 2021. Additionally, the peak exceeded the
estimated peak prevalence during the January 2021 wave in
England as estimated from the ONS-infection survey37 (Fig. 1a,
blue line with square markers).

Similarly VOC E, which, while no more transmissible than
resident variants, had a degree of immune escape from
vaccination-derived immunity or prior infection (25% reduction
compared with resident variants), also provoked a considerable
wave of VOC infections. Compared with the more transmissible
VOC MT, the epidemic wave was lagged by a month, with a peak
in infectious prevalence in excess of the estimated peak
prevalence during the January 2021 wave (Fig. 1a, orange line
with plus-sign markers).

VOCs that had only one component of immune escape, to
either vaccination only or prior infection only, displayed
shallower and broader epidemic waves compared with VOC E.
We found that VOC Ei (immune escape to prior infection only)
peaked a month late with a higher magnitude and had a longer
epidemic tail than VOC Ev (immune escape to vaccination only,
see Supplementary Fig. 5).

A variant that was less transmissible than the resident variants
but had immune-escape attributes, VOC LT+ E, could give rise
to an elongated epidemic that was flatter, and more delayed, than
VOC E (Fig. 1a). These dynamics were a consequence of the
relative growth of the two variants, depending on a combination
of relative transmissibility and relative immunity.

The trajectory of the initial resident variant was similar soon
after the introduction of any of the VOCs. Increases in VOC
infections then translated into increased immunity against
resident-variant infections, which resulted in trajectories diver-
ging by late July 2021. As a consequence, the VOCs with large
resultant infection waves (VOC MT and VOC E) coincided with a
shallower, earlier peak in resident-variant infectious prevalence
and a shortened outbreak duration for resident variants
(Supplementary Fig. 6).

The relationship between the temporal profiles of VOC and
resident variant infectious prevalence was also reflected in the
speed of replacement of the resident variants by the VOC. Our
more transmissible variant, VOC MT, encompassed 50% of cases

Table 1 Transmissibility and immune escape properties for putative Variants of Concern (VOCs). In the main analysis we
consider four VOCs (VOC MT, VOC E, VOC LT+ E, VOC E+ LH), with results for two additional VOCs (VOC Ev and VOC Ei)
presented in the Supplementary Information. For those previously infected by either the resident variant or the VOC, we
assumed the prior-infection efficacies towards the other variant were identical. Note that in the age-structured SARS-CoV-2
transmission model we also applied efficacy scalings upon both symptomatic disease and hospitalisations (severe disease).

Scenario Description Relative transmissibility Proportional vaccine
efficacy

Proportional prior-infection
efficacy

VOC MT More transmissible, no immune escape 1.5 1 1
VOC E Equally transmissible, immune escape to

vaccination and prior infection
1 0.75 0.75

VOC E+LH As VOC E, except efficacies against
hospitalisations unadjusted

1 0.75a 0.75a

VOC LT+E Less transmissible, immune escape to
vaccination and prior infection

0.8 0.75 0.75

VOC Ev Equally transmissible, immune escape to
vaccination only

1 0.75 1

VOC Ei Equally transmissible, immune escape to prior
infection only

1 1 0.75

aVOC E+LH displays full efficacy against hospitalisations.
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less than two months post introduction and approached 100% of
cases within three months (August 2021), whereas in the VOC
scenario with a less transmissible variant with immune escape,
VOC LT+ E, it took roughly four months after being introduced
(during September 2021) for the VOC to constitute 50% of cases
(Supplementary Fig. 7).

Both the outbreak size and peak in infectious prevalence for
VOCs were sensitive to the transmissibility and ability to evade
existing immunity (Fig. 1b, d). We found a highly transmissible
VOC, 1.5 times more transmissible than resident variants, that
also had a great ability to evade prior infection and vaccine-
derived immunity (proportional immune efficacy against the
VOC of 0.5), could cause outbreaks infecting the majority of the
population and attain a peak infectious prevalence approaching
10%. On the other hand, outbreaks were generally not sustained
for VOCs that had a combination of being less transmissible than
resident variants with only minor evasion of infection- and
vaccine-derived immunity.

As time goes on, both the immunity of the population (via
vaccinations and infections with resident strains) and the level of

NPIs change, leading to different dynamics, depending on when a
VOC is introduced. Different types of VOCs have more advantage
at different dates of introduction, reflected in the value of R with
immunity (also referred to as effective R, with notation RVOC

eff ) at
the time of introduction. While more transmissible variants (such
as VOC MT) would attain their highest instantaneous R with
immunity estimate (at the time of introduction) if the date of
introduction aligned with the date of moving to Step 4 of the
relaxation roadmap on 21st June 2021, that advantage is degraded
over time as the population builds immunity (Figure 1c, blue line
with square markers). Variants that have a degree of immune
escape then gain greater relative advantage if the VOC was
introduced at a later time (Figure 1c, VOC E and VOC LT+ E).
Notably, introducing either VOC MT or VOC LT+ E from
November 2021 or later resulted in matched R with immunity
values, plateauing at approximately 1.2. Conversely, before Step 4
of the relaxation roadmap occurs, VOC LT+ E may be quite
indistinguishable from resident variants.

These facets were borne out by comparing outbreak size and
infectious case peak summary statistics; an introduction of either

Fig. 1 Infection burden for illustrative variant of concern (VOC) scenarios, produced using the parsimonious SARS-CoV-2 transmission model. We
considered three putative VOCs with differing transmissibility and immune-escape characteristics: more transmissible (VOC MT, blue line with square
markers), equal transmissibility with immune escape (VOC E, orange line with plus sign markers), less transmissible with immune escape (VOC LT+E,
yellow line with circle markers). We also present temporal dynamics for resident variants in the absence of any VOC being introduced (black line with no
markers). Additionally, in panels a and c, we represent the vaccine uptake in the population through time via background shading, the transition time into
Step 4 of the relaxation roadmap by the vertical solid line, and we state the assumed R excluding immunity values for resident variants (Rexcl) throughout
Steps 3 and 4, respectively. a VOC infectious prevalence over time. In each scenario, alongside resident variants, we introduced one of the VOCs on 17th
May 2021 with 2000 initial infecteds. c Instantaneous R of a VOC accounting for population-level immunity (y axis) calculated at the time of its
introduction (x axis). For the “Resident variants with no VOCs” scenario, the displayed profile corresponds to the instantaneous R with immunity of
resident variants. In panels b and d, we explore the sensitivity of two epidemiological outcomes to the relative transmissibility of the VOC compared with
resident variants and the proportional efficacy (vaccine and natural immunity) against the VOC: b outbreak final size; d peak in VOC-infection cases.
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VOC MT or VOC LT+ E in late 2021 gave similar epidemic
trajectories. Further, VOC MT being introduced in late 2021,
rather than 17th May 2021, resulted in a greater than threefold
reduction in outbreak size and peak infectious prevalence. For
VOC E, quantitatively the impacts of a later introduction date
were less marked. In particular, a later introduction date led to
only a small decrease in the outbreak size from approximately
60% (for an introduction date of 17th May 2021) to 50% (for an
introduction date in August 2021) of the population, respectively
(Supplementary Fig. 8, panels a–c). Contrarily, there was less
variability in the outbreak-summary statistics for resident
variants, irrespective of the VOC that was introduced into the
transmission dynamics (Supplementary Fig. 8, panels d–f).

Furthermore, we sought to determine what characteristics a VOC
needed to possess to both spread through the population (i.e.,
RVOC
eff ≥ 1) and outcompete resident variants (i.e., RVOC

eff >Rres
eff ). If the

VOC was introduced on 17th May 2021, immune escape was not
necessarily required if the VOC was more transmissible than
resident variants (Supplementary Fig. 9a). For VOCs that were less
transmissible than resident variants, a 10% decrement in relative
transmissibility could be roughly offset by a 10% decrement in the
proportional efficacy of immunity against the VOC. For later VOC-
introduction dates of 1st August 2021 (Supplementary Fig. 9b) and
1st November 2021 (Supplementary Fig. 9c), higher relative
transmissibilities were required for VOCs that did not have much
immune escape (proportional efficacy against the VOC of 0.9 and
above), but lower relative transmissibilities could be successful for
VOCs that had high immune escape (proportional efficacy against
the VOC of 0.75 and below).

Though individuals may develop immunity due to prior
infection or vaccination, it can be imperfect and breakthrough
infections may occur. In these circumstances, the immune
response could still cause a reduction in the onward transmission
of the virus. Including a degree of transmission blocking (by
either 25% or 50%) for those suffering breakthrough infection
resulted in a reduction in any resultant wave of VOC infections
and delayed the peak of the epidemic wave (Supplementary
Fig. 10). For VOC E, in particular, a 50% transmission-blocking
effect shifted the epidemic wave into late 2021 and early 2022,
while reducing the peak in infection to less than a third compared
with no transmission blocking. Transmission blocking from
vaccinations also reduced the maximum attained effective R over
the course of the outbreak (Supplementary Fig. 11). For the less
transmissible VOC LT+E, a 25% transmission-blocking effect
was sufficient to prevent any further substantial outbreak, with
effective R kept below 1.5 throughout.

VOC-caused hospitalisation burden depends sensitively on
VOC attributes. Since the parsimonious model did not include
age structure it was unable to incorporate correlations between
individuals that are prioritised for vaccination, those that con-
tribute most to transmission, and those most susceptible to severe
disease whose outcomes may require hospital treatment. In the
United Kingdom older-age groups were prioritised for vaccina-
tion, representing a population that are most at risk of severe
disease, but contribute least to onward infection. To investigate
the effect of this correlation, and include reductions in the severity
of cases due to vaccinations, we turned to a more complex age-
structured model. As before, we considered a range of potential
effects on transmissibility and immunity derived either from prior
infections or from vaccinations. In addition, we included the
potential effect of a (partial) immune-escape variant that assumed
no reduction in vaccine-derived efficacy against hospitalisation
(VOC E+ LH).

Our results for the age-structured model broadly agreed with
the parsimonious model in terms of qualitative patterns between
the illustrative VOC scenarios. When the relaxation roadmap in
England proceeded at the earliest stipulated dates, both a variant
that was 50% more transmissible than the resident variant with
no immune-escape attributes (VOC MT) or an equally
transmissible VOC with a reduction in efficacy from infection-
and vaccine-derived immunity (VOC E) were sufficient to see a
substantial outbreak. Furthermore, these cases can result in
appreciable hospital admissions, which may exceed the daily peak
attained during January 2021 of 3700 admissions per day across
England (Fig. 2a).

It is hoped that even when the effect of current vaccines and
natural immunity in preventing infection is significantly com-
promised, they may still be effective in preventing severe
symptom effects. Nevertheless, when both vaccination and
previous infection are equally effective at preventing hospitalisa-
tions from both VOC and resident variants (VOC E+ LH), we
retain a large wave of resultant hospitalisations generated by the
variant, though the central trajectory is brought below the peak
level of daily hospital admissions during the January 2021 wave
(Fig. 2a, purple line).

The burden of cases with severe disease being admitted to
hospital could be diminished with prolonged use of NPIs. The
stringency of these NPIs would depend on the characteristics of
the variant, though the non-COVID harms would also need
consideration. Irrespective of the level of restrictions retained in
Step 4 of the roadmap, a high vaccine efficacy against severe
disease reduces the estimated peak in hospital occupancy (i.e.,
VOC E+ LH lies below VOC E in Fig. 2b). In particular, given
the full removal of NPIs from the outset of Step 4 (termed RM
(roadmap) completion), our VOC E+ LH scenario gave a mean
peak occupancy below the January 2021 peak of 34,336 COVID-
19 patients, whereas for VOC E, the mean peak occupancy was
approximately 60,000.

In addition to these four illustrative VOC characteristics (VOC
MT, VOC E, VOC LT+ E, and VOC E+ LH), additional
sensitivity analyses of peak hospital occupancy to possible VOC
efficacy and transmission are given in supplementary heat maps
(Supplementary Fig. 12). We found that more severe immune
escape and/or a variant with both immune escape and increased
transmissibility would likely result in scenarios where reversion to
more stringent NPI measures would be required to prevent
hospitals being quickly overwhelmed.

The modelled outcomes involving large peaks in hospitalisa-
tions should be interpreted as being indicative of the relative
extent of control measures required to keep the variant under
control; we find that the resistance of the variant to current
vaccines was the most significant indicator of how much
measures may be safely relaxed. We stress that if there was a
surge in hospital occupancy, shifts in public behaviour and
enaction of national legislation may limit the spread of
infection38. Therefore, our scenarios represent a pessimistic view
of measures in response to a worsening outbreak.

We propose that the age distribution of cases may give an early
signal of whether a variant displays immune escape or higher
transmissibility (Fig. 2c). Previous infections to date have been
higher in younger-age groups who typically have higher rates of
contact and are less likely to have been shielding to the same
degree as more vulnerable age groups. As a result, with the
relaxation of NPIs, we might expect to see proportionally
increased infection from resident variants in the older- (60+
years) age groups. On the other hand, as vaccinations were largely
offered first to older-age groups, we might also expect to see a
large proportional increase in infections among children (Fig. 2c,
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grey bars vs black bars). Such effects were reduced for a VOC
with increased transmission (e.g., VOC MT, blue bars), as it is
expected to cause an earlier surge in cases at a time when the
vaccination programme is less advanced. VOCs with immune-
escape characteristics (VOC E, orange bars, and VOC LT+ E,
yellow bars) were less affected by both previous infection and
vaccination, resulting in an age distribution of infection that more
closely matched the historical profile. Nonetheless, if the roadmap
is run to completion, the more relaxed levels of NPIs than have
been previously seen are still expected to cause significantly
higher infections among the elderly than occurred to date.

Early-phase VOC dynamics and the implications of VOC-
targeted vaccines. Our final piece of analysis explored the out-
break potential of putative VOCs and evaluated the impact on the
infectious-disease dynamics of the relative timing of a VOC-
targeted vaccine becoming available that had an improved effi-
cacy toward VOCs.

For a given transmissibility and level of effective imports
per day (the daily rate of second generation cases that result from
a single-index case), we used the stochastic VOC importation
model to calculate the epidemic probability, which we subjectively
defined as the probability of reaching a prevalence of 100 cases

within 365 days (Fig. 3a). We discerned two prominent features.
A variant that was less transmissible could be almost certain to
become established if the effective importation rate was high
enough. Epidemic probabilities of 1 were attained for relative
transmissibilities of 0.7 (when effective imports per day were 0.22
or above), 0.8 (0.12 effective imports per day and above), and 0.9
(0.10 effective imports per day and above). This contrasts with a
VOC that was substantially more transmissible than resident
variants, where even at low numbers of effective imports per day
(0.02 per day), it remained highly likely that the VOC could
become established; VOCs with a relative transmissibility of 1.3
or above returned epidemic probabilities above 0.9.

Sampling from the stochastic VOC importation model to
initialise the introduction time of 100 VOC-infected individuals
and their distribution across the applicable infected compart-
mental states, we next used the parsimonious SARS-CoV-2
transmission model to consider the sensitivity of the magnitude
and timing of a VOC-caused resurgence of SARS-CoV-2
infection. We assumed that individuals previously vaccinated
were subsequently revaccinated, with these individuals prioritised
ahead of unvaccinated individuals. We found that the introduc-
tion date of a VOC-targeted vaccine was much more important
than the effective imports per day for the final size (Fig. 3b), peak
(Fig. 3c) and time of peak (Fig. 3d). Above all, if the VOC-

Fig. 2 Estimated COVID-19 hospitalisations, using the age-structured SARS-CoV-2 transmission model, across the illustrative variant-of-concern
(VOC) scenarios. We considered four putative VOCs with differing transmissibility, severity, and immune-escape characteristics: more transmissible
(VOC MT, blue, square markers), equal transmissibility with immune escape (VOC E, orange, plus-sign markers), less transmissible with immune escape
(VOC LT+ E, yellow, circle markers), and equal transmissibility with the same immune-escape properties of VOC E with the exception of a lesser
reduction in vaccine-derived efficacy against hospitalisation (VOC E+ LH, purple, inverted triangle markers). a Time series of daily hospital admissions
(thousands). Solid lines show the mean at each timepoint and the shaded ribbons the 95% prediction intervals. The dashed horizontal line denotes the
peak in daily hospital admissions in England during the January 2021 wave. Vertical grey lines give the timing of each Step of the relaxation roadmap (RM),
with Step 4 being placed at the earliest stipulated date that it may begin (21st June 2021). The vertical light-red line corresponds to the projected date
under our vaccine roll-out speed assumption where all those in the adult population (18+ years of age) in England who accept the vaccine would have
received two doses. b Relationship between mean peak hospital occupancy with VOC (thousands) and the level of NPIs toward the population following
Step 4 of the relaxation roadmap. c Age distribution of infections from the historical data up to May 2021 (black bars) alongside the projected distributions
for the resident variant in the absence of any VOCs (grey bars) and each VOC scenario (VOC MT: blue bars; VOC E: red bars; VOC LT+ E: orange bars).

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-25915-7

6 NATURE COMMUNICATIONS | ��������(2021)�12:5730� | https://doi.org/10.1038/s41467-021-25915-7 | www.nature.com/naturecommunications

176



targeted vaccine was not introduced until August 2021 or later,
the VOC attack rate was close to 50% of the total population
(Fig. 3b), and the peak in infectious prevalence was in the region
of 1–2% (Fig. 3c) and occurred during September/October 2021
(Fig. 3d).

Changing the prioritisation scheme for the VOC-targeted
vaccine, to one in which unvaccinated individuals were given
precedence followed by those who had received one of the
preexisting vaccines, resulted in qualitatively comparable findings
(Supplementary Fig. 13).

Discussion
Through a set of mathematical modelling analyses, we have
demonstrated the epidemiological trajectories for putative VOCs
to be wide-ranging and heavily dependent on its transmissibility
and immune-escape properties.

Our findings are in concordance with illustrative modelling of
novel SARS-CoV-2 variants conducted in May 2021 by three
academic groups in the United Kingdom contributing to the Sci-
entific Pandemic Influenza group on Modelling, Operational
subgroup (SPI-M-O), which showed that novel SARS-CoV-2
variants that either are highly transmissible or substantially
escape immunity have the potential to lead to resurgences (in the

absence of NPIs) in infections and hospitalisations that are larger
than those seen in January 2021 in the United Kingdom36. While
the assumptions that lead to a resurgence in hospitalisations to
levels comparable to those witnessed in the United Kingdom
during January 2021 might seem extreme, SARS-CoV-2 has
already demonstrated its adaptive potential. At the present time
(July 2021), there is no reason to believe that the SARS-CoV-2
virus has yet settled at its fitness optimum in terms of replication
and transmission capabilities. Given the prospect of the virus
undergoing a continued accumulation of adaptive mutations, we
should remain alert to all possible scenarios and continue an
evidence-based analysis of evolutionary change, so that public
health measures can be adjusted in response to substantive
changes in viral infectivity or severity of COVID-19 (also advo-
cated by Day et al.39).

Our transmission modelling suggests that the ability of variants
to evade immunity derived from vaccination (with currently
available vaccines) can be a key indicator of how much measures
may be relaxed without risking further surges of infection and
cases requiring hospital care. Furthermore, alongside the relative
size of peaks in infection and hospitalisation, their timing may
also be of great importance. It is hoped that vaccines may by
adapted to more effectively target emerging variants. Within our
model framework and utilised assumptions, our work suggests a

Fig. 3 Outbreak potential and sensitivity of epidemic trajectories to the introduction time of a variant of concern (VOC) targeted vaccine for VOC E. a
The probability of an epidemic for varying relative transmissibilities (compared with resident variants) versus a given count of VOC-effective imports
per day (corresponding to the second generation cases that result from a single-index case). In panels b–d, we performed simulations using the
parsimonious SARS-CoV-2 transmission model for differing effective VOC importation counts and introduction date of a VOC-targeted vaccine and
evaluated the following epidemiological summary statistics for the resultant VOC outbreak; b final size; c peak in infectious prevalence; d time of peak in
infectious prevalence.
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critical interplay between the timing of a VOC-targeted vaccine
and the number of effective imports of a VOC. When the number
of effective imports per day is sufficiently low (less than 0.5
per day in our model), it was possible for a new vaccine intro-
duced early enough to have an appreciable effect on the VOC
epidemic curve. With reports that the mass production of AZ
vaccine requires 60 days to grow the cells followed by 28 days of
quality assurance40, one may reasonably expect an absolute
minimum of three months from identification of a novel SARS-
CoV-2 variant to the possible initial administration of revised
vaccines that use the viral vector technology platform.

If a concerning novel variant is identified within a population,
it is conceivable that the relationship between the prevalence of
the variant and any change in NPI policy could give a signal of its
characteristics. We would expect that a variant with no immune
escape properties, but that is even more transmissible than resi-
dent variants, would display dynamics akin to the emergence and
establishment of B.1.1.7 (‘Alpha’ variant) in the United Kingdom.
In particular, over a period of fairly static NPIs, it was observed
that while growth rates of resident variants were nonincreasing,
the B.1.1.7 variant had a positive growth rate7,8. On the other
hand, a variant with no transmission advantage, but displaying
immune escape, could be identified through a shift in the dis-
tribution of cases between vaccinated and unvaccinated indivi-
duals. In addition, the timing of a surge in a novel variant could
also give a clue as to its characteristics. As we continue with the
vaccination rollout, reducing the level of NPIs could reveal less-
transmissible immune-escape variants, which were previously
kept in check by control measures. If sufficient data are available
to track the distribution of variant cases between vaccinated and
unvaccinated individuals, there is the potential to identify such a
variant (such as the B.1.351 variant, for which reduced vaccine
efficacy has previously been observed22–26) in advance of surging
cases in response to reductions in measures, indicating the need
for close surveillance as measures are lifted.

We suggest multiple courses of action that can act in concert to
mitigate the risk of a widespread outbreak caused by a new VOC,
summarised in the following four paragraphs comprising of
genomic surveillance; pharmaceutical interventions (therapeutics
and vaccines); slowing the rate of importations; and early
detection efforts.

Genomic sequencing of SARS-CoV-2 viral samples is of
paramount importance. A concerted international COVID-19
pandemic response requires global situational awareness of how
the virus is mutating and identification of emergent variants that
are of concern. The World Health Organization advocates
strengthening surveillance and sequencing capacity, and a sys-
tematic approach to provide a representative indication of the
extent of transmission of SARS-CoV-2 variants1.

Together with support of research to develop treatments for
mitigating disease impacts41, it is crucial to maximise vaccine
uptake and homogeneity in vaccine coverage to broaden immu-
nity across the population. High SARS-CoV-2 incidence rates act
to increase the vaccine escape risk, meaning that keeping case
numbers low using both NPIs and pharmaceutical measures is
beneficial2,42. Were vaccine escape variants to arise, one potential
measure that could be taken would be a targeted booster vaccine
against said variants. From a global standpoint, equitable vaccine
distribution is also advocated, which it thought to decrease the
potential for antigenic evolution43.

Furthermore, there is reason to believe that slowing importa-
tion of new variants into the United Kingdom is an important
priority to afford additional time to bolster vaccine-acquired
immunity throughout the population, heighten surveillance pro-
cedures, and build capacity for locally targeted interventions44. To

that end, analysis of genomic and contact-tracing data has
demonstrated the efficacy of travel restriction policy (travel cor-
ridors) enacted in England over the summer of 2020 in reducing
both the number of contacts reported by positive cases and the
number of subsequent cases due to onward transmission45.

Generally, any single cluster of infections with a VOC will be
most easily controlled while the case count is small. Early
detection and efforts to extinguish infection clusters are therefore
paramount, as increased importation rates seed more clusters and
will necessitate additional resources to keep a VOC under control.
From 1st February 2021 in England, the government began using
surge testing (in combination with genomic sequencing) in spe-
cific locations to monitor and suppress the spread of variants. At
the original time of writing this paper (May 2021), surge testing
involved increased testing, including those without symptoms of
COVID-19 and door-to-door testing in some areas, and enhanced
tracing of close contacts of confirmed cases infected by the variant
of concern46.

Our model parameterisation, vaccine rollout, and NPI policy
were tailored to England; we would not expect our findings to be
directly applicable in other countries and regions, though the
broad messages may still be relevant. These results would transfer
most readily to settings with a resident variant already in circu-
lation, where NPIs of moderate stringency are in place and
beginning to be relaxed in a phased manner, and vaccination is
underway. In contrast, countries such as New Zealand and
Australia that have not had large numbers of cases may have very
different dynamics to the United Kingdom, and how they choose
to control the development of population immunity will affect
their response to new variants. The varying combinations of
vaccines and how they are used in different countries will also
affect how new variants may be discerned in the data, particularly
in the age distribution of cases and hospitalisations. Nevertheless,
it is still likely to be the case that variants showing substantial
vaccine escape may only become apparent once vaccine rollout is
largely underway.

Our work demonstrates the use of parsimonious-model
structures to garner qualitative insights and high-level quantifi-
cation of the order of magnitudes of public health-measurable
quantities of interest (such as hospitalisations and deaths) that
may be experienced. Operationally, there is a balance between
having a model of sufficient detail to provide robust insights on
the objective and the time required to obtain such insight. Models
with additional complexities typically require longer development
times and finer-resolution data to be reliably parameterised. In
addition, higher-dimensional dynamical systems can result in
parameter inference becoming more computationally intensive47.
In a global public health emergency such as a pandemic, policy
processes tend to be very fast. Using more limited methods to
ensure the timely delivery of findings before a policy decision is
taken can be worth more than using a more complex method and
obtaining the results afterwards, provided any methodological
limitations are made clear48. That being said, incorporating noted
heterogeneities in the infectious-disease dynamics is a crucial
consideration for interventions that are targeted according to
those heterogeneities (such as the prioritisation order of COVID-
19 vaccination in the United Kingdom being predominately
determined by age).

Where possible, we have taken a data-driven approach to
parameterise the models. Nevertheless, this work has made sim-
plifying assumptions and our results therefore have limitations.
We assumed no waning of immunity to a specific variant induced
via natural infection or vaccination, and note that rapid waning of
immunity would lead to more severe outcomes than presented
here. Evidence suggests that previous infection with SARS-CoV-2
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induces effective immunity to future infections in most indivi-
duals, however, natural protection for previously infected indi-
viduals can be temporary49–52, although the robust quantification
of reinfection risk is also complicated by variants. We did not
include any seasonal effects, that, if present, may impact the
timing of future waves of infection53. Our analysis would also be
affected by deviations from the vaccination programme included
here, such as the rollout speed and split between the different
vaccine types, or changes in NPI stringency (including the
relaxation and/or strengthening of measures).

In summary, we have illustrated broad principles for the pos-
sible implications of the emergence of SARS-CoV-2 variants that
have particular transmissibility and immune-escape attributes.
More transmissible or immune-escape variants may cause sub-
stantial waves of infection, even in the context of considerable
vaccine-derived immunity. Indeed, a less-transmissible variant
with (partial) immune escape could be revealed as NPIs are lifted,
and cause an appreciable wave of infections and even hospitali-
sations. The unpredictability in the epidemiological character-
istics of novel pathogens means our ideas and understanding can
change as we accrue new information on the outbreak. Close
monitoring of the evolution of SARS-CoV-2 across a range of
geographical scales is needed to enhance local situational
awareness and quantify the risk from variants that may be of
concern, with reliable and accurate data ensuring that outputs
from models of infectious-disease dynamics are as informative as
possible.

Methods
We first overview the assumptions applied across all our models, then present in
turn each model and the analyses that were performed in each case, before closing
by summarising our vaccine-efficacy assumptions.

Model-agnostic assumptions. Since we are primarily interested in the epide-
miological impact of variants, in all models, we assumed no waning immunity (for
immunity resulting from either natural infection or vaccination), no “seasonality”
in the form of oscillatory rate constants, and no individual-level reinfection with
the same variant. This allows our results to capture the pure signal from variant
effects, although there is nothing in our approach that precludes inclusion of
additional phenomena if they are of scientific or practical interest.

We assumed “leaky” immunity in both our transmission models, so that when
protective immunity acquired from natural infection and/or vaccination was
imperfect (0 < ϵ < 1, with 0 corresponding to no protection and 1 complete
protection), individuals experience a reduced, but nonzero risk (i.e., susceptibility
of 1− ϵ). The “leaky” mechanism contrasts with an “all-or-nothing” immunity
conceptualisation, where a proportion ϵ of the population would be fully protected
and the remaining proportion (1− ϵ) are fully unprotected. For the portion of the

vaccinated population that had been previously infected by a variant, we set the
level of protective immunity at the greater amount of immunity attained between
the two types of exposure. We also assumed that for those previously infected by
either the resident variant or the VOC, the prior-infection efficacies toward the
other variant were identical (i.e., the level of protection toward the VOC given a
prior resident variant infection matched the level of protection toward the resident
variant given a prior VOC infection).

Both transmission models introduced 2000 VOC-infected individuals (a
prevalence of approximately 0.0035%) on 17th May 2021, unless stated otherwise,
representing a comparable population to the new non-B.1.1.7 VOCs reported in
England in early-to-mid-May 202154. We modelled the cocirculation of the VOC
and resident variant (for further details, see the model descriptions below and
Supplementary Notes 2 and 3). We consider the initial group of VOC-infected
individuals to be large enough that the average dynamics are reasonably captured
by a deterministic system (see Supplementary Note 4). We took the number of
initial VOC infected individuals from the portion of the population that were both
unvaccinated and not previously infected by any variant, with the VOC then
considered in cocirculation with the resident variant.

To capture changes in contact/mobility in response to relaxations of NPIs at
each step of the roadmap out of lockdown for England55, we set estimates of R
excluding immunity in each step at central values used by the University of
Warwick SARS-CoV-2 transmission model for modelling work assessing the
relaxation of restrictions (Roadmap Step 3 modelling36). For the breakdown of R
excluding immunity values within each step, and the associated time intervals, see
Table 2.

The models included vaccinations with AZ, Pfizer and Moderna vaccines, with
the latter two considered equivalent. We assumed a vaccine rollout speed averaging
2.7 million doses per week until the week commencing 19th July 2021 and 2
million doses per week thereafter (based on the central roll-out speed scenario
provided by Cabinet Office to SPI-M-O for use in modelling of easing restrictions:
Roadmap Step 336).

We performed all model computations using MATLAB R2021a.

The parsimonious SARS-CoV-2 transmission model
Model description. We developed a parsimonious deterministic ordinary differ-
ential equation (ODE) model consisting of an SEIR disease-state formulation for
resident variants (including B.1.1.7) and a VOC (see Table 2 for parameterisation),
with variant-specific transmissibility. Model equations can be found in Supple-
mentary Note 2.

We initialised the proportion of the population vaccinated with the AZ vaccine
and Pfizer/Moderna vaccines using data reported from the National Immunisation
Management Service (NIMS), the System of Record for the NHS COVID-19
vaccination programme in England56 (see Table 2). We used the vaccine-rollout
speed to calculate the number of first doses administered per day. We assumed a
future mix of vaccinations in the ratio 60% (AZ), 30% (Pfizer), and 10% (Moderna)
(as used in57). Where individuals were both recovered and vaccinated, we assumed
they received the greater of the two protections.

We used a population size of 56 million, comparable to the ONS mid-2019
estimate for the population of England58. All simulations began from 17th May
2021 with a time horizon of 365 days.

Investigating VOC-outbreak potential and epidemic trajectories. We investigated the
potential for illustrative VOCs to transmit widely among the community upon its

Table 2 Initial conditions, epidemiological and vaccination parameter assumptions for the parsimonious SARS-CoV-2
transmission model.

Parameter Baseline value Source

Proportion of population vaccinated with
AstraZeneca vaccine

0.355 Approximate proportion of England population vaccinated with the AstraZeneca vaccine
by 17th May 2021 (from the National Immunisation Management Service)

Proportion of population vaccinated with
Pfizer/Moderna

0.185 Approximate proportion of England population vaccinated with Pfizer/Moderna vaccines
by 17th May 2021 (from the National Immunisation Management Service)

Proportion initially recovered 0.26 Mid-May England national average estimate of proportion recovered. From University of
Warwick SARS-CoV-2 transmission model59.

Proportion initially infected 0.0009 England central prevalence estimate (0.09%) from ONS infection study, 9th May–15th
May 202167.

Recovery rate (I- > R) 0.4 days−1 Estimate from Warwick model
Rate from E- > I 0.3 days−1 Estimate from Warwick model
R excluding immunity for England [2.41,3.51] Central estimate from Warwick model from roadmap Step 3 modelling36. Associated

time intervals: [17th May–20th June 2021, 21st June 2021 onward]
Maximum proportion of population
vaccinated

0.785 × 0.95 Product of percentage aged 18+ (approximately 78.5%58) and assumed final
coverage (95%)

AstraZeneca/non-AstraZeneca
vaccine ratio

60%/40% Assumed mixture as in57
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introduction by computing the value of “R with immunity” over time (also referred
to as effective R), with notation RVOC

eff . R with immunity includes both the effects of
immunity (due to vaccination or prior infection) and the level of NPIs in place at
the time. Thus, R with immunity represents the potential for a newly introduced
VOC to generate a large epidemic at a particular time, assuming that there is no
deviation from the roadmap prior to that time.

Exploration of parameter sensitivity. We next explored how varying the trans-
missibility and immune-escape attributes affected the outbreak size, peak in any
resultant wave of infection, and R with immunity. Our sensitivity used a range of
relative transmissibilities of the VOC versus the resident variants (from 0.5 to 1.5,
with an increment of 0.1), and a proportional efficacy against the VOC derived
from vaccination or prior natural infection (from 0.5 to 1.0, with an increment
of 0.05).

The age-structured SARS-CoV-2 transmission model
Model description. In the previously outlined parsimonious model, we did not
include age structure and only considered SARS-CoV-2 infections. To assess the
healthcare implications of a VOC that becomes established among the community,
we extended the University of Warwick SEIR-type compartmental age-structured
model, developed to simulate the spread of SARS-CoV-2 within regions of the
United Kingdom59, to allow inclusion of a putative VOC.

The model has been fitted to UK outbreak data, giving a comparable match to
deaths, hospital admissions, hospital occupancy, and test positivity from
community testing (Pillar 2 tests). The model is formulated as a system of ordinary
differential equations (Supplementary Note 3).

The force of infection for this model was determined by the use of age-
dependent (who acquires infection from whom) social contact matrices for the
United Kingdom60,61. We assumed susceptibility and the probabilities of becoming
symptomatic, being hospitalised, and mortality to be age-dependent. Our model
formulation accounted for the role of household isolation by allowing first
infections within a household to cause new secondary infections at an increased
rate (more details may be found in Keeling et al.59). This model construction allows
secondary household contacts to be isolated and consequently play no further role
in the outbreak.

Sensitivity of hospitalisations to VOC characteristics. Echoing the observed beha-
viour of COVID-19 infections, our age-structured SARS-CoV-2 transmission
model differentiates between individuals who are symptomatic and those who are
asymptomatic. Partitioning those infectious by symptom status allows for the lower
level of transmission believed to be associated with asymptomatic infection. It also
generates the possible progression of symptoms increasing in severity, leading to
hospitalisation and/or death. For additional details on the calculation of hospital
admissions, hospital occupancy, and deaths from the number of new symptomatic
infections on a given day, see Keeling et al.59.

Utilising the case-severity module of the model, we investigated daily hospital
admissions, total hospital admissions, and the impact on the infection age-
distribution for our four main VOC scenarios: VOC MT, VOC E, VOC E+ LH,
and VOC LT+ E (Table 1). We simulated each VOC alongside the existing
resident variants by the duplication of the base-model equations (Supplementary
Note 3).

All simulations began from January 2020 (coinciding with the time the SARS-
CoV-2 virus was first identified in England) with a time horizon of 1095 days
(through to December 2022), although the results presented here are abridged due
to uncertainties arising from a rapidly evolving epidemic. The central estimates for
R excluding immunity for Steps 3 and 4 matched those listed in Table 2.

VOC-outbreak potential and utility of VOC-targeted vaccines. The previous
analyses sought to evaluate the likely timescales, drivers, and healthcare impact of
SARS-CoV-2 VOC epidemics under a specific set of assumptions, along with their
sensitivity to the variation in epidemiological parameters that underpin the
transmission dynamics.

However, epidemics starting from a small number of seed introductions are
inherently stochastic and deterministic models are unable to capture that
stochasticity. To that end, we adopted a stochastic modelling approach to explore
the outbreak potential of a VOC post emergence.

Our VOC importation model was a Gillespie stochastic simulation62,63 with six
types-at-birth and 12 disease states. The types-at-birth comprised combinatorial
combinations of two infection-history states (either having had no prior infection
or to have been previously infected with resident variants) and three vaccination
states (unvaccinated, vaccinated with AZ, and vaccinated with Pfizer/Moderna).
Infected individuals in these types could then be either latent infected or infectious,
resulting in a total of 12 disease states. Using the stochastic framework, we studied
the dependence of the epidemic probability (the probability of reaching a
prevalence of 100 cases within 365 days) for a VOC E-type variant on its relative
transmissibility compared with resident variants (from 0.5 to 1.5, with an
increment of 0.1) and on the amount of effective importations per day (from 0.02
to 0.40, with an increment of 0.02). We interpret importations as the second-
generation cases stemming from onward transmission to contacts of a single-index

case. To cross-check the correctness of the simulation, we compared it with
analytical results for a continuous-time multitype branching-process model with
immigration (see Supplementary Note 4).

Furthermore, another uncertain aspect of the system is the plethora of SARS-
CoV-2 vaccines in development64 and the prospect of previously approved vaccine
formulations being updated to improve protection against VOCs. For example,
there has been in vivo evidence regarding the efficacy of the Novavax vaccine
against the B.1.351 variant from phase-2 trials in South Africa, finding 51.0% (95%
CI: −0.6% to 76.2%) mild-to-moderate-disease efficacy against B.1.351 in HIV-
negative individuals65.

Using the parsimonious SARS-CoV-2 two-variant transmission model, we
investigated the sensitivity of a VOC with immune-escape properties (VOC E) to
the timing and properties of a VOC-targeted vaccine. We sampled from the
stochastic VOC importation model to initialise the introduction time of 100 VOC
infecteds and their distribution across the applicable infected compartmental states
of the parsimonious SARS-CoV-2 transmission model. We then appraised
sensitivity to the date a VOC-targeted vaccine began to be administered (from 1st
June 2021 to 1st November 2021, with an increment of one month) versus the
amount of effective VOC imports per day (from 0.12 to 0.40, with an increment
of 0.02).

We assumed that individuals previously vaccinated were subsequently
revaccinated, exploring prioritisation to receive the VOC-targeted vaccine being
either initially given to previously vaccinated individuals or to unvaccinated
individuals. In all the above-described scenarios, we fixed the R excluding
immunity for resident variants in the stochastic model at 3.

Vaccine-efficacy assumptions
Mechanisms of vaccine action. The protective actions of vaccination can be sepa-
rated into five components: (i) efficacy against infection, (ii) efficacy against
symptomatic disease, (iii) efficacy against hospital admission, (iv) efficacy against
death, and (v) efficacy against onward transmission. Three vaccines are now in use
in the United Kingdom (Pfizer, AstraZeneca, and Moderna). As vaccine efficacies
for Moderna were not as well defined from population-level observations (at the
original time of writing in May 2021), we assumed equal efficacies for both
Moderna and Pfizer vaccines, since they are both mRNA vaccines.

For the parsimonious deterministic model, as part of the parsimonious
approach, we assumed that the total vaccine-infection efficacy effect was obtained
after a single dose and that there was no delay in the onset of protective effects post
vaccination. We did not use efficacy estimates for symptomatic disease,
hospitalisation, or death as the parsimonious model tracked infections only.

In the age-structured SARS-CoV-2 transmission model, the effect of
vaccination was realised at each stage of case-severity progression, including
parameters, with increases for each between one and two doses, for (i) reduced
infection, (ii) reduced symptoms, and (iii) reduced hospitalisations (severe-case
outcomes). As well as corresponding to protection of the individual, symptom
efficacy also had an impact on disease spread due to the model assumption that
asymptomatic infected individuals, compared with symptomatic infected
individuals, transmitted the virus at a reduced rate (i.e., were less infectious).
Another assumption was that prevention of symptoms may be less affected by
immune escape than infection; we fixed symptom efficacy at 90% of the estimated
efficacy against resident variants for VOC E (compared with 75% for infection
efficacy). Symptom efficacy also provided a lower bound for efficacy against
hospitalisation, the latter taken between a 10% and 25% reduction for VOC E. We
present full details of all efficacies used in Table 3, including the protection realised
by previous infection in each of the three actions considered by vaccination. We
assumed previously infected individuals to have equal protection, regardless of
vaccination status and we carried out a sensitivity analysis to explore a broader
range of efficacy effects.

We also used the age-structured model to assess the impact on hospitalisations,
considering a VOC with similar characteristics to VOC E, except with proportional
efficacy against severe disease (hospitalisations) being unadjusted. We labelled this
scenario as VOC E+LH (immune escape plus less hospitalisations).

Vaccine-efficacy estimates against resident variants. Central vaccine-efficacy esti-
mates for both transmission models (Table 3) are based on the emerging data in
the UK population and elsewhere. Source studies for these estimates can be found
in Supplementary Table 1.

Vaccine-efficacy estimates against VOCs. As of May 2021, there was limited evi-
dence (though ever increasing) regarding the efficacy of the various vaccines
against VOCs, such as B.1.351 and B.1.617.2, and the susceptibility of individuals
with prior infection by resident variants (including the B.1.1.7 variant) to other
VOCs. Available estimates (as of May 2021) from the literature on the efficacy of
vaccine-induced and naturally acquired immunity can be found in Supplementary
Note 1.

We summarise the transmissibility and infection immune-escape properties for
each of our putative VOCs in Table 1 as proportions compared with the resident
strains, with the efficacies for a subset of our illustrative VOCs (VOC E and VOC
LT+ E) provided in Table 3.
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Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data used in this study are provided in the GitHub repository associated with the
study: https://github.com/LouiseDyson/COVID19-variants-of-concern-modelling-
paper66.

Code availability
The code repository for the study is available at: https://github.com/LouiseDyson/
COVID19-variants-of-concern-modelling-paper66.
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